1 |
227 |
jeremybenn |
/* Target-dependent code for Lattice Mico32 processor, for GDB.
|
2 |
|
|
Contributed by Jon Beniston <jon@beniston.com>
|
3 |
|
|
|
4 |
|
|
Copyright (C) 2009, 2010 Free Software Foundation, Inc.
|
5 |
|
|
|
6 |
|
|
This file is part of GDB.
|
7 |
|
|
|
8 |
|
|
This program is free software; you can redistribute it and/or modify
|
9 |
|
|
it under the terms of the GNU General Public License as published by
|
10 |
|
|
the Free Software Foundation; either version 3 of the License, or
|
11 |
|
|
(at your option) any later version.
|
12 |
|
|
|
13 |
|
|
This program is distributed in the hope that it will be useful,
|
14 |
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
15 |
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
16 |
|
|
GNU General Public License for more details.
|
17 |
|
|
|
18 |
|
|
You should have received a copy of the GNU General Public License
|
19 |
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>. */
|
20 |
|
|
|
21 |
|
|
#include "defs.h"
|
22 |
|
|
#include "frame.h"
|
23 |
|
|
#include "frame-unwind.h"
|
24 |
|
|
#include "frame-base.h"
|
25 |
|
|
#include "inferior.h"
|
26 |
|
|
#include "dis-asm.h"
|
27 |
|
|
#include "symfile.h"
|
28 |
|
|
#include "remote.h"
|
29 |
|
|
#include "gdbcore.h"
|
30 |
|
|
#include "gdb/sim-lm32.h"
|
31 |
|
|
#include "gdb/callback.h"
|
32 |
|
|
#include "gdb/remote-sim.h"
|
33 |
|
|
#include "sim-regno.h"
|
34 |
|
|
#include "arch-utils.h"
|
35 |
|
|
#include "regcache.h"
|
36 |
|
|
#include "trad-frame.h"
|
37 |
|
|
#include "reggroups.h"
|
38 |
|
|
#include "opcodes/lm32-desc.h"
|
39 |
|
|
|
40 |
|
|
#include "gdb_string.h"
|
41 |
|
|
|
42 |
|
|
/* Macros to extract fields from an instruction. */
|
43 |
|
|
#define LM32_OPCODE(insn) ((insn >> 26) & 0x3f)
|
44 |
|
|
#define LM32_REG0(insn) ((insn >> 21) & 0x1f)
|
45 |
|
|
#define LM32_REG1(insn) ((insn >> 16) & 0x1f)
|
46 |
|
|
#define LM32_REG2(insn) ((insn >> 11) & 0x1f)
|
47 |
|
|
#define LM32_IMM16(insn) ((((long)insn & 0xffff) << 16) >> 16)
|
48 |
|
|
|
49 |
|
|
struct gdbarch_tdep
|
50 |
|
|
{
|
51 |
|
|
/* gdbarch target dependent data here. Currently unused for LM32. */
|
52 |
|
|
};
|
53 |
|
|
|
54 |
|
|
struct lm32_frame_cache
|
55 |
|
|
{
|
56 |
|
|
/* The frame's base. Used when constructing a frame ID. */
|
57 |
|
|
CORE_ADDR base;
|
58 |
|
|
CORE_ADDR pc;
|
59 |
|
|
/* Size of frame. */
|
60 |
|
|
int size;
|
61 |
|
|
/* Table indicating the location of each and every register. */
|
62 |
|
|
struct trad_frame_saved_reg *saved_regs;
|
63 |
|
|
};
|
64 |
|
|
|
65 |
|
|
/* Add the available register groups. */
|
66 |
|
|
|
67 |
|
|
static void
|
68 |
|
|
lm32_add_reggroups (struct gdbarch *gdbarch)
|
69 |
|
|
{
|
70 |
|
|
reggroup_add (gdbarch, general_reggroup);
|
71 |
|
|
reggroup_add (gdbarch, all_reggroup);
|
72 |
|
|
reggroup_add (gdbarch, system_reggroup);
|
73 |
|
|
}
|
74 |
|
|
|
75 |
|
|
/* Return whether a given register is in a given group. */
|
76 |
|
|
|
77 |
|
|
static int
|
78 |
|
|
lm32_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
|
79 |
|
|
struct reggroup *group)
|
80 |
|
|
{
|
81 |
|
|
