1 |
227 |
jeremybenn |
/* Floating point routines for GDB, the GNU debugger.
|
2 |
|
|
|
3 |
|
|
Copyright (C) 1986, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
|
4 |
|
|
1997, 1998, 1999, 2000, 2001, 2003, 2004, 2005, 2007, 2008, 2009, 2010
|
5 |
|
|
Free Software Foundation, Inc.
|
6 |
|
|
|
7 |
|
|
This file is part of GDB.
|
8 |
|
|
|
9 |
|
|
This program is free software; you can redistribute it and/or modify
|
10 |
|
|
it under the terms of the GNU General Public License as published by
|
11 |
|
|
the Free Software Foundation; either version 3 of the License, or
|
12 |
|
|
(at your option) any later version.
|
13 |
|
|
|
14 |
|
|
This program is distributed in the hope that it will be useful,
|
15 |
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
16 |
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
17 |
|
|
GNU General Public License for more details.
|
18 |
|
|
|
19 |
|
|
You should have received a copy of the GNU General Public License
|
20 |
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>. */
|
21 |
|
|
|
22 |
|
|
/* Support for converting target fp numbers into host DOUBLEST format. */
|
23 |
|
|
|
24 |
|
|
/* XXX - This code should really be in libiberty/floatformat.c,
|
25 |
|
|
however configuration issues with libiberty made this very
|
26 |
|
|
difficult to do in the available time. */
|
27 |
|
|
|
28 |
|
|
#include "defs.h"
|
29 |
|
|
#include "doublest.h"
|
30 |
|
|
#include "floatformat.h"
|
31 |
|
|
#include "gdb_assert.h"
|
32 |
|
|
#include "gdb_string.h"
|
33 |
|
|
#include "gdbtypes.h"
|
34 |
|
|
#include <math.h> /* ldexp */
|
35 |
|
|
|
36 |
|
|
/* The odds that CHAR_BIT will be anything but 8 are low enough that I'm not
|
37 |
|
|
going to bother with trying to muck around with whether it is defined in
|
38 |
|
|
a system header, what we do if not, etc. */
|
39 |
|
|
#define FLOATFORMAT_CHAR_BIT 8
|
40 |
|
|
|
41 |
|
|
/* The number of bytes that the largest floating-point type that we
|
42 |
|
|
can convert to doublest will need. */
|
43 |
|
|
#define FLOATFORMAT_LARGEST_BYTES 16
|
44 |
|
|
|
45 |
|
|
/* Extract a field which starts at START and is LEN bytes long. DATA and
|
46 |
|
|
TOTAL_LEN are the thing we are extracting it from, in byteorder ORDER. */
|
47 |
|
|
static unsigned long
|
48 |
|
|
get_field (const bfd_byte *data, enum floatformat_byteorders order,
|
49 |
|
|
unsigned int total_len, unsigned int start, unsigned int len)
|
50 |
|
|
{
|
51 |
|
|
unsigned long result;
|
52 |
|
|
unsigned int cur_byte;
|
53 |
|
|
int cur_bitshift;
|
54 |
|
|
|
55 |
|
|
/* Caller must byte-swap words before calling this routine. */
|
56 |
|
|
gdb_assert (order == floatformat_little || order == floatformat_big);
|
57 |
|
|
|
58 |
|
|
/* Start at the least significant part of the field. */
|
59 |
|
|
if (order == floatformat_little)
|
60 |
|
|
{
|
61 |
|
|
/* We start counting from the other end (i.e, from the high bytes
|
62 |
|
|
rather than the low bytes). As such, we need to be concerned
|
63 |
|
|
with what happens if bit 0 doesn't start on a byte boundary.
|
64 |
|
|
I.e, we need to properly handle the case where total_len is
|
65 |
|
|
not evenly divisible by 8. So we compute ``excess'' which
|
66 |
|
|
represents the number of bits from the end of our starting
|
67 |
|
|
byte needed to get to bit 0. */
|
68 |
|
|
int excess = FLOATFORMAT_CHAR_BIT - (total_len % FLOATFORMAT_CHAR_BIT);
|
69 |
|
|
cur_byte = (total_len / FLOATFORMAT_CHAR_BIT)
|
70 |
|
|
- ((start + len + excess) / FLOATFORMAT_CHAR_BIT);
|
71 |
|
|
cur_bitshift = ((start + len + excess) % FLOATFORMAT_CHAR_BIT)
|
72 |
|
|
- FLOATFORMAT_CHAR_BIT;
|
73 |
|
|
}
|
74 |
|
|
else
|
75 |
|
|
{
|
76 |
|
|
cur_byte = (start + len) / FLOATFORMAT_CHAR_BIT;
|
77 |
|
|
cur_bitshift =
|
78 |
|
|
((start + len) % FLOATFORMAT_CHAR_BIT) - FLOATFORMAT_CHAR_BIT;
|
79 |
|
|
}
|
80 |
|
|
if (cur_bitshift > -FLOATFORMAT_CHAR_BIT)
|
81 |
|
|
result = *(data + cur_byte) >> (-cur_bitshift);
|
82 |
|
|
else
|
83 |
|
|
result = 0;
|
84 |
|
|
cur_bitshift += FLOATFORMAT_CHAR_BIT;
|
85 |
|
|
if (order == floatformat_little)
|
86 |
|
|
++cur_byte;
|
87 |
|
|
else
|
88 |
|
|
--cur_byte;
|
89 |
|
|
|
90 |
|
|
/* Move towards the most significant part of the field. */
|
91 |
|
|
while (cur_bitshift < len)
|
92 |
|
|
{
|
93 |
|
|
result |= (unsigned long)*(data + cur_byte) << cur_bitshift;
|
94 |
|
|
cur_bitshift += FLOATFORMAT_CHAR_BIT;
|
95 |
|
|
switch (order)
|
96 |
|
|
{
|
97 |
|
|
case floatformat_little:
|
98 |
|
|
++cur_byte;
|
99 |
|
|
break;
|
100 |
|
|
case floatformat_big:
|
101 |
|
|
