OpenCores
URL https://opencores.org/ocsvn/openrisc_me/openrisc_me/trunk

Subversion Repositories openrisc_me

[/] [openrisc/] [trunk/] [gnu-src/] [gdb-7.1/] [gdb/] [ia64-linux-nat.c] - Blame information for rev 365

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 227 jeremybenn
/* Functions specific to running gdb native on IA-64 running
2
   GNU/Linux.
3
 
4
   Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
5
   2009, 2010 Free Software Foundation, Inc.
6
 
7
   This file is part of GDB.
8
 
9
   This program is free software; you can redistribute it and/or modify
10
   it under the terms of the GNU General Public License as published by
11
   the Free Software Foundation; either version 3 of the License, or
12
   (at your option) any later version.
13
 
14
   This program is distributed in the hope that it will be useful,
15
   but WITHOUT ANY WARRANTY; without even the implied warranty of
16
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17
   GNU General Public License for more details.
18
 
19
   You should have received a copy of the GNU General Public License
20
   along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
21
 
22
#include "defs.h"
23
#include "gdb_string.h"
24
#include "inferior.h"
25
#include "target.h"
26
#include "gdbcore.h"
27
#include "regcache.h"
28
#include "ia64-tdep.h"
29
#include "linux-nat.h"
30
 
31
#include <signal.h>
32
#include <sys/ptrace.h>
33
#include "gdb_wait.h"
34
#ifdef HAVE_SYS_REG_H
35
#include <sys/reg.h>
36
#endif
37
#include <sys/syscall.h>
38
#include <sys/user.h>
39
 
40
#include <asm/ptrace_offsets.h>
41
#include <sys/procfs.h>
42
 
43
/* Prototypes for supply_gregset etc. */
44
#include "gregset.h"
45
 
46
/* These must match the order of the register names.
47
 
48
   Some sort of lookup table is needed because the offsets associated
49
   with the registers are all over the board.  */
50
 