if (group == general_reggroup)
|
82 |
|
|
return ((regnum >= SIM_LM32_R0_REGNUM) && (regnum <= SIM_LM32_RA_REGNUM))
|
83 |
|
|
|| (regnum == SIM_LM32_PC_REGNUM);
|
84 |
|
|
else if (group == system_reggroup)
|
85 |
|
|
return ((regnum >= SIM_LM32_EA_REGNUM) && (regnum <= SIM_LM32_BA_REGNUM))
|
86 |
|
|
|| ((regnum >= SIM_LM32_EID_REGNUM) && (regnum <= SIM_LM32_IP_REGNUM));
|
87 |
|
|
return default_register_reggroup_p (gdbarch, regnum, group);
|
88 |
|
|
}
|
89 |
|
|
|
90 |
|
|
/* Return a name that corresponds to the given register number. */
|
91 |
|
|
|
92 |
|
|
static const char *
|
93 |
|
|
lm32_register_name (struct gdbarch *gdbarch, int reg_nr)
|
94 |
|
|
{
|
95 |
|
|
static char *register_names[] = {
|
96 |
|
|
"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
|
97 |
|
|
"r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
|
98 |
|
|
"r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
|
99 |
|
|
"r24", "r25", "gp", "fp", "sp", "ra", "ea", "ba",
|
100 |
|
|
"PC", "EID", "EBA", "DEBA", "IE", "IM", "IP"
|
101 |
|
|
};
|
102 |
|
|
|
103 |
|
|
if ((reg_nr < 0) || (reg_nr >= ARRAY_SIZE (register_names)))
|
104 |
|
|
return NULL;
|
105 |
|
|
else
|
106 |
|
|
return register_names[reg_nr];
|
107 |
|
|
}
|
108 |
|
|
|
109 |
|
|
/* Return type of register. */
|
110 |
|
|
|
111 |
|
|
static struct type *
|
112 |
|
|
lm32_register_type (struct gdbarch *gdbarch, int reg_nr)
|
113 |
|
|
{
|
114 |
|
|
return builtin_type (gdbarch)->builtin_int32;
|
115 |
|
|
}
|
116 |
|
|
|
117 |
|
|
/* Return non-zero if a register can't be written. */
|
118 |
|
|
|
119 |
|
|
static int
|
120 |
|
|
lm32_cannot_store_register (struct gdbarch *gdbarch, int regno)
|
121 |
|
|
{
|
122 |
|
|
return (regno == SIM_LM32_R0_REGNUM) || (regno == SIM_LM32_EID_REGNUM);
|
123 |
|
|
}
|
124 |
|
|
|
125 |
|
|
/* Analyze a function's prologue. */
|
126 |
|
|
|
127 |
|
|
static CORE_ADDR
|
128 |
|
|
lm32_analyze_prologue (struct gdbarch *gdbarch,
|
129 |
|
|
CORE_ADDR pc, CORE_ADDR limit,
|
130 |
|
|
struct lm32_frame_cache *info)
|
131 |
|
|
{
|
132 |
|
|
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
133 |
|
|
unsigned long instruction;
|
134 |
|
|
|
135 |
|
|
/* Keep reading though instructions, until we come across an instruction
|
136 |
|
|
that isn't likely to be part of the prologue. */
|
137 |
|
|
info->size = 0;
|
138 |
|
|
for (; pc < limit; pc += 4)
|
139 |
|
|
{
|
140 |
|
|
|
141 |
|
|
/* Read an instruction. */
|
142 |
|
|
instruction = read_memory_integer (pc, 4, byte_order);
|
143 |
|
|
|
144 |
|
|
if ((LM32_OPCODE (instruction) == OP_SW)
|
145 |
|
|
&& (LM32_REG0 (instruction) == SIM_LM32_SP_REGNUM))
|
146 |
|
|
{
|
147 |
|
|
/* Any stack displaced store is likely part of the prologue.
|
148 |
|
|
Record that the register is being saved, and the offset
|
149 |
|
|
into the stack. */
|
150 |
|
|
info->saved_regs[LM32_REG1 (instruction)].addr =
|
151 |
|
|
LM32_IMM16 (instruction);
|
152 |
|
|
}
|
153 |
|
|
else if ((LM32_OPCODE (instruction) == OP_ADDI)
|
154 |
|
|
&& (LM32_REG1 (instruction) == SIM_LM32_SP_REGNUM))
|
155 |
|
|
{
|
156 |
|
|
/* An add to the SP is likely to be part of the prologue.