--cur_byte;
|
102 |
|
|
break;
|
103 |
|
|
}
|
104 |
|
|
}
|
105 |
|
|
if (len < sizeof(result) * FLOATFORMAT_CHAR_BIT)
|
106 |
|
|
/* Mask out bits which are not part of the field */
|
107 |
|
|
result &= ((1UL << len) - 1);
|
108 |
|
|
return result;
|
109 |
|
|
}
|
110 |
|
|
|
111 |
|
|
/* Normalize the byte order of FROM into TO. If no normalization is
|
112 |
|
|
needed then FMT->byteorder is returned and TO is not changed;
|
113 |
|
|
otherwise the format of the normalized form in TO is returned. */
|
114 |
|
|
|
115 |
|
|
static enum floatformat_byteorders
|
116 |
|
|
floatformat_normalize_byteorder (const struct floatformat *fmt,
|
117 |
|
|
const void *from, void *to)
|
118 |
|
|
{
|
119 |
|
|
const unsigned char *swapin;
|
120 |
|
|
unsigned char *swapout;
|
121 |
|
|
int words;
|
122 |
|
|
|
123 |
|
|
if (fmt->byteorder == floatformat_little
|
124 |
|
|
|| fmt->byteorder == floatformat_big)
|
125 |
|
|
return fmt->byteorder;
|
126 |
|
|
|
127 |
|
|
words = fmt->totalsize / FLOATFORMAT_CHAR_BIT;
|
128 |
|
|
words >>= 2;
|
129 |
|
|
|
130 |
|
|
swapout = (unsigned char *)to;
|
131 |
|
|
swapin = (const unsigned char *)from;
|
132 |
|
|
|
133 |
|
|
if (fmt->byteorder == floatformat_vax)
|
134 |
|
|
{
|
135 |
|
|
while (words-- > 0)
|
136 |
|
|
{
|
137 |
|
|
*swapout++ = swapin[1];
|
138 |
|
|
*swapout++ = swapin[0];
|
139 |
|
|
*swapout++ = swapin[3];
|
140 |
|
|
*swapout++ = swapin[2];
|
141 |
|
|
swapin += 4;
|
142 |
|
|
}
|
143 |
|
|
/* This may look weird, since VAX is little-endian, but it is
|
144 |
|
|
easier to translate to big-endian than to little-endian. */
|
145 |
|
|
return floatformat_big;
|
146 |
|
|
}
|
147 |
|
|
else
|
148 |
|
|
{
|
149 |
|
|
gdb_assert (fmt->byteorder == floatformat_littlebyte_bigword);
|
150 |
|
|
|
151 |
|
|
while (words-- > 0)
|
152 |
|
|
{
|
153 |
|
|
*swapout++ = swapin[3];
|
154 |
|
|
*swapout++ = swapin[2];
|
155 |
|
|
*swapout++ = swapin[1];
|
156 |
|
|
*swapout++ = swapin[0];
|
157 |
|
|
swapin += 4;
|
158 |
|
|
}
|
159 |
|
|
return floatformat_big;
|
160 |
|
|
}
|
161 |
|
|
}
|
162 |
|
|
|
163 |
|
|
/* Convert from FMT to a DOUBLEST.
|
164 |
|
|
FROM is the address of the extended float.
|
165 |
|
|
Store the DOUBLEST in *TO. */
|
166 |
|
|
|
167 |
|
|
static void
|
168 |
|
|
convert_floatformat_to_doublest (const struct floatformat *fmt,
|
169 |
|
|
const void *from,
|
170 |
|
|
DOUBLEST *to)
|
171 |
|
|
{
|
172 |
|
|
unsigned char *ufrom = (unsigned char *) from;
|
173 |
|
|
DOUBLEST dto;
|
174 |
|
|
long exponent;
|
175 |
|
|
unsigned long mant;
|
176 |
|
|
unsigned int mant_bits, mant_off;
|
177 |
|
|
int mant_bits_left;
|
178 |
|
|
int special_exponent; /* It's a NaN, denorm or zero */
|
179 |
|
|
enum floatformat_byteorders order;
|
180 |
|
|
unsigned char newfrom[FLOATFORMAT_LARGEST_BYTES];
|
181 |
|
|
enum float_kind kind;
|
182 |
|
|
|
183 |
|
|
gdb_assert (fmt->totalsize
|
184 |
|
|
<= FLOATFORMAT_LARGEST_BYTES * FLOATFORMAT_CHAR_BIT);
|
185 |
|
|
|
186 |
|
|
/* For non-numbers, reuse libiberty's logic to find the correct
|
187 |
|
|
format. We do not lose any precision in this case by passing
|
188 |
|
|
through a double. */
|
189 |
|
|
kind = floatformat_classify (fmt, from);
|
190 |
|
|
if (kind == float_infinite || kind == float_nan)
|
191 |
|
|
{
|
192 |
|
|
double dto;
|
193 |
|
|
floatformat_to_double (fmt, from, &dto);
|
194 |
|
|
*to = (DOUBLEST) dto;
|
195 |
|
|
return;
|
196 |
|
|
}
|
197 |
|
|
|
198 |
|
|
order = floatformat_normalize_byteorder (fmt, ufrom, newfrom);
|
199 |
|
|
|
200 |
|
|
if (order != fmt->byteorder)
|
201 |
|
|
ufrom = newfrom;
|
202 |
|
|
|
203 |
|
|
if (fmt->split_half)
|
204 |
|
|
{
|
205 |
|
|
DOUBLEST dtop, dbot;
|
206 |
|
|
floatformat_to_doublest (fmt->split_half, ufrom, &dtop);
|
207 |
|
|
/* Preserve the sign of 0, which is the sign of the top
|
208 |
|
|
half. */
|
209 |
|
|
if (dtop == 0.0)
|
210 |
|
|
{
|
211 |
|
|
*to = dtop;
|
212 |
|
|
return;
|
213 |
|
|
}
|
214 |
|
|
floatformat_to_doublest (fmt->split_half,
|
215 |
|
|
ufrom + fmt->totalsize / FLOATFORMAT_CHAR_BIT / 2,
|
216 |
|
|
&dbot);
|
217 |
|
|
*to = dtop + dbot;
|
218 |
|
|
return;
|
219 |
|
|
}
|
220 |
|
|
|
221 |
|
|
exponent = get_field (ufrom, order, fmt->totalsize, fmt->exp_start,
|
222 |
|
|
fmt->exp_len);
|
223 |
|
|
/* Note that if exponent indicates a NaN, we can't really do anything useful
|
224 |
|
|
(not knowing if the host has NaN's, or how to build one). So it will
|
225 |
|
|
end up as an infinity or something close; that is OK. */
|
226 |
|
|
|
227 |
|
|
mant_bits_left = fmt->man_len;
|
228 |
|
|
