1 |
227 |
jeremybenn |
/* Target-dependent code for the IA-64 for GDB, the GNU debugger.
|
2 |
|
|
|
3 |
|
|
Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
|
4 |
|
|
2009, 2010 Free Software Foundation, Inc.
|
5 |
|
|
|
6 |
|
|
This file is part of GDB.
|
7 |
|
|
|
8 |
|
|
This program is free software; you can redistribute it and/or modify
|
9 |
|
|
it under the terms of the GNU General Public License as published by
|
10 |
|
|
the Free Software Foundation; either version 3 of the License, or
|
11 |
|
|
(at your option) any later version.
|
12 |
|
|
|
13 |
|
|
This program is distributed in the hope that it will be useful,
|
14 |
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
15 |
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
16 |
|
|
GNU General Public License for more details.
|
17 |
|
|
|
18 |
|
|
You should have received a copy of the GNU General Public License
|
19 |
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>. */
|
20 |
|
|
|
21 |
|
|
#include "defs.h"
|
22 |
|
|
#include "inferior.h"
|
23 |
|
|
#include "gdbcore.h"
|
24 |
|
|
#include "arch-utils.h"
|
25 |
|
|
#include "floatformat.h"
|
26 |
|
|
#include "gdbtypes.h"
|
27 |
|
|
#include "regcache.h"
|
28 |
|
|
#include "reggroups.h"
|
29 |
|
|
#include "frame.h"
|
30 |
|
|
#include "frame-base.h"
|
31 |
|
|
#include "frame-unwind.h"
|
32 |
|
|
#include "doublest.h"
|
33 |
|
|
#include "value.h"
|
34 |
|
|
#include "gdb_assert.h"
|
35 |
|
|
#include "objfiles.h"
|
36 |
|
|
#include "elf/common.h" /* for DT_PLTGOT value */
|
37 |
|
|
#include "elf-bfd.h"
|
38 |
|
|
#include "dis-asm.h"
|
39 |
|
|
#include "infcall.h"
|
40 |
|
|
#include "osabi.h"
|
41 |
|
|
#include "ia64-tdep.h"
|
42 |
|
|
#include "cp-abi.h"
|
43 |
|
|
|
44 |
|
|
#ifdef HAVE_LIBUNWIND_IA64_H
|
45 |
|
|
#include "elf/ia64.h" /* for PT_IA_64_UNWIND value */
|
46 |
|
|
#include "libunwind-frame.h"
|
47 |
|
|
#include "libunwind-ia64.h"
|
48 |
|
|
|
49 |
|
|
/* Note: KERNEL_START is supposed to be an address which is not going
|
50 |
|
|
to ever contain any valid unwind info. For ia64 linux, the choice
|
51 |
|
|
of 0xc000000000000000 is fairly safe since that's uncached space.
|
52 |
|
|
|
53 |
|
|
We use KERNEL_START as follows: after obtaining the kernel's
|
54 |
|
|
unwind table via getunwind(), we project its unwind data into
|
55 |
|
|
address-range KERNEL_START-(KERNEL_START+ktab_size) and then
|
56 |
|
|
when ia64_access_mem() sees a memory access to this
|
57 |
|
|
address-range, we redirect it to ktab instead.
|
58 |
|
|
|
59 |
|
|
None of this hackery is needed with a modern kernel/libcs
|
60 |
|
|
which uses the kernel virtual DSO to provide access to the
|
61 |
|
|
kernel's unwind info. In that case, ktab_size remains 0 and
|
62 |
|
|
hence the value of KERNEL_START doesn't matter. */
|
63 |
|
|
|
64 |
|
|
#define KERNEL_START 0xc000000000000000ULL
|
65 |
|
|
|
66 |
|
|
static size_t ktab_size = 0;
|
67 |
|
|
struct ia64_table_entry
|
68 |
|
|
{
|
69 |
|
|
uint64_t start_offset;
|
70 |
|
|
uint64_t end_offset;
|
71 |
|
|
uint64_t info_offset;
|
72 |
|
|
};
|
73 |
|
|
|
74 |
|
|
static struct ia64_table_entry *ktab = NULL;
|
75 |
|
|
|
76 |
|
|
#endif
|
77 |
|
|
|
78 |
|
|
/* An enumeration of the different IA-64 instruction types. */
|
79 |
|
|
|
80 |
|
|
typedef enum instruction_type
|
81 |
|
|
{
|
82 |
|
|
A, /* Integer ALU ; I-unit or M-unit */
|
83 |
|
|
I, /* Non-ALU integer; I-unit */
|
84 |
|
|
M, /* Memory ; M-unit */
|
85 |
|
|
F, /* Floating-point ; F-unit */
|
86 |
|
|
B, /* Branch ; B-unit */
|
87 |
|
|
L, /* Extended (L+X) ; I-unit */
|
88 |
|
|
X, /* Extended (L+X) ; I-unit */
|
89 |
|
|
undefined /* undefined or reserved */
|
90 |
|
|
} instruction_type;
|
91 |
|
|
|
92 |
|
|
/* We represent IA-64 PC addresses as the value of the instruction
|
93 |
|
|
pointer or'd with some bit combination in the low nibble which
|
94 |
|
|
represents the slot number in the bundle addressed by the
|
95 |
|
|
instruction pointer. The problem is that the Linux kernel
|
96 |
|
|
multiplies its slot numbers (for exceptions) by one while the
|
97 |
|
|
disassembler multiplies its slot numbers by 6. In addition, I've
|
98 |
|
|
heard it said that the simulator uses 1 as the multiplier.
|
99 |
|
|
|
100 |
|
|
I've fixed the disassembler so that the bytes_per_line field will
|
101 |
|
|
be the slot multiplier. If bytes_per_line comes in as zero, it
|
102 |
|
|
is set to six (which is how it was set up initially). -- objdump
|
103 |
|
|
displays pretty disassembly dumps with this value. For our purposes,
|
104 |
|
|
we'll set bytes_per_line to SLOT_MULTIPLIER. This is okay since we
|
105 |
|
|
never want to also display the raw bytes the way objdump does. */
|
106 |
|
|
|
107 |
|
|
#define SLOT_MULTIPLIER 1
|
108 |
|
|
|
109 |
|
|
/* Length in bytes of an instruction bundle */
|
110 |
|
|
|
111 |
|
|
#define BUNDLE_LEN 16
|
112 |
|
|
|
113 |
|
|
/* See the saved memory layout comment for ia64_memory_insert_breakpoint. */
|
114 |
|
|
|
115 |
|
|
#if BREAKPOINT_MAX < BUNDLE_LEN - 2
|
116 |
|
|
# error "BREAKPOINT_MAX < BUNDLE_LEN - 2"
|
117 |
|
|
#endif
|
118 |
|
|
|
119 |
|
|
static gdbarch_init_ftype ia64_gdbarch_init;
|
120 |
|
|
|
121 |
|
|
static gdbarch_register_name_ftype ia64_register_name;
|
122 |
|
|
static gdbarch_register_type_ftype ia64_register_type;
|
123 |
|
|
static gdbarch_breakpoint_from_pc_ftype ia64_breakpoint_from_pc;
|
124 |
|
|
static gdbarch_skip_prologue_ftype ia64_skip_prologue;
|
125 |
|
|
static struct type *is_float_or_hfa_type (struct type *t);
|
126 |
|
|
static CORE_ADDR ia64_find_global_pointer (struct gdbarch *gdbarch,
|
127 |
|
|
CORE_ADDR faddr);
|
128 |
|
|
|
129 |
|
|
#define NUM_IA64_RAW_REGS 462
|
130 |
|
|
|
131 |
|
|
static int sp_regnum = IA64_GR12_REGNUM;
|
132 |
|
|
static int fp_regnum = IA64_VFP_REGNUM;
|
133 |
|
|
static int lr_regnum = IA64_VRAP_REGNUM;
|
134 |
|
|
|
135 |
|
|
/* NOTE: we treat the register stack registers r32-r127 as pseudo-registers because
|
136 |
|
|
they may not be accessible via the ptrace register get/set interfaces. */
|
137 |
|
|
enum pseudo_regs { FIRST_PSEUDO_REGNUM = NUM_IA64_RAW_REGS, VBOF_REGNUM = IA64_NAT127_REGNUM + 1, V32_REGNUM,
|
138 |
|
|
V127_REGNUM = V32_REGNUM + 95,
|
139 |
|
|
VP0_REGNUM, VP16_REGNUM = VP0_REGNUM + 16, VP63_REGNUM = VP0_REGNUM + 63, LAST_PSEUDO_REGNUM };
|
140 |
|
|
|
141 |
|
|
/* Array of register names; There should be ia64_num_regs strings in
|
142 |
|
|
the initializer. */
|
143 |
|
|
|
144 |
|
|
static char *ia64_register_names[] =
|
145 |
|
|
{ "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
|
146 |
|
|
"r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
|
147 |
|
|
"r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
|
148 |
|
|
"r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
|
149 |
|
|
"", "", "", "", "", "", "", "",
|
150 |
|
|
"", "", "", "", "", "", "", "",
|
151 |
|
|
"", "", "", "", "", "", "", "",
|
152 |
|
|
"", "", "", "", "", "", "", "",
|
153 |
|
|
"", "", "", "", "", "", "", "",
|
154 |
|
|
"", "", "", "", "", "", "", "",
|
155 |
|
|
"", "", "", "", "", "", "", "",
|
156 |
|
|
"", "", "", "", "", "", "", "",
|
157 |
|
|
"", "", "", "", "", "", "", "",
|
158 |
|
|
"", "", "", "", "", "", "", "",
|
159 |
|
|
"", "", "", "", "", "", "", "",
|
160 |
|
|
"", "", "", "", "", "", "", "",
|
161 |
|
|
|
162 |
|
|
"f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
|
163 |
|
|
"f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
|
164 |
|
|
"f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
|
165 |
|
|
"f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
|
166 |
|
|
"f32", "f33", "f34", "f35", "f36", "f37", "f38", "f39",
|
167 |
|
|
"f40", "f41", "f42", "f43", "f44", "f45", "f46", "f47",
|
168 |
|
|
"f48", "f49", "f50", "f51", "f52", "f53", "f54", "f55",
|
169 |
|
|
"f56", "f57", "f58", "f59", "f60", "f61", "f62", "f63",
|
170 |
|
|
"f64", "f65", "f66", "f67", "f68", "f69", "f70", "f71",
|
171 |
|
|
"f72", "f73", "f74", "f75", "f76", "f77", "f78", "f79",
|
172 |
|
|
"f80", "f81", "f82", "f83", "f84", "f85", "f86", "f87",
|
173 |
|
|
"f88", "f89", "f90", "f91", "f92", "f93", "f94", "f95",
|
174 |
|
|
"f96", "f97", "f98", "f99", "f100", "f101", "f102", "f103",
|
175 |
|
|
"f104", "f105", "f106", "f107", "f108", "f109", "f110", "f111",
|
176 |
|
|
"f112", "f113", "f114", "f115", "f116", "f117", "f118", "f119",
|
177 |
|
|
"f120", "f121", "f122", "f123", "f124", "f125", "f126", "f127",
|
178 |
|
|
|
179 |
|
|
"", "", "", "", "", "", "", "",
|
180 |
|
|
"", "", "", "", "", "", "", "",
|
181 |
|
|
"", "", "", "", "", "", "", "",
|
182 |
|
|
"", "", "", "", "", "", "", "",
|
183 |
|
|
"", "", "", "", "", "", "", "",
|
184 |
|
|
"", "", "", "", "", "", "", "",
|
185 |
|
|
"", "", "", "", "", "", "", "",
|
186 |
|
|
"", "", "", "", "", "", "", "",
|
187 |
|
|
|
188 |
|
|
"b0", "b1", "b2", "b3", "b4", "b5", "b6", "b7",
|
189 |
|
|
|
190 |
|
|
"vfp", "vrap",
|
191 |
|
|
|
192 |
|
|
"pr", "ip", "psr", "cfm",
|
193 |
|
|
|
194 |
|
|
"kr0", "kr1", "kr2", "kr3", "kr4", "kr5", "kr6", "kr7",
|
195 |
|
|
"", "", "", "", "", "", "", "",
|
196 |
|
|
"rsc", "bsp", "bspstore", "rnat",
|
197 |
|
|
"", "fcr", "", "",
|
198 |
|
|
"eflag", "csd", "ssd", "cflg", "fsr", "fir", "fdr", "",
|
199 |
|
|
"ccv", "", "", "", "unat", "", "", "",
|
200 |
|
|
"fpsr", "", "", "", "itc",
|
201 |
|
|
"", "", "", "", "", "", "", "", "", "",
|
202 |
|
|
"", "", "", "", "", "", "", "", "",
|
203 |
|
|
"pfs", "lc", "ec",
|
204 |
|
|
"", "", "", "", "", "", "", "", "", "",
|
205 |
|
|
"", "", "", "", "", "", "", "", "", "",
|
206 |
|
|
"", "", "", "", "", "", "", "", "", "",
|
207 |
|
|
"", "", "", "", "", "", "", "", "", "",
|
208 |
|
|
"", "", "", "", "", "", "", "", "", "",
|
209 |
|
|
"", "", "", "", "", "", "", "", "", "",
|
210 |
|
|
"",
|
211 |
|
|
"nat0", "nat1", "nat2", "nat3", "nat4", "nat5", "nat6", "nat7",
|
212 |
|
|
"nat8", "nat9", "nat10", "nat11", "nat12", "nat13", "nat14", "nat15",
|
213 |
|
|
"nat16", "nat17", "nat18", "nat19", "nat20", "nat21", "nat22", "nat23",
|
214 |
|
|
"nat24", "nat25", "nat26", "nat27", "nat28", "nat29", "nat30", "nat31",
|
215 |
|
|
"nat32", "nat33", "nat34", "nat35", "nat36", "nat37", "nat38", "nat39",
|
216 |
|
|
"nat40", "nat41", "nat42", "nat43", "nat44", "nat45", "nat46", "nat47",
|
217 |
|
|
"nat48", "nat49", "nat50", "nat51", "nat52", "nat53", "nat54", "nat55",
|
218 |
|
|
"nat56", "nat57", "nat58", "nat59", "nat60", "nat61", "nat62", "nat63",
|
219 |
|
|
"nat64", "nat65", "nat66", "nat67", "nat68", "nat69", "nat70", "nat71",
|
220 |
|
|
"nat72", "nat73", "nat74", "nat75", "nat76", "nat77", "nat78", "nat79",
|
221 |
|
|
"nat80", "nat81", "nat82", "nat83", "nat84", "nat85", "nat86", "nat87",
|
222 |
|
|
"nat88", "nat89", "nat90", "nat91", "nat92", "nat93", "nat94", "nat95",
|
223 |
|
|
"nat96", "nat97", "nat98", "nat99", "nat100","nat101","nat102","nat103",
|
224 |
|
|
"nat104","nat105","nat106","nat107","nat108","nat109","nat110","nat111",
|
225 |
|
|
"nat112","nat113","nat114","nat115","nat116","nat117","nat118","nat119",
|
226 |
|
|
"nat120","nat121","nat122","nat123","nat124","nat125","nat126","nat127",
|
227 |
|
|
|
228 |
|
|
"bof",
|
229 |
|
|
|
230 |
|
|
"r32", "r33", "r34", "r35", "r36", "r37", "r38", "r39",
|
231 |
|
|
"r40", "r41", "r42", "r43", "r44", "r45", "r46", "r47",
|
232 |
|
|
"r48", "r49", "r50", "r51", "r52", "r53", "r54", "r55",
|
233 |
|
|
"r56", "r57", "r58", "r59", "r60", "r61", "r62", "r63",
|
234 |
|
|
"r64", "r65", "r66", "r67", "r68", "r69", "r70", "r71",
|
235 |
|
|
"r72", "r73", "r74", "r75", "r76", "r77", "r78", "r79",
|
236 |
|
|
"r80", "r81", "r82", "r83", "r84", "r85", "r86", "r87",
|
237 |
|
|
"r88", "r89", "r90", "r91", "r92", "r93", "r94", "r95",
|
238 |
|
|
"r96", "r97", "r98", "r99", "r100", "r101", "r102", "r103",
|
239 |
|
|
"r104", "r105", "r106", "r107", "r108", "r109", "r110", "r111",
|
240 |
|
|
"r112", "r113", "r114", "r115", "r116", "r117", "r118", "r119",
|
241 |
|
|
"r120", "r121", "r122", "r123", "r124", "r125", "r126", "r127",
|
242 |
|
|
|
243 |
|
|
"p0", "p1", "p2", "p3", "p4", "p5", "p6", "p7",
|
244 |
|
|
"p8", "p9", "p10", "p11", "p12", "p13", "p14", "p15",
|
245 |
|
|
"p16", "p17", "p18", "p19", "p20", "p21", "p22", "p23",
|
246 |
|
|
"p24", "p25", "p26", "p27", "p28", "p29", "p30", "p31",
|
247 |
|
|
"p32", "p33", "p34", "p35", "p36", "p37", "p38", "p39",
|
248 |
|
|
"p40", "p41", "p42", "p43", "p44", "p45", "p46", "p47",
|
249 |
|
|
"p48", "p49", "p50", "p51", "p52", "p53", "p54", "p55",
|
250 |
|
|
"p56", "p57", "p58", "p59", "p60", "p61", "p62", "p63",
|
251 |
|
|
};
|
252 |
|
|
|
253 |
|
|
struct ia64_frame_cache
|
254 |
|
|
{
|
255 |
|
|
CORE_ADDR base; /* frame pointer base for frame */
|
256 |
|
|
CORE_ADDR pc; /* function start pc for frame */
|
257 |
|
|
CORE_ADDR saved_sp; /* stack pointer for frame */
|
258 |
|
|
CORE_ADDR bsp; /* points at r32 for the current frame */
|
259 |
|
|
CORE_ADDR cfm; /* cfm value for current frame */
|
260 |
|
|
CORE_ADDR prev_cfm; /* cfm value for previous frame */
|
261 |
|
|
int frameless;
|
262 |
|
|
int sof; /* Size of frame (decoded from cfm value) */
|
263 |
|
|
int sol; /* Size of locals (decoded from cfm value) */
|
264 |
|
|
int sor; /* Number of rotating registers. (decoded from cfm value) */
|
265 |
|
|
CORE_ADDR after_prologue;
|
266 |
|
|
/* Address of first instruction after the last
|
267 |
|
|
prologue instruction; Note that there may
|
268 |
|
|
be instructions from the function's body
|
269 |
|
|
intermingled with the prologue. */
|
270 |
|
|
int mem_stack_frame_size;
|
271 |
|
|
/* Size of the memory stack frame (may be zero),
|
272 |
|
|
or -1 if it has not been determined yet. */
|
273 |
|
|
int fp_reg; /* Register number (if any) used a frame pointer
|
274 |
|
|
for this frame. 0 if no register is being used
|
275 |
|
|
as the frame pointer. */
|
276 |
|
|
|
277 |
|
|
/* Saved registers. */
|
278 |
|
|
CORE_ADDR saved_regs[NUM_IA64_RAW_REGS];
|
279 |
|
|
|
280 |
|
|
};
|
281 |
|
|
|
282 |
|
|
static int
|
283 |
|
|
floatformat_valid (const struct floatformat *fmt, const void *from)
|
284 |
|
|
{
|
285 |
|
|
return 1;
|
286 |
|
|
}
|
287 |
|
|
|
288 |
|
|
static const struct floatformat floatformat_ia64_ext =
|
289 |
|
|
{
|
290 |
|
|
floatformat_little, 82, 0, 1, 17, 65535, 0x1ffff, 18, 64,
|
291 |
|
|
floatformat_intbit_yes, "floatformat_ia64_ext", floatformat_valid, NULL
|
292 |
|
|
};
|
293 |
|
|
|
294 |
|
|
static const struct floatformat *floatformats_ia64_ext[2] =
|
295 |
|
|
{
|
296 |
|
|
&floatformat_ia64_ext,
|
297 |
|
|
&floatformat_ia64_ext
|
298 |
|
|
};
|
299 |
|
|
|
300 |
|
|
static struct type *
|
301 |
|
|
ia64_ext_type (struct gdbarch *gdbarch)
|
302 |
|
|
{
|
303 |
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
304 |
|
|
|
305 |
|
|
if (!tdep->ia64_ext_type)
|
306 |
|
|
tdep->ia64_ext_type
|
307 |
|
|
= arch_float_type (gdbarch, 128, "builtin_type_ia64_ext",
|
308 |
|
|
floatformats_ia64_ext);
|
309 |
|
|
|
310 |
|
|
return tdep->ia64_ext_type;
|
311 |
|
|
}
|
312 |
|
|
|
313 |
|
|
static int
|
314 |
|
|
ia64_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
|
315 |
|
|
struct reggroup *group)
|
316 |
|
|
{
|
317 |
|
|
int vector_p;
|
318 |
|
|
int float_p;
|
319 |
|
|
int raw_p;
|
320 |
|
|
if (group == all_reggroup)
|
321 |
|
|
return 1;
|
322 |
|
|
vector_p = TYPE_VECTOR (register_type (gdbarch, regnum));
|
323 |
|
|
float_p = TYPE_CODE (register_type (gdbarch, regnum)) == TYPE_CODE_FLT;
|
324 |
|
|
raw_p = regnum < NUM_IA64_RAW_REGS;
|
325 |
|
|
if (group == float_reggroup)
|
326 |
|
|
return float_p;
|
327 |
|
|
if (group == vector_reggroup)
|
328 |
|
|
return vector_p;
|
329 |
|
|
if (group == general_reggroup)
|
330 |
|
|
return (!vector_p && !float_p);
|
331 |
|
|
if (group == save_reggroup || group == restore_reggroup)
|
332 |
|
|
return raw_p;
|
333 |
|
|
return 0;
|
334 |
|
|
}
|
335 |
|
|
|
336 |
|
|
static const char *
|
337 |
|
|
ia64_register_name (struct gdbarch *gdbarch, int reg)
|
338 |
|
|
{
|
339 |
|
|
return ia64_register_names[reg];
|
340 |
|
|
}
|
341 |
|
|
|
342 |
|
|
struct type *
|
343 |
|
|
ia64_register_type (struct gdbarch *arch, int reg)
|
344 |
|
|
{
|
345 |
|
|
if (reg >= IA64_FR0_REGNUM && reg <= IA64_FR127_REGNUM)
|
346 |
|
|
return ia64_ext_type (arch);
|
347 |
|
|
else
|
348 |
|
|
return builtin_type (arch)->builtin_long;
|
349 |
|
|
}
|
350 |
|
|
|
351 |
|
|
static int
|
352 |
|
|
ia64_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
|
353 |
|
|
{
|
354 |
|
|
if (reg >= IA64_GR32_REGNUM && reg <= IA64_GR127_REGNUM)
|
355 |
|
|
return V32_REGNUM + (reg - IA64_GR32_REGNUM);
|
356 |
|
|
return reg;
|
357 |
|
|
}
|
358 |
|
|
|
359 |
|
|
|
360 |
|
|
/* Extract ``len'' bits from an instruction bundle starting at
|
361 |
|
|
bit ``from''. */
|
362 |
|
|
|
363 |
|
|
static long long
|
364 |
|
|
extract_bit_field (const char *bundle, int from, int len)
|
365 |
|
|
{
|
366 |
|
|
long long result = 0LL;
|
367 |
|
|
int to = from + len;
|
368 |
|
|
int from_byte = from / 8;
|
369 |
|
|
int to_byte = to / 8;
|
370 |
|
|
unsigned char *b = (unsigned char *) bundle;
|
371 |
|
|
unsigned char c;
|
372 |
|
|
int lshift;
|
373 |
|
|
int i;
|
374 |
|
|
|
375 |
|
|
c = b[from_byte];
|
376 |
|
|
if (from_byte == to_byte)
|
377 |
|
|
c = ((unsigned char) (c << (8 - to % 8))) >> (8 - to % 8);
|
378 |
|
|
result = c >> (from % 8);
|
379 |
|
|
lshift = 8 - (from % 8);
|
380 |
|
|
|
381 |
|
|
for (i = from_byte+1; i < to_byte; i++)
|
382 |
|
|
{
|
383 |
|
|
result |= ((long long) b[i]) << lshift;
|
384 |
|
|
lshift += 8;
|
385 |
|
|
}
|
386 |
|
|
|
387 |
|
|
if (from_byte < to_byte && (to % 8 != 0))
|
388 |
|
|
{
|
389 |
|
|
c = b[to_byte];
|
390 |
|
|
c = ((unsigned char) (c << (8 - to % 8))) >> (8 - to % 8);
|
391 |
|
|
result |= ((long long) c) << lshift;
|
392 |
|
|
}
|
393 |
|
|
|
394 |
|
|
return result;
|
395 |
|
|
}
|
396 |
|
|
|
397 |
|
|
/* Replace the specified bits in an instruction bundle */
|
398 |
|
|
|
399 |
|
|
static void
|
400 |
|
|
replace_bit_field (char *bundle, long long val, int from, int len)
|
401 |
|
|
{
|
402 |
|
|
int to = from + len;
|
403 |
|
|
int from_byte = from / 8;
|
404 |
|
|
int to_byte = to / 8;
|
405 |
|
|
unsigned char *b = (unsigned char *) bundle;
|
406 |
|
|
unsigned char c;
|
407 |
|
|
|
408 |
|
|
if (from_byte == to_byte)
|
409 |
|
|
{
|
410 |
|
|
unsigned char left, right;
|
411 |
|
|
c = b[from_byte];
|
412 |
|
|
left = (c >> (to % 8)) << (to % 8);
|
413 |
|
|
right = ((unsigned char) (c << (8 - from % 8))) >> (8 - from % 8);
|
414 |
|
|
c = (unsigned char) (val & 0xff);
|
415 |
|
|
c = (unsigned char) (c << (from % 8 + 8 - to % 8)) >> (8 - to % 8);
|
416 |
|
|
c |= right | left;
|
417 |
|
|
b[from_byte] = c;
|
418 |
|
|
}
|
419 |
|
|
else
|
420 |
|
|
{
|
421 |
|
|
int i;
|
422 |
|
|
c = b[from_byte];
|
423 |
|
|
c = ((unsigned char) (c << (8 - from % 8))) >> (8 - from % 8);
|
424 |
|
|
c = c | (val << (from % 8));
|
425 |
|
|
b[from_byte] = c;
|
426 |
|
|
val >>= 8 - from % 8;
|
427 |
|
|
|
428 |
|
|
for (i = from_byte+1; i < to_byte; i++)
|
429 |
|
|
{
|
430 |
|
|
c = val & 0xff;
|
431 |
|
|
val >>= 8;
|
432 |
|
|
b[i] = c;
|
433 |
|
|
}
|
434 |
|
|
|
435 |
|
|
if (to % 8 != 0)
|
436 |
|
|
{
|
437 |
|
|
unsigned char cv = (unsigned char) val;
|
438 |
|
|
c = b[to_byte];
|
439 |
|
|
c = c >> (to % 8) << (to % 8);
|
440 |
|
|
c |= ((unsigned char) (cv << (8 - to % 8))) >> (8 - to % 8);
|
441 |
|
|
b[to_byte] = c;
|
442 |
|
|
}
|
443 |
|
|
}
|
444 |
|
|
}
|
445 |
|
|
|
446 |
|
|
/* Return the contents of slot N (for N = 0, 1, or 2) in
|
447 |
|
|
and instruction bundle */
|
448 |
|
|
|
449 |
|
|
static long long
|
450 |
|
|
slotN_contents (char *bundle, int slotnum)
|
451 |
|
|
{
|
452 |
|
|
return extract_bit_field (bundle, 5+41*slotnum, 41);
|
453 |
|
|
}
|
454 |
|
|
|
455 |
|
|
/* Store an instruction in an instruction bundle */
|
456 |
|
|
|
457 |
|
|
static void
|
458 |
|
|
replace_slotN_contents (char *bundle, long long instr, int slotnum)
|
459 |
|
|
{
|
460 |
|
|
replace_bit_field (bundle, instr, 5+41*slotnum, 41);
|
461 |
|
|
}
|
462 |
|
|
|
463 |
|
|
static const enum instruction_type template_encoding_table[32][3] =
|
464 |
|
|
{
|
465 |
|
|
{ M, I, I }, /* 00 */
|
466 |
|
|
{ M, I, I }, /* 01 */
|
467 |
|
|
{ M, I, I }, /* 02 */
|
468 |
|
|
{ M, I, I }, /* 03 */
|
469 |
|
|
{ M, L, X }, /* 04 */
|
470 |
|
|
{ M, L, X }, /* 05 */
|
471 |
|
|
{ undefined, undefined, undefined }, /* 06 */
|
472 |
|
|
{ undefined, undefined, undefined }, /* 07 */
|
473 |
|
|
{ M, M, I }, /* 08 */
|
474 |
|
|
{ M, M, I }, /* 09 */
|
475 |
|
|
{ M, M, I }, /* 0A */
|
476 |
|
|
{ M, M, I }, /* 0B */
|
477 |
|
|
{ M, F, I }, /* 0C */
|
478 |
|
|
{ M, F, I }, /* 0D */
|
479 |
|
|
{ M, M, F }, /* 0E */
|
480 |
|
|
{ M, M, F }, /* 0F */
|
481 |
|
|
{ M, I, B }, /* 10 */
|
482 |
|
|
{ M, I, B }, /* 11 */
|
483 |
|
|
{ M, B, B }, /* 12 */
|
484 |
|
|
{ M, B, B }, /* 13 */
|
485 |
|
|
{ undefined, undefined, undefined }, /* 14 */
|
486 |
|
|
{ undefined, undefined, undefined }, /* 15 */
|
487 |
|
|
{ B, B, B }, /* 16 */
|
488 |
|
|
{ B, B, B }, /* 17 */
|
489 |
|
|
{ M, M, B }, /* 18 */
|
490 |
|
|
{ M, M, B }, /* 19 */
|
491 |
|
|
{ undefined, undefined, undefined }, /* 1A */
|
492 |
|
|
{ undefined, undefined, undefined }, /* 1B */
|
493 |
|
|
{ M, F, B }, /* 1C */
|
494 |
|
|
{ M, F, B }, /* 1D */
|
495 |
|
|
{ undefined, undefined, undefined }, /* 1E */
|
496 |
|
|
{ undefined, undefined, undefined }, /* 1F */
|
497 |
|
|
};
|
498 |
|
|
|
499 |
|
|
/* Fetch and (partially) decode an instruction at ADDR and return the
|
500 |
|
|
address of the next instruction to fetch. */
|
501 |
|
|
|
502 |
|
|
static CORE_ADDR
|
503 |
|
|
fetch_instruction (CORE_ADDR addr, instruction_type *it, long long *instr)
|
504 |
|
|
{
|
505 |
|
|
char bundle[BUNDLE_LEN];
|
506 |
|
|
int slotnum = (int) (addr & 0x0f) / SLOT_MULTIPLIER;
|
507 |
|
|
long long template;
|
508 |
|
|
int val;
|
509 |
|
|
|
510 |
|
|
/* Warn about slot numbers greater than 2. We used to generate
|
511 |
|
|
an error here on the assumption that the user entered an invalid
|
512 |
|
|
address. But, sometimes GDB itself requests an invalid address.
