OpenCores
URL https://opencores.org/ocsvn/openrisc_me/openrisc_me/trunk

Subversion Repositories openrisc_me

[/] [openrisc/] [trunk/] [gnu-src/] [gdb-7.1/] [gdb/] [or32-tdep.c] - Blame information for rev 249

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 227 jeremybenn
/* Target-dependent code for the 32-bit OpenRISC 1000, for the GNU Debugger.
2
 
3
   Copyright 1988-2008, Free Software Foundation, Inc.
4
   Copyright (C) 2008, 2010 Embecosm Limited
5
 
6
   Contributed by Alessandro Forin(af@cs.cmu.edu at CMU
7
   and by Per Bothner(bothner@cs.wisc.edu) at U.Wisconsin.
8
   Contributor Jeremy Bennett <jeremy.bennett@embecosm.com>
9
 
10
   This file is part of GDB.
11
 
12
   This program is free software; you can redistribute it and/or modify it
13
   under the terms of the GNU General Public License as published by the Free
14
   Software Foundation; either version 3 of the License, or (at your option)
15
   any later version.
16
 
17
   This program is distributed in the hope that it will be useful, but WITHOUT
18
   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
19
   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
20
   more details.
21
 
22
   You should have received a copy of the GNU General Public License along
23
   with this program.  If not, see <http://www.gnu.org/licenses/>.  */
24
 
25
/*-----------------------------------------------------------------------------
26
   This version for the OpenRISC 1000 architecture is a rewrite by Jeremy
27
   Bennett of the old GDB 5.3 interface to make use of gdbarch for GDB 6.8.
28
 
29
   The code tries to follow the GDB coding style.
30
 
31
   Commenting is Doxygen compatible.
32
 
33
   Much has been stripped out in the interests of getting a basic working
34
   system. This is described as the OpenRISC 1000 target architecture, so
35
   should work with 16, 32 and 64 bit versions of that architecture and should
36
   work whether or not they have floating point and/or vector registers.
37
 
38
   There was never a capability to run simulator commands (no remote target
39
   implemented the required function), so that has been removed.
40
 
41
   The info trace command has been removed. The meaning of this is not clear -
42
   it relies on a value in register 255 of the debug group, which is
43
   undocumented.
44
 
45
   All the hardware trace has been removed for the time being. The new debug
46
   interface does not support hardware trace, so there is no plan to reinstate
47
   this functionality.
48
 
49
   Support for multiple contexts (which was rudimentary, and not working) has
50
   been removed. */
51
/*---------------------------------------------------------------------------*/
52
 
53
#include "demangle.h"
54
#include "defs.h"
55
#include "gdb_string.h"
56
#include "frame.h"
57
#include "inferior.h"
58
#include "symtab.h"
59
#include "value.h"
60
#include "gdbcmd.h"
61
#include "language.h"
62
#include "gdbcore.h"
63
#include "symfile.h"
64
#include "objfiles.h"
65
#include "gdbtypes.h"
66
#include "target.h"
67
#include "regcache.h"
68
 
69
#include "opcode/or32.h"
70
#include "or32-tdep.h"
71
 
72
#include "safe-ctype.h"
73
#include "block.h"
74
#include "reggroups.h"
75
#include "arch-utils.h"
76
#include "frame.h"
77
#include "frame-unwind.h"
78
#include "frame-base.h"
79
#include "dwarf2-frame.h"
80
#include "trad-frame.h"
81
 
82
#include <inttypes.h>
83
 
84
 
85
 
86
 
87
/* Support functions for the architecture definition */
88
 
89
 
90
/*----------------------------------------------------------------------------*/
91
/*!Get an instruction
92
 
93
   This reads from memory. The old version relied on the frame, this relies
94
   just on the architecture. The old version also guaranteed not to get a
95
   software breakpoint if one had been set. However that seems to happen just
96
   before execution and is removed immediately after, so we believe should not
97
   happen. The old function from GDB 6.8 to do this has been deleted.
98
 
99
   @param[in] gdbarch  Architecture for which we are getting the instruction.
100
   @param[in] addr     Address from which to get the instruction
101
 
102
   @return  The instruction */
103
/*---------------------------------------------------------------------------*/
104
 
105
static ULONGEST
106
or32_fetch_instruction (struct gdbarch *gdbarch,
107
                        CORE_ADDR       addr)
108
{
109
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
110
  char            buf[OR32_INSTLEN];
111
  int             status;
112
 
113
  status = target_read_memory (addr, buf, OR32_INSTLEN);
114
 
115
  if (status)
116
    {
117
      memory_error (status, addr);
118
    }
119
 
120
  return  extract_unsigned_integer (buf, OR32_INSTLEN, byte_order);
121
 
122
}       /* or32_fetch_instruction() */
123
 
124
 
125
/*---------------------------------------------------------------------------*/
126
/*!Generic function to read bits from an instruction
127
 
128
   printf style. Basic syntax
129
 
130
      or32_analyse_inst (inst, format, &arg1, &arg2 ...)
131
 
132
   Format string can contain the following characters:
133
 
134
   - SPACE:  Ignored, just for layout
135
   - 0:      Match with a zero bit
136
   - 1:      Match with a one bit
137
   - %<n>b:  Match <n> bits to the next argument (n decimal)
138
 
139
   If the arg corresponding to a bit field is non-null, the value will be
140
   assigned to that argument (using NULL allows fields to be skipped).
141
 
142
   Any bad string will cause a fatal error. These are constant strings, so
143
   should be correct.
144
 
145
   The bit field must be 32 bits long. A failure here will cause a fatal error
146
   for the same reason.
147
 
148
   @note The format string is presented MS field to LS field, left to
149
         right. This means that it is read lowest numbered char first.
150
 
151
   @note Some of the arg fields may be populated, even if recognition
152
         ultimately fails.
153
 
154
   @param[in]  inst    The instruction to analyse
155
   @param[in]  format  The format string
156
   @param[out] ...     Argument fields
157
 
158
   @return  1 (TRUE) if the instruction matches, 0 (FALSE) otherwise.        */
159
/*---------------------------------------------------------------------------*/
160
static int
161
or32_analyse_inst (uint32_t    inst,
162
                   const char *format,
163
                   ...)
164
{
165
  /* Break out each field in turn, validating as we go. */
166
  va_list     ap;
167
 
