1 |
227 |
jeremybenn |
/* Target-dependent code for the Motorola 68000 series.
|
2 |
|
|
|
3 |
|
|
Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1999, 2000, 2001,
|
4 |
|
|
2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
|
5 |
|
|
Free Software Foundation, Inc.
|
6 |
|
|
|
7 |
|
|
This file is part of GDB.
|
8 |
|
|
|
9 |
|
|
This program is free software; you can redistribute it and/or modify
|
10 |
|
|
it under the terms of the GNU General Public License as published by
|
11 |
|
|
the Free Software Foundation; either version 3 of the License, or
|
12 |
|
|
(at your option) any later version.
|
13 |
|
|
|
14 |
|
|
This program is distributed in the hope that it will be useful,
|
15 |
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
16 |
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
17 |
|
|
GNU General Public License for more details.
|
18 |
|
|
|
19 |
|
|
You should have received a copy of the GNU General Public License
|
20 |
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>. */
|
21 |
|
|
|
22 |
|
|
#include "defs.h"
|
23 |
|
|
#include "dwarf2-frame.h"
|
24 |
|
|
#include "frame.h"
|
25 |
|
|
#include "frame-base.h"
|
26 |
|
|
#include "frame-unwind.h"
|
27 |
|
|
#include "gdbtypes.h"
|
28 |
|
|
#include "symtab.h"
|
29 |
|
|
#include "gdbcore.h"
|
30 |
|
|
#include "value.h"
|
31 |
|
|
#include "gdb_string.h"
|
32 |
|
|
#include "gdb_assert.h"
|
33 |
|
|
#include "inferior.h"
|
34 |
|
|
#include "regcache.h"
|
35 |
|
|
#include "arch-utils.h"
|
36 |
|
|
#include "osabi.h"
|
37 |
|
|
#include "dis-asm.h"
|
38 |
|
|
#include "target-descriptions.h"
|
39 |
|
|
|
40 |
|
|
#include "m68k-tdep.h"
|
41 |
|
|
|
42 |
|
|
|
43 |
|
|
#define P_LINKL_FP 0x480e
|
44 |
|
|
#define P_LINKW_FP 0x4e56
|
45 |
|
|
#define P_PEA_FP 0x4856
|
46 |
|
|
#define P_MOVEAL_SP_FP 0x2c4f
|
47 |
|
|
#define P_ADDAW_SP 0xdefc
|
48 |
|
|
#define P_ADDAL_SP 0xdffc
|
49 |
|
|
#define P_SUBQW_SP 0x514f
|
50 |
|
|
#define P_SUBQL_SP 0x518f
|
51 |
|
|
#define P_LEA_SP_SP 0x4fef
|
52 |
|
|
#define P_LEA_PC_A5 0x4bfb0170
|
53 |
|
|
#define P_FMOVEMX_SP 0xf227
|
54 |
|
|
#define P_MOVEL_SP 0x2f00
|
55 |
|
|
#define P_MOVEML_SP 0x48e7
|
56 |
|
|
|
57 |
|
|
/* Offset from SP to first arg on stack at first instruction of a function */
|
58 |
|
|
#define SP_ARG0 (1 * 4)
|
59 |
|
|
|
60 |
|
|
#if !defined (BPT_VECTOR)
|
61 |
|
|
#define BPT_VECTOR 0xf
|
62 |
|
|
#endif
|
63 |
|
|
|
64 |
|
|
static const gdb_byte *
|
65 |
|
|
m68k_local_breakpoint_from_pc (struct gdbarch *gdbarch,
|
66 |
|
|
CORE_ADDR *pcptr, int *lenptr)
|
67 |
|
|
{
|
68 |
|
|
static gdb_byte break_insn[] = {0x4e, (0x40 | BPT_VECTOR)};
|
69 |
|
|
*lenptr = sizeof (break_insn);
|
70 |
|
|
return break_insn;
|
71 |
|
|
}
|
72 |
|
|
|
73 |
|
|
|
74 |
|
|
/* Construct types for ISA-specific registers. */
|
75 |
|
|
static struct type *
|
76 |
|
|
m68k_ps_type (struct gdbarch *gdbarch)
|
77 |
|
|
{
|
78 |
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
79 |
|
|
|
80 |
|
|
if (!tdep->m68k_ps_type)
|
81 |
|
|
{
|
82 |
|
|
struct type *type;
|
83 |
|
|
|
84 |
|
|
type = arch_flags_type (gdbarch, "builtin_type_m68k_ps", 4);
|
85 |
|
|
append_flags_type_flag (type, 0, "C");
|
86 |
|
|
append_flags_type_flag (type, 1, "V");
|
87 |
|
|
append_flags_type_flag (type, 2, "Z");
|
88 |
|
|
append_flags_type_flag (type, 3, "N");
|
89 |
|
|
append_flags_type_flag (type, 4, "X");
|
90 |
|
|
append_flags_type_flag (type, 8, "I0");
|
91 |
|
|
append_flags_type_flag (type, 9, "I1");
|
92 |
|
|
append_flags_type_flag (type, 10, "I2");
|
93 |
|
|
append_flags_type_flag (type, 12, "M");
|
94 |
|
|
append_flags_type_flag (type, 13, "S");
|
95 |
|
|
append_flags_type_flag (type, 14, "T0");
|
96 |
|
|
append_flags_type_flag (type, 15, "T1");
|
97 |
|
|
|
98 |
|
|
tdep->m68k_ps_type = type;
|
99 |
|
|
}
|
100 |
|
|
|
101 |
|
|
return tdep->m68k_ps_type;
|
102 |
|
|
}
|
103 |
|
|
|
104 |
|
|
static struct type *
|
105 |
|
|
m68881_ext_type (struct gdbarch *gdbarch)
|
106 |
|
|
{
|
107 |
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
108 |
|
|
|
109 |
|
|
if (!tdep->m68881_ext_type)
|
110 |
|
|
tdep->m68881_ext_type
|
111 |
|
|
= arch_float_type (gdbarch, -1, "builtin_type_m68881_ext",
|
112 |
|
|
floatformats_m68881_ext);
|
113 |
|
|
|
114 |
|
|
return tdep->m68881_ext_type;
|
115 |
|
|
}
|
116 |
|
|
|
117 |
|
|
/* Return the GDB type object for the "standard" data type of data in
|
118 |
|
|
register N. This should be int for D0-D7, SR, FPCONTROL and
|
119 |
|
|
FPSTATUS, long double for FP0-FP7, and void pointer for all others
|
120 |
|
|
(A0-A7, PC, FPIADDR). Note, for registers which contain
|
121 |
|
|
addresses return pointer to void, not pointer to char, because we
|
122 |
|
|
don't want to attempt to print the string after printing the
|
123 |
|
|
address. */
|
124 |
|
|
|
125 |
|
|
static struct type *
|
126 |
|
|
m68k_register_type (struct gdbarch *gdbarch, int regnum)
|
127 |
|
|
{
|
128 |
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
129 |
|
|
|
130 |
|
|
if (tdep->fpregs_present)
|
131 |
|
|
{
|
132 |
|
|
if (regnum >= gdbarch_fp0_regnum (gdbarch)
|
133 |
|
|
&& regnum <= gdbarch_fp0_regnum (gdbarch) + 7)
|
134 |
|
|
{
|
135 |
|
|
if (tdep->flavour == m68k_coldfire_flavour)
|
136 |
|
|
return builtin_type (gdbarch)->builtin_double;
|
137 |
|
|
else
|
138 |
|
|
return m68881_ext_type (gdbarch);
|
139 |
|
|
}
|
140 |
|
|
|
141 |
|
|
if (regnum == M68K_FPI_REGNUM)
|
142 |
|
|
return builtin_type (gdbarch)->builtin_func_ptr;
|
143 |
|
|
|
144 |
|
|
if (regnum == M68K_FPC_REGNUM || regnum == M68K_FPS_REGNUM)
|
145 |
|
|
return builtin_type (gdbarch)->builtin_int32;