|
157 |
|
|
Adjust stack size by whatever the instruction adds to the sp. */
|
158 |
|
|
info->size -= LM32_IMM16 (instruction);
|
159 |
|
|
}
|
160 |
|
|
else if ( /* add fp,fp,sp */
|
161 |
|
|
((LM32_OPCODE (instruction) == OP_ADD)
|
162 |
|
|
&& (LM32_REG2 (instruction) == SIM_LM32_FP_REGNUM)
|
163 |
|
|
&& (LM32_REG0 (instruction) == SIM_LM32_FP_REGNUM)
|
164 |
|
|
&& (LM32_REG1 (instruction) == SIM_LM32_SP_REGNUM))
|
165 |
|
|
/* mv fp,imm */
|
166 |
|
|
|| ((LM32_OPCODE (instruction) == OP_ADDI)
|
167 |
|
|
&& (LM32_REG1 (instruction) == SIM_LM32_FP_REGNUM)
|
168 |
|
|
&& (LM32_REG0 (instruction) == SIM_LM32_R0_REGNUM)))
|
169 |
|
|
{
|
170 |
|
|
/* Likely to be in the prologue for functions that require
|
171 |
|
|
a frame pointer. */
|
172 |
|
|
}
|
173 |
|
|
else
|
174 |
|
|
{
|
175 |
|
|
/* Any other instruction is likely not to be part of the prologue. */
|
176 |
|
|
break;
|
177 |
|
|
}
|
178 |
|
|
}
|
179 |
|
|
|
180 |
|
|
return pc;
|
181 |
|
|
}
|
182 |
|
|
|
183 |
|
|
/* Return PC of first non prologue instruction, for the function at the
|
184 |
|
|
specified address. */
|
185 |
|
|
|
186 |
|
|
static CORE_ADDR
|
187 |
|
|
lm32_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
|
188 |
|
|
{
|
189 |
|
|
CORE_ADDR func_addr, limit_pc;
|
190 |
|
|
struct symtab_and_line sal;
|
191 |
|
|
struct lm32_frame_cache frame_info;
|
192 |
|
|
struct trad_frame_saved_reg saved_regs[SIM_LM32_NUM_REGS];
|
193 |
|
|
|
194 |
|
|
/* See if we can determine the end of the prologue via the symbol table.
|
195 |
|
|
If so, then return either PC, or the PC after the prologue, whichever
|
196 |
|
|
is greater. */
|
197 |
|
|
if (find_pc_partial_function (pc, NULL, &func_addr, NULL))
|
198 |
|
|
{
|
199 |
|
|
CORE_ADDR post_prologue_pc
|
200 |
|
|
= skip_prologue_using_sal (gdbarch, func_addr);
|
201 |
|
|
if (post_prologue_pc != 0)
|
202 |
|
|
return max (pc, post_prologue_pc);
|
203 |
|
|
}
|
204 |
|
|
|
205 |
|
|
/* Can't determine prologue from the symbol table, need to examine
|
206 |
|
|
instructions. */
|
207 |
|
|
|
208 |
|
|
/* Find an upper limit on the function prologue using the debug
|
209 |
|
|
information. If the debug information could not be used to provide
|
210 |
|
|
that bound, then use an arbitrary large number as the upper bound. */
|
211 |
|
|
limit_pc = skip_prologue_using_sal (gdbarch, pc);
|
212 |
|
|
if (limit_pc == 0)
|
213 |
|
|
limit_pc = pc + 100; /* Magic. */
|
214 |
|
|
|
215 |
|
|
frame_info.saved_regs = saved_regs;
|
216 |
|
|
return lm32_analyze_prologue (gdbarch, pc, limit_pc, &frame_info);
|
217 |
|
|
}
|
218 |
|
|
|
219 |
|
|
/* Create a breakpoint instruction. */
|
220 |
|
|
|
221 |
|
|
static const gdb_byte *
|
222 |
|
|
lm32_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr,
|
223 |
|
|
int *lenptr)
|
224 |
|
|
{
|
225 |
|
|
static const gdb_byte breakpoint[4] = { OP_RAISE << 2, 0, 0, 2 };
|
226 |
|
|
|
227 |
|
|
*lenptr = sizeof (breakpoint);
|
228 |
|
|
return breakpoint;
|
229 |
|
|
}
|
230 |
|
|
|
231 |
|
|
/* Setup registers and stack for faking a call to a function in the
|
232 |
|
|