168
  int         i;
169
  int         iptr = 0;                  /* Instruction pointer */
170
 
171
  va_start (ap, format);
172
 
173
  for (i = 0; 0 != format[i];)
174
    {
175
      const char *start_ptr;
176
      char       *end_ptr;
177
 
178
      uint32_t    bits;                 /* Bit substring of interest */
179
      uint32_t    width;                /* Substring width */
180
      uint32_t   *arg_ptr;
181
 
182
      switch (format[i])
183
        {
184
        case ' ': i++; break;   /* Formatting: ignored */
185
 
186
        case '0': case '1':     /* Constant bit field */
187
          bits = (inst >> (OR32_INSTBITLEN - iptr - 1)) & 0x1;
188
 
189
          if ((format[i] - '0') != bits)
190
            {
191
              return  0;
192
            }
193
 
194
          iptr++;
195
          i++;
196
          break;
197
 
198
        case '%':               /* Bit field */
199
          i++;
200
          start_ptr = &(format[i]);
201
          width     = strtoul (start_ptr, &end_ptr, 10);
202
 
203
          /* Check we got something, and if so skip on */
204
          if (start_ptr == end_ptr)
205
            {
206
              fatal ("bitstring \"%s\" at offset %d has no length field.\n",
207
                     format, i);
208
            }
209
 
210
          i += end_ptr - start_ptr;
211
 
212
          /* Look for and skip the terminating 'b'. If it's not there, we
213
             still give a fatal error, because these are fixed strings that
214
             just should not be wrong. */
215
          if ('b' != format[i++])
216
            {
217
              fatal ("bitstring \"%s\" at offset %d has no terminating 'b'.\n",
218
                     format, i);
219
            }
220
 
221
          /* Break out the field. There is a special case with a bit width of
222
             32. */
223
          if (32 == width)
224
            {
225
              bits = inst;
226
            }
227
          else
228
            {
229
              bits = (inst >> (OR32_INSTBITLEN - iptr - width)) & ((1 << width) - 1);
230
            }
231
 
232
          arg_ptr   = va_arg (ap, uint32_t *);
233
          *arg_ptr  = bits;
234
          iptr     += width;
235
          break;
236
 
237
        default:
238
          fatal ("invalid character in bitstring \"%s\" at offset %d.\n",
239
                 format, i);
240
          break;
241
        }
242
    }
243
 
244
  /* Is the length OK? */
245
  gdb_assert (OR32_INSTBITLEN == iptr);
246
 
247
  return  1;                            /* We succeeded */
248
 
249
}       /* or32_analyse_inst () */
250
 
251
 
252
/*---------------------------------------------------------------------------*/
253
/*!Analyse a l.addi instruction
254
 
255
   General form is:
256
 
257
     l.addi  rD,rA,I
258
 
259
   Makes use of the generic analysis function (@see or32_analyse_inst ()).
260
 
261
   @param[in]  inst      The instruction to analyse.
262
   @param[out] rd_ptr    Pointer to the rD value.
263
   @param[out] ra_ptr    Pointer to the rA value.
264
   @param[out] simm_ptr  Pointer to the signed immediate value.
265
 
266
   @return  1 (TRUE) if the instruction matches, 0 (FALSE) otherwise.        */
267
/*---------------------------------------------------------------------------*/
268
static int
269
or32_analyse_l_addi (uint32_t      inst,
270
                     unsigned int *rd_ptr,
271
                     unsigned int *ra_ptr,
272
                     int          *simm_ptr)
273
{
274
  /* Instruction fields */
275
  uint32_t  rd, ra, i;
276
 
277
  if (or32_analyse_inst (inst, "10 0111 %5b %5b %16b", &rd, &ra, &i))
278
    {
279
      /* Found it. Construct the result fields */
280
      *rd_ptr   = (unsigned int) rd;
281
      *ra_ptr   = (unsigned int) ra;
282
      *simm_ptr = (int) (((i & 0x8000) == 0x8000) ? 0xffff0000 | i : i);
283
 
284
      return  1;                /* Success */
285
    }
286
  else
287
    {
288
      return  0;         /* Failure */
289
    }
290
}       /* or32_analyse_l_addi () */
291
 
292
 
293
/*---------------------------------------------------------------------------*/
294
/*!Analyse a l.sw instruction
295
 
296
   General form is:
297
 
298
     l.sw  I(rA),rB
299
 
300
   Makes use of the generic analysis function (@see or32_analyse_inst ()).
301
 
302
   @param[in]  inst      The instruction to analyse.
303
   @param[out] simm_ptr  Pointer to the signed immediate value.
304
   @param[out] ra_ptr    Pointer to the rA value.
305
   @param[out] rb_ptr    Pointer to the rB value.
306
 
307
   @return  1 (TRUE) if the instruction matches, 0 (FALSE) otherwise.        */
308
/*---------------------------------------------------------------------------*/
309
static int
310
or32_analyse_l_sw (uint32_t      inst,
311
                   int          *simm_ptr,
312
                   unsigned int *ra_ptr,
313
                   unsigned int *rb_ptr)
314
{
315
  /* Instruction fields */
316
  uint32_t  ihi, ilo, ra, rb;
317
 
318
  if (or32_analyse_inst (inst, "11 0101 %5b %5b %5b %11b", &ihi, &ra, &rb,
319
                         &ilo))
320
 
321
    {
322
      /* Found it. Construct the result fields */
323
      *simm_ptr  = (int) ((ihi << 11) | ilo);
324
      *simm_ptr |= ((ihi & 0x10) == 0x10) ? 0xffff0000 : 0;
325
 
326
      *ra_ptr    = (unsigned int) ra;
327
      *rb_ptr    = (unsigned int) rb;
328
 
329
      return  1;                /* Success */
330
    }
331
  else
332
    {
333
      return  0;         /* Failure */
334
    }
335
}       /* or32_analyse_l_sw () */
336
 
337
 
338
 
339
 
340
/* Functions defining the architecture */
341
 
342
 
343
/*----------------------------------------------------------------------------*/
344
/*!Determine the return convention used for a given type
345
 
346
   Optionally, fetch or set the return value via "readbuf" or "writebuf"
347
   respectively using "regcache" for the register values.
348
 