51
static int u_offsets[] =
52
  {
53
    /* general registers */
54
    -1,         /* gr0 not available; i.e, it's always zero */
55
    PT_R1,
56
    PT_R2,
57
    PT_R3,
58
    PT_R4,
59
    PT_R5,
60
    PT_R6,
61
    PT_R7,
62
    PT_R8,
63
    PT_R9,
64
    PT_R10,
65
    PT_R11,
66
    PT_R12,
67
    PT_R13,
68
    PT_R14,
69
    PT_R15,
70
    PT_R16,
71
    PT_R17,
72
    PT_R18,
73
    PT_R19,
74
    PT_R20,
75
    PT_R21,
76
    PT_R22,
77
    PT_R23,
78
    PT_R24,
79
    PT_R25,
80
    PT_R26,
81
    PT_R27,
82
    PT_R28,
83
    PT_R29,
84
    PT_R30,
85
    PT_R31,
86
    /* gr32 through gr127 not directly available via the ptrace interface */
87
    -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
88
    -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
89
    -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
90
    -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
91
    -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
92
    -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
93
    /* Floating point registers */
94
    -1, -1,     /* f0 and f1 not available (f0 is +0.0 and f1 is +1.0) */
95
    PT_F2,
96
    PT_F3,
97
    PT_F4,
98
    PT_F5,
99
    PT_F6,
100
    PT_F7,
101
    PT_F8,
102
    PT_F9,
103
    PT_F10,
104
    PT_F11,
105
    PT_F12,
106
    PT_F13,
107
    PT_F14,
108
    PT_F15,
109
    PT_F16,
110
    PT_F17,
111
    PT_F18,
112
    PT_F19,
113
    PT_F20,
114
    PT_F21,
115
    PT_F22,
116
    PT_F23,
117
    PT_F24,
118
    PT_F25,
119
    PT_F26,
120
    PT_F27,
121
    PT_F28,
122
    PT_F29,
123
    PT_F30,
124
    PT_F31,
125
    PT_F32,
126
    PT_F33,
127
    PT_F34,
128
    PT_F35,
129
    PT_F36,
130
    PT_F37,
131
    PT_F38,
132
    PT_F39,
133
    PT_F40,
134
    PT_F41,
135
    PT_F42,
136
    PT_F43,
137
    PT_F44,
138
    PT_F45,
139
    PT_F46,
140
    PT_F47,
141
    PT_F48,
142
    PT_F49,
143
    PT_F50,
144
    PT_F51,
145
    PT_F52,
146
    PT_F53,
147
    PT_F54,
148
    PT_F55,
149
    PT_F56,
150
    PT_F57,
151
    PT_F58,
152
    PT_F59,
153
    PT_F60,
154
    PT_F61,
155
    PT_F62,
156
    PT_F63,
157
    PT_F64,
158
    PT_F65,
159
    PT_F66,
160
    PT_F67,
161
    PT_F68,
162
    PT_F69,
163
    PT_F70,
164
    PT_F71,
165
    PT_F72,
166
    PT_F73,
167
    PT_F74,
168
    PT_F75,
169
    PT_F76,
170
    PT_F77,
171
    PT_F78,
172
    PT_F79,
173
    PT_F80,
174
    PT_F81,
175
    PT_F82,
176
    PT_F83,
177
    PT_F84,
178
    PT_F85,
179
    PT_F86,
180
    PT_F87,
181
    PT_F88,
182
    PT_F89,
183
    PT_F90,
184
    PT_F91,
185
    PT_F92,
186
    PT_F93,
187
    PT_F94,
188
    PT_F95,
189
    PT_F96,
190
    PT_F97,
191
    PT_F98,
192
    PT_F99,
193
    PT_F100,
194
    PT_F101,
195
    PT_F102,
196
    PT_F103,
197
    PT_F104,
198
    PT_F105,
199
    PT_F106,
200
    PT_F107,
201
    PT_F108,
202
    PT_F109,
203
    PT_F110,
204
    PT_F111,
205
    PT_F112,
206
    PT_F113,
207
    PT_F114,
208
    PT_F115,
209
    PT_F116,
210
    PT_F117,
211
    PT_F118,
212
    PT_F119,
213
    PT_F120,
214
    PT_F121,
215
    PT_F122,
216
    PT_F123,
217
    PT_F124,
218
    PT_F125,
219
    PT_F126,
220
    PT_F127,
221
    /* predicate registers - we don't fetch these individually */
222
    -1, -1, -1, -1, -1, -1, -1, -1,
223
    -1, -1, -1, -1, -1, -1, -1, -1,
224
    -1, -1, -1, -1, -1, -1, -1, -1,
225
    -1, -1, -1, -1, -1, -1, -1, -1,
226
    -1, -1, -1, -1, -1, -1, -1, -1,
227
    -1, -1, -1, -1, -1, -1, -1, -1,
228
    -1, -1, -1, -1, -1, -1, -1, -1,
229
    -1, -1, -1, -1, -1, -1, -1, -1,
230
    /* branch registers */
231
    PT_B0,
232
    PT_B1,
233
    PT_B2,
234
    PT_B3,
235
    PT_B4,
236
    PT_B5,
237
    PT_B6,
238
    PT_B7,
239
    /* virtual frame pointer and virtual return address pointer */
240
    -1, -1,
241
    /* other registers */
242
    PT_PR,
243
    PT_CR_IIP,  /* ip */
244
    PT_CR_IPSR, /* psr */
245
    PT_CFM,     /* cfm */
246
    /* kernel registers not visible via ptrace interface (?) */
247
    -1, -1, -1, -1, -1, -1, -1, -1,
248
    /* hole */
249
    -1, -1, -1, -1, -1, -1, -1, -1,
250
    PT_AR_RSC,
251
    PT_AR_BSP,
252
    PT_AR_BSPSTORE,
253
    PT_AR_RNAT,
254
    -1,
255
    -1,         /* Not available: FCR, IA32 floating control register */
256
    -1, -1,
257
    -1,         /* Not available: EFLAG */
258
    -1,         /* Not available: CSD */
259
    -1,         /* Not available: SSD */
260
    -1,         /* Not available: CFLG */
261
    -1,         /* Not available: FSR */
262
    -1,         /* Not available: FIR */
263
    -1,         /* Not available: FDR */
264
    -1,
265
    PT_AR_CCV,
266
    -1, -1, -1,
267
    PT_AR_UNAT,
268
    -1, -1, -1,
269
    PT_AR_FPSR,
270
    -1, -1, -1,
271
    -1,         /* Not available: ITC */
272
    -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
273
    -1, -1, -1, -1, -1, -1, -1, -1, -1,
274
    PT_AR_PFS,
275
    PT_AR_LC,
276
    -1,         /* Not available: EC, the Epilog Count register */
277
    -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
278
    -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
279
    -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
280
    -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
281
    -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
282
    -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
283
    -1,
284
    /* nat bits - not fetched directly; instead we obtain these bits from
285
       either rnat or unat or from memory. */
286
    -1, -1, -1, -1, -1, -1, -1, -1,
287
    -1, -1, -1, -1, -1, -1, -1, -1,
288
    -1, -1, -1, -1, -1, -1, -1, -1,
289
    -1, -1, -1, -1, -1, -1, -1, -1,
290
    -1, -1, -1, -1, -1, -1, -1, -1,
291
    -1, -1, -1, -1, -1, -1, -1, -1,
292
    -1, -1, -1, -1, -1, -1, -1, -1,
293
    -1, -1, -1, -1, -1, -1, -1, -1,
294
    -1, -1, -1, -1, -1, -1, -1, -1,
295
    -1, -1, -1, -1, -1, -1, -1, -1,
296
    -1, -1, -1, -1, -1, -1, -1, -1,
297
    -1, -1, -1, -1, -1, -1, -1, -1,
298
    -1, -1, -1, -1, -1, -1, -1, -1,
299
    -1, -1, -1, -1, -1, -1, -1, -1,
300
    -1, -1, -1, -1, -1, -1, -1, -1,
301
    -1, -1, -1, -1, -1, -1, -1, -1,
302
  };
303
 