|
513 |
|
|
This can (easily) happen when execution stops in a function for
|
514 |
|
|
which there are no symbols. The prologue scanner will attempt to
|
515 |
|
|
find the beginning of the function - if the nearest symbol
|
516 |
|
|
happens to not be aligned on a bundle boundary (16 bytes), the
|
517 |
|
|
resulting starting address will cause GDB to think that the slot
|
518 |
|
|
number is too large.
|
519 |
|
|
|
520 |
|
|
So we warn about it and set the slot number to zero. It is
|
521 |
|
|
not necessarily a fatal condition, particularly if debugging
|
522 |
|
|
at the assembly language level. */
|
523 |
|
|
if (slotnum > 2)
|
524 |
|
|
{
|
525 |
|
|
warning (_("Can't fetch instructions for slot numbers greater than 2.\n"
|
526 |
|
|
"Using slot 0 instead"));
|
527 |
|
|
slotnum = 0;
|
528 |
|
|
}
|
529 |
|
|
|
530 |
|
|
addr &= ~0x0f;
|
531 |
|
|
|
532 |
|
|
val = target_read_memory (addr, bundle, BUNDLE_LEN);
|
533 |
|
|
|
534 |
|
|
if (val != 0)
|
535 |
|
|
return 0;
|
536 |
|
|
|
537 |
|
|
*instr = slotN_contents (bundle, slotnum);
|
538 |
|
|
template = extract_bit_field (bundle, 0, 5);
|
539 |
|
|
*it = template_encoding_table[(int)template][slotnum];
|
540 |
|
|
|
541 |
|
|
if (slotnum == 2 || (slotnum == 1 && *it == L))
|
542 |
|
|
addr += 16;
|
543 |
|
|
else
|
544 |
|
|
addr += (slotnum + 1) * SLOT_MULTIPLIER;
|
545 |
|
|
|
546 |
|
|
return addr;
|
547 |
|
|
}
|
548 |
|
|
|
549 |
|
|
/* There are 5 different break instructions (break.i, break.b,
|
550 |
|
|
break.m, break.f, and break.x), but they all have the same
|
551 |
|
|
encoding. (The five bit template in the low five bits of the
|
552 |
|
|
instruction bundle distinguishes one from another.)
|
553 |
|
|
|
554 |
|
|
The runtime architecture manual specifies that break instructions
|
555 |
|
|
used for debugging purposes must have the upper two bits of the 21
|
556 |
|
|
bit immediate set to a 0 and a 1 respectively. A breakpoint
|
557 |
|
|
instruction encodes the most significant bit of its 21 bit
|
558 |
|
|
immediate at bit 36 of the 41 bit instruction. The penultimate msb
|
559 |
|
|
is at bit 25 which leads to the pattern below.
|
560 |
|
|
|
561 |
|
|
Originally, I had this set up to do, e.g, a "break.i 0x80000" But
|
562 |
|
|
it turns out that 0x80000 was used as the syscall break in the early
|
563 |
|
|
simulators. So I changed the pattern slightly to do "break.i 0x080001"
|
564 |
|
|
instead. But that didn't work either (I later found out that this
|
565 |
|
|
pattern was used by the simulator that I was using.) So I ended up
|
566 |
|
|
using the pattern seen below.
|
567 |
|
|
|
568 |
|
|
SHADOW_CONTENTS has byte-based addressing (PLACED_ADDRESS and SHADOW_LEN)
|
569 |
|
|
while we need bit-based addressing as the instructions length is 41 bits and
|
570 |
|
|
we must not modify/corrupt the adjacent slots in the same bundle.
|
571 |
|
|
Fortunately we may store larger memory incl. the adjacent bits with the
|
572 |
|
|
original memory content (not the possibly already stored breakpoints there).
|
573 |
|
|
We need to be careful in ia64_memory_remove_breakpoint to always restore
|
574 |
|
|
only the specific bits of this instruction ignoring any adjacent stored
|
575 |
|
|
bits.
|
576 |
|
|
|
577 |
|
|
We use the original addressing with the low nibble in the range <0..2> which
|
578 |
|
|
gets incorrectly interpreted by generic non-ia64 breakpoint_restore_shadows
|
579 |
|
|
as the direct byte offset of SHADOW_CONTENTS. We store whole BUNDLE_LEN
|
580 |
|
|
bytes just without these two possibly skipped bytes to not to exceed to the
|
581 |
|
|
next bundle.
|
582 |
|
|
|
583 |
|
|
If we would like to store the whole bundle to SHADOW_CONTENTS we would have
|
584 |
|
|
to store already the base address (`address & ~0x0f') into PLACED_ADDRESS.
|
585 |
|
|
In such case there is no other place where to store
|
586 |
|
|
SLOTNUM (`adress & 0x0f', value in the range <0..2>). We need to know
|
587 |
|
|
SLOTNUM in ia64_memory_remove_breakpoint.
|
588 |
|
|
|
589 |
|
|
There is one special case where we need to be extra careful:
|
590 |
|
|
L-X instructions, which are instructions that occupy 2 slots
|
591 |
|
|
(The L part is always in slot 1, and the X part is always in
|
592 |
|
|
slot 2). We must refuse to insert breakpoints for an address
|
593 |
|
|
that points at slot 2 of a bundle where an L-X instruction is
|
594 |
|
|
present, since there is logically no instruction at that address.
|
595 |
|
|
However, to make things more interesting, the opcode of L-X
|
596 |
|
|
instructions is located in slot 2. This means that, to insert
|
597 |
|
|
a breakpoint at an address that points to slot 1, we actually
|
598 |
|
|
need to write the breakpoint in slot 2! Slot 1 is actually
|
599 |
|
|
the extended operand, so writing the breakpoint there would not
|
600 |
|
|
have the desired effect. Another side-effect of this issue
|
601 |
|
|
is that we need to make sure that the shadow contents buffer
|
602 |
|
|
does save byte 15 of our instruction bundle (this is the tail
|
603 |
|
|
end of slot 2, which wouldn't be saved if we were to insert
|
604 |
|
|
the breakpoint in slot 1).
|
605 |
|
|
|
606 |
|
|
ia64 16-byte bundle layout:
|
607 |
|
|
| 5 bits | slot 0 with 41 bits | slot 1 with 41 bits | slot 2 with 41 bits |
|
608 |
|
|
|
609 |
|
|
The current addressing used by the code below:
|
610 |
|
|
original PC placed_address placed_size required covered
|
611 |
|
|
== bp_tgt->shadow_len reqd \subset covered
|
612 |
|
|
0xABCDE0 0xABCDE0 0x10 <0x0...0x5> <0x0..0xF>
|
613 |
|
|
0xABCDE1 0xABCDE1 0xF <0x5...0xA> <0x1..0xF>
|
614 |
|
|
0xABCDE2 0xABCDE2 0xE <0xA...0xF> <0x2..0xF>
|
615 |
|
|
|
616 |
|
|
L-X instructions are treated a little specially, as explained above:
|
617 |
|
|
0xABCDE1 0xABCDE1 0xF <0xA...0xF> <0x1..0xF>
|
618 |
|
|
|
619 |
|
|
`objdump -d' and some other tools show a bit unjustified offsets:
|
620 |
|
|
original PC byte where starts the instruction objdump offset
|
621 |
|
|
0xABCDE0 0xABCDE0 0xABCDE0
|
622 |
|
|
0xABCDE1 0xABCDE5 0xABCDE6
|
623 |
|
|
0xABCDE2 0xABCDEA 0xABCDEC
|
624 |
|
|
*/
|
625 |
|
|
|
626 |
|
|
#define IA64_BREAKPOINT 0x00003333300LL
|
627 |
|
|
|
628 |
|
|
static int
|
629 |
|
|
ia64_memory_insert_breakpoint (struct gdbarch *gdbarch,
|
630 |
|
|
struct bp_target_info *bp_tgt)
|
631 |
|
|
{
|
632 |
|
|
CORE_ADDR addr = bp_tgt->placed_address;
|
633 |
|
|
gdb_byte bundle[BUNDLE_LEN];
|
634 |
|
|
int slotnum = (int) (addr & 0x0f) / SLOT_MULTIPLIER, shadow_slotnum;
|
635 |
|
|
long long instr_breakpoint;
|
636 |
|
|
int val;
|
637 |
|
|
int template;
|
638 |
|
|
struct cleanup *cleanup;
|
639 |
|
|
|
640 |
|
|
if (slotnum > 2)
|
641 |
|
|
error (_("Can't insert breakpoint for slot numbers greater than 2."));
|
642 |
|
|
|
643 |
|
|
addr &= ~0x0f;
|
644 |
|
|
|
645 |
|
|
/* Enable the automatic memory restoration from breakpoints while
|
646 |
|
|
we read our instruction bundle for the purpose of SHADOW_CONTENTS.
|
647 |
|
|
Otherwise, we could possibly store into the shadow parts of the adjacent
|
648 |
|
|
placed breakpoints. It is due to our SHADOW_CONTENTS overlapping the real
|
649 |
|
|
breakpoint instruction bits region. */
|
650 |
|
|
cleanup = make_show_memory_breakpoints_cleanup (0);
|
651 |
|
|
val = target_read_memory (addr, bundle, BUNDLE_LEN);
|
652 |
|
|
if (val != 0)
|
653 |
|
|
{
|
654 |
|
|
do_cleanups (cleanup);
|
655 |
|
|
return val;
|
656 |
|
|
}
|
657 |
|
|
|
658 |
|
|
/* SHADOW_SLOTNUM saves the original slot number as expected by the caller
|
659 |
|
|
for addressing the SHADOW_CONTENTS placement. */
|
660 |
|
|
shadow_slotnum = slotnum;
|
661 |
|
|
|
662 |
|
|
/* Always cover the last byte of the bundle in case we are inserting
|
663 |
|
|
a breakpoint on an L-X instruction. */
|
664 |
|
|
bp_tgt->shadow_len = BUNDLE_LEN - shadow_slotnum;
|
665 |
|
|
|
666 |
|
|
template = extract_bit_field (bundle, 0, 5);
|
667 |
|
|
if (template_encoding_table[template][slotnum] == X)
|
668 |
|
|
{
|
669 |
|
|
/* X unit types can only be used in slot 2, and are actually
|
670 |
|
|
part of a 2-slot L-X instruction. We cannot break at this
|
671 |
|
|
address, as this is the second half of an instruction that
|
672 |
|
|
lives in slot 1 of that bundle. */
|
673 |
|
|
gdb_assert (slotnum == 2);
|
674 |
|
|
error (_("Can't insert breakpoint for non-existing slot X"));
|
675 |
|
|
}
|
676 |
|
|
if (template_encoding_table[template][slotnum] == L)
|
677 |
|
|
{
|
678 |
|
|
/* L unit types can only be used in slot 1. But the associated
|
679 |
|
|
opcode for that instruction is in slot 2, so bump the slot number
|
680 |
|
|
accordingly. */
|
681 |
|
|
gdb_assert (slotnum == 1);
|
682 |
|
|
slotnum = 2;
|
683 |
|
|
}
|
684 |
|
|
|
685 |
|
|
/* Store the whole bundle, except for the initial skipped bytes by the slot
|
686 |
|
|
number interpreted as bytes offset in PLACED_ADDRESS. */
|
687 |
|
|
memcpy (bp_tgt->shadow_contents, bundle + shadow_slotnum, bp_tgt->shadow_len);
|
688 |
|
|
|
689 |
|
|
/* Re-read the same bundle as above except that, this time, read it in order
|
690 |
|
|
to compute the new bundle inside which we will be inserting the
|
691 |
|
|
breakpoint. Therefore, disable the automatic memory restoration from
|
692 |
|
|
breakpoints while we read our instruction bundle. Otherwise, the general
|
693 |
|
|
restoration mechanism kicks in and we would possibly remove parts of the
|
694 |
|
|
adjacent placed breakpoints. It is due to our SHADOW_CONTENTS overlapping
|
695 |
|
|
the real breakpoint instruction bits region. */
|
696 |
|
|
make_show_memory_breakpoints_cleanup (1);
|
697 |
|
|
val = target_read_memory (addr, bundle, BUNDLE_LEN);
|
698 |
|
|
if (val != 0)
|
699 |
|
|
{
|
700 |
|
|
do_cleanups (cleanup);
|
701 |
|
|
return val;
|
702 |
|
|
}
|
703 |
|
|
|
704 |
|
|
/* Breakpoints already present in the code will get deteacted and not get
|
705 |
|
|
reinserted by bp_loc_is_permanent. Multiple breakpoints at the same
|
706 |
|
|
location cannot induce the internal error as they are optimized into
|
707 |
|
|
a single instance by update_global_location_list. */
|
708 |
|
|
instr_breakpoint = slotN_contents (bundle, slotnum);
|
709 |
|
|
if (instr_breakpoint == IA64_BREAKPOINT)
|
710 |
|
|
internal_error (__FILE__, __LINE__,
|
711 |
|
|
_("Address %s already contains a breakpoint."),
|
712 |
|
|
paddress (gdbarch, bp_tgt->placed_address));
|
713 |
|
|
replace_slotN_contents (bundle, IA64_BREAKPOINT, slotnum);
|
714 |
|
|
|
715 |
|
|
bp_tgt->placed_size = bp_tgt->shadow_len;
|
716 |
|
|
|
717 |
|
|
val = target_write_memory (addr + shadow_slotnum, bundle + shadow_slotnum,
|
718 |
|
|
bp_tgt->shadow_len);
|
719 |
|
|
|
720 |
|
|
do_cleanups (cleanup);
|
721 |
|
|
return val;
|
722 |
|
|
}
|
723 |
|
|
|
724 |
|
|
static int
|
725 |
|
|
ia64_memory_remove_breakpoint (struct gdbarch *gdbarch,
|
726 |
|
|
struct bp_target_info *bp_tgt)
|
727 |
|
|
{
|
728 |
|
|
CORE_ADDR addr = bp_tgt->placed_address;
|
729 |
|
|
gdb_byte bundle_mem[BUNDLE_LEN], bundle_saved[BUNDLE_LEN];
|
730 |
|
|
int slotnum = (addr & 0x0f) / SLOT_MULTIPLIER, shadow_slotnum;
|
731 |
|
|
long long instr_breakpoint, instr_saved;
|
732 |
|
|
int val;
|
733 |
|
|
int template;
|
734 |
|
|
struct cleanup *cleanup;
|
735 |
|
|
|
736 |
|
|
addr &= ~0x0f;
|
737 |
|
|
|
738 |
|
|
/* Disable the automatic memory restoration from breakpoints while
|
739 |
|
|
we read our instruction bundle. Otherwise, the general restoration
|
740 |
|
|
mechanism kicks in and we would possibly remove parts of the adjacent
|
741 |
|
|
placed breakpoints. It is due to our SHADOW_CONTENTS overlapping the real
|
742 |
|
|
breakpoint instruction bits region. */
|
743 |
|
|
cleanup = make_show_memory_breakpoints_cleanup (1);
|
744 |
|
|
val = target_read_memory (addr, bundle_mem, BUNDLE_LEN);
|
745 |
|
|
if (val != 0)
|
746 |
|
|
{
|
747 |
|
|
do_cleanups (cleanup);
|
748 |
|
|
return val;
|
749 |
|
|
}
|
750 |
|
|
|
751 |
|
|
/* SHADOW_SLOTNUM saves the original slot number as expected by the caller
|
752 |
|
|
for addressing the SHADOW_CONTENTS placement. */
|
753 |
|
|
shadow_slotnum = slotnum;
|
754 |
|
|
|
755 |
|
|
template = extract_bit_field (bundle_mem, 0, 5);
|
756 |
|
|
if (template_encoding_table[template][slotnum] == X)
|
757 |
|
|
{
|
758 |
|
|
/* X unit types can only be used in slot 2, and are actually
|
759 |
|
|
part of a 2-slot L-X instruction. We refuse to insert
|
760 |
|
|
breakpoints at this address, so there should be no reason
|
761 |
|
|
for us attempting to remove one there, except if the program's
|
762 |
|
|
code somehow got modified in memory. */
|
763 |
|
|
gdb_assert (slotnum == 2);
|
764 |
|
|
warning (_("Cannot remove breakpoint at address %s from non-existing "
|
765 |
|
|
"X-type slot, memory has changed underneath"),
|
766 |
|
|
paddress (gdbarch, bp_tgt->placed_address));
|
767 |
|
|
do_cleanups (cleanup);
|
768 |
|
|
return -1;
|
769 |
|
|
}
|
770 |
|
|
if (template_encoding_table[template][slotnum] == L)
|
771 |
|
|
{
|
772 |
|
|
/* L unit types can only be used in slot 1. But the breakpoint
|
773 |
|
|
was actually saved using slot 2, so update the slot number
|
774 |
|
|
accordingly. */
|
775 |
|
|
gdb_assert (slotnum == 1);
|
776 |
|
|
slotnum = 2;
|
777 |
|
|
}
|
778 |
|
|
|
779 |
|
|
gdb_assert (bp_tgt->placed_size == BUNDLE_LEN - shadow_slotnum);
|
780 |
|
|
gdb_assert (bp_tgt->placed_size == bp_tgt->shadow_len);
|
781 |
|
|
|
782 |
|
|
instr_breakpoint = slotN_contents (bundle_mem, slotnum);
|
783 |
|
|
if (instr_breakpoint != IA64_BREAKPOINT)
|
784 |
|
|
{
|
785 |
|
|
warning (_("Cannot remove breakpoint at address %s, "
|
786 |
|
|
"no break instruction at such address."),
|
787 |
|
|
paddress (gdbarch, bp_tgt->placed_address));
|
788 |
|
|
do_cleanups (cleanup);
|
789 |
|
|
return -1;
|
790 |
|
|
}
|
791 |
|
|
|
792 |
|
|
/* Extract the original saved instruction from SLOTNUM normalizing its
|
793 |
|
|
bit-shift for INSTR_SAVED. */
|
794 |
|
|
memcpy (bundle_saved, bundle_mem, BUNDLE_LEN);
|
795 |
|
|
memcpy (bundle_saved + shadow_slotnum, bp_tgt->shadow_contents,
|
796 |
|
|
bp_tgt->shadow_len);
|
797 |
|
|
instr_saved = slotN_contents (bundle_saved, slotnum);
|
798 |
|
|
|
799 |
|
|
/* In BUNDLE_MEM, be careful to modify only the bits belonging to SLOTNUM
|
800 |
|
|
and not any of the other ones that are stored in SHADOW_CONTENTS. */
|
801 |
|
|
replace_slotN_contents (bundle_mem, instr_saved, slotnum);
|
802 |
|
|
val = target_write_memory (addr, bundle_mem, BUNDLE_LEN);
|
803 |
|
|
|
804 |
|
|
do_cleanups (cleanup);
|
805 |
|
|
return val;
|
806 |
|
|
}
|
807 |
|
|
|
808 |
|
|
/* As gdbarch_breakpoint_from_pc ranges have byte granularity and ia64
|
809 |
|
|
instruction slots ranges are bit-granular (41 bits) we have to provide an
|
810 |
|
|
extended range as described for ia64_memory_insert_breakpoint. We also take
|
811 |
|
|
care of preserving the `break' instruction 21-bit (or 62-bit) parameter to
|
812 |
|
|
make a match for permanent breakpoints. */
|
813 |
|
|
|
814 |
|
|
static const gdb_byte *
|
815 |
|
|
ia64_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr, int *lenptr)
|
816 |
|
|
{
|
817 |
|
|
CORE_ADDR addr = *pcptr;
|
818 |
|
|
static gdb_byte bundle[BUNDLE_LEN];
|
819 |
|
|
int slotnum = (int) (*pcptr & 0x0f) / SLOT_MULTIPLIER, shadow_slotnum;
|
820 |
|
|
long long instr_fetched;
|
821 |
|
|
int val;
|
822 |
|
|
int template;
|
823 |
|
|
struct cleanup *cleanup;
|
824 |
|
|
|
825 |
|
|
if (slotnum > 2)
|
826 |
|
|
error (_("Can't insert breakpoint for slot numbers greater than 2."));
|
827 |
|
|
|
828 |
|
|
addr &= ~0x0f;
|
829 |
|
|
|
830 |
|
|
/* Enable the automatic memory restoration from breakpoints while
|
831 |
|
|
we read our instruction bundle to match bp_loc_is_permanent. */
|
832 |
|
|
cleanup = make_show_memory_breakpoints_cleanup (0);
|
833 |
|
|
val = target_read_memory (addr, bundle, BUNDLE_LEN);
|
834 |
|
|
do_cleanups (cleanup);
|
835 |
|
|
|
836 |
|
|
/* The memory might be unreachable. This can happen, for instance,
|
837 |
|
|
when the user inserts a breakpoint at an invalid address. */
|
838 |
|
|
if (val != 0)
|
839 |
|
|
return NULL;
|
840 |
|
|
|
841 |
|
|
/* SHADOW_SLOTNUM saves the original slot number as expected by the caller
|
842 |
|
|
for addressing the SHADOW_CONTENTS placement. */
|
843 |
|
|
shadow_slotnum = slotnum;
|
844 |
|
|
|
845 |
|
|
/* Cover always the last byte of the bundle for the L-X slot case. */
|
846 |
|
|
*lenptr = BUNDLE_LEN - shadow_slotnum;
|
847 |
|
|
|
848 |
|
|
/* Check for L type instruction in slot 1, if present then bump up the slot
|
849 |
|
|
number to the slot 2. */
|
850 |
|
|
template = extract_bit_field (bundle, 0, 5);
|
851 |
|
|
if (template_encoding_table[template][slotnum] == X)
|
852 |
|
|
{
|
853 |
|
|
gdb_assert (slotnum == 2);
|
854 |
|
|
error (_("Can't insert breakpoint for non-existing slot X"));
|
855 |
|
|
}
|
856 |
|
|
if (template_encoding_table[template][slotnum] == L)
|
857 |
|
|
{
|
858 |
|
|
gdb_assert (slotnum == 1);
|
859 |
|
|
slotnum = 2;
|
860 |
|
|
}
|
861 |
|
|
|
862 |
|
|
/* A break instruction has its all its opcode bits cleared except for
|
863 |
|
|
the parameter value. For L+X slot pair we are at the X slot (slot 2) so
|
864 |
|
|
we should not touch the L slot - the upper 41 bits of the parameter. */
|
865 |
|
|
instr_fetched = slotN_contents (bundle, slotnum);
|
866 |
|
|
instr_fetched &= 0x1003ffffc0LL;
|
867 |
|
|
replace_slotN_contents (bundle, instr_fetched, slotnum);
|
868 |
|
|
|
869 |
|
|
return bundle + shadow_slotnum;
|
870 |
|
|
}
|
871 |
|
|
|
872 |
|
|
static CORE_ADDR
|
873 |
|
|
ia64_read_pc (struct regcache *regcache)
|
874 |
|
|
{
|
875 |
|
|
ULONGEST psr_value, pc_value;
|
876 |
|
|
int slot_num;
|
877 |
|
|
|
878 |
|
|
regcache_cooked_read_unsigned (regcache, IA64_PSR_REGNUM, &psr_value);
|
879 |
|
|
regcache_cooked_read_unsigned (regcache, IA64_IP_REGNUM, &pc_value);
|
880 |
|
|
slot_num = (psr_value >> 41) & 3;
|
881 |
|
|
|
882 |
|
|
return pc_value | (slot_num * SLOT_MULTIPLIER);
|
883 |
|
|
}
|
884 |
|
|
|
885 |
|
|
void
|
886 |
|
|
ia64_write_pc (struct regcache *regcache, CORE_ADDR new_pc)
|
887 |
|
|
{
|
888 |
|
|
int slot_num = (int) (new_pc & 0xf) / SLOT_MULTIPLIER;
|
889 |
|
|
ULONGEST psr_value;
|
890 |
|
|
|
891 |
|
|
regcache_cooked_read_unsigned (regcache, IA64_PSR_REGNUM, &psr_value);
|
892 |
|
|
psr_value &= ~(3LL << 41);
|
893 |
|
|
psr_value |= (ULONGEST)(slot_num & 0x3) << 41;
|
894 |
|
|
|
895 |
|
|
new_pc &= ~0xfLL;
|
896 |
|
|
|
897 |
|
|
regcache_cooked_write_unsigned (regcache, IA64_PSR_REGNUM, psr_value);
|
898 |
|
|
regcache_cooked_write_unsigned (regcache, IA64_IP_REGNUM, new_pc);
|
899 |
|
|
}
|
900 |
|
|
|
901 |
|
|
#define IS_NaT_COLLECTION_ADDR(addr) ((((addr) >> 3) & 0x3f) == 0x3f)
|
902 |
|
|
|
903 |
|
|
/* Returns the address of the slot that's NSLOTS slots away from
|
904 |
|
|
the address ADDR. NSLOTS may be positive or negative. */
|
905 |
|
|
static CORE_ADDR
|
906 |
|
|
rse_address_add(CORE_ADDR addr, int nslots)
|
907 |
|
|
{
|
908 |
|
|
CORE_ADDR new_addr;
|
909 |
|
|
int mandatory_nat_slots = nslots / 63;
|
910 |
|
|
int direction = nslots < 0 ? -1 : 1;
|
911 |
|
|
|
912 |
|
|
new_addr = addr + 8 * (nslots + mandatory_nat_slots);
|
913 |
|
|
|
914 |
|
|
if ((new_addr >> 9) != ((addr + 8 * 64 * mandatory_nat_slots) >> 9))
|
915 |
|
|
new_addr += 8 * direction;
|
916 |
|
|
|
917 |
|
|
if (IS_NaT_COLLECTION_ADDR(new_addr))
|
918 |
|
|
new_addr += 8 * direction;
|
919 |
|
|
|
920 |
|
|
return new_addr;
|
921 |
|
|
}
|
922 |
|
|
|
923 |
|
|
static void
|
924 |
|
|
ia64_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
|
925 |
|
|
int regnum, gdb_byte *buf)
|
926 |
|
|
{
|
927 |
|
|
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
928 |
|
|
|
929 |
|
|
if (regnum >= V32_REGNUM && regnum <= V127_REGNUM)
|
930 |
|
|
{
|
931 |
|
|
#ifdef HAVE_LIBUNWIND_IA64_H
|
932 |
|
|
/* First try and use the libunwind special reg accessor, otherwise fallback to
|
933 |
|
|
standard logic. */
|
934 |
|
|
if (!libunwind_is_initialized ()
|
935 |
|
|
|| libunwind_get_reg_special (gdbarch, regcache, regnum, buf) != 0)
|
936 |
|
|
#endif
|
937 |
|
|
{
|
938 |
|
|
/* The fallback position is to assume that r32-r127 are found sequentially
|
939 |
|
|
in memory starting at $bof. This isn't always true, but without libunwind,
|
940 |
|
|
this is the best we can do. */
|
941 |
|
|
ULONGEST cfm;
|
942 |
|
|
ULONGEST bsp;
|
943 |
|
|
CORE_ADDR reg;
|
944 |
|
|
regcache_cooked_read_unsigned (regcache, IA64_BSP_REGNUM, &bsp);
|
945 |
|
|
regcache_cooked_read_unsigned (regcache, IA64_CFM_REGNUM, &cfm);
|
946 |
|
|
|
947 |
|
|
/* The bsp points at the end of the register frame so we
|
948 |
|
|
subtract the size of frame from it to get start of register frame. */
|
949 |
|
|
bsp = rse_address_add (bsp, -(cfm & 0x7f));
|
950 |
|
|
|
951 |
|
|
if ((cfm & 0x7f) > regnum - V32_REGNUM)
|
952 |
|
|
{
|
953 |
|
|
ULONGEST reg_addr = rse_address_add (bsp, (regnum - V32_REGNUM));
|
954 |
|
|
reg = read_memory_integer ((CORE_ADDR)reg_addr, 8, byte_order);
|
955 |
|
|
store_unsigned_integer (buf, register_size (gdbarch, regnum),
|
956 |
|
|
byte_order, reg);
|
957 |
|
|
}
|
958 |
|
|
else
|
959 |
|
|
store_unsigned_integer (buf, register_size (gdbarch, regnum),
|
960 |
|
|
byte_order, 0);
|
961 |
|
|
}
|
962 |
|
|
}
|
963 |
|
|
else if (IA64_NAT0_REGNUM <= regnum && regnum <= IA64_NAT31_REGNUM)
|
964 |
|
|
{
|
965 |
|
|
ULONGEST unatN_val;
|
966 |
|
|
ULONGEST unat;
|
967 |
|
|
regcache_cooked_read_unsigned (regcache, IA64_UNAT_REGNUM, &unat);
|
968 |
|
|
unatN_val = (unat & (1LL << (regnum - IA64_NAT0_REGNUM))) != 0;
|
969 |
|
|
store_unsigned_integer (buf, register_size (gdbarch, regnum),
|
970 |
|
|
byte_order, unatN_val);
|
971 |
|
|
}
|
972 |
|
|
else if (IA64_NAT32_REGNUM <= regnum && regnum <= IA64_NAT127_REGNUM)
|
973 |
|
|
{
|
974 |
|
|
ULONGEST natN_val = 0;
|
975 |
|
|
ULONGEST bsp;
|
976 |
|
|
ULONGEST cfm;
|
977 |
|
|
CORE_ADDR gr_addr = 0;
|
978 |
|
|
regcache_cooked_read_unsigned (regcache, IA64_BSP_REGNUM, &bsp);
|
979 |
|
|
regcache_cooked_read_unsigned (regcache, IA64_CFM_REGNUM, &cfm);
|
980 |
|
|
|
981 |
|
|
/* The bsp points at the end of the register frame so we
|
982 |
|
|
subtract the size of frame from it to get start of register frame. */
|
983 |
|
|
bsp = rse_address_add (bsp, -(cfm & 0x7f));
|
984 |
|
|
|
985 |
|
|
if ((cfm & 0x7f) > regnum - V32_REGNUM)
|
986 |
|
|
gr_addr = rse_address_add (bsp, (regnum - V32_REGNUM));
|
987 |
|
|
|
988 |
|
|
if (gr_addr != 0)
|
989 |
|
|
{
|
990 |
|
|
/* Compute address of nat collection bits. */
|
991 |
|
|
CORE_ADDR nat_addr = gr_addr | 0x1f8;
|
992 |
|
|
CORE_ADDR nat_collection;
|
993 |
|
|
int nat_bit;
|
994 |
|
|
/* If our nat collection address is bigger than bsp, we have to get
|
995 |
|
|
the nat collection from rnat. Otherwise, we fetch the nat
|
996 |
|
|
collection from the computed address. */
|
997 |
|
|
if (nat_addr >= bsp)
|
998 |
|
|
regcache_cooked_read_unsigned (regcache, IA64_RNAT_REGNUM, &nat_collection);
|
999 |
|
|
else
|
1000 |
|
|
nat_collection = read_memory_integer (nat_addr, 8, byte_order);
|
1001 |
|
|
nat_bit = (gr_addr >> 3) & 0x3f;
|
1002 |
|
|
natN_val = (nat_collection >> nat_bit) & 1;
|
1003 |
|
|
}
|
1004 |
|
|
|
1005 |
|
|
store_unsigned_integer (buf, register_size (gdbarch, regnum),
|
1006 |
|
|
byte_order, natN_val);
|
1007 |
|
|
}
|
1008 |
|
|
else if (regnum == VBOF_REGNUM)
|
1009 |
|
|
{
|
1010 |
|
|
/* A virtual register frame start is provided for user convenience.