inferior. */
|
233 |
|
|
|
234 |
|
|
static CORE_ADDR
|
235 |
|
|
lm32_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
|
236 |
|
|
struct regcache *regcache, CORE_ADDR bp_addr,
|
237 |
|
|
int nargs, struct value **args, CORE_ADDR sp,
|
238 |
|
|
int struct_return, CORE_ADDR struct_addr)
|
239 |
|
|
{
|
240 |
|
|
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
241 |
|
|
int first_arg_reg = SIM_LM32_R1_REGNUM;
|
242 |
|
|
int num_arg_regs = 8;
|
243 |
|
|
int i;
|
244 |
|
|
|
245 |
|
|
/* Set the return address. */
|
246 |
|
|
regcache_cooked_write_signed (regcache, SIM_LM32_RA_REGNUM, bp_addr);
|
247 |
|
|
|
248 |
|
|
/* If we're returning a large struct, a pointer to the address to
|
249 |
|
|
store it at is passed as a first hidden parameter. */
|
250 |
|
|
if (struct_return)
|
251 |
|
|
{
|
252 |
|
|
regcache_cooked_write_unsigned (regcache, first_arg_reg, struct_addr);
|
253 |
|
|
first_arg_reg++;
|
254 |
|
|
num_arg_regs--;
|
255 |
|
|
sp -= 4;
|
256 |
|
|
}
|
257 |
|
|
|
258 |
|
|
/* Setup parameters. */
|
259 |
|
|
for (i = 0; i < nargs; i++)
|
260 |
|
|
{
|
261 |
|
|
struct value *arg = args[i];
|
262 |
|
|
struct type *arg_type = check_typedef (value_type (arg));
|
263 |
|
|
gdb_byte *contents;
|
264 |
|
|
int len;
|
265 |
|
|
int j;
|
266 |
|
|
int reg;
|
267 |
|
|
ULONGEST val;
|
268 |
|
|
|
269 |
|
|
/* Promote small integer types to int. */
|
270 |
|
|
switch (TYPE_CODE (arg_type))
|
271 |
|
|
{
|
272 |
|
|
case TYPE_CODE_INT:
|
273 |
|
|
case TYPE_CODE_BOOL:
|
274 |
|
|
case TYPE_CODE_CHAR:
|
275 |
|
|
case TYPE_CODE_RANGE:
|
276 |
|
|
case TYPE_CODE_ENUM:
|
277 |
|
|
if (TYPE_LENGTH (arg_type) < 4)
|
278 |
|
|
{
|
279 |
|
|
arg_type = builtin_type (gdbarch)->builtin_int32;
|
280 |
|
|
arg = value_cast (arg_type, arg);
|
281 |
|
|
}
|
282 |
|
|
break;
|
283 |
|
|
}
|
284 |
|
|
|
285 |
|
|
/* FIXME: Handle structures. */
|
286 |
|
|
|
287 |
|
|
contents = (gdb_byte *) value_contents (arg);
|
288 |
|
|
len = TYPE_LENGTH (arg_type);
|
289 |
|
|
val = extract_unsigned_integer (contents, len, byte_order);
|
290 |
|
|
|
291 |
|
|
/* First num_arg_regs parameters are passed by registers,
|
292 |
|
|
and the rest are passed on the stack. */
|
293 |
|
|
if (i < num_arg_regs)
|
294 |
|
|
regcache_cooked_write_unsigned (regcache, first_arg_reg + i, val);
|
295 |
|
|
else
|
296 |
|
|
{
|
297 |
|
|
write_memory (sp, (void *) &val, len);
|
298 |
|
|
sp -= 4;
|
299 |
|
|
}
|
300 |
|
|
}
|
301 |
|
|
|
302 |
|
|
/* Update stack pointer. */
|
303 |
|
|
regcache_cooked_write_signed (regcache, SIM_LM32_SP_REGNUM, sp);
|
304 |
|
|
|
305 |
|
|
/* Return adjusted stack pointer. */
|
306 |
|
|
return sp;
|
307 |
|
|
}
|
308 |
|
|
|
309 |
|
|
/* Extract return value after calling a function in the inferior. */
|
310 |
|
|
|
311 |
|
|
static void
|
312 |
|
|
lm32_extract_return_value (struct type *type, struct regcache *regcache,
|
313 |
|
|
gdb_byte *valbuf)
|
314 |
|
|
{
|
315 |
|
|
struct gdbarch *gdbarch = get_regcache_arch (regcache);
|
316 |
|
|
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
317 |
|
|
int offset;
|
318 |
|