304
static CORE_ADDR
305
ia64_register_addr (struct gdbarch *gdbarch, int regno)
306
{
307
  CORE_ADDR addr;
308
 
309
  if (regno < 0 || regno >= gdbarch_num_regs (gdbarch))
310
    error (_("Invalid register number %d."), regno);
311
 
312
  if (u_offsets[regno] == -1)
313
    addr = 0;
314
  else
315
    addr = (CORE_ADDR) u_offsets[regno];
316
 
317
  return addr;
318
}
319
 
320
static int
321
ia64_cannot_fetch_register (struct gdbarch *gdbarch, int regno)
322
{
323
  return regno < 0
324
         || regno >= gdbarch_num_regs (gdbarch)
325
         || u_offsets[regno] == -1;
326
}
327
 
328
static int
329
ia64_cannot_store_register (struct gdbarch *gdbarch, int regno)
330
{
331
  /* Rationale behind not permitting stores to bspstore...
332
 
333
     The IA-64 architecture provides bspstore and bsp which refer
334
     memory locations in the RSE's backing store.  bspstore is the
335
     next location which will be written when the RSE needs to write
336
     to memory.  bsp is the address at which r32 in the current frame
337
     would be found if it were written to the backing store.
338
 
339
     The IA-64 architecture provides read-only access to bsp and
340
     read/write access to bspstore (but only when the RSE is in
341
     the enforced lazy mode).  It should be noted that stores
342
     to bspstore also affect the value of bsp.  Changing bspstore
343
     does not affect the number of dirty entries between bspstore
344
     and bsp, so changing bspstore by N words will also cause bsp
345
     to be changed by (roughly) N as well.  (It could be N-1 or N+1
346
     depending upon where the NaT collection bits fall.)
347
 
348
     OTOH, the Linux kernel provides read/write access to bsp (and
349
     currently read/write access to bspstore as well).  But it
350
     is definitely the case that if you change one, the other
351
     will change at the same time.  It is more useful to gdb to
352
     be able to change bsp.  So in order to prevent strange and
353
     undesirable things from happening when a dummy stack frame
354
     is popped (after calling an inferior function), we allow
355
     bspstore to be read, but not written.  (Note that popping
356
     a (generic) dummy stack frame causes all registers that
357
     were previously read from the inferior process to be written
358
     back.)  */
359
 