|
146 |
|
|
}
|
147 |
|
|
else
|
148 |
|
|
{
|
149 |
|
|
if (regnum >= M68K_FP0_REGNUM && regnum <= M68K_FPI_REGNUM)
|
150 |
|
|
return builtin_type (gdbarch)->builtin_int0;
|
151 |
|
|
}
|
152 |
|
|
|
153 |
|
|
if (regnum == gdbarch_pc_regnum (gdbarch))
|
154 |
|
|
return builtin_type (gdbarch)->builtin_func_ptr;
|
155 |
|
|
|
156 |
|
|
if (regnum >= M68K_A0_REGNUM && regnum <= M68K_A0_REGNUM + 7)
|
157 |
|
|
return builtin_type (gdbarch)->builtin_data_ptr;
|
158 |
|
|
|
159 |
|
|
if (regnum == M68K_PS_REGNUM)
|
160 |
|
|
return m68k_ps_type (gdbarch);
|
161 |
|
|
|
162 |
|
|
return builtin_type (gdbarch)->builtin_int32;
|
163 |
|
|
}
|
164 |
|
|
|
165 |
|
|
static const char *m68k_register_names[] = {
|
166 |
|
|
"d0", "d1", "d2", "d3", "d4", "d5", "d6", "d7",
|
167 |
|
|
"a0", "a1", "a2", "a3", "a4", "a5", "fp", "sp",
|
168 |
|
|
"ps", "pc",
|
169 |
|
|
"fp0", "fp1", "fp2", "fp3", "fp4", "fp5", "fp6", "fp7",
|
170 |
|
|
"fpcontrol", "fpstatus", "fpiaddr"
|
171 |
|
|
};
|
172 |
|
|
|
173 |
|
|
/* Function: m68k_register_name
|
174 |
|
|
Returns the name of the standard m68k register regnum. */
|
175 |
|
|
|
176 |
|
|
static const char *
|
177 |
|
|
m68k_register_name (struct gdbarch *gdbarch, int regnum)
|
178 |
|
|
{
|
179 |
|
|
if (regnum < 0 || regnum >= ARRAY_SIZE (m68k_register_names))
|
180 |
|
|
internal_error (__FILE__, __LINE__,
|
181 |
|
|
_("m68k_register_name: illegal register number %d"), regnum);
|
182 |
|
|
else if (regnum >= M68K_FP0_REGNUM && regnum <= M68K_FPI_REGNUM
|
183 |
|
|
&& gdbarch_tdep (gdbarch)->fpregs_present == 0)
|
184 |
|
|
return "";
|
185 |
|
|
else
|
186 |
|
|
return m68k_register_names[regnum];
|
187 |
|
|
}
|
188 |
|
|
|
189 |
|
|
/* Return nonzero if a value of type TYPE stored in register REGNUM
|
190 |
|
|
needs any special handling. */
|
191 |
|
|
|
192 |
|
|
static int
|
193 |
|
|
m68k_convert_register_p (struct gdbarch *gdbarch, int regnum, struct type *type)
|
194 |
|
|
{
|
195 |
|
|
if (!gdbarch_tdep (gdbarch)->fpregs_present)
|
196 |
|
|
return 0;
|
197 |
|
|
return (regnum >= M68K_FP0_REGNUM && regnum <= M68K_FP0_REGNUM + 7
|
198 |
|
|
&& type != register_type (gdbarch, M68K_FP0_REGNUM));
|
199 |
|
|
}
|
200 |
|
|
|
201 |
|
|
/* Read a value of type TYPE from register REGNUM in frame FRAME, and
|
202 |
|
|
return its contents in TO. */
|
203 |
|
|
|
204 |
|
|
static void
|
205 |
|
|
m68k_register_to_value (struct frame_info *frame, int regnum,
|
206 |
|
|
struct type *type, gdb_byte *to)
|
207 |
|
|
{
|
208 |
|
|
gdb_byte from[M68K_MAX_REGISTER_SIZE];
|
209 |
|
|
struct type *fpreg_type = register_type (get_frame_arch (frame),
|
210 |
|
|
M68K_FP0_REGNUM);
|
211 |
|
|
|
212 |
|
|
/* We only support floating-point values. */
|
213 |
|
|
if (TYPE_CODE (type) != TYPE_CODE_FLT)
|
214 |
|
|
{
|
215 |
|
|
warning (_("Cannot convert floating-point register value "
|
216 |
|
|
"to non-floating-point type."));
|
217 |
|
|
return;
|
218 |
|
|
}
|
219 |
|
|
|
220 |
|
|
/* Convert to TYPE. */
|
221 |
|
|
get_frame_register (frame, regnum, from);
|
222 |
|
|
convert_typed_floating (from, fpreg_type, to, type);
|
223 |
|
|
}
|
224 |
|
|
|
225 |
|
|
/* Write the contents FROM of a value of type TYPE into register
|
226 |
|
|
REGNUM in frame FRAME. */
|
227 |
|
|
|
228 |
|
|
static void
|
229 |
|
|
m68k_value_to_register (struct frame_info *frame, int regnum,
|
230 |
|
|
struct type *type, const gdb_byte *from)
|
231 |
|
|
{
|
232 |
|
|
gdb_byte to[M68K_MAX_REGISTER_SIZE];
|
233 |
|
|
struct type *fpreg_type = register_type (get_frame_arch (frame),
|
234 |
|
|
M68K_FP0_REGNUM);
|
235 |
|
|
|
236 |
|
|
/* We only support floating-point values. */
|
237 |
|
|
if (TYPE_CODE (type) != TYPE_CODE_FLT)
|
238 |
|
|
{
|
239 |
|
|
warning (_("Cannot convert non-floating-point type "
|
240 |
|
|
"to floating-point register value."));
|
241 |
|
|
return;
|
242 |
|
|
}
|
243 |
|
|
|
244 |
|
|
/* Convert from TYPE. */
|
245 |
|
|
convert_typed_floating (from, type, to, fpreg_type);
|
246 |
|
|
put_frame_register (frame, regnum, to);
|
247 |
|
|
}
|
248 |
|
|
|
249 |
|
|
|
250 |
|
|
/* There is a fair number of calling conventions that are in somewhat
|
251 |
|
|
wide use. The 68000/08/10 don't support an FPU, not even as a
|
252 |
|
|
coprocessor. All function return values are stored in %d0/%d1.
|
253 |
|
|
Structures are returned in a static buffer, a pointer to which is
|
254 |
|
|
returned in %d0. This means that functions returning a structure
|
255 |
|
|
are not re-entrant. To avoid this problem some systems use a
|
256 |
|
|
convention where the caller passes a pointer to a buffer in %a1
|
257 |
|
|
where the return values is to be stored. This convention is the
|
258 |
|
|
default, and is implemented in the function m68k_return_value.
|
259 |
|
|
|
260 |
|
|
The 68020/030/040/060 do support an FPU, either as a coprocessor
|
261 |
|
|
(68881/2) or built-in (68040/68060). That's why System V release 4
|
262 |
|
|
(SVR4) instroduces a new calling convention specified by the SVR4
|
263 |
|
|
psABI. Integer values are returned in %d0/%d1, pointer return
|
264 |
|
|
values in %a0 and floating values in %fp0. When calling functions
|
265 |
|
|
returning a structure the caller should pass a pointer to a buffer
|
266 |
|
|
for the return value in %a0. This convention is implemented in the
|
267 |
|
|
function m68k_svr4_return_value, and by appropriately setting the
|
268 |
|
|
struct_value_regnum member of `struct gdbarch_tdep'.
|
269 |
|
|
|
270 |
|
|
GNU/Linux returns values in the same way as SVR4 does, but uses %a1
|
271 |
|
|
for passing the structure return value buffer.