|
1011 |
|
|
It can be calculated as the bsp - sof (sizeof frame). */
|
1012 |
|
|
ULONGEST bsp, vbsp;
|
1013 |
|
|
ULONGEST cfm;
|
1014 |
|
|
CORE_ADDR reg;
|
1015 |
|
|
regcache_cooked_read_unsigned (regcache, IA64_BSP_REGNUM, &bsp);
|
1016 |
|
|
regcache_cooked_read_unsigned (regcache, IA64_CFM_REGNUM, &cfm);
|
1017 |
|
|
|
1018 |
|
|
/* The bsp points at the end of the register frame so we
|
1019 |
|
|
subtract the size of frame from it to get beginning of frame. */
|
1020 |
|
|
vbsp = rse_address_add (bsp, -(cfm & 0x7f));
|
1021 |
|
|
store_unsigned_integer (buf, register_size (gdbarch, regnum),
|
1022 |
|
|
byte_order, vbsp);
|
1023 |
|
|
}
|
1024 |
|
|
else if (VP0_REGNUM <= regnum && regnum <= VP63_REGNUM)
|
1025 |
|
|
{
|
1026 |
|
|
ULONGEST pr;
|
1027 |
|
|
ULONGEST cfm;
|
1028 |
|
|
ULONGEST prN_val;
|
1029 |
|
|
CORE_ADDR reg;
|
1030 |
|
|
regcache_cooked_read_unsigned (regcache, IA64_PR_REGNUM, &pr);
|
1031 |
|
|
regcache_cooked_read_unsigned (regcache, IA64_CFM_REGNUM, &cfm);
|
1032 |
|
|
|
1033 |
|
|
if (VP16_REGNUM <= regnum && regnum <= VP63_REGNUM)
|
1034 |
|
|
{
|
1035 |
|
|
/* Fetch predicate register rename base from current frame
|
1036 |
|
|
marker for this frame. */
|
1037 |
|
|
int rrb_pr = (cfm >> 32) & 0x3f;
|
1038 |
|
|
|
1039 |
|
|
/* Adjust the register number to account for register rotation. */
|
1040 |
|
|
regnum = VP16_REGNUM
|
1041 |
|
|
+ ((regnum - VP16_REGNUM) + rrb_pr) % 48;
|
1042 |
|
|
}
|
1043 |
|
|
prN_val = (pr & (1LL << (regnum - VP0_REGNUM))) != 0;
|
1044 |
|
|
store_unsigned_integer (buf, register_size (gdbarch, regnum),
|
1045 |
|
|
byte_order, prN_val);
|
1046 |
|
|
}
|
1047 |
|
|
else
|
1048 |
|
|
memset (buf, 0, register_size (gdbarch, regnum));
|
1049 |
|
|
}
|
1050 |
|
|
|
1051 |
|
|
static void
|
1052 |
|
|
ia64_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
|
1053 |
|
|
int regnum, const gdb_byte *buf)
|
1054 |
|
|
{
|
1055 |
|
|
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
1056 |
|
|
|
1057 |
|
|
if (regnum >= V32_REGNUM && regnum <= V127_REGNUM)
|
1058 |
|
|
{
|
1059 |
|
|
ULONGEST bsp;
|
1060 |
|
|
ULONGEST cfm;
|
1061 |
|
|
CORE_ADDR reg;
|
1062 |
|
|
regcache_cooked_read_unsigned (regcache, IA64_BSP_REGNUM, &bsp);
|
1063 |
|
|
regcache_cooked_read_unsigned (regcache, IA64_CFM_REGNUM, &cfm);
|
1064 |
|
|
|
1065 |
|
|
bsp = rse_address_add (bsp, -(cfm & 0x7f));
|
1066 |
|
|
|
1067 |
|
|
if ((cfm & 0x7f) > regnum - V32_REGNUM)
|
1068 |
|
|
{
|
1069 |
|
|
ULONGEST reg_addr = rse_address_add (bsp, (regnum - V32_REGNUM));
|
1070 |
|
|
write_memory (reg_addr, (void *)buf, 8);
|
1071 |
|
|
}
|
1072 |
|
|
}
|
1073 |
|
|
else if (IA64_NAT0_REGNUM <= regnum && regnum <= IA64_NAT31_REGNUM)
|
1074 |
|
|
{
|
1075 |
|
|
ULONGEST unatN_val, unat, unatN_mask;
|
1076 |
|
|
regcache_cooked_read_unsigned (regcache, IA64_UNAT_REGNUM, &unat);
|
1077 |
|
|
unatN_val = extract_unsigned_integer (buf, register_size (gdbarch, regnum),
|
1078 |
|
|
byte_order);
|
1079 |
|
|
unatN_mask = (1LL << (regnum - IA64_NAT0_REGNUM));
|
1080 |
|
|
if (unatN_val == 0)
|
1081 |
|
|
unat &= ~unatN_mask;
|
1082 |
|
|
else if (unatN_val == 1)
|
1083 |
|
|
unat |= unatN_mask;
|
1084 |
|
|
regcache_cooked_write_unsigned (regcache, IA64_UNAT_REGNUM, unat);
|
1085 |
|
|
}
|
1086 |
|
|
else if (IA64_NAT32_REGNUM <= regnum && regnum <= IA64_NAT127_REGNUM)
|
1087 |
|
|
{
|
1088 |
|
|
ULONGEST natN_val;
|
1089 |
|
|
ULONGEST bsp;
|
1090 |
|
|
ULONGEST cfm;
|
1091 |
|
|
CORE_ADDR gr_addr = 0;
|
1092 |
|
|
regcache_cooked_read_unsigned (regcache, IA64_BSP_REGNUM, &bsp);
|
1093 |
|
|
regcache_cooked_read_unsigned (regcache, IA64_CFM_REGNUM, &cfm);
|
1094 |
|
|
|
1095 |
|
|
/* The bsp points at the end of the register frame so we
|
1096 |
|
|
subtract the size of frame from it to get start of register frame. */
|
1097 |
|
|
bsp = rse_address_add (bsp, -(cfm & 0x7f));
|
1098 |
|
|
|
1099 |
|
|
if ((cfm & 0x7f) > regnum - V32_REGNUM)
|
1100 |
|
|
gr_addr = rse_address_add (bsp, (regnum - V32_REGNUM));
|
1101 |
|
|
|
1102 |
|
|
natN_val = extract_unsigned_integer (buf, register_size (gdbarch, regnum),
|
1103 |
|
|
byte_order);
|
1104 |
|
|
|
1105 |
|
|
if (gr_addr != 0 && (natN_val == 0 || natN_val == 1))
|
1106 |
|
|
{
|
1107 |
|
|
/* Compute address of nat collection bits. */
|
1108 |
|
|
CORE_ADDR nat_addr = gr_addr | 0x1f8;
|
1109 |
|
|
CORE_ADDR nat_collection;
|
1110 |
|
|
int natN_bit = (gr_addr >> 3) & 0x3f;
|
1111 |
|
|
ULONGEST natN_mask = (1LL << natN_bit);
|
1112 |
|
|
/* If our nat collection address is bigger than bsp, we have to get
|
1113 |
|
|
the nat collection from rnat. Otherwise, we fetch the nat
|
1114 |
|
|
collection from the computed address. */
|
1115 |
|
|
if (nat_addr >= bsp)
|
1116 |
|
|
{
|
1117 |
|
|
regcache_cooked_read_unsigned (regcache, IA64_RNAT_REGNUM, &nat_collection);
|
1118 |
|
|
if (natN_val)
|
1119 |
|
|
nat_collection |= natN_mask;
|
1120 |
|
|
else
|
1121 |
|
|
nat_collection &= ~natN_mask;
|
1122 |
|
|
regcache_cooked_write_unsigned (regcache, IA64_RNAT_REGNUM, nat_collection);
|
1123 |
|
|
}
|
1124 |
|
|
else
|
1125 |
|
|
{
|
1126 |
|
|
char nat_buf[8];
|
1127 |
|
|
nat_collection = read_memory_integer (nat_addr, 8, byte_order);
|
1128 |
|
|
if (natN_val)
|
1129 |
|
|
nat_collection |= natN_mask;
|
1130 |
|
|
else
|
1131 |
|
|
nat_collection &= ~natN_mask;
|
1132 |
|
|
store_unsigned_integer (nat_buf, register_size (gdbarch, regnum),
|
1133 |
|
|
byte_order, nat_collection);
|
1134 |
|
|
write_memory (nat_addr, nat_buf, 8);
|
1135 |
|
|
}
|
1136 |
|
|
}
|
1137 |
|
|
}
|
1138 |
|
|
else if (VP0_REGNUM <= regnum && regnum <= VP63_REGNUM)
|
1139 |
|
|
{
|
1140 |
|
|
ULONGEST pr;
|
1141 |
|
|
ULONGEST cfm;
|
1142 |
|
|
ULONGEST prN_val;
|
1143 |
|
|
ULONGEST prN_mask;
|
1144 |
|
|
|
1145 |
|
|
regcache_cooked_read_unsigned (regcache, IA64_PR_REGNUM, &pr);
|
1146 |
|
|
regcache_cooked_read_unsigned (regcache, IA64_CFM_REGNUM, &cfm);
|
1147 |
|
|
|
1148 |
|
|
if (VP16_REGNUM <= regnum && regnum <= VP63_REGNUM)
|
1149 |
|
|
{
|
1150 |
|
|
/* Fetch predicate register rename base from current frame
|
1151 |
|
|
marker for this frame. */
|
1152 |
|
|
int rrb_pr = (cfm >> 32) & 0x3f;
|
1153 |
|
|
|
1154 |
|
|
/* Adjust the register number to account for register rotation. */
|
1155 |
|
|
regnum = VP16_REGNUM
|
1156 |
|
|
+ ((regnum - VP16_REGNUM) + rrb_pr) % 48;
|
1157 |
|
|
}
|
1158 |
|
|
prN_val = extract_unsigned_integer (buf, register_size (gdbarch, regnum),
|
1159 |
|
|
byte_order);
|
1160 |
|
|
prN_mask = (1LL << (regnum - VP0_REGNUM));
|
1161 |
|
|
if (prN_val == 0)
|
1162 |
|
|
pr &= ~prN_mask;
|
1163 |
|
|
else if (prN_val == 1)
|
1164 |
|
|
pr |= prN_mask;
|
1165 |
|
|
regcache_cooked_write_unsigned (regcache, IA64_PR_REGNUM, pr);
|
1166 |
|
|
}
|
1167 |
|
|
}
|
1168 |
|
|
|
1169 |
|
|
/* The ia64 needs to convert between various ieee floating-point formats
|
1170 |
|
|
and the special ia64 floating point register format. */
|
1171 |
|
|
|
1172 |
|
|
static int
|
1173 |
|
|
ia64_convert_register_p (struct gdbarch *gdbarch, int regno, struct type *type)
|
1174 |
|
|
{
|
1175 |
|
|
return (regno >= IA64_FR0_REGNUM && regno <= IA64_FR127_REGNUM
|
1176 |
|
|
&& type != ia64_ext_type (gdbarch));
|
1177 |
|
|
}
|
1178 |
|
|
|
1179 |
|
|
static void
|
1180 |
|
|
ia64_register_to_value (struct frame_info *frame, int regnum,
|
1181 |
|
|
struct type *valtype, gdb_byte *out)
|
1182 |
|
|
{
|
1183 |
|
|
struct gdbarch *gdbarch = get_frame_arch (frame);
|
1184 |
|
|
char in[MAX_REGISTER_SIZE];
|
1185 |
|
|
frame_register_read (frame, regnum, in);
|
1186 |
|
|
convert_typed_floating (in, ia64_ext_type (gdbarch), out, valtype);
|
1187 |
|
|
}
|
1188 |
|
|
|
1189 |
|
|
static void
|
1190 |
|
|
ia64_value_to_register (struct frame_info *frame, int regnum,
|
1191 |
|
|
struct type *valtype, const gdb_byte *in)
|
1192 |
|
|
{
|
1193 |
|
|
struct gdbarch *gdbarch = get_frame_arch (frame);
|
1194 |
|
|
char out[MAX_REGISTER_SIZE];
|
1195 |
|
|
convert_typed_floating (in, valtype, out, ia64_ext_type (gdbarch));
|
1196 |
|
|
put_frame_register (frame, regnum, out);
|
1197 |
|
|
}
|
1198 |
|
|
|
1199 |
|
|
|
1200 |
|
|
/* Limit the number of skipped non-prologue instructions since examining
|
1201 |
|
|
of the prologue is expensive. */
|
1202 |
|
|
static int max_skip_non_prologue_insns = 40;
|
1203 |
|
|
|
1204 |
|
|
/* Given PC representing the starting address of a function, and
|
1205 |
|
|
LIM_PC which is the (sloppy) limit to which to scan when looking
|
1206 |
|
|
for a prologue, attempt to further refine this limit by using
|
1207 |
|
|
the line data in the symbol table. If successful, a better guess
|
1208 |
|
|
on where the prologue ends is returned, otherwise the previous
|
1209 |
|
|
value of lim_pc is returned. TRUST_LIMIT is a pointer to a flag
|
1210 |
|
|
which will be set to indicate whether the returned limit may be
|
1211 |
|
|
used with no further scanning in the event that the function is
|
1212 |
|
|
frameless. */
|
1213 |
|
|
|
1214 |
|
|
/* FIXME: cagney/2004-02-14: This function and logic have largely been
|
1215 |
|
|
superseded by skip_prologue_using_sal. */
|
1216 |
|
|
|
1217 |
|
|
static CORE_ADDR
|
1218 |
|
|
refine_prologue_limit (CORE_ADDR pc, CORE_ADDR lim_pc, int *trust_limit)
|
1219 |
|
|
{
|
1220 |
|
|
struct symtab_and_line prologue_sal;
|
1221 |
|
|
CORE_ADDR start_pc = pc;
|
1222 |
|
|
CORE_ADDR end_pc;
|
1223 |
|
|
|
1224 |
|
|
/* The prologue can not possibly go past the function end itself,
|
1225 |
|
|
so we can already adjust LIM_PC accordingly. */
|
1226 |
|
|
if (find_pc_partial_function (pc, NULL, NULL, &end_pc) && end_pc < lim_pc)
|
1227 |
|
|
lim_pc = end_pc;
|
1228 |
|
|
|
1229 |
|
|
/* Start off not trusting the limit. */
|
1230 |
|
|
*trust_limit = 0;
|
1231 |
|
|
|
1232 |
|
|
prologue_sal = find_pc_line (pc, 0);
|
1233 |
|
|
if (prologue_sal.line != 0)
|
1234 |
|
|
{
|
1235 |
|
|
int i;
|
1236 |
|
|
CORE_ADDR addr = prologue_sal.end;
|
1237 |
|
|
|
1238 |
|
|
/* Handle the case in which compiler's optimizer/scheduler
|
1239 |
|
|
has moved instructions into the prologue. We scan ahead
|
1240 |
|
|
in the function looking for address ranges whose corresponding
|
1241 |
|
|
line number is less than or equal to the first one that we
|
1242 |
|
|
found for the function. (It can be less than when the
|
1243 |
|
|
scheduler puts a body instruction before the first prologue
|
1244 |
|
|
instruction.) */
|
1245 |
|
|
for (i = 2 * max_skip_non_prologue_insns;
|
1246 |
|
|
i > 0 && (lim_pc == 0 || addr < lim_pc);
|
1247 |
|
|
i--)
|
1248 |
|
|
{
|
1249 |
|
|
struct symtab_and_line sal;
|
1250 |
|
|
|
1251 |
|
|
sal = find_pc_line (addr, 0);
|
1252 |
|
|
if (sal.line == 0)
|
1253 |
|
|
break;
|
1254 |
|
|
if (sal.line <= prologue_sal.line
|
1255 |
|
|
&& sal.symtab == prologue_sal.symtab)
|
1256 |
|
|
{
|
1257 |
|
|
prologue_sal = sal;
|
1258 |
|
|
}
|
1259 |
|
|
addr = sal.end;
|
1260 |
|
|
}
|
1261 |
|
|
|
1262 |
|
|
if (lim_pc == 0 || prologue_sal.end < lim_pc)
|
1263 |
|
|
{
|
1264 |
|
|
lim_pc = prologue_sal.end;
|
1265 |
|
|
if (start_pc == get_pc_function_start (lim_pc))
|
1266 |
|
|
*trust_limit = 1;
|
1267 |
|
|
}
|
1268 |
|
|
}
|
1269 |
|
|
return lim_pc;
|
1270 |
|
|
}
|
1271 |
|
|
|
1272 |
|
|
#define isScratch(_regnum_) ((_regnum_) == 2 || (_regnum_) == 3 \
|
1273 |
|
|
|| (8 <= (_regnum_) && (_regnum_) <= 11) \
|
1274 |
|
|
|| (14 <= (_regnum_) && (_regnum_) <= 31))
|
1275 |
|
|
#define imm9(_instr_) \
|
1276 |
|
|
( ((((_instr_) & 0x01000000000LL) ? -1 : 0) << 8) \
|
1277 |
|
|
| (((_instr_) & 0x00008000000LL) >> 20) \
|
1278 |
|
|
| (((_instr_) & 0x00000001fc0LL) >> 6))
|
1279 |
|
|
|
1280 |
|
|
/* Allocate and initialize a frame cache. */
|
1281 |
|
|
|
1282 |
|
|
static struct ia64_frame_cache *
|
1283 |
|
|
ia64_alloc_frame_cache (void)
|
1284 |
|
|
{
|
1285 |
|
|
struct ia64_frame_cache *cache;
|
1286 |
|
|
int i;
|
1287 |
|
|
|
1288 |
|
|
cache = FRAME_OBSTACK_ZALLOC (struct ia64_frame_cache);
|
1289 |
|
|
|
1290 |
|
|
/* Base address. */
|
1291 |
|
|
cache->base = 0;
|
1292 |
|
|
cache->pc = 0;
|
1293 |
|
|
cache->cfm = 0;
|
1294 |
|
|
cache->prev_cfm = 0;
|
1295 |
|
|
cache->sof = 0;
|
1296 |
|
|
cache->sol = 0;
|
1297 |
|
|
cache->sor = 0;
|
1298 |
|
|
cache->bsp = 0;
|
1299 |
|
|
cache->fp_reg = 0;
|
1300 |
|
|
cache->frameless = 1;
|
1301 |
|
|
|
1302 |
|
|
for (i = 0; i < NUM_IA64_RAW_REGS; i++)
|
1303 |
|
|
cache->saved_regs[i] = 0;
|
1304 |
|
|
|
1305 |
|
|
return cache;
|
1306 |
|
|
}
|
1307 |
|
|
|
1308 |
|
|
static CORE_ADDR
|
1309 |
|
|
examine_prologue (CORE_ADDR pc, CORE_ADDR lim_pc,
|
1310 |
|
|
struct frame_info *this_frame,
|
1311 |
|
|
struct ia64_frame_cache *cache)
|
1312 |
|
|
{
|
1313 |
|
|
CORE_ADDR next_pc;
|
1314 |
|
|
CORE_ADDR last_prologue_pc = pc;
|
1315 |
|
|
instruction_type it;
|
1316 |
|
|
long long instr;
|
1317 |
|
|
int cfm_reg = 0;
|
1318 |
|
|
int ret_reg = 0;
|
1319 |
|
|
int fp_reg = 0;
|
1320 |
|
|
int unat_save_reg = 0;
|
1321 |
|
|
int pr_save_reg = 0;
|
1322 |
|
|
int mem_stack_frame_size = 0;
|
1323 |
|
|
int spill_reg = 0;
|
1324 |
|
|
CORE_ADDR spill_addr = 0;
|
1325 |
|
|
char instores[8];
|
1326 |
|
|
char infpstores[8];
|
1327 |
|
|
char reg_contents[256];
|
1328 |
|
|
int trust_limit;
|
1329 |
|
|
int frameless = 1;
|
1330 |
|
|
int i;
|
1331 |
|
|
CORE_ADDR addr;
|
1332 |
|
|
char buf[8];
|
1333 |
|
|
CORE_ADDR bof, sor, sol, sof, cfm, rrb_gr;
|
1334 |
|
|
|
1335 |
|
|
memset (instores, 0, sizeof instores);
|
1336 |
|
|
memset (infpstores, 0, sizeof infpstores);
|
1337 |
|
|
memset (reg_contents, 0, sizeof reg_contents);
|
1338 |
|
|
|
1339 |
|
|
if (cache->after_prologue != 0
|
1340 |
|
|
&& cache->after_prologue <= lim_pc)
|
1341 |
|
|
return cache->after_prologue;
|
1342 |
|
|
|
1343 |
|
|
lim_pc = refine_prologue_limit (pc, lim_pc, &trust_limit);
|
1344 |
|
|
next_pc = fetch_instruction (pc, &it, &instr);
|
1345 |
|
|
|
1346 |
|
|
/* We want to check if we have a recognizable function start before we
|
1347 |
|
|
look ahead for a prologue. */
|
1348 |
|
|
if (pc < lim_pc && next_pc
|
1349 |
|
|
&& it == M && ((instr & 0x1ee0000003fLL) == 0x02c00000000LL))
|
1350 |
|
|
{
|
1351 |
|
|
/* alloc - start of a regular function. */
|
1352 |
|
|
int sor = (int) ((instr & 0x00078000000LL) >> 27);
|
1353 |
|
|
int sol = (int) ((instr & 0x00007f00000LL) >> 20);
|
1354 |
|
|
int sof = (int) ((instr & 0x000000fe000LL) >> 13);
|
1355 |
|
|
int rN = (int) ((instr & 0x00000001fc0LL) >> 6);
|
1356 |
|
|
|
1357 |
|
|
/* Verify that the current cfm matches what we think is the
|
1358 |
|
|
function start. If we have somehow jumped within a function,
|
1359 |
|
|
we do not want to interpret the prologue and calculate the
|
1360 |
|
|
addresses of various registers such as the return address.
|
1361 |
|
|
We will instead treat the frame as frameless. */
|
1362 |
|
|
if (!this_frame ||
|
1363 |
|
|
(sof == (cache->cfm & 0x7f) &&
|
1364 |
|
|
sol == ((cache->cfm >> 7) & 0x7f)))
|
1365 |
|
|
frameless = 0;
|
1366 |
|
|
|
1367 |
|
|
cfm_reg = rN;
|
1368 |
|
|
last_prologue_pc = next_pc;
|
1369 |
|
|
pc = next_pc;
|
1370 |
|
|
}
|
1371 |
|
|
else
|
1372 |
|
|
{
|
1373 |
|
|
/* Look for a leaf routine. */
|
1374 |
|
|
if (pc < lim_pc && next_pc
|
1375 |
|
|
&& (it == I || it == M)
|
1376 |
|
|
&& ((instr & 0x1ee00000000LL) == 0x10800000000LL))
|
1377 |
|
|
{
|
1378 |
|
|
/* adds rN = imm14, rM (or mov rN, rM when imm14 is 0) */
|
1379 |
|
|
int imm = (int) ((((instr & 0x01000000000LL) ? -1 : 0) << 13)
|
1380 |
|
|
| ((instr & 0x001f8000000LL) >> 20)
|
1381 |
|
|
| ((instr & 0x000000fe000LL) >> 13));
|
1382 |
|
|
int rM = (int) ((instr & 0x00007f00000LL) >> 20);
|
1383 |
|
|
int rN = (int) ((instr & 0x00000001fc0LL) >> 6);
|
1384 |
|
|
int qp = (int) (instr & 0x0000000003fLL);
|
1385 |
|
|
if (qp == 0 && rN == 2 && imm == 0 && rM == 12 && fp_reg == 0)
|
1386 |
|
|
{
|
1387 |
|
|
/* mov r2, r12 - beginning of leaf routine */
|
1388 |
|
|
fp_reg = rN;
|
1389 |
|
|
last_prologue_pc = next_pc;
|
1390 |
|
|
}
|
1391 |
|
|
}
|
1392 |
|
|
|
1393 |
|
|
/* If we don't recognize a regular function or leaf routine, we are
|
1394 |
|
|
done. */
|
1395 |
|
|
if (!fp_reg)
|
1396 |
|
|
{
|
1397 |
|
|
pc = lim_pc;
|
1398 |
|
|
if (trust_limit)
|
1399 |
|
|
last_prologue_pc = lim_pc;
|
1400 |
|
|
}
|
1401 |
|
|
}
|
1402 |
|
|
|
1403 |
|
|
/* Loop, looking for prologue instructions, keeping track of
|
1404 |
|
|
where preserved registers were spilled. */
|
1405 |
|
|
while (pc < lim_pc)
|
1406 |
|
|
{
|
1407 |
|
|
next_pc = fetch_instruction (pc, &it, &instr);
|
1408 |
|
|
if (next_pc == 0)
|
1409 |
|
|
break;
|
1410 |
|
|
|
1411 |
|
|
if (it == B && ((instr & 0x1e1f800003fLL) != 0x04000000000LL))
|
1412 |
|
|
{
|
1413 |
|
|
/* Exit loop upon hitting a non-nop branch instruction. */
|
1414 |
|
|
if (trust_limit)
|
1415 |
|
|
lim_pc = pc;
|
1416 |
|
|
break;
|
1417 |
|
|
}
|
1418 |
|
|
else if (((instr & 0x3fLL) != 0LL) &&
|
1419 |
|
|
(frameless || ret_reg != 0))
|
1420 |
|
|
{
|
1421 |
|
|
/* Exit loop upon hitting a predicated instruction if
|
1422 |
|
|
we already have the return register or if we are frameless. */
|
1423 |
|
|
if (trust_limit)
|
1424 |
|
|
lim_pc = pc;
|
1425 |
|
|
break;
|
1426 |
|
|
}
|
1427 |
|
|
else if (it == I && ((instr & 0x1eff8000000LL) == 0x00188000000LL))
|
1428 |
|
|
{
|
1429 |
|
|
/* Move from BR */
|
1430 |
|
|
int b2 = (int) ((instr & 0x0000000e000LL) >> 13);
|
1431 |
|
|
int rN = (int) ((instr & 0x00000001fc0LL) >> 6);
|
1432 |
|
|
int qp = (int) (instr & 0x0000000003f);
|
1433 |
|
|
|
1434 |
|
|
if (qp == 0 && b2 == 0 && rN >= 32 && ret_reg == 0)
|
1435 |
|
|
{
|
1436 |
|
|
ret_reg = rN;
|
1437 |
|
|
last_prologue_pc = next_pc;
|
1438 |
|
|
}
|
1439 |
|
|
}
|
1440 |
|
|
else if ((it == I || it == M)
|
1441 |
|
|
&& ((instr & 0x1ee00000000LL) == 0x10800000000LL))
|
1442 |
|
|
{
|
1443 |
|
|
/* adds rN = imm14, rM (or mov rN, rM when imm14 is 0) */
|
1444 |
|
|
int imm = (int) ((((instr & 0x01000000000LL) ? -1 : 0) << 13)
|
1445 |
|
|
| ((instr & 0x001f8000000LL) >> 20)
|
1446 |
|
|
| ((instr & 0x000000fe000LL) >> 13));
|
1447 |
|
|
int rM = (int) ((instr & 0x00007f00000LL) >> 20);
|
1448 |
|
|
int rN = (int) ((instr & 0x00000001fc0LL) >> 6);
|
1449 |
|
|
int qp = (int) (instr & 0x0000000003fLL);
|
1450 |
|
|
|
1451 |
|
|
if (qp == 0 && rN >= 32 && imm == 0 && rM == 12 && fp_reg == 0)
|
1452 |
|
|
{
|
1453 |
|
|
/* mov rN, r12 */
|
1454 |
|
|
fp_reg = rN;
|
1455 |
|
|
last_prologue_pc = next_pc;
|
1456 |
|
|
}
|
1457 |
|
|
else if (qp == 0 && rN == 12 && rM == 12)
|
1458 |
|
|
{
|
1459 |
|
|
/* adds r12, -mem_stack_frame_size, r12 */
|
1460 |
|
|
mem_stack_frame_size -= imm;
|
1461 |
|
|
last_prologue_pc = next_pc;
|
1462 |
|
|
}
|
1463 |
|
|
else if (qp == 0 && rN == 2
|
1464 |
|
|
&& ((rM == fp_reg && fp_reg != 0) || rM == 12))
|
1465 |
|
|
{
|
1466 |
|
|
char buf[MAX_REGISTER_SIZE];
|
1467 |
|
|
CORE_ADDR saved_sp = 0;
|
1468 |
|
|
/* adds r2, spilloffset, rFramePointer
|
1469 |
|
|
or
|
1470 |
|
|
adds r2, spilloffset, r12
|
1471 |
|
|
|
1472 |
|
|
Get ready for stf.spill or st8.spill instructions.