mant_off = fmt->man_start;
|
229 |
|
|
dto = 0.0;
|
230 |
|
|
|
231 |
|
|
special_exponent = exponent == 0 || exponent == fmt->exp_nan;
|
232 |
|
|
|
233 |
|
|
/* Don't bias NaNs. Use minimum exponent for denorms. For simplicity,
|
234 |
|
|
we don't check for zero as the exponent doesn't matter. Note the cast
|
235 |
|
|
to int; exp_bias is unsigned, so it's important to make sure the
|
236 |
|
|
operation is done in signed arithmetic. */
|
237 |
|
|
if (!special_exponent)
|
238 |
|
|
exponent -= fmt->exp_bias;
|
239 |
|
|
else if (exponent == 0)
|
240 |
|
|
exponent = 1 - fmt->exp_bias;
|
241 |
|
|
|
242 |
|
|
/* Build the result algebraically. Might go infinite, underflow, etc;
|
243 |
|
|
who cares. */
|
244 |
|
|
|
245 |
|
|
/* If this format uses a hidden bit, explicitly add it in now. Otherwise,
|
246 |
|
|
increment the exponent by one to account for the integer bit. */
|
247 |
|
|
|
248 |
|
|
if (!special_exponent)
|
249 |
|
|
{
|
250 |
|
|
if (fmt->intbit == floatformat_intbit_no)
|
251 |
|
|
dto = ldexp (1.0, exponent);
|
252 |
|
|
else
|
253 |
|
|
exponent++;
|
254 |
|
|
}
|
255 |
|
|
|
256 |
|
|
while (mant_bits_left > 0)
|
257 |
|
|
{
|
258 |
|
|
mant_bits = min (mant_bits_left, 32);
|
259 |
|
|
|
260 |
|
|
mant = get_field (ufrom, order, fmt->totalsize, mant_off, mant_bits);
|
261 |
|
|
|
262 |
|
|
dto += ldexp ((double) mant, exponent - mant_bits);
|
263 |
|
|
exponent -= mant_bits;
|
264 |
|
|
mant_off += mant_bits;
|
265 |
|
|
mant_bits_left -= mant_bits;
|
266 |
|
|
}
|
267 |
|
|
|
268 |
|
|
/* Negate it if negative. */
|
269 |
|
|
if (get_field (ufrom, order, fmt->totalsize, fmt->sign_start, 1))
|
270 |
|
|
dto = -dto;
|
271 |
|
|
*to = dto;
|
272 |
|
|
}
|
273 |
|
|
|
274 |
|
|
static void put_field (unsigned char *, enum floatformat_byteorders,
|
275 |
|
|
unsigned int,
|
276 |
|
|
unsigned int, unsigned int, unsigned long);
|
277 |
|
|
|
278 |
|
|
/* Set a field which starts at START and is LEN bytes long. DATA and
|
279 |
|
|
TOTAL_LEN are the thing we are extracting it from, in byteorder ORDER. */
|
280 |
|
|
static void
|
281 |
|
|
put_field (unsigned char *data, enum floatformat_byteorders order,
|
282 |
|
|
unsigned int total_len, unsigned int start, unsigned int len,
|
283 |
|
|
unsigned long stuff_to_put)
|
284 |
|
|
{
|
285 |
|
|
unsigned int cur_byte;
|
286 |
|
|
int cur_bitshift;
|
287 |
|
|
|
288 |
|
|
/* Caller must byte-swap words before calling this routine. */
|
289 |
|
|
gdb_assert (order == floatformat_little || order == floatformat_big);
|
290 |
|
|
|
291 |
|
|
/* Start at the least significant part of the field. */
|
292 |
|
|
if (order == floatformat_little)
|
293 |
|
|
{
|
294 |
|
|
int excess = FLOATFORMAT_CHAR_BIT - (total_len % FLOATFORMAT_CHAR_BIT);
|
295 |
|
|
cur_byte = (total_len / FLOATFORMAT_CHAR_BIT)
|
296 |
|
|
- ((start + len + excess) / FLOATFORMAT_CHAR_BIT);
|
297 |
|
|
cur_bitshift = ((start + len + excess) % FLOATFORMAT_CHAR_BIT)
|
298 |
|
|
- FLOATFORMAT_CHAR_BIT;
|
299 |
|
|
}
|
300 |
|
|
else
|
301 |
|
|
{
|
302 |
|
|
cur_byte = (start + len) / FLOATFORMAT_CHAR_BIT;
|
303 |
|
|
cur_bitshift =
|
304 |
|
|
((start + len) % FLOATFORMAT_CHAR_BIT) - FLOATFORMAT_CHAR_BIT;
|
305 |
|
|
}
|
306 |
|
|
if (cur_bitshift > -FLOATFORMAT_CHAR_BIT)
|
307 |
|
|
{
|
308 |
|
|
*(data + cur_byte) &=
|
309 |
|
|
~(((1 << ((start + len) % FLOATFORMAT_CHAR_BIT)) - 1)
|
310 |
|
|
<< (-cur_bitshift));
|
311 |
|
|
*(data + cur_byte) |=
|
312 |
|
|
(stuff_to_put & ((1 << FLOATFORMAT_CHAR_BIT) - 1)) << (-cur_bitshift);
|
313 |
|
|
}
|
314 |
|
|
cur_bitshift += FLOATFORMAT_CHAR_BIT;
|
315 |
|
|
if (order == floatformat_little)
|
316 |
|
|
++cur_byte;
|
317 |
|
|
else
|
318 |
|
|
--cur_byte;
|
319 |
|
|
|
320 |
|
|
/* Move towards the most significant part of the field. */
|
321 |
|
|
while (cur_bitshift < len)
|
322 |
|
|
{
|
323 |
|
|
if (len - cur_bitshift < FLOATFORMAT_CHAR_BIT)
|
324 |
|
|
{
|
325 |
|
|
/* This is the last byte. */
|
326 |
|
|
*(data + cur_byte) &=
|
327 |
|
|
~((1 << (len - cur_bitshift)) - 1);
|
328 |
|
|
*(data + cur_byte) |= (stuff_to_put >> cur_bitshift);
|
329 |
|
|
}
|
330 |
|
|
else
|
331 |
|
|
*(data + cur_byte) = ((stuff_to_put >> cur_bitshift)
|
332 |
|
|
& ((1 << FLOATFORMAT_CHAR_BIT) - 1));
|
333 |
|
|
cur_bitshift += FLOATFORMAT_CHAR_BIT;
|
334 |
|
|
if (order == floatformat_little)
|
335 |
|
|
++cur_byte;
|
336 |
|
|
else
|
337 |
|
|
--cur_byte;
|
338 |
|
|
}
|
339 |
|
|
}
|
340 |
|
|
|
341 |
|
|
#ifdef HAVE_LONG_DOUBLE
|
342 |
|
|
/* Return the fractional part of VALUE, and put the exponent of VALUE in *EPTR.
