1 |
227 |
jeremybenn |
/* Target-dependent code for the Matsushita MN10300 for GDB, the GNU debugger.
|
2 |
|
|
|
3 |
|
|
Copyright (C) 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005,
|
4 |
|
|
2007, 2008, 2009, 2010 Free Software Foundation, Inc.
|
5 |
|
|
|
6 |
|
|
This file is part of GDB.
|
7 |
|
|
|
8 |
|
|
This program is free software; you can redistribute it and/or modify
|
9 |
|
|
it under the terms of the GNU General Public License as published by
|
10 |
|
|
the Free Software Foundation; either version 3 of the License, or
|
11 |
|
|
(at your option) any later version.
|
12 |
|
|
|
13 |
|
|
This program is distributed in the hope that it will be useful,
|
14 |
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
15 |
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
16 |
|
|
GNU General Public License for more details.
|
17 |
|
|
|
18 |
|
|
You should have received a copy of the GNU General Public License
|
19 |
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>. */
|
20 |
|
|
|
21 |
|
|
#include "defs.h"
|
22 |
|
|
#include "arch-utils.h"
|
23 |
|
|
#include "dis-asm.h"
|
24 |
|
|
#include "gdbtypes.h"
|
25 |
|
|
#include "regcache.h"
|
26 |
|
|
#include "gdb_string.h"
|
27 |
|
|
#include "gdb_assert.h"
|
28 |
|
|
#include "gdbcore.h" /* for write_memory_unsigned_integer */
|
29 |
|
|
#include "value.h"
|
30 |
|
|
#include "gdbtypes.h"
|
31 |
|
|
#include "frame.h"
|
32 |
|
|
#include "frame-unwind.h"
|
33 |
|
|
#include "frame-base.h"
|
34 |
|
|
#include "symtab.h"
|
35 |
|
|
#include "dwarf2-frame.h"
|
36 |
|
|
#include "osabi.h"
|
37 |
|
|
#include "infcall.h"
|
38 |
|
|
#include "prologue-value.h"
|
39 |
|
|
#include "target.h"
|
40 |
|
|
|
41 |
|
|
#include "mn10300-tdep.h"
|
42 |
|
|
|
43 |
|
|
|
44 |
|
|
/* The am33-2 has 64 registers. */
|
45 |
|
|
#define MN10300_MAX_NUM_REGS 64
|
46 |
|
|
|
47 |
|
|
/* This structure holds the results of a prologue analysis. */
|
48 |
|
|
struct mn10300_prologue
|
49 |
|
|
{
|
50 |
|
|
/* The architecture for which we generated this prologue info. */
|
51 |
|
|
struct gdbarch *gdbarch;
|
52 |
|
|
|
53 |
|
|
/* The offset from the frame base to the stack pointer --- always
|
54 |
|
|
zero or negative.
|
55 |
|
|
|
56 |
|
|
Calling this a "size" is a bit misleading, but given that the
|
57 |
|
|
stack grows downwards, using offsets for everything keeps one
|
58 |
|
|
from going completely sign-crazy: you never change anything's
|
59 |
|
|
sign for an ADD instruction; always change the second operand's
|
60 |
|
|
sign for a SUB instruction; and everything takes care of
|
61 |
|
|
itself. */
|
62 |
|
|
int frame_size;
|
63 |
|
|
|
64 |
|
|
/* Non-zero if this function has initialized the frame pointer from
|
65 |
|
|
the stack pointer, zero otherwise. */
|
66 |
|
|
int has_frame_ptr;
|
67 |
|
|
|
68 |
|
|
/* If has_frame_ptr is non-zero, this is the offset from the frame
|
69 |
|
|
base to where the frame pointer points. This is always zero or
|
70 |
|
|
negative. */
|
71 |
|
|
int frame_ptr_offset;
|
72 |
|
|
|
73 |
|
|
/* The address of the first instruction at which the frame has been
|
74 |
|
|
set up and the arguments are where the debug info says they are
|
75 |
|
|
--- as best as we can tell. */
|
76 |
|
|
CORE_ADDR prologue_end;
|
77 |
|
|
|
78 |
|
|
/* reg_offset[R] is the offset from the CFA at which register R is
|
79 |
|
|
saved, or 1 if register R has not been saved. (Real values are
|
80 |
|
|
always zero or negative.) */
|
81 |
|
|
int reg_offset[MN10300_MAX_NUM_REGS];
|
82 |
|
|
};
|
83 |
|
|
|
84 |
|
|
|
85 |
|
|
/* Compute the alignment required by a type. */
|
86 |
|
|
|
87 |
|
|
static int
|
88 |
|
|
mn10300_type_align (struct type *type)
|
89 |
|
|
{
|
90 |
|
|
int i, align = 1;
|
91 |
|
|
|
92 |
|
|
switch (TYPE_CODE (type))
|
93 |
|
|
{
|
94 |
|
|
case TYPE_CODE_INT:
|
95 |
|
|
case TYPE_CODE_ENUM:
|
96 |
|
|
case TYPE_CODE_SET:
|
97 |
|
|
case TYPE_CODE_RANGE:
|
98 |
|
|
case TYPE_CODE_CHAR:
|
99 |
|
|
case TYPE_CODE_BOOL:
|
100 |
|
|
case TYPE_CODE_FLT:
|
101 |
|
|
case TYPE_CODE_PTR:
|
102 |
|
|
case TYPE_CODE_REF:
|
103 |
|
|
return TYPE_LENGTH (type);
|
104 |
|
|
|
105 |
|
|
case TYPE_CODE_COMPLEX:
|
106 |
|
|
return TYPE_LENGTH (type) / 2;
|
107 |
|
|
|
108 |
|
|
case TYPE_CODE_STRUCT:
|
109 |
|
|
case TYPE_CODE_UNION:
|
110 |
|
|
for (i = 0; i < TYPE_NFIELDS (type); i++)
|
111 |
|
|
{
|
112 |
|
|
int falign = mn10300_type_align (TYPE_FIELD_TYPE (type, i));
|
113 |
|
|
while (align < falign)
|
114 |
|
|
align <<= 1;
|
115 |
|
|
}
|
116 |
|
|
return align;
|
117 |
|
|
|
118 |
|
|
case TYPE_CODE_ARRAY:
|
119 |
|
|
/* HACK! Structures containing arrays, even small ones, are not
|
120 |
|
|
elligible for returning in registers. */
|
121 |
|
|
return 256;
|
122 |
|
|
|
123 |
|
|
case TYPE_CODE_TYPEDEF:
|
124 |
|
|
return mn10300_type_align (check_typedef (type));
|
125 |
|
|
|
126 |
|
|
default:
|
127 |
|
|
internal_error (__FILE__, __LINE__, _("bad switch"));
|
128 |
|
|
}
|
129 |
|
|
}
|
130 |
|
|
|
131 |
|
|
/* Should call_function allocate stack space for a struct return? */
|
132 |
|
|
static int
|
133 |
|
|
mn10300_use_struct_convention (struct type *type)
|
134 |
|
|
{
|
135 |
|
|
/* Structures bigger than a pair of words can't be returned in
|
136 |
|
|
registers. */
|
137 |
|
|
if (TYPE_LENGTH (type) > 8)
|
138 |
|
|
return 1;
|
139 |
|
|
|
140 |
|
|
switch (TYPE_CODE (type))
|
141 |
|
|
{
|
142 |
|
|
case TYPE_CODE_STRUCT:
|
143 |
|
|
case TYPE_CODE_UNION:
|
144 |
|
|
/* Structures with a single field are handled as the field
|
145 |
|
|
itself. */
|
146 |
|
|
if (TYPE_NFIELDS (type) == 1)
|
147 |
|
|
return mn10300_use_struct_convention (TYPE_FIELD_TYPE (type, 0));
|
148 |
|
|
|
149 |
|
|
/* Structures with word or double-word size are passed in memory, as
|
150 |
|
|
long as they require at least word alignment. */
|
151 |
|
|
if (mn10300_type_align (type) >= 4)
|
152 |
|
|
return 0;
|
153 |
|
|
|
154 |
|
|
return 1;
|
155 |
|
|
|
156 |
|
|
/* Arrays are addressable, so they're never returned in
|
157 |
|
|
registers. This condition can only hold when the array is
|
158 |
|
|
the only field of a struct or union. */
|
159 |
|
|
case TYPE_CODE_ARRAY:
|
160 |
|
|
return 1;
|
161 |
|
|
|
162 |
|
|
case TYPE_CODE_TYPEDEF:
|
163 |
|
|
return mn10300_use_struct_convention (check_typedef (type));
|
164 |
|
|
|
165 |
|
|
default:
|
166 |
|
|
return 0;
|
167 |
|
|
}
|
168 |
|
|
}
|
169 |
|
|
|
170 |
|
|
static void
|
171 |
|
|
mn10300_store_return_value (struct gdbarch *gdbarch, struct type *type,
|
172 |
|
|
struct regcache *regcache, const void *valbuf)
|
173 |
|
|
{
|
174 |
|
|
int len = TYPE_LENGTH (type);
|
175 |
|
|
int reg, regsz;
|
176 |
|
|
|
177 |
|
|
if (TYPE_CODE (type) == TYPE_CODE_PTR)
|
178 |
|
|
reg = 4;
|
179 |
|
|
else
|
180 |
|
|
reg = 0;
|
181 |
|
|
|
182 |
|
|
regsz = register_size (gdbarch, reg);
|
183 |
|
|
|
184 |
|
|
if (len <= regsz)
|
185 |
|
|
regcache_raw_write_part (regcache, reg, 0, len, valbuf);
|
186 |
|
|
else if (len <= 2 * regsz)
|
187 |
|
|
{
|
188 |
|
|
regcache_raw_write (regcache, reg, valbuf);