|
272 |
|
|
|
273 |
|
|
GCC can also generate code where small structures are returned in
|
274 |
|
|
%d0/%d1 instead of in memory by using -freg-struct-return. This is
|
275 |
|
|
the default on NetBSD a.out, OpenBSD and GNU/Linux and several
|
276 |
|
|
embedded systems. This convention is implemented by setting the
|
277 |
|
|
struct_return member of `struct gdbarch_tdep' to reg_struct_return. */
|
278 |
|
|
|
279 |
|
|
/* Read a function return value of TYPE from REGCACHE, and copy that
|
280 |
|
|
into VALBUF. */
|
281 |
|
|
|
282 |
|
|
static void
|
283 |
|
|
m68k_extract_return_value (struct type *type, struct regcache *regcache,
|
284 |
|
|
gdb_byte *valbuf)
|
285 |
|
|
{
|
286 |
|
|
int len = TYPE_LENGTH (type);
|
287 |
|
|
gdb_byte buf[M68K_MAX_REGISTER_SIZE];
|
288 |
|
|
|
289 |
|
|
if (len <= 4)
|
290 |
|
|
{
|
291 |
|
|
regcache_raw_read (regcache, M68K_D0_REGNUM, buf);
|
292 |
|
|
memcpy (valbuf, buf + (4 - len), len);
|
293 |
|
|
}
|
294 |
|
|
else if (len <= 8)
|
295 |
|
|
{
|
296 |
|
|
regcache_raw_read (regcache, M68K_D0_REGNUM, buf);
|
297 |
|
|
memcpy (valbuf, buf + (8 - len), len - 4);
|
298 |
|
|
regcache_raw_read (regcache, M68K_D1_REGNUM, valbuf + (len - 4));
|
299 |
|
|
}
|
300 |
|
|
else
|
301 |
|
|
internal_error (__FILE__, __LINE__,
|
302 |
|
|
_("Cannot extract return value of %d bytes long."), len);
|
303 |
|
|
}
|
304 |
|
|
|
305 |
|
|
static void
|
306 |
|
|
m68k_svr4_extract_return_value (struct type *type, struct regcache *regcache,
|
307 |
|
|
gdb_byte *valbuf)
|
308 |
|
|
{
|
309 |
|
|
int len = TYPE_LENGTH (type);
|
310 |
|
|
gdb_byte buf[M68K_MAX_REGISTER_SIZE];
|
311 |
|
|
struct gdbarch *gdbarch = get_regcache_arch (regcache);
|
312 |
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
313 |
|
|
|
314 |
|
|
if (tdep->float_return && TYPE_CODE (type) == TYPE_CODE_FLT)
|
315 |
|
|
{
|
316 |
|
|
struct type *fpreg_type = register_type (gdbarch, M68K_FP0_REGNUM);
|
317 |
|
|
regcache_raw_read (regcache, M68K_FP0_REGNUM, buf);
|
318 |
|
|
convert_typed_floating (buf, fpreg_type, valbuf, type);
|
319 |
|
|
}
|
320 |
|
|
else if (TYPE_CODE (type) == TYPE_CODE_PTR && len == 4)
|
321 |
|
|
regcache_raw_read (regcache, M68K_A0_REGNUM, valbuf);
|
322 |
|
|
else
|
323 |
|
|
m68k_extract_return_value (type, regcache, valbuf);
|
324 |
|
|
}
|
325 |
|
|
|
326 |
|
|
/* Write a function return value of TYPE from VALBUF into REGCACHE. */
|
327 |
|
|
|
328 |
|
|
static void
|
329 |
|
|
m68k_store_return_value (struct type *type, struct regcache *regcache,
|
330 |
|
|
const gdb_byte *valbuf)
|
331 |
|
|
{
|
332 |
|
|
int len = TYPE_LENGTH (type);
|
333 |
|
|
|
334 |
|
|
if (len <= 4)
|
335 |
|
|
regcache_raw_write_part (regcache, M68K_D0_REGNUM, 4 - len, len, valbuf);
|
336 |
|
|
else if (len <= 8)
|
337 |
|
|
{
|
338 |
|
|
regcache_raw_write_part (regcache, M68K_D0_REGNUM, 8 - len,
|
339 |
|
|
len - 4, valbuf);
|
340 |
|
|
regcache_raw_write (regcache, M68K_D1_REGNUM, valbuf + (len - 4));
|
341 |
|
|
}
|
342 |
|
|
else
|
343 |
|
|
internal_error (__FILE__, __LINE__,
|
344 |
|
|
_("Cannot store return value of %d bytes long."), len);
|
345 |
|
|
}
|
346 |
|
|
|
347 |
|
|
static void
|
348 |
|
|
m68k_svr4_store_return_value (struct type *type, struct regcache *regcache,
|
349 |
|
|
const gdb_byte *valbuf)
|
350 |
|
|
{
|
351 |
|
|
int len = TYPE_LENGTH (type);
|
352 |
|
|
struct gdbarch *gdbarch = get_regcache_arch (regcache);
|
353 |
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
354 |
|
|
|
355 |
|
|
if (tdep->float_return && TYPE_CODE (type) == TYPE_CODE_FLT)
|
356 |
|
|
{
|
357 |
|
|
struct type *fpreg_type = register_type (gdbarch, M68K_FP0_REGNUM);
|
358 |
|
|
gdb_byte buf[M68K_MAX_REGISTER_SIZE];
|
359 |
|
|
convert_typed_floating (valbuf, type, buf, fpreg_type);
|
360 |
|
|
regcache_raw_write (regcache, M68K_FP0_REGNUM, buf);
|
361 |
|
|
}
|
362 |
|
|
else if (TYPE_CODE (type) == TYPE_CODE_PTR && len == 4)
|
363 |
|
|
{
|
364 |
|
|
regcache_raw_write (regcache, M68K_A0_REGNUM, valbuf);
|
365 |
|
|
regcache_raw_write (regcache, M68K_D0_REGNUM, valbuf);
|
366 |
|
|
}
|
367 |
|
|
else
|
368 |
|
|
m68k_store_return_value (type, regcache, valbuf);
|
369 |
|
|
}
|
370 |
|
|
|
371 |
|
|
/* Return non-zero if TYPE, which is assumed to be a structure or
|
372 |
|
|
union type, should be returned in registers for architecture
|
373 |
|
|
GDBARCH. */
|
374 |
|
|
|
375 |
|
|
static int
|
376 |
|
|
m68k_reg_struct_return_p (struct gdbarch *gdbarch, struct type *type)
|
377 |
|
|
{
|
378 |
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
379 |
|
|
enum type_code code = TYPE_CODE (type);
|
380 |
|
|
int len = TYPE_LENGTH (type);
|
381 |
|
|
|
382 |
|
|
gdb_assert (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION);
|
383 |
|
|
|
384 |
|
|
if (tdep->struct_return == pcc_struct_return)
|
385 |
|
|
return 0;
|
386 |
|
|
|
387 |
|
|
return (len == 1 || len == 2 || len == 4 || len == 8);
|
388 |
|
|
}
|
389 |
|
|
|
390 |
|
|
/* Determine, for architecture GDBARCH, how a return value of TYPE
|
391 |
|
|
should be returned. If it is supposed to be returned in registers,
|
392 |
|
|
and READBUF is non-zero, read the appropriate value from REGCACHE,
|
393 |
|
|
and copy it into READBUF. If WRITEBUF is non-zero, write the value
|
394 |
|
|
from WRITEBUF into REGCACHE. */
|
395 |
|
|
|
396 |
|
|
static enum return_value_convention
|
397 |
|
|
m68k_return_value (struct gdbarch *gdbarch, struct type *func_type,
|
398 |
|
|
struct type *type, struct regcache *regcache,
|
399 |
|
|
gdb_byte *readbuf, const gdb_byte *writebuf)
|
400 |
|
|
{
|
401 |
|
|
enum type_code code = TYPE_CODE (type);
|
402 |
|
|
|
403 |
|
|
/* GCC returns a `long double' in memory too. */
|
404 |
|
|
if (((code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION)
|
405 |
|
|
&& !m68k_reg_struct_return_p (gdbarch, type))
|
406 |
|
|
|| (code == TYPE_CODE_FLT && TYPE_LENGTH (type) == 12))
|
407 |
|
|
{
|
408 |
|
|
/* The default on m68k is to return structures in static memory.
|
409 |
|
|
Consequently a function must return the address where we can
|
410 |
|
|
find the return value. */
|
411 |
|
|
|
412 |
|
|
if (readbuf)
|
413 |
|
|
{
|
414 |
|
|
ULONGEST addr;
|
415 |
|
|
|
416 |
|
|
regcache_raw_read_unsigned (regcache, M68K_D0_REGNUM, &addr);
|
417 |
|
|
read_memory (addr, readbuf, TYPE_LENGTH (type));
|
418 |
|
|
}
|
419 |
|
|
|
420 |
|
|
return RETURN_VALUE_ABI_RETURNS_ADDRESS;
|
421 |
|
|
}
|
422 |
|
|
|
423 |
|
|
if (readbuf)
|
424 |
|
|
m68k_extract_return_value (type, regcache, readbuf);
|
425 |
|
|
if (writebuf)
|
426 |
|
|
m68k_store_return_value (type, regcache, writebuf);
|
427 |
|
|
|
428 |
|
|
return RETURN_VALUE_REGISTER_CONVENTION;
|
429 |
|
|
}
|
430 |
|
|
|
431 |
|
|
static enum return_value_convention
|
432 |
|
|
m68k_svr4_return_value (struct gdbarch *gdbarch, struct type *func_type,
|
433 |
|
|
struct type *type, struct regcache *regcache,
|
434 |
|
|
gdb_byte *readbuf, const gdb_byte *writebuf)
|
435 |
|
|
{
|
436 |
|
|
enum type_code code = TYPE_CODE (type);
|
437 |
|
|
|
438 |
|
|
if ((code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION)
|
439 |
|
|
&& !m68k_reg_struct_return_p (gdbarch, type))
|
440 |
|
|
{
|
441 |
|
|
/* The System V ABI says that:
|
442 |
|
|
|
443 |
|
|
"A function returning a structure or union also sets %a0 to
|
444 |
|
|
the value it finds in %a0. Thus when the caller receives
|
445 |
|
|
control again, the address of the returned object resides in
|
446 |
|
|
register %a0."
|
447 |
|
|
|
448 |
|
|
So the ABI guarantees that we can always find the return
|
449 |
|
|
value just after the function has returned. */
|
450 |
|
|
|
451 |
|
|
if (readbuf)
|
452 |
|
|
{
|
453 |
|
|
ULONGEST addr;
|
454 |
|
|
|
455 |
|
|
regcache_raw_read_unsigned (regcache, M68K_A0_REGNUM, &addr);
|
456 |
|
|
read_memory (addr, readbuf, TYPE_LENGTH (type));
|
457 |
|
|
}
|
458 |
|
|
|
459 |
|
|
return RETURN_VALUE_ABI_RETURNS_ADDRESS;
|
460 |
|
|
}
|
461 |
|
|
|
462 |
|
|
/* This special case is for structures consisting of a single
|
463 |
|
|
`float' or `double' member. These structures are returned in
|
464 |
|
|
%fp0. For these structures, we call ourselves recursively,
|
465 |
|
|
changing TYPE into the type of the first member of the structure.