349
   The OpenRISC 1000 returns scalar values via R11 and (for 64 bit values on
350
   32 bit architectures) R12. Structs and unions are returned by reference,
351
   with the address in R11
352
 
353
   The result returned is independent of the function type, so we ignore that.
354
 
355
   Throughout use read_memory(), not target_read_memory(), since the address
356
   may be invalid and we want an error reported (read_memory() is
357
   target_read_memory() with error reporting).
358
 
359
   @todo This implementation is labelled OR32, but in fact is just for the 32
360
         bit version, OR32. This should be made explicit
361
 
362
   @param[in]  gdbarch   The GDB architecture being used
363
   @param[in]  functype  The type of the function to be called (may be NULL)
364
   @param[in]  valtype   The type of the entity to be returned
365
   @param[in]  regcache  The register cache
366
   @param[in]  readbuf   Buffer into which the return value should be written
367
   @param[out] writebuf  Buffer from which the return value should be written
368
 
369
   @return  The type of return value */
370
/*---------------------------------------------------------------------------*/
371
 
372
static enum return_value_convention
373
or32_return_value (struct gdbarch  *gdbarch,
374
                   struct type     *functype,
375
                   struct type     *valtype,
376
                   struct regcache *regcache,
377
                   gdb_byte        *readbuf,
378
                   const gdb_byte  *writebuf)
379
{
380
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
381
  enum type_code  rv_type    = TYPE_CODE (valtype);
382
  unsigned int    rv_size    = TYPE_LENGTH (valtype);
383
  ULONGEST        tmp;
384
 
385
  /* Deal with struct/union and large scalars first. Large (> 4 byte) scalars
386
     are returned via a pointer (despite what is says in the architecture
387
     document). Result pointed to by R11 */
388
 
389
  if((TYPE_CODE_STRUCT == rv_type) ||
390
     (TYPE_CODE_UNION  == rv_type) ||
391
     (rv_size          >  4))
392
    {
393
      if (readbuf)
394
        {
395
          regcache_cooked_read_unsigned (regcache, OR32_RV_REGNUM, &tmp);
396
          read_memory (tmp, readbuf, rv_size);
397
        }
398
      if (writebuf)
399
        {
400
          regcache_cooked_read_unsigned (regcache, OR32_RV_REGNUM, &tmp);
401
          write_memory (tmp, writebuf, rv_size);
402
        }
403
 
404
      return RETURN_VALUE_ABI_RETURNS_ADDRESS;
405
    }
406
 
407
  /* 1-4 byte scalars are returned in R11 */
408
 
409
  if (readbuf)
410
    {
411
      regcache_cooked_read_unsigned (regcache, OR32_RV_REGNUM, &tmp);
412
      store_unsigned_integer (readbuf, rv_size, byte_order, tmp);
413
    }
414
  if (writebuf)
415
    {
416
      gdb_byte buf[4];
417
      memset (buf, 0, sizeof (buf));     /* Pad with zeros if < 4 bytes */
418
 
419
      if (BFD_ENDIAN_BIG == byte_order)
420
        {
421
          memcpy (buf + sizeof (buf) - rv_size, writebuf, rv_size);
422
        }
423
      else
424
        {
425
          memcpy (buf,                          writebuf, rv_size);
426
        }
427
 
428
      regcache_cooked_write (regcache, OR32_RV_REGNUM, buf);
429
    }
430
 
431
  return RETURN_VALUE_REGISTER_CONVENTION;
432
 
433
}       /* or32_return_value() */
434
 
435
 
436
/*----------------------------------------------------------------------------*/
437
/*!Determine the instruction to use for a breakpoint.
438
 
439
   Given the address at which to insert a breakpoint (bp_addr), what will
440
   that breakpoint be?
441
 
442
   For or32, we have a breakpoint instruction. Since all or32 instructions
443
   are 32 bits, this is all we need, regardless of address.
444
 
445
   @param[in]  gdbarch  The GDB architecture being used
446
   @param[in]  bp_addr  The breakpoint address in question
447
   @param[out] bp_size  The size of instruction selected
448
 
449
   @return  The chosen breakpoint instruction */
450
/*---------------------------------------------------------------------------*/
451
 
452
static const gdb_byte *
453
or32_breakpoint_from_pc (struct gdbarch *gdbarch,
454
                         CORE_ADDR      *bp_addr,
455
                         int            *bp_size)
456
{
457
  static const gdb_byte breakpoint[] = OR32_BRK_INSTR_STRUCT;
458
 
459
  *bp_size = OR32_INSTLEN;
460
  return breakpoint;
461
 
462
}       /* or32_breakpoint_from_pc() */
463
 
464
 
465
/*----------------------------------------------------------------------------*/
466
/*!Determine if we are executing a delay slot
467
 
468
   Looks at the instruction at the previous instruction to see if it was one
469
   with a delay slot. But it also has to be the address prior to NPC, because
470
   we may have just taken an exception.
471
 
472
   @param[in] gdbarch     The GDB architecture being used
473
   @param[in] this_frame  Information about THIS frame
474
 
475
   @return  1 (true) if this instruction is executing a delay slot, 0 (false)
476
   otherwise. */
477
/*--------------------------------------------------------------------------*/
478
 
479
static int
480
or32_single_step_through_delay( struct gdbarch    *gdbarch,
481
                                struct frame_info *this_frame )
482
{
483
  struct regcache   *regcache = get_current_regcache ();
484
  ULONGEST           val;
485
  CORE_ADDR          ppc;
486
  CORE_ADDR          npc;
487
  int                index;
488
 
489
  /* Get and the previous and current instruction addresses. If they are not
490
     adjacent, we cannot be in a delay slot. */
491
  regcache_cooked_read_unsigned (regcache, OR32_PPC_REGNUM, &val);
492
  ppc        = (CORE_ADDR) val;
493
  regcache_cooked_read_unsigned (regcache, OR32_NPC_REGNUM, &val);
494
  npc        = (CORE_ADDR) val;
495
 
496
  if (0x4 != (npc - ppc))
497
    {
498
      return  0;
499
    }
500
 
501
  /* Decode the previous instruction to see if it was a branch or a jump, and
502
     hence we are in a delay slot. */
503
  index = insn_decode (or32_fetch_instruction (gdbarch, ppc));
504
  return  or32_opcodes[index].flags & OR32_IF_DELAY;
505
 