|
189 |
|
|
gdb_assert (regsz == register_size (gdbarch, reg + 1));
|
190 |
|
|
regcache_raw_write_part (regcache, reg+1, 0,
|
191 |
|
|
len - regsz, (char *) valbuf + regsz);
|
192 |
|
|
}
|
193 |
|
|
else
|
194 |
|
|
internal_error (__FILE__, __LINE__,
|
195 |
|
|
_("Cannot store return value %d bytes long."), len);
|
196 |
|
|
}
|
197 |
|
|
|
198 |
|
|
static void
|
199 |
|
|
mn10300_extract_return_value (struct gdbarch *gdbarch, struct type *type,
|
200 |
|
|
struct regcache *regcache, void *valbuf)
|
201 |
|
|
{
|
202 |
|
|
char buf[MAX_REGISTER_SIZE];
|
203 |
|
|
int len = TYPE_LENGTH (type);
|
204 |
|
|
int reg, regsz;
|
205 |
|
|
|
206 |
|
|
if (TYPE_CODE (type) == TYPE_CODE_PTR)
|
207 |
|
|
reg = 4;
|
208 |
|
|
else
|
209 |
|
|
reg = 0;
|
210 |
|
|
|
211 |
|
|
regsz = register_size (gdbarch, reg);
|
212 |
|
|
if (len <= regsz)
|
213 |
|
|
{
|
214 |
|
|
regcache_raw_read (regcache, reg, buf);
|
215 |
|
|
memcpy (valbuf, buf, len);
|
216 |
|
|
}
|
217 |
|
|
else if (len <= 2 * regsz)
|
218 |
|
|
{
|
219 |
|
|
regcache_raw_read (regcache, reg, buf);
|
220 |
|
|
memcpy (valbuf, buf, regsz);
|
221 |
|
|
gdb_assert (regsz == register_size (gdbarch, reg + 1));
|
222 |
|
|
regcache_raw_read (regcache, reg + 1, buf);
|
223 |
|
|
memcpy ((char *) valbuf + regsz, buf, len - regsz);
|
224 |
|
|
}
|
225 |
|
|
else
|
226 |
|
|
internal_error (__FILE__, __LINE__,
|
227 |
|
|
_("Cannot extract return value %d bytes long."), len);
|
228 |
|
|
}
|
229 |
|
|
|
230 |
|
|
/* Determine, for architecture GDBARCH, how a return value of TYPE
|
231 |
|
|
should be returned. If it is supposed to be returned in registers,
|
232 |
|
|
and READBUF is non-zero, read the appropriate value from REGCACHE,
|
233 |
|
|
and copy it into READBUF. If WRITEBUF is non-zero, write the value
|
234 |
|
|
from WRITEBUF into REGCACHE. */
|
235 |
|
|
|
236 |
|
|
static enum return_value_convention
|
237 |
|
|
mn10300_return_value (struct gdbarch *gdbarch, struct type *func_type,
|
238 |
|
|
struct type *type, struct regcache *regcache,
|
239 |
|
|
gdb_byte *readbuf, const gdb_byte *writebuf)
|
240 |
|
|
{
|
241 |
|
|
if (mn10300_use_struct_convention (type))
|
242 |
|
|
return RETURN_VALUE_STRUCT_CONVENTION;
|
243 |
|
|
|
244 |
|
|
if (readbuf)
|
245 |
|
|
mn10300_extract_return_value (gdbarch, type, regcache, readbuf);
|
246 |
|
|
if (writebuf)
|
247 |
|
|
mn10300_store_return_value (gdbarch, type, regcache, writebuf);
|
248 |
|
|
|
249 |
|
|
return RETURN_VALUE_REGISTER_CONVENTION;
|
250 |
|
|
}
|
251 |
|
|
|
252 |
|
|
static char *
|
253 |
|
|
register_name (int reg, char **regs, long sizeof_regs)
|
254 |
|
|
{
|
255 |
|
|
if (reg < 0 || reg >= sizeof_regs / sizeof (regs[0]))
|
256 |
|
|
return NULL;
|
257 |
|
|
else
|
258 |
|
|
return regs[reg];
|
259 |
|
|
}
|
260 |
|
|
|
261 |
|
|
static const char *
|
262 |
|
|
mn10300_generic_register_name (struct gdbarch *gdbarch, int reg)
|
263 |
|
|
{
|
264 |
|
|
static char *regs[] =
|
265 |
|
|
{ "d0", "d1", "d2", "d3", "a0", "a1", "a2", "a3",
|
266 |
|
|
"sp", "pc", "mdr", "psw", "lir", "lar", "", "",
|
267 |
|
|
"", "", "", "", "", "", "", "",
|
268 |
|
|
"", "", "", "", "", "", "", "fp"
|
269 |
|
|
};
|
270 |
|
|
return register_name (reg, regs, sizeof regs);
|
271 |
|
|
}
|
272 |
|
|
|
273 |
|
|
|
274 |
|
|
static const char *
|
275 |
|
|
am33_register_name (struct gdbarch *gdbarch, int reg)
|
276 |
|
|
{
|
277 |
|
|
static char *regs[] =
|
278 |
|
|
{ "d0", "d1", "d2", "d3", "a0", "a1", "a2", "a3",
|
279 |
|
|
"sp", "pc", "mdr", "psw", "lir", "lar", "",
|
280 |
|
|
"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
|
281 |
|
|
"ssp", "msp", "usp", "mcrh", "mcrl", "mcvf", "", "", ""
|
282 |
|
|
};
|
283 |
|
|
return register_name (reg, regs, sizeof regs);
|
284 |
|
|
}
|
285 |
|
|
|
286 |
|
|
static const char *
|
287 |
|
|
am33_2_register_name (struct gdbarch *gdbarch, int reg)
|
288 |
|
|
{
|
289 |
|
|
static char *regs[] =
|
290 |
|
|
{
|
291 |
|
|
"d0", "d1", "d2", "d3", "a0", "a1", "a2", "a3",
|
292 |
|
|
"sp", "pc", "mdr", "psw", "lir", "lar", "mdrq", "r0",
|
293 |
|
|
"r1", "r2", "r3", "r4", "r5", "r6", "r7", "ssp",
|
294 |
|
|
"msp", "usp", "mcrh", "mcrl", "mcvf", "fpcr", "", "",
|
295 |
|
|
"fs0", "fs1", "fs2", "fs3", "fs4", "fs5", "fs6", "fs7",
|
296 |
|
|
"fs8", "fs9", "fs10", "fs11", "fs12", "fs13", "fs14", "fs15",
|
297 |
|
|
"fs16", "fs17", "fs18", "fs19", "fs20", "fs21", "fs22", "fs23",
|
298 |
|
|
"fs24", "fs25", "fs26", "fs27", "fs28", "fs29", "fs30", "fs31"
|
299 |
|
|
};
|
300 |
|
|
return register_name (reg, regs, sizeof regs);
|
301 |
|
|
}
|
302 |
|
|
|
303 |
|
|
static struct type *
|
304 |
|
|
mn10300_register_type (struct gdbarch *gdbarch, int reg)
|
305 |
|
|
{
|
306 |
|
|
return builtin_type (gdbarch)->builtin_int;
|
307 |
|
|
}
|
308 |
|
|
|
309 |
|
|
static CORE_ADDR
|
310 |
|
|
mn10300_read_pc (struct regcache *regcache)
|
311 |
|
|
{
|
312 |
|
|
ULONGEST val;
|
313 |
|
|
regcache_cooked_read_unsigned (regcache, E_PC_REGNUM, &val);
|
314 |
|
|
return val;
|
315 |
|
|
}
|
316 |
|
|
|
317 |
|
|
static void
|
318 |
|
|
mn10300_write_pc (struct regcache *regcache, CORE_ADDR val)
|
319 |
|
|
{
|
320 |
|
|
regcache_cooked_write_unsigned (regcache, E_PC_REGNUM, val);
|
321 |
|
|
}
|
322 |
|
|
|
323 |
|
|
/* The breakpoint instruction must be the same size as the smallest
|
324 |
|
|
instruction in the instruction set.
|
325 |
|
|
|
326 |
|
|
The Matsushita mn10x00 processors have single byte instructions
|
327 |
|
|
so we need a single byte breakpoint. Matsushita hasn't defined
|
328 |
|
|
one, so we defined it ourselves. */
|
329 |
|
|
|
330 |
|
|
const static unsigned char *
|
331 |
|
|
mn10300_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *bp_addr,
|
332 |
|
|
int *bp_size)
|
333 |
|
|
{
|
334 |
|
|
static char breakpoint[] = {0xff};
|
335 |
|
|
*bp_size = 1;
|
336 |
|
|
return breakpoint;
|
337 |
|
|
}
|
338 |
|
|
|
339 |
|
|
/* Model the semantics of pushing a register onto the stack. This
|
340 |
|
|
is a helper function for mn10300_analyze_prologue, below. */
|
341 |
|
|
static void
|
342 |
|
|
push_reg (pv_t *regs, struct pv_area *stack, int regnum)
|
343 |
|
|
{
|
344 |
|
|
regs[E_SP_REGNUM] = pv_add_constant (regs[E_SP_REGNUM], -4);
|
345 |
|
|
pv_area_store (stack, regs[E_SP_REGNUM], 4, regs[regnum]);
|
346 |
|
|
}
|
347 |
|
|
|
348 |
|
|
/* Translate an "r" register number extracted from an instruction encoding
|
349 |
|
|
into a GDB register number. Adapted from a simulator function
|
350 |
|
|
of the same name; see am33.igen. */
|
351 |
|
|
static int
|
352 |
|
|
translate_rreg (int rreg)
|
353 |
|
|
{
|
354 |
|
|
/* The higher register numbers actually correspond to the
|
355 |
|
|
basic machine's address and data registers. */
|
356 |
|
|
if (rreg > 7 && rreg < 12)
|
357 |
|
|
return E_A0_REGNUM + rreg - 8;
|
358 |
|
|
else if (rreg > 11 && rreg < 16)
|
359 |
|
|
return E_D0_REGNUM + rreg - 12;
|
360 |
|
|
else
|
361 |
|
|
return E_E0_REGNUM + rreg;
|
362 |
|
|
}
|
363 |
|
|
|
364 |
|
|
/* Find saved registers in a 'struct pv_area'; we pass this to pv_area_scan.