|
343 |
|
|
The range of the returned value is >= 0.5 and < 1.0. This is equivalent to
|
344 |
|
|
frexp, but operates on the long double data type. */
|
345 |
|
|
|
346 |
|
|
static long double ldfrexp (long double value, int *eptr);
|
347 |
|
|
|
348 |
|
|
static long double
|
349 |
|
|
ldfrexp (long double value, int *eptr)
|
350 |
|
|
{
|
351 |
|
|
long double tmp;
|
352 |
|
|
int exp;
|
353 |
|
|
|
354 |
|
|
/* Unfortunately, there are no portable functions for extracting the exponent
|
355 |
|
|
of a long double, so we have to do it iteratively by multiplying or dividing
|
356 |
|
|
by two until the fraction is between 0.5 and 1.0. */
|
357 |
|
|
|
358 |
|
|
if (value < 0.0l)
|
359 |
|
|
value = -value;
|
360 |
|
|
|
361 |
|
|
tmp = 1.0l;
|
362 |
|
|
exp = 0;
|
363 |
|
|
|
364 |
|
|
if (value >= tmp) /* Value >= 1.0 */
|
365 |
|
|
while (value >= tmp)
|
366 |
|
|
{
|
367 |
|
|
tmp *= 2.0l;
|
368 |
|
|
exp++;
|
369 |
|
|
}
|
370 |
|
|
else if (value != 0.0l) /* Value < 1.0 and > 0.0 */
|
371 |
|
|
{
|
372 |
|
|
while (value < tmp)
|
373 |
|
|
{
|
374 |
|
|
tmp /= 2.0l;
|
375 |
|
|
exp--;
|
376 |
|
|
}
|
377 |
|
|
tmp *= 2.0l;
|
378 |
|
|
exp++;
|
379 |
|
|
}
|
380 |
|
|
|
381 |
|
|
*eptr = exp;
|
382 |
|
|
return value / tmp;
|
383 |
|
|
}
|
384 |
|
|
#endif /* HAVE_LONG_DOUBLE */
|
385 |
|
|
|
386 |
|
|
|
387 |
|
|
/* The converse: convert the DOUBLEST *FROM to an extended float and
|
388 |
|
|
store where TO points. Neither FROM nor TO have any alignment
|
389 |
|
|
restrictions. */
|
390 |
|
|
|
391 |
|
|
static void
|
392 |
|
|
convert_doublest_to_floatformat (CONST struct floatformat *fmt,
|
393 |
|
|
const DOUBLEST *from, void *to)
|
394 |
|
|
{
|
395 |
|
|
DOUBLEST dfrom;
|
396 |
|
|
int exponent;
|
397 |
|
|
DOUBLEST mant;
|
398 |
|
|
unsigned int mant_bits, mant_off;
|
399 |
|
|
int mant_bits_left;
|
400 |
|
|
unsigned char *uto = (unsigned char *) to;
|
401 |
|
|
enum floatformat_byteorders order = fmt->byteorder;
|
402 |
|
|
unsigned char newto[FLOATFORMAT_LARGEST_BYTES];
|
403 |
|
|
|
404 |
|
|
if (order != floatformat_little)
|
405 |
|
|
order = floatformat_big;
|
406 |
|
|
|
407 |
|
|
if (order != fmt->byteorder)
|
408 |
|
|
uto = newto;
|
409 |
|
|
|
410 |
|
|
memcpy (&dfrom, from, sizeof (dfrom));
|
411 |
|
|
memset (uto, 0, (fmt->totalsize + FLOATFORMAT_CHAR_BIT - 1)
|
412 |
|
|
/ FLOATFORMAT_CHAR_BIT);
|
413 |
|
|
|
414 |
|
|
if (fmt->split_half)
|
415 |
|
|
{
|
416 |
|
|
/* Use static volatile to ensure that any excess precision is
|
417 |
|
|
removed via storing in memory, and so the top half really is
|
418 |
|
|
the result of converting to double. */
|
419 |
|
|
static volatile double dtop, dbot;
|
420 |
|
|
DOUBLEST dtopnv, dbotnv;
|
421 |
|
|
dtop = (double) dfrom;
|
422 |
|
|
/* If the rounded top half is Inf, the bottom must be 0 not NaN
|
423 |
|
|
or Inf. */
|
424 |
|
|
if (dtop + dtop == dtop && dtop != 0.0)
|
425 |
|
|
dbot = 0.0;
|
426 |
|
|
else
|
427 |
|
|
dbot = (double) (dfrom - (DOUBLEST) dtop);
|
428 |
|
|
dtopnv = dtop;
|
429 |
|
|
dbotnv = dbot;
|
430 |
|
|
floatformat_from_doublest (fmt->split_half, &dtopnv, uto);
|
431 |
|
|
floatformat_from_doublest (fmt->split_half, &dbotnv,
|
432 |
|
|
(uto
|
433 |
|
|
+ fmt->totalsize / FLOATFORMAT_CHAR_BIT / 2));
|
434 |
|
|
return;
|
435 |
|
|
}
|
436 |
|
|
|
437 |
|
|
if (dfrom == 0)
|
438 |
|
|
return; /* Result is zero */
|
439 |
|
|
if (dfrom != dfrom) /* Result is NaN */
|
440 |
|
|
{
|
441 |
|
|
/* From is NaN */
|
442 |
|
|
put_field (uto, order, fmt->totalsize, fmt->exp_start,
|
443 |
|
|
fmt->exp_len, fmt->exp_nan);
|
444 |
|
|
/* Be sure it's not infinity, but NaN value is irrel */
|
445 |
|
|
put_field (uto, order, fmt->totalsize, fmt->man_start,
|
446 |
|
|
32, 1);
|
447 |
|
|
goto finalize_byteorder;
|
448 |
|
|
}
|
449 |
|
|
|
450 |
|
|
/* If negative, set the sign bit. */
|
451 |
|
|
if (dfrom < 0)
|
452 |
|
|
{
|
453 |
|
|
put_field (uto, order, fmt->totalsize, fmt->sign_start, 1, 1);
|
454 |
|
|
dfrom = -dfrom;
|
455 |
|
|
}
|
456 |
|
|
|
457 |
|
|
if (dfrom + dfrom == dfrom && dfrom != 0.0) /* Result is Infinity */
|
458 |
|
|
{
|
459 |
|
|
/* Infinity exponent is same as NaN's. */
|
460 |
|
|
put_field (uto, order, fmt->totalsize, fmt->exp_start,
|
461 |
|
|
fmt->exp_len, fmt->exp_nan);
|
462 |
|
|
/* Infinity mantissa is all zeroes. */
|
463 |
|
|
put_field (uto, order, fmt->totalsize, fmt->man_start,
|
464 |
|
|
fmt->man_len, 0);
|
465 |
|
|
goto finalize_byteorder;
|
466 |
|
|
}
|
467 |
|
|
|
468 |
|
|
#ifdef HAVE_LONG_DOUBLE
|
469 |
|
|
mant = ldfrexp (dfrom, &exponent);
|
470 |
|
|
#else
|
471 |
|
|
mant = frexp (dfrom, &exponent);
|
472 |
|
|
#endif
|
473 |
|
|
|
474 |
|
|
put_field (uto, order, fmt->totalsize, fmt->exp_start, fmt->exp_len,
|
475 |
|
|
exponent + fmt->exp_bias - 1);
|
476 |
|
|
|
477 |
|
|
mant_bits_left = fmt->man_len;
|
478 |
|
|
mant_off = fmt->man_start;
|
479 |
|
|
while (mant_bits_left > 0)
|
480 |
|
|
{
|
481 |
|
|
unsigned long mant_long;
|
482 |
|
|
mant_bits = mant_bits_left < 32 ? mant_bits_left : 32;
|
483 |
|
|
|
484 |
|
|
mant *= 4294967296.0;
|
485 |
|
|
mant_long = ((unsigned long) mant) & 0xffffffffL;
|
486 |
|
|
mant -= mant_long;
|
487 |
|
|
|
488 |
|
|
/* If the integer bit is implicit, then we need to discard it.
