OpenCores
URL https://opencores.org/ocsvn/openrisc_me/openrisc_me/trunk

Subversion Repositories openrisc_me

[/] [openrisc/] [trunk/] [gnu-src/] [gdb-7.1/] [gdb/] [m32r-linux-tdep.c] - Blame information for rev 280

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 227 jeremybenn
/* Target-dependent code for GNU/Linux m32r.
2
 
3
   Copyright (C) 2004, 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
4
 
5
   This file is part of GDB.
6
 
7
   This program is free software; you can redistribute it and/or modify
8
   it under the terms of the GNU General Public License as published by
9
   the Free Software Foundation; either version 3 of the License, or
10
   (at your option) any later version.
11
 
12
   This program is distributed in the hope that it will be useful,
13
   but WITHOUT ANY WARRANTY; without even the implied warranty of
14
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15
   GNU General Public License for more details.
16
 
17
   You should have received a copy of the GNU General Public License
18
   along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
19
 
20
#include "defs.h"
21
#include "gdbcore.h"
22
#include "frame.h"
23
#include "value.h"
24
#include "regcache.h"
25
#include "inferior.h"
26
#include "osabi.h"
27
#include "reggroups.h"
28
#include "regset.h"
29
 
30
#include "gdb_string.h"
31
 
32
#include "glibc-tdep.h"
33
#include "solib-svr4.h"
34
#include "symtab.h"
35
 
36
#include "trad-frame.h"
37
#include "frame-unwind.h"
38
 
39
#include "m32r-tdep.h"
40
 
41
 
42
/* Recognizing signal handler frames.  */
43
 
44
/* GNU/Linux has two flavors of signals.  Normal signal handlers, and
45
   "realtime" (RT) signals.  The RT signals can provide additional
46
   information to the signal handler if the SA_SIGINFO flag is set
47
   when establishing a signal handler using `sigaction'.  It is not
48
   unlikely that future versions of GNU/Linux will support SA_SIGINFO
49
   for normal signals too.  */
50
 
51
/* When the m32r Linux kernel calls a signal handler and the
52
   SA_RESTORER flag isn't set, the return address points to a bit of
53
   code on the stack.  This function returns whether the PC appears to
54
   be within this bit of code.
55
 
56
   The instruction sequence for normal signals is
57
       ldi    r7, #__NR_sigreturn
58
       trap   #2
59
   or 0x67 0x77 0x10 0xf2.
60
 
61
   Checking for the code sequence should be somewhat reliable, because
62
   the effect is to call the system call sigreturn.  This is unlikely
63
   to occur anywhere other than in a signal trampoline.
64
 
65
   It kind of sucks that we have to read memory from the process in
66
   order to identify a signal trampoline, but there doesn't seem to be
67
   any other way.  Therefore we only do the memory reads if no
68
   function name could be identified, which should be the case since
69
   the code is on the stack.
70
 
71
   Detection of signal trampolines for handlers that set the
72
   SA_RESTORER flag is in general not possible.  Unfortunately this is
73
   what the GNU C Library has been doing for quite some time now.
74
   However, as of version 2.1.2, the GNU C Library uses signal
75
   trampolines (named __restore and __restore_rt) that are identical
76
   to the ones used by the kernel.  Therefore, these trampolines are
77
   supported too.  */
78
 
79
static const gdb_byte linux_sigtramp_code[] = {
80
  0x67, 0x77, 0x10, 0xf2,
81
};
82
 
83
/* If PC is in a sigtramp routine, return the address of the start of
84
   the routine.  Otherwise, return 0.  */
85
 
86
static CORE_ADDR
87
m32r_linux_sigtramp_start (CORE_ADDR pc, struct frame_info *this_frame)
88
{
89
  gdb_byte buf[4];
90
 
91
  /* We only recognize a signal trampoline if PC is at the start of
92
     one of the instructions.  We optimize for finding the PC at the
93
     start of the instruction sequence, as will be the case when the
94
     trampoline is not the first frame on the stack.  We assume that
95
     in the case where the PC is not at the start of the instruction
96
     sequence, there will be a few trailing readable bytes on the
97
     stack.  */
98
 
99
  if (pc % 2 != 0)
100
    {
101
      if (!safe_frame_unwind_memory (this_frame, pc, buf, 2))
102
        return 0;
103
 
104
      if (memcmp (buf, linux_sigtramp_code, 2) == 0)
105
        pc -= 2;
106
      else
107
        return 0;
108
    }
109
 