|
ULONGEST l;
|
319 |
|
|
CORE_ADDR return_buffer;
|
320 |
|
|
|
321 |
|
|
if (TYPE_CODE (type) != TYPE_CODE_STRUCT
|
322 |
|
|
&& TYPE_CODE (type) != TYPE_CODE_UNION
|
323 |
|
|
&& TYPE_CODE (type) != TYPE_CODE_ARRAY && TYPE_LENGTH (type) <= 4)
|
324 |
|
|
{
|
325 |
|
|
/* Return value is returned in a single register. */
|
326 |
|
|
regcache_cooked_read_unsigned (regcache, SIM_LM32_R1_REGNUM, &l);
|
327 |
|
|
store_unsigned_integer (valbuf, TYPE_LENGTH (type), byte_order, l);
|
328 |
|
|
}
|
329 |
|
|
else if ((TYPE_CODE (type) == TYPE_CODE_INT) && (TYPE_LENGTH (type) == 8))
|
330 |
|
|
{
|
331 |
|
|
/* 64-bit values are returned in a register pair. */
|
332 |
|
|
regcache_cooked_read_unsigned (regcache, SIM_LM32_R1_REGNUM, &l);
|
333 |
|
|
memcpy (valbuf, &l, 4);
|
334 |
|
|
regcache_cooked_read_unsigned (regcache, SIM_LM32_R2_REGNUM, &l);
|
335 |
|
|
memcpy (valbuf + 4, &l, 4);
|
336 |
|
|
}
|
337 |
|
|
else
|
338 |
|
|
{
|
339 |
|
|
/* Aggregate types greater than a single register are returned in memory.
|
340 |
|
|
FIXME: Unless they are only 2 regs?. */
|
341 |
|
|
regcache_cooked_read_unsigned (regcache, SIM_LM32_R1_REGNUM, &l);
|
342 |
|
|
return_buffer = l;
|
343 |
|
|
read_memory (return_buffer, valbuf, TYPE_LENGTH (type));
|
344 |
|
|
}
|
345 |
|
|
}
|
346 |
|
|
|
347 |
|
|
/* Write into appropriate registers a function return value of type
|
348 |
|
|
TYPE, given in virtual format. */
|
349 |
|
|
static void
|
350 |
|
|
lm32_store_return_value (struct type *type, struct regcache *regcache,
|
351 |
|
|
const gdb_byte *valbuf)
|
352 |
|
|
{
|
353 |
|
|
struct gdbarch *gdbarch = get_regcache_arch (regcache);
|
354 |
|
|
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
355 |
|
|
ULONGEST val;
|
356 |
|
|
int len = TYPE_LENGTH (type);
|
357 |
|
|
|
358 |
|
|
if (len <= 4)
|
359 |
|
|
{
|
360 |
|
|
val = extract_unsigned_integer (valbuf, len, byte_order);
|
361 |
|
|
regcache_cooked_write_unsigned (regcache, SIM_LM32_R1_REGNUM, val);
|
362 |
|
|
}
|
363 |
|
|
else if (len <= 8)
|
364 |
|
|
{
|
365 |
|
|
val = extract_unsigned_integer (valbuf, 4, byte_order);
|
366 |
|
|
regcache_cooked_write_unsigned (regcache, SIM_LM32_R1_REGNUM, val);
|
367 |
|
|
val = extract_unsigned_integer (valbuf + 4, len - 4, byte_order);
|
368 |
|
|
regcache_cooked_write_unsigned (regcache, SIM_LM32_R2_REGNUM, val);
|
369 |
|
|
}
|
370 |
|
|
else
|
371 |
|
|
error (_("lm32_store_return_value: type length too large."));
|
372 |
|
|
}
|
373 |
|
|
|
374 |
|
|
/* Determine whether a functions return value is in a register or memory. */
|
375 |
|
|
static enum return_value_convention
|
376 |
|
|
lm32_return_value (struct gdbarch *gdbarch, struct type *func_type,
|
377 |
|
|
struct type *valtype, struct regcache *regcache,
|
378 |
|
|
gdb_byte *readbuf, const gdb_byte *writebuf)
|
379 |
|
|
{
|
380 |
|
|
enum type_code code = TYPE_CODE (valtype);
|
381 |
|
|
|
382 |
|
|
if (code == TYPE_CODE_STRUCT
|
383 |
|
|
|| code == TYPE_CODE_UNION
|
384 |
|
|
|| code == TYPE_CODE_ARRAY || TYPE_LENGTH (valtype) > 8)
|
385 |
|
|
return RETURN_VALUE_STRUCT_CONVENTION;