360
  return regno < 0
361
         || regno >= gdbarch_num_regs (gdbarch)
362
         || u_offsets[regno] == -1
363
         || regno == IA64_BSPSTORE_REGNUM;
364
}
365
 
366
void
367
supply_gregset (struct regcache *regcache, const gregset_t *gregsetp)
368
{
369
  int regi;
370
  const greg_t *regp = (const greg_t *) gregsetp;
371
 
372
  for (regi = IA64_GR0_REGNUM; regi <= IA64_GR31_REGNUM; regi++)
373
    {
374
      regcache_raw_supply (regcache, regi, regp + (regi - IA64_GR0_REGNUM));
375
    }
376
 
377
  /* FIXME: NAT collection bits are at index 32; gotta deal with these
378
     somehow... */
379
 
380
  regcache_raw_supply (regcache, IA64_PR_REGNUM, regp + 33);
381
 
382
  for (regi = IA64_BR0_REGNUM; regi <= IA64_BR7_REGNUM; regi++)
383
    {
384
      regcache_raw_supply (regcache, regi,
385
                           regp + 34 + (regi - IA64_BR0_REGNUM));
386
    }
387
 
388
  regcache_raw_supply (regcache, IA64_IP_REGNUM, regp + 42);
389
  regcache_raw_supply (regcache, IA64_CFM_REGNUM, regp + 43);
390
  regcache_raw_supply (regcache, IA64_PSR_REGNUM, regp + 44);
391
  regcache_raw_supply (regcache, IA64_RSC_REGNUM, regp + 45);
392
  regcache_raw_supply (regcache, IA64_BSP_REGNUM, regp + 46);
393
  regcache_raw_supply (regcache, IA64_BSPSTORE_REGNUM, regp + 47);
394
  regcache_raw_supply (regcache, IA64_RNAT_REGNUM, regp + 48);
395
  regcache_raw_supply (regcache, IA64_CCV_REGNUM, regp + 49);
396
  regcache_raw_supply (regcache, IA64_UNAT_REGNUM, regp + 50);
397
  regcache_raw_supply (regcache, IA64_FPSR_REGNUM, regp + 51);
398
  regcache_raw_supply (regcache, IA64_PFS_REGNUM, regp + 52);
399
  regcache_raw_supply (regcache, IA64_LC_REGNUM, regp + 53);
400
  regcache_raw_supply (regcache, IA64_EC_REGNUM, regp + 54);
401
}
402
 
403
void
404
fill_gregset (const struct regcache *regcache, gregset_t *gregsetp, int regno)
405
{
406
  int regi;
407
  greg_t *regp = (greg_t *) gregsetp;
408
 
409
#define COPY_REG(_idx_,_regi_) \
410
  if ((regno == -1) || regno == _regi_) \
411
    regcache_raw_collect (regcache, _regi_, regp + _idx_)
412
 
413
  for (regi = IA64_GR0_REGNUM; regi <= IA64_GR31_REGNUM; regi++)
414
    {
415
      COPY_REG (regi - IA64_GR0_REGNUM, regi);
416
    }
417
 
418
  /* FIXME: NAT collection bits at index 32? */
419
 
420
  COPY_REG (33, IA64_PR_REGNUM);
421
 
422
  for (regi = IA64_BR0_REGNUM; regi <= IA64_BR7_REGNUM; regi++)
423
    {
424
      COPY_REG (34 + (regi - IA64_BR0_REGNUM), regi);
425
    }
426
 
