OpenCores
URL https://opencores.org/ocsvn/openrisc_me/openrisc_me/trunk

Subversion Repositories openrisc_me

[/] [openrisc/] [trunk/] [gnu-src/] [gdb-7.1/] [gdb/] [lm32-tdep.c] - Blame information for rev 231

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 227 jeremybenn
/* Target-dependent code for Lattice Mico32 processor, for GDB.
2
   Contributed by Jon Beniston <jon@beniston.com>
3
 
4
   Copyright (C) 2009, 2010 Free Software Foundation, Inc.
5
 
6
   This file is part of GDB.
7
 
8
   This program is free software; you can redistribute it and/or modify
9
   it under the terms of the GNU General Public License as published by
10
   the Free Software Foundation; either version 3 of the License, or
11
   (at your option) any later version.
12
 
13
   This program is distributed in the hope that it will be useful,
14
   but WITHOUT ANY WARRANTY; without even the implied warranty of
15
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16
   GNU General Public License for more details.
17
 
18
   You should have received a copy of the GNU General Public License
19
   along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
20
 
21
#include "defs.h"
22
#include "frame.h"
23
#include "frame-unwind.h"
24
#include "frame-base.h"
25
#include "inferior.h"
26
#include "dis-asm.h"
27
#include "symfile.h"
28
#include "remote.h"
29
#include "gdbcore.h"
30
#include "gdb/sim-lm32.h"
31
#include "gdb/callback.h"
32
#include "gdb/remote-sim.h"
33
#include "sim-regno.h"
34
#include "arch-utils.h"
35
#include "regcache.h"
36
#include "trad-frame.h"
37
#include "reggroups.h"
38
#include "opcodes/lm32-desc.h"
39
 
40
#include "gdb_string.h"
41
 
42
/* Macros to extract fields from an instruction.  */
43
#define LM32_OPCODE(insn)       ((insn >> 26) & 0x3f)
44
#define LM32_REG0(insn)         ((insn >> 21) & 0x1f)
45
#define LM32_REG1(insn)         ((insn >> 16) & 0x1f)
46
#define LM32_REG2(insn)         ((insn >> 11) & 0x1f)
47
#define LM32_IMM16(insn)        ((((long)insn & 0xffff) << 16) >> 16)
48
 
49
struct gdbarch_tdep
50
{
51
  /* gdbarch target dependent data here. Currently unused for LM32.  */
52
};
53
 
54
struct lm32_frame_cache
55
{
56
  /* The frame's base.  Used when constructing a frame ID.  */
57
  CORE_ADDR base;
58
  CORE_ADDR pc;
59
  /* Size of frame.  */
60
  int size;
61
  /* Table indicating the location of each and every register.  */
62
  struct trad_frame_saved_reg *saved_regs;
63
};
64
 
65
/* Add the available register groups.  */
66
 
67
static void
68
lm32_add_reggroups (struct gdbarch *gdbarch)
69
{
70
  reggroup_add (gdbarch, general_reggroup);
71
  reggroup_add (gdbarch, all_reggroup);
72
  reggroup_add (gdbarch, system_reggroup);
73
}
74
 
75
/* Return whether a given register is in a given group.  */
76
 
77
static int
78
lm32_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
79
                          struct reggroup *group)
80
{
81
  if (group == general_reggroup)
82
    return ((regnum >= SIM_LM32_R0_REGNUM) && (regnum <= SIM_LM32_RA_REGNUM))
83
      || (regnum == SIM_LM32_PC_REGNUM);
84
  else if (group == system_reggroup)
85
    return ((regnum >= SIM_LM32_EA_REGNUM) && (regnum <= SIM_LM32_BA_REGNUM))
86
      || ((regnum >= SIM_LM32_EID_REGNUM) && (regnum <= SIM_LM32_IP_REGNUM));
87
  return default_register_reggroup_p (gdbarch, regnum, group);
88
}
89
 
90
/* Return a name that corresponds to the given register number.  */
91
 
92
static const char *
93
lm32_register_name (struct gdbarch *gdbarch, int reg_nr)
94
{
95
  static char *register_names[] = {
96
    "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
97
    "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
98
    "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
99
    "r24", "r25", "gp", "fp", "sp", "ra", "ea", "ba",
100
    "PC", "EID", "EBA", "DEBA", "IE", "IM", "IP"
101
  };
102
 