506
}       /* or32_single_step_through_delay() */
507
 
508
 
509
/*----------------------------------------------------------------------------*/
510
/*!Read a pseudo register
511
 
512
   Since we have no pseudo registers this is a null function for now.
513
 
514
   @todo The floating point and vector registers ought to be done as
515
         pseudo-registers.
516
 
517
   @param[in]  gdbarch   The GDB architecture to consider
518
   @param[in]  regcache  The cached register values as an array
519
   @param[in]  regnum    The register to read
520
   @param[out] buf       A buffer to put the result in */
521
/*---------------------------------------------------------------------------*/
522
 
523
static void
524
or32_pseudo_register_read (struct gdbarch  *gdbarch,
525
                           struct regcache *regcache,
526
                           int              regnum,
527
                           gdb_byte        *buf)
528
{
529
  return;
530
 
531
}       /* or32_pseudo_register_read() */
532
 
533
 
534
/*----------------------------------------------------------------------------*/
535
/*!Write a pseudo register
536
 
537
   Since we have no pseudo registers this is a null function for now.
538
 
539
   @todo The floating point and vector registers ought to be done as
540
         pseudo-registers.
541
 
542
   @param[in] gdbarch   The GDB architecture to consider
543
   @param[in] regcache  The cached register values as an array
544
   @param[in] regnum    The register to read
545
   @param[in] buf       A buffer with the value to write */
546
/*---------------------------------------------------------------------------*/
547
 
548
static void
549
or32_pseudo_register_write (struct gdbarch  *gdbarch,
550
                            struct regcache *regcache,
551
                            int              regnum,
552
                            const gdb_byte  *buf)
553
{
554
  return;
555
 
556
}       /* or32_pseudo_register_write() */
557
 
558
 
559
/*----------------------------------------------------------------------------*/
560
/*!Return the register name for the OpenRISC 1000 architecture
561
 
562
   This version converted to ANSI C, made static and incorporates the static
563
   table of register names (this is the only place it is referenced).
564
 
565
   @todo The floating point and vector registers ought to be done as
566
         pseudo-registers.
567
 
568
   @param[in] gdbarch  The GDB architecture being used
569
   @param[in] regnum    The register number
570
 
571
   @return  The textual name of the register */
572
/*---------------------------------------------------------------------------*/
573
 
574
static const char *
575
or32_register_name (struct gdbarch *gdbarch,
576
                    int             regnum)
577
{
578
  static char *or32_gdb_reg_names[OR32_TOTAL_NUM_REGS] =
579
    {
580
      /* general purpose registers */
581 244 jeremybenn
      "r0",  "r1",  "r2",  "r3",  "r4",  "r5",  "r6",  "r7",
582
      "r8",  "r9",  "r10", "r11", "r12", "r13", "r14", "r15",
583
      "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
584
      "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
585 227 jeremybenn
 
586
      /* previous program counter, next program counter and status register */
587
      "ppc",   "npc",   "sr"
588
 
589
      /* Floating point and vector registers may appear as pseudo registers in
590
         the future. */
591
    };
592
 
593
  return or32_gdb_reg_names[regnum];
594
 
595
}       /* or32_register_name() */
596
 
597
 
598
/*----------------------------------------------------------------------------*/
599
/*!Identify the type of a register
600
 
601
   @todo I don't fully understand exactly what this does, but I think this
602
         makes sense!
603
 
604
   @param[in] arch     The GDB architecture to consider
605
   @param[in] regnum   The register to identify
606
 
607
   @return  The type of the register */
608
/*---------------------------------------------------------------------------*/
609
 
610
static struct type *
611
or32_register_type (struct gdbarch *arch,
612
                    int             regnum)
613
{
614
  static struct type *void_func_ptr = NULL;
615
  static struct type *void_ptr      = NULL;
616
 
617
  /* Set up the static pointers once, the first time*/
618
  if (NULL == void_func_ptr)
619
    {
620
      struct type *void_type = builtin_type (arch)->builtin_void;
621
 
622
      void_ptr      = lookup_pointer_type (void_type);
623
      void_func_ptr = lookup_pointer_type (lookup_function_type (void_type));
624
    }
625
 
626
  if((regnum >= 0) && (regnum < OR32_TOTAL_NUM_REGS))
627
    {
628
      switch (regnum)
629
        {
630
        case OR32_PPC_REGNUM:
631
        case OR32_NPC_REGNUM:
632
          return void_func_ptr;                 /* Pointer to code */
633
 
634
        case OR32_SP_REGNUM:
635
        case OR32_FP_REGNUM:
636
          return void_ptr;                              /* Pointer to data */
637
 
638
        default:
639
          return builtin_type (arch)->builtin_uint32;   /* Data */
640
        }
641
    }
642
 
643
  internal_error (__FILE__, __LINE__,
644
                  _("or32_register_type: illegal register number %d"), regnum);
645
 
646
}       /* or32_register_type() */
647
 
648
 
649
/*----------------------------------------------------------------------------*/
650
/*!Handle the "info register" command
651
 
652
   Print the identified register, unless it is -1, in which case print all
653
   the registers. If all is 1 means all registers, otherwise only the core
654
   GPRs.
655
 
656
   @todo At present all registers are printed with the default method. Should
657
         there be something special for FP registers?
658
 
659
   @param[in] gdbarch  The GDB architecture being used
660
   @param[in] file     File handle for use with any custom I/O
661
   @param[in] frame    Frame info for use with custom output
662
   @param[in] regnum   Register of interest, or -1 if all registers
663
   @param[in] all      1 if all means all, 0 if all means just GPRs
664
 
665
   @return  The aligned stack frame address */
666
/*---------------------------------------------------------------------------*/
667
 
668
static void
669
or32_registers_info (struct gdbarch    *gdbarch,
670
                     struct ui_file    *file,
671
                     struct frame_info *frame,
672
                     int                regnum,
673
                     int                all)
674
{
675
  if (-1 == regnum)
676
    {
677
      /* Do all (valid) registers */
678
      unsigned int  lim = all ? OR32_NUM_REGS : OR32_MAX_GPR_REGS;
679
 