|
466 |
|
|
Since that should work for all structures that have only one
|
467 |
|
|
member, we don't bother to check the member's type here. */
|
468 |
|
|
if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
|
469 |
|
|
{
|
470 |
|
|
type = check_typedef (TYPE_FIELD_TYPE (type, 0));
|
471 |
|
|
return m68k_svr4_return_value (gdbarch, func_type, type, regcache,
|
472 |
|
|
readbuf, writebuf);
|
473 |
|
|
}
|
474 |
|
|
|
475 |
|
|
if (readbuf)
|
476 |
|
|
m68k_svr4_extract_return_value (type, regcache, readbuf);
|
477 |
|
|
if (writebuf)
|
478 |
|
|
m68k_svr4_store_return_value (type, regcache, writebuf);
|
479 |
|
|
|
480 |
|
|
return RETURN_VALUE_REGISTER_CONVENTION;
|
481 |
|
|
}
|
482 |
|
|
|
483 |
|
|
|
484 |
|
|
/* Always align the frame to a 4-byte boundary. This is required on
|
485 |
|
|
coldfire and harmless on the rest. */
|
486 |
|
|
|
487 |
|
|
static CORE_ADDR
|
488 |
|
|
m68k_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
|
489 |
|
|
{
|
490 |
|
|
/* Align the stack to four bytes. */
|
491 |
|
|
return sp & ~3;
|
492 |
|
|
}
|
493 |
|
|
|
494 |
|
|
static CORE_ADDR
|
495 |
|
|
m68k_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
|
496 |
|
|
struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
|
497 |
|
|
struct value **args, CORE_ADDR sp, int struct_return,
|
498 |
|
|
CORE_ADDR struct_addr)
|
499 |
|
|
{
|
500 |
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
501 |
|
|
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
502 |
|
|
gdb_byte buf[4];
|
503 |
|
|
int i;
|
504 |
|
|
|
505 |
|
|
/* Push arguments in reverse order. */
|
506 |
|
|
for (i = nargs - 1; i >= 0; i--)
|
507 |
|
|
{
|
508 |
|
|
struct type *value_type = value_enclosing_type (args[i]);
|
509 |
|
|
int len = TYPE_LENGTH (value_type);
|
510 |
|
|
int container_len = (len + 3) & ~3;
|
511 |
|
|
int offset;
|
512 |
|
|
|
513 |
|
|
/* Non-scalars bigger than 4 bytes are left aligned, others are
|
514 |
|
|
right aligned. */
|
515 |
|
|
if ((TYPE_CODE (value_type) == TYPE_CODE_STRUCT
|
516 |
|
|
|| TYPE_CODE (value_type) == TYPE_CODE_UNION
|
517 |
|
|
|| TYPE_CODE (value_type) == TYPE_CODE_ARRAY)
|
518 |
|
|
&& len > 4)
|
519 |
|
|
offset = 0;
|
520 |
|
|
else
|
521 |
|
|
offset = container_len - len;
|
522 |
|
|
sp -= container_len;
|
523 |
|
|
write_memory (sp + offset, value_contents_all (args[i]), len);
|
524 |
|
|
}
|
525 |
|
|
|
526 |
|
|
/* Store struct value address. */
|
527 |
|
|
if (struct_return)
|
528 |
|
|
{
|
529 |
|
|
store_unsigned_integer (buf, 4, byte_order, struct_addr);
|
530 |
|
|
regcache_cooked_write (regcache, tdep->struct_value_regnum, buf);
|
531 |
|
|
}
|
532 |
|
|
|
533 |
|
|
/* Store return address. */
|
534 |
|
|
sp -= 4;
|
535 |
|
|
store_unsigned_integer (buf, 4, byte_order, bp_addr);
|
536 |
|
|
write_memory (sp, buf, 4);
|
537 |
|
|
|
538 |
|
|
/* Finally, update the stack pointer... */
|
539 |
|
|
store_unsigned_integer (buf, 4, byte_order, sp);
|
540 |
|
|
regcache_cooked_write (regcache, M68K_SP_REGNUM, buf);
|
541 |
|
|
|
542 |
|
|
/* ...and fake a frame pointer. */
|
543 |
|
|
regcache_cooked_write (regcache, M68K_FP_REGNUM, buf);
|
544 |
|
|
|
545 |
|
|
/* DWARF2/GCC uses the stack address *before* the function call as a
|
546 |
|
|
frame's CFA. */
|
547 |
|
|
return sp + 8;
|
548 |
|
|
}
|
549 |
|
|
|
550 |
|
|
/* Convert a dwarf or dwarf2 regnumber to a GDB regnum. */
|
551 |
|
|
|
552 |
|
|
static int
|
553 |
|
|
m68k_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int num)
|
554 |
|
|
{
|
555 |
|
|
if (num < 8)
|
556 |
|
|
/* d0..7 */
|
557 |
|
|
return (num - 0) + M68K_D0_REGNUM;
|
558 |
|
|
else if (num < 16)
|
559 |
|
|
/* a0..7 */
|
560 |
|
|
return (num - 8) + M68K_A0_REGNUM;
|
561 |
|
|
else if (num < 24 && gdbarch_tdep (gdbarch)->fpregs_present)
|
562 |
|
|
/* fp0..7 */
|
563 |
|
|
return (num - 16) + M68K_FP0_REGNUM;
|
564 |
|
|
else if (num == 25)
|
565 |
|
|
/* pc */
|
566 |
|
|
return M68K_PC_REGNUM;
|
567 |
|
|
else
|
568 |
|
|
return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
|
569 |
|
|
}
|
570 |
|
|
|
571 |
|
|
|
572 |
|
|
struct m68k_frame_cache
|
573 |
|
|
{
|
574 |
|
|
/* Base address. */
|
575 |
|
|
CORE_ADDR base;
|
576 |
|
|
CORE_ADDR sp_offset;
|
577 |
|
|
CORE_ADDR pc;
|
578 |
|
|
|
579 |
|
|
/* Saved registers. */
|
580 |
|
|
CORE_ADDR saved_regs[M68K_NUM_REGS];
|
581 |
|
|
CORE_ADDR saved_sp;
|
582 |
|
|
|
583 |
|
|
/* Stack space reserved for local variables. */
|
584 |
|
|
long locals;
|
585 |
|
|
};
|
586 |
|
|
|
587 |
|
|
/* Allocate and initialize a frame cache. */
|
588 |
|
|
|
589 |
|
|
static struct m68k_frame_cache *
|
590 |
|
|
m68k_alloc_frame_cache (void)
|
591 |
|
|
{
|
592 |
|
|
struct m68k_frame_cache *cache;
|
593 |
|
|
int i;
|
594 |
|
|
|
595 |
|
|
cache = FRAME_OBSTACK_ZALLOC (struct m68k_frame_cache);
|
596 |
|
|
|
597 |
|
|
/* Base address. */
|
598 |
|
|
cache->base = 0;
|
599 |
|
|
cache->sp_offset = -4;
|
600 |
|
|
cache->pc = 0;
|
601 |
|
|
|
602 |
|
|
/* Saved registers. We initialize these to -1 since zero is a valid
|
603 |
|
|
offset (that's where %fp is supposed to be stored). */
|
604 |
|
|
for (i = 0; i < M68K_NUM_REGS; i++)
|
605 |
|
|
cache->saved_regs[i] = -1;
|
606 |
|
|
|
607 |
|
|
/* Frameless until proven otherwise. */
|
608 |
|
|
cache->locals = -1;
|
609 |
|
|
|
610 |
|
|
return cache;
|
611 |
|
|
}
|
612 |
|
|
|
613 |
|
|
/* Check whether PC points at a code that sets up a new stack frame.
|
614 |
|
|
If so, it updates CACHE and returns the address of the first
|
615 |
|
|
instruction after the sequence that sets removes the "hidden"
|
616 |
|
|
argument from the stack or CURRENT_PC, whichever is smaller.