|
489 |
|
|
If we are discarding a zero, we should be (but are not) creating
|
490 |
|
|
a denormalized number which means adjusting the exponent
|
491 |
|
|
(I think). */
|
492 |
|
|
if (mant_bits_left == fmt->man_len
|
493 |
|
|
&& fmt->intbit == floatformat_intbit_no)
|
494 |
|
|
{
|
495 |
|
|
mant_long <<= 1;
|
496 |
|
|
mant_long &= 0xffffffffL;
|
497 |
|
|
/* If we are processing the top 32 mantissa bits of a doublest
|
498 |
|
|
so as to convert to a float value with implied integer bit,
|
499 |
|
|
we will only be putting 31 of those 32 bits into the
|
500 |
|
|
final value due to the discarding of the top bit. In the
|
501 |
|
|
case of a small float value where the number of mantissa
|
502 |
|
|
bits is less than 32, discarding the top bit does not alter
|
503 |
|
|
the number of bits we will be adding to the result. */
|
504 |
|
|
if (mant_bits == 32)
|
505 |
|
|
mant_bits -= 1;
|
506 |
|
|
}
|
507 |
|
|
|
508 |
|
|
if (mant_bits < 32)
|
509 |
|
|
{
|
510 |
|
|
/* The bits we want are in the most significant MANT_BITS bits of
|
511 |
|
|
mant_long. Move them to the least significant. */
|
512 |
|
|
mant_long >>= 32 - mant_bits;
|
513 |
|
|
}
|
514 |
|
|
|
515 |
|
|
put_field (uto, order, fmt->totalsize,
|
516 |
|
|
mant_off, mant_bits, mant_long);
|
517 |
|
|
mant_off += mant_bits;
|
518 |
|
|
mant_bits_left -= mant_bits;
|
519 |
|
|
}
|
520 |
|
|
|
521 |
|
|
finalize_byteorder:
|
522 |
|
|
/* Do we need to byte-swap the words in the result? */
|
523 |
|
|
if (order != fmt->byteorder)
|
524 |
|
|
floatformat_normalize_byteorder (fmt, newto, to);
|
525 |
|
|
}
|
526 |
|
|
|
527 |
|
|
/* Check if VAL (which is assumed to be a floating point number whose
|
528 |
|
|
format is described by FMT) is negative. */
|
529 |
|
|
|
530 |
|
|
int
|
531 |
|
|
floatformat_is_negative (const struct floatformat *fmt,
|
532 |
|
|
const bfd_byte *uval)
|
533 |
|
|
{
|
534 |
|
|
enum floatformat_byteorders order;
|
535 |
|
|
unsigned char newfrom[FLOATFORMAT_LARGEST_BYTES];
|
536 |
|
|
|
537 |
|
|
gdb_assert (fmt != NULL);
|
538 |
|
|
gdb_assert (fmt->totalsize
|
539 |
|
|
<= FLOATFORMAT_LARGEST_BYTES * FLOATFORMAT_CHAR_BIT);
|
540 |
|
|
|
541 |
|
|
order = floatformat_normalize_byteorder (fmt, uval, newfrom);
|
542 |
|
|
|
543 |
|
|
if (order != fmt->byteorder)
|
544 |
|
|
uval = newfrom;
|
545 |
|
|
|
546 |
|
|
return get_field (uval, order, fmt->totalsize, fmt->sign_start, 1);
|
547 |
|
|
}
|
548 |
|
|
|
549 |
|
|
/* Check if VAL is "not a number" (NaN) for FMT. */
|
550 |
|
|
|
551 |
|
|
enum float_kind
|
552 |
|
|
floatformat_classify (const struct floatformat *fmt,
|
553 |
|
|
const bfd_byte *uval)
|
554 |
|
|
{
|
555 |
|
|
long exponent;
|
556 |
|
|
unsigned long mant;
|
557 |
|
|
unsigned int mant_bits, mant_off;
|
558 |
|
|
int mant_bits_left;
|
559 |
|
|
enum floatformat_byteorders order;
|
560 |
|
|
unsigned char newfrom[FLOATFORMAT_LARGEST_BYTES];
|
561 |
|
|
int mant_zero;
|
562 |
|
|
|
563 |
|
|
gdb_assert (fmt != NULL);
|
564 |
|
|
gdb_assert (fmt->totalsize
|
565 |
|
|
<= FLOATFORMAT_LARGEST_BYTES * FLOATFORMAT_CHAR_BIT);
|
566 |
|
|
|
567 |
|
|
order = floatformat_normalize_byteorder (fmt, uval, newfrom);
|
568 |
|
|
|
569 |
|
|
if (order != fmt->byteorder)
|
570 |
|
|
uval = newfrom;
|
571 |
|
|
|
572 |
|
|
exponent = get_field (uval, order, fmt->totalsize, fmt->exp_start,
|
573 |
|
|
fmt->exp_len);
|
574 |
|
|
|
575 |
|
|
mant_bits_left = fmt->man_len;
|
576 |
|
|
mant_off = fmt->man_start;
|
577 |
|
|
|
578 |
|
|
mant_zero = 1;
|
579 |
|
|
while (mant_bits_left > 0)
|