680
      for (regnum = 0; regnum < lim; regnum++) {
681
        if ('\0' != *(or32_register_name (gdbarch, regnum)))
682
          {
683
            or32_registers_info (gdbarch, file, frame, regnum, all);
684
          }
685
      }
686
    }
687
  else
688
    {
689
      /* Do one specified register - if it is part of this architecture */
690
      if ('\0' == *(or32_register_name (gdbarch, regnum)))
691
        {
692
          error ("Not a valid register for the current processor type");
693
        }
694
      else
695
        {
696
          default_print_registers_info (gdbarch, file, frame, regnum, all);
697
        }
698
    }
699
}       /* or32_registers_info() */
700
 
701
 
702
/*----------------------------------------------------------------------------*/
703
/*!Identify if a register belongs to a specified group
704
 
705
   Return true if the specified register is a member of the specified
706
   register group.
707
 
708
   These are the groups of registers that can be displayed via "info reg".
709
 
710
   @todo The Vector and Floating Point registers ought to be displayed as
711
         pseudo-registers.
712
 
713
   @param[in] gdbarch  The GDB architecture to consider
714
   @param[in] regnum   The register to consider
715
   @param[in] group    The group to consider
716
 
717
   @return  True (1) if regnum is a member of group */
718
/*---------------------------------------------------------------------------*/
719
 
720
static int
721
or32_register_reggroup_p (struct gdbarch  *gdbarch,
722
                          int              regnum,
723
                          struct reggroup *group)
724
{
725
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
726
 
727
  /* All register group */
728
  if (group == all_reggroup)
729
    {
730
      return ((regnum >= 0) &&
731
              (regnum < OR32_TOTAL_NUM_REGS) &&
732
              (or32_register_name (gdbarch, regnum)[0] != '\0'));
733
    }
734
 
735
  /* For now everything except the PC */
736
  if (group == general_reggroup)
737
    {
738
      return ((regnum >= OR32_ZERO_REGNUM) &&
739
              (regnum <  tdep->num_gpr_regs) &&
740
              (regnum != OR32_PPC_REGNUM) &&
741
              (regnum != OR32_NPC_REGNUM));
742
    }
743
 
744
  if (group == float_reggroup)
745
    {
746
      return 0;                  /* No float regs.  */
747
    }
748
 
749
  if (group == vector_reggroup)
750
    {
751
      return 0;                  /* No vector regs.  */
752
    }
753
 
754
  /* For any that are not handled above.  */
755
  return default_register_reggroup_p (gdbarch, regnum, group);
756
 
757
}       /* or32_register_reggroup_p() */
758
 
759
 
760
/*----------------------------------------------------------------------------*/
761 244 jeremybenn
/*!Is this one of the registers used for passing arguments?
762
 
763
   These are r3-r8 in the API.
764
 
765
   @param[in] regnum  The register to consider
766
 
767
   @return  Non-zero (TRUE) if it is an argument register, zero (FALSE)
768
            otherwise.                                                        */
769
/*----------------------------------------------------------------------------*/
770
static int
771
or32_is_arg_reg (unsigned int  regnum)
772
{
773
  return (OR32_FIRST_ARG_REGNUM <= regnum) && (regnum <= OR32_LAST_ARG_REGNUM);
774
 
775
}       /* or32_is_arg_reg () */
776
 
777
 
778
/*----------------------------------------------------------------------------*/
779
/*!Is this a callee saved register?
780
 
781
   These are r10, r12, r14, r16, r18, r20, r22, r24, r26, r28 and r30 in the
782
   API.
783
 
784
   @param[in] regnum  The register to consider
785
 
786
   @return  Non-zero (TRUE) if it is a callee saved register, zero (FALSE)
787
            otherwise.                                                        */
788
/*----------------------------------------------------------------------------*/
789
static int
790
or32_is_callee_saved_reg (unsigned int  regnum)
791
{
792
  return (OR32_FIRST_SAVED_REGNUM <= regnum) && (0 == regnum % 2);
793
 
794
}       /* or32_is_callee_saved_reg () */
795
 
796
 
797
/*----------------------------------------------------------------------------*/
798 227 jeremybenn
/*!Skip a function prolog
799
 
800
   If the input address, PC, is in a function prologue, return the address of
801
   the end of the prologue, otherwise return the input  address.
802
 
803
   @see For details of the stack frame, see the function
804 244 jeremybenn
        or32_frame_cache().
805 227 jeremybenn
 
806 244 jeremybenn
   @note The old version of this function used to use skip_prologue_using_sal
807
         to skip the prologue without checking if it had actually worked. It
808
         doesn't for STABS, so we had better check for a valid result.
809
 
810 227 jeremybenn
   This function reuses the helper functions from or32_frame_cache() to
811
   locate the various parts of the prolog, any or all of which may be missing.
812
 
813
   @param[in] gdbarch  The GDB architecture being used
814
   @param[in] pc       Current program counter
815
 
816
   @return  The address of the end of the prolog if the PC is in a function
817
            prologue, otherwise the input  address.                           */
818
/*----------------------------------------------------------------------------*/
819
static CORE_ADDR
820
or32_skip_prologue (struct gdbarch *gdbarch,
821
                    CORE_ADDR       pc)
822
{
823
  CORE_ADDR     addr;
824
  uint32_t      inst;
825
 
826
  unsigned int  ra, rb, rd;             /* For instruction analysis */
827
  int           simm;
828
 
829
  int           frame_size = 0;
830
 
831
  /* Try using SAL first if we have symbolic information available. */
832 244 jeremybenn
  /* if (find_pc_partial_function (pc, NULL, NULL, NULL)) */
833
  /*   { */
834
  /*     CORE_ADDR  prologue_end = skip_prologue_using_sal( gdbarch, pc ); */
835 227 jeremybenn
 
836 244 jeremybenn
  /*     if (0 != prologue_end) */
837
  /*    { */
838
  /*      return  (prologue_end > pc) ? prologue_end : pc; */
839
  /*    } */
840
  /*   } */
841 227 jeremybenn
 
842
  /* Look to see if we can find any of the standard prologue sequence. All
843
     quite difficult, since any or all of it may be missing. So this is just a
844
     best guess! */
845
  addr = pc;                            /* Where we have got to */
846
  inst = or32_fetch_instruction (gdbarch, addr);
847
 