103
  if ((reg_nr < 0) || (reg_nr >= ARRAY_SIZE (register_names)))
104
    return NULL;
105
  else
106
    return register_names[reg_nr];
107
}
108
 
109
/* Return type of register.  */
110
 
111
static struct type *
112
lm32_register_type (struct gdbarch *gdbarch, int reg_nr)
113
{
114
  return builtin_type (gdbarch)->builtin_int32;
115
}
116
 
117
/* Return non-zero if a register can't be written.  */
118
 
119
static int
120
lm32_cannot_store_register (struct gdbarch *gdbarch, int regno)
121
{
122
  return (regno == SIM_LM32_R0_REGNUM) || (regno == SIM_LM32_EID_REGNUM);
123
}
124
 
125
/* Analyze a function's prologue.  */
126
 
127
static CORE_ADDR
128
lm32_analyze_prologue (struct gdbarch *gdbarch,
129
                       CORE_ADDR pc, CORE_ADDR limit,
130
                       struct lm32_frame_cache *info)
131
{
132
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
133
  unsigned long instruction;
134
 
135
  /* Keep reading though instructions, until we come across an instruction
136
     that isn't likely to be part of the prologue.  */
137
  info->size = 0;
138
  for (; pc < limit; pc += 4)
139
    {
140
 
141
      /* Read an instruction.  */
142
      instruction = read_memory_integer (pc, 4, byte_order);
143
 
144
      if ((LM32_OPCODE (instruction) == OP_SW)
145
          && (LM32_REG0 (instruction) == SIM_LM32_SP_REGNUM))
146
        {
147
          /* Any stack displaced store is likely part of the prologue.
148
             Record that the register is being saved, and the offset
149
             into the stack.  */
150
          info->saved_regs[LM32_REG1 (instruction)].addr =
151
            LM32_IMM16 (instruction);
152
        }
153
      else if ((LM32_OPCODE (instruction) == OP_ADDI)
154
               && (LM32_REG1 (instruction) == SIM_LM32_SP_REGNUM))
155
        {
156
          /* An add to the SP is likely to be part of the prologue.
157
             Adjust stack size by whatever the instruction adds to the sp.  */
158
          info->size -= LM32_IMM16 (instruction);
159
        }
160
      else if (                 /* add fp,fp,sp */
161
                ((LM32_OPCODE (instruction) == OP_ADD)
162
                 && (LM32_REG2 (instruction) == SIM_LM32_FP_REGNUM)
163
                 && (LM32_REG0 (instruction) == SIM_LM32_FP_REGNUM)
164
                 && (LM32_REG1 (instruction) == SIM_LM32_SP_REGNUM))
165
                /* mv fp,imm */
166
                || ((LM32_OPCODE (instruction) == OP_ADDI)
167
                    && (LM32_REG1 (instruction) == SIM_LM32_FP_REGNUM)
168
                    && (LM32_REG0 (instruction) == SIM_LM32_R0_REGNUM)))
169
        {
170
          /* Likely to be in the prologue for functions that require
171
             a frame pointer.  */
172
        }
173
      else
174
        {
175
          /* Any other instruction is likely not to be part of the prologue.  */
176
          break;
177
        }
178
    }
179
 
180
  return pc;
181
}
182
 
183
/* Return PC of first non prologue instruction, for the function at the
184
   specified address.  */
185
 
186
static CORE_ADDR
187
lm32_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
188
{
189
  CORE_ADDR func_addr, limit_pc;
190
  struct symtab_and_line sal;
191
  struct lm32_frame_cache frame_info;
192
  struct trad_frame_saved_reg saved_regs[SIM_LM32_NUM_REGS];
193
 
194
  /* See if we can determine the end of the prologue via the symbol table.
195
     If so, then return either PC, or the PC after the prologue, whichever
196
     is greater.  */
197
  if (find_pc_partial_function (pc, NULL, &func_addr, NULL))
198
    {
199
      CORE_ADDR post_prologue_pc
200
        = skip_prologue_using_sal (gdbarch, func_addr);
201
      if (post_prologue_pc != 0)
202
        return max (pc, post_prologue_pc);
203
    }
204
 