580 |
|
|
{
|
581 |
|
|
mant_bits = min (mant_bits_left, 32);
|
582 |
|
|
|
583 |
|
|
mant = get_field (uval, order, fmt->totalsize, mant_off, mant_bits);
|
584 |
|
|
|
585 |
|
|
/* If there is an explicit integer bit, mask it off. */
|
586 |
|
|
if (mant_off == fmt->man_start
|
587 |
|
|
&& fmt->intbit == floatformat_intbit_yes)
|
588 |
|
|
mant &= ~(1 << (mant_bits - 1));
|
589 |
|
|
|
590 |
|
|
if (mant)
|
591 |
|
|
{
|
592 |
|
|
mant_zero = 0;
|
593 |
|
|
break;
|
594 |
|
|
}
|
595 |
|
|
|
596 |
|
|
mant_off += mant_bits;
|
597 |
|
|
mant_bits_left -= mant_bits;
|
598 |
|
|
}
|
599 |
|
|
|
600 |
|
|
/* If exp_nan is not set, assume that inf, NaN, and subnormals are not
|
601 |
|
|
supported. */
|
602 |
|
|
if (! fmt->exp_nan)
|
603 |
|
|
{
|
604 |
|
|
if (mant_zero)
|
605 |
|
|
return float_zero;
|
606 |
|
|
else
|
607 |
|
|
return float_normal;
|
608 |
|
|
}
|
609 |
|
|
|
610 |
|
|
if (exponent == 0 && !mant_zero)
|
611 |
|
|
return float_subnormal;
|
612 |
|
|
|
613 |
|
|
if (exponent == fmt->exp_nan)
|
614 |
|
|
{
|
615 |
|
|
if (mant_zero)
|
616 |
|
|
return float_infinite;
|
617 |
|
|
else
|
618 |
|
|
return float_nan;
|
619 |
|
|
}
|
620 |
|
|
|
621 |
|
|
if (mant_zero)
|
622 |
|
|
return float_zero;
|
623 |
|
|
|
624 |
|
|
return float_normal;
|
625 |
|
|
}
|
626 |
|
|
|
627 |
|
|
/* Convert the mantissa of VAL (which is assumed to be a floating
|
628 |
|
|
point number whose format is described by FMT) into a hexadecimal
|
629 |
|
|
and store it in a static string. Return a pointer to that string. */
|
630 |
|
|
|
631 |
|
|
const char *
|
632 |
|
|
floatformat_mantissa (const struct floatformat *fmt,
|
633 |
|
|
const bfd_byte *val)
|
634 |
|
|
{
|
635 |
|
|
unsigned char *uval = (unsigned char *) val;
|
636 |
|
|
unsigned long mant;
|
637 |
|
|
unsigned int mant_bits, mant_off;
|
638 |
|
|
int mant_bits_left;
|
639 |
|
|
static char res[50];
|
640 |
|
|
char buf[9];
|
641 |
|
|
int len;
|
642 |
|
|
enum floatformat_byteorders order;
|
643 |
|
|
unsigned char newfrom[FLOATFORMAT_LARGEST_BYTES];
|
644 |
|
|
|
645 |
|
|
gdb_assert (fmt != NULL);
|
646 |
|
|
gdb_assert (fmt->totalsize
|
647 |
|
|
<= FLOATFORMAT_LARGEST_BYTES * FLOATFORMAT_CHAR_BIT);
|
648 |
|
|
|
649 |
|
|
order = floatformat_normalize_byteorder (fmt, uval, newfrom);
|
650 |
|
|
|
651 |
|
|
if (order != fmt->byteorder)
|
652 |
|
|
uval = newfrom;
|
653 |
|
|
|
654 |
|
|
if (! fmt->exp_nan)
|
655 |
|
|
return 0;
|
656 |
|
|
|
657 |
|
|
/* Make sure we have enough room to store the mantissa. */
|
658 |
|
|
gdb_assert (sizeof res > ((fmt->man_len + 7) / 8) * 2);
|
659 |
|
|
|
660 |
|
|
mant_off = fmt->man_start;
|
661 |
|
|
mant_bits_left = fmt->man_len;
|
662 |
|
|
mant_bits = (mant_bits_left % 32) > 0 ? mant_bits_left % 32 : 32;
|
663 |
|
|
|
664 |
|
|
mant = get_field (uval, order, fmt->totalsize, mant_off, mant_bits);
|
665 |
|
|
|
666 |
|
|
len = xsnprintf (res, sizeof res, "%lx", mant);
|
667 |
|
|
|
668 |
|
|
mant_off += mant_bits;
|
669 |
|
|
mant_bits_left -= mant_bits;
|
670 |
|
|
|
671 |
|
|
while (mant_bits_left > 0)
|
672 |
|
|
{
|
673 |
|
|
mant = get_field (uval, order, fmt->totalsize, mant_off, 32);
|
674 |
|
|
|
675 |
|
|
xsnprintf (buf, sizeof buf, "%08lx", mant);
|
676 |
|
|
gdb_assert (len + strlen (buf) <= sizeof res);
|
677 |
|
|
strcat (res, buf);
|
678 |
|
|
|
679 |
|
|
mant_off += 32;
|
680 |
|
|
mant_bits_left -= 32;
|
681 |
|
|
}
|
682 |
|
|
|
683 |
|
|
return res;
|
684 |
|
|
}
|
685 |
|
|
|
686 |
|
|
|
687 |
|
|
/* Convert TO/FROM target to the hosts DOUBLEST floating-point format.