|
617 |
|
|
Otherwise, return PC. */
|
618 |
|
|
|
619 |
|
|
static CORE_ADDR
|
620 |
|
|
m68k_analyze_frame_setup (struct gdbarch *gdbarch,
|
621 |
|
|
CORE_ADDR pc, CORE_ADDR current_pc,
|
622 |
|
|
struct m68k_frame_cache *cache)
|
623 |
|
|
{
|
624 |
|
|
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
625 |
|
|
int op;
|
626 |
|
|
|
627 |
|
|
if (pc >= current_pc)
|
628 |
|
|
return current_pc;
|
629 |
|
|
|
630 |
|
|
op = read_memory_unsigned_integer (pc, 2, byte_order);
|
631 |
|
|
|
632 |
|
|
if (op == P_LINKW_FP || op == P_LINKL_FP || op == P_PEA_FP)
|
633 |
|
|
{
|
634 |
|
|
cache->saved_regs[M68K_FP_REGNUM] = 0;
|
635 |
|
|
cache->sp_offset += 4;
|
636 |
|
|
if (op == P_LINKW_FP)
|
637 |
|
|
{
|
638 |
|
|
/* link.w %fp, #-N */
|
639 |
|
|
/* link.w %fp, #0; adda.l #-N, %sp */
|
640 |
|
|
cache->locals = -read_memory_integer (pc + 2, 2, byte_order);
|
641 |
|
|
|
642 |
|
|
if (pc + 4 < current_pc && cache->locals == 0)
|
643 |
|
|
{
|
644 |
|
|
op = read_memory_unsigned_integer (pc + 4, 2, byte_order);
|
645 |
|
|
if (op == P_ADDAL_SP)
|
646 |
|
|
{
|
647 |
|
|
cache->locals = read_memory_integer (pc + 6, 4, byte_order);
|
648 |
|
|
return pc + 10;
|
649 |
|
|
}
|
650 |
|
|
}
|
651 |
|
|
|
652 |
|
|
return pc + 4;
|
653 |
|
|
}
|
654 |
|
|
else if (op == P_LINKL_FP)
|
655 |
|
|
{
|
656 |
|
|
/* link.l %fp, #-N */
|
657 |
|
|
cache->locals = -read_memory_integer (pc + 2, 4, byte_order);
|
658 |
|
|
return pc + 6;
|
659 |
|
|
}
|
660 |
|
|
else
|
661 |
|
|
{
|
662 |
|
|
/* pea (%fp); movea.l %sp, %fp */
|
663 |
|
|
cache->locals = 0;
|
664 |
|
|
|
665 |
|
|
if (pc + 2 < current_pc)
|
666 |
|
|
{
|
667 |
|
|
op = read_memory_unsigned_integer (pc + 2, 2, byte_order);
|
668 |
|
|
|
669 |
|
|
if (op == P_MOVEAL_SP_FP)
|
670 |
|
|
{
|
671 |
|
|
/* move.l %sp, %fp */
|
672 |
|
|
return pc + 4;
|
673 |
|
|
}
|
674 |
|
|
}
|
675 |
|
|
|
676 |
|
|
return pc + 2;
|
677 |
|
|
}
|
678 |
|
|
}
|
679 |
|
|
else if ((op & 0170777) == P_SUBQW_SP || (op & 0170777) == P_SUBQL_SP)
|
680 |
|
|
{
|
681 |
|
|
/* subq.[wl] #N,%sp */
|
682 |
|
|
/* subq.[wl] #8,%sp; subq.[wl] #N,%sp */
|
683 |
|
|
cache->locals = (op & 07000) == 0 ? 8 : (op & 07000) >> 9;
|
684 |
|
|
if (pc + 2 < current_pc)
|
685 |
|
|
{
|
686 |
|
|
op = read_memory_unsigned_integer (pc + 2, 2, byte_order);
|
687 |
|
|
if ((op & 0170777) == P_SUBQW_SP || (op & 0170777) == P_SUBQL_SP)
|
688 |
|
|
{
|
689 |
|
|
cache->locals += (op & 07000) == 0 ? 8 : (op & 07000) >> 9;
|
690 |
|
|
return pc + 4;
|
691 |
|
|
}
|
692 |
|
|
}
|
693 |
|
|
return pc + 2;
|
694 |
|
|
}
|
695 |
|
|
else if (op == P_ADDAW_SP || op == P_LEA_SP_SP)
|
696 |
|
|
{
|
697 |
|
|
/* adda.w #-N,%sp */
|
698 |
|
|
/* lea (-N,%sp),%sp */
|
699 |
|
|
cache->locals = -read_memory_integer (pc + 2, 2, byte_order);
|
700 |
|
|
return pc + 4;
|
701 |
|
|
}
|
702 |
|
|
else if (op == P_ADDAL_SP)
|
703 |
|
|
{
|
704 |
|
|
/* adda.l #-N,%sp */
|
705 |
|
|
cache->locals = -read_memory_integer (pc + 2, 4, byte_order);
|
706 |
|
|
return pc + 6;
|
707 |
|
|
}
|
708 |
|
|
|
709 |
|
|
return pc;
|
710 |
|
|
}
|
711 |
|
|
|
712 |
|
|
/* Check whether PC points at code that saves registers on the stack.
|
713 |
|
|
If so, it updates CACHE and returns the address of the first
|
714 |
|
|
instruction after the register saves or CURRENT_PC, whichever is
|
715 |
|
|
smaller. Otherwise, return PC. */
|
716 |
|
|
|
717 |
|
|
static CORE_ADDR
|
718 |
|
|
m68k_analyze_register_saves (struct gdbarch *gdbarch, CORE_ADDR pc,
|
719 |
|
|
CORE_ADDR current_pc,
|
720 |
|
|
struct m68k_frame_cache *cache)
|
721 |
|
|
{
|
722 |
|
|
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
723 |
|
|
|
724 |
|
|
if (cache->locals >= 0)
|
725 |
|
|
{
|
726 |
|
|
CORE_ADDR offset;
|
727 |
|
|
int op;
|
728 |
|
|
int i, mask, regno;
|
729 |
|
|
|
730 |
|
|
offset = -4 - cache->locals;
|
731 |
|
|
while (pc < current_pc)
|
732 |
|
|
{
|
733 |
|
|
op = read_memory_unsigned_integer (pc, 2, byte_order);
|
734 |
|
|
if (op == P_FMOVEMX_SP
|
735 |
|
|
&& gdbarch_tdep (gdbarch)->fpregs_present)
|
736 |
|
|
{
|
737 |
|
|
/* fmovem.x REGS,-(%sp) */
|
738 |
|
|
op = read_memory_unsigned_integer (pc + 2, 2, byte_order);
|
739 |
|
|
if ((op & 0xff00) == 0xe000)
|
740 |
|
|
{
|
741 |
|
|
mask = op & 0xff;
|
742 |
|
|
for (i = 0; i < 16; i++, mask >>= 1)
|
743 |
|
|
{
|
744 |
|
|
if (mask & 1)
|
745 |
|
|
{
|
746 |
|
|
cache->saved_regs[i + M68K_FP0_REGNUM] = offset;
|
747 |
|
|
offset -= 12;
|
748 |
|
|
}
|
749 |
|
|
}
|
750 |
|
|
pc += 4;
|
751 |
|
|
}
|
752 |
|
|
else
|
753 |
|
|
break;
|
754 |
|
|
}
|
755 |
|
|
else if ((op & 0177760) == P_MOVEL_SP)
|
756 |
|
|
{
|
757 |
|
|
/* move.l %R,-(%sp) */
|
758 |
|
|
regno = op & 017;
|
759 |
|
|
cache->saved_regs[regno] = offset;
|
760 |
|
|
offset -= 4;
|
761 |
|
|
pc += 2;
|
762 |
|
|
}
|
763 |
|
|
else if (op == P_MOVEML_SP)
|
764 |
|
|
{
|
765 |
|
|
/* movem.l REGS,-(%sp) */
|
766 |
|
|
mask = read_memory_unsigned_integer (pc + 2, 2, byte_order);
|
767 |
|
|
for (i = 0; i < 16; i++, mask >>= 1)
|
768 |
|
|
{
|
769 |
|
|
if (mask & 1)
|
770 |
|
|
{
|
771 |
|
|
cache->saved_regs[15 - i] = offset;
|
772 |
|
|
offset -= 4;
|
773 |
|
|
}
|
774 |
|
|
}
|
775 |
|
|
pc += 4;
|
776 |
|
|
}
|
777 |
|
|
else
|
778 |
|
|
break;
|
779 |
|
|
}
|
780 |
|
|
}
|
781 |
|
|
|
782 |
|
|
return pc;
|
783 |
|
|
}
|
784 |
|
|
|
785 |
|
|
|
786 |
|
|
/* Do a full analysis of the prologue at PC and update CACHE
|
787 |
|
|
accordingly. Bail out early if CURRENT_PC is reached. Return the
|
788 |
|
|
address where the analysis stopped.
|
789 |
|
|
|
790 |
|
|
We handle all cases that can be generated by gcc.