427
  COPY_REG (42, IA64_IP_REGNUM);
428
  COPY_REG (43, IA64_CFM_REGNUM);
429
  COPY_REG (44, IA64_PSR_REGNUM);
430
  COPY_REG (45, IA64_RSC_REGNUM);
431
  COPY_REG (46, IA64_BSP_REGNUM);
432
  COPY_REG (47, IA64_BSPSTORE_REGNUM);
433
  COPY_REG (48, IA64_RNAT_REGNUM);
434
  COPY_REG (49, IA64_CCV_REGNUM);
435
  COPY_REG (50, IA64_UNAT_REGNUM);
436
  COPY_REG (51, IA64_FPSR_REGNUM);
437
  COPY_REG (52, IA64_PFS_REGNUM);
438
  COPY_REG (53, IA64_LC_REGNUM);
439
  COPY_REG (54, IA64_EC_REGNUM);
440
}
441
 
442
/*  Given a pointer to a floating point register set in /proc format
443
   (fpregset_t *), unpack the register contents and supply them as gdb's
444
   idea of the current floating point register values. */
445
 
446
void
447
supply_fpregset (struct regcache *regcache, const fpregset_t *fpregsetp)
448
{
449
  int regi;
450
  const char *from;
451
 
452
  for (regi = IA64_FR0_REGNUM; regi <= IA64_FR127_REGNUM; regi++)
453
    {
454
      from = (const char *) &((*fpregsetp)[regi - IA64_FR0_REGNUM]);
455
      regcache_raw_supply (regcache, regi, from);
456
    }
457
}
458
 
459
/*  Given a pointer to a floating point register set in /proc format
460
   (fpregset_t *), update the register specified by REGNO from gdb's idea
461
   of the current floating point register set.  If REGNO is -1, update
462
   them all. */
463
 
464
void
465
fill_fpregset (const struct regcache *regcache,
466
               fpregset_t *fpregsetp, int regno)
467
{
468
  int regi;
469
 
470
  for (regi = IA64_FR0_REGNUM; regi <= IA64_FR127_REGNUM; regi++)
471
    {
472
      if ((regno == -1) || (regno == regi))
473
        regcache_raw_collect (regcache, regi,
474
                              &((*fpregsetp)[regi - IA64_FR0_REGNUM]));
475
    }
476
}
477
 
478
#define IA64_PSR_DB (1UL << 24)
479
#define IA64_PSR_DD (1UL << 39)
480
 
481
static void
482
enable_watchpoints_in_psr (ptid_t ptid)
483
{
484
  struct regcache *regcache = get_thread_regcache (ptid);
485
  ULONGEST psr;
486
 
487
  regcache_cooked_read_unsigned (regcache, IA64_PSR_REGNUM, &psr);
488
  if (!(psr & IA64_PSR_DB))
489
    {
490
      psr |= IA64_PSR_DB;       /* Set the db bit - this enables hardware
491
                                   watchpoints and breakpoints. */
492
      regcache_cooked_write_unsigned (regcache, IA64_PSR_REGNUM, psr);
493
    }
494
}
495
 
496
static long debug_registers[8];
497
 
498
static void
499
store_debug_register (ptid_t ptid, int idx, long val)
500
{
501
  int tid;
502
 
503
  tid = TIDGET (ptid);
504
  if (tid == 0)
505
    tid = PIDGET (ptid);
506
 
507
  (void) ptrace (PT_WRITE_U, tid, (PTRACE_TYPE_ARG3) (PT_DBR + 8 * idx), val);
508
}
509
 
510
static void
511
store_debug_register_pair (ptid_t ptid, int idx, long *dbr_addr, long *dbr_mask)
512
{
513
  if (dbr_addr)
514
    store_debug_register (ptid, 2 * idx, *dbr_addr);
515
  if (dbr_mask)
516
    store_debug_register (ptid, 2 * idx + 1, *dbr_mask);
517
}
518
 
519
static int
520
is_power_of_2 (int val)
521
{
522
  int i, onecount;
523
 
524
  onecount = 0;
525
  for (i = 0; i < 8 * sizeof (val); i++)
526
    if (val & (1 << i))
527
      onecount++;
528
 
529
  return onecount <= 1;
530
}
531
 
532
static int
533
ia64_linux_insert_watchpoint (CORE_ADDR addr, int len, int rw)
534
{
535
  struct lwp_info *lp;
536
  ptid_t ptid;
537
  int idx;
538
  long dbr_addr, dbr_mask;
539
  int max_watchpoints = 4;
540
 