205
  /* Can't determine prologue from the symbol table, need to examine
206
     instructions.  */
207
 
208
  /* Find an upper limit on the function prologue using the debug
209
     information.  If the debug information could not be used to provide
210
     that bound, then use an arbitrary large number as the upper bound.  */
211
  limit_pc = skip_prologue_using_sal (gdbarch, pc);
212
  if (limit_pc == 0)
213
    limit_pc = pc + 100;        /* Magic.  */
214
 
215
  frame_info.saved_regs = saved_regs;
216
  return lm32_analyze_prologue (gdbarch, pc, limit_pc, &frame_info);
217
}
218
 
219
/* Create a breakpoint instruction.  */
220
 
221
static const gdb_byte *
222
lm32_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr,
223
                         int *lenptr)
224
{
225
  static const gdb_byte breakpoint[4] = { OP_RAISE << 2, 0, 0, 2 };
226
 
227
  *lenptr = sizeof (breakpoint);
228
  return breakpoint;
229
}
230
 
231
/* Setup registers and stack for faking a call to a function in the
232
   inferior.  */
233
 
234
static CORE_ADDR
235
lm32_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
236
                      struct regcache *regcache, CORE_ADDR bp_addr,
237
                      int nargs, struct value **args, CORE_ADDR sp,
238
                      int struct_return, CORE_ADDR struct_addr)
239
{
240
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
241
  int first_arg_reg = SIM_LM32_R1_REGNUM;
242
  int num_arg_regs = 8;
243
  int i;
244
 
245
  /* Set the return address.  */
246
  regcache_cooked_write_signed (regcache, SIM_LM32_RA_REGNUM, bp_addr);
247
 
248
  /* If we're returning a large struct, a pointer to the address to
249
     store it at is passed as a first hidden parameter.  */
250
  if (struct_return)
251
    {
252
      regcache_cooked_write_unsigned (regcache, first_arg_reg, struct_addr);
253
      first_arg_reg++;
254
      num_arg_regs--;
255
      sp -= 4;
256
    }
257
 
258
  /* Setup parameters.  */
259
  for (i = 0; i < nargs; i++)
260
    {
261
      struct value *arg = args[i];
262
      struct type *arg_type = check_typedef (value_type (arg));
263
      gdb_byte *contents;
264
      int len;
265
      int j;
266
      int reg;
267
      ULONGEST val;
268
 
269
      /* Promote small integer types to int.  */
270
      switch (TYPE_CODE (arg_type))
271
        {
272
        case TYPE_CODE_INT:
273
        case TYPE_CODE_BOOL:
274
        case TYPE_CODE_CHAR:
275
        case TYPE_CODE_RANGE:
276
        case TYPE_CODE_ENUM:
277
          if (TYPE_LENGTH (arg_type) < 4)
278
            {
279
              arg_type = builtin_type (gdbarch)->builtin_int32;
280
              arg = value_cast (arg_type, arg);
281
            }
282
          break;
283
        }
284
 
285
      /* FIXME: Handle structures.  */
286
 
287
      contents = (gdb_byte *) value_contents (arg);
288
      len = TYPE_LENGTH (arg_type);
289
      val = extract_unsigned_integer (contents, len, byte_order);
290
 
291
      /* First num_arg_regs parameters are passed by registers,
292
         and the rest are passed on the stack.  */
293
      if (i < num_arg_regs)
294
        regcache_cooked_write_unsigned (regcache, first_arg_reg + i, val);
295
      else
296
        {
297
          write_memory (sp, (void *) &val, len);
298
          sp -= 4;
299
        }
300
    }
301
 
302
  /* Update stack pointer.  */
303
  regcache_cooked_write_signed (regcache, SIM_LM32_SP_REGNUM, sp);
304
 