|
365 |
|
|
|
366 |
|
|
If VALUE is a saved register, ADDR says it was saved at a constant
|
367 |
|
|
offset from the frame base, and SIZE indicates that the whole
|
368 |
|
|
register was saved, record its offset in RESULT_UNTYPED. */
|
369 |
|
|
static void
|
370 |
|
|
check_for_saved (void *result_untyped, pv_t addr, CORE_ADDR size, pv_t value)
|
371 |
|
|
{
|
372 |
|
|
struct mn10300_prologue *result = (struct mn10300_prologue *) result_untyped;
|
373 |
|
|
|
374 |
|
|
if (value.kind == pvk_register
|
375 |
|
|
&& value.k == 0
|
376 |
|
|
&& pv_is_register (addr, E_SP_REGNUM)
|
377 |
|
|
&& size == register_size (result->gdbarch, value.reg))
|
378 |
|
|
result->reg_offset[value.reg] = addr.k;
|
379 |
|
|
}
|
380 |
|
|
|
381 |
|
|
/* Analyze the prologue to determine where registers are saved,
|
382 |
|
|
the end of the prologue, etc. The result of this analysis is
|
383 |
|
|
returned in RESULT. See struct mn10300_prologue above for more
|
384 |
|
|
information. */
|
385 |
|
|
static void
|
386 |
|
|
mn10300_analyze_prologue (struct gdbarch *gdbarch,
|
387 |
|
|
CORE_ADDR start_pc, CORE_ADDR limit_pc,
|
388 |
|
|
struct mn10300_prologue *result)
|
389 |
|
|
{
|
390 |
|
|
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
391 |
|
|
CORE_ADDR pc, next_pc;
|
392 |
|
|
int rn;
|
393 |
|
|
pv_t regs[MN10300_MAX_NUM_REGS];
|
394 |
|
|
struct pv_area *stack;
|
395 |
|
|
struct cleanup *back_to;
|
396 |
|
|
CORE_ADDR after_last_frame_setup_insn = start_pc;
|
397 |
|
|
int am33_mode = AM33_MODE (gdbarch);
|
398 |
|
|
|
399 |
|
|
memset (result, 0, sizeof (*result));
|
400 |
|
|
result->gdbarch = gdbarch;
|
401 |
|
|
|
402 |
|
|
for (rn = 0; rn < MN10300_MAX_NUM_REGS; rn++)
|
403 |
|
|
{
|
404 |
|
|
regs[rn] = pv_register (rn, 0);
|
405 |
|
|
result->reg_offset[rn] = 1;
|
406 |
|
|
}
|
407 |
|
|
stack = make_pv_area (E_SP_REGNUM, gdbarch_addr_bit (gdbarch));
|
408 |
|
|
back_to = make_cleanup_free_pv_area (stack);
|
409 |
|
|
|
410 |
|
|
/* The typical call instruction will have saved the return address on the
|
411 |
|
|
stack. Space for the return address has already been preallocated in
|
412 |
|
|
the caller's frame. It's possible, such as when using -mrelax with gcc
|
413 |
|
|
that other registers were saved as well. If this happens, we really
|
414 |
|
|
have no chance of deciphering the frame. DWARF info can save the day
|
415 |
|
|
when this happens. */
|
416 |
|
|
pv_area_store (stack, regs[E_SP_REGNUM], 4, regs[E_PC_REGNUM]);
|
417 |
|
|
|
418 |
|
|
pc = start_pc;
|
419 |
|
|
while (pc < limit_pc)
|
420 |
|
|
{
|
421 |
|
|
int status;
|
422 |
|
|
gdb_byte instr[2];
|
423 |
|
|
|
424 |
|
|
/* Instructions can be as small as one byte; however, we usually
|
425 |
|
|
need at least two bytes to do the decoding, so fetch that many
|
426 |
|
|
to begin with. */
|
427 |
|
|
status = target_read_memory (pc, instr, 2);
|
428 |
|
|
if (status != 0)
|
429 |
|
|
break;
|
430 |
|
|
|
431 |
|
|
/* movm [regs], sp */
|
432 |
|
|
if (instr[0] == 0xcf)
|
433 |
|
|
{
|
434 |
|
|
gdb_byte save_mask;
|
435 |
|
|
|
436 |
|
|
save_mask = instr[1];
|
437 |
|
|
|
438 |
|
|
if ((save_mask & movm_exreg0_bit) && am33_mode)
|
439 |
|
|
{
|
440 |
|
|
push_reg (regs, stack, E_E2_REGNUM);
|
441 |
|
|
push_reg (regs, stack, E_E3_REGNUM);
|
442 |
|
|
}
|
443 |
|
|
if ((save_mask & movm_exreg1_bit) && am33_mode)
|
444 |
|
|
{
|
445 |
|
|
push_reg (regs, stack, E_E4_REGNUM);
|
446 |
|
|
push_reg (regs, stack, E_E5_REGNUM);
|
447 |
|
|
push_reg (regs, stack, E_E6_REGNUM);
|
448 |
|
|
push_reg (regs, stack, E_E7_REGNUM);
|
449 |
|
|
}
|
450 |
|
|
if ((save_mask & movm_exother_bit) && am33_mode)
|
451 |
|
|
{
|
452 |
|
|
push_reg (regs, stack, E_E0_REGNUM);
|
453 |
|
|
push_reg (regs, stack, E_E1_REGNUM);
|
454 |
|
|
push_reg (regs, stack, E_MDRQ_REGNUM);
|
455 |
|
|
push_reg (regs, stack, E_MCRH_REGNUM);
|
456 |
|
|
push_reg (regs, stack, E_MCRL_REGNUM);
|
457 |
|
|
push_reg (regs, stack, E_MCVF_REGNUM);
|
458 |
|
|
}
|
459 |
|
|
if (save_mask & movm_d2_bit)
|
460 |
|
|
push_reg (regs, stack, E_D2_REGNUM);
|
461 |
|
|
if (save_mask & movm_d3_bit)
|
462 |
|
|
push_reg (regs, stack, E_D3_REGNUM);
|
463 |
|
|
if (save_mask & movm_a2_bit)
|
464 |
|
|
push_reg (regs, stack, E_A2_REGNUM);
|
465 |
|
|
if (save_mask & movm_a3_bit)
|
466 |
|
|
push_reg (regs, stack, E_A3_REGNUM);
|
467 |
|
|
if (save_mask & movm_other_bit)
|
468 |
|
|
{
|
469 |
|
|
push_reg (regs, stack, E_D0_REGNUM);
|
470 |
|
|
push_reg (regs, stack, E_D1_REGNUM);
|
471 |
|
|
push_reg (regs, stack, E_A0_REGNUM);
|
472 |
|
|
push_reg (regs, stack, E_A1_REGNUM);
|
473 |
|
|
push_reg (regs, stack, E_MDR_REGNUM);
|
474 |
|
|
push_reg (regs, stack, E_LIR_REGNUM);
|
475 |
|
|
push_reg (regs, stack, E_LAR_REGNUM);
|
476 |
|
|
/* The `other' bit leaves a blank area of four bytes at
|
477 |
|
|
the beginning of its block of saved registers, making
|
478 |
|
|
it 32 bytes long in total. */
|
479 |
|
|
regs[E_SP_REGNUM] = pv_add_constant (regs[E_SP_REGNUM], -4);
|
480 |
|
|
}
|
481 |
|
|
|
482 |
|
|
pc += 2;
|
483 |
|
|
after_last_frame_setup_insn = pc;
|
484 |
|
|
}
|
485 |
|
|
/* mov sp, aN */
|
486 |
|
|
else if ((instr[0] & 0xfc) == 0x3c)
|
487 |
|
|
{
|
488 |
|
|
int aN = instr[0] & 0x03;
|
489 |
|
|
|
490 |
|
|
regs[E_A0_REGNUM + aN] = regs[E_SP_REGNUM];
|
491 |
|
|
|
492 |
|
|
pc += 1;
|
493 |
|
|
if (aN == 3)
|
494 |
|
|
after_last_frame_setup_insn = pc;
|
495 |
|
|
}
|
496 |
|
|
/* mov aM, aN */
|
497 |
|
|
else if ((instr[0] & 0xf0) == 0x90
|
498 |
|
|
&& (instr[0] & 0x03) != ((instr[0] & 0x0c) >> 2))
|
499 |
|
|
{
|
500 |
|
|
int aN = instr[0] & 0x03;
|
501 |
|
|
int aM = (instr[0] & 0x0c) >> 2;
|
502 |
|
|
|
503 |
|
|
regs[E_A0_REGNUM + aN] = regs[E_A0_REGNUM + aM];
|
504 |
|
|
|
505 |
|
|
pc += 1;
|
506 |
|
|
}
|
507 |
|
|
/* mov dM, dN */
|
508 |
|
|
else if ((instr[0] & 0xf0) == 0x80
|
509 |
|
|
&& (instr[0] & 0x03) != ((instr[0] & 0x0c) >> 2))
|
510 |
|
|
{
|
511 |
|
|
int dN = instr[0] & 0x03;
|
512 |
|
|
int dM = (instr[0] & 0x0c) >> 2;
|
513 |
|
|
|
514 |
|
|
regs[E_D0_REGNUM + dN] = regs[E_D0_REGNUM + dM];
|
515 |
|
|
|
516 |
|
|
pc += 1;
|
517 |
|
|
}
|
518 |
|
|
/* mov aM, dN */
|
519 |
|
|
else if (instr[0] == 0xf1 && (instr[1] & 0xf0) == 0xd0)
|
520 |
|
|
{
|
521 |
|
|
int dN = instr[1] & 0x03;
|
522 |
|
|
int aM = (instr[1] & 0x0c) >> 2;
|
523 |
|
|
|
524 |
|
|
regs[E_D0_REGNUM + dN] = regs[E_A0_REGNUM + aM];
|
525 |
|
|
|
526 |
|
|
pc += 2;
|
527 |
|
|
}
|
528 |
|
|
/* mov dM, aN */
|
529 |
|
|
else if (instr[0] == 0xf1 && (instr[1] & 0xf0) == 0xe0)
|
530 |
|
|
{
|
531 |
|
|
int aN = instr[1] & 0x03;
|
532 |
|
|
int dM = (instr[1] & 0x0c) >> 2;
|
533 |
|
|
|
534 |
|
|
regs[E_A0_REGNUM + aN] = regs[E_D0_REGNUM + dM];
|
535 |
|
|
|
536 |
|
|
pc += 2;
|
537 |
|
|
}
|
538 |
|
|
/* add imm8, SP */
|
539 |
|
|
else if (instr[0] == 0xf8 && instr[1] == 0xfe)
|
540 |
|
|
{
|
541 |
|
|
gdb_byte buf[1];
|
542 |
|
|
LONGEST imm8;
|
543 |
|
|
|
544 |