|
791 |
|
|
|
792 |
|
|
For allocating a stack frame:
|
793 |
|
|
|
794 |
|
|
link.w %a6,#-N
|
795 |
|
|
link.l %a6,#-N
|
796 |
|
|
pea (%fp); move.l %sp,%fp
|
797 |
|
|
link.w %a6,#0; add.l #-N,%sp
|
798 |
|
|
subq.l #N,%sp
|
799 |
|
|
subq.w #N,%sp
|
800 |
|
|
subq.w #8,%sp; subq.w #N-8,%sp
|
801 |
|
|
add.w #-N,%sp
|
802 |
|
|
lea (-N,%sp),%sp
|
803 |
|
|
add.l #-N,%sp
|
804 |
|
|
|
805 |
|
|
For saving registers:
|
806 |
|
|
|
807 |
|
|
fmovem.x REGS,-(%sp)
|
808 |
|
|
move.l R1,-(%sp)
|
809 |
|
|
move.l R1,-(%sp); move.l R2,-(%sp)
|
810 |
|
|
movem.l REGS,-(%sp)
|
811 |
|
|
|
812 |
|
|
For setting up the PIC register:
|
813 |
|
|
|
814 |
|
|
lea (%pc,N),%a5
|
815 |
|
|
|
816 |
|
|
*/
|
817 |
|
|
|
818 |
|
|
static CORE_ADDR
|
819 |
|
|
m68k_analyze_prologue (struct gdbarch *gdbarch, CORE_ADDR pc,
|
820 |
|
|
CORE_ADDR current_pc, struct m68k_frame_cache *cache)
|
821 |
|
|
{
|
822 |
|
|
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
823 |
|
|
unsigned int op;
|
824 |
|
|
|
825 |
|
|
pc = m68k_analyze_frame_setup (gdbarch, pc, current_pc, cache);
|
826 |
|
|
pc = m68k_analyze_register_saves (gdbarch, pc, current_pc, cache);
|
827 |
|
|
if (pc >= current_pc)
|
828 |
|
|
return current_pc;
|
829 |
|
|
|
830 |
|
|
/* Check for GOT setup. */
|
831 |
|
|
op = read_memory_unsigned_integer (pc, 4, byte_order);
|
832 |
|
|
if (op == P_LEA_PC_A5)
|
833 |
|
|
{
|
834 |
|
|
/* lea (%pc,N),%a5 */
|
835 |
|
|
return pc + 8;
|
836 |
|
|
}
|
837 |
|
|
|
838 |
|
|
return pc;
|
839 |
|
|
}
|
840 |
|
|
|
841 |
|
|
/* Return PC of first real instruction. */
|
842 |
|
|
|
843 |
|
|
static CORE_ADDR
|
844 |
|
|
m68k_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
|
845 |
|
|
{
|
846 |
|
|
struct m68k_frame_cache cache;
|
847 |
|
|
CORE_ADDR pc;
|
848 |
|
|
int op;
|
849 |
|
|
|
850 |
|
|
cache.locals = -1;
|
851 |
|
|
pc = m68k_analyze_prologue (gdbarch, start_pc, (CORE_ADDR) -1, &cache);
|
852 |
|
|
if (cache.locals < 0)
|
853 |
|
|
return start_pc;
|
854 |
|
|
return pc;
|
855 |
|
|
}
|
856 |
|
|
|
857 |
|
|
static CORE_ADDR
|
858 |
|
|
m68k_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
|
859 |
|
|
{
|
860 |
|
|
gdb_byte buf[8];
|
861 |
|
|
|
862 |
|
|
frame_unwind_register (next_frame, gdbarch_pc_regnum (gdbarch), buf);
|
863 |
|
|
return extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
|
864 |
|
|
}
|
865 |
|
|
|
866 |
|
|
/* Normal frames. */
|
867 |
|
|
|
868 |
|
|
static struct m68k_frame_cache *
|
869 |
|
|
m68k_frame_cache (struct frame_info *this_frame, void **this_cache)
|
870 |
|
|
{
|
871 |
|
|
struct gdbarch *gdbarch = get_frame_arch (this_frame);
|
872 |
|
|
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
873 |
|
|
struct m68k_frame_cache *cache;
|
874 |
|
|
gdb_byte buf[4];
|
875 |
|
|
int i;
|
876 |
|
|
|
877 |
|
|
if (*this_cache)
|
878 |
|
|
return *this_cache;
|
879 |
|
|
|
880 |
|
|
cache = m68k_alloc_frame_cache ();
|
881 |
|
|
*this_cache = cache;
|
882 |
|
|
|
883 |
|
|
/* In principle, for normal frames, %fp holds the frame pointer,
|
884 |
|
|
which holds the base address for the current stack frame.
|
885 |
|
|
However, for functions that don't need it, the frame pointer is
|
886 |
|
|
optional. For these "frameless" functions the frame pointer is
|
887 |
|
|
actually the frame pointer of the calling frame. Signal
|
888 |
|
|
trampolines are just a special case of a "frameless" function.
|
889 |
|
|
They (usually) share their frame pointer with the frame that was
|
890 |
|
|
in progress when the signal occurred. */
|
891 |
|
|
|
892 |
|
|
get_frame_register (this_frame, M68K_FP_REGNUM, buf);
|
893 |
|
|
cache->base = extract_unsigned_integer (buf, 4, byte_order);
|
894 |
|
|
if (cache->base == 0)
|
895 |
|
|
return cache;
|
896 |
|
|
|
897 |
|
|
/* For normal frames, %pc is stored at 4(%fp). */
|
898 |
|
|
cache->saved_regs[M68K_PC_REGNUM] = 4;
|
899 |
|
|
|
900 |
|
|
cache->pc = get_frame_func (this_frame);
|
901 |
|
|
if (cache->pc != 0)
|
902 |
|
|
m68k_analyze_prologue (get_frame_arch (this_frame), cache->pc,
|
903 |
|
|
get_frame_pc (this_frame), cache);
|
904 |
|
|
|
905 |
|
|
if (cache->locals < 0)
|
906 |
|
|
{
|
907 |
|
|
/* We didn't find a valid frame, which means that CACHE->base
|
908 |
|
|
currently holds the frame pointer for our calling frame. If
|
909 |
|
|
we're at the start of a function, or somewhere half-way its
|
910 |
|
|
prologue, the function's frame probably hasn't been fully
|
911 |
|
|
setup yet. Try to reconstruct the base address for the stack
|
912 |
|
|
frame by looking at the stack pointer. For truly "frameless"
|
913 |
|
|
functions this might work too. */
|
914 |
|
|
|
915 |
|
|
get_frame_register (this_frame, M68K_SP_REGNUM, buf);
|
916 |
|
|
cache->base = extract_unsigned_integer (buf, 4, byte_order)
|
917 |
|
|
+ cache->sp_offset;
|
918 |
|
|
}
|
919 |
|
|
|
920 |
|
|
/* Now that we have the base address for the stack frame we can
|
921 |
|
|
calculate the value of %sp in the calling frame. */
|
922 |
|
|
cache->saved_sp = cache->base + 8;
|
923 |
|
|
|
924 |
|
|
/* Adjust all the saved registers such that they contain addresses
|
925 |
|
|
instead of offsets. */
|
926 |
|
|
for (i = 0; i < M68K_NUM_REGS; i++)
|
927 |
|
|
if (cache->saved_regs[i] != -1)
|
928 |
|
|
cache->saved_regs[i] += cache->base;
|
929 |
|
|
|
930 |
|
|
return cache;
|
931 |
|
|
}
|
932 |
|
|
|
933 |
|
|
static void
|
934 |
|
|
m68k_frame_this_id (struct frame_info *this_frame, void **this_cache,
|
935 |
|
|
struct frame_id *this_id)
|
936 |
|
|
{
|
937 |
|
|
struct m68k_frame_cache *cache = m68k_frame_cache (this_frame, this_cache);
|
938 |
|
|
|
939 |
|
|
/* This marks the outermost frame. */
|
940 |
|
|
if (cache->base == 0)
|
941 |
|
|
return;
|
942 |
|
|
|
943 |
|
|
/* See the end of m68k_push_dummy_call. */
|
944 |
|
|
*this_id = frame_id_build (cache->base + 8, cache->pc);
|
945 |
|
|
}
|
946 |
|
|
|
947 |
|
|
static struct value *
|
948 |
|
|
m68k_frame_prev_register (struct frame_info *this_frame, void **this_cache,
|
949 |
|
|
int regnum)
|
950 |
|
|
{
|
951 |
|
|
struct m68k_frame_cache *cache = m68k_frame_cache (this_frame, this_cache);
|
952 |
|
|
|
953 |
|
|
gdb_assert (regnum >= 0);
|
954 |
|
|
|
955 |
|
|
if (regnum == M68K_SP_REGNUM && cache->saved_sp)
|
956 |
|
|
return frame_unwind_got_constant (this_frame, regnum, cache->saved_sp);
|
957 |
|
|
|
958 |
|
|
if (regnum < M68K_NUM_REGS && cache->saved_regs[regnum] != -1)
|
959 |
|
|
return frame_unwind_got_memory (this_frame, regnum,
|
960 |
|
|
cache->saved_regs[regnum]);
|
961 |
|
|
|
962 |
|
|
return frame_unwind_got_register (this_frame, regnum, regnum);
|
963 |
|
|
}
|
964 |
|
|
|
965 |
|
|
static const struct frame_unwind m68k_frame_unwind =
|
966 |
|
|
{
|
967 |
|
|
NORMAL_FRAME,
|
968 |
|
|
m68k_frame_this_id,
|
969 |
|
|
m68k_frame_prev_register,
|
970 |
|
|
NULL,
|
971 |
|
|
default_frame_sniffer
|
972 |
|
|
};
|
973 |
|
|
|
974 |
|
|
static CORE_ADDR
|
975 |
|
|
m68k_frame_base_address (struct frame_info *this_frame, void **this_cache)
|
976 |
|
|
{
|
977 |
|
|
struct m68k_frame_cache *cache = m68k_frame_cache (this_frame, this_cache);
|
978 |
|
|
|
979 |
|
|
return cache->base;
|
980 |
|
|
}
|
981 |
|
|
|
982 |
|
|
static const struct frame_base m68k_frame_base =
|
983 |
|
|
{
|
984 |
|
|
&m68k_frame_unwind,
|
985 |
|
|
m68k_frame_base_address,
|
986 |
|
|
m68k_frame_base_address,
|
987 |
|
|
m68k_frame_base_address
|
988 |
|
|
};
|
989 |
|
|
|
990 |
|
|
static struct frame_id
|
991 |
|
|
m68k_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
|
992 |
|
|
{
|
993 |
|
|
CORE_ADDR fp;
|
994 |
|
|
|
995 |
|
|
fp = get_frame_register_unsigned (this_frame, M68K_FP_REGNUM);
|
996 |
|
|
|
997 |
|
|
/* See the end of m68k_push_dummy_call. */
|
998 |
|
|
return frame_id_build (fp + 8, get_frame_pc (this_frame));
|
999 |
|
|
}
|
1000 |
|
|
|
1001 |
|
|
|
1002 |
|
|
/* Figure out where the longjmp will land. Slurp the args out of the stack.