110
  if (!safe_frame_unwind_memory (this_frame, pc, buf, 4))
111
    return 0;
112
 
113
  if (memcmp (buf, linux_sigtramp_code, 4) != 0)
114
    return 0;
115
 
116
  return pc;
117
}
118
 
119
/* This function does the same for RT signals.  Here the instruction
120
   sequence is
121
       ldi    r7, #__NR_rt_sigreturn
122
       trap   #2
123
   or 0x97 0xf0 0x00 0xad 0x10 0xf2 0xf0 0x00.
124
 
125
   The effect is to call the system call rt_sigreturn.  */
126
 
127
static const gdb_byte linux_rt_sigtramp_code[] = {
128
  0x97, 0xf0, 0x00, 0xad, 0x10, 0xf2, 0xf0, 0x00,
129
};
130
 
131
/* If PC is in a RT sigtramp routine, return the address of the start
132
   of the routine.  Otherwise, return 0.  */
133
 
134
static CORE_ADDR
135
m32r_linux_rt_sigtramp_start (CORE_ADDR pc, struct frame_info *this_frame)
136
{
137
  gdb_byte buf[4];
138
 
139
  /* We only recognize a signal trampoline if PC is at the start of
140
     one of the instructions.  We optimize for finding the PC at the
141
     start of the instruction sequence, as will be the case when the
142
     trampoline is not the first frame on the stack.  We assume that
143
     in the case where the PC is not at the start of the instruction
144
     sequence, there will be a few trailing readable bytes on the
145
     stack.  */
146
 
147
  if (pc % 2 != 0)
148
    return 0;
149
 
150
  if (!safe_frame_unwind_memory (this_frame, pc, buf, 4))
151
    return 0;
152
 
153
  if (memcmp (buf, linux_rt_sigtramp_code, 4) == 0)
154
    {
155
      if (!safe_frame_unwind_memory (this_frame, pc + 4, buf, 4))
156
        return 0;
157
 
158
      if (memcmp (buf, linux_rt_sigtramp_code + 4, 4) == 0)
159
        return pc;
160
    }
161
  else if (memcmp (buf, linux_rt_sigtramp_code + 4, 4) == 0)
162
    {
163
      if (!safe_frame_unwind_memory (this_frame, pc - 4, buf, 4))
164
        return 0;
165
 
166
      if (memcmp (buf, linux_rt_sigtramp_code, 4) == 0)
167
        return pc - 4;
168
    }
169
 
170
  return 0;
171
}
172
 
173
static int
174
m32r_linux_pc_in_sigtramp (CORE_ADDR pc, char *name,
175
                           struct frame_info *this_frame)
176
{
177
  /* If we have NAME, we can optimize the search.  The trampolines are
178
     named __restore and __restore_rt.  However, they aren't dynamically
179
     exported from the shared C library, so the trampoline may appear to
180
     be part of the preceding function.  This should always be sigaction,
181
     __sigaction, or __libc_sigaction (all aliases to the same function).  */
182
  if (name == NULL || strstr (name, "sigaction") != NULL)
183
    return (m32r_linux_sigtramp_start (pc, this_frame) != 0
184
            || m32r_linux_rt_sigtramp_start (pc, this_frame) != 0);
185
 
186
  return (strcmp ("__restore", name) == 0
187
          || strcmp ("__restore_rt", name) == 0);
188
}
189
 
190
/* From <asm/sigcontext.h>.  */
191
static int m32r_linux_sc_reg_offset[] = {
192
  4 * 4,                        /* r0 */
193
  5 * 4,                        /* r1 */
194
  6 * 4,                        /* r2 */
195
  7 * 4,                        /* r3 */
196
 
197
  1 * 4,                        /* r5 */
198
  2 * 4,                        /* r6 */
199
  8 * 4,                        /* r7 */
200
  9 * 4,                        /* r8 */
201
  10 * 4,                       /* r9 */
202
  11 * 4,                       /* r10 */
203
  12 * 4,                       /* r11 */
204
  13 * 4,                       /* r12 */
205
  21 * 4,                       /* fp */
206
  22 * 4,                       /* lr */
207
  -1 * 4,                       /* sp */
208
  16 * 4,                       /* psw */
209
  -1 * 4,                       /* cbr */
210
  23 * 4,                       /* spi */
211
  20 * 4,                       /* spu */
212
  19 * 4,                       /* bpc */
213
  17 * 4,                       /* pc */
214
  15 * 4,                       /* accl */
215
  14 * 4                        /* acch */
216
};
217
 