|
386 |
|
|
|
387 |
|
|
if (readbuf)
|
388 |
|
|
lm32_extract_return_value (valtype, regcache, readbuf);
|
389 |
|
|
if (writebuf)
|
390 |
|
|
lm32_store_return_value (valtype, regcache, writebuf);
|
391 |
|
|
|
392 |
|
|
return RETURN_VALUE_REGISTER_CONVENTION;
|
393 |
|
|
}
|
394 |
|
|
|
395 |
|
|
static CORE_ADDR
|
396 |
|
|
lm32_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
|
397 |
|
|
{
|
398 |
|
|
return frame_unwind_register_unsigned (next_frame, SIM_LM32_PC_REGNUM);
|
399 |
|
|
}
|
400 |
|
|
|
401 |
|
|
static CORE_ADDR
|
402 |
|
|
lm32_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
|
403 |
|
|
{
|
404 |
|
|
return frame_unwind_register_unsigned (next_frame, SIM_LM32_SP_REGNUM);
|
405 |
|
|
}
|
406 |
|
|
|
407 |
|
|
static struct frame_id
|
408 |
|
|
lm32_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
|
409 |
|
|
{
|
410 |
|
|
CORE_ADDR sp = get_frame_register_unsigned (this_frame, SIM_LM32_SP_REGNUM);
|
411 |
|
|
|
412 |
|
|
return frame_id_build (sp, get_frame_pc (this_frame));
|
413 |
|
|
}
|
414 |
|
|
|
415 |
|
|
/* Put here the code to store, into fi->saved_regs, the addresses of
|
416 |
|
|
the saved registers of frame described by FRAME_INFO. This
|
417 |
|
|
includes special registers such as pc and fp saved in special ways
|
418 |
|
|
in the stack frame. sp is even more special: the address we return
|
419 |
|
|
for it IS the sp for the next frame. */
|
420 |
|
|
|
421 |
|
|
static struct lm32_frame_cache *
|
422 |
|
|
lm32_frame_cache (struct frame_info *this_frame, void **this_prologue_cache)
|
423 |
|
|
{
|
424 |
|
|
CORE_ADDR prologue_pc;
|
425 |
|
|
CORE_ADDR current_pc;
|
426 |
|
|
ULONGEST prev_sp;
|
427 |
|
|
ULONGEST this_base;
|
428 |
|
|
struct lm32_frame_cache *info;
|
429 |
|
|
int prefixed;
|
430 |
|
|
unsigned long instruction;
|
431 |
|
|
int op;
|
432 |
|
|
int offsets[32];
|
433 |
|
|
int i;
|
434 |
|
|
long immediate;
|
435 |
|
|
|
436 |
|
|
if ((*this_prologue_cache))
|
437 |
|
|
return (*this_prologue_cache);
|
438 |
|
|
|
439 |
|
|
info = FRAME_OBSTACK_ZALLOC (struct lm32_frame_cache);
|
440 |
|
|
(*this_prologue_cache) = info;
|
441 |
|
|
info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
|
442 |
|
|
|
443 |
|
|
info->pc = get_frame_func (this_frame);
|
444 |
|
|
current_pc = get_frame_pc (this_frame);
|
445 |
|
|
lm32_analyze_prologue (get_frame_arch (this_frame),
|
446 |
|
|
info->pc, current_pc, info);
|
447 |
|
|
|
448 |
|
|
/* Compute the frame's base, and the previous frame's SP. */
|
449 |
|
|
this_base = get_frame_register_unsigned (this_frame, SIM_LM32_SP_REGNUM);
|
450 |
|
|
prev_sp = this_base + info->size;
|
451 |
|
|
info->base = this_base;
|
452 |
|
|
|
453 |
|
|
/* Convert callee save offsets into addresses. */
|
454 |
|
|
for (i = 0; i < gdbarch_num_regs (get_frame_arch (this_frame)) - 1; i++)
|
455 |
|
|
{
|
456 |
|
|
if (trad_frame_addr_p (info->saved_regs, i))
|
457 |
|
|
info->saved_regs[i].addr = this_base + info->saved_regs[i].addr;
|
458 |
|
|
}
|
459 |
|
|
|
460 |
|
|
/* The call instruction moves the caller's PC in the callee's RA register.