305
  /* Return adjusted stack pointer.  */
306
  return sp;
307
}
308
 
309
/* Extract return value after calling a function in the inferior.  */
310
 
311
static void
312
lm32_extract_return_value (struct type *type, struct regcache *regcache,
313
                           gdb_byte *valbuf)
314
{
315
  struct gdbarch *gdbarch = get_regcache_arch (regcache);
316
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
317
  int offset;
318
  ULONGEST l;
319
  CORE_ADDR return_buffer;
320
 
321
  if (TYPE_CODE (type) != TYPE_CODE_STRUCT
322
      && TYPE_CODE (type) != TYPE_CODE_UNION
323
      && TYPE_CODE (type) != TYPE_CODE_ARRAY && TYPE_LENGTH (type) <= 4)
324
    {
325
      /* Return value is returned in a single register.  */
326
      regcache_cooked_read_unsigned (regcache, SIM_LM32_R1_REGNUM, &l);
327
      store_unsigned_integer (valbuf, TYPE_LENGTH (type), byte_order, l);
328
    }
329
  else if ((TYPE_CODE (type) == TYPE_CODE_INT) && (TYPE_LENGTH (type) == 8))
330
    {
331
      /* 64-bit values are returned in a register pair.  */
332
      regcache_cooked_read_unsigned (regcache, SIM_LM32_R1_REGNUM, &l);
333
      memcpy (valbuf, &l, 4);
334
      regcache_cooked_read_unsigned (regcache, SIM_LM32_R2_REGNUM, &l);
335
      memcpy (valbuf + 4, &l, 4);
336
    }
337
  else
338
    {
339
      /* Aggregate types greater than a single register are returned in memory.
340
         FIXME: Unless they are only 2 regs?.  */
341
      regcache_cooked_read_unsigned (regcache, SIM_LM32_R1_REGNUM, &l);
342
      return_buffer = l;
343
      read_memory (return_buffer, valbuf, TYPE_LENGTH (type));
344
    }
345
}
346
 
347
/* Write into appropriate registers a function return value of type
348
   TYPE, given in virtual format.  */
349
static void
350
lm32_store_return_value (struct type *type, struct regcache *regcache,
351
                         const gdb_byte *valbuf)
352
{
353
  struct gdbarch *gdbarch = get_regcache_arch (regcache);
354
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
355
  ULONGEST val;
356
  int len = TYPE_LENGTH (type);
357
 
358
  if (len <= 4)
359
    {
360
      val = extract_unsigned_integer (valbuf, len, byte_order);
361
      regcache_cooked_write_unsigned (regcache, SIM_LM32_R1_REGNUM, val);
362
    }
363
  else if (len <= 8)
364
    {
365
      val = extract_unsigned_integer (valbuf, 4, byte_order);
366
      regcache_cooked_write_unsigned (regcache, SIM_LM32_R1_REGNUM, val);
367
      val = extract_unsigned_integer (valbuf + 4, len - 4, byte_order);
368
      regcache_cooked_write_unsigned (regcache, SIM_LM32_R2_REGNUM, val);
369
    }
370
  else
371
    error (_("lm32_store_return_value: type length too large."));
372
}
373
 
374
/* Determine whether a functions return value is in a register or memory.  */
375
static enum return_value_convention
376
lm32_return_value (struct gdbarch *gdbarch, struct type *func_type,
377
                   struct type *valtype, struct regcache *regcache,
378
                   gdb_byte *readbuf, const gdb_byte *writebuf)
379
{
380
  enum type_code code = TYPE_CODE (valtype);
381
 
382
  if (code == TYPE_CODE_STRUCT
383
      || code == TYPE_CODE_UNION
384
      || code == TYPE_CODE_ARRAY || TYPE_LENGTH (valtype) > 8)
385
    return RETURN_VALUE_STRUCT_CONVENTION;
386
 
387
  if (readbuf)
388
    lm32_extract_return_value (valtype, regcache, readbuf);
389
  if (writebuf)
390
    lm32_store_return_value (valtype, regcache, writebuf);
391
 
392
  return RETURN_VALUE_REGISTER_CONVENTION;
393
}
394
 
395
static CORE_ADDR
396
lm32_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
397
{
398
  return frame_unwind_register_unsigned (next_frame, SIM_LM32_PC_REGNUM);
399
}
400
 