|
1473 |
|
|
The address to start spilling at is loaded into r2.
|
1474 |
|
|
FIXME: Why r2? That's what gcc currently uses; it
|
1475 |
|
|
could well be different for other compilers. */
|
1476 |
|
|
|
1477 |
|
|
/* Hmm... whether or not this will work will depend on
|
1478 |
|
|
where the pc is. If it's still early in the prologue
|
1479 |
|
|
this'll be wrong. FIXME */
|
1480 |
|
|
if (this_frame)
|
1481 |
|
|
{
|
1482 |
|
|
struct gdbarch *gdbarch = get_frame_arch (this_frame);
|
1483 |
|
|
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
1484 |
|
|
get_frame_register (this_frame, sp_regnum, buf);
|
1485 |
|
|
saved_sp = extract_unsigned_integer (buf, 8, byte_order);
|
1486 |
|
|
}
|
1487 |
|
|
spill_addr = saved_sp
|
1488 |
|
|
+ (rM == 12 ? 0 : mem_stack_frame_size)
|
1489 |
|
|
+ imm;
|
1490 |
|
|
spill_reg = rN;
|
1491 |
|
|
last_prologue_pc = next_pc;
|
1492 |
|
|
}
|
1493 |
|
|
else if (qp == 0 && rM >= 32 && rM < 40 && !instores[rM-32] &&
|
1494 |
|
|
rN < 256 && imm == 0)
|
1495 |
|
|
{
|
1496 |
|
|
/* mov rN, rM where rM is an input register */
|
1497 |
|
|
reg_contents[rN] = rM;
|
1498 |
|
|
last_prologue_pc = next_pc;
|
1499 |
|
|
}
|
1500 |
|
|
else if (frameless && qp == 0 && rN == fp_reg && imm == 0 &&
|
1501 |
|
|
rM == 2)
|
1502 |
|
|
{
|
1503 |
|
|
/* mov r12, r2 */
|
1504 |
|
|
last_prologue_pc = next_pc;
|
1505 |
|
|
break;
|
1506 |
|
|
}
|
1507 |
|
|
}
|
1508 |
|
|
else if (it == M
|
1509 |
|
|
&& ( ((instr & 0x1efc0000000LL) == 0x0eec0000000LL)
|
1510 |
|
|
|| ((instr & 0x1ffc8000000LL) == 0x0cec0000000LL) ))
|
1511 |
|
|
{
|
1512 |
|
|
/* stf.spill [rN] = fM, imm9
|
1513 |
|
|
or
|
1514 |
|
|
stf.spill [rN] = fM */
|
1515 |
|
|
|
1516 |
|
|
int imm = imm9(instr);
|
1517 |
|
|
int rN = (int) ((instr & 0x00007f00000LL) >> 20);
|
1518 |
|
|
int fM = (int) ((instr & 0x000000fe000LL) >> 13);
|
1519 |
|
|
int qp = (int) (instr & 0x0000000003fLL);
|
1520 |
|
|
if (qp == 0 && rN == spill_reg && spill_addr != 0
|
1521 |
|
|
&& ((2 <= fM && fM <= 5) || (16 <= fM && fM <= 31)))
|
1522 |
|
|
{
|
1523 |
|
|
cache->saved_regs[IA64_FR0_REGNUM + fM] = spill_addr;
|
1524 |
|
|
|
1525 |
|
|
if ((instr & 0x1efc0000000LL) == 0x0eec0000000LL)
|
1526 |
|
|
spill_addr += imm;
|
1527 |
|
|
else
|
1528 |
|
|
spill_addr = 0; /* last one; must be done */
|
1529 |
|
|
last_prologue_pc = next_pc;
|
1530 |
|
|
}
|
1531 |
|
|
}
|
1532 |
|
|
else if ((it == M && ((instr & 0x1eff8000000LL) == 0x02110000000LL))
|
1533 |
|
|
|| (it == I && ((instr & 0x1eff8000000LL) == 0x00050000000LL)) )
|
1534 |
|
|
{
|
1535 |
|
|
/* mov.m rN = arM
|
1536 |
|
|
or
|
1537 |
|
|
mov.i rN = arM */
|
1538 |
|
|
|
1539 |
|
|
int arM = (int) ((instr & 0x00007f00000LL) >> 20);
|
1540 |
|
|
int rN = (int) ((instr & 0x00000001fc0LL) >> 6);
|
1541 |
|
|
int qp = (int) (instr & 0x0000000003fLL);
|
1542 |
|
|
if (qp == 0 && isScratch (rN) && arM == 36 /* ar.unat */)
|
1543 |
|
|
{
|
1544 |
|
|
/* We have something like "mov.m r3 = ar.unat". Remember the
|
1545 |
|
|
r3 (or whatever) and watch for a store of this register... */
|
1546 |
|
|
unat_save_reg = rN;
|
1547 |
|
|
last_prologue_pc = next_pc;
|
1548 |
|
|
}
|
1549 |
|
|
}
|
1550 |
|
|
else if (it == I && ((instr & 0x1eff8000000LL) == 0x00198000000LL))
|
1551 |
|
|
{
|
1552 |
|
|
/* mov rN = pr */
|
1553 |
|
|
int rN = (int) ((instr & 0x00000001fc0LL) >> 6);
|
1554 |
|
|
int qp = (int) (instr & 0x0000000003fLL);
|
1555 |
|
|
if (qp == 0 && isScratch (rN))
|
1556 |
|
|
{
|
1557 |
|
|
pr_save_reg = rN;
|
1558 |
|
|
last_prologue_pc = next_pc;
|
1559 |
|
|
}
|
1560 |
|
|
}
|
1561 |
|
|
else if (it == M
|
1562 |
|
|
&& ( ((instr & 0x1ffc8000000LL) == 0x08cc0000000LL)
|
1563 |
|
|
|| ((instr & 0x1efc0000000LL) == 0x0acc0000000LL)))
|
1564 |
|
|
{
|
1565 |
|
|
/* st8 [rN] = rM
|
1566 |
|
|
or
|
1567 |
|
|
st8 [rN] = rM, imm9 */
|
1568 |
|
|
int rN = (int) ((instr & 0x00007f00000LL) >> 20);
|
1569 |
|
|
int rM = (int) ((instr & 0x000000fe000LL) >> 13);
|
1570 |
|
|
int qp = (int) (instr & 0x0000000003fLL);
|
1571 |
|
|
int indirect = rM < 256 ? reg_contents[rM] : 0;
|
1572 |
|
|
if (qp == 0 && rN == spill_reg && spill_addr != 0
|
1573 |
|
|
&& (rM == unat_save_reg || rM == pr_save_reg))
|
1574 |
|
|
{
|
1575 |
|
|
/* We've found a spill of either the UNAT register or the PR
|
1576 |
|
|
register. (Well, not exactly; what we've actually found is
|
1577 |
|
|
a spill of the register that UNAT or PR was moved to).
|
1578 |
|
|
Record that fact and move on... */
|
1579 |
|
|
if (rM == unat_save_reg)
|
1580 |
|
|
{
|
1581 |
|
|
/* Track UNAT register */
|
1582 |
|
|
cache->saved_regs[IA64_UNAT_REGNUM] = spill_addr;
|
1583 |
|
|
unat_save_reg = 0;
|
1584 |
|
|
}
|
1585 |
|
|
else
|
1586 |
|
|
{
|
1587 |
|
|
/* Track PR register */
|
1588 |
|
|
cache->saved_regs[IA64_PR_REGNUM] = spill_addr;
|
1589 |
|
|
pr_save_reg = 0;
|
1590 |
|
|
}
|
1591 |
|
|
if ((instr & 0x1efc0000000LL) == 0x0acc0000000LL)
|
1592 |
|
|
/* st8 [rN] = rM, imm9 */
|
1593 |
|
|
spill_addr += imm9(instr);
|
1594 |
|
|
else
|
1595 |
|
|
spill_addr = 0; /* must be done spilling */
|
1596 |
|
|
last_prologue_pc = next_pc;
|
1597 |
|
|
}
|
1598 |
|
|
else if (qp == 0 && 32 <= rM && rM < 40 && !instores[rM-32])
|
1599 |
|
|
{
|
1600 |
|
|
/* Allow up to one store of each input register. */
|
1601 |
|
|
instores[rM-32] = 1;
|
1602 |
|
|
last_prologue_pc = next_pc;
|
1603 |
|
|
}
|
1604 |
|
|
else if (qp == 0 && 32 <= indirect && indirect < 40 &&
|
1605 |
|
|
!instores[indirect-32])
|
1606 |
|
|
{
|
1607 |
|
|
/* Allow an indirect store of an input register. */
|
1608 |
|
|
instores[indirect-32] = 1;
|
1609 |
|
|
last_prologue_pc = next_pc;
|
1610 |
|
|
}
|
1611 |
|
|
}
|
1612 |
|
|
else if (it == M && ((instr & 0x1ff08000000LL) == 0x08c00000000LL))
|
1613 |
|
|
{
|
1614 |
|
|
/* One of
|
1615 |
|
|
st1 [rN] = rM
|
1616 |
|
|
st2 [rN] = rM
|
1617 |
|
|
st4 [rN] = rM
|
1618 |
|
|
st8 [rN] = rM
|
1619 |
|
|
Note that the st8 case is handled in the clause above.
|
1620 |
|
|
|
1621 |
|
|
Advance over stores of input registers. One store per input
|
1622 |
|
|
register is permitted. */
|
1623 |
|
|
int rM = (int) ((instr & 0x000000fe000LL) >> 13);
|
1624 |
|
|
int qp = (int) (instr & 0x0000000003fLL);
|
1625 |
|
|
int indirect = rM < 256 ? reg_contents[rM] : 0;
|
1626 |
|
|
if (qp == 0 && 32 <= rM && rM < 40 && !instores[rM-32])
|
1627 |
|
|
{
|
1628 |
|
|
instores[rM-32] = 1;
|
1629 |
|
|
last_prologue_pc = next_pc;
|
1630 |
|
|
}
|
1631 |
|
|
else if (qp == 0 && 32 <= indirect && indirect < 40 &&
|
1632 |
|
|
!instores[indirect-32])
|
1633 |
|
|
{
|
1634 |
|
|
/* Allow an indirect store of an input register. */
|
1635 |
|
|
instores[indirect-32] = 1;
|
1636 |
|
|
last_prologue_pc = next_pc;
|
1637 |
|
|
}
|
1638 |
|
|
}
|
1639 |
|
|
else if (it == M && ((instr & 0x1ff88000000LL) == 0x0cc80000000LL))
|
1640 |
|
|
{
|
1641 |
|
|
/* Either
|
1642 |
|
|
stfs [rN] = fM
|
1643 |
|
|
or
|
1644 |
|
|
stfd [rN] = fM
|
1645 |
|
|
|
1646 |
|
|
Advance over stores of floating point input registers. Again
|
1647 |
|
|
one store per register is permitted */
|
1648 |
|
|
int fM = (int) ((instr & 0x000000fe000LL) >> 13);
|
1649 |
|
|
int qp = (int) (instr & 0x0000000003fLL);
|
1650 |
|
|
if (qp == 0 && 8 <= fM && fM < 16 && !infpstores[fM - 8])
|
1651 |
|
|
{
|
1652 |
|
|
infpstores[fM-8] = 1;
|
1653 |
|
|
last_prologue_pc = next_pc;
|
1654 |
|
|
}
|
1655 |
|
|
}
|
1656 |
|
|
else if (it == M
|
1657 |
|
|
&& ( ((instr & 0x1ffc8000000LL) == 0x08ec0000000LL)
|
1658 |
|
|
|| ((instr & 0x1efc0000000LL) == 0x0aec0000000LL)))
|
1659 |
|
|
{
|
1660 |
|
|
/* st8.spill [rN] = rM
|
1661 |
|
|
or
|
1662 |
|
|
st8.spill [rN] = rM, imm9 */
|
1663 |
|
|
int rN = (int) ((instr & 0x00007f00000LL) >> 20);
|
1664 |
|
|
int rM = (int) ((instr & 0x000000fe000LL) >> 13);
|
1665 |
|
|
int qp = (int) (instr & 0x0000000003fLL);
|
1666 |
|
|
if (qp == 0 && rN == spill_reg && 4 <= rM && rM <= 7)
|
1667 |
|
|
{
|
1668 |
|
|
/* We've found a spill of one of the preserved general purpose
|
1669 |
|
|
regs. Record the spill address and advance the spill
|
1670 |
|
|
register if appropriate. */
|
1671 |
|
|
cache->saved_regs[IA64_GR0_REGNUM + rM] = spill_addr;
|
1672 |
|
|
if ((instr & 0x1efc0000000LL) == 0x0aec0000000LL)
|
1673 |
|
|
/* st8.spill [rN] = rM, imm9 */
|
1674 |
|
|
spill_addr += imm9(instr);
|
1675 |
|
|
else
|
1676 |
|
|
spill_addr = 0; /* Done spilling */
|
1677 |
|
|
last_prologue_pc = next_pc;
|
1678 |
|
|
}
|
1679 |
|
|
}
|
1680 |
|
|
|
1681 |
|
|
pc = next_pc;
|
1682 |
|
|
}
|
1683 |
|
|
|
1684 |
|
|
/* If not frameless and we aren't called by skip_prologue, then we need
|
1685 |
|
|
to calculate registers for the previous frame which will be needed
|
1686 |
|
|
later. */
|
1687 |
|
|
|
1688 |
|
|
if (!frameless && this_frame)
|
1689 |
|
|
{
|
1690 |
|
|
struct gdbarch *gdbarch = get_frame_arch (this_frame);
|
1691 |
|
|
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
1692 |
|
|
|
1693 |
|
|
/* Extract the size of the rotating portion of the stack
|
1694 |
|
|
frame and the register rename base from the current
|
1695 |
|
|
frame marker. */
|
1696 |
|
|
cfm = cache->cfm;
|
1697 |
|
|
sor = cache->sor;
|
1698 |
|
|
sof = cache->sof;
|
1699 |
|
|
sol = cache->sol;
|
1700 |
|
|
rrb_gr = (cfm >> 18) & 0x7f;
|
1701 |
|
|
|
1702 |
|
|
/* Find the bof (beginning of frame). */
|
1703 |
|
|
bof = rse_address_add (cache->bsp, -sof);
|
1704 |
|
|
|
1705 |
|
|
for (i = 0, addr = bof;
|
1706 |
|
|
i < sof;
|
1707 |
|
|
i++, addr += 8)
|
1708 |
|
|
{
|
1709 |
|
|
if (IS_NaT_COLLECTION_ADDR (addr))
|
1710 |
|
|
{
|
1711 |
|
|
addr += 8;
|
1712 |
|
|
}
|
1713 |
|
|
if (i+32 == cfm_reg)
|
1714 |
|
|
cache->saved_regs[IA64_CFM_REGNUM] = addr;
|
1715 |
|
|
if (i+32 == ret_reg)
|
1716 |
|
|
cache->saved_regs[IA64_VRAP_REGNUM] = addr;
|
1717 |
|
|
if (i+32 == fp_reg)
|
1718 |
|
|
cache->saved_regs[IA64_VFP_REGNUM] = addr;
|
1719 |
|
|
}
|
1720 |
|
|
|
1721 |
|
|
/* For the previous argument registers we require the previous bof.
|
1722 |
|
|
If we can't find the previous cfm, then we can do nothing. */
|
1723 |
|
|
cfm = 0;
|
1724 |
|
|
if (cache->saved_regs[IA64_CFM_REGNUM] != 0)
|
1725 |
|
|
{
|
1726 |
|
|
cfm = read_memory_integer (cache->saved_regs[IA64_CFM_REGNUM],
|
1727 |
|
|
8, byte_order);
|
1728 |
|
|
}
|
1729 |
|
|
else if (cfm_reg != 0)
|
1730 |
|
|
{
|
1731 |
|
|
get_frame_register (this_frame, cfm_reg, buf);
|
1732 |
|
|
cfm = extract_unsigned_integer (buf, 8, byte_order);
|
1733 |
|
|
}
|
1734 |
|
|
cache->prev_cfm = cfm;
|
1735 |
|
|
|
1736 |
|
|
if (cfm != 0)
|
1737 |
|
|
{
|
1738 |
|
|
sor = ((cfm >> 14) & 0xf) * 8;
|
1739 |
|
|
sof = (cfm & 0x7f);
|
1740 |
|
|
sol = (cfm >> 7) & 0x7f;
|
1741 |
|
|
rrb_gr = (cfm >> 18) & 0x7f;
|
1742 |
|
|
|
1743 |
|
|
/* The previous bof only requires subtraction of the sol (size of
|
1744 |
|
|
locals) due to the overlap between output and input of
|
1745 |
|
|
subsequent frames. */
|
1746 |
|
|
bof = rse_address_add (bof, -sol);
|
1747 |
|
|
|
1748 |
|
|
for (i = 0, addr = bof;
|
1749 |
|
|
i < sof;
|
1750 |
|
|
i++, addr += 8)
|
1751 |
|
|
{
|
1752 |
|
|
if (IS_NaT_COLLECTION_ADDR (addr))
|
1753 |
|
|
{
|
1754 |
|
|
addr += 8;
|
1755 |
|
|
}
|
1756 |
|
|
if (i < sor)
|
1757 |
|
|
cache->saved_regs[IA64_GR32_REGNUM + ((i + (sor - rrb_gr)) % sor)]
|
1758 |
|
|
= addr;
|
1759 |
|
|
else
|
1760 |
|
|
cache->saved_regs[IA64_GR32_REGNUM + i] = addr;
|
1761 |
|
|
}
|
1762 |
|
|
|
1763 |
|
|
}
|
1764 |
|
|
}
|
1765 |
|
|
|
1766 |
|
|
/* Try and trust the lim_pc value whenever possible. */
|
1767 |
|
|
if (trust_limit && lim_pc >= last_prologue_pc)
|
1768 |
|
|
last_prologue_pc = lim_pc;
|
1769 |
|
|
|
1770 |
|
|
cache->frameless = frameless;
|
1771 |
|
|
cache->after_prologue = last_prologue_pc;
|
1772 |
|
|
cache->mem_stack_frame_size = mem_stack_frame_size;
|
1773 |
|
|
cache->fp_reg = fp_reg;
|
1774 |
|
|
|
1775 |
|
|
return last_prologue_pc;
|
1776 |
|
|
}
|
1777 |
|
|
|
1778 |
|
|
CORE_ADDR
|
1779 |
|
|
ia64_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
|
1780 |
|
|
{
|
1781 |
|
|
struct ia64_frame_cache cache;
|
1782 |
|
|
cache.base = 0;
|
1783 |
|
|
cache.after_prologue = 0;
|
1784 |
|
|
cache.cfm = 0;
|
1785 |
|
|
cache.bsp = 0;
|
1786 |
|
|
|
1787 |
|
|
/* Call examine_prologue with - as third argument since we don't have a next frame pointer to send. */
|
1788 |
|
|
return examine_prologue (pc, pc+1024, 0, &cache);
|
1789 |
|
|
}
|
1790 |
|
|
|
1791 |
|
|
|
1792 |
|
|
/* Normal frames. */
|
1793 |
|
|
|
1794 |
|
|
static struct ia64_frame_cache *
|
1795 |
|
|
ia64_frame_cache (struct frame_info *this_frame, void **this_cache)
|
1796 |
|
|
{
|
1797 |
|
|
struct gdbarch *gdbarch = get_frame_arch (this_frame);
|
1798 |
|
|
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
1799 |
|
|
struct ia64_frame_cache *cache;
|
1800 |
|
|
char buf[8];
|
1801 |
|
|
CORE_ADDR cfm, sof, sol, bsp, psr;
|
1802 |
|
|
int i;
|
1803 |
|
|
|
1804 |
|
|
if (*this_cache)
|
1805 |
|
|
return *this_cache;
|
1806 |
|
|
|
1807 |
|
|
cache = ia64_alloc_frame_cache ();
|
1808 |
|
|
*this_cache = cache;
|
1809 |
|
|
|
1810 |
|
|
get_frame_register (this_frame, sp_regnum, buf);
|
1811 |
|
|
cache->saved_sp = extract_unsigned_integer (buf, 8, byte_order);
|
1812 |
|
|
|
1813 |
|
|
/* We always want the bsp to point to the end of frame.