|
|
|
545 |
|
|
status = target_read_memory (pc + 2, buf, 1);
|
546 |
|
|
if (status != 0)
|
547 |
|
|
break;
|
548 |
|
|
|
549 |
|
|
imm8 = extract_signed_integer (buf, 1, byte_order);
|
550 |
|
|
regs[E_SP_REGNUM] = pv_add_constant (regs[E_SP_REGNUM], imm8);
|
551 |
|
|
|
552 |
|
|
pc += 3;
|
553 |
|
|
/* Stack pointer adjustments are frame related. */
|
554 |
|
|
after_last_frame_setup_insn = pc;
|
555 |
|
|
}
|
556 |
|
|
/* add imm16, SP */
|
557 |
|
|
else if (instr[0] == 0xfa && instr[1] == 0xfe)
|
558 |
|
|
{
|
559 |
|
|
gdb_byte buf[2];
|
560 |
|
|
LONGEST imm16;
|
561 |
|
|
|
562 |
|
|
status = target_read_memory (pc + 2, buf, 2);
|
563 |
|
|
if (status != 0)
|
564 |
|
|
break;
|
565 |
|
|
|
566 |
|
|
imm16 = extract_signed_integer (buf, 2, byte_order);
|
567 |
|
|
regs[E_SP_REGNUM] = pv_add_constant (regs[E_SP_REGNUM], imm16);
|
568 |
|
|
|
569 |
|
|
pc += 4;
|
570 |
|
|
/* Stack pointer adjustments are frame related. */
|
571 |
|
|
after_last_frame_setup_insn = pc;
|
572 |
|
|
}
|
573 |
|
|
/* add imm32, SP */
|
574 |
|
|
else if (instr[0] == 0xfc && instr[1] == 0xfe)
|
575 |
|
|
{
|
576 |
|
|
gdb_byte buf[4];
|
577 |
|
|
LONGEST imm32;
|
578 |
|
|
|
579 |
|
|
status = target_read_memory (pc + 2, buf, 4);
|
580 |
|
|
if (status != 0)
|
581 |
|
|
break;
|
582 |
|
|
|
583 |
|
|
|
584 |
|
|
imm32 = extract_signed_integer (buf, 4, byte_order);
|
585 |
|
|
regs[E_SP_REGNUM] = pv_add_constant (regs[E_SP_REGNUM], imm32);
|
586 |
|
|
|
587 |
|
|
pc += 6;
|
588 |
|
|
/* Stack pointer adjustments are frame related. */
|
589 |
|
|
after_last_frame_setup_insn = pc;
|
590 |
|
|
}
|
591 |
|
|
/* add imm8, aN */
|
592 |
|
|
else if ((instr[0] & 0xfc) == 0x20)
|
593 |
|
|
{
|
594 |
|
|
int aN;
|
595 |
|
|
LONGEST imm8;
|
596 |
|
|
|
597 |
|
|
aN = instr[0] & 0x03;
|
598 |
|
|
imm8 = extract_signed_integer (&instr[1], 1, byte_order);
|
599 |
|
|
|
600 |
|
|
regs[E_A0_REGNUM + aN] = pv_add_constant (regs[E_A0_REGNUM + aN],
|
601 |
|
|
imm8);
|
602 |
|
|
|
603 |
|
|
pc += 2;
|
604 |
|
|
}
|
605 |
|
|
/* add imm16, aN */
|
606 |
|
|
else if (instr[0] == 0xfa && (instr[1] & 0xfc) == 0xd0)
|
607 |
|
|
{
|
608 |
|
|
int aN;
|
609 |
|
|
LONGEST imm16;
|
610 |
|
|
gdb_byte buf[2];
|
611 |
|
|
|
612 |
|
|
aN = instr[1] & 0x03;
|
613 |
|
|
|
614 |
|
|
status = target_read_memory (pc + 2, buf, 2);
|
615 |
|
|
if (status != 0)
|
616 |
|
|
break;
|
617 |
|
|
|
618 |
|
|
|
619 |
|
|
imm16 = extract_signed_integer (buf, 2, byte_order);
|
620 |
|
|
|
621 |
|
|
regs[E_A0_REGNUM + aN] = pv_add_constant (regs[E_A0_REGNUM + aN],
|
622 |
|
|
imm16);
|
623 |
|
|
|
624 |
|
|
pc += 4;
|
625 |
|
|
}
|
626 |
|
|
/* add imm32, aN */
|
627 |
|
|
else if (instr[0] == 0xfc && (instr[1] & 0xfc) == 0xd0)
|
628 |
|
|
{
|
629 |
|
|
int aN;
|
630 |
|
|
LONGEST imm32;
|
631 |
|
|
gdb_byte buf[4];
|
632 |
|
|
|
633 |
|
|
aN = instr[1] & 0x03;
|
634 |
|
|
|
635 |
|
|
status = target_read_memory (pc + 2, buf, 4);
|
636 |
|
|
if (status != 0)
|
637 |
|
|
break;
|
638 |
|
|
|
639 |
|
|
imm32 = extract_signed_integer (buf, 2, byte_order);
|
640 |
|
|
|
641 |
|
|
regs[E_A0_REGNUM + aN] = pv_add_constant (regs[E_A0_REGNUM + aN],
|
642 |
|
|
imm32);
|
643 |
|
|
pc += 6;
|
644 |
|
|
}
|
645 |
|
|
/* fmov fsM, (rN) */
|
646 |
|
|
else if (instr[0] == 0xf9 && (instr[1] & 0xfd) == 0x30)
|
647 |
|
|
{
|
648 |
|
|
int fsM, sM, Y, rN;
|
649 |
|
|
gdb_byte buf[1];
|
650 |
|
|
|
651 |
|
|
Y = (instr[1] & 0x02) >> 1;
|
652 |
|
|
|
653 |
|
|
status = target_read_memory (pc + 2, buf, 1);
|
654 |
|
|
if (status != 0)
|
655 |
|
|
break;
|
656 |
|
|
|
657 |
|
|
sM = (buf[0] & 0xf0) >> 4;
|
658 |
|
|
rN = buf[0] & 0x0f;
|
659 |
|
|
fsM = (Y << 4) | sM;
|
660 |
|
|
|
661 |
|
|
pv_area_store (stack, regs[translate_rreg (rN)], 4,
|
662 |
|
|
regs[E_FS0_REGNUM + fsM]);
|
663 |
|
|
|
664 |
|
|
pc += 3;
|
665 |
|
|
}
|
666 |
|
|
/* fmov fsM, (sp) */
|
667 |
|
|
else if (instr[0] == 0xf9 && (instr[1] & 0xfd) == 0x34)
|
668 |
|
|
{
|
669 |
|
|
int fsM, sM, Y;
|
670 |
|
|
gdb_byte buf[1];
|
671 |
|
|
|
672 |
|
|
Y = (instr[1] & 0x02) >> 1;
|
673 |
|
|
|
674 |
|
|
status = target_read_memory (pc + 2, buf, 1);
|
675 |
|
|
if (status != 0)
|
676 |
|
|
break;
|
677 |
|
|
|
678 |
|
|
sM = (buf[0] & 0xf0) >> 4;
|
679 |
|
|
fsM = (Y << 4) | sM;
|
680 |
|
|
|
681 |
|
|
pv_area_store (stack, regs[E_SP_REGNUM], 4,
|
682 |
|
|
regs[E_FS0_REGNUM + fsM]);
|
683 |
|
|
|
684 |
|
|
pc += 3;
|
685 |
|
|
}
|
686 |
|
|
/* fmov fsM, (rN, rI) */
|
687 |
|
|
else if (instr[0] == 0xfb && instr[1] == 0x37)
|
688 |
|
|
{
|
689 |
|
|
int fsM, sM, Z, rN, rI;
|
690 |
|
|
gdb_byte buf[2];
|
691 |
|
|
|
692 |
|
|
|
693 |
|
|
status = target_read_memory (pc + 2, buf, 2);
|
694 |
|
|
if (status != 0)
|
695 |
|
|
break;
|
696 |
|
|
|
697 |
|
|
rI = (buf[0] & 0xf0) >> 4;
|
698 |
|
|
rN = buf[0] & 0x0f;
|
699 |
|
|
sM = (buf[1] & 0xf0) >> 4;
|
700 |
|
|
Z = (buf[1] & 0x02) >> 1;
|
701 |
|
|
fsM = (Z << 4) | sM;
|
702 |
|
|
|
703 |
|
|
pv_area_store (stack,
|
704 |
|
|
pv_add (regs[translate_rreg (rN)],
|
705 |
|
|
regs[translate_rreg (rI)]),
|
706 |
|
|
4, regs[E_FS0_REGNUM + fsM]);
|
707 |
|
|
|
708 |
|
|
pc += 4;
|
709 |
|
|
}
|
710 |
|
|
/* fmov fsM, (d8, rN) */
|
711 |
|
|
else if (instr[0] == 0xfb && (instr[1] & 0xfd) == 0x30)
|
712 |
|
|
{
|
713 |
|
|
int fsM, sM, Y, rN;
|
714 |
|
|
LONGEST d8;
|
715 |
|
|
gdb_byte buf[2];
|
716 |
|
|
|
717 |
|
|
Y = (instr[1] & 0x02) >> 1;
|
718 |
|
|
|
719 |
|
|
status = target_read_memory (pc + 2, buf, 2);
|
720 |
|
|
if (status != 0)
|
721 |
|
|
break;
|
722 |
|
|
|
723 |
|
|
sM = (buf[0] & 0xf0) >> 4;
|
724 |
|
|
rN = buf[0] & 0x0f;
|
725 |
|
|
fsM = (Y << 4) | sM;
|
726 |
|
|
d8 = extract_signed_integer (&buf[1], 1, byte_order);
|
727 |
|
|
|
728 |
|
|
pv_area_store (stack,
|
729 |
|
|
pv_add_constant (regs[translate_rreg (rN)], d8),
|
730 |
|
|
4, regs[E_FS0_REGNUM + fsM]);
|
731 |
|
|
|
732 |
|
|
pc += 4;
|
733 |
|
|
}
|
734 |
|
|
/* fmov fsM, (d24, rN) */
|
735 |
|
|
else if (instr[0] == 0xfd && (instr[1] & 0xfd) == 0x30)
|
736 |
|
|
{
|
737 |
|
|
int fsM, sM, Y, rN;
|
738 |
|
|
LONGEST d24;
|
739 |
|
|
gdb_byte buf[4];
|
740 |
|
|
|
741 |
|
|
Y = (instr[1] & 0x02) >> 1;
|
742 |
|
|
|
743 |
|
|
status = target_read_memory (pc + 2, buf, 4);
|
744 |
|
|
if (status != 0)
|
745 |
|
|
break;
|
746 |
|
|
|
747 |
|
|
sM = (buf[0] & 0xf0) >> 4;
|
748 |
|
|
rN = buf[0] & 0x0f;
|
749 |
|
|
fsM = (Y << 4) | sM;
|
750 |
|
|
d24 = extract_signed_integer (&buf[1], 3, byte_order);
|
751 |
|
|
|
752 |
|
|
pv_area_store (stack,
|
753 |
|
|
pv_add_constant (regs[translate_rreg (rN)], d24),
|
754 |
|
|
4, regs[E_FS0_REGNUM + fsM]);
|
755 |
|
|
|
756 |
|
|
pc += 6;
|
757 |
|
|
}
|
758 |
|
|
/* fmov fsM, (d32, rN) */
|
759 |
|
|
else if (instr[0] == 0xfe && (instr[1] & 0xfd) == 0x30)
|
760 |
|
|
{
|
761 |
|
|
int fsM, sM, Y, rN;
|
762 |
|
|
LONGEST d32;
|
763 |
|
|
gdb_byte buf[5];
|
764 |
|
|
|
765 |
|
|
Y = (instr[1] & 0x02) >> 1;
|
766 |
|
|
|
767 |
|
|