401
static CORE_ADDR
402
lm32_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
403
{
404
  return frame_unwind_register_unsigned (next_frame, SIM_LM32_SP_REGNUM);
405
}
406
 
407
static struct frame_id
408
lm32_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
409
{
410
  CORE_ADDR sp = get_frame_register_unsigned (this_frame, SIM_LM32_SP_REGNUM);
411
 
412
  return frame_id_build (sp, get_frame_pc (this_frame));
413
}
414
 
415
/* Put here the code to store, into fi->saved_regs, the addresses of
416
   the saved registers of frame described by FRAME_INFO.  This
417
   includes special registers such as pc and fp saved in special ways
418
   in the stack frame.  sp is even more special: the address we return
419
   for it IS the sp for the next frame.  */
420
 
421
static struct lm32_frame_cache *
422
lm32_frame_cache (struct frame_info *this_frame, void **this_prologue_cache)
423
{
424
  CORE_ADDR prologue_pc;
425
  CORE_ADDR current_pc;
426
  ULONGEST prev_sp;
427
  ULONGEST this_base;
428
  struct lm32_frame_cache *info;
429
  int prefixed;
430
  unsigned long instruction;
431
  int op;
432
  int offsets[32];
433
  int i;
434
  long immediate;
435
 
436
  if ((*this_prologue_cache))
437
    return (*this_prologue_cache);
438
 
439
  info = FRAME_OBSTACK_ZALLOC (struct lm32_frame_cache);
440
  (*this_prologue_cache) = info;
441
  info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
442
 
443
  info->pc = get_frame_func (this_frame);
444
  current_pc = get_frame_pc (this_frame);
445
  lm32_analyze_prologue (get_frame_arch (this_frame),
446
                         info->pc, current_pc, info);
447
 
448
  /* Compute the frame's base, and the previous frame's SP.  */
449
  this_base = get_frame_register_unsigned (this_frame, SIM_LM32_SP_REGNUM);
450
  prev_sp = this_base + info->size;
451
  info->base = this_base;
452
 
453
  /* Convert callee save offsets into addresses.  */
454
  for (i = 0; i < gdbarch_num_regs (get_frame_arch (this_frame)) - 1; i++)
455
    {
456
      if (trad_frame_addr_p (info->saved_regs, i))
457
        info->saved_regs[i].addr = this_base + info->saved_regs[i].addr;
458
    }
459
 
460
  /* The call instruction moves the caller's PC in the callee's RA register.
461
     Since this is an unwind, do the reverse.  Copy the location of RA register
462
     into PC (the address / regnum) so that a request for PC will be
463
     converted into a request for the RA register.  */
464
  info->saved_regs[SIM_LM32_PC_REGNUM] = info->saved_regs[SIM_LM32_RA_REGNUM];
465
 
466
  /* The previous frame's SP needed to be computed.  Save the computed value. */
467
  trad_frame_set_value (info->saved_regs, SIM_LM32_SP_REGNUM, prev_sp);
468
 
469
  return info;
470
}
471
 
472
static void
473
lm32_frame_this_id (struct frame_info *this_frame, void **this_cache,
474
                    struct frame_id *this_id)
475
{
476
  struct lm32_frame_cache *cache = lm32_frame_cache (this_frame, this_cache);
477
 
478
  /* This marks the outermost frame.  */
479
  if (cache->base == 0)
480
    return;
481
 
482
  (*this_id) = frame_id_build (cache->base, cache->pc);
483
}
484
 
485
static struct value *
486
lm32_frame_prev_register (struct frame_info *this_frame,
487
                          void **this_prologue_cache, int regnum)
488
{
489
  struct lm32_frame_cache *info;
490
 
491
  info = lm32_frame_cache (this_frame, this_prologue_cache);
492
  return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
493
}
494
 
495
static const struct frame_unwind lm32_frame_unwind = {
496
  NORMAL_FRAME,
497
  lm32_frame_this_id,
498
  lm32_frame_prev_register,
499
  NULL,
500
  default_frame_sniffer
501
};
502
 