218
struct m32r_frame_cache
219
{
220
  CORE_ADDR base, pc;
221
  struct trad_frame_saved_reg *saved_regs;
222
};
223
 
224
static struct m32r_frame_cache *
225
m32r_linux_sigtramp_frame_cache (struct frame_info *this_frame,
226
                                 void **this_cache)
227
{
228
  struct m32r_frame_cache *cache;
229
  CORE_ADDR sigcontext_addr, addr;
230
  int regnum;
231
 
232
  if ((*this_cache) != NULL)
233
    return (*this_cache);
234
  cache = FRAME_OBSTACK_ZALLOC (struct m32r_frame_cache);
235
  (*this_cache) = cache;
236
  cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
237
 
238
  cache->base = get_frame_register_unsigned (this_frame, M32R_SP_REGNUM);
239
  sigcontext_addr = cache->base + 4;
240
 
241
  cache->pc = get_frame_pc (this_frame);
242
  addr = m32r_linux_sigtramp_start (cache->pc, this_frame);
243
  if (addr == 0)
244
    {
245
      /* If this is a RT signal trampoline, adjust SIGCONTEXT_ADDR
246
         accordingly.  */
247
      addr = m32r_linux_rt_sigtramp_start (cache->pc, this_frame);
248
      if (addr)
249
        sigcontext_addr += 128;
250
      else
251
        addr = get_frame_func (this_frame);
252
    }
253
  cache->pc = addr;
254
 
255
  cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
256
 
257
  for (regnum = 0; regnum < sizeof (m32r_linux_sc_reg_offset) / 4; regnum++)
258
    {
259
      if (m32r_linux_sc_reg_offset[regnum] >= 0)
260
        cache->saved_regs[regnum].addr =
261
          sigcontext_addr + m32r_linux_sc_reg_offset[regnum];
262
    }
263
 
264
  return cache;
265
}
266
 
267
static void
268
m32r_linux_sigtramp_frame_this_id (struct frame_info *this_frame,
269
                                   void **this_cache,
270
                                   struct frame_id *this_id)
271
{
272
  struct m32r_frame_cache *cache =
273
    m32r_linux_sigtramp_frame_cache (this_frame, this_cache);
274
 
275
  (*this_id) = frame_id_build (cache->base, cache->pc);
276
}
277
 
278
static struct value *
279
m32r_linux_sigtramp_frame_prev_register (struct frame_info *this_frame,
280
                                         void **this_cache, int regnum)
281
{
282
  struct m32r_frame_cache *cache =
283
    m32r_linux_sigtramp_frame_cache (this_frame, this_cache);
284
 
285
  return trad_frame_get_prev_register (this_frame, cache->saved_regs, regnum);
286
}
287
 
288
static int
289
m32r_linux_sigtramp_frame_sniffer (const struct frame_unwind *self,
290
                                   struct frame_info *this_frame,
291
                                   void **this_cache)
292
{
293
  CORE_ADDR pc = get_frame_pc (this_frame);
294
  char *name;
295
 
296
  find_pc_partial_function (pc, &name, NULL, NULL);
297
  if (m32r_linux_pc_in_sigtramp (pc, name, this_frame))
298
    return 1;
299
 
300
  return 0;
301
}
302
 
303
static const struct frame_unwind m32r_linux_sigtramp_frame_unwind = {
304
  SIGTRAMP_FRAME,
305
  m32r_linux_sigtramp_frame_this_id,
306
  m32r_linux_sigtramp_frame_prev_register,
307
  NULL,
308
  m32r_linux_sigtramp_frame_sniffer
309
};
310
 
311
/* Mapping between the registers in `struct pt_regs'
312
   format and GDB's register array layout.  */
313
 
314
static int m32r_pt_regs_offset[] = {
315
  4 * 4,                        /* r0 */
316
  4 * 5,                        /* r1 */
317
  4 * 6,                        /* r2 */
318
  4 * 7,                        /* r3 */
319
  4 * 0,                 /* r4 */
320
  4 * 1,                        /* r5 */
321
  4 * 2,                        /* r6 */
322
  4 * 8,                        /* r7 */
323
  4 * 9,                        /* r8 */
324
  4 * 10,                       /* r9 */
325
  4 * 11,                       /* r10 */
326
  4 * 12,                       /* r11 */
327
  4 * 13,                       /* r12 */
328
  4 * 24,                       /* fp */
329
  4 * 25,                       /* lr */
330
  4 * 23,                       /* sp */
331
  4 * 19,                       /* psw */
332
  4 * 19,                       /* cbr */
333
  4 * 26,                       /* spi */
334
  4 * 23,                       /* spu */
335
  4 * 22,                       /* bpc */
336
  4 * 20,                       /* pc */
337
  4 * 16,                       /* accl */
338
  4 * 15                        /* acch */
339
};
340
 