status = target_read_memory (pc + 2, buf, 5);
|
768 |
|
|
if (status != 0)
|
769 |
|
|
break;
|
770 |
|
|
|
771 |
|
|
sM = (buf[0] & 0xf0) >> 4;
|
772 |
|
|
rN = buf[0] & 0x0f;
|
773 |
|
|
fsM = (Y << 4) | sM;
|
774 |
|
|
d32 = extract_signed_integer (&buf[1], 4, byte_order);
|
775 |
|
|
|
776 |
|
|
pv_area_store (stack,
|
777 |
|
|
pv_add_constant (regs[translate_rreg (rN)], d32),
|
778 |
|
|
4, regs[E_FS0_REGNUM + fsM]);
|
779 |
|
|
|
780 |
|
|
pc += 7;
|
781 |
|
|
}
|
782 |
|
|
/* fmov fsM, (d8, SP) */
|
783 |
|
|
else if (instr[0] == 0xfb && (instr[1] & 0xfd) == 0x34)
|
784 |
|
|
{
|
785 |
|
|
int fsM, sM, Y;
|
786 |
|
|
LONGEST d8;
|
787 |
|
|
gdb_byte buf[2];
|
788 |
|
|
|
789 |
|
|
Y = (instr[1] & 0x02) >> 1;
|
790 |
|
|
|
791 |
|
|
status = target_read_memory (pc + 2, buf, 2);
|
792 |
|
|
if (status != 0)
|
793 |
|
|
break;
|
794 |
|
|
|
795 |
|
|
sM = (buf[0] & 0xf0) >> 4;
|
796 |
|
|
fsM = (Y << 4) | sM;
|
797 |
|
|
d8 = extract_signed_integer (&buf[1], 1, byte_order);
|
798 |
|
|
|
799 |
|
|
pv_area_store (stack,
|
800 |
|
|
pv_add_constant (regs[E_SP_REGNUM], d8),
|
801 |
|
|
4, regs[E_FS0_REGNUM + fsM]);
|
802 |
|
|
|
803 |
|
|
pc += 4;
|
804 |
|
|
}
|
805 |
|
|
/* fmov fsM, (d24, SP) */
|
806 |
|
|
else if (instr[0] == 0xfd && (instr[1] & 0xfd) == 0x34)
|
807 |
|
|
{
|
808 |
|
|
int fsM, sM, Y;
|
809 |
|
|
LONGEST d24;
|
810 |
|
|
gdb_byte buf[4];
|
811 |
|
|
|
812 |
|
|
Y = (instr[1] & 0x02) >> 1;
|
813 |
|
|
|
814 |
|
|
status = target_read_memory (pc + 2, buf, 4);
|
815 |
|
|
if (status != 0)
|
816 |
|
|
break;
|
817 |
|
|
|
818 |
|
|
sM = (buf[0] & 0xf0) >> 4;
|
819 |
|
|
fsM = (Y << 4) | sM;
|
820 |
|
|
d24 = extract_signed_integer (&buf[1], 3, byte_order);
|
821 |
|
|
|
822 |
|
|
pv_area_store (stack,
|
823 |
|
|
pv_add_constant (regs[E_SP_REGNUM], d24),
|
824 |
|
|
4, regs[E_FS0_REGNUM + fsM]);
|
825 |
|
|
|
826 |
|
|
pc += 6;
|
827 |
|
|
}
|
828 |
|
|
/* fmov fsM, (d32, SP) */
|
829 |
|
|
else if (instr[0] == 0xfe && (instr[1] & 0xfd) == 0x34)
|
830 |
|
|
{
|
831 |
|
|
int fsM, sM, Y;
|
832 |
|
|
LONGEST d32;
|
833 |
|
|
gdb_byte buf[5];
|
834 |
|
|
|
835 |
|
|
Y = (instr[1] & 0x02) >> 1;
|
836 |
|
|
|
837 |
|
|
status = target_read_memory (pc + 2, buf, 5);
|
838 |
|
|
if (status != 0)
|
839 |
|
|
break;
|
840 |
|
|
|
841 |
|
|
sM = (buf[0] & 0xf0) >> 4;
|
842 |
|
|
fsM = (Y << 4) | sM;
|
843 |
|
|
d32 = extract_signed_integer (&buf[1], 4, byte_order);
|
844 |
|
|
|
845 |
|
|
pv_area_store (stack,
|
846 |
|
|
pv_add_constant (regs[E_SP_REGNUM], d32),
|
847 |
|
|
4, regs[E_FS0_REGNUM + fsM]);
|
848 |
|
|
|
849 |
|
|
pc += 7;
|
850 |
|
|
}
|
851 |
|
|
/* fmov fsM, (rN+) */
|
852 |
|
|
else if (instr[0] == 0xf9 && (instr[1] & 0xfd) == 0x31)
|
853 |
|
|
{
|
854 |
|
|
int fsM, sM, Y, rN, rN_regnum;
|
855 |
|
|
gdb_byte buf[1];
|
856 |
|
|
|
857 |
|
|
Y = (instr[1] & 0x02) >> 1;
|
858 |
|
|
|
859 |
|
|
status = target_read_memory (pc + 2, buf, 1);
|
860 |
|
|
if (status != 0)
|
861 |
|
|
break;
|
862 |
|
|
|
863 |
|
|
sM = (buf[0] & 0xf0) >> 4;
|
864 |
|
|
rN = buf[0] & 0x0f;
|
865 |
|
|
fsM = (Y << 4) | sM;
|
866 |
|
|
|
867 |
|
|
rN_regnum = translate_rreg (rN);
|
868 |
|
|
|
869 |
|
|
pv_area_store (stack, regs[rN_regnum], 4,
|
870 |
|
|
regs[E_FS0_REGNUM + fsM]);
|
871 |
|
|
regs[rN_regnum] = pv_add_constant (regs[rN_regnum], 4);
|
872 |
|
|
|
873 |
|
|
pc += 3;
|
874 |
|
|
}
|
875 |
|
|
/* fmov fsM, (rN+, imm8) */
|
876 |
|
|
else if (instr[0] == 0xfb && (instr[1] & 0xfd) == 0x31)
|
877 |
|
|
{
|
878 |
|
|
int fsM, sM, Y, rN, rN_regnum;
|
879 |
|
|
LONGEST imm8;
|
880 |
|
|
gdb_byte buf[2];
|
881 |
|
|
|
882 |
|
|
Y = (instr[1] & 0x02) >> 1;
|
883 |
|
|
|
884 |
|
|
status = target_read_memory (pc + 2, buf, 2);
|
885 |
|
|
if (status != 0)
|
886 |
|
|
break;
|
887 |
|
|
|
888 |
|
|
sM = (buf[0] & 0xf0) >> 4;
|
889 |
|
|
rN = buf[0] & 0x0f;
|
890 |
|
|
fsM = (Y << 4) | sM;
|
891 |
|
|
imm8 = extract_signed_integer (&buf[1], 1, byte_order);
|
892 |
|
|
|
893 |
|
|
rN_regnum = translate_rreg (rN);
|
894 |
|
|
|
895 |
|
|
pv_area_store (stack, regs[rN_regnum], 4, regs[E_FS0_REGNUM + fsM]);
|
896 |
|
|
regs[rN_regnum] = pv_add_constant (regs[rN_regnum], imm8);
|
897 |
|
|
|
898 |
|
|
pc += 4;
|
899 |
|
|
}
|
900 |
|
|
/* fmov fsM, (rN+, imm24) */
|
901 |
|
|
else if (instr[0] == 0xfd && (instr[1] & 0xfd) == 0x31)
|
902 |
|
|
{
|
903 |
|
|
int fsM, sM, Y, rN, rN_regnum;
|
904 |
|
|
LONGEST imm24;
|
905 |
|
|
gdb_byte buf[4];
|
906 |
|
|
|
907 |
|
|
Y = (instr[1] & 0x02) >> 1;
|
908 |
|
|
|
909 |
|
|
status = target_read_memory (pc + 2, buf, 4);
|
910 |
|
|
if (status != 0)
|
911 |
|
|
break;
|
912 |
|
|
|
913 |
|
|
sM = (buf[0] & 0xf0) >> 4;
|
914 |
|
|
rN = buf[0] & 0x0f;
|
915 |
|
|
fsM = (Y << 4) | sM;
|
916 |
|
|
imm24 = extract_signed_integer (&buf[1], 3, byte_order);
|
917 |
|
|
|
918 |
|
|
rN_regnum = translate_rreg (rN);
|
919 |
|
|
|
920 |
|
|
pv_area_store (stack, regs[rN_regnum], 4, regs[E_FS0_REGNUM + fsM]);
|
921 |
|
|
regs[rN_regnum] = pv_add_constant (regs[rN_regnum], imm24);
|
922 |
|
|
|
923 |
|
|
pc += 6;
|
924 |
|
|
}
|
925 |
|
|
/* fmov fsM, (rN+, imm32) */
|
926 |
|
|
else if (instr[0] == 0xfe && (instr[1] & 0xfd) == 0x31)
|
927 |
|
|
{
|
928 |
|
|
int fsM, sM, Y, rN, rN_regnum;
|
929 |
|
|
LONGEST imm32;
|
930 |
|
|
gdb_byte buf[5];
|
931 |
|
|
|
932 |
|
|
Y = (instr[1] & 0x02) >> 1;
|
933 |
|
|
|
934 |
|
|
status = target_read_memory (pc + 2, buf, 5);
|
935 |
|
|
if (status != 0)
|
936 |
|
|
break;
|
937 |
|
|
|
938 |
|
|
sM = (buf[0] & 0xf0) >> 4;
|
939 |
|
|
rN = buf[0] & 0x0f;
|
940 |
|
|
fsM = (Y << 4) | sM;
|
941 |
|
|
imm32 = extract_signed_integer (&buf[1], 4, byte_order);
|
942 |
|
|
|
943 |
|
|
rN_regnum = translate_rreg (rN);
|
944 |
|
|
|
945 |
|
|
pv_area_store (stack, regs[rN_regnum], 4, regs[E_FS0_REGNUM + fsM]);
|
946 |
|
|
regs[rN_regnum] = pv_add_constant (regs[rN_regnum], imm32);
|
947 |
|
|
|
948 |
|
|
pc += 7;
|
949 |
|
|
}
|
950 |
|
|
/* mov imm8, aN */
|
951 |
|
|
else if ((instr[0] & 0xf0) == 0x90)
|
952 |
|
|
{
|
953 |
|
|
int aN = instr[0] & 0x03;
|
954 |
|
|
LONGEST imm8;
|
955 |
|
|
|
956 |
|
|
imm8 = extract_signed_integer (&instr[1], 1, byte_order);
|
957 |
|
|
|
958 |
|
|
regs[E_A0_REGNUM + aN] = pv_constant (imm8);
|
959 |
|
|
pc += 2;
|
960 |
|
|
}
|
961 |
|
|
/* mov imm16, aN */
|
962 |
|
|
else if ((instr[0] & 0xfc) == 0x24)
|
963 |
|
|
{
|
964 |
|
|
int aN = instr[0] & 0x03;
|
965 |
|
|
gdb_byte buf[2];
|
966 |
|
|
LONGEST imm16;
|
967 |
|
|
|
968 |
|
|
status = target_read_memory (pc + 1, buf, 2);
|
969 |
|
|
if (status != 0)
|
970 |
|
|
break;
|
971 |
|
|
|
972 |
|
|
imm16 = extract_signed_integer (buf, 2, byte_order);
|
973 |
|
|
regs[E_A0_REGNUM + aN] = pv_constant (imm16);
|
974 |
|
|
pc += 3;
|
975 |
|
|
}
|
976 |
|
|
/* mov imm32, aN */
|
977 |
|
|
else if (instr[0] == 0xfc && ((instr[1] & 0xfc) == 0xdc))
|
978 |
|
|
{
|
979 |
|
|
int aN = instr[1] & 0x03;
|
980 |
|
|
gdb_byte buf[4];
|
981 |
|
|
LONGEST imm32;
|