503
static CORE_ADDR
504
lm32_frame_base_address (struct frame_info *this_frame, void **this_cache)
505
{
506
  struct lm32_frame_cache *info = lm32_frame_cache (this_frame, this_cache);
507
 
508
  return info->base;
509
}
510
 
511
static const struct frame_base lm32_frame_base = {
512
  &lm32_frame_unwind,
513
  lm32_frame_base_address,
514
  lm32_frame_base_address,
515
  lm32_frame_base_address
516
};
517
 
518
static CORE_ADDR
519
lm32_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
520
{
521
  /* Align to the size of an instruction (so that they can safely be
522
     pushed onto the stack.  */
523
  return sp & ~3;
524
}
525
 
526
static struct gdbarch *
527
lm32_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
528
{
529
  struct gdbarch *gdbarch;
530
  struct gdbarch_tdep *tdep;
531
 
532
  /* If there is already a candidate, use it.  */
533
  arches = gdbarch_list_lookup_by_info (arches, &info);
534
  if (arches != NULL)
535
    return arches->gdbarch;
536
 
537
  /* None found, create a new architecture from the information provided.  */
538
  tdep = XMALLOC (struct gdbarch_tdep);
539
  gdbarch = gdbarch_alloc (&info, tdep);
540
 
541
  /* Type sizes.  */
542
  set_gdbarch_short_bit (gdbarch, 16);
543
  set_gdbarch_int_bit (gdbarch, 32);
544
  set_gdbarch_long_bit (gdbarch, 32);
545
  set_gdbarch_long_long_bit (gdbarch, 64);
546
  set_gdbarch_float_bit (gdbarch, 32);
547
  set_gdbarch_double_bit (gdbarch, 64);
548
  set_gdbarch_long_double_bit (gdbarch, 64);
549
  set_gdbarch_ptr_bit (gdbarch, 32);
550
 
551
  /* Register info.  */
552
  set_gdbarch_num_regs (gdbarch, SIM_LM32_NUM_REGS);
553
  set_gdbarch_sp_regnum (gdbarch, SIM_LM32_SP_REGNUM);
554
  set_gdbarch_pc_regnum (gdbarch, SIM_LM32_PC_REGNUM);
555
  set_gdbarch_register_name (gdbarch, lm32_register_name);
556
  set_gdbarch_register_type (gdbarch, lm32_register_type);
557
  set_gdbarch_cannot_store_register (gdbarch, lm32_cannot_store_register);
558
 
559
  /* Frame info.  */
560
  set_gdbarch_skip_prologue (gdbarch, lm32_skip_prologue);
561
  set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
562
  set_gdbarch_decr_pc_after_break (gdbarch, 0);
563
  set_gdbarch_frame_args_skip (gdbarch, 0);
564
 
565
  /* Frame unwinding.  */
566
  set_gdbarch_frame_align (gdbarch, lm32_frame_align);
567
  frame_base_set_default (gdbarch, &lm32_frame_base);
568
  set_gdbarch_unwind_pc (gdbarch, lm32_unwind_pc);
569
  set_gdbarch_unwind_sp (gdbarch, lm32_unwind_sp);
570
  set_gdbarch_dummy_id (gdbarch, lm32_dummy_id);
571
  frame_unwind_append_unwinder (gdbarch, &lm32_frame_unwind);
572
 
573
  /* Breakpoints.  */
574
  set_gdbarch_breakpoint_from_pc (gdbarch, lm32_breakpoint_from_pc);
575
  set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
576
 
577
  /* Calling functions in the inferior.  */
578
  set_gdbarch_push_dummy_call (gdbarch, lm32_push_dummy_call);
579
  set_gdbarch_return_value (gdbarch, lm32_return_value);
580
 
581
  /* Instruction disassembler.  */
582
  set_gdbarch_print_insn (gdbarch, print_insn_lm32);
583
 
584
  lm32_add_reggroups (gdbarch);
585
  set_gdbarch_register_reggroup_p (gdbarch, lm32_register_reggroup_p);
586
 
587
  return gdbarch;
588
}
589
 
590
void
591
_initialize_lm32_tdep (void)
592
{
593
  register_gdbarch_init (bfd_arch_lm32, lm32_gdbarch_init);
594
}

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.