|
1814 |
|
|
This way, we can always get the beginning of frame (bof)
|
1815 |
|
|
by subtracting frame size. */
|
1816 |
|
|
get_frame_register (this_frame, IA64_BSP_REGNUM, buf);
|
1817 |
|
|
cache->bsp = extract_unsigned_integer (buf, 8, byte_order);
|
1818 |
|
|
|
1819 |
|
|
get_frame_register (this_frame, IA64_PSR_REGNUM, buf);
|
1820 |
|
|
psr = extract_unsigned_integer (buf, 8, byte_order);
|
1821 |
|
|
|
1822 |
|
|
get_frame_register (this_frame, IA64_CFM_REGNUM, buf);
|
1823 |
|
|
cfm = extract_unsigned_integer (buf, 8, byte_order);
|
1824 |
|
|
|
1825 |
|
|
cache->sof = (cfm & 0x7f);
|
1826 |
|
|
cache->sol = (cfm >> 7) & 0x7f;
|
1827 |
|
|
cache->sor = ((cfm >> 14) & 0xf) * 8;
|
1828 |
|
|
|
1829 |
|
|
cache->cfm = cfm;
|
1830 |
|
|
|
1831 |
|
|
cache->pc = get_frame_func (this_frame);
|
1832 |
|
|
|
1833 |
|
|
if (cache->pc != 0)
|
1834 |
|
|
examine_prologue (cache->pc, get_frame_pc (this_frame), this_frame, cache);
|
1835 |
|
|
|
1836 |
|
|
cache->base = cache->saved_sp + cache->mem_stack_frame_size;
|
1837 |
|
|
|
1838 |
|
|
return cache;
|
1839 |
|
|
}
|
1840 |
|
|
|
1841 |
|
|
static void
|
1842 |
|
|
ia64_frame_this_id (struct frame_info *this_frame, void **this_cache,
|
1843 |
|
|
struct frame_id *this_id)
|
1844 |
|
|
{
|
1845 |
|
|
struct gdbarch *gdbarch = get_frame_arch (this_frame);
|
1846 |
|
|
struct ia64_frame_cache *cache =
|
1847 |
|
|
ia64_frame_cache (this_frame, this_cache);
|
1848 |
|
|
|
1849 |
|
|
/* If outermost frame, mark with null frame id. */
|
1850 |
|
|
if (cache->base != 0)
|
1851 |
|
|
(*this_id) = frame_id_build_special (cache->base, cache->pc, cache->bsp);
|
1852 |
|
|
if (gdbarch_debug >= 1)
|
1853 |
|
|
fprintf_unfiltered (gdb_stdlog,
|
1854 |
|
|
"regular frame id: code %s, stack %s, special %s, this_frame %s\n",
|
1855 |
|
|
paddress (gdbarch, this_id->code_addr),
|
1856 |
|
|
paddress (gdbarch, this_id->stack_addr),
|
1857 |
|
|
paddress (gdbarch, cache->bsp),
|
1858 |
|
|
host_address_to_string (this_frame));
|
1859 |
|
|
}
|
1860 |
|
|
|
1861 |
|
|
static struct value *
|
1862 |
|
|
ia64_frame_prev_register (struct frame_info *this_frame, void **this_cache,
|
1863 |
|
|
int regnum)
|
1864 |
|
|
{
|
1865 |
|
|
struct gdbarch *gdbarch = get_frame_arch (this_frame);
|
1866 |
|
|
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
1867 |
|
|
struct ia64_frame_cache *cache = ia64_frame_cache (this_frame, this_cache);
|
1868 |
|
|
char buf[8];
|
1869 |
|
|
|
1870 |
|
|
gdb_assert (regnum >= 0);
|
1871 |
|
|
|
1872 |
|
|
if (!target_has_registers)
|
1873 |
|
|
error (_("No registers."));
|
1874 |
|
|
|
1875 |
|
|
if (regnum == gdbarch_sp_regnum (gdbarch))
|
1876 |
|
|
return frame_unwind_got_constant (this_frame, regnum, cache->base);
|
1877 |
|
|
|
1878 |
|
|
else if (regnum == IA64_BSP_REGNUM)
|
1879 |
|
|
{
|
1880 |
|
|
struct value *val;
|
1881 |
|
|
CORE_ADDR prev_cfm, bsp, prev_bsp;
|
1882 |
|
|
|
1883 |
|
|
/* We want to calculate the previous bsp as the end of the previous
|
1884 |
|
|
register stack frame. This corresponds to what the hardware bsp
|
1885 |
|
|
register will be if we pop the frame back which is why we might
|
1886 |
|
|
have been called. We know the beginning of the current frame is
|
1887 |
|
|
cache->bsp - cache->sof. This value in the previous frame points
|
1888 |
|
|
to the start of the output registers. We can calculate the end of
|
1889 |
|
|
that frame by adding the size of output:
|
1890 |
|
|
(sof (size of frame) - sol (size of locals)). */
|
1891 |
|
|
val = ia64_frame_prev_register (this_frame, this_cache, IA64_CFM_REGNUM);
|
1892 |
|
|
prev_cfm = extract_unsigned_integer (value_contents_all (val),
|
1893 |
|
|
8, byte_order);
|
1894 |
|
|
bsp = rse_address_add (cache->bsp, -(cache->sof));
|
1895 |
|
|
prev_bsp =
|
1896 |
|
|
rse_address_add (bsp, (prev_cfm & 0x7f) - ((prev_cfm >> 7) & 0x7f));
|
1897 |
|
|
|
1898 |
|
|
return frame_unwind_got_constant (this_frame, regnum, prev_bsp);
|
1899 |
|
|
}
|
1900 |
|
|
|
1901 |
|
|
else if (regnum == IA64_CFM_REGNUM)
|
1902 |
|
|
{
|
1903 |
|
|
CORE_ADDR addr = cache->saved_regs[IA64_CFM_REGNUM];
|
1904 |
|
|
|
1905 |
|
|
if (addr != 0)
|
1906 |
|
|
return frame_unwind_got_memory (this_frame, regnum, addr);
|
1907 |
|
|
|
1908 |
|
|
if (cache->prev_cfm)
|
1909 |
|
|
return frame_unwind_got_constant (this_frame, regnum, cache->prev_cfm);
|
1910 |
|
|
|
1911 |
|
|
if (cache->frameless)
|
1912 |
|
|
return frame_unwind_got_register (this_frame, IA64_PFS_REGNUM,
|
1913 |
|
|
IA64_PFS_REGNUM);
|
1914 |
|
|
return frame_unwind_got_register (this_frame, regnum, 0);
|
1915 |
|
|
}
|
1916 |
|
|
|
1917 |
|
|
else if (regnum == IA64_VFP_REGNUM)
|
1918 |
|
|
{
|
1919 |
|
|
/* If the function in question uses an automatic register (r32-r127)
|
1920 |
|
|
for the frame pointer, it'll be found by ia64_find_saved_register()
|
1921 |
|
|
above. If the function lacks one of these frame pointers, we can
|
1922 |
|
|
still provide a value since we know the size of the frame. */
|
1923 |
|
|
return frame_unwind_got_constant (this_frame, regnum, cache->base);
|
1924 |
|
|
}
|
1925 |
|
|
|
1926 |
|
|
else if (VP0_REGNUM <= regnum && regnum <= VP63_REGNUM)
|
1927 |
|
|
{
|
1928 |
|
|
struct value *pr_val;
|
1929 |
|
|
ULONGEST prN;
|
1930 |
|
|
|
1931 |
|
|
pr_val = ia64_frame_prev_register (this_frame, this_cache,
|
1932 |
|
|
IA64_PR_REGNUM);
|
1933 |
|
|
if (VP16_REGNUM <= regnum && regnum <= VP63_REGNUM)
|
1934 |
|
|
{
|
1935 |
|
|
/* Fetch predicate register rename base from current frame
|
1936 |
|
|
marker for this frame. */
|
1937 |
|
|
int rrb_pr = (cache->cfm >> 32) & 0x3f;
|
1938 |
|
|
|
1939 |
|
|
/* Adjust the register number to account for register rotation. */
|
1940 |
|
|
regnum = VP16_REGNUM + ((regnum - VP16_REGNUM) + rrb_pr) % 48;
|
1941 |
|
|
}
|
1942 |
|
|
prN = extract_bit_field (value_contents_all (pr_val),
|
1943 |
|
|
regnum - VP0_REGNUM, 1);
|
1944 |
|
|
return frame_unwind_got_constant (this_frame, regnum, prN);
|
1945 |
|
|
}
|
1946 |
|
|
|
1947 |
|
|
else if (IA64_NAT0_REGNUM <= regnum && regnum <= IA64_NAT31_REGNUM)
|
1948 |
|
|
{
|
1949 |
|
|
struct value *unat_val;
|
1950 |
|
|
ULONGEST unatN;
|
1951 |
|
|
unat_val = ia64_frame_prev_register (this_frame, this_cache,
|
1952 |
|
|
IA64_UNAT_REGNUM);
|
1953 |
|
|
unatN = extract_bit_field (value_contents_all (unat_val),
|
1954 |
|
|
regnum - IA64_NAT0_REGNUM, 1);
|
1955 |
|
|
return frame_unwind_got_constant (this_frame, regnum, unatN);
|
1956 |
|
|
}
|
1957 |
|
|
|
1958 |
|
|
else if (IA64_NAT32_REGNUM <= regnum && regnum <= IA64_NAT127_REGNUM)
|
1959 |
|
|
{
|
1960 |
|
|
int natval = 0;
|
1961 |
|
|
/* Find address of general register corresponding to nat bit we're
|
1962 |
|
|
interested in. */
|
1963 |
|
|
CORE_ADDR gr_addr;
|
1964 |
|
|
|
1965 |
|
|
gr_addr = cache->saved_regs[regnum - IA64_NAT0_REGNUM + IA64_GR0_REGNUM];
|
1966 |
|
|
|
1967 |
|
|
if (gr_addr != 0)
|
1968 |
|
|
{
|
1969 |
|
|
/* Compute address of nat collection bits. */
|
1970 |
|
|
CORE_ADDR nat_addr = gr_addr | 0x1f8;
|
1971 |
|
|
CORE_ADDR bsp;
|
1972 |
|
|
CORE_ADDR nat_collection;
|
1973 |
|
|
int nat_bit;
|
1974 |
|
|
|
1975 |
|
|
/* If our nat collection address is bigger than bsp, we have to get
|
1976 |
|
|
the nat collection from rnat. Otherwise, we fetch the nat
|
1977 |
|
|
collection from the computed address. */
|
1978 |
|
|
get_frame_register (this_frame, IA64_BSP_REGNUM, buf);
|
1979 |
|
|
bsp = extract_unsigned_integer (buf, 8, byte_order);
|
1980 |
|
|
if (nat_addr >= bsp)
|
1981 |
|
|
{
|
1982 |
|
|
get_frame_register (this_frame, IA64_RNAT_REGNUM, buf);
|
1983 |
|
|
nat_collection = extract_unsigned_integer (buf, 8, byte_order);
|
1984 |
|
|
}
|
1985 |
|
|
else
|
1986 |
|
|
nat_collection = read_memory_integer (nat_addr, 8, byte_order);
|
1987 |
|
|
nat_bit = (gr_addr >> 3) & 0x3f;
|
1988 |
|
|
natval = (nat_collection >> nat_bit) & 1;
|
1989 |
|
|
}
|
1990 |
|
|
|
1991 |
|
|
return frame_unwind_got_constant (this_frame, regnum, natval);
|
1992 |
|
|
}
|
1993 |
|
|
|
1994 |
|
|
else if (regnum == IA64_IP_REGNUM)
|
1995 |
|
|
{
|
1996 |
|
|
CORE_ADDR pc = 0;
|
1997 |
|
|
CORE_ADDR addr = cache->saved_regs[IA64_VRAP_REGNUM];
|
1998 |
|
|
|
1999 |
|
|
if (addr != 0)
|
2000 |
|
|
{
|
2001 |
|
|
read_memory (addr, buf, register_size (gdbarch, IA64_IP_REGNUM));
|
2002 |
|
|
pc = extract_unsigned_integer (buf, 8, byte_order);
|
2003 |
|
|
}
|
2004 |
|
|
else if (cache->frameless)
|
2005 |
|
|
{
|
2006 |
|
|
get_frame_register (this_frame, IA64_BR0_REGNUM, buf);
|
2007 |
|
|
pc = extract_unsigned_integer (buf, 8, byte_order);
|
2008 |
|
|
}
|
2009 |
|
|
pc &= ~0xf;
|
2010 |
|
|
return frame_unwind_got_constant (this_frame, regnum, pc);
|
2011 |
|
|
}
|
2012 |
|
|
|
2013 |
|
|
else if (regnum == IA64_PSR_REGNUM)
|
2014 |
|
|
{
|
2015 |
|
|
/* We don't know how to get the complete previous PSR, but we need it
|
2016 |
|
|
for the slot information when we unwind the pc (pc is formed of IP
|
2017 |
|
|
register plus slot information from PSR). To get the previous
|
2018 |
|
|
slot information, we mask it off the return address. */
|
2019 |
|
|
ULONGEST slot_num = 0;
|
2020 |
|
|
CORE_ADDR pc = 0;
|
2021 |
|
|
CORE_ADDR psr = 0;
|
2022 |
|
|
CORE_ADDR addr = cache->saved_regs[IA64_VRAP_REGNUM];
|
2023 |
|
|
|
2024 |
|
|
get_frame_register (this_frame, IA64_PSR_REGNUM, buf);
|
2025 |
|
|
psr = extract_unsigned_integer (buf, 8, byte_order);
|
2026 |
|
|
|
2027 |
|
|
if (addr != 0)
|
2028 |
|
|
{
|
2029 |
|
|
read_memory (addr, buf, register_size (gdbarch, IA64_IP_REGNUM));
|
2030 |
|
|
pc = extract_unsigned_integer (buf, 8, byte_order);
|
2031 |
|
|
}
|
2032 |
|
|
else if (cache->frameless)
|
2033 |
|
|
{
|
2034 |
|
|
get_frame_register (this_frame, IA64_BR0_REGNUM, buf);
|
2035 |
|
|
pc = extract_unsigned_integer (buf, 8, byte_order);
|
2036 |
|
|
}
|
2037 |
|
|
psr &= ~(3LL << 41);
|
2038 |
|
|
slot_num = pc & 0x3LL;
|
2039 |
|
|
psr |= (CORE_ADDR)slot_num << 41;
|
2040 |
|
|
return frame_unwind_got_constant (this_frame, regnum, psr);
|
2041 |
|
|
}
|
2042 |
|
|
|
2043 |
|
|
else if (regnum == IA64_BR0_REGNUM)
|
2044 |
|
|
{
|
2045 |
|
|
CORE_ADDR addr = cache->saved_regs[IA64_BR0_REGNUM];
|
2046 |
|
|
|
2047 |
|
|
if (addr != 0)
|
2048 |
|
|
return frame_unwind_got_memory (this_frame, regnum, addr);
|
2049 |
|
|
|
2050 |
|
|
return frame_unwind_got_constant (this_frame, regnum, 0);
|
2051 |
|
|
}
|
2052 |
|
|
|
2053 |
|
|
else if ((regnum >= IA64_GR32_REGNUM && regnum <= IA64_GR127_REGNUM)
|
2054 |
|
|
|| (regnum >= V32_REGNUM && regnum <= V127_REGNUM))
|
2055 |
|
|
{
|
2056 |
|
|
CORE_ADDR addr = 0;
|
2057 |
|
|
|
2058 |
|
|
if (regnum >= V32_REGNUM)
|
2059 |
|
|
regnum = IA64_GR32_REGNUM + (regnum - V32_REGNUM);
|
2060 |
|
|
addr = cache->saved_regs[regnum];
|
2061 |
|
|
if (addr != 0)
|
2062 |
|
|
return frame_unwind_got_memory (this_frame, regnum, addr);
|
2063 |
|
|
|
2064 |
|
|
if (cache->frameless)
|
2065 |
|
|
{
|
2066 |
|
|
struct value *reg_val;
|
2067 |
|
|
CORE_ADDR prev_cfm, prev_bsp, prev_bof;
|
2068 |
|
|
|
2069 |
|
|
/* FIXME: brobecker/2008-05-01: Doesn't this seem redundant
|
2070 |
|
|
with the same code above? */
|
2071 |
|
|
if (regnum >= V32_REGNUM)
|
2072 |
|
|
regnum = IA64_GR32_REGNUM + (regnum - V32_REGNUM);
|
2073 |
|
|
reg_val = ia64_frame_prev_register (this_frame, this_cache,
|
2074 |
|
|
IA64_CFM_REGNUM);
|
2075 |
|
|
prev_cfm = extract_unsigned_integer (value_contents_all (reg_val),
|
2076 |
|
|
8, byte_order);
|
2077 |
|
|
reg_val = ia64_frame_prev_register (this_frame, this_cache,
|
2078 |
|
|
IA64_BSP_REGNUM);
|
2079 |
|
|
prev_bsp = extract_unsigned_integer (value_contents_all (reg_val),
|
2080 |
|
|
8, byte_order);
|
2081 |
|
|
prev_bof = rse_address_add (prev_bsp, -(prev_cfm & 0x7f));
|
2082 |
|
|
|
2083 |
|
|
addr = rse_address_add (prev_bof, (regnum - IA64_GR32_REGNUM));
|
2084 |
|
|
return frame_unwind_got_memory (this_frame, regnum, addr);
|
2085 |
|
|
}
|
2086 |
|
|
|
2087 |
|
|
return frame_unwind_got_constant (this_frame, regnum, 0);
|
2088 |
|
|
}
|
2089 |
|
|
|
2090 |
|
|
else /* All other registers. */
|
2091 |
|
|
{
|
2092 |
|
|
CORE_ADDR addr = 0;
|
2093 |
|
|
|
2094 |
|
|
if (IA64_FR32_REGNUM <= regnum && regnum <= IA64_FR127_REGNUM)
|
2095 |
|
|
{
|
2096 |
|
|
/* Fetch floating point register rename base from current
|
2097 |
|
|
frame marker for this frame. */
|
2098 |
|
|
int rrb_fr = (cache->cfm >> 25) & 0x7f;
|
2099 |
|
|
|
2100 |
|
|
/* Adjust the floating point register number to account for
|
2101 |
|
|
register rotation. */
|
2102 |
|
|
regnum = IA64_FR32_REGNUM
|
2103 |
|
|
+ ((regnum - IA64_FR32_REGNUM) + rrb_fr) % 96;
|
2104 |
|
|
}
|
2105 |
|
|
|
2106 |
|
|
/* If we have stored a memory address, access the register. */
|
2107 |
|
|
addr = cache->saved_regs[regnum];
|
2108 |
|
|
if (addr != 0)
|
2109 |
|
|
return frame_unwind_got_memory (this_frame, regnum, addr);
|
2110 |
|
|
/* Otherwise, punt and get the current value of the register. */
|
2111 |
|
|
else
|
2112 |
|
|
return frame_unwind_got_register (this_frame, regnum, regnum);
|
2113 |
|
|
}
|
2114 |
|
|
}
|
2115 |
|
|
|
2116 |
|
|
static const struct frame_unwind ia64_frame_unwind =
|
2117 |
|
|
{
|
2118 |
|
|
NORMAL_FRAME,
|
2119 |
|
|
&ia64_frame_this_id,
|
2120 |
|
|
&ia64_frame_prev_register,
|
2121 |
|
|
NULL,
|
2122 |
|
|
default_frame_sniffer
|
2123 |
|
|
};
|
2124 |
|
|
|
2125 |
|
|
/* Signal trampolines. */
|
2126 |
|
|
|
2127 |
|
|
static void
|
2128 |
|
|
ia64_sigtramp_frame_init_saved_regs (struct frame_info *this_frame,
|
2129 |
|
|
struct ia64_frame_cache *cache)
|
2130 |
|
|
{
|
2131 |
|
|
struct gdbarch *gdbarch = get_frame_arch (this_frame);
|
2132 |
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
2133 |
|
|
|
2134 |
|
|
if (tdep->sigcontext_register_address)
|
2135 |
|
|
{
|
2136 |
|
|
int regno;
|
2137 |
|
|
|
2138 |
|
|
cache->saved_regs[IA64_VRAP_REGNUM] =
|
2139 |
|
|
tdep->sigcontext_register_address (gdbarch, cache->base, IA64_IP_REGNUM);
|
2140 |
|
|
cache->saved_regs[IA64_CFM_REGNUM] =
|
2141 |
|
|
tdep->sigcontext_register_address (gdbarch, cache->base, IA64_CFM_REGNUM);
|
2142 |
|
|
cache->saved_regs[IA64_PSR_REGNUM] =
|
2143 |
|
|
tdep->sigcontext_register_address (gdbarch, cache->base, IA64_PSR_REGNUM);
|
2144 |
|
|
cache->saved_regs[IA64_BSP_REGNUM] =
|
2145 |
|
|
tdep->sigcontext_register_address (gdbarch, cache->base, IA64_BSP_REGNUM);
|
2146 |
|
|
cache->saved_regs[IA64_RNAT_REGNUM] =
|
2147 |
|
|
tdep->sigcontext_register_address (gdbarch, cache->base, IA64_RNAT_REGNUM);
|
2148 |
|
|
cache->saved_regs[IA64_CCV_REGNUM] =
|
2149 |
|
|
tdep->sigcontext_register_address (gdbarch, cache->base, IA64_CCV_REGNUM);
|
2150 |
|
|
cache->saved_regs[IA64_UNAT_REGNUM] =
|
2151 |
|
|
tdep->sigcontext_register_address (gdbarch, cache->base, IA64_UNAT_REGNUM);
|
2152 |
|
|
cache->saved_regs[IA64_FPSR_REGNUM] =
|
2153 |
|
|
tdep->sigcontext_register_address (gdbarch, cache->base, IA64_FPSR_REGNUM);
|
2154 |
|
|
cache->saved_regs[IA64_PFS_REGNUM] =
|
2155 |
|
|
tdep->sigcontext_register_address (gdbarch, cache->base, IA64_PFS_REGNUM);
|
2156 |
|
|
cache->saved_regs[IA64_LC_REGNUM] =
|
2157 |
|
|
tdep->sigcontext_register_address (gdbarch, cache->base, IA64_LC_REGNUM);
|
2158 |
|
|
for (regno = IA64_GR1_REGNUM; regno <= IA64_GR31_REGNUM; regno++)
|
2159 |
|
|
cache->saved_regs[regno] =
|
2160 |
|
|
tdep->sigcontext_register_address (gdbarch, cache->base, regno);
|
2161 |
|
|
for (regno = IA64_BR0_REGNUM; regno <= IA64_BR7_REGNUM; regno++)
|
2162 |
|
|
cache->saved_regs[regno] =
|
2163 |
|
|
tdep->sigcontext_register_address (gdbarch, cache->base, regno);
|
2164 |
|
|
for (regno = IA64_FR2_REGNUM; regno <= IA64_FR31_REGNUM; regno++)
|
2165 |
|
|
cache->saved_regs[regno] =
|
2166 |
|
|
tdep->sigcontext_register_address (gdbarch, cache->base, regno);
|
2167 |
|
|
}
|
2168 |
|
|
}
|
2169 |
|
|
|
2170 |
|
|
static struct ia64_frame_cache *
|
2171 |
|
|
ia64_sigtramp_frame_cache (struct frame_info *this_frame, void **this_cache)
|
2172 |
|
|
{
|
2173 |
|
|
struct gdbarch *gdbarch = get_frame_arch (this_frame);
|
2174 |
|
|
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
2175 |
|
|
struct ia64_frame_cache *cache;
|
2176 |
|
|
CORE_ADDR addr;
|
2177 |
|
|
char buf[8];
|
2178 |
|
|
int i;
|
2179 |
|
|
|
2180 |
|
|
if (*this_cache)
|
2181 |
|
|
return *this_cache;
|
2182 |
|
|
|
2183 |
|
|
cache = ia64_alloc_frame_cache ();
|
2184 |
|
|
|
2185 |
|
|
get_frame_register (this_frame, sp_regnum, buf);
|
2186 |
|
|
/* Note that frame size is hard-coded below. We cannot calculate it
|
2187 |
|
|
via prologue examination. */
|
2188 |
|
|
cache->base = extract_unsigned_integer (buf, 8, byte_order) + 16;
|
2189 |
|
|
|
2190 |
|
|
get_frame_register (this_frame, IA64_BSP_REGNUM, buf);
|
2191 |
|
|
cache->bsp = extract_unsigned_integer (buf, 8, byte_order);
|
2192 |
|
|
|
2193 |
|
|
get_frame_register (this_frame, IA64_CFM_REGNUM, buf);
|
2194 |
|
|
cache->cfm = extract_unsigned_integer (buf, 8, byte_order);
|
2195 |
|
|
cache->sof = cache->cfm & 0x7f;
|
2196 |
|
|
|
2197 |
|
|
ia64_sigtramp_frame_init_saved_regs (this_frame, cache);
|
2198 |
|
|
|
2199 |
|
|
*this_cache = cache;
|
2200 |
|
|
return cache;
|
2201 |
|
|
}
|
2202 |
|
|
|
2203 |
|
|
static void
|
2204 |
|
|
ia64_sigtramp_frame_this_id (struct frame_info *this_frame,
|
2205 |
|
|
void **this_cache, struct frame_id *this_id)
|
2206 |
|
|
{
|
2207 |
|
|
struct gdbarch *gdbarch = get_frame_arch (this_frame);
|
2208 |
|
|
struct ia64_frame_cache *cache =
|
2209 |
|
|
ia64_sigtramp_frame_cache (this_frame, this_cache);
|
2210 |
|
|
|
2211 |
|
|
(*this_id) = frame_id_build_special (cache->base,
|
2212 |
|
|
get_frame_pc (this_frame),
|
2213 |
|
|
cache->bsp);
|
2214 |
|
|
if (gdbarch_debug >= 1)
|
2215 |
|
|
fprintf_unfiltered (gdb_stdlog,
|
2216 |
|
|
"sigtramp frame id: code %s, stack %s, special %s, this_frame %s\n",
|
2217 |
|
|
paddress (gdbarch, this_id->code_addr),
|
2218 |
|
|
paddress (gdbarch, this_id->stack_addr),
|
2219 |
|
|
paddress (gdbarch, cache->bsp),
|
2220 |
|
|
host_address_to_string (this_frame));
|
2221 |
|
|
}
|
2222 |
|
|
|
2223 |
|
|
static struct value *
|
2224 |
|
|
ia64_sigtramp_frame_prev_register (struct frame_info *this_frame,
|
2225 |
|
|
void **this_cache, int regnum)
|
2226 |
|
|
{
|
2227 |
|
|
char buf[MAX_REGISTER_SIZE];
|
2228 |
|
|
|
2229 |
|
|
struct gdbarch *gdbarch = get_frame_arch (this_frame);
|
2230 |
|
|
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
2231 |
|
|
struct ia64_frame_cache *cache =
|
2232 |
|
|
ia64_sigtramp_frame_cache (this_frame, this_cache);
|
2233 |
|
|
|
2234 |
|
|
gdb_assert (regnum >= 0);
|
2235 |
|
|
|
2236 |
|
|
if (!target_has_registers)
|
2237 |
|
|
error (_("No registers."));
|
2238 |
|
|
|
2239 |
|
|
if (regnum == IA64_IP_REGNUM)
|
2240 |
|
|
{
|
2241 |
|
|
CORE_ADDR pc = 0;
|
2242 |
|
|
CORE_ADDR addr = cache->saved_regs[IA64_VRAP_REGNUM];
|
2243 |
|
|
|
2244 |
|
|
if (addr != 0)
|
2245 |
|
|
{
|
2246 |
|
|
read_memory (addr, buf, register_size (gdbarch, IA64_IP_REGNUM));
|
2247 |
|
|
pc = extract_unsigned_integer (buf, 8, byte_order);
|
2248 |
|
|
}
|
2249 |
|
|
pc &= ~0xf;
|
2250 |
|
|
return frame_unwind_got_constant (this_frame, regnum, pc);
|
2251 |
|
|
}
|
2252 |
|
|
|
2253 |
|
|
else if ((regnum >= IA64_GR32_REGNUM && regnum <= IA64_GR127_REGNUM)
|
2254 |
|
|
|| (regnum >= V32_REGNUM && regnum <= V127_REGNUM))
|
2255 |
|
|
{
|
2256 |
|
|
CORE_ADDR addr = 0;
|
2257 |
|
|
|
2258 |
|
|
if (regnum >= V32_REGNUM)
|
2259 |
|
|
regnum = IA64_GR32_REGNUM + (regnum - V32_REGNUM);
|
2260 |
|
|
addr = cache->saved_regs[regnum];
|
2261 |
|
|
if (addr != 0)
|
2262 |
|
|
return frame_unwind_got_memory (this_frame, regnum, addr);
|
2263 |
|
|
|
2264 |
|
|
return frame_unwind_got_constant (this_frame, regnum, 0);
|
2265 |
|
|
}
|
2266 |
|
|
|
2267 |
|
|
else /* All other registers not listed above. */
|
2268 |
|
|
{
|
2269 |
|
|
CORE_ADDR addr = cache->saved_regs[regnum];
|
2270 |
|
|
|
2271 |
|
|
if (addr != 0)
|
2272 |
|
|
return frame_unwind_got_memory (this_frame, regnum, addr);
|
2273 |
|
|
|
2274 |
|
|
return frame_unwind_got_constant (this_frame, regnum, 0);
|
2275 |
|
|
}
|
2276 |
|
|
}
|
2277 |
|
|
|
2278 |
|
|
static int
|
2279 |
|
|
ia64_sigtramp_frame_sniffer (const struct frame_unwind *self,
|
2280 |
|
|
struct frame_info *this_frame,
|
2281 |
|
|
void **this_cache)
|
2282 |
|
|
{
|
2283 |
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
|
2284 |
|
|
if (tdep->pc_in_sigtramp)
|
2285 |
|
|
{
|
2286 |
|
|
CORE_ADDR pc = get_frame_pc (this_frame);
|
2287 |
|
|
|
2288 |
|
|
if (tdep->pc_in_sigtramp (pc))
|
2289 |
|
|
return 1;
|
2290 |
|
|
}
|
2291 |
|
|
|
2292 |
|
|
return 0;
|
2293 |
|
|
}
|
2294 |
|
|
|
2295 |
|
|
static const struct frame_unwind ia64_sigtramp_frame_unwind =
|
2296 |
|
|
{
|
2297 |
|
|
SIGTRAMP_FRAME,
|
2298 |
|
|
ia64_sigtramp_frame_this_id,
|
2299 |
|
|
ia64_sigtramp_frame_prev_register,
|
2300 |
|
|
NULL,
|
2301 |
|
|
ia64_sigtramp_frame_sniffer
|
2302 |
|
|
};
|
2303 |
|
|
|
2304 |
|
|
|
2305 |
|
|
|
2306 |
|
|
static CORE_ADDR
|
2307 |
|
|
ia64_frame_base_address (struct frame_info *this_frame, void **this_cache)
|
2308 |
|
|
{
|
2309 |
|
|
struct ia64_frame_cache *cache = ia64_frame_cache (this_frame, this_cache);
|
2310 |
|
|
|
2311 |
|
|
return cache->base;
|
2312 |
|
|
}
|
2313 |
|
|
|
2314 |
|
|
static const struct frame_base ia64_frame_base =
|
2315 |
|
|
{
|
2316 |
|
|
&ia64_frame_unwind,
|
2317 |
|
|
ia64_frame_base_address,
|
2318 |
|
|
ia64_frame_base_address,
|
2319 |
|
|
ia64_frame_base_address
|
2320 |
|
|
};
|
2321 |
|
|
|
2322 |
|
|
#ifdef HAVE_LIBUNWIND_IA64_H
|
2323 |
|
|
|
2324 |
|
|
struct ia64_unwind_table_entry
|
2325 |
|
|
{
|
2326 |
|
|
unw_word_t start_offset;
|
2327 |
|
|
unw_word_t end_offset;
|
2328 |
|
|
unw_word_t info_offset;
|
2329 |
|
|
};
|
2330 |
|
|
|
2331 |
|
|
static __inline__ uint64_t
|
2332 |
|
|
ia64_rse_slot_num (uint64_t addr)
|
2333 |
|
|
{
|
2334 |
|
|
return (addr >> 3) & 0x3f;
|
2335 |
|
|
}
|
2336 |
|
|
|
2337 |
|
|
/* Skip over a designated number of registers in the backing
|
2338 |
|
|
store, remembering every 64th position is for NAT. */
|
2339 |
|
|
static __inline__ uint64_t
|
2340 |
|
|
ia64_rse_skip_regs (uint64_t addr, long num_regs)
|
2341 |
|
|
{
|
2342 |
|
|
long delta = ia64_rse_slot_num(addr) + num_regs;
|
2343 |
|
|
|
2344 |
|
|
if (num_regs < 0)
|
2345 |
|
|
delta -= 0x3e;
|
2346 |
|
|
return addr + ((num_regs + delta/0x3f) << 3);
|
2347 |
|
|
}
|
2348 |
|
|
|
2349 |
|
|
/* Gdb libunwind-frame callback function to convert from an ia64 gdb register
|
2350 |
|
|
number to a libunwind register number. */
|
2351 |
|
|
static int
|
2352 |
|
|
ia64_gdb2uw_regnum (int regnum)
|
2353 |
|
|
{
|
2354 |
|
|
if (regnum == sp_regnum)
|
2355 |
|
|
return UNW_IA64_SP;
|
2356 |
|
|
else if (regnum == IA64_BSP_REGNUM)
|
2357 |
|
|
return UNW_IA64_BSP;
|
2358 |
|
|
else if ((unsigned) (regnum - IA64_GR0_REGNUM) < 128)
|
2359 |
|
|
return UNW_IA64_GR + (regnum - IA64_GR0_REGNUM);
|
2360 |
|
|
else if ((unsigned) (regnum - V32_REGNUM) < 95)
|
2361 |
|
|
return UNW_IA64_GR + 32 + (regnum - V32_REGNUM);
|
2362 |
|
|
else if ((unsigned) (regnum - IA64_FR0_REGNUM) < 128)
|
2363 |
|
|
return UNW_IA64_FR + (regnum - IA64_FR0_REGNUM);
|
2364 |
|
|
else if ((unsigned) (regnum - IA64_PR0_REGNUM) < 64)
|
2365 |
|
|
return -1;
|
2366 |
|
|
else if ((unsigned) (regnum - IA64_BR0_REGNUM) < 8)
|
2367 |
|
|
return UNW_IA64_BR + (regnum - IA64_BR0_REGNUM);
|
2368 |
|
|
else if (regnum == IA64_PR_REGNUM)
|
2369 |
|
|
return UNW_IA64_PR;
|
2370 |
|
|
else if (regnum == IA64_IP_REGNUM)
|
2371 |
|
|
return UNW_REG_IP;
|
2372 |
|
|
else if (regnum == IA64_CFM_REGNUM)
|
2373 |
|
|
return UNW_IA64_CFM;
|
2374 |
|
|
else if ((unsigned) (regnum - IA64_AR0_REGNUM) < 128)
|
2375 |
|
|
return UNW_IA64_AR + (regnum - IA64_AR0_REGNUM);
|
2376 |
|
|
else if ((unsigned) (regnum - IA64_NAT0_REGNUM) < 128)
|
2377 |
|
|
return UNW_IA64_NAT + (regnum - IA64_NAT0_REGNUM);
|
2378 |
|
|
else
|
2379 |
|
|
return -1;
|
2380 |
|
|
}
|
2381 |
|
|
|
2382 |
|
|
/* Gdb libunwind-frame callback function to convert from a libunwind register
|
2383 |
|
|
number to a ia64 gdb register number. */
|
2384 |
|
|
static int
|
2385 |
|
|
ia64_uw2gdb_regnum (int uw_regnum)
|
2386 |
|
|
{
|
2387 |
|
|
if (uw_regnum == UNW_IA64_SP)
|
2388 |
|
|
return sp_regnum;
|
2389 |
|
|
else if (uw_regnum == UNW_IA64_BSP)
|
2390 |
|
|
return IA64_BSP_REGNUM;
|
2391 |
|
|
else if ((unsigned) (uw_regnum - UNW_IA64_GR) < 32)
|
2392 |
|
|
return IA64_GR0_REGNUM + (uw_regnum - UNW_IA64_GR);
|
2393 |
|
|
else if ((unsigned) (uw_regnum - UNW_IA64_GR) < 128)
|
2394 |
|
|
return V32_REGNUM + (uw_regnum - (IA64_GR0_REGNUM + 32));
|
2395 |
|
|
else if ((unsigned) (uw_regnum - UNW_IA64_FR) < 128)
|
2396 |
|
|
return IA64_FR0_REGNUM + (uw_regnum - UNW_IA64_FR);
|
2397 |
|
|
else if ((unsigned) (uw_regnum - UNW_IA64_BR) < 8)
|
2398 |
|
|
return IA64_BR0_REGNUM + (uw_regnum - UNW_IA64_BR);
|
2399 |
|
|
else if (uw_regnum == UNW_IA64_PR)
|
2400 |
|
|
return IA64_PR_REGNUM;
|
2401 |
|
|
else if (uw_regnum == UNW_REG_IP)
|
2402 |
|
|
return IA64_IP_REGNUM;
|
2403 |
|
|
else if (uw_regnum == UNW_IA64_CFM)
|
2404 |
|
|
return IA64_CFM_REGNUM;
|
2405 |
|
|
else if ((unsigned) (uw_regnum - UNW_IA64_AR) < 128)
|
2406 |
|
|
return IA64_AR0_REGNUM + (uw_regnum - UNW_IA64_AR);
|
2407 |
|
|
else if ((unsigned) (uw_regnum - UNW_IA64_NAT) < 128)
|
2408 |
|
|
return IA64_NAT0_REGNUM + (uw_regnum - UNW_IA64_NAT);
|
2409 |
|
|
else
|
2410 |
|
|
return -1;
|
2411 |
|
|
}
|
2412 |
|
|
|
2413 |
|
|
/* Gdb libunwind-frame callback function to reveal if register is a float
|
2414 |
|
|
register or not. */
|
2415 |
|
|
static int
|
2416 |
|
|
ia64_is_fpreg (int uw_regnum)
|
2417 |
|
|
{
|
2418 |
|
|
return unw_is_fpreg (uw_regnum);
|
2419 |
|
|
}
|
2420 |
|
|
|
2421 |
|
|
/* Libunwind callback accessor function for general registers. */
|
2422 |
|
|
static int
|
2423 |
|
|
ia64_access_reg (unw_addr_space_t as, unw_regnum_t uw_regnum, unw_word_t *val,
|
2424 |
|
|
int write, void *arg)
|
2425 |
|
|
{
|
2426 |
|
|
int regnum = ia64_uw2gdb_regnum (uw_regnum);
|
2427 |
|
|
unw_word_t bsp, sof, sol, cfm, psr, ip;
|
2428 |
|
|
struct frame_info *this_frame = arg;
|
2429 |
|
|
struct gdbarch *gdbarch = get_frame_arch (this_frame);
|
2430 |
|
|
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
2431 |
|
|
long new_sof, old_sof;
|
2432 |
|
|
char buf[MAX_REGISTER_SIZE];
|
2433 |
|
|
|
2434 |
|
|
/* We never call any libunwind routines that need to write registers. */
|
2435 |
|
|
gdb_assert (!write);
|
2436 |
|
|
|
2437 |
|
|
switch (uw_regnum)
|
2438 |
|
|
{
|
2439 |
|
|
case UNW_REG_IP:
|
2440 |
|
|
/* Libunwind expects to see the pc value which means the slot number
|
2441 |
|
|
from the psr must be merged with the ip word address. */
|
2442 |
|
|
get_frame_register (this_frame, IA64_IP_REGNUM, buf);
|
2443 |
|
|
ip = extract_unsigned_integer (buf, 8, byte_order);
|
2444 |
|
|
get_frame_register (this_frame, IA64_PSR_REGNUM, buf);
|
2445 |
|
|
psr = extract_unsigned_integer (buf, 8, byte_order);
|
2446 |
|
|
*val = ip | ((psr >> 41) & 0x3);
|
2447 |
|
|
break;
|
2448 |
|
|
|
2449 |
|
|
case UNW_IA64_AR_BSP:
|
2450 |
|
|
/* Libunwind expects to see the beginning of the current register
|
2451 |
|
|
frame so we must account for the fact that ptrace() will return a value
|
2452 |
|
|
for bsp that points *after* the current register frame. */
|
2453 |
|
|
get_frame_register (this_frame, IA64_BSP_REGNUM, buf);
|
2454 |
|
|
bsp = extract_unsigned_integer (buf, 8, byte_order);
|
2455 |
|
|
get_frame_register (this_frame, IA64_CFM_REGNUM, buf);
|
2456 |
|
|
cfm = extract_unsigned_integer (buf, 8, byte_order);
|
2457 |
|
|
sof = (cfm & 0x7f);
|
2458 |
|
|
*val = ia64_rse_skip_regs (bsp, -sof);
|
2459 |
|
|
break;
|
2460 |
|
|
|
2461 |
|
|
case UNW_IA64_AR_BSPSTORE:
|
2462 |
|
|
/* Libunwind wants bspstore to be after the current register frame.