982 |
|
|
|
983 |
|
|
status = target_read_memory (pc + 2, buf, 4);
|
984 |
|
|
if (status != 0)
|
985 |
|
|
break;
|
986 |
|
|
|
987 |
|
|
imm32 = extract_signed_integer (buf, 4, byte_order);
|
988 |
|
|
regs[E_A0_REGNUM + aN] = pv_constant (imm32);
|
989 |
|
|
pc += 6;
|
990 |
|
|
}
|
991 |
|
|
/* mov imm8, dN */
|
992 |
|
|
else if ((instr[0] & 0xf0) == 0x80)
|
993 |
|
|
{
|
994 |
|
|
int dN = instr[0] & 0x03;
|
995 |
|
|
LONGEST imm8;
|
996 |
|
|
|
997 |
|
|
imm8 = extract_signed_integer (&instr[1], 1, byte_order);
|
998 |
|
|
|
999 |
|
|
regs[E_D0_REGNUM + dN] = pv_constant (imm8);
|
1000 |
|
|
pc += 2;
|
1001 |
|
|
}
|
1002 |
|
|
/* mov imm16, dN */
|
1003 |
|
|
else if ((instr[0] & 0xfc) == 0x2c)
|
1004 |
|
|
{
|
1005 |
|
|
int dN = instr[0] & 0x03;
|
1006 |
|
|
gdb_byte buf[2];
|
1007 |
|
|
LONGEST imm16;
|
1008 |
|
|
|
1009 |
|
|
status = target_read_memory (pc + 1, buf, 2);
|
1010 |
|
|
if (status != 0)
|
1011 |
|
|
break;
|
1012 |
|
|
|
1013 |
|
|
imm16 = extract_signed_integer (buf, 2, byte_order);
|
1014 |
|
|
regs[E_D0_REGNUM + dN] = pv_constant (imm16);
|
1015 |
|
|
pc += 3;
|
1016 |
|
|
}
|
1017 |
|
|
/* mov imm32, dN */
|
1018 |
|
|
else if (instr[0] == 0xfc && ((instr[1] & 0xfc) == 0xcc))
|
1019 |
|
|
{
|
1020 |
|
|
int dN = instr[1] & 0x03;
|
1021 |
|
|
gdb_byte buf[4];
|
1022 |
|
|
LONGEST imm32;
|
1023 |
|
|
|
1024 |
|
|
status = target_read_memory (pc + 2, buf, 4);
|
1025 |
|
|
if (status != 0)
|
1026 |
|
|
break;
|
1027 |
|
|
|
1028 |
|
|
imm32 = extract_signed_integer (buf, 4, byte_order);
|
1029 |
|
|
regs[E_D0_REGNUM + dN] = pv_constant (imm32);
|
1030 |
|
|
pc += 6;
|
1031 |
|
|
}
|
1032 |
|
|
else
|
1033 |
|
|
{
|
1034 |
|
|
/* We've hit some instruction that we don't recognize. Hopefully,
|
1035 |
|
|
we have enough to do prologue analysis. */
|
1036 |
|
|
break;
|
1037 |
|
|
}
|
1038 |
|
|
}
|
1039 |
|
|
|
1040 |
|
|
/* Is the frame size (offset, really) a known constant? */
|
1041 |
|
|
if (pv_is_register (regs[E_SP_REGNUM], E_SP_REGNUM))
|
1042 |
|
|
result->frame_size = regs[E_SP_REGNUM].k;
|
1043 |
|
|
|
1044 |
|
|
/* Was the frame pointer initialized? */
|
1045 |
|
|
if (pv_is_register (regs[E_A3_REGNUM], E_SP_REGNUM))
|
1046 |
|
|
{
|
1047 |
|
|
result->has_frame_ptr = 1;
|
1048 |
|
|
result->frame_ptr_offset = regs[E_A3_REGNUM].k;
|
1049 |
|
|
}
|
1050 |
|
|
|
1051 |
|
|
/* Record where all the registers were saved. */
|
1052 |
|
|
pv_area_scan (stack, check_for_saved, (void *) result);
|
1053 |
|
|
|
1054 |
|
|
result->prologue_end = after_last_frame_setup_insn;
|
1055 |
|
|
|
1056 |
|
|
do_cleanups (back_to);
|
1057 |
|
|
}
|
1058 |
|
|
|
1059 |
|
|
/* Function: skip_prologue
|
1060 |
|
|
Return the address of the first inst past the prologue of the function. */
|
1061 |
|
|
|
1062 |
|
|
static CORE_ADDR
|
1063 |
|
|
mn10300_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
|
1064 |
|
|
{
|
1065 |
|
|
char *name;
|
1066 |
|
|
CORE_ADDR func_addr, func_end;
|
1067 |
|
|
struct mn10300_prologue p;
|
1068 |
|
|
|
1069 |
|
|
/* Try to find the extent of the function that contains PC. */
|
1070 |
|
|
if (!find_pc_partial_function (pc, &name, &func_addr, &func_end))
|
1071 |
|
|
return pc;
|
1072 |
|
|
|
1073 |
|
|
mn10300_analyze_prologue (gdbarch, pc, func_end, &p);
|
1074 |
|
|
return p.prologue_end;
|
1075 |
|
|
}
|
1076 |
|
|
|
1077 |
|
|
/* Wrapper for mn10300_analyze_prologue: find the function start;
|
1078 |
|
|
use the current frame PC as the limit, then
|
1079 |
|
|
invoke mn10300_analyze_prologue and return its result. */
|
1080 |
|
|
static struct mn10300_prologue *
|
1081 |
|
|
mn10300_analyze_frame_prologue (struct frame_info *this_frame,
|
1082 |
|
|
void **this_prologue_cache)
|
1083 |
|
|
{
|
1084 |
|
|
if (!*this_prologue_cache)
|
1085 |
|
|
{
|
1086 |
|
|
CORE_ADDR func_start, stop_addr;
|
1087 |
|
|
|
1088 |
|
|
*this_prologue_cache = FRAME_OBSTACK_ZALLOC (struct mn10300_prologue);
|
1089 |
|
|
|
1090 |
|
|
func_start = get_frame_func (this_frame);
|
1091 |
|
|
stop_addr = get_frame_pc (this_frame);
|
1092 |
|
|
|
1093 |
|
|
/* If we couldn't find any function containing the PC, then
|
1094 |
|
|
just initialize the prologue cache, but don't do anything. */
|
1095 |
|
|
if (!func_start)
|
1096 |
|
|
stop_addr = func_start;
|
1097 |
|
|
|
1098 |
|
|
mn10300_analyze_prologue (get_frame_arch (this_frame),
|
1099 |
|
|
func_start, stop_addr, *this_prologue_cache);
|
1100 |
|
|
}
|
1101 |
|
|
|
1102 |
|
|
return *this_prologue_cache;
|
1103 |
|
|
}
|
1104 |
|
|
|
1105 |
|
|
/* Given the next frame and a prologue cache, return this frame's
|
1106 |
|
|
base. */
|
1107 |
|
|
static CORE_ADDR
|
1108 |
|
|
mn10300_frame_base (struct frame_info *this_frame, void **this_prologue_cache)
|
1109 |
|
|
{
|
1110 |
|
|
struct mn10300_prologue *p
|
1111 |
|
|
= mn10300_analyze_frame_prologue (this_frame, this_prologue_cache);
|
1112 |
|
|
|
1113 |
|
|
/* In functions that use alloca, the distance between the stack
|
1114 |
|
|
pointer and the frame base varies dynamically, so we can't use
|
1115 |
|
|
the SP plus static information like prologue analysis to find the
|
1116 |
|
|
frame base. However, such functions must have a frame pointer,
|
1117 |
|
|
to be able to restore the SP on exit. So whenever we do have a
|
1118 |
|
|
frame pointer, use that to find the base. */
|
1119 |
|
|
if (p->has_frame_ptr)
|
1120 |
|
|
{
|
1121 |
|
|
CORE_ADDR fp = get_frame_register_unsigned (this_frame, E_A3_REGNUM);
|
1122 |
|
|
return fp - p->frame_ptr_offset;
|
1123 |
|
|
}
|
1124 |
|
|
else
|
1125 |
|
|
{
|
1126 |
|
|
CORE_ADDR sp = get_frame_register_unsigned (this_frame, E_SP_REGNUM);
|
1127 |
|
|
return sp - p->frame_size;
|
1128 |
|
|
}
|
1129 |
|
|
}
|
1130 |
|
|
|
1131 |
|
|
/* Here is a dummy implementation. */
|
1132 |
|
|
static struct frame_id
|
1133 |
|
|
mn10300_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
|
1134 |
|
|
{
|
1135 |
|
|
CORE_ADDR sp = get_frame_register_unsigned (this_frame, E_SP_REGNUM);
|
1136 |
|
|
CORE_ADDR pc = get_frame_register_unsigned (this_frame, E_PC_REGNUM);
|
1137 |
|
|
return frame_id_build (sp, pc);
|
1138 |
|
|
}
|
1139 |
|
|
|
1140 |
|
|
static void
|
1141 |
|
|
mn10300_frame_this_id (struct frame_info *this_frame,
|
1142 |
|
|
void **this_prologue_cache,
|
1143 |
|
|
struct frame_id *this_id)
|
1144 |
|
|
{
|
1145 |
|
|
*this_id = frame_id_build (mn10300_frame_base (this_frame, this_prologue_cache),
|
1146 |
|
|
get_frame_func (this_frame));
|
1147 |
|
|
|
1148 |
|
|
}
|
1149 |
|
|
|
1150 |
|
|
static struct value *
|
1151 |
|
|
mn10300_frame_prev_register (struct frame_info *this_frame,
|
1152 |
|
|
void **this_prologue_cache, int regnum)
|
1153 |
|
|
{
|
1154 |
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
|
1155 |
|
|
struct mn10300_prologue *p
|
1156 |
|
|
= mn10300_analyze_frame_prologue (this_frame, this_prologue_cache);
|
1157 |
|
|
CORE_ADDR frame_base = mn10300_frame_base (this_frame, this_prologue_cache);