|
461 |
|
|
Since this is an unwind, do the reverse. Copy the location of RA register
|
462 |
|
|
into PC (the address / regnum) so that a request for PC will be
|
463 |
|
|
converted into a request for the RA register. */
|
464 |
|
|
info->saved_regs[SIM_LM32_PC_REGNUM] = info->saved_regs[SIM_LM32_RA_REGNUM];
|
465 |
|
|
|
466 |
|
|
/* The previous frame's SP needed to be computed. Save the computed value. */
|
467 |
|
|
trad_frame_set_value (info->saved_regs, SIM_LM32_SP_REGNUM, prev_sp);
|
468 |
|
|
|
469 |
|
|
return info;
|
470 |
|
|
}
|
471 |
|
|
|
472 |
|
|
static void
|
473 |
|
|
lm32_frame_this_id (struct frame_info *this_frame, void **this_cache,
|
474 |
|
|
struct frame_id *this_id)
|
475 |
|
|
{
|
476 |
|
|
struct lm32_frame_cache *cache = lm32_frame_cache (this_frame, this_cache);
|
477 |
|
|
|
478 |
|
|
/* This marks the outermost frame. */
|
479 |
|
|
if (cache->base == 0)
|
480 |
|
|
return;
|
481 |
|
|
|
482 |
|
|
(*this_id) = frame_id_build (cache->base, cache->pc);
|
483 |
|
|
}
|
484 |
|
|
|
485 |
|
|
static struct value *
|
486 |
|
|
lm32_frame_prev_register (struct frame_info *this_frame,
|
487 |
|
|
void **this_prologue_cache, int regnum)
|
488 |
|
|
{
|
489 |
|
|
struct lm32_frame_cache *info;
|
490 |
|
|
|
491 |
|
|
info = lm32_frame_cache (this_frame, this_prologue_cache);
|
492 |
|
|
return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
|
493 |
|
|
}
|
494 |
|
|
|
495 |
|
|
static const struct frame_unwind lm32_frame_unwind = {
|
496 |
|
|
NORMAL_FRAME,
|
497 |
|
|
lm32_frame_this_id,
|
498 |
|
|
lm32_frame_prev_register,
|
499 |
|
|
NULL,
|
500 |
|
|
default_frame_sniffer
|
501 |
|
|
};
|
502 |
|
|
|
503 |
|
|
static CORE_ADDR
|
504 |
|
|
lm32_frame_base_address (struct frame_info *this_frame, void **this_cache)
|
505 |
|
|
{
|
506 |
|
|
struct lm32_frame_cache *info = lm32_frame_cache (this_frame, this_cache);
|
507 |
|
|
|
508 |
|
|
return info->base;
|
509 |
|
|
}
|
510 |
|
|
|
511 |
|
|
static const struct frame_base lm32_frame_base = {
|
512 |
|
|
&lm32_frame_unwind,
|
513 |
|
|
lm32_frame_base_address,
|
514 |
|
|
lm32_frame_base_address,
|
515 |
|
|
lm32_frame_base_address
|
516 |
|
|
};
|
517 |
|
|
|
518 |
|
|
static CORE_ADDR
|
519 |
|
|
lm32_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
|
520 |
|
|
{
|
521 |
|
|
/* Align to the size of an instruction (so that they can safely be
|
522 |
|
|
pushed onto the stack. */
|
523 |
|
|
return sp & ~3;
|
524 |
|
|
}
|
525 |
|
|
|
526 |
|
|
static struct gdbarch *
|
527 |
|
|
lm32_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
|
528 |
|
|
{
|
529 |
|
|
struct gdbarch *gdbarch;
|
530 |
|
|
struct gdbarch_tdep *tdep;
|
531 |
|
|
|
532 |
|
|
/* If there is already a candidate, use it. */
|
533 |
|
|
arches = gdbarch_list_lookup_by_info (arches, &info);