|
2463 |
|
|
This is what ptrace() and gdb treats as the regular bsp value. */
|
2464 |
|
|
get_frame_register (this_frame, IA64_BSP_REGNUM, buf);
|
2465 |
|
|
*val = extract_unsigned_integer (buf, 8, byte_order);
|
2466 |
|
|
break;
|
2467 |
|
|
|
2468 |
|
|
default:
|
2469 |
|
|
/* For all other registers, just unwind the value directly. */
|
2470 |
|
|
get_frame_register (this_frame, regnum, buf);
|
2471 |
|
|
*val = extract_unsigned_integer (buf, 8, byte_order);
|
2472 |
|
|
break;
|
2473 |
|
|
}
|
2474 |
|
|
|
2475 |
|
|
if (gdbarch_debug >= 1)
|
2476 |
|
|
fprintf_unfiltered (gdb_stdlog,
|
2477 |
|
|
" access_reg: from cache: %4s=%s\n",
|
2478 |
|
|
(((unsigned) regnum <= IA64_NAT127_REGNUM)
|
2479 |
|
|
? ia64_register_names[regnum] : "r??"),
|
2480 |
|
|
paddress (gdbarch, *val));
|
2481 |
|
|
return 0;
|
2482 |
|
|
}
|
2483 |
|
|
|
2484 |
|
|
/* Libunwind callback accessor function for floating-point registers. */
|
2485 |
|
|
static int
|
2486 |
|
|
ia64_access_fpreg (unw_addr_space_t as, unw_regnum_t uw_regnum, unw_fpreg_t *val,
|
2487 |
|
|
int write, void *arg)
|
2488 |
|
|
{
|
2489 |
|
|
int regnum = ia64_uw2gdb_regnum (uw_regnum);
|
2490 |
|
|
struct frame_info *this_frame = arg;
|
2491 |
|
|
|
2492 |
|
|
/* We never call any libunwind routines that need to write registers. */
|
2493 |
|
|
gdb_assert (!write);
|
2494 |
|
|
|
2495 |
|
|
get_frame_register (this_frame, regnum, (char *) val);
|
2496 |
|
|
|
2497 |
|
|
return 0;
|
2498 |
|
|
}
|
2499 |
|
|
|
2500 |
|
|
/* Libunwind callback accessor function for top-level rse registers. */
|
2501 |
|
|
static int
|
2502 |
|
|
ia64_access_rse_reg (unw_addr_space_t as, unw_regnum_t uw_regnum, unw_word_t *val,
|
2503 |
|
|
int write, void *arg)
|
2504 |
|
|
{
|
2505 |
|
|
int regnum = ia64_uw2gdb_regnum (uw_regnum);
|
2506 |
|
|
unw_word_t bsp, sof, sol, cfm, psr, ip;
|
2507 |
|
|
struct regcache *regcache = arg;
|
2508 |
|
|
struct gdbarch *gdbarch = get_regcache_arch (regcache);
|
2509 |
|
|
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
2510 |
|
|
long new_sof, old_sof;
|
2511 |
|
|
char buf[MAX_REGISTER_SIZE];
|
2512 |
|
|
|
2513 |
|
|
/* We never call any libunwind routines that need to write registers. */
|
2514 |
|
|
gdb_assert (!write);
|
2515 |
|
|
|
2516 |
|
|
switch (uw_regnum)
|
2517 |
|
|
{
|
2518 |
|
|
case UNW_REG_IP:
|
2519 |
|
|
/* Libunwind expects to see the pc value which means the slot number
|
2520 |
|
|
from the psr must be merged with the ip word address. */
|
2521 |
|
|
regcache_cooked_read (regcache, IA64_IP_REGNUM, buf);
|
2522 |
|
|
ip = extract_unsigned_integer (buf, 8, byte_order);
|
2523 |
|
|
regcache_cooked_read (regcache, IA64_PSR_REGNUM, buf);
|
2524 |
|
|
psr = extract_unsigned_integer (buf, 8, byte_order);
|
2525 |
|
|
*val = ip | ((psr >> 41) & 0x3);
|
2526 |
|
|
break;
|
2527 |
|
|
|
2528 |
|
|
case UNW_IA64_AR_BSP:
|
2529 |
|
|
/* Libunwind expects to see the beginning of the current register
|
2530 |
|
|
frame so we must account for the fact that ptrace() will return a value
|
2531 |
|
|
for bsp that points *after* the current register frame. */
|
2532 |
|
|
regcache_cooked_read (regcache, IA64_BSP_REGNUM, buf);
|
2533 |
|
|
bsp = extract_unsigned_integer (buf, 8, byte_order);
|
2534 |
|
|
regcache_cooked_read (regcache, IA64_CFM_REGNUM, buf);
|
2535 |
|
|
cfm = extract_unsigned_integer (buf, 8, byte_order);
|
2536 |
|
|
sof = (cfm & 0x7f);
|
2537 |
|
|
*val = ia64_rse_skip_regs (bsp, -sof);
|
2538 |
|
|
break;
|
2539 |
|
|
|
2540 |
|
|
case UNW_IA64_AR_BSPSTORE:
|
2541 |
|
|
/* Libunwind wants bspstore to be after the current register frame.
|
2542 |
|
|
This is what ptrace() and gdb treats as the regular bsp value. */
|
2543 |
|
|
regcache_cooked_read (regcache, IA64_BSP_REGNUM, buf);
|
2544 |
|
|
*val = extract_unsigned_integer (buf, 8, byte_order);
|
2545 |
|
|
break;
|
2546 |
|
|
|
2547 |
|
|
default:
|
2548 |
|
|
/* For all other registers, just unwind the value directly. */
|
2549 |
|
|
regcache_cooked_read (regcache, regnum, buf);
|
2550 |
|
|
*val = extract_unsigned_integer (buf, 8, byte_order);
|
2551 |
|
|
break;
|
2552 |
|
|
}
|
2553 |
|
|
|
2554 |
|
|
if (gdbarch_debug >= 1)
|
2555 |
|
|
fprintf_unfiltered (gdb_stdlog,
|
2556 |
|
|
" access_rse_reg: from cache: %4s=%s\n",
|
2557 |
|
|
(((unsigned) regnum <= IA64_NAT127_REGNUM)
|
2558 |
|
|
? ia64_register_names[regnum] : "r??"),
|
2559 |
|
|
paddress (gdbarch, *val));
|
2560 |
|
|
|
2561 |
|
|
return 0;
|
2562 |
|
|
}
|
2563 |
|
|
|
2564 |
|
|
/* Libunwind callback accessor function for top-level fp registers. */
|
2565 |
|
|
static int
|
2566 |
|
|
ia64_access_rse_fpreg (unw_addr_space_t as, unw_regnum_t uw_regnum,
|
2567 |
|
|
unw_fpreg_t *val, int write, void *arg)
|
2568 |
|
|
{
|
2569 |
|
|
int regnum = ia64_uw2gdb_regnum (uw_regnum);
|
2570 |
|
|
struct regcache *regcache = arg;
|
2571 |
|
|
|
2572 |
|
|
/* We never call any libunwind routines that need to write registers. */
|
2573 |
|
|
gdb_assert (!write);
|
2574 |
|
|
|
2575 |
|
|
regcache_cooked_read (regcache, regnum, (char *) val);
|
2576 |
|
|
|
2577 |
|
|
return 0;
|
2578 |
|
|
}
|
2579 |
|
|
|
2580 |
|
|
/* Libunwind callback accessor function for accessing memory. */
|
2581 |
|
|
static int
|
2582 |
|
|
ia64_access_mem (unw_addr_space_t as,
|
2583 |
|
|
unw_word_t addr, unw_word_t *val,
|
2584 |
|
|
int write, void *arg)
|
2585 |
|
|
{
|
2586 |
|
|
if (addr - KERNEL_START < ktab_size)
|
2587 |
|
|
{
|
2588 |
|
|
unw_word_t *laddr = (unw_word_t*) ((char *) ktab
|
2589 |
|
|
+ (addr - KERNEL_START));
|
2590 |
|
|
|
2591 |
|
|
if (write)
|
2592 |
|
|
*laddr = *val;
|
2593 |
|
|
else
|
2594 |
|
|
*val = *laddr;
|
2595 |
|
|
return 0;
|
2596 |
|
|
}
|
2597 |
|
|
|
2598 |
|
|
/* XXX do we need to normalize byte-order here? */
|
2599 |
|
|
if (write)
|
2600 |
|
|
return target_write_memory (addr, (char *) val, sizeof (unw_word_t));
|
2601 |
|
|
else
|
2602 |
|
|
return target_read_memory (addr, (char *) val, sizeof (unw_word_t));
|
2603 |
|
|
}
|
2604 |
|
|
|
2605 |
|
|
/* Call low-level function to access the kernel unwind table. */
|
2606 |
|
|
static LONGEST
|
2607 |
|
|
getunwind_table (gdb_byte **buf_p)
|
2608 |
|
|
{
|
2609 |
|
|
LONGEST x;
|
2610 |
|
|
|
2611 |
|
|
/* FIXME drow/2005-09-10: This code used to call
|
2612 |
|
|
ia64_linux_xfer_unwind_table directly to fetch the unwind table
|
2613 |
|
|
for the currently running ia64-linux kernel. That data should
|
2614 |
|
|
come from the core file and be accessed via the auxv vector; if
|
2615 |
|
|
we want to preserve fall back to the running kernel's table, then
|
2616 |
|
|
we should find a way to override the corefile layer's
|
2617 |
|
|
xfer_partial method. */
|
2618 |
|
|
|
2619 |
|
|
x = target_read_alloc (¤t_target, TARGET_OBJECT_UNWIND_TABLE,
|
2620 |
|
|
NULL, buf_p);
|
2621 |
|
|
|
2622 |
|
|
return x;
|
2623 |
|
|
}
|
2624 |
|
|
|
2625 |
|
|
/* Get the kernel unwind table. */
|
2626 |
|
|
static int
|
2627 |
|
|
get_kernel_table (unw_word_t ip, unw_dyn_info_t *di)
|
2628 |
|
|
{
|
2629 |
|
|
static struct ia64_table_entry *etab;
|
2630 |
|
|
|
2631 |
|
|
if (!ktab)
|
2632 |
|
|
{
|
2633 |
|
|
gdb_byte *ktab_buf;
|
2634 |
|
|
LONGEST size;
|
2635 |
|
|
|
2636 |
|
|
size = getunwind_table (&ktab_buf);
|
2637 |
|
|
if (size <= 0)
|
2638 |
|
|
return -UNW_ENOINFO;
|
2639 |
|
|
|
2640 |
|
|
ktab = (struct ia64_table_entry *) ktab_buf;
|
2641 |
|
|
ktab_size = size;
|
2642 |
|
|
|
2643 |
|
|
for (etab = ktab; etab->start_offset; ++etab)
|
2644 |
|
|
etab->info_offset += KERNEL_START;
|
2645 |
|
|
}
|
2646 |
|
|
|
2647 |
|
|
if (ip < ktab[0].start_offset || ip >= etab[-1].end_offset)
|
2648 |
|
|
return -UNW_ENOINFO;
|
2649 |
|
|
|
2650 |
|
|
di->format = UNW_INFO_FORMAT_TABLE;
|
2651 |
|
|
di->gp = 0;
|
2652 |
|
|
di->start_ip = ktab[0].start_offset;
|
2653 |
|
|
di->end_ip = etab[-1].end_offset;
|
2654 |
|
|
di->u.ti.name_ptr = (unw_word_t) "<kernel>";
|
2655 |
|
|
di->u.ti.segbase = 0;
|
2656 |
|
|
di->u.ti.table_len = ((char *) etab - (char *) ktab) / sizeof (unw_word_t);
|
2657 |
|
|
di->u.ti.table_data = (unw_word_t *) ktab;
|
2658 |
|
|
|
2659 |
|
|
if (gdbarch_debug >= 1)
|
2660 |
|
|
fprintf_unfiltered (gdb_stdlog, "get_kernel_table: found table `%s': "
|
2661 |
|
|
"segbase=%s, length=%s, gp=%s\n",
|
2662 |
|
|
(char *) di->u.ti.name_ptr,
|
2663 |
|
|
hex_string (di->u.ti.segbase),
|
2664 |
|
|
pulongest (di->u.ti.table_len),
|
2665 |
|
|
hex_string (di->gp));
|
2666 |
|
|
return 0;
|
2667 |
|
|
}
|
2668 |
|
|
|
2669 |
|
|
/* Find the unwind table entry for a specified address. */
|
2670 |
|
|
static int
|
2671 |
|
|
ia64_find_unwind_table (struct objfile *objfile, unw_word_t ip,
|
2672 |
|
|
unw_dyn_info_t *dip, void **buf)
|
2673 |
|
|
{
|
2674 |
|
|
Elf_Internal_Phdr *phdr, *p_text = NULL, *p_unwind = NULL;
|
2675 |
|
|
Elf_Internal_Ehdr *ehdr;
|
2676 |
|
|
unw_word_t segbase = 0;
|
2677 |
|
|
CORE_ADDR load_base;
|
2678 |
|
|
bfd *bfd;
|
2679 |
|
|
int i;
|
2680 |
|
|
|
2681 |
|
|
bfd = objfile->obfd;
|
2682 |
|
|
|
2683 |
|
|
ehdr = elf_tdata (bfd)->elf_header;
|
2684 |
|
|
phdr = elf_tdata (bfd)->phdr;
|
2685 |
|
|
|
2686 |
|
|
load_base = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
|
2687 |
|
|
|
2688 |
|
|
for (i = 0; i < ehdr->e_phnum; ++i)
|
2689 |
|
|
{
|
2690 |
|
|
switch (phdr[i].p_type)
|
2691 |
|
|
{
|
2692 |
|
|
case PT_LOAD:
|
2693 |
|
|
if ((unw_word_t) (ip - load_base - phdr[i].p_vaddr)
|
2694 |
|
|
< phdr[i].p_memsz)
|
2695 |
|
|
p_text = phdr + i;
|
2696 |
|
|
break;
|
2697 |
|
|
|
2698 |
|
|
case PT_IA_64_UNWIND:
|
2699 |
|
|
p_unwind = phdr + i;
|
2700 |
|
|
break;
|
2701 |
|
|
|
2702 |
|
|
default:
|
2703 |
|
|
break;
|
2704 |
|
|
}
|
2705 |
|
|
}
|
2706 |
|
|
|
2707 |
|
|
if (!p_text || !p_unwind)
|
2708 |
|
|
return -UNW_ENOINFO;
|
2709 |
|
|
|
2710 |
|
|
/* Verify that the segment that contains the IP also contains
|
2711 |
|
|
the static unwind table. If not, we may be in the Linux kernel's
|
2712 |
|
|
DSO gate page in which case the unwind table is another segment.