|
1158 |
|
|
int reg_size = register_size (get_frame_arch (this_frame), regnum);
|
1159 |
|
|
|
1160 |
|
|
if (regnum == E_SP_REGNUM)
|
1161 |
|
|
return frame_unwind_got_constant (this_frame, regnum, frame_base);
|
1162 |
|
|
|
1163 |
|
|
/* If prologue analysis says we saved this register somewhere,
|
1164 |
|
|
return a description of the stack slot holding it. */
|
1165 |
|
|
if (p->reg_offset[regnum] != 1)
|
1166 |
|
|
return frame_unwind_got_memory (this_frame, regnum,
|
1167 |
|
|
frame_base + p->reg_offset[regnum]);
|
1168 |
|
|
|
1169 |
|
|
/* Otherwise, presume we haven't changed the value of this
|
1170 |
|
|
register, and get it from the next frame. */
|
1171 |
|
|
return frame_unwind_got_register (this_frame, regnum, regnum);
|
1172 |
|
|
}
|
1173 |
|
|
|
1174 |
|
|
static const struct frame_unwind mn10300_frame_unwind = {
|
1175 |
|
|
NORMAL_FRAME,
|
1176 |
|
|
mn10300_frame_this_id,
|
1177 |
|
|
mn10300_frame_prev_register,
|
1178 |
|
|
NULL,
|
1179 |
|
|
default_frame_sniffer
|
1180 |
|
|
};
|
1181 |
|
|
|
1182 |
|
|
static CORE_ADDR
|
1183 |
|
|
mn10300_unwind_pc (struct gdbarch *gdbarch, struct frame_info *this_frame)
|
1184 |
|
|
{
|
1185 |
|
|
ULONGEST pc;
|
1186 |
|
|
|
1187 |
|
|
pc = frame_unwind_register_unsigned (this_frame, E_PC_REGNUM);
|
1188 |
|
|
return pc;
|
1189 |
|
|
}
|
1190 |
|
|
|
1191 |
|
|
static CORE_ADDR
|
1192 |
|
|
mn10300_unwind_sp (struct gdbarch *gdbarch, struct frame_info *this_frame)
|
1193 |
|
|
{
|
1194 |
|
|
ULONGEST sp;
|
1195 |
|
|
|
1196 |
|
|
sp = frame_unwind_register_unsigned (this_frame, E_SP_REGNUM);
|
1197 |
|
|
return sp;
|
1198 |
|
|
}
|
1199 |
|
|
|
1200 |
|
|
static void
|
1201 |
|
|
mn10300_frame_unwind_init (struct gdbarch *gdbarch)
|
1202 |
|
|
{
|
1203 |
|
|
dwarf2_append_unwinders (gdbarch);
|
1204 |
|
|
frame_unwind_append_unwinder (gdbarch, &mn10300_frame_unwind);
|
1205 |
|
|
set_gdbarch_dummy_id (gdbarch, mn10300_dummy_id);
|
1206 |
|
|
set_gdbarch_unwind_pc (gdbarch, mn10300_unwind_pc);
|
1207 |
|
|
set_gdbarch_unwind_sp (gdbarch, mn10300_unwind_sp);
|
1208 |
|
|
}
|
1209 |
|
|
|
1210 |
|
|
/* Function: push_dummy_call
|
1211 |
|
|
*
|
1212 |
|
|
* Set up machine state for a target call, including
|
1213 |
|
|
* function arguments, stack, return address, etc.
|
1214 |
|
|
*
|
1215 |
|
|
*/
|
1216 |
|
|
|
1217 |
|
|
static CORE_ADDR
|
1218 |
|
|
mn10300_push_dummy_call (struct gdbarch *gdbarch,
|
1219 |
|
|
struct value *target_func,
|
1220 |
|
|
struct regcache *regcache,
|
1221 |
|
|
CORE_ADDR bp_addr,
|
1222 |
|
|
int nargs, struct value **args,
|
1223 |
|
|
CORE_ADDR sp,
|
1224 |
|
|
int struct_return,
|
1225 |
|
|
CORE_ADDR struct_addr)
|
1226 |
|
|
{
|
1227 |
|
|
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
1228 |
|
|
const int push_size = register_size (gdbarch, E_PC_REGNUM);
|
1229 |
|
|
int regs_used;
|
1230 |
|
|
int len, arg_len;
|
1231 |
|
|
int stack_offset = 0;
|
1232 |
|
|
int argnum;
|
1233 |
|
|
char *val, valbuf[MAX_REGISTER_SIZE];
|
1234 |
|
|
|
1235 |
|
|
/* This should be a nop, but align the stack just in case something
|
1236 |
|
|
went wrong. Stacks are four byte aligned on the mn10300. */
|
1237 |
|
|
sp &= ~3;
|
1238 |
|
|
|
1239 |
|
|
/* Now make space on the stack for the args.
|
1240 |
|
|
|
1241 |
|
|
XXX This doesn't appear to handle pass-by-invisible reference
|
1242 |
|
|
arguments. */
|
1243 |
|
|
regs_used = struct_return ? 1 : 0;
|
1244 |
|
|
for (len = 0, argnum = 0; argnum < nargs; argnum++)
|
1245 |
|
|
{
|
1246 |
|
|
arg_len = (TYPE_LENGTH (value_type (args[argnum])) + 3) & ~3;
|
1247 |
|
|
while (regs_used < 2 && arg_len > 0)
|
1248 |
|
|
{
|
1249 |
|
|
regs_used++;
|
1250 |
|
|
arg_len -= push_size;
|
1251 |
|
|
}
|
1252 |
|
|
len += arg_len;
|
1253 |
|
|
}
|
1254 |
|
|
|
1255 |
|
|
/* Allocate stack space. */
|
1256 |
|
|
sp -= len;
|
1257 |
|
|
|
1258 |
|
|
if (struct_return)
|
1259 |
|
|
{
|
1260 |
|
|
regs_used = 1;
|
1261 |
|
|
regcache_cooked_write_unsigned (regcache, E_D0_REGNUM, struct_addr);
|
1262 |
|
|
}
|
1263 |
|
|
else
|
1264 |
|
|
regs_used = 0;
|
1265 |
|
|
|
1266 |
|
|
/* Push all arguments onto the stack. */
|
1267 |
|
|
for (argnum = 0; argnum < nargs; argnum++)
|
1268 |
|
|
{
|
1269 |
|
|
/* FIXME what about structs? Unions? */
|
1270 |
|
|
if (TYPE_CODE (value_type (*args)) == TYPE_CODE_STRUCT
|
1271 |
|
|
&& TYPE_LENGTH (value_type (*args)) > 8)
|
1272 |
|
|
{
|
1273 |
|
|
/* Change to pointer-to-type. */
|
1274 |
|
|
arg_len = push_size;
|
1275 |
|
|
store_unsigned_integer (valbuf, push_size, byte_order,
|
1276 |
|
|
value_address (*args));
|
1277 |
|
|
val = &valbuf[0];
|
1278 |
|
|
}
|
1279 |
|
|
else
|
1280 |
|
|
{
|
1281 |
|
|
arg_len = TYPE_LENGTH (value_type (*args));
|
1282 |
|
|
val = (char *) value_contents (*args);
|
1283 |
|
|
}
|
1284 |
|
|
|
1285 |
|
|
while (regs_used < 2 && arg_len > 0)
|
1286 |
|
|
{
|
1287 |
|
|
regcache_cooked_write_unsigned (regcache, regs_used,
|
1288 |
|
|
extract_unsigned_integer (val, push_size, byte_order));
|
1289 |
|
|
val += push_size;
|
1290 |
|
|
arg_len -= push_size;
|
1291 |
|
|
regs_used++;
|
1292 |
|
|
}
|
1293 |
|
|
|
1294 |
|
|
while (arg_len > 0)
|
1295 |
|
|
{
|
1296 |
|
|
write_memory (sp + stack_offset, val, push_size);
|
1297 |
|
|
arg_len -= push_size;
|
1298 |
|
|
val += push_size;
|
1299 |
|
|
stack_offset += push_size;
|
1300 |
|
|
}
|
1301 |
|
|
|
1302 |
|
|
args++;
|
1303 |
|
|
}
|
1304 |
|
|
|
1305 |
|
|
/* Make space for the flushback area. */
|
1306 |
|
|
sp -= 8;
|
1307 |
|
|
|
1308 |
|
|
/* Push the return address that contains the magic breakpoint. */
|
1309 |
|
|
sp -= 4;
|
1310 |
|
|
write_memory_unsigned_integer (sp, push_size, byte_order, bp_addr);
|
1311 |
|
|
|
1312 |
|
|
/* The CPU also writes the return address always into the
|
1313 |
|
|
MDR register on "call". */
|
1314 |
|
|
regcache_cooked_write_unsigned (regcache, E_MDR_REGNUM, bp_addr);
|
1315 |
|
|
|
1316 |
|
|
/* Update $sp. */
|
1317 |
|
|
regcache_cooked_write_unsigned (regcache, E_SP_REGNUM, sp);
|
1318 |
|
|
|
1319 |
|
|
/* On the mn10300, it's possible to move some of the stack adjustment
|
1320 |
|
|
and saving of the caller-save registers out of the prologue and
|
1321 |
|
|
into the call sites. (When using gcc, this optimization can
|
1322 |
|
|
occur when using the -mrelax switch.) If this occurs, the dwarf2
|
1323 |
|
|
info will reflect this fact. We can test to see if this is the
|
1324 |
|
|
case by creating a new frame using the current stack pointer and
|
1325 |
|
|
the address of the function that we're about to call. We then
|
1326 |
|
|
unwind SP and see if it's different than the SP of our newly
|
1327 |
|
|
created frame. If the SP values are the same, the caller is not
|
1328 |
|
|
expected to allocate any additional stack. On the other hand, if
|
1329 |
|
|
the SP values are different, the difference determines the
|
1330 |
|
|
additional stack that must be allocated.