341
#define PSW_OFFSET (4 * 19)
342
#define BBPSW_OFFSET (4 * 21)
343
#define SPU_OFFSET (4 * 23)
344
#define SPI_OFFSET (4 * 26)
345
 
346
static void
347
m32r_linux_supply_gregset (const struct regset *regset,
348
                           struct regcache *regcache, int regnum,
349
                           const void *gregs, size_t size)
350
{
351
  const char *regs = gregs;
352
  unsigned long psw, bbpsw;
353
  int i;
354
 
355
  psw = *((unsigned long *) (regs + PSW_OFFSET));
356
  bbpsw = *((unsigned long *) (regs + BBPSW_OFFSET));
357
 
358
  for (i = 0; i < sizeof (m32r_pt_regs_offset) / 4; i++)
359
    {
360
      if (regnum != -1 && regnum != i)
361
        continue;
362
 
363
      switch (i)
364
        {
365
        case PSW_REGNUM:
366
          *((unsigned long *) (regs + m32r_pt_regs_offset[i])) =
367
            ((0x00c1 & bbpsw) << 8) | ((0xc100 & psw) >> 8);
368
          break;
369
        case CBR_REGNUM:
370
          *((unsigned long *) (regs + m32r_pt_regs_offset[i])) =
371
            ((psw >> 8) & 1);
372
          break;
373
        case M32R_SP_REGNUM:
374
          if (psw & 0x8000)
375
            *((unsigned long *) (regs + m32r_pt_regs_offset[i])) =
376
              *((unsigned long *) (regs + SPU_OFFSET));
377
          else
378
            *((unsigned long *) (regs + m32r_pt_regs_offset[i])) =
379
              *((unsigned long *) (regs + SPI_OFFSET));
380
          break;
381
        }
382
 
383
      regcache_raw_supply (regcache, i,
384
                           regs + m32r_pt_regs_offset[i]);
385
    }
386
}
387
 
388
static struct regset m32r_linux_gregset = {
389
  NULL, m32r_linux_supply_gregset
390
};
391
 
392
static const struct regset *
393
m32r_linux_regset_from_core_section (struct gdbarch *core_arch,
394
                                     const char *sect_name, size_t sect_size)
395
{
396
  struct gdbarch_tdep *tdep = gdbarch_tdep (core_arch);
397
  if (strcmp (sect_name, ".reg") == 0)
398
    return &m32r_linux_gregset;
399
  return NULL;
400
}
401
 
402
static void
403
m32r_linux_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
404
{
405
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
406
 
407
  /* Since EVB register is not available for native debug, we reduce
408
     the number of registers.  */
409
  set_gdbarch_num_regs (gdbarch, M32R_NUM_REGS - 1);
410
 
411
  frame_unwind_append_unwinder (gdbarch, &m32r_linux_sigtramp_frame_unwind);
412
 
413
  /* GNU/Linux uses SVR4-style shared libraries.  */
414
  set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
415
  set_solib_svr4_fetch_link_map_offsets
416
    (gdbarch, svr4_ilp32_fetch_link_map_offsets);
417
 
418
  /* Core file support.  */
419
  set_gdbarch_regset_from_core_section
420
    (gdbarch, m32r_linux_regset_from_core_section);
421
 
422
  /* Enable TLS support.  */
423
  set_gdbarch_fetch_tls_load_module_address (gdbarch,
424
                                             svr4_fetch_objfile_link_map);
425
}
426
 
427
/* Provide a prototype to silence -Wmissing-prototypes.  */
428
extern void _initialize_m32r_linux_tdep (void);
429
 
430
void
431
_initialize_m32r_linux_tdep (void)
432
{
433
  gdbarch_register_osabi (bfd_arch_m32r, 0, GDB_OSABI_LINUX,
434
                          m32r_linux_init_abi);
435
}

powered by: WebSVN 2.1.0

© copyright 1999-2025 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.