|
2713 |
|
|
Otherwise, we are dealing with runtime-generated code, for which we
|
2714 |
|
|
have no info here. */
|
2715 |
|
|
segbase = p_text->p_vaddr + load_base;
|
2716 |
|
|
|
2717 |
|
|
if ((p_unwind->p_vaddr - p_text->p_vaddr) >= p_text->p_memsz)
|
2718 |
|
|
{
|
2719 |
|
|
int ok = 0;
|
2720 |
|
|
for (i = 0; i < ehdr->e_phnum; ++i)
|
2721 |
|
|
{
|
2722 |
|
|
if (phdr[i].p_type == PT_LOAD
|
2723 |
|
|
&& (p_unwind->p_vaddr - phdr[i].p_vaddr) < phdr[i].p_memsz)
|
2724 |
|
|
{
|
2725 |
|
|
ok = 1;
|
2726 |
|
|
/* Get the segbase from the section containing the
|
2727 |
|
|
libunwind table. */
|
2728 |
|
|
segbase = phdr[i].p_vaddr + load_base;
|
2729 |
|
|
}
|
2730 |
|
|
}
|
2731 |
|
|
if (!ok)
|
2732 |
|
|
return -UNW_ENOINFO;
|
2733 |
|
|
}
|
2734 |
|
|
|
2735 |
|
|
dip->start_ip = p_text->p_vaddr + load_base;
|
2736 |
|
|
dip->end_ip = dip->start_ip + p_text->p_memsz;
|
2737 |
|
|
dip->gp = ia64_find_global_pointer (get_objfile_arch (objfile), ip);
|
2738 |
|
|
dip->format = UNW_INFO_FORMAT_REMOTE_TABLE;
|
2739 |
|
|
dip->u.rti.name_ptr = (unw_word_t) bfd_get_filename (bfd);
|
2740 |
|
|
dip->u.rti.segbase = segbase;
|
2741 |
|
|
dip->u.rti.table_len = p_unwind->p_memsz / sizeof (unw_word_t);
|
2742 |
|
|
dip->u.rti.table_data = p_unwind->p_vaddr + load_base;
|
2743 |
|
|
|
2744 |
|
|
return 0;
|
2745 |
|
|
}
|
2746 |
|
|
|
2747 |
|
|
/* Libunwind callback accessor function to acquire procedure unwind-info. */
|
2748 |
|
|
static int
|
2749 |
|
|
ia64_find_proc_info_x (unw_addr_space_t as, unw_word_t ip, unw_proc_info_t *pi,
|
2750 |
|
|
int need_unwind_info, void *arg)
|
2751 |
|
|
{
|
2752 |
|
|
struct obj_section *sec = find_pc_section (ip);
|
2753 |
|
|
unw_dyn_info_t di;
|
2754 |
|
|
int ret;
|
2755 |
|
|
void *buf = NULL;
|
2756 |
|
|
|
2757 |
|
|
if (!sec)
|
2758 |
|
|
{
|
2759 |
|
|
/* XXX This only works if the host and the target architecture are
|
2760 |
|
|
both ia64 and if the have (more or less) the same kernel
|
2761 |
|
|
version. */
|
2762 |
|
|
if (get_kernel_table (ip, &di) < 0)
|
2763 |
|
|
return -UNW_ENOINFO;
|
2764 |
|
|
|
2765 |
|
|
if (gdbarch_debug >= 1)
|
2766 |
|
|
fprintf_unfiltered (gdb_stdlog, "ia64_find_proc_info_x: %s -> "
|
2767 |
|
|
"(name=`%s',segbase=%s,start=%s,end=%s,gp=%s,"
|
2768 |
|
|
"length=%s,data=%s)\n",
|
2769 |
|
|
hex_string (ip), (char *)di.u.ti.name_ptr,
|
2770 |
|
|
hex_string (di.u.ti.segbase),
|
2771 |
|
|
hex_string (di.start_ip), hex_string (di.end_ip),
|
2772 |
|
|
hex_string (di.gp),
|
2773 |
|
|
pulongest (di.u.ti.table_len),
|
2774 |
|
|
hex_string ((CORE_ADDR)di.u.ti.table_data));
|
2775 |
|
|
}
|
2776 |
|
|
else
|
2777 |
|
|
{
|
2778 |
|
|
ret = ia64_find_unwind_table (sec->objfile, ip, &di, &buf);
|
2779 |
|
|
if (ret < 0)
|
2780 |
|
|
return ret;
|
2781 |
|
|
|
2782 |
|
|
if (gdbarch_debug >= 1)
|
2783 |
|
|
fprintf_unfiltered (gdb_stdlog, "ia64_find_proc_info_x: %s -> "
|
2784 |
|
|
"(name=`%s',segbase=%s,start=%s,end=%s,gp=%s,"
|
2785 |
|
|
"length=%s,data=%s)\n",
|
2786 |
|
|
hex_string (ip), (char *)di.u.rti.name_ptr,
|
2787 |
|
|
hex_string (di.u.rti.segbase),
|
2788 |
|
|
hex_string (di.start_ip), hex_string (di.end_ip),
|
2789 |
|
|
hex_string (di.gp),
|
2790 |
|
|
pulongest (di.u.rti.table_len),
|
2791 |
|
|
hex_string (di.u.rti.table_data));
|
2792 |
|
|
}
|
2793 |
|
|
|
2794 |
|
|
ret = libunwind_search_unwind_table (&as, ip, &di, pi, need_unwind_info,
|
2795 |
|
|
arg);
|
2796 |
|
|
|
2797 |
|
|
/* We no longer need the dyn info storage so free it. */
|
2798 |
|
|
xfree (buf);
|
2799 |
|
|
|
2800 |
|
|
return ret;
|
2801 |
|
|
}
|
2802 |
|
|
|
2803 |
|
|
/* Libunwind callback accessor function for cleanup. */
|
2804 |
|
|
static void
|
2805 |
|
|
ia64_put_unwind_info (unw_addr_space_t as,
|
2806 |
|
|
unw_proc_info_t *pip, void *arg)
|
2807 |
|
|
{
|
2808 |
|
|
/* Nothing required for now. */
|
2809 |
|
|
}
|
2810 |
|
|
|
2811 |
|
|
/* Libunwind callback accessor function to get head of the dynamic
|
2812 |
|
|
unwind-info registration list. */
|
2813 |
|
|
static int
|
2814 |
|
|
ia64_get_dyn_info_list (unw_addr_space_t as,
|
2815 |
|
|
unw_word_t *dilap, void *arg)
|
2816 |
|
|
{
|
2817 |
|
|
struct obj_section *text_sec;
|
2818 |
|
|
struct objfile *objfile;
|
2819 |
|
|
unw_word_t ip, addr;
|
2820 |
|
|
unw_dyn_info_t di;
|
2821 |
|
|
int ret;
|
2822 |
|
|
|
2823 |
|
|
if (!libunwind_is_initialized ())
|
2824 |
|
|
return -UNW_ENOINFO;
|
2825 |
|
|
|
2826 |
|
|
for (objfile = object_files; objfile; objfile = objfile->next)
|
2827 |
|
|
{
|
2828 |
|
|
void *buf = NULL;
|
2829 |
|
|
|
2830 |
|
|
text_sec = objfile->sections + SECT_OFF_TEXT (objfile);
|
2831 |
|
|
ip = obj_section_addr (text_sec);
|
2832 |
|
|
ret = ia64_find_unwind_table (objfile, ip, &di, &buf);
|
2833 |
|
|
if (ret >= 0)
|
2834 |
|
|
{
|
2835 |
|
|
addr = libunwind_find_dyn_list (as, &di, arg);
|
2836 |
|
|
/* We no longer need the dyn info storage so free it. */
|
2837 |
|
|
xfree (buf);
|
2838 |
|
|
|
2839 |
|
|
if (addr)
|
2840 |
|
|
{
|
2841 |
|
|
if (gdbarch_debug >= 1)
|
2842 |
|
|
fprintf_unfiltered (gdb_stdlog,
|
2843 |
|
|
"dynamic unwind table in objfile %s "
|
2844 |
|
|
"at %s (gp=%s)\n",
|
2845 |
|
|
bfd_get_filename (objfile->obfd),
|
2846 |
|
|
hex_string (addr), hex_string (di.gp));
|
2847 |
|
|
*dilap = addr;
|
2848 |
|
|
return 0;
|
2849 |
|
|
}
|
2850 |
|
|
}
|
2851 |
|
|
}
|
2852 |
|
|
return -UNW_ENOINFO;
|
2853 |
|
|
}
|
2854 |
|
|
|
2855 |
|
|
|
2856 |
|
|
/* Frame interface functions for libunwind. */
|
2857 |
|
|
|
2858 |
|
|
static void
|
2859 |
|
|
ia64_libunwind_frame_this_id (struct frame_info *this_frame, void **this_cache,
|
2860 |
|
|
struct frame_id *this_id)
|
2861 |
|
|
{
|
2862 |
|
|
struct gdbarch *gdbarch = get_frame_arch (this_frame);
|
2863 |
|
|
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
2864 |
|
|
struct frame_id id = outer_frame_id;
|
2865 |
|
|
char buf[8];
|
2866 |
|
|
CORE_ADDR bsp;
|
2867 |
|
|
|
2868 |
|
|
libunwind_frame_this_id (this_frame, this_cache, &id);
|
2869 |
|
|
if (frame_id_eq (id, outer_frame_id))
|
2870 |
|
|
{
|
2871 |
|
|
(*this_id) = outer_frame_id;
|
2872 |
|
|
return;
|
2873 |
|
|
}
|
2874 |
|
|
|
2875 |
|
|
/* We must add the bsp as the special address for frame comparison
|
2876 |
|
|
purposes. */
|
2877 |
|
|
get_frame_register (this_frame, IA64_BSP_REGNUM, buf);
|
2878 |
|
|
bsp = extract_unsigned_integer (buf, 8, byte_order);
|
2879 |
|
|
|
2880 |
|
|
(*this_id) = frame_id_build_special (id.stack_addr, id.code_addr, bsp);
|
2881 |
|
|
|
2882 |
|
|
if (gdbarch_debug >= 1)
|
2883 |
|
|
fprintf_unfiltered (gdb_stdlog,
|
2884 |
|
|
"libunwind frame id: code %s, stack %s, special %s, this_frame %s\n",
|
2885 |
|
|
paddress (gdbarch, id.code_addr),
|
2886 |
|
|
paddress (gdbarch, id.stack_addr),
|
2887 |
|
|
paddress (gdbarch, bsp),
|
2888 |
|
|
host_address_to_string (this_frame));
|
2889 |
|
|
}
|
2890 |
|
|
|
2891 |
|
|
static struct value *
|
2892 |
|
|
ia64_libunwind_frame_prev_register (struct frame_info *this_frame,
|
2893 |
|
|
void **this_cache, int regnum)
|
2894 |
|
|
{
|
2895 |
|
|
int reg = regnum;
|
2896 |
|
|
struct gdbarch *gdbarch = get_frame_arch (this_frame);
|
2897 |
|
|
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
2898 |
|
|
struct value *val;
|
2899 |
|
|
|
2900 |
|
|
if (VP0_REGNUM <= regnum && regnum <= VP63_REGNUM)
|
2901 |
|
|
reg = IA64_PR_REGNUM;
|
2902 |
|
|
else if (IA64_NAT0_REGNUM <= regnum && regnum <= IA64_NAT127_REGNUM)
|
2903 |
|
|
reg = IA64_UNAT_REGNUM;
|
2904 |
|
|
|
2905 |
|
|
/* Let libunwind do most of the work. */
|
2906 |
|
|
val = libunwind_frame_prev_register (this_frame, this_cache, reg);
|
2907 |
|
|
|
2908 |
|
|
if (VP0_REGNUM <= regnum && regnum <= VP63_REGNUM)
|
2909 |
|
|
{
|
2910 |
|
|
ULONGEST prN_val;
|
2911 |
|
|
|
2912 |
|
|
if (VP16_REGNUM <= regnum && regnum <= VP63_REGNUM)
|
2913 |
|
|
{
|
2914 |
|
|
int rrb_pr = 0;
|
2915 |
|
|
ULONGEST cfm;
|
2916 |
|
|
unsigned char buf[MAX_REGISTER_SIZE];
|
2917 |
|
|
|
2918 |
|
|
/* Fetch predicate register rename base from current frame
|
2919 |
|
|
marker for this frame. */
|
2920 |
|
|
get_frame_register (this_frame, IA64_CFM_REGNUM, buf);
|
2921 |
|
|
cfm = extract_unsigned_integer (buf, 8, byte_order);
|
2922 |
|
|
rrb_pr = (cfm >> 32) & 0x3f;
|
2923 |
|
|
|
2924 |
|
|
/* Adjust the register number to account for register rotation. */
|
2925 |
|
|
regnum = VP16_REGNUM + ((regnum - VP16_REGNUM) + rrb_pr) % 48;
|
2926 |
|
|
}
|
2927 |
|
|
prN_val = extract_bit_field (value_contents_all (val),
|
2928 |
|
|
regnum - VP0_REGNUM, 1);
|
2929 |
|
|
return frame_unwind_got_constant (this_frame, regnum, prN_val);
|
2930 |
|
|
}
|
2931 |
|
|
|
2932 |
|
|
else if (IA64_NAT0_REGNUM <= regnum && regnum <= IA64_NAT127_REGNUM)
|
2933 |
|
|
{
|
2934 |
|
|
ULONGEST unatN_val;
|
2935 |
|
|
|
2936 |
|
|
unatN_val = extract_bit_field (value_contents_all (val),
|
2937 |
|
|
regnum - IA64_NAT0_REGNUM, 1);
|
2938 |
|
|
return frame_unwind_got_constant (this_frame, regnum, unatN_val);
|
2939 |
|
|
}
|
2940 |
|
|
|
2941 |
|
|
else if (regnum == IA64_BSP_REGNUM)
|
2942 |
|
|
{
|
2943 |
|
|
struct value *cfm_val;
|
2944 |
|
|
CORE_ADDR prev_bsp, prev_cfm;
|
2945 |
|
|
|
2946 |
|
|
/* We want to calculate the previous bsp as the end of the previous
|
2947 |
|
|
register stack frame. This corresponds to what the hardware bsp
|
2948 |
|
|
register will be if we pop the frame back which is why we might
|
2949 |
|
|
have been called. We know that libunwind will pass us back the
|
2950 |
|
|
beginning of the current frame so we should just add sof to it. */
|
2951 |
|
|
prev_bsp = extract_unsigned_integer (value_contents_all (val),
|
2952 |
|
|
8, byte_order);
|
2953 |
|
|
cfm_val = libunwind_frame_prev_register (this_frame, this_cache,
|
2954 |
|
|
IA64_CFM_REGNUM);
|
2955 |
|
|
prev_cfm = extract_unsigned_integer (value_contents_all (cfm_val),
|
2956 |
|
|
8, byte_order);
|
2957 |
|
|
prev_bsp = rse_address_add (prev_bsp, (prev_cfm & 0x7f));
|
2958 |
|
|
|
2959 |
|
|
return frame_unwind_got_constant (this_frame, regnum, prev_bsp);
|
2960 |
|
|
}
|
2961 |
|
|
else
|
2962 |
|
|
return val;
|
2963 |
|
|
}
|
2964 |
|
|
|
2965 |
|
|
static int
|
2966 |
|
|
ia64_libunwind_frame_sniffer (const struct frame_unwind *self,
|
2967 |
|
|
struct frame_info *this_frame,
|
2968 |
|
|
void **this_cache)
|
2969 |
|
|
{
|
2970 |
|
|
if (libunwind_is_initialized ()
|
2971 |
|
|
&& libunwind_frame_sniffer (self, this_frame, this_cache))
|
2972 |
|
|
return 1;
|
2973 |
|
|
|
2974 |
|
|
return 0;
|
2975 |
|
|
}
|
2976 |
|
|
|
2977 |
|
|
static const struct frame_unwind ia64_libunwind_frame_unwind =
|
2978 |
|
|
{
|
2979 |
|
|
NORMAL_FRAME,
|
2980 |
|
|
ia64_libunwind_frame_this_id,
|
2981 |
|
|
ia64_libunwind_frame_prev_register,
|
2982 |
|
|
NULL,
|
2983 |
|
|
ia64_libunwind_frame_sniffer,
|
2984 |
|
|
libunwind_frame_dealloc_cache
|
2985 |
|
|
};
|
2986 |
|
|
|
2987 |
|
|
static void
|
2988 |
|
|
ia64_libunwind_sigtramp_frame_this_id (struct frame_info *this_frame,
|
2989 |
|
|
void **this_cache,
|
2990 |
|
|
struct frame_id *this_id)
|
2991 |
|
|
{
|
2992 |
|
|
struct gdbarch *gdbarch = get_frame_arch (this_frame);
|
2993 |
|
|
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
2994 |
|
|
char buf[8];
|
2995 |
|
|
CORE_ADDR bsp;
|
2996 |
|
|
struct frame_id id = outer_frame_id;
|
2997 |
|
|
CORE_ADDR prev_ip;
|
2998 |
|
|
|
2999 |
|
|
libunwind_frame_this_id (this_frame, this_cache, &id);
|
3000 |
|
|
if (frame_id_eq (id, outer_frame_id))
|
3001 |
|
|
{
|
3002 |
|
|
(*this_id) = outer_frame_id;
|
3003 |
|
|
return;
|
3004 |
|
|
}
|
3005 |
|
|
|
3006 |
|
|
/* We must add the bsp as the special address for frame comparison
|
3007 |
|
|
purposes. */
|
3008 |
|
|
get_frame_register (this_frame, IA64_BSP_REGNUM, buf);
|
3009 |
|
|
bsp = extract_unsigned_integer (buf, 8, byte_order);
|
3010 |
|
|
|
3011 |
|
|
/* For a sigtramp frame, we don't make the check for previous ip being 0. */
|
3012 |
|
|
(*this_id) = frame_id_build_special (id.stack_addr, id.code_addr, bsp);
|
3013 |
|
|
|
3014 |
|
|
if (gdbarch_debug >= 1)
|
3015 |
|
|
fprintf_unfiltered (gdb_stdlog,
|
3016 |
|
|
"libunwind sigtramp frame id: code %s, stack %s, special %s, this_frame %s\n",
|
3017 |
|
|
paddress (gdbarch, id.code_addr),
|
3018 |
|
|
paddress (gdbarch, id.stack_addr),
|
3019 |
|
|
paddress (gdbarch, bsp),
|
3020 |
|
|
host_address_to_string (this_frame));
|
3021 |
|
|
}
|
3022 |
|
|
|
3023 |
|
|
static struct value *
|
3024 |
|
|
ia64_libunwind_sigtramp_frame_prev_register (struct frame_info *this_frame,
|
3025 |
|
|
void **this_cache, int regnum)
|
3026 |
|
|
{
|
3027 |
|
|
struct gdbarch *gdbarch = get_frame_arch (this_frame);
|
3028 |
|
|
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
3029 |
|
|
struct value *prev_ip_val;
|
3030 |
|
|
CORE_ADDR prev_ip;
|
3031 |
|
|
|
3032 |
|
|
/* If the previous frame pc value is 0, then we want to use the SIGCONTEXT
|
3033 |
|
|
method of getting previous registers. */
|
3034 |
|
|
prev_ip_val = libunwind_frame_prev_register (this_frame, this_cache,
|
3035 |
|
|
IA64_IP_REGNUM);
|
3036 |
|
|
prev_ip = extract_unsigned_integer (value_contents_all (prev_ip_val),
|
3037 |
|
|
8, byte_order);
|
3038 |
|
|
|
3039 |
|
|
if (prev_ip == 0)
|
3040 |
|
|
{
|
3041 |
|
|
void *tmp_cache = NULL;
|
3042 |
|
|
return ia64_sigtramp_frame_prev_register (this_frame, &tmp_cache,
|
3043 |
|
|
regnum);
|
3044 |
|
|
}
|
3045 |
|
|
else
|
3046 |
|
|
return ia64_libunwind_frame_prev_register (this_frame, this_cache, regnum);
|
3047 |
|
|
}
|
3048 |
|
|
|
3049 |
|
|
static int
|
3050 |
|
|
ia64_libunwind_sigtramp_frame_sniffer (const struct frame_unwind *self,
|
3051 |
|
|
struct frame_info *this_frame,
|
3052 |
|
|
void **this_cache)
|
3053 |
|
|
{
|
3054 |
|
|
if (libunwind_is_initialized ())
|
3055 |
|
|
{
|
3056 |
|
|
if (libunwind_sigtramp_frame_sniffer (self, this_frame, this_cache))
|
3057 |
|
|
return 1;
|
3058 |
|
|
return 0;
|
3059 |
|
|
}
|
3060 |
|
|
else
|
3061 |
|
|
return ia64_sigtramp_frame_sniffer (self, this_frame, this_cache);
|
3062 |
|
|
}
|
3063 |
|
|
|
3064 |
|
|
static const struct frame_unwind ia64_libunwind_sigtramp_frame_unwind =
|
3065 |
|
|
{
|
3066 |
|
|
SIGTRAMP_FRAME,
|
3067 |
|
|
ia64_libunwind_sigtramp_frame_this_id,
|
3068 |
|
|
ia64_libunwind_sigtramp_frame_prev_register,
|
3069 |
|
|
NULL,
|
3070 |
|
|
ia64_libunwind_sigtramp_frame_sniffer
|
3071 |
|
|
};
|
3072 |
|
|
|
3073 |
|
|
/* Set of libunwind callback acccessor functions. */
|
3074 |
|
|
static unw_accessors_t ia64_unw_accessors =
|
3075 |
|
|
{
|
3076 |
|
|
ia64_find_proc_info_x,
|
3077 |
|
|
ia64_put_unwind_info,
|
3078 |
|
|
ia64_get_dyn_info_list,
|
3079 |
|
|
ia64_access_mem,
|
3080 |
|
|
ia64_access_reg,
|
3081 |
|
|
ia64_access_fpreg,
|
3082 |
|
|
/* resume */
|
3083 |
|
|
/* get_proc_name */
|
3084 |
|
|
};
|
3085 |
|
|
|
3086 |
|
|
/* Set of special libunwind callback acccessor functions specific for accessing
|
3087 |
|
|
the rse registers. At the top of the stack, we want libunwind to figure out
|
3088 |
|
|
how to read r32 - r127. Though usually they are found sequentially in memory
|
3089 |
|
|
starting from $bof, this is not always true. */
|
3090 |
|
|
static unw_accessors_t ia64_unw_rse_accessors =
|
3091 |
|
|
{
|
3092 |
|
|
ia64_find_proc_info_x,
|
3093 |
|
|
ia64_put_unwind_info,
|
3094 |
|
|
ia64_get_dyn_info_list,
|
3095 |
|
|
ia64_access_mem,
|
3096 |
|
|
ia64_access_rse_reg,
|
3097 |
|
|
ia64_access_rse_fpreg,
|
3098 |
|
|
/* resume */
|
3099 |
|
|
/* get_proc_name */
|
3100 |
|
|
};
|
3101 |
|
|
|
3102 |
|
|
/* Set of ia64 gdb libunwind-frame callbacks and data for generic libunwind-frame code to use. */
|
3103 |
|
|
static struct libunwind_descr ia64_libunwind_descr =
|
3104 |
|
|
{
|
3105 |
|
|
ia64_gdb2uw_regnum,
|
3106 |
|
|
ia64_uw2gdb_regnum,
|
3107 |
|
|
ia64_is_fpreg,
|
3108 |
|
|
&ia64_unw_accessors,
|
3109 |
|
|
&ia64_unw_rse_accessors,
|
3110 |
|
|
};
|
3111 |
|
|
|
3112 |
|
|
#endif /* HAVE_LIBUNWIND_IA64_H */
|
3113 |
|
|
|
3114 |
|
|
static int
|
3115 |
|
|
ia64_use_struct_convention (struct type *type)
|
3116 |
|
|
{
|
3117 |
|
|
struct type *float_elt_type;
|
3118 |
|
|
|
3119 |
|
|
/* Don't use the struct convention for anything but structure,
|
3120 |
|
|
union, or array types. */
|
3121 |
|
|
if (!(TYPE_CODE (type) == TYPE_CODE_STRUCT
|
3122 |
|
|
|| TYPE_CODE (type) == TYPE_CODE_UNION
|
3123 |
|
|
|| TYPE_CODE (type) == TYPE_CODE_ARRAY))
|
3124 |
|
|
return 0;
|
3125 |
|
|
|
3126 |
|
|
/* HFAs are structures (or arrays) consisting entirely of floating
|
3127 |
|
|
point values of the same length. Up to 8 of these are returned
|
3128 |
|
|
in registers. Don't use the struct convention when this is the
|
3129 |
|
|
case. */
|
3130 |
|
|
float_elt_type = is_float_or_hfa_type (type);
|
3131 |
|
|
if (float_elt_type != NULL
|
3132 |
|
|
&& TYPE_LENGTH (type) / TYPE_LENGTH (float_elt_type) <= 8)
|
3133 |
|
|
return 0;
|
3134 |
|
|
|
3135 |
|
|
/* Other structs of length 32 or less are returned in r8-r11.
|
3136 |
|
|
Don't use the struct convention for those either. */
|
3137 |
|
|
return TYPE_LENGTH (type) > 32;
|
3138 |
|
|
}
|
3139 |
|
|
|
3140 |
|
|
static void
|
3141 |
|
|
ia64_extract_return_value (struct type *type, struct regcache *regcache,
|
3142 |
|
|
gdb_byte *valbuf)
|
3143 |
|
|
{
|
3144 |
|
|
struct gdbarch *gdbarch = get_regcache_arch (regcache);
|
3145 |
|
|
struct type *float_elt_type;
|
3146 |
|
|
|
3147 |
|
|
float_elt_type = is_float_or_hfa_type (type);
|
3148 |
|
|
if (float_elt_type != NULL)
|
3149 |
|
|
{
|
3150 |
|
|
char from[MAX_REGISTER_SIZE];
|
3151 |
|
|
int offset = 0;
|
3152 |
|
|
int regnum = IA64_FR8_REGNUM;
|
3153 |
|
|
int n = TYPE_LENGTH (type) / TYPE_LENGTH (float_elt_type);
|
3154 |
|
|
|
3155 |
|
|
while (n-- > 0)
|
3156 |
|
|
{
|
3157 |
|
|
regcache_cooked_read (regcache, regnum, from);
|
3158 |
|
|
convert_typed_floating (from, ia64_ext_type (gdbarch),
|
3159 |
|
|
(char *)valbuf + offset, float_elt_type);
|
3160 |
|
|
offset += TYPE_LENGTH (float_elt_type);
|
3161 |
|
|
regnum++;
|
3162 |
|
|
}
|
3163 |
|
|
}
|
3164 |
|
|
else
|
3165 |
|
|
{
|
3166 |
|
|
ULONGEST val;
|
3167 |
|
|
int offset = 0;
|
3168 |
|
|
int regnum = IA64_GR8_REGNUM;
|
3169 |
|
|
int reglen = TYPE_LENGTH (register_type (gdbarch, IA64_GR8_REGNUM));
|
3170 |
|
|
int n = TYPE_LENGTH (type) / reglen;
|
3171 |
|
|
int m = TYPE_LENGTH (type) % reglen;
|
3172 |
|
|
|
3173 |
|
|
while (n-- > 0)
|
3174 |
|
|
{
|
3175 |
|
|
ULONGEST val;
|
3176 |
|
|
regcache_cooked_read_unsigned (regcache, regnum, &val);
|
3177 |
|
|
memcpy ((char *)valbuf + offset, &val, reglen);
|
3178 |
|
|
offset += reglen;
|
3179 |
|
|
regnum++;
|
3180 |
|
|
}
|
3181 |
|
|
|
3182 |
|
|
if (m)
|
3183 |
|
|
{
|
3184 |
|
|
regcache_cooked_read_unsigned (regcache, regnum, &val);
|
3185 |
|
|
memcpy ((char *)valbuf + offset, &val, m);
|
3186 |
|
|
}
|
3187 |
|
|
}
|
3188 |
|
|
}
|
3189 |
|
|
|
3190 |
|
|
static void
|
3191 |
|
|
ia64_store_return_value (struct type *type, struct regcache *regcache,
|
3192 |
|
|
const gdb_byte *valbuf)
|
3193 |
|
|
{
|
3194 |
|
|
struct gdbarch *gdbarch = get_regcache_arch (regcache);
|
3195 |
|
|
struct type *float_elt_type;
|
3196 |
|
|
|
3197 |
|
|
float_elt_type = is_float_or_hfa_type (type);
|
3198 |
|
|
if (float_elt_type != NULL)
|
3199 |
|
|
{
|
3200 |
|
|
char to[MAX_REGISTER_SIZE];
|
3201 |
|
|
int offset = 0;
|
3202 |
|
|
int regnum = IA64_FR8_REGNUM;
|
3203 |
|
|
int n = TYPE_LENGTH (type) / TYPE_LENGTH (float_elt_type);
|
3204 |
|
|
|
3205 |
|
|
while (n-- > 0)
|
3206 |
|
|
{
|
3207 |
|
|
convert_typed_floating ((char *)valbuf + offset, float_elt_type,
|
3208 |
|
|
to, ia64_ext_type (gdbarch));
|
3209 |
|
|
regcache_cooked_write (regcache, regnum, to);
|
3210 |
|
|
offset += TYPE_LENGTH (float_elt_type);
|
3211 |
|
|
regnum++;
|
3212 |
|
|
}
|
3213 |
|
|
}
|
3214 |
|
|
else
|
3215 |
|
|
{
|
3216 |
|
|
ULONGEST val;
|
3217 |
|
|
int offset = 0;
|
3218 |
|
|
int regnum = IA64_GR8_REGNUM;
|
3219 |
|
|
int reglen = TYPE_LENGTH (register_type (gdbarch, IA64_GR8_REGNUM));
|
3220 |
|
|
int n = TYPE_LENGTH (type) / reglen;
|
3221 |
|
|
int m = TYPE_LENGTH (type) % reglen;
|
3222 |
|
|
|
3223 |
|
|
while (n-- > 0)
|
3224 |
|
|
{
|
3225 |
|
|
ULONGEST val;
|
3226 |
|
|
memcpy (&val, (char *)valbuf + offset, reglen);
|
3227 |
|
|
regcache_cooked_write_unsigned (regcache, regnum, val);
|
3228 |
|
|
offset += reglen;
|
3229 |
|
|
regnum++;
|
3230 |
|
|
}
|
3231 |
|
|
|
3232 |
|
|
if (m)
|
3233 |
|
|
{
|
3234 |
|
|
memcpy (&val, (char *)valbuf + offset, m);
|
3235 |
|
|
regcache_cooked_write_unsigned (regcache, regnum, val);
|
3236 |
|
|
}
|
3237 |
|
|
}
|
3238 |
|
|
}
|
3239 |
|
|
|
3240 |
|
|
static enum return_value_convention
|
3241 |
|
|
ia64_return_value (struct gdbarch *gdbarch, struct type *func_type,
|
3242 |
|
|
struct type *valtype, struct regcache *regcache,
|
3243 |
|
|
gdb_byte *readbuf, const gdb_byte *writebuf)
|
3244 |
|
|
{
|
3245 |
|
|
int struct_return = ia64_use_struct_convention (valtype);
|
3246 |
|
|
|
3247 |
|
|
if (writebuf != NULL)
|
3248 |
|
|
{
|
3249 |
|
|
gdb_assert (!struct_return);
|
3250 |
|
|
ia64_store_return_value (valtype, regcache, writebuf);
|
3251 |
|
|
}
|
3252 |
|
|
|
3253 |
|
|
if (readbuf != NULL)
|
3254 |
|
|
{
|
3255 |
|
|
gdb_assert (!struct_return);
|
3256 |
|
|
ia64_extract_return_value (valtype, regcache, readbuf);
|
3257 |
|
|
}
|
3258 |
|
|
|
3259 |
|
|
if (struct_return)
|
3260 |
|
|
return RETURN_VALUE_STRUCT_CONVENTION;
|
3261 |
|
|
else
|
3262 |
|
|
return RETURN_VALUE_REGISTER_CONVENTION;
|
3263 |
|
|
}
|
3264 |
|
|
|
3265 |
|
|
static int
|
3266 |
|
|
is_float_or_hfa_type_recurse (struct type *t, struct type **etp)
|
3267 |
|
|
{
|
3268 |
|
|
switch (TYPE_CODE (t))
|
3269 |
|
|
{
|
3270 |
|
|
case TYPE_CODE_FLT:
|
3271 |
|
|
if (*etp)
|
3272 |
|
|
return TYPE_LENGTH (*etp) == TYPE_LENGTH (t);
|
3273 |
|
|
else
|
3274 |
|
|
{
|
3275 |
|
|
*etp = t;
|
3276 |
|
|
return 1;
|
3277 |
|
|
}
|
3278 |
|
|
break;
|
3279 |
|
|
case TYPE_CODE_ARRAY:
|
3280 |
|
|
return
|
3281 |
|
|
is_float_or_hfa_type_recurse (check_typedef (TYPE_TARGET_TYPE (t)),
|
3282 |
|
|
etp);
|
3283 |
|
|
break;
|
3284 |
|
|
case TYPE_CODE_STRUCT:
|
3285 |
|
|
{
|
3286 |
|
|
int i;
|
3287 |
|
|
|
3288 |
|
|
for (i = 0; i < TYPE_NFIELDS (t); i++)
|
3289 |
|
|
if (!is_float_or_hfa_type_recurse
|
3290 |
|
|
(check_typedef (TYPE_FIELD_TYPE (t, i)), etp))
|
3291 |
|
|
return 0;
|
3292 |
|
|
return 1;
|
3293 |
|
|
}
|
3294 |
|
|
break;
|
3295 |
|
|
default:
|
3296 |
|
|
return 0;
|
3297 |
|
|
break;
|
3298 |
|
|
}
|
3299 |
|
|
}
|
3300 |
|
|
|
3301 |
|
|
/* Determine if the given type is one of the floating point types or
|
3302 |
|
|
and HFA (which is a struct, array, or combination thereof whose
|
3303 |
|
|
bottom-most elements are all of the same floating point type). */
|
3304 |
|
|
|
3305 |
|
|
static struct type *
|
3306 |
|
|
is_float_or_hfa_type (struct type *t)
|
3307 |
|
|
{
|
3308 |
|
|
struct type *et = 0;
|
3309 |
|
|
|
3310 |
|
|
return is_float_or_hfa_type_recurse (t, &et) ? et : 0;
|
3311 |
|
|
}
|
3312 |
|
|
|
3313 |
|
|
|
3314 |
|
|
/* Return 1 if the alignment of T is such that the next even slot
|
3315 |
|
|
should be used. Return 0, if the next available slot should
|
3316 |
|
|
be used. (See section 8.5.1 of the IA-64 Software Conventions
|
3317 |
|
|
and Runtime manual). */
|
3318 |
|
|
|
3319 |
|
|
static int
|
3320 |
|
|
slot_alignment_is_next_even (struct type *t)
|
3321 |
|
|
{
|
3322 |
|
|
switch (TYPE_CODE (t))
|
3323 |
|
|
{
|
3324 |
|
|
case TYPE_CODE_INT:
|
3325 |
|
|
case TYPE_CODE_FLT:
|
3326 |
|
|
if (TYPE_LENGTH (t) > 8)
|
3327 |
|
|
return 1;
|
3328 |
|
|
else
|
3329 |
|
|
return 0;
|
3330 |
|
|
case TYPE_CODE_ARRAY:
|
3331 |
|
|
return
|
3332 |
|
|
slot_alignment_is_next_even (check_typedef (TYPE_TARGET_TYPE (t)));
|
3333 |
|
|
case TYPE_CODE_STRUCT:
|
3334 |
|
|
{
|
3335 |
|
|
int i;
|
3336 |
|
|
|
3337 |
|
|
for (i = 0; i < TYPE_NFIELDS (t); i++)
|
3338 |
|
|
if (slot_alignment_is_next_even
|
3339 |
|
|
(check_typedef (TYPE_FIELD_TYPE (t, i))))
|
3340 |
|
|
return 1;
|
3341 |
|
|
return 0;
|
3342 |
|
|
}
|
3343 |
|
|
default:
|
3344 |
|
|
return 0;
|
3345 |
|
|
}
|
3346 |
|
|
}
|
3347 |
|
|
|
3348 |
|
|
/* Attempt to find (and return) the global pointer for the given
|
3349 |
|
|
function.