541
  if (len <= 0 || !is_power_of_2 (len))
542
    return -1;
543
 
544
  for (idx = 0; idx < max_watchpoints; idx++)
545
    {
546
      dbr_mask = debug_registers[idx * 2 + 1];
547
      if ((dbr_mask & (0x3UL << 62)) == 0)
548
        {
549
          /* Exit loop if both r and w bits clear */
550
          break;
551
        }
552
    }
553
 
554
  if (idx == max_watchpoints)
555
    return -1;
556
 
557
  dbr_addr = (long) addr;
558
  dbr_mask = (~(len - 1) & 0x00ffffffffffffffL);  /* construct mask to match */
559
  dbr_mask |= 0x0800000000000000L;           /* Only match privilege level 3 */
560
  switch (rw)
561
    {
562
    case hw_write:
563
      dbr_mask |= (1L << 62);                   /* Set w bit */
564
      break;
565
    case hw_read:
566
      dbr_mask |= (1L << 63);                   /* Set r bit */
567
      break;
568
    case hw_access:
569
      dbr_mask |= (3L << 62);                   /* Set both r and w bits */
570
      break;
571
    default:
572
      return -1;
573
    }
574
 
575
  debug_registers[2 * idx] = dbr_addr;
576
  debug_registers[2 * idx + 1] = dbr_mask;
577
  ALL_LWPS (lp, ptid)
578
    {
579
      store_debug_register_pair (ptid, idx, &dbr_addr, &dbr_mask);
580
      enable_watchpoints_in_psr (ptid);
581
    }
582
 
583
  return 0;
584
}
585
 
586
static int
587
ia64_linux_remove_watchpoint (CORE_ADDR addr, int len, int type)
588
{
589
  int idx;
590
  long dbr_addr, dbr_mask;
591
  int max_watchpoints = 4;
592
 
593
  if (len <= 0 || !is_power_of_2 (len))
594
    return -1;
595
 
596
  for (idx = 0; idx < max_watchpoints; idx++)
597
    {
598
      dbr_addr = debug_registers[2 * idx];
599
      dbr_mask = debug_registers[2 * idx + 1];
600
      if ((dbr_mask & (0x3UL << 62)) && addr == (CORE_ADDR) dbr_addr)
601
        {
602
          struct lwp_info *lp;
603
          ptid_t ptid;
604
 
605
          debug_registers[2 * idx] = 0;
606
          debug_registers[2 * idx + 1] = 0;
607
          dbr_addr = 0;
608
          dbr_mask = 0;
609
 
610
          ALL_LWPS (lp, ptid)
611
            store_debug_register_pair (ptid, idx, &dbr_addr, &dbr_mask);
612
 
613
          return 0;
614
        }
615
    }
616
  return -1;
617
}
618
 
619
static void
620
ia64_linux_new_thread (ptid_t ptid)
621
{
622
  int i, any;
623
 
624
  any = 0;
625
  for (i = 0; i < 8; i++)
626
    {
627
      if (debug_registers[i] != 0)
628
        any = 1;
629
      store_debug_register (ptid, i, debug_registers[i]);
630
    }
631
 
632
  if (any)
633
    enable_watchpoints_in_psr (ptid);
634
}
635
 
636
static int
637
ia64_linux_stopped_data_address (struct target_ops *ops, CORE_ADDR *addr_p)
638
{
639
  CORE_ADDR psr;
640
  struct siginfo *siginfo_p;
641
  struct regcache *regcache = get_current_regcache ();
642
 
643
  siginfo_p = linux_nat_get_siginfo (inferior_ptid);
644
 
645
  if (siginfo_p->si_signo != SIGTRAP
646
      || (siginfo_p->si_code & 0xffff) != 0x0004 /* TRAP_HWBKPT */)
647
    return 0;
648
 
649
  regcache_cooked_read_unsigned (regcache, IA64_PSR_REGNUM, &psr);
650
  psr |= IA64_PSR_DD;   /* Set the dd bit - this will disable the watchpoint
651
                           for the next instruction */
652
  regcache_cooked_write_unsigned (regcache, IA64_PSR_REGNUM, psr);
653
 