|
1003 |
|
|
We expect the first arg to be a pointer to the jmp_buf structure from which
|
1004 |
|
|
we extract the pc (JB_PC) that we will land at. The pc is copied into PC.
|
1005 |
|
|
This routine returns true on success. */
|
1006 |
|
|
|
1007 |
|
|
static int
|
1008 |
|
|
m68k_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
|
1009 |
|
|
{
|
1010 |
|
|
gdb_byte *buf;
|
1011 |
|
|
CORE_ADDR sp, jb_addr;
|
1012 |
|
|
struct gdbarch *gdbarch = get_frame_arch (frame);
|
1013 |
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
1014 |
|
|
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
1015 |
|
|
|
1016 |
|
|
if (tdep->jb_pc < 0)
|
1017 |
|
|
{
|
1018 |
|
|
internal_error (__FILE__, __LINE__,
|
1019 |
|
|
_("m68k_get_longjmp_target: not implemented"));
|
1020 |
|
|
return 0;
|
1021 |
|
|
}
|
1022 |
|
|
|
1023 |
|
|
buf = alloca (gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT);
|
1024 |
|
|
sp = get_frame_register_unsigned (frame, gdbarch_sp_regnum (gdbarch));
|
1025 |
|
|
|
1026 |
|
|
if (target_read_memory (sp + SP_ARG0, /* Offset of first arg on stack */
|
1027 |
|
|
buf, gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT))
|
1028 |
|
|
return 0;
|
1029 |
|
|
|
1030 |
|
|
jb_addr = extract_unsigned_integer (buf, gdbarch_ptr_bit (gdbarch)
|
1031 |
|
|
/ TARGET_CHAR_BIT, byte_order);
|
1032 |
|
|
|
1033 |
|
|
if (target_read_memory (jb_addr + tdep->jb_pc * tdep->jb_elt_size, buf,
|
1034 |
|
|
gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT),
|
1035 |
|
|
byte_order)
|
1036 |
|
|
return 0;
|
1037 |
|
|
|
1038 |
|
|
*pc = extract_unsigned_integer (buf, gdbarch_ptr_bit (gdbarch)
|
1039 |
|
|
/ TARGET_CHAR_BIT, byte_order);
|
1040 |
|
|
return 1;
|
1041 |
|
|
}
|
1042 |
|
|
|
1043 |
|
|
|
1044 |
|
|
/* System V Release 4 (SVR4). */
|
1045 |
|
|
|
1046 |
|
|
void
|
1047 |
|
|
m68k_svr4_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
|
1048 |
|
|
{
|
1049 |
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
1050 |
|
|
|
1051 |
|
|
/* SVR4 uses a different calling convention. */
|
1052 |
|
|
set_gdbarch_return_value (gdbarch, m68k_svr4_return_value);
|
1053 |
|
|
|
1054 |
|
|
/* SVR4 uses %a0 instead of %a1. */
|
1055 |
|
|
tdep->struct_value_regnum = M68K_A0_REGNUM;
|
1056 |
|
|
}
|
1057 |
|
|
|
1058 |
|
|
|
1059 |
|
|
/* Function: m68k_gdbarch_init
|
1060 |
|
|
Initializer function for the m68k gdbarch vector.
|
1061 |
|
|
Called by gdbarch. Sets up the gdbarch vector(s) for this target. */
|
1062 |
|
|
|
1063 |
|
|
static struct gdbarch *
|
1064 |
|
|
m68k_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
|
1065 |
|
|
{
|
1066 |
|
|
struct gdbarch_tdep *tdep = NULL;
|
1067 |
|
|
struct gdbarch *gdbarch;
|
1068 |
|
|
struct gdbarch_list *best_arch;
|
1069 |
|
|
struct tdesc_arch_data *tdesc_data = NULL;
|
1070 |
|
|
int i;
|
1071 |
|
|
enum m68k_flavour flavour = m68k_no_flavour;
|
1072 |
|
|
int has_fp = 1;
|
1073 |
|
|
const struct floatformat **long_double_format = floatformats_m68881_ext;
|
1074 |
|
|
|
1075 |
|
|
/* Check any target description for validity. */
|
1076 |
|
|
if (tdesc_has_registers (info.target_desc))
|
1077 |
|
|
{
|
1078 |
|
|
const struct tdesc_feature *feature;
|
1079 |
|
|
int valid_p;
|
1080 |
|
|
|
1081 |
|
|
feature = tdesc_find_feature (info.target_desc,
|
1082 |
|
|
"org.gnu.gdb.m68k.core");
|
1083 |
|
|
if (feature != NULL)
|
1084 |
|
|
/* Do nothing. */
|
1085 |
|
|
;
|
1086 |
|
|
|
1087 |
|
|
if (feature == NULL)
|
1088 |
|
|
{
|
1089 |
|
|
feature = tdesc_find_feature (info.target_desc,
|
1090 |
|
|
"org.gnu.gdb.coldfire.core");
|
1091 |
|
|
if (feature != NULL)
|
1092 |
|
|
flavour = m68k_coldfire_flavour;
|
1093 |
|
|
}
|
1094 |
|
|
|
1095 |
|
|
if (feature == NULL)
|
1096 |
|
|
{
|
1097 |
|
|
feature = tdesc_find_feature (info.target_desc,
|
1098 |
|
|
"org.gnu.gdb.fido.core");
|
1099 |
|
|
if (feature != NULL)
|
1100 |
|
|
flavour = m68k_fido_flavour;
|
1101 |
|
|
}
|
1102 |
|
|
|
1103 |
|
|
if (feature == NULL)
|
1104 |
|
|
return NULL;
|
1105 |
|
|
|
1106 |
|
|
tdesc_data = tdesc_data_alloc ();
|
1107 |
|
|
|
1108 |
|
|
valid_p = 1;
|
1109 |
|
|
for (i = 0; i <= M68K_PC_REGNUM; i++)
|
1110 |
|
|
valid_p &= tdesc_numbered_register (feature, tdesc_data, i,
|
1111 |
|
|
m68k_register_names[i]);
|
1112 |
|
|
|
1113 |
|
|
if (!valid_p)
|
1114 |
|
|
{
|
1115 |
|
|
tdesc_data_cleanup (tdesc_data);
|
1116 |
|
|
return NULL;
|
1117 |
|
|
}
|
1118 |
|
|
|
1119 |
|
|
feature = tdesc_find_feature (info.target_desc,
|
1120 |
|
|
"org.gnu.gdb.coldfire.fp");
|
1121 |
|
|
if (feature != NULL)
|
1122 |
|
|
{
|
1123 |
|
|
valid_p = 1;
|
1124 |
|
|
for (i = M68K_FP0_REGNUM; i <= M68K_FPI_REGNUM; i++)
|
1125 |
|
|
valid_p &= tdesc_numbered_register (feature, tdesc_data, i,
|
1126 |
|
|
m68k_register_names[i]);
|
1127 |
|
|
if (!valid_p)
|
1128 |
|
|
{
|
1129 |
|
|
tdesc_data_cleanup (tdesc_data);
|
1130 |
|
|
return NULL;
|
1131 |
|
|
}
|
1132 |
|
|
}
|
1133 |
|
|
else
|
1134 |
|
|
has_fp = 0;
|
1135 |
|
|
}
|
1136 |
|
|
|
1137 |
|
|
/* The mechanism for returning floating values from function
|
1138 |
|
|
and the type of long double depend on whether we're
|
1139 |
|
|
on ColdFire or standard m68k. */
|
1140 |
|
|
|
1141 |
|
|
if (info.bfd_arch_info && info.bfd_arch_info->mach != 0)
|
1142 |
|
|
{
|
1143 |
|
|
const bfd_arch_info_type *coldfire_arch =
|
1144 |
|
|
bfd_lookup_arch (bfd_arch_m68k, bfd_mach_mcf_isa_a_nodiv);
|
1145 |
|
|
|
1146 |
|
|
if (coldfire_arch
|
1147 |
|
|
&& ((*info.bfd_arch_info->compatible)
|
1148 |
|
|
(info.bfd_arch_info, coldfire_arch)))
|
1149 |
|
|
flavour = m68k_coldfire_flavour;