|
3350 |
|
|
|
3351 |
|
|
This is a rather nasty bit of code searchs for the .dynamic section
|
3352 |
|
|
in the objfile corresponding to the pc of the function we're trying
|
3353 |
|
|
to call. Once it finds the addresses at which the .dynamic section
|
3354 |
|
|
lives in the child process, it scans the Elf64_Dyn entries for a
|
3355 |
|
|
DT_PLTGOT tag. If it finds one of these, the corresponding
|
3356 |
|
|
d_un.d_ptr value is the global pointer. */
|
3357 |
|
|
|
3358 |
|
|
static CORE_ADDR
|
3359 |
|
|
ia64_find_global_pointer (struct gdbarch *gdbarch, CORE_ADDR faddr)
|
3360 |
|
|
{
|
3361 |
|
|
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
3362 |
|
|
struct obj_section *faddr_sect;
|
3363 |
|
|
|
3364 |
|
|
faddr_sect = find_pc_section (faddr);
|
3365 |
|
|
if (faddr_sect != NULL)
|
3366 |
|
|
{
|
3367 |
|
|
struct obj_section *osect;
|
3368 |
|
|
|
3369 |
|
|
ALL_OBJFILE_OSECTIONS (faddr_sect->objfile, osect)
|
3370 |
|
|
{
|
3371 |
|
|
if (strcmp (osect->the_bfd_section->name, ".dynamic") == 0)
|
3372 |
|
|
break;
|
3373 |
|
|
}
|
3374 |
|
|
|
3375 |
|
|
if (osect < faddr_sect->objfile->sections_end)
|
3376 |
|
|
{
|
3377 |
|
|
CORE_ADDR addr, endaddr;
|
3378 |
|
|
|
3379 |
|
|
addr = obj_section_addr (osect);
|
3380 |
|
|
endaddr = obj_section_endaddr (osect);
|
3381 |
|
|
|
3382 |
|
|
while (addr < endaddr)
|
3383 |
|
|
{
|
3384 |
|
|
int status;
|
3385 |
|
|
LONGEST tag;
|
3386 |
|
|
char buf[8];
|
3387 |
|
|
|
3388 |
|
|
status = target_read_memory (addr, buf, sizeof (buf));
|
3389 |
|
|
if (status != 0)
|
3390 |
|
|
break;
|
3391 |
|
|
tag = extract_signed_integer (buf, sizeof (buf), byte_order);
|
3392 |
|
|
|
3393 |
|
|
if (tag == DT_PLTGOT)
|
3394 |
|
|
{
|
3395 |
|
|
CORE_ADDR global_pointer;
|
3396 |
|
|
|
3397 |
|
|
status = target_read_memory (addr + 8, buf, sizeof (buf));
|
3398 |
|
|
if (status != 0)
|
3399 |
|
|
break;
|
3400 |
|
|
global_pointer = extract_unsigned_integer (buf, sizeof (buf),
|
3401 |
|
|
byte_order);
|
3402 |
|
|
|
3403 |
|
|
/* The payoff... */
|
3404 |
|
|
return global_pointer;
|
3405 |
|
|
}
|
3406 |
|
|
|
3407 |
|
|
if (tag == DT_NULL)
|
3408 |
|
|
break;
|
3409 |
|
|
|
3410 |
|
|
addr += 16;
|
3411 |
|
|
}
|
3412 |
|
|
}
|
3413 |
|
|
}
|
3414 |
|
|
return 0;
|
3415 |
|
|
}
|
3416 |
|
|
|
3417 |
|
|
/* Given a function's address, attempt to find (and return) the
|
3418 |
|
|
corresponding (canonical) function descriptor. Return 0 if
|
3419 |
|
|
not found. */
|
3420 |
|
|
static CORE_ADDR
|
3421 |
|
|
find_extant_func_descr (struct gdbarch *gdbarch, CORE_ADDR faddr)
|
3422 |
|
|
{
|
3423 |
|
|
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
3424 |
|
|
struct obj_section *faddr_sect;
|
3425 |
|
|
|
3426 |
|
|
/* Return early if faddr is already a function descriptor. */
|
3427 |
|
|
faddr_sect = find_pc_section (faddr);
|
3428 |
|
|
if (faddr_sect && strcmp (faddr_sect->the_bfd_section->name, ".opd") == 0)
|
3429 |
|
|
return faddr;
|
3430 |
|
|
|
3431 |
|
|
if (faddr_sect != NULL)
|
3432 |
|
|
{
|
3433 |
|
|
struct obj_section *osect;
|
3434 |
|
|
ALL_OBJFILE_OSECTIONS (faddr_sect->objfile, osect)
|
3435 |
|
|
{
|
3436 |
|
|
if (strcmp (osect->the_bfd_section->name, ".opd") == 0)
|
3437 |
|
|
break;
|
3438 |
|
|
}
|
3439 |
|
|
|
3440 |
|
|
if (osect < faddr_sect->objfile->sections_end)
|
3441 |
|
|
{
|
3442 |
|
|
CORE_ADDR addr, endaddr;
|
3443 |
|
|
|
3444 |
|
|
addr = obj_section_addr (osect);
|
3445 |
|
|
endaddr = obj_section_endaddr (osect);
|
3446 |
|
|
|
3447 |
|
|
while (addr < endaddr)
|
3448 |
|
|
{
|
3449 |
|
|
int status;
|
3450 |
|
|
LONGEST faddr2;
|
3451 |
|
|
char buf[8];
|
3452 |
|
|
|
3453 |
|
|
status = target_read_memory (addr, buf, sizeof (buf));
|
3454 |
|
|
if (status != 0)
|
3455 |
|
|
break;
|
3456 |
|
|
faddr2 = extract_signed_integer (buf, sizeof (buf), byte_order);
|
3457 |
|
|
|
3458 |
|
|
if (faddr == faddr2)
|
3459 |
|
|
return addr;
|
3460 |
|
|
|
3461 |
|
|
addr += 16;
|
3462 |
|
|
}
|
3463 |
|
|
}
|
3464 |
|
|
}
|
3465 |
|
|
return 0;
|
3466 |
|
|
}
|
3467 |
|
|
|
3468 |
|
|
/* Attempt to find a function descriptor corresponding to the
|
3469 |
|
|
given address. If none is found, construct one on the
|
3470 |
|
|
stack using the address at fdaptr. */
|
3471 |
|
|
|
3472 |
|
|
static CORE_ADDR
|
3473 |
|
|
find_func_descr (struct regcache *regcache, CORE_ADDR faddr, CORE_ADDR *fdaptr)
|
3474 |
|
|
{
|
3475 |
|
|
struct gdbarch *gdbarch = get_regcache_arch (regcache);
|
3476 |
|
|
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
3477 |
|
|
CORE_ADDR fdesc;
|
3478 |
|
|
|
3479 |
|
|
fdesc = find_extant_func_descr (gdbarch, faddr);
|
3480 |
|
|
|
3481 |
|
|
if (fdesc == 0)
|
3482 |
|
|
{
|
3483 |
|
|
ULONGEST global_pointer;
|
3484 |
|
|
char buf[16];
|
3485 |
|
|
|
3486 |
|
|
fdesc = *fdaptr;
|
3487 |
|
|
*fdaptr += 16;
|
3488 |
|
|
|
3489 |
|
|
global_pointer = ia64_find_global_pointer (gdbarch, faddr);
|
3490 |
|
|
|
3491 |
|
|
if (global_pointer == 0)
|
3492 |
|
|
regcache_cooked_read_unsigned (regcache,
|
3493 |
|
|
IA64_GR1_REGNUM, &global_pointer);
|
3494 |
|
|
|
3495 |
|
|
store_unsigned_integer (buf, 8, byte_order, faddr);
|
3496 |
|
|
store_unsigned_integer (buf + 8, 8, byte_order, global_pointer);
|
3497 |
|
|
|
3498 |
|
|
write_memory (fdesc, buf, 16);
|
3499 |
|
|
}
|
3500 |
|
|
|
3501 |
|
|
return fdesc;
|
3502 |
|
|
}
|
3503 |
|
|
|
3504 |
|
|
/* Use the following routine when printing out function pointers
|
3505 |
|
|
so the user can see the function address rather than just the
|
3506 |
|
|
function descriptor. */
|
3507 |
|
|
static CORE_ADDR
|
3508 |
|
|
ia64_convert_from_func_ptr_addr (struct gdbarch *gdbarch, CORE_ADDR addr,
|
3509 |
|
|
struct target_ops *targ)
|
3510 |
|
|
{
|
3511 |
|
|
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
3512 |
|
|
struct obj_section *s;
|
3513 |
|
|
gdb_byte buf[8];
|
3514 |
|
|
|
3515 |
|
|
s = find_pc_section (addr);
|
3516 |
|
|
|
3517 |
|
|
/* check if ADDR points to a function descriptor. */
|
3518 |
|
|
if (s && strcmp (s->the_bfd_section->name, ".opd") == 0)
|
3519 |
|
|
return read_memory_unsigned_integer (addr, 8, byte_order);
|
3520 |
|
|
|
3521 |
|
|
/* Normally, functions live inside a section that is executable.
|
3522 |
|
|
So, if ADDR points to a non-executable section, then treat it
|
3523 |
|
|
as a function descriptor and return the target address iff
|
3524 |
|
|
the target address itself points to a section that is executable.
|
3525 |
|
|
Check first the memory of the whole length of 8 bytes is readable. */
|
3526 |
|
|
if (s && (s->the_bfd_section->flags & SEC_CODE) == 0
|
3527 |
|
|
&& target_read_memory (addr, buf, 8) == 0)
|
3528 |
|
|
{
|
3529 |
|
|
CORE_ADDR pc = extract_unsigned_integer (buf, 8, byte_order);
|
3530 |
|
|
struct obj_section *pc_section = find_pc_section (pc);
|
3531 |
|
|
|
3532 |
|
|
if (pc_section && (pc_section->the_bfd_section->flags & SEC_CODE))
|
3533 |
|
|
return pc;
|
3534 |
|
|
}
|
3535 |
|
|
|
3536 |
|
|
/* There are also descriptors embedded in vtables. */
|
3537 |
|
|
if (s)
|
3538 |
|
|
{
|
3539 |
|
|
struct minimal_symbol *minsym;
|
3540 |
|
|
|
3541 |
|
|
minsym = lookup_minimal_symbol_by_pc (addr);
|
3542 |
|
|
|
3543 |
|
|
if (minsym && is_vtable_name (SYMBOL_LINKAGE_NAME (minsym)))
|
3544 |
|
|
return read_memory_unsigned_integer (addr, 8, byte_order);
|
3545 |
|
|
}
|
3546 |
|
|
|
3547 |
|
|
return addr;
|
3548 |
|
|
}
|
3549 |
|
|
|
3550 |
|
|
static CORE_ADDR
|
3551 |
|
|
ia64_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
|
3552 |
|
|
{
|
3553 |
|
|
return sp & ~0xfLL;
|
3554 |
|
|
}
|
3555 |
|
|
|
3556 |
|
|
static CORE_ADDR
|
3557 |
|
|
ia64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
|
3558 |
|
|
struct regcache *regcache, CORE_ADDR bp_addr,
|
3559 |
|
|
int nargs, struct value **args, CORE_ADDR sp,
|
3560 |
|
|
int struct_return, CORE_ADDR struct_addr)
|
3561 |
|
|
{
|
3562 |
|
|
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
3563 |
|
|
int argno;
|
3564 |
|
|
struct value *arg;
|
3565 |
|
|
struct type *type;
|
3566 |
|
|
int len, argoffset;
|
3567 |
|
|
int nslots, rseslots, memslots, slotnum, nfuncargs;
|
3568 |
|
|
int floatreg;
|
3569 |
|
|
ULONGEST bsp, cfm, pfs, new_bsp;
|
3570 |
|
|
CORE_ADDR funcdescaddr, pc, global_pointer;
|
3571 |
|
|
CORE_ADDR func_addr = find_function_addr (function, NULL);
|
3572 |
|
|
|
3573 |
|
|
nslots = 0;
|
3574 |
|
|
nfuncargs = 0;
|
3575 |
|
|
/* Count the number of slots needed for the arguments. */
|
3576 |
|
|
for (argno = 0; argno < nargs; argno++)
|
3577 |
|
|
{
|
3578 |
|
|
arg = args[argno];
|
3579 |
|
|
type = check_typedef (value_type (arg));
|
3580 |
|
|
len = TYPE_LENGTH (type);
|
3581 |
|
|
|
3582 |
|
|
if ((nslots & 1) && slot_alignment_is_next_even (type))
|
3583 |
|
|
nslots++;
|
3584 |
|
|
|
3585 |
|
|
if (TYPE_CODE (type) == TYPE_CODE_FUNC)
|
3586 |
|
|
nfuncargs++;
|
3587 |
|
|
|
3588 |
|
|
nslots += (len + 7) / 8;
|
3589 |
|
|
}
|
3590 |
|
|
|
3591 |
|
|
/* Divvy up the slots between the RSE and the memory stack. */
|
3592 |
|
|
rseslots = (nslots > 8) ? 8 : nslots;
|
3593 |
|
|
memslots = nslots - rseslots;
|
3594 |
|
|
|
3595 |
|
|
/* Allocate a new RSE frame. */
|
3596 |
|
|
regcache_cooked_read_unsigned (regcache, IA64_CFM_REGNUM, &cfm);
|
3597 |
|
|
|
3598 |
|
|
regcache_cooked_read_unsigned (regcache, IA64_BSP_REGNUM, &bsp);
|
3599 |
|
|
new_bsp = rse_address_add (bsp, rseslots);
|
3600 |
|
|
regcache_cooked_write_unsigned (regcache, IA64_BSP_REGNUM, new_bsp);
|
3601 |
|
|
|
3602 |
|
|
regcache_cooked_read_unsigned (regcache, IA64_PFS_REGNUM, &pfs);
|
3603 |
|
|
pfs &= 0xc000000000000000LL;
|
3604 |
|
|
pfs |= (cfm & 0xffffffffffffLL);
|
3605 |
|
|
regcache_cooked_write_unsigned (regcache, IA64_PFS_REGNUM, pfs);
|
3606 |
|
|
|
3607 |
|
|
cfm &= 0xc000000000000000LL;
|
3608 |
|
|
cfm |= rseslots;
|
3609 |
|
|
regcache_cooked_write_unsigned (regcache, IA64_CFM_REGNUM, cfm);
|
3610 |
|
|
|
3611 |
|
|
/* We will attempt to find function descriptors in the .opd segment,
|
3612 |
|
|
but if we can't we'll construct them ourselves. That being the
|
3613 |
|
|
case, we'll need to reserve space on the stack for them. */
|
3614 |
|
|
funcdescaddr = sp - nfuncargs * 16;
|
3615 |
|
|
funcdescaddr &= ~0xfLL;
|
3616 |
|
|
|
3617 |
|
|
/* Adjust the stack pointer to it's new value. The calling conventions
|
3618 |
|
|
require us to have 16 bytes of scratch, plus whatever space is
|
3619 |
|
|
necessary for the memory slots and our function descriptors. */
|
3620 |
|
|
sp = sp - 16 - (memslots + nfuncargs) * 8;
|
3621 |
|
|
sp &= ~0xfLL; /* Maintain 16 byte alignment. */
|
3622 |
|
|
|
3623 |
|
|
/* Place the arguments where they belong. The arguments will be
|
3624 |
|
|
either placed in the RSE backing store or on the memory stack.
|
3625 |
|
|
In addition, floating point arguments or HFAs are placed in
|
3626 |
|
|
floating point registers. */
|
3627 |
|
|
slotnum = 0;
|
3628 |
|
|
floatreg = IA64_FR8_REGNUM;
|
3629 |
|
|
for (argno = 0; argno < nargs; argno++)
|
3630 |
|
|
{
|
3631 |
|
|
struct type *float_elt_type;
|
3632 |
|
|
|
3633 |
|
|
arg = args[argno];
|
3634 |
|
|
type = check_typedef (value_type (arg));
|
3635 |
|
|
len = TYPE_LENGTH (type);
|
3636 |
|
|
|
3637 |
|
|
/* Special handling for function parameters. */
|
3638 |
|
|
if (len == 8
|
3639 |
|
|
&& TYPE_CODE (type) == TYPE_CODE_PTR
|
3640 |
|
|
&& TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC)
|
3641 |
|
|
{
|
3642 |
|
|
char val_buf[8];
|
3643 |
|
|
ULONGEST faddr = extract_unsigned_integer (value_contents (arg),
|
3644 |
|
|
8, byte_order);
|
3645 |
|
|
store_unsigned_integer (val_buf, 8, byte_order,
|
3646 |
|
|
find_func_descr (regcache, faddr,
|
3647 |
|
|
&funcdescaddr));
|
3648 |
|
|
if (slotnum < rseslots)
|
3649 |
|
|
write_memory (rse_address_add (bsp, slotnum), val_buf, 8);
|
3650 |
|
|
else
|
3651 |
|
|
write_memory (sp + 16 + 8 * (slotnum - rseslots), val_buf, 8);
|
3652 |
|
|
slotnum++;
|
3653 |
|
|
continue;
|
3654 |
|
|
}
|
3655 |
|
|
|
3656 |
|
|
/* Normal slots. */
|
3657 |
|
|
|
3658 |
|
|
/* Skip odd slot if necessary... */
|
3659 |
|
|
if ((slotnum & 1) && slot_alignment_is_next_even (type))
|
3660 |
|
|
slotnum++;
|
3661 |
|
|
|
3662 |
|
|
argoffset = 0;
|
3663 |
|
|
while (len > 0)
|
3664 |
|
|
{
|
3665 |
|
|
char val_buf[8];
|
3666 |
|
|
|
3667 |
|
|
memset (val_buf, 0, 8);
|
3668 |
|
|
memcpy (val_buf, value_contents (arg) + argoffset, (len > 8) ? 8 : len);
|
3669 |
|
|
|
3670 |
|
|
if (slotnum < rseslots)
|
3671 |
|
|
write_memory (rse_address_add (bsp, slotnum), val_buf, 8);
|
3672 |
|
|
else
|
3673 |
|
|
write_memory (sp + 16 + 8 * (slotnum - rseslots), val_buf, 8);
|
3674 |
|
|
|
3675 |
|
|
argoffset += 8;
|
3676 |
|
|
len -= 8;
|
3677 |
|
|
slotnum++;
|
3678 |
|
|
}
|
3679 |
|
|
|
3680 |
|
|
/* Handle floating point types (including HFAs). */
|
3681 |
|
|
float_elt_type = is_float_or_hfa_type (type);
|
3682 |
|
|
if (float_elt_type != NULL)
|
3683 |
|
|
{
|
3684 |
|
|
argoffset = 0;
|
3685 |
|
|
len = TYPE_LENGTH (type);
|
3686 |
|
|
while (len > 0 && floatreg < IA64_FR16_REGNUM)
|
3687 |
|
|
{
|
3688 |
|
|
char to[MAX_REGISTER_SIZE];
|
3689 |
|
|
convert_typed_floating (value_contents (arg) + argoffset, float_elt_type,
|
3690 |
|
|
to, ia64_ext_type (gdbarch));
|
3691 |
|
|
regcache_cooked_write (regcache, floatreg, (void *)to);
|
3692 |
|
|
floatreg++;
|
3693 |
|
|
argoffset += TYPE_LENGTH (float_elt_type);
|
3694 |
|
|
len -= TYPE_LENGTH (float_elt_type);
|
3695 |
|
|
}
|
3696 |
|
|
}
|
3697 |
|
|
}
|
3698 |
|
|
|
3699 |
|
|
/* Store the struct return value in r8 if necessary. */
|
3700 |
|
|
if (struct_return)
|
3701 |
|
|
{
|
3702 |
|
|
regcache_cooked_write_unsigned (regcache, IA64_GR8_REGNUM, (ULONGEST)struct_addr);
|
3703 |
|
|
}
|
3704 |
|
|
|
3705 |
|
|
global_pointer = ia64_find_global_pointer (gdbarch, func_addr);
|
3706 |
|
|
|
3707 |
|
|
if (global_pointer != 0)
|
3708 |
|
|
regcache_cooked_write_unsigned (regcache, IA64_GR1_REGNUM, global_pointer);
|
3709 |
|
|
|
3710 |
|
|
regcache_cooked_write_unsigned (regcache, IA64_BR0_REGNUM, bp_addr);
|
3711 |
|
|
|
3712 |
|
|
regcache_cooked_write_unsigned (regcache, sp_regnum, sp);
|
3713 |
|
|
|
3714 |
|
|
return sp;
|
3715 |
|
|
}
|
3716 |
|
|
|
3717 |
|
|
static struct frame_id
|
3718 |
|
|
ia64_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
|
3719 |
|
|
{
|
3720 |
|
|
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
3721 |
|
|
char buf[8];
|
3722 |
|
|
CORE_ADDR sp, bsp;
|
3723 |
|
|
|
3724 |
|
|
get_frame_register (this_frame, sp_regnum, buf);
|
3725 |
|
|
sp = extract_unsigned_integer (buf, 8, byte_order);
|
3726 |
|
|
|
3727 |
|
|
get_frame_register (this_frame, IA64_BSP_REGNUM, buf);
|
3728 |
|
|
bsp = extract_unsigned_integer (buf, 8, byte_order);
|
3729 |
|
|
|
3730 |
|
|
if (gdbarch_debug >= 1)
|
3731 |
|
|
fprintf_unfiltered (gdb_stdlog,
|
3732 |
|
|
"dummy frame id: code %s, stack %s, special %s\n",
|
3733 |
|
|
paddress (gdbarch, get_frame_pc (this_frame)),
|
3734 |
|
|
paddress (gdbarch, sp), paddress (gdbarch, bsp));
|
3735 |
|
|
|
3736 |
|
|
return frame_id_build_special (sp, get_frame_pc (this_frame), bsp);
|
3737 |
|
|
}
|
3738 |
|
|
|
3739 |
|
|
static CORE_ADDR
|
3740 |
|
|
ia64_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
|
3741 |
|
|
{
|
3742 |
|
|
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
3743 |
|
|
char buf[8];
|
3744 |
|
|
CORE_ADDR ip, psr, pc;
|
3745 |
|
|
|
3746 |
|
|
frame_unwind_register (next_frame, IA64_IP_REGNUM, buf);
|
3747 |
|
|
ip = extract_unsigned_integer (buf, 8, byte_order);
|
3748 |
|
|
frame_unwind_register (next_frame, IA64_PSR_REGNUM, buf);
|
3749 |
|
|
psr = extract_unsigned_integer (buf, 8, byte_order);
|
3750 |
|
|
|
3751 |
|
|
pc = (ip & ~0xf) | ((psr >> 41) & 3);
|
3752 |
|
|
return pc;
|
3753 |
|
|
}
|
3754 |
|
|
|
3755 |
|
|
static int
|
3756 |
|
|
ia64_print_insn (bfd_vma memaddr, struct disassemble_info *info)
|
3757 |
|
|
{
|
3758 |
|
|
info->bytes_per_line = SLOT_MULTIPLIER;
|
3759 |
|
|
return print_insn_ia64 (memaddr, info);
|
3760 |
|
|
}
|
3761 |
|
|
|
3762 |
|
|
static struct gdbarch *
|
3763 |
|
|
ia64_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
|
3764 |
|
|
{
|
3765 |
|
|
struct gdbarch *gdbarch;
|
3766 |
|
|
struct gdbarch_tdep *tdep;
|
3767 |
|
|
|
3768 |
|
|
/* If there is already a candidate, use it. */
|
3769 |
|
|
arches = gdbarch_list_lookup_by_info (arches, &info);
|
3770 |
|
|
if (arches != NULL)
|
3771 |
|
|
return arches->gdbarch;
|
3772 |
|
|
|
3773 |
|
|
tdep = xzalloc (sizeof (struct gdbarch_tdep));
|
3774 |
|
|
gdbarch = gdbarch_alloc (&info, tdep);
|
3775 |
|
|
|
3776 |
|
|
/* According to the ia64 specs, instructions that store long double
|
3777 |
|
|
floats in memory use a long-double format different than that
|
3778 |
|
|
used in the floating registers. The memory format matches the
|
3779 |
|
|
x86 extended float format which is 80 bits. An OS may choose to
|
3780 |
|
|
use this format (e.g. GNU/Linux) or choose to use a different
|
3781 |
|
|
format for storing long doubles (e.g. HPUX). In the latter case,
|
3782 |
|
|
the setting of the format may be moved/overridden in an
|
3783 |
|
|
OS-specific tdep file. */
|
3784 |
|
|
set_gdbarch_long_double_format (gdbarch, floatformats_i387_ext);
|
3785 |
|
|
|
3786 |
|
|
set_gdbarch_short_bit (gdbarch, 16);
|
3787 |
|
|
set_gdbarch_int_bit (gdbarch, 32);
|
3788 |
|
|
set_gdbarch_long_bit (gdbarch, 64);
|
3789 |
|
|
set_gdbarch_long_long_bit (gdbarch, 64);
|
3790 |
|
|
set_gdbarch_float_bit (gdbarch, 32);
|
3791 |
|
|
set_gdbarch_double_bit (gdbarch, 64);
|
3792 |
|
|
set_gdbarch_long_double_bit (gdbarch, 128);
|
3793 |
|
|
set_gdbarch_ptr_bit (gdbarch, 64);
|
3794 |
|
|
|
3795 |
|
|
set_gdbarch_num_regs (gdbarch, NUM_IA64_RAW_REGS);
|
3796 |
|
|
set_gdbarch_num_pseudo_regs (gdbarch, LAST_PSEUDO_REGNUM - FIRST_PSEUDO_REGNUM);
|
3797 |
|
|
set_gdbarch_sp_regnum (gdbarch, sp_regnum);
|
3798 |
|
|
set_gdbarch_fp0_regnum (gdbarch, IA64_FR0_REGNUM);
|
3799 |
|
|
|
3800 |
|
|
set_gdbarch_register_name (gdbarch, ia64_register_name);
|
3801 |
|
|
set_gdbarch_register_type (gdbarch, ia64_register_type);
|
3802 |
|
|
|
3803 |
|
|
set_gdbarch_pseudo_register_read (gdbarch, ia64_pseudo_register_read);
|
3804 |
|
|
set_gdbarch_pseudo_register_write (gdbarch, ia64_pseudo_register_write);
|
3805 |
|
|
set_gdbarch_dwarf2_reg_to_regnum (gdbarch, ia64_dwarf_reg_to_regnum);
|
3806 |
|
|
set_gdbarch_register_reggroup_p (gdbarch, ia64_register_reggroup_p);
|
3807 |
|
|
set_gdbarch_convert_register_p (gdbarch, ia64_convert_register_p);
|
3808 |
|
|
set_gdbarch_register_to_value (gdbarch, ia64_register_to_value);
|
3809 |
|
|
set_gdbarch_value_to_register (gdbarch, ia64_value_to_register);
|
3810 |
|
|
|
3811 |
|
|
set_gdbarch_skip_prologue (gdbarch, ia64_skip_prologue);
|
3812 |
|
|
|
3813 |
|
|
set_gdbarch_return_value (gdbarch, ia64_return_value);
|
3814 |
|
|
|
3815 |
|
|
set_gdbarch_memory_insert_breakpoint (gdbarch, ia64_memory_insert_breakpoint);
|
3816 |
|
|
set_gdbarch_memory_remove_breakpoint (gdbarch, ia64_memory_remove_breakpoint);
|
3817 |
|
|
set_gdbarch_breakpoint_from_pc (gdbarch, ia64_breakpoint_from_pc);
|
3818 |
|
|
set_gdbarch_read_pc (gdbarch, ia64_read_pc);
|
3819 |
|
|
set_gdbarch_write_pc (gdbarch, ia64_write_pc);
|
3820 |
|
|
|
3821 |
|
|
/* Settings for calling functions in the inferior. */
|
3822 |
|
|
set_gdbarch_push_dummy_call (gdbarch, ia64_push_dummy_call);
|
3823 |
|
|
set_gdbarch_frame_align (gdbarch, ia64_frame_align);
|
3824 |
|
|
set_gdbarch_dummy_id (gdbarch, ia64_dummy_id);
|
3825 |
|
|
|
3826 |
|
|
set_gdbarch_unwind_pc (gdbarch, ia64_unwind_pc);
|
3827 |
|
|
#ifdef HAVE_LIBUNWIND_IA64_H
|
3828 |
|
|
frame_unwind_append_unwinder (gdbarch,
|
3829 |
|
|
&ia64_libunwind_sigtramp_frame_unwind);
|
3830 |
|
|
frame_unwind_append_unwinder (gdbarch, &ia64_libunwind_frame_unwind);
|
3831 |
|
|
frame_unwind_append_unwinder (gdbarch, &ia64_sigtramp_frame_unwind);
|
3832 |
|
|
libunwind_frame_set_descr (gdbarch, &ia64_libunwind_descr);
|
3833 |
|
|
#else
|
3834 |
|
|
frame_unwind_append_unwinder (gdbarch, &ia64_sigtramp_frame_unwind);
|
3835 |
|
|
#endif
|
3836 |
|
|
frame_unwind_append_unwinder (gdbarch, &ia64_frame_unwind);
|
3837 |
|
|
frame_base_set_default (gdbarch, &ia64_frame_base);
|
3838 |
|
|
|
3839 |
|
|
/* Settings that should be unnecessary. */
|
3840 |
|
|
set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
|
3841 |
|
|
|
3842 |
|
|
set_gdbarch_print_insn (gdbarch, ia64_print_insn);
|
3843 |
|
|
set_gdbarch_convert_from_func_ptr_addr (gdbarch, ia64_convert_from_func_ptr_addr);
|
3844 |
|
|
|
3845 |
|
|
/* The virtual table contains 16-byte descriptors, not pointers to
|
3846 |
|
|
descriptors. */
|
3847 |
|
|
set_gdbarch_vtable_function_descriptors (gdbarch, 1);
|
3848 |
|
|
|
3849 |
|
|
/* Hook in ABI-specific overrides, if they have been registered. */
|
3850 |
|
|
gdbarch_init_osabi (info, gdbarch);
|
3851 |
|
|
|
3852 |
|
|
return gdbarch;
|
3853 |
|
|
}
|
3854 |
|
|
|
3855 |
|
|
extern initialize_file_ftype _initialize_ia64_tdep; /* -Wmissing-prototypes */
|
3856 |
|
|
|
3857 |
|
|
void
|
3858 |
|
|
_initialize_ia64_tdep (void)
|
3859 |
|
|
{
|
3860 |
|
|
gdbarch_register (bfd_arch_ia64, ia64_gdbarch_init, NULL);
|
3861 |
|
|
}
|