848
  /* Look for the new stack pointer being set up. */
849
  if (or32_analyse_l_addi (inst, &rd, &ra, &simm) &&
850
      (OR32_SP_REGNUM == rd) && (OR32_SP_REGNUM == ra) &&
851
      (simm < 0) && (0 == (simm % 4)))
852
    {
853
      frame_size  = -simm;
854
      addr       += OR32_INSTLEN;
855
      inst        = or32_fetch_instruction (gdbarch, addr);
856
    }
857
 
858
  /* Look for the frame pointer being manipulated. */
859
  if (or32_analyse_l_sw (inst, &simm, &ra, &rb) &&
860
      (OR32_SP_REGNUM == ra) && (OR32_FP_REGNUM == rb) &&
861
      (simm >= 0) && (0 == (simm % 4)))
862
    {
863
      addr += OR32_INSTLEN;
864
      inst  = or32_fetch_instruction (gdbarch, addr);
865
 
866
      gdb_assert (or32_analyse_l_addi (inst, &rd, &ra, &simm) &&
867
                  (OR32_FP_REGNUM == rd) && (OR32_SP_REGNUM == ra) &&
868
                  (simm == frame_size));
869
 
870
      addr += OR32_INSTLEN;
871
      inst  = or32_fetch_instruction (gdbarch, addr);
872
    }
873
 
874
  /* Look for the link register being saved */
875
  if (or32_analyse_l_sw (inst, &simm, &ra, &rb) &&
876
      (OR32_SP_REGNUM == ra) && (OR32_LR_REGNUM == rb) &&
877
      (simm >= 0) && (0 == (simm % 4)))
878
    {
879
      addr += OR32_INSTLEN;
880
      inst  = or32_fetch_instruction (gdbarch, addr);
881
    }
882
 
883 244 jeremybenn
  /* Look for arguments or callee-saved register being saved. The register
884
     must be one of the arguments (r3-r8) or the 10 callee saved registers
885
     (r10, r12, r14, r16, r18, r20, r22, r24, r26, r28, r30). The base
886
     register must be the FP (for the args) or the SP (for the callee_saved
887
     registers). */
888 227 jeremybenn
  while (1)
889
    {
890
      if (or32_analyse_l_sw (inst, &simm, &ra, &rb) &&
891 244 jeremybenn
          (((OR32_FP_REGNUM == ra) && or32_is_arg_reg (rb)) ||
892
           ((OR32_SP_REGNUM == ra) && or32_is_callee_saved_reg (rb))) &&
893
          (0 == (simm % 4)))
894 227 jeremybenn
        {
895
          addr += OR32_INSTLEN;
896
          inst  = or32_fetch_instruction (gdbarch, addr);
897
        }
898
      else
899
        {
900
          /* Nothing else to look for. We have found the end of the prologue. */
901
          return  addr;
902
        }
903
    }
904
}       /* or32_skip_prologue() */
905
 
906
 
907
/*----------------------------------------------------------------------------*/
908
/*!Align the stack frame
909
 
910
   OpenRISC 1000 uses a falling stack frame, so this aligns down to the
911
   nearest 8 bytes. Useful when we'be building a dummy frame.
912
 
913
   @param[in] gdbarch  The GDB architecture being used
914
   @param[in] sp       Current stack pointer
915
 
916
   @return  The aligned stack frame address */
917
/*---------------------------------------------------------------------------*/
918
 
919
static CORE_ADDR
920
or32_frame_align (struct gdbarch *gdbarch,
921
                  CORE_ADDR       sp)
922
{
923
  return align_down (sp, OR32_STACK_ALIGN);
924
 
925
}       /* or32_frame_align() */
926
 
927
 
928
/*----------------------------------------------------------------------------*/
929
/*!Unwind the program counter from a stack frame
930
 
931
   This just uses the built in frame unwinder
932
 
933
   @param[in] gdbarch     The GDB architecture being used
934
   @param[in] next_frame  Frame info for the NEXT frame
935
 
936
   @return  The program counter for THIS frame */
937
/*---------------------------------------------------------------------------*/
938
 
939
static CORE_ADDR
940
or32_unwind_pc (struct gdbarch    *gdbarch,
941
                struct frame_info *next_frame)
942
{
943
  CORE_ADDR pc = frame_unwind_register_unsigned (next_frame, OR32_NPC_REGNUM);
944
 
945
  return pc;
946
 
947
}       /* or32_unwind_pc() */
948
 
949
 
950
/*----------------------------------------------------------------------------*/
951
/*!Unwind the stack pointer from a stack frame
952
 
953
   This just uses the built in frame unwinder
954
 
955
   @param[in] gdbarch     The GDB architecture being used
956
   @param[in] next_frame  Frame info for the NEXT frame
957
 
958
   @return  The stack pointer for THIS frame */
959
/*---------------------------------------------------------------------------*/
960
 
961
static CORE_ADDR
962
or32_unwind_sp (struct gdbarch    *gdbarch,
963
                struct frame_info *next_frame)
964
{
965
  CORE_ADDR sp = frame_unwind_register_unsigned (next_frame, OR32_SP_REGNUM);
966
 
967
  return sp;
968
 
969
}       /* or32_unwind_sp() */
970
 
971
 
972
/*----------------------------------------------------------------------------*/
973
/*!Create a dummy stack frame
974
 
975
   The arguments are placed in registers and/or pushed on the stack as per the
976
   OR32 ABI.
977
 
978
   @param[in] gdbarch        The architecture to use
979
   @param[in] function       Pointer to the function that will be called
980
   @param[in] regcache       The register cache to use
981
   @param[in] bp_addr        Breakpoint address
982
   @param[in] nargs          Number of ags to push
983
   @param[in] args           The arguments
984
   @param[in] sp             The stack pointer
985
   @param[in] struct_return  True (1) if this returns a structure
986
   @param[in] struct_addr    Address for returning structures
987
 
988
   @return  The updated stack pointer */
989
/*---------------------------------------------------------------------------*/
990
 
991
static CORE_ADDR
992
or32_push_dummy_call (struct gdbarch  *gdbarch,
993
                      struct value    *function,
994
                      struct regcache *regcache,
995
                      CORE_ADDR        bp_addr,
996
                      int              nargs,
997
                      struct value   **args,
998
                      CORE_ADDR        sp,
999
                      int              struct_return,
1000
                      CORE_ADDR        struct_addr)
1001
{
1002
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1003
 