|
1150 |
|
|
}
|
1151 |
|
|
|
1152 |
|
|
/* If there is already a candidate, use it. */
|
1153 |
|
|
for (best_arch = gdbarch_list_lookup_by_info (arches, &info);
|
1154 |
|
|
best_arch != NULL;
|
1155 |
|
|
best_arch = gdbarch_list_lookup_by_info (best_arch->next, &info))
|
1156 |
|
|
{
|
1157 |
|
|
if (flavour != gdbarch_tdep (best_arch->gdbarch)->flavour)
|
1158 |
|
|
continue;
|
1159 |
|
|
|
1160 |
|
|
if (has_fp != gdbarch_tdep (best_arch->gdbarch)->fpregs_present)
|
1161 |
|
|
continue;
|
1162 |
|
|
|
1163 |
|
|
break;
|
1164 |
|
|
}
|
1165 |
|
|
|
1166 |
|
|
if (best_arch != NULL)
|
1167 |
|
|
{
|
1168 |
|
|
if (tdesc_data != NULL)
|
1169 |
|
|
tdesc_data_cleanup (tdesc_data);
|
1170 |
|
|
return best_arch->gdbarch;
|
1171 |
|
|
}
|
1172 |
|
|
|
1173 |
|
|
tdep = xzalloc (sizeof (struct gdbarch_tdep));
|
1174 |
|
|
gdbarch = gdbarch_alloc (&info, tdep);
|
1175 |
|
|
tdep->fpregs_present = has_fp;
|
1176 |
|
|
tdep->flavour = flavour;
|
1177 |
|
|
|
1178 |
|
|
if (flavour == m68k_coldfire_flavour || flavour == m68k_fido_flavour)
|
1179 |
|
|
long_double_format = floatformats_ieee_double;
|
1180 |
|
|
set_gdbarch_long_double_format (gdbarch, long_double_format);
|
1181 |
|
|
set_gdbarch_long_double_bit (gdbarch, long_double_format[0]->totalsize);
|
1182 |
|
|
|
1183 |
|
|
set_gdbarch_skip_prologue (gdbarch, m68k_skip_prologue);
|
1184 |
|
|
set_gdbarch_breakpoint_from_pc (gdbarch, m68k_local_breakpoint_from_pc);
|
1185 |
|
|
|
1186 |
|
|
/* Stack grows down. */
|
1187 |
|
|
set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
|
1188 |
|
|
set_gdbarch_frame_align (gdbarch, m68k_frame_align);
|
1189 |
|
|
|
1190 |
|
|
set_gdbarch_believe_pcc_promotion (gdbarch, 1);
|
1191 |
|
|
if (flavour == m68k_coldfire_flavour || flavour == m68k_fido_flavour)
|
1192 |
|
|
set_gdbarch_decr_pc_after_break (gdbarch, 2);
|
1193 |
|
|
|
1194 |
|
|
set_gdbarch_frame_args_skip (gdbarch, 8);
|
1195 |
|
|
set_gdbarch_dwarf2_reg_to_regnum (gdbarch, m68k_dwarf_reg_to_regnum);
|
1196 |
|
|
|
1197 |
|
|
set_gdbarch_register_type (gdbarch, m68k_register_type);
|
1198 |
|
|
set_gdbarch_register_name (gdbarch, m68k_register_name);
|
1199 |
|
|
set_gdbarch_num_regs (gdbarch, M68K_NUM_REGS);
|
1200 |
|
|
set_gdbarch_sp_regnum (gdbarch, M68K_SP_REGNUM);
|
1201 |
|
|
set_gdbarch_pc_regnum (gdbarch, M68K_PC_REGNUM);
|
1202 |
|
|
set_gdbarch_ps_regnum (gdbarch, M68K_PS_REGNUM);
|
1203 |
|
|
set_gdbarch_convert_register_p (gdbarch, m68k_convert_register_p);
|
1204 |
|
|
set_gdbarch_register_to_value (gdbarch, m68k_register_to_value);
|
1205 |
|
|
set_gdbarch_value_to_register (gdbarch, m68k_value_to_register);
|
1206 |
|
|
|
1207 |
|
|
if (has_fp)
|
1208 |
|
|
set_gdbarch_fp0_regnum (gdbarch, M68K_FP0_REGNUM);
|
1209 |
|
|
|
1210 |
|
|
/* Try to figure out if the arch uses floating registers to return
|
1211 |
|
|
floating point values from functions. */
|
1212 |
|
|
if (has_fp)
|
1213 |
|
|
{
|
1214 |
|
|
/* On ColdFire, floating point values are returned in D0. */
|
1215 |
|
|
if (flavour == m68k_coldfire_flavour)
|
1216 |
|
|
tdep->float_return = 0;
|
1217 |
|
|
else
|
1218 |
|
|
tdep->float_return = 1;
|
1219 |
|
|
}
|
1220 |
|
|
else
|
1221 |
|
|
{
|
1222 |
|
|
/* No floating registers, so can't use them for returning values. */
|
1223 |
|
|
tdep->float_return = 0;
|
1224 |
|
|
}
|
1225 |
|
|
|
1226 |
|
|
/* Function call & return */
|
1227 |
|
|
set_gdbarch_push_dummy_call (gdbarch, m68k_push_dummy_call);
|
1228 |
|
|
set_gdbarch_return_value (gdbarch, m68k_return_value);
|
1229 |
|
|
|
1230 |
|
|
|
1231 |
|
|
/* Disassembler. */
|
1232 |
|
|
set_gdbarch_print_insn (gdbarch, print_insn_m68k);
|
1233 |
|
|
|
1234 |
|
|
#if defined JB_PC && defined JB_ELEMENT_SIZE
|
1235 |
|
|
tdep->jb_pc = JB_PC;
|
1236 |
|
|
tdep->jb_elt_size = JB_ELEMENT_SIZE;
|
1237 |
|
|
#else
|
1238 |
|
|
tdep->jb_pc = -1;
|
1239 |
|
|
#endif
|
1240 |
|
|
tdep->struct_value_regnum = M68K_A1_REGNUM;
|
1241 |
|
|
tdep->struct_return = reg_struct_return;
|
1242 |
|
|
|
1243 |
|
|
/* Frame unwinder. */
|
1244 |
|
|
set_gdbarch_dummy_id (gdbarch, m68k_dummy_id);
|
1245 |
|
|
set_gdbarch_unwind_pc (gdbarch, m68k_unwind_pc);
|
1246 |
|
|
|
1247 |
|
|
/* Hook in the DWARF CFI frame unwinder. */
|
1248 |
|
|
dwarf2_append_unwinders (gdbarch);
|
1249 |
|
|
|
1250 |
|
|
frame_base_set_default (gdbarch, &m68k_frame_base);
|
1251 |
|
|
|
1252 |
|
|
/* Hook in ABI-specific overrides, if they have been registered. */
|
1253 |
|
|
gdbarch_init_osabi (info, gdbarch);
|
1254 |
|
|
|
1255 |
|
|
/* Now we have tuned the configuration, set a few final things,
|
1256 |
|
|
based on what the OS ABI has told us. */
|
1257 |
|
|
|
1258 |
|
|
if (tdep->jb_pc >= 0)
|
1259 |
|
|
set_gdbarch_get_longjmp_target (gdbarch, m68k_get_longjmp_target);
|
1260 |
|
|
|
1261 |
|
|
frame_unwind_append_unwinder (gdbarch, &m68k_frame_unwind);
|
1262 |
|
|
|
1263 |
|
|
if (tdesc_data)
|
1264 |
|
|
tdesc_use_registers (gdbarch, info.target_desc, tdesc_data);
|
1265 |
|
|
|
1266 |
|
|
return gdbarch;
|
1267 |
|
|
}
|
1268 |
|
|
|
1269 |
|
|
|
1270 |
|
|
static void
|
1271 |
|
|
m68k_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
|
1272 |
|
|
{
|
1273 |
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
1274 |
|
|
|
1275 |
|
|
if (tdep == NULL)
|
1276 |
|
|
return;
|
1277 |
|
|
}
|
1278 |
|
|
|
1279 |
|
|
extern initialize_file_ftype _initialize_m68k_tdep; /* -Wmissing-prototypes */
|
1280 |
|
|
|
1281 |
|
|
void
|
1282 |
|
|
_initialize_m68k_tdep (void)
|
1283 |
|
|
{
|
1284 |
|
|
gdbarch_register (bfd_arch_m68k, m68k_gdbarch_init, m68k_dump_tdep);
|
1285 |
|
|
}
|