|
688 |
|
|
|
689 |
|
|
If the host and target formats agree, we just copy the raw data
|
690 |
|
|
into the appropriate type of variable and return, letting the host
|
691 |
|
|
increase precision as necessary. Otherwise, we call the conversion
|
692 |
|
|
routine and let it do the dirty work. */
|
693 |
|
|
|
694 |
|
|
static const struct floatformat *host_float_format = GDB_HOST_FLOAT_FORMAT;
|
695 |
|
|
static const struct floatformat *host_double_format = GDB_HOST_DOUBLE_FORMAT;
|
696 |
|
|
static const struct floatformat *host_long_double_format = GDB_HOST_LONG_DOUBLE_FORMAT;
|
697 |
|
|
|
698 |
|
|
void
|
699 |
|
|
floatformat_to_doublest (const struct floatformat *fmt,
|
700 |
|
|
const void *in, DOUBLEST *out)
|
701 |
|
|
{
|
702 |
|
|
gdb_assert (fmt != NULL);
|
703 |
|
|
if (fmt == host_float_format)
|
704 |
|
|
{
|
705 |
|
|
float val;
|
706 |
|
|
memcpy (&val, in, sizeof (val));
|
707 |
|
|
*out = val;
|
708 |
|
|
}
|
709 |
|
|
else if (fmt == host_double_format)
|
710 |
|
|
{
|
711 |
|
|
double val;
|
712 |
|
|
memcpy (&val, in, sizeof (val));
|
713 |
|
|
*out = val;
|
714 |
|
|
}
|
715 |
|
|
else if (fmt == host_long_double_format)
|
716 |
|
|
{
|
717 |
|
|
long double val;
|
718 |
|
|
memcpy (&val, in, sizeof (val));
|
719 |
|
|
*out = val;
|
720 |
|
|
}
|
721 |
|
|
else
|
722 |
|
|
convert_floatformat_to_doublest (fmt, in, out);
|
723 |
|
|
}
|
724 |
|
|
|
725 |
|
|
void
|
726 |
|
|
floatformat_from_doublest (const struct floatformat *fmt,
|
727 |
|
|
const DOUBLEST *in, void *out)
|
728 |
|
|
{
|
729 |
|
|
gdb_assert (fmt != NULL);
|
730 |
|
|
if (fmt == host_float_format)
|
731 |
|
|
{
|
732 |
|
|
float val = *in;
|
733 |
|
|
memcpy (out, &val, sizeof (val));
|
734 |
|
|
}
|
735 |
|
|
else if (fmt == host_double_format)
|
736 |
|
|
{
|
737 |
|
|
double val = *in;
|
738 |
|
|
memcpy (out, &val, sizeof (val));
|
739 |
|
|
}
|
740 |
|
|
else if (fmt == host_long_double_format)
|
741 |
|
|
{
|
742 |
|
|
long double val = *in;
|
743 |
|
|
memcpy (out, &val, sizeof (val));
|
744 |
|
|
}
|
745 |
|
|
else
|
746 |
|
|
convert_doublest_to_floatformat (fmt, in, out);
|
747 |
|
|
}
|
748 |
|
|
|
749 |
|
|
|
750 |
|
|
/* Return a floating-point format for a floating-point variable of
|
751 |
|
|
length LEN. If no suitable floating-point format is found, an
|
752 |
|
|
error is thrown.
|
753 |
|
|
|
754 |
|
|
We need this functionality since information about the
|
755 |
|
|
floating-point format of a type is not always available to GDB; the
|
756 |
|
|
debug information typically only tells us the size of a
|
757 |
|
|
floating-point type.
|
758 |
|
|
|
759 |
|
|
FIXME: kettenis/2001-10-28: In many places, particularly in
|
760 |
|
|
target-dependent code, the format of floating-point types is known,
|
761 |
|
|
but not passed on by GDB. This should be fixed. */
|
762 |
|
|
|
763 |
|
|
static const struct floatformat *
|
764 |
|
|
floatformat_from_length (struct gdbarch *gdbarch, int len)
|
765 |
|
|
{
|
766 |
|
|
const struct floatformat *format;
|
767 |
|
|
if (len * TARGET_CHAR_BIT == gdbarch_float_bit (gdbarch))
|
768 |
|
|
format = gdbarch_float_format (gdbarch)
|
769 |
|
|
[gdbarch_byte_order (gdbarch)];
|
770 |
|
|
else if (len * TARGET_CHAR_BIT == gdbarch_double_bit (gdbarch))
|
771 |
|
|
format = gdbarch_double_format (gdbarch)
|
772 |
|
|
[gdbarch_byte_order (gdbarch)];
|
773 |
|
|
else if (len * TARGET_CHAR_BIT == gdbarch_long_double_bit (gdbarch))
|
774 |
|
|
format = gdbarch_long_double_format (gdbarch)
|
775 |
|
|
[gdbarch_byte_order (gdbarch)];
|
776 |
|
|
/* On i386 the 'long double' type takes 96 bits,
|
777 |
|
|
while the real number of used bits is only 80,
|
778 |
|
|
both in processor and in memory.
|
779 |
|
|
The code below accepts the real bit size. */
|
780 |
|
|
else if ((gdbarch_long_double_format (gdbarch) != NULL)
|
781 |
|
|
&& (len * TARGET_CHAR_BIT
|
782 |
|
|
== gdbarch_long_double_format (gdbarch)[0]->totalsize))
|
783 |
|
|
format = gdbarch_long_double_format (gdbarch)
|
784 |
|
|
[gdbarch_byte_order (gdbarch)];
|
785 |
|
|
else
|
786 |
|
|
format = NULL;
|
787 |
|
|
if (format == NULL)
|
788 |
|
|
error (_("Unrecognized %d-bit floating-point type."),
|
789 |
|
|
len * TARGET_CHAR_BIT);
|
790 |
|
|
return format;
|
791 |
|
|
}
|
792 |
|
|
|
793 |
|
|
const struct floatformat *
|
794 |
|
|
floatformat_from_type (const struct type *type)
|
795 |
|
|
{
|
796 |
|
|
struct gdbarch *gdbarch = get_type_arch (type);
|
797 |
|
|
gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT);
|
798 |
|
|
if (TYPE_FLOATFORMAT (type) != NULL)
|
799 |
|
|
return TYPE_FLOATFORMAT (type)[gdbarch_byte_order (gdbarch)];
|
800 |
|
|
else
|
801 |
|
|
return floatformat_from_length (gdbarch, TYPE_LENGTH (type));
|
802 |
|
|
}
|
803 |
|
|
|
804 |
|
|
/* Extract a floating-point number of type TYPE from a target-order
|
805 |
|
|
byte-stream at ADDR. Returns the value as type DOUBLEST. */
|
806 |
|
|
|
807 |
|
|
DOUBLEST
|
808 |
|
|
extract_typed_floating (const void *addr, const struct type *type)
|
809 |
|
|
{
|
810 |
|
|
const struct floatformat *fmt = floatformat_from_type (type);
|
811 |
|
|
DOUBLEST retval;
|
812 |
|
|
|
813 |
|
|
floatformat_to_doublest (fmt, addr, &retval);
|
814 |
|
|
return retval;
|
815 |
|
|
}
|
816 |
|
|
|
817 |
|
|
/* Store VAL as a floating-point number of type TYPE to a target-order
|
818 |
|
|
byte-stream at ADDR. */
|
819 |
|
|
|
820 |
|
|
void
|
821 |
|
|
store_typed_floating (void *addr, const struct type *type, DOUBLEST val)
|
822 |
|
|
{
|
823 |
|
|
const struct floatformat *fmt = floatformat_from_type (type);
|
824 |
|
|
|
825 |
|
|
/* FIXME: kettenis/2001-10-28: It is debatable whether we should
|
826 |
|
|
zero out any remaining bytes in the target buffer when TYPE is
|
827 |
|
|
longer than the actual underlying floating-point format. Perhaps
|
828 |
|
|
we should store a fixed bitpattern in those remaining bytes,
|
829 |
|
|
instead of zero, or perhaps we shouldn't touch those remaining
|
830 |
|
|
bytes at all.