1004
  int             argreg;
1005
  int             argnum;
1006
  int             first_stack_arg;
1007
  int             stack_offset = 0;
1008
 
1009
  unsigned int    bpa = (gdbarch_tdep (gdbarch))->bytes_per_address;
1010
  unsigned int    bpw = (gdbarch_tdep (gdbarch))->bytes_per_word;
1011
 
1012
  /* Return address */
1013
  regcache_cooked_write_unsigned (regcache, OR32_LR_REGNUM, bp_addr);
1014
 
1015
  /* Register for the next argument */
1016
  argreg = OR32_FIRST_ARG_REGNUM;
1017
 
1018
  /* Location for a returned structure. This is passed as a silent first
1019
     argument. */
1020
 
1021
  if (struct_return)
1022
    {
1023
      regcache_cooked_write_unsigned (regcache, OR32_FIRST_ARG_REGNUM,
1024
                                      struct_addr);
1025
      argreg++;
1026
    }
1027
 
1028
  /* Put as many args as possible in registers */
1029
  for (argnum = 0; argnum < nargs; argnum++)
1030
    {
1031
      char           *val;
1032
      char            valbuf[sizeof (ULONGEST) ];
1033
 
1034
      struct value   *arg      = args[argnum];
1035
      struct type    *arg_type = check_typedef (value_type (arg));
1036
      int             len      = arg_type->length;
1037
      enum type_code  typecode = arg_type->main_type->code;
1038
 
1039
      /* The EABI passes structures that do not fit in a register by
1040
         reference. In all other cases, pass the structure by value.  */
1041
      if((len > bpw) &&
1042
         ((TYPE_CODE_STRUCT == typecode) || (TYPE_CODE_UNION == typecode)))
1043
        {
1044
 
1045
          store_unsigned_integer (valbuf, bpa, byte_order, value_offset (arg));
1046
          len      = bpa;
1047
          val      = valbuf;
1048
        }
1049
      else
1050
        {
1051
          val = (char *)value_contents (arg);
1052
        }
1053
 
1054
      if((len > bpw) && (argreg <= (OR32_LAST_ARG_REGNUM - 1)))
1055
        {
1056
 
1057 249 jeremybenn
          /* Big scalars use two registers, but need NOT be pair aligned. This
1058
             code breaks if we can have quad-word scalars (e.g. long
1059
             double). */
1060 227 jeremybenn
          ULONGEST regval = extract_unsigned_integer (val, len, byte_order);
1061
 
1062 249 jeremybenn
          unsigned int  bits_per_word = bpw * 8;
1063
          ULONGEST      mask          = (((ULONGEST) 1) << bits_per_word) - 1;
1064
          ULONGEST      lo            = regval & mask;
1065
          ULONGEST      hi            = regval >> bits_per_word;
1066
 
1067 227 jeremybenn
          gdb_assert (len <= (bpw * 2));
1068
 
1069 249 jeremybenn
          regcache_cooked_write_unsigned (regcache, argreg,     hi);
1070
          regcache_cooked_write_unsigned (regcache, argreg + 1, lo);
1071 227 jeremybenn
          argreg += 2;
1072
        }
1073
      else if (argreg <= OR32_LAST_ARG_REGNUM)
1074
        {
1075 249 jeremybenn
          printf ("Writing 0x%08llx to r%d\n",
1076
                  extract_unsigned_integer (val, len, byte_order), argreg);
1077
 
1078 227 jeremybenn
          regcache_cooked_write_unsigned (regcache, argreg,
1079
                                          extract_unsigned_integer (val, len,
1080
                                                                   byte_order));
1081
          argreg++;
1082
        }
1083
      else
1084
        {
1085
          /* Run out of regs */
1086
          break;
1087
        }
1088
    }
1089
 
1090
  first_stack_arg = argnum;
1091
 
1092
  /* If we get here with argnum < nargs, then arguments remain to be placed on
1093
     the stack. This is tricky, since they must be pushed in reverse order and
1094
     the stack in the end must be aligned. The only solution is to do it in
1095
     two stages, the first to compute the stack size, the second to save the
1096
     args. */
1097
 
1098
  for (argnum = first_stack_arg; argnum < nargs; argnum++)
1099
    {
1100
      struct value   *arg      = args[argnum];
1101
      struct type    *arg_type = check_typedef (value_type (arg));
1102
      int             len      = arg_type->length;
1103
      enum type_code  typecode = arg_type->main_type->code;
1104
 
1105
      if((len > bpw) &&
1106
         ((TYPE_CODE_STRUCT == typecode) || (TYPE_CODE_UNION == typecode)))
1107
        {
1108
          /* Large structures are passed as addresses */
1109
          sp -= bpa;
1110
        }
1111
      else
1112
        {
1113
        /* Big scalars use more than one word. Code here allows for future
1114
         quad-word entities (e.g. long double) */
1115
          sp -= ((len + bpw - 1) / bpw) * bpw;
1116
        }
1117
    }
1118
 
1119
  sp           = gdbarch_frame_align (gdbarch, sp);
1120
  stack_offset = 0;
1121
 
1122
  /* Push the remaining args on the stack */
1123
  for (argnum = first_stack_arg; argnum < nargs; argnum++)
1124
    {
1125
      char           *val;
1126
      char            valbuf[sizeof (ULONGEST) ];
1127
 
1128
      struct value   *arg      = args[argnum];
1129
      struct type    *arg_type = check_typedef (value_type (arg));
1130
      int             len      = arg_type->length;
1131
      enum type_code  typecode = arg_type->main_type->code;
1132
 
1133
      /* The EABI passes structures that do not fit in a register by
1134
         reference. In all other cases, pass the structure by value.  */
1135
      if((len > bpw) &&
1136
         ((TYPE_CODE_STRUCT == typecode) || (TYPE_CODE_UNION == typecode)))
1137
        {
1138
 
1139
          store_unsigned_integer (valbuf, bpa, byte_order, value_offset (arg));
1140
          len      = bpa;
1141
          val      = valbuf;
1142
        }
1143
      else
1144
        {
1145
          val = (char *)value_contents (arg);
1146
        }
1147
 
1148
      gdb_assert (len <= (bpw * 2));
1149
 
1150
      write_memory (sp + stack_offset, val, len);
1151
      stack_offset += ((len + bpw - 1) / bpw) * bpw;
1152
    }
1153
 