654
  *addr_p = (CORE_ADDR)siginfo_p->si_addr;
655
  return 1;
656
}
657
 
658
static int
659
ia64_linux_stopped_by_watchpoint (void)
660
{
661
  CORE_ADDR addr;
662
  return ia64_linux_stopped_data_address (&current_target, &addr);
663
}
664
 
665
static int
666
ia64_linux_can_use_hw_breakpoint (int type, int cnt, int othertype)
667
{
668
  return 1;
669
}
670
 
671
 
672
/* Fetch register REGNUM from the inferior.  */
673
 
674
static void
675
ia64_linux_fetch_register (struct regcache *regcache, int regnum)
676
{
677
  struct gdbarch *gdbarch = get_regcache_arch (regcache);
678
  CORE_ADDR addr;
679
  size_t size;
680
  PTRACE_TYPE_RET *buf;
681
  int pid, i;
682
 
683
  if (ia64_cannot_fetch_register (gdbarch, regnum))
684
    {
685
      regcache_raw_supply (regcache, regnum, NULL);
686
      return;
687
    }
688
 
689
  /* Cater for systems like GNU/Linux, that implement threads as
690
     separate processes.  */
691
  pid = ptid_get_lwp (inferior_ptid);
692
  if (pid == 0)
693
    pid = ptid_get_pid (inferior_ptid);
694
 
695
  /* This isn't really an address, but ptrace thinks of it as one.  */
696
  addr = ia64_register_addr (gdbarch, regnum);
697
  size = register_size (gdbarch, regnum);
698
 
699
  gdb_assert ((size % sizeof (PTRACE_TYPE_RET)) == 0);
700
  buf = alloca (size);
701
 
702
  /* Read the register contents from the inferior a chunk at a time.  */
703
  for (i = 0; i < size / sizeof (PTRACE_TYPE_RET); i++)
704
    {
705
      errno = 0;
706
      buf[i] = ptrace (PT_READ_U, pid, (PTRACE_TYPE_ARG3)addr, 0);
707
      if (errno != 0)
708
        error (_("Couldn't read register %s (#%d): %s."),
709
               gdbarch_register_name (gdbarch, regnum),
710
               regnum, safe_strerror (errno));
711
 
712
      addr += sizeof (PTRACE_TYPE_RET);
713
    }
714
  regcache_raw_supply (regcache, regnum, buf);
715
}
716
 
717
/* Fetch register REGNUM from the inferior.  If REGNUM is -1, do this
718
   for all registers.  */
719
 
720
static void
721
ia64_linux_fetch_registers (struct target_ops *ops,
722
                            struct regcache *regcache, int regnum)
723
{
724
  if (regnum == -1)
725
    for (regnum = 0;
726
         regnum < gdbarch_num_regs (get_regcache_arch (regcache));
727
         regnum++)
728
      ia64_linux_fetch_register (regcache, regnum);
729
  else
730
    ia64_linux_fetch_register (regcache, regnum);
731
}
732
 
733
/* Store register REGNUM into the inferior.  */
734
 
735
static void
736
ia64_linux_store_register (const struct regcache *regcache, int regnum)
737
{
738
  struct gdbarch *gdbarch = get_regcache_arch (regcache);
739
  CORE_ADDR addr;
740
  size_t size;
741
  PTRACE_TYPE_RET *buf;
742
  int pid, i;
743
 
744
  if (ia64_cannot_store_register (gdbarch, regnum))
745
    return;
746
 
747
  /* Cater for systems like GNU/Linux, that implement threads as
748
     separate processes.  */
749
  pid = ptid_get_lwp (inferior_ptid);
750
  if (pid == 0)
751
    pid = ptid_get_pid (inferior_ptid);
752
 
753
  /* This isn't really an address, but ptrace thinks of it as one.  */
754
  addr = ia64_register_addr (gdbarch, regnum);
755
  size = register_size (gdbarch, regnum);
756
 