|
831 |
|
|
|
832 |
|
|
NOTE: cagney/2001-10-28: With the way things currently work, it
|
833 |
|
|
isn't a good idea to leave the end bits undefined. This is
|
834 |
|
|
because GDB writes out the entire sizeof(<floating>) bits of the
|
835 |
|
|
floating-point type even though the value might only be stored
|
836 |
|
|
in, and the target processor may only refer to, the first N <
|
837 |
|
|
TYPE_LENGTH (type) bits. If the end of the buffer wasn't
|
838 |
|
|
initialized, GDB would write undefined data to the target. An
|
839 |
|
|
errant program, refering to that undefined data, would then
|
840 |
|
|
become non-deterministic.
|
841 |
|
|
|
842 |
|
|
See also the function convert_typed_floating below. */
|
843 |
|
|
memset (addr, 0, TYPE_LENGTH (type));
|
844 |
|
|
|
845 |
|
|
floatformat_from_doublest (fmt, &val, addr);
|
846 |
|
|
}
|
847 |
|
|
|
848 |
|
|
/* Convert a floating-point number of type FROM_TYPE from a
|
849 |
|
|
target-order byte-stream at FROM to a floating-point number of type
|
850 |
|
|
TO_TYPE, and store it to a target-order byte-stream at TO. */
|
851 |
|
|
|
852 |
|
|
void
|
853 |
|
|
convert_typed_floating (const void *from, const struct type *from_type,
|
854 |
|
|
void *to, const struct type *to_type)
|
855 |
|
|
{
|
856 |
|
|
const struct floatformat *from_fmt = floatformat_from_type (from_type);
|
857 |
|
|
const struct floatformat *to_fmt = floatformat_from_type (to_type);
|
858 |
|
|
|
859 |
|
|
if (from_fmt == NULL || to_fmt == NULL)
|
860 |
|
|
{
|
861 |
|
|
/* If we don't know the floating-point format of FROM_TYPE or
|
862 |
|
|
TO_TYPE, there's not much we can do. We might make the
|
863 |
|
|
assumption that if the length of FROM_TYPE and TO_TYPE match,
|
864 |
|
|
their floating-point format would match too, but that
|
865 |
|
|
assumption might be wrong on targets that support
|
866 |
|
|
floating-point types that only differ in endianness for
|
867 |
|
|
example. So we warn instead, and zero out the target buffer. */
|
868 |
|
|
warning (_("Can't convert floating-point number to desired type."));
|
869 |
|
|
memset (to, 0, TYPE_LENGTH (to_type));
|
870 |
|
|
}
|
871 |
|
|
else if (from_fmt == to_fmt)
|
872 |
|
|
{
|
873 |
|
|
/* We're in business. The floating-point format of FROM_TYPE
|
874 |
|
|
and TO_TYPE match. However, even though the floating-point
|
875 |
|
|
format matches, the length of the type might still be
|
876 |
|
|
different. Make sure we don't overrun any buffers. See
|
877 |
|
|
comment in store_typed_floating for a discussion about
|
878 |
|
|
zeroing out remaining bytes in the target buffer. */
|
879 |
|
|
memset (to, 0, TYPE_LENGTH (to_type));
|
880 |
|
|
memcpy (to, from, min (TYPE_LENGTH (from_type), TYPE_LENGTH (to_type)));
|
881 |
|
|
}
|
882 |
|
|
else
|
883 |
|
|
{
|
884 |
|
|
/* The floating-point types don't match. The best we can do
|
885 |
|
|
(apart from simulating the target FPU) is converting to the
|
886 |
|
|
widest floating-point type supported by the host, and then
|
887 |
|
|
again to the desired type. */
|
888 |
|
|
DOUBLEST d;
|
889 |
|
|
|
890 |
|
|
floatformat_to_doublest (from_fmt, from, &d);
|
891 |
|
|
floatformat_from_doublest (to_fmt, &d, to);
|
892 |
|
|
}
|
893 |
|
|
}
|
894 |
|
|
|
895 |
|
|
const struct floatformat *floatformat_ieee_single[BFD_ENDIAN_UNKNOWN];
|
896 |
|
|
const struct floatformat *floatformat_ieee_double[BFD_ENDIAN_UNKNOWN];
|
897 |
|
|
const struct floatformat *floatformat_ieee_quad[BFD_ENDIAN_UNKNOWN];
|
898 |
|
|
const struct floatformat *floatformat_arm_ext[BFD_ENDIAN_UNKNOWN];
|
899 |
|
|
const struct floatformat *floatformat_ia64_spill[BFD_ENDIAN_UNKNOWN];
|
900 |
|
|
|
901 |
|
|
extern void _initialize_doublest (void);
|
902 |
|
|
|
903 |
|
|
extern void
|
904 |
|
|
_initialize_doublest (void)
|
905 |
|
|
{
|
906 |
|
|
floatformat_ieee_single[BFD_ENDIAN_LITTLE] = &floatformat_ieee_single_little;
|
907 |
|
|
floatformat_ieee_single[BFD_ENDIAN_BIG] = &floatformat_ieee_single_big;
|
908 |
|
|
floatformat_ieee_double[BFD_ENDIAN_LITTLE] = &floatformat_ieee_double_little;
|
909 |
|
|
floatformat_ieee_double[BFD_ENDIAN_BIG] = &floatformat_ieee_double_big;
|
910 |
|
|
floatformat_arm_ext[BFD_ENDIAN_LITTLE] = &floatformat_arm_ext_littlebyte_bigword;
|
911 |
|
|
floatformat_arm_ext[BFD_ENDIAN_BIG] = &floatformat_arm_ext_big;
|
912 |
|
|
floatformat_ia64_spill[BFD_ENDIAN_LITTLE] = &floatformat_ia64_spill_little;
|
913 |
|
|
floatformat_ia64_spill[BFD_ENDIAN_BIG] = &floatformat_ia64_spill_big;
|
914 |
|
|
floatformat_ieee_quad[BFD_ENDIAN_LITTLE] = &floatformat_ia64_quad_little;
|
915 |
|
|
floatformat_ieee_quad[BFD_ENDIAN_BIG] = &floatformat_ia64_quad_big;
|
916 |
|
|
}
|