1154
  /* Save the updated stack pointer */
1155
  regcache_cooked_write_unsigned (regcache, OR32_SP_REGNUM, sp);
1156
 
1157
  return sp;
1158
 
1159
}       /* or32_push_dummy_call() */
1160
 
1161
 
1162
/*----------------------------------------------------------------------------*/
1163
/*!Return the frame ID for a dummy stack frame
1164
 
1165
   Tear down a dummy frame created by or32_push_dummy_call(). This data has to
1166
   be constructed manually from the data in our hand.
1167
 
1168
   The stack pointer and program counter can be obtained from the frame info.
1169
 
1170
   @param[in] gdbarch     The architecture to use
1171
   @param[in] this_frame  Information about this frame
1172
 
1173
   @return  Frame ID of this frame */
1174
/*---------------------------------------------------------------------------*/
1175
 
1176
static struct frame_id
1177
or32_dummy_id (struct gdbarch    *gdbarch,
1178
               struct frame_info *this_frame)
1179
{
1180
  return  frame_id_build (get_frame_sp (this_frame), get_frame_pc (this_frame));
1181
 
1182
}       /* or32_dummy_id() */
1183
 
1184
 
1185
 
1186
 
1187
/* Support functions for frame handling */
1188
 
1189
/* -------------------------------------------------------------------------- */
1190
/*!Initialize a prologue cache
1191
 
1192
   This function is changed from its GDB 6.8 version (named
1193
   or32_frame_unwind_cache), in that it is based on THIS frame, not the NEXT
1194
   frame.
1195
 
1196 249 jeremybenn
   We build a cache, saying where registers of the PREV frame can be found
1197
   from the data so far set up in this THIS.
1198 227 jeremybenn
 
1199 249 jeremybenn
   We also compute a unique ID for this frame, based on the function start
1200
   address and the stack pointer (as it will be, even if it has yet to be
1201
   computed.
1202
 
1203 227 jeremybenn
   STACK FORMAT
1204
   ============
1205
 
1206
   The OR32 has a falling stack frame and a simple prolog. The Stack pointer
1207
   is R1 and the frame pointer R2. The frame base is therefore the address
1208
   held in R2 and the stack pointer (R1) is the frame base of the NEXT frame.
1209
 
1210
   @verbatim
1211
   l.addi  r1,r1,-frame_size    # SP now points to end of new stack frame
1212
   @endverbatim
1213
 
1214
   The stack pointer may not be set up in a frameless function (e.g. a simple
1215
   leaf function).
1216
 
1217
   @verbatim
1218
   l.sw    fp_loc(r1),r2        # old FP saved in new stack frame
1219
   l.addi  r2,r1,frame_size     # FP now points to base of new stack frame
1220
   @endverbatim
1221
 
1222
   The frame pointer is not necessarily saved right at the end of the stack
1223
   frame - OR32 saves enough space for any args to called functions right at
1224
   the end (this is a difference from the Architecture Manual).
1225
 
1226
   @verbatim
1227
   l.sw    lr_loc(r1),r9        # Link (return) address
1228
   @endverbatim
1229
 
1230
   The link register is usally saved at fp_loc - 4. It may not be saved at all
1231
   in a leaf function.
1232
 
1233
   @verbatim
1234
   l.sw    reg_loc(r1),ry       # Save any callee saved regs
1235
   @endverbatim
1236
 
1237
   The offsets x for the callee saved registers generally (always?) rise in
1238
   increments of 4, starting at fp_loc + 4. If the frame pointer is omitted
1239
   (an option to GCC), then it may not be saved at all. There may be no callee
1240
   saved registers.
1241
 
1242
   So in summary none of this may be present. However what is present seems
1243
   always to follow this fixed order, and occur before any substantive code
1244
   (it is possible for GCC to have more flexible scheduling of the prologue,
1245
   but this does not seem to occur for OR32).
1246
 
1247
   ANALYSIS
1248
   ========
1249
 
1250
   This prolog is used, even for -O3 with GCC.
1251
 
1252
   All this analysis must allow for the possibility that the PC is in the
1253 249 jeremybenn
   middle of the prologue. Data in the cache should only be set up insofar as
1254
   it has been computed.
1255 227 jeremybenn
 
1256 249 jeremybenn
   HOWEVER. The frame_id must be created with the SP *as it will be* at the
1257
   end of the Prologue. Otherwise a recursive call, checking the frame with
1258
   the PC at the start address will end up with the same frame_id as the
1259
   caller.
1260
 
1261 227 jeremybenn
   A suite of "helper" routines are used, allowing reuse for
1262
   or32_skip_prologue().
1263
 
1264
   Reportedly, this is only valid for frames less than 0x7fff in size.
1265
 
1266
   @param[in]     this_frame      Our stack frame.
1267
   @param[in,out] prologue_cache  The prologue cache. If not supplied, we
1268
                                  build it.
1269
 
1270
   @return  The prolog cache (duplicates the return through the argument) */
1271
/* ---------------------------------------------------------------------------*/
1272
static struct trad_frame_cache *
1273
or32_frame_cache (struct frame_info  *this_frame,
1274
                  void              **prologue_cache)
1275
{
1276
  struct gdbarch          *gdbarch;
1277
  struct trad_frame_cache *info;
1278
 
1279
  CORE_ADDR                this_pc;
1280
  CORE_ADDR                this_sp;
1281 249 jeremybenn
  CORE_ADDR                this_sp_for_id;
1282 227 jeremybenn
  int                      frame_size = 0;
1283
 
1284
  CORE_ADDR                start_addr;
1285
  CORE_ADDR                end_addr;
1286
 
1287
  /* Nothing to do if we already have this info */
1288
  if (NULL != *prologue_cache)
1289
    {
1290
      return *prologue_cache;
1291
    }
1292
 
1293
  /* Get a new prologue cache and populate it with default values */
1294
  info                 = trad_frame_cache_zalloc (this_frame);
1295
  *prologue_cache = info;
1296
 
1297
  /* Find the start address of THIS function (which is a NORMAL frame, even if
1298
     the NEXT frame is the sentinel frame) and the end of its prologue.  */
1299
  this_pc = get_frame_pc (this_frame);
1300
  find_pc_partial_function (this_pc, NULL, &start_addr, NULL);
1301
 