|
534 |
|
|
if (arches != NULL)
|
535 |
|
|
return arches->gdbarch;
|
536 |
|
|
|
537 |
|
|
/* None found, create a new architecture from the information provided. */
|
538 |
|
|
tdep = XMALLOC (struct gdbarch_tdep);
|
539 |
|
|
gdbarch = gdbarch_alloc (&info, tdep);
|
540 |
|
|
|
541 |
|
|
/* Type sizes. */
|
542 |
|
|
set_gdbarch_short_bit (gdbarch, 16);
|
543 |
|
|
set_gdbarch_int_bit (gdbarch, 32);
|
544 |
|
|
set_gdbarch_long_bit (gdbarch, 32);
|
545 |
|
|
set_gdbarch_long_long_bit (gdbarch, 64);
|
546 |
|
|
set_gdbarch_float_bit (gdbarch, 32);
|
547 |
|
|
set_gdbarch_double_bit (gdbarch, 64);
|
548 |
|
|
set_gdbarch_long_double_bit (gdbarch, 64);
|
549 |
|
|
set_gdbarch_ptr_bit (gdbarch, 32);
|
550 |
|
|
|
551 |
|
|
/* Register info. */
|
552 |
|
|
set_gdbarch_num_regs (gdbarch, SIM_LM32_NUM_REGS);
|
553 |
|
|
set_gdbarch_sp_regnum (gdbarch, SIM_LM32_SP_REGNUM);
|
554 |
|
|
set_gdbarch_pc_regnum (gdbarch, SIM_LM32_PC_REGNUM);
|
555 |
|
|
set_gdbarch_register_name (gdbarch, lm32_register_name);
|
556 |
|
|
set_gdbarch_register_type (gdbarch, lm32_register_type);
|
557 |
|
|
set_gdbarch_cannot_store_register (gdbarch, lm32_cannot_store_register);
|
558 |
|
|
|
559 |
|
|
/* Frame info. */
|
560 |
|
|
set_gdbarch_skip_prologue (gdbarch, lm32_skip_prologue);
|
561 |
|
|
set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
|
562 |
|
|
set_gdbarch_decr_pc_after_break (gdbarch, 0);
|
563 |
|
|
set_gdbarch_frame_args_skip (gdbarch, 0);
|
564 |
|
|
|
565 |
|
|
/* Frame unwinding. */
|
566 |
|
|
set_gdbarch_frame_align (gdbarch, lm32_frame_align);
|
567 |
|
|
frame_base_set_default (gdbarch, &lm32_frame_base);
|
568 |
|
|
set_gdbarch_unwind_pc (gdbarch, lm32_unwind_pc);
|
569 |
|
|
set_gdbarch_unwind_sp (gdbarch, lm32_unwind_sp);
|
570 |
|
|
set_gdbarch_dummy_id (gdbarch, lm32_dummy_id);
|
571 |
|
|
frame_unwind_append_unwinder (gdbarch, &lm32_frame_unwind);
|
572 |
|
|
|
573 |
|
|
/* Breakpoints. */
|
574 |
|
|
set_gdbarch_breakpoint_from_pc (gdbarch, lm32_breakpoint_from_pc);
|
575 |
|
|
set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
|
576 |
|
|
|
577 |
|
|
/* Calling functions in the inferior. */
|
578 |
|
|
set_gdbarch_push_dummy_call (gdbarch, lm32_push_dummy_call);
|
579 |
|
|
set_gdbarch_return_value (gdbarch, lm32_return_value);
|
580 |
|
|
|
581 |
|
|
/* Instruction disassembler. */
|
582 |
|
|
set_gdbarch_print_insn (gdbarch, print_insn_lm32);
|
583 |
|
|
|
584 |
|
|
lm32_add_reggroups (gdbarch);
|
585 |
|
|
set_gdbarch_register_reggroup_p (gdbarch, lm32_register_reggroup_p);
|
586 |
|
|
|
587 |
|
|
return gdbarch;
|
588 |
|
|
}
|
589 |
|
|
|
590 |
|
|
void
|
591 |
|
|
_initialize_lm32_tdep (void)
|
592 |
|
|
{
|
593 |
|
|
register_gdbarch_init (bfd_arch_lm32, lm32_gdbarch_init);
|
594 |
|
|
}
|