|
1331 |
|
|
|
1332 |
|
|
Note that we don't update the return value though because that's
|
1333 |
|
|
the value of the stack just after pushing the arguments, but prior
|
1334 |
|
|
to performing the call. This value is needed in order to
|
1335 |
|
|
construct the frame ID of the dummy call. */
|
1336 |
|
|
{
|
1337 |
|
|
CORE_ADDR func_addr = find_function_addr (target_func, NULL);
|
1338 |
|
|
CORE_ADDR unwound_sp
|
1339 |
|
|
= mn10300_unwind_sp (gdbarch, create_new_frame (sp, func_addr));
|
1340 |
|
|
if (sp != unwound_sp)
|
1341 |
|
|
regcache_cooked_write_unsigned (regcache, E_SP_REGNUM,
|
1342 |
|
|
sp - (unwound_sp - sp));
|
1343 |
|
|
}
|
1344 |
|
|
|
1345 |
|
|
return sp;
|
1346 |
|
|
}
|
1347 |
|
|
|
1348 |
|
|
/* If DWARF2 is a register number appearing in Dwarf2 debug info, then
|
1349 |
|
|
mn10300_dwarf2_reg_to_regnum (DWARF2) is the corresponding GDB
|
1350 |
|
|
register number. Why don't Dwarf2 and GDB use the same numbering?
|
1351 |
|
|
Who knows? But since people have object files lying around with
|
1352 |
|
|
the existing Dwarf2 numbering, and other people have written stubs
|
1353 |
|
|
to work with the existing GDB, neither of them can change. So we
|
1354 |
|
|
just have to cope. */
|
1355 |
|
|
static int
|
1356 |
|
|
mn10300_dwarf2_reg_to_regnum (struct gdbarch *gdbarch, int dwarf2)
|
1357 |
|
|
{
|
1358 |
|
|
/* This table is supposed to be shaped like the gdbarch_register_name
|
1359 |
|
|
initializer in gcc/config/mn10300/mn10300.h. Registers which
|
1360 |
|
|
appear in GCC's numbering, but have no counterpart in GDB's
|
1361 |
|
|
world, are marked with a -1. */
|
1362 |
|
|
static int dwarf2_to_gdb[] = {
|
1363 |
|
|
0, 1, 2, 3, 4, 5, 6, 7, -1, 8,
|
1364 |
|
|
15, 16, 17, 18, 19, 20, 21, 22,
|
1365 |
|
|
32, 33, 34, 35, 36, 37, 38, 39,
|
1366 |
|
|
40, 41, 42, 43, 44, 45, 46, 47,
|
1367 |
|
|
48, 49, 50, 51, 52, 53, 54, 55,
|
1368 |
|
|
56, 57, 58, 59, 60, 61, 62, 63,
|
1369 |
|
|
9, 11
|
1370 |
|
|
};
|
1371 |
|
|
|
1372 |
|
|
if (dwarf2 < 0
|
1373 |
|
|
|| dwarf2 >= ARRAY_SIZE (dwarf2_to_gdb))
|
1374 |
|
|
{
|
1375 |
|
|
warning (_("Bogus register number in debug info: %d"), dwarf2);
|
1376 |
|
|
return -1;
|
1377 |
|
|
}
|
1378 |
|
|
|
1379 |
|
|
return dwarf2_to_gdb[dwarf2];
|
1380 |
|
|
}
|
1381 |
|
|
|
1382 |
|
|
static struct gdbarch *
|
1383 |
|
|
mn10300_gdbarch_init (struct gdbarch_info info,
|
1384 |
|
|
struct gdbarch_list *arches)
|
1385 |
|
|
{
|
1386 |
|
|
struct gdbarch *gdbarch;
|
1387 |
|
|
struct gdbarch_tdep *tdep;
|
1388 |
|
|
int num_regs;
|
1389 |
|
|
|
1390 |
|
|
arches = gdbarch_list_lookup_by_info (arches, &info);
|
1391 |
|
|
if (arches != NULL)
|
1392 |
|
|
return arches->gdbarch;
|
1393 |
|
|
|
1394 |
|
|
tdep = xmalloc (sizeof (struct gdbarch_tdep));
|
1395 |
|
|
gdbarch = gdbarch_alloc (&info, tdep);
|
1396 |
|
|
|
1397 |
|
|
switch (info.bfd_arch_info->mach)
|
1398 |
|
|
{
|
1399 |
|
|
case 0:
|
1400 |
|
|
case bfd_mach_mn10300:
|
1401 |
|
|
set_gdbarch_register_name (gdbarch, mn10300_generic_register_name);
|
1402 |
|
|
tdep->am33_mode = 0;
|
1403 |
|
|
num_regs = 32;
|
1404 |
|
|
break;
|
1405 |
|
|
case bfd_mach_am33:
|
1406 |
|
|
set_gdbarch_register_name (gdbarch, am33_register_name);
|
1407 |
|
|
tdep->am33_mode = 1;
|
1408 |
|
|
num_regs = 32;
|
1409 |
|
|
break;
|
1410 |
|
|
case bfd_mach_am33_2:
|
1411 |
|
|
set_gdbarch_register_name (gdbarch, am33_2_register_name);
|
1412 |
|
|
tdep->am33_mode = 2;
|
1413 |
|
|
num_regs = 64;
|
1414 |
|
|
set_gdbarch_fp0_regnum (gdbarch, 32);
|
1415 |
|
|
break;
|
1416 |
|
|
default:
|
1417 |
|
|
internal_error (__FILE__, __LINE__,
|
1418 |
|
|
_("mn10300_gdbarch_init: Unknown mn10300 variant"));
|
1419 |
|
|
break;
|
1420 |
|
|
}
|
1421 |
|
|
|
1422 |
|
|
/* By default, chars are unsigned. */
|
1423 |
|
|
set_gdbarch_char_signed (gdbarch, 0);
|
1424 |
|
|
|
1425 |
|
|
/* Registers. */
|
1426 |
|
|
set_gdbarch_num_regs (gdbarch, num_regs);
|
1427 |
|
|
set_gdbarch_register_type (gdbarch, mn10300_register_type);
|
1428 |
|
|
set_gdbarch_skip_prologue (gdbarch, mn10300_skip_prologue);
|
1429 |
|
|
set_gdbarch_read_pc (gdbarch, mn10300_read_pc);
|
1430 |
|
|
set_gdbarch_write_pc (gdbarch, mn10300_write_pc);
|
1431 |
|
|
set_gdbarch_pc_regnum (gdbarch, E_PC_REGNUM);
|
1432 |
|
|
set_gdbarch_sp_regnum (gdbarch, E_SP_REGNUM);
|
1433 |
|
|
set_gdbarch_dwarf2_reg_to_regnum (gdbarch, mn10300_dwarf2_reg_to_regnum);
|
1434 |
|
|
|
1435 |
|
|
/* Stack unwinding. */
|
1436 |
|
|
set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
|
1437 |
|
|
/* Breakpoints. */
|
1438 |
|
|
set_gdbarch_breakpoint_from_pc (gdbarch, mn10300_breakpoint_from_pc);
|
1439 |
|
|
/* decr_pc_after_break? */
|
1440 |
|
|
/* Disassembly. */
|
1441 |
|
|
set_gdbarch_print_insn (gdbarch, print_insn_mn10300);
|
1442 |
|
|
|
1443 |
|
|
/* Stage 2 */
|
1444 |
|
|
set_gdbarch_return_value (gdbarch, mn10300_return_value);
|
1445 |
|
|
|
1446 |
|
|
/* Stage 3 -- get target calls working. */
|
1447 |
|
|
set_gdbarch_push_dummy_call (gdbarch, mn10300_push_dummy_call);
|
1448 |
|
|
/* set_gdbarch_return_value (store, extract) */
|
1449 |
|
|
|
1450 |
|
|
|
1451 |
|
|
mn10300_frame_unwind_init (gdbarch);
|
1452 |
|
|
|
1453 |
|
|
/* Hook in ABI-specific overrides, if they have been registered. */
|
1454 |
|
|
gdbarch_init_osabi (info, gdbarch);
|
1455 |
|
|
|
1456 |
|
|
return gdbarch;
|
1457 |
|
|
}
|
1458 |
|
|
|
1459 |
|
|
/* Dump out the mn10300 specific architecture information. */
|
1460 |
|
|
|
1461 |
|
|
static void
|
1462 |
|
|
mn10300_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
|
1463 |
|
|
{
|
1464 |
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
1465 |
|
|
fprintf_unfiltered (file, "mn10300_dump_tdep: am33_mode = %d\n",
|
1466 |
|
|
tdep->am33_mode);
|
1467 |
|
|
}
|
1468 |
|
|
|
1469 |
|
|
/* Provide a prototype to silence -Wmissing-prototypes. */
|
1470 |
|
|
extern initialize_file_ftype _initialize_mn10300_tdep;
|
1471 |
|
|
|
1472 |
|
|
void
|
1473 |
|
|
_initialize_mn10300_tdep (void)
|
1474 |
|
|
{
|
1475 |
|
|
gdbarch_register (bfd_arch_mn10300, mn10300_gdbarch_init, mn10300_dump_tdep);
|
1476 |
|
|
}
|
1477 |
|
|
|