757
  gdb_assert ((size % sizeof (PTRACE_TYPE_RET)) == 0);
758
  buf = alloca (size);
759
 
760
  /* Write the register contents into the inferior a chunk at a time.  */
761
  regcache_raw_collect (regcache, regnum, buf);
762
  for (i = 0; i < size / sizeof (PTRACE_TYPE_RET); i++)
763
    {
764
      errno = 0;
765
      ptrace (PT_WRITE_U, pid, (PTRACE_TYPE_ARG3)addr, buf[i]);
766
      if (errno != 0)
767
        error (_("Couldn't write register %s (#%d): %s."),
768
               gdbarch_register_name (gdbarch, regnum),
769
               regnum, safe_strerror (errno));
770
 
771
      addr += sizeof (PTRACE_TYPE_RET);
772
    }
773
}
774
 
775
/* Store register REGNUM back into the inferior.  If REGNUM is -1, do
776
   this for all registers.  */
777
 
778
static void
779
ia64_linux_store_registers (struct target_ops *ops,
780
                            struct regcache *regcache, int regnum)
781
{
782
  if (regnum == -1)
783
    for (regnum = 0;
784
         regnum < gdbarch_num_regs (get_regcache_arch (regcache));
785
         regnum++)
786
      ia64_linux_store_register (regcache, regnum);
787
  else
788
    ia64_linux_store_register (regcache, regnum);
789
}
790
 
791
 
792
static LONGEST (*super_xfer_partial) (struct target_ops *, enum target_object,
793
                                      const char *, gdb_byte *, const gdb_byte *,
794
                                      ULONGEST, LONGEST);
795
 
796
static LONGEST
797
ia64_linux_xfer_partial (struct target_ops *ops,
798
                         enum target_object object,
799
                         const char *annex,
800
                         gdb_byte *readbuf, const gdb_byte *writebuf,
801
                         ULONGEST offset, LONGEST len)
802
{
803
  if (object == TARGET_OBJECT_UNWIND_TABLE && writebuf == NULL && offset == 0)
804
    return syscall (__NR_getunwind, readbuf, len);
805
 
806
  return super_xfer_partial (ops, object, annex, readbuf, writebuf,
807
                             offset, len);
808
}
809
 
810
void _initialize_ia64_linux_nat (void);
811
 
812
void
813
_initialize_ia64_linux_nat (void)
814
{
815
  struct target_ops *t;
816
 
817
  /* Fill in the generic GNU/Linux methods.  */
818
  t = linux_target ();
819
 
820
  /* Override the default fetch/store register routines.  */
821
  t->to_fetch_registers = ia64_linux_fetch_registers;
822
  t->to_store_registers = ia64_linux_store_registers;
823
 
824
  /* Override the default to_xfer_partial.  */
825
  super_xfer_partial = t->to_xfer_partial;
826
  t->to_xfer_partial = ia64_linux_xfer_partial;
827
 
828
  /* Override watchpoint routines.  */
829
 
830
  /* The IA-64 architecture can step over a watch point (without triggering
831
     it again) if the "dd" (data debug fault disable) bit in the processor
832
     status word is set.
833
 
834
     This PSR bit is set in ia64_linux_stopped_by_watchpoint when the
835
     code there has determined that a hardware watchpoint has indeed
836
     been hit.  The CPU will then be able to execute one instruction
837
     without triggering a watchpoint. */
838
 
839
  t->to_have_steppable_watchpoint = 1;
840
  t->to_can_use_hw_breakpoint = ia64_linux_can_use_hw_breakpoint;
841
  t->to_stopped_by_watchpoint = ia64_linux_stopped_by_watchpoint;
842
  t->to_stopped_data_address = ia64_linux_stopped_data_address;
843
  t->to_insert_watchpoint = ia64_linux_insert_watchpoint;
844
  t->to_remove_watchpoint = ia64_linux_remove_watchpoint;
845
 
846
  /* Register the target.  */
847
  linux_nat_add_target (t);
848
  linux_nat_set_new_thread (t, ia64_linux_new_thread);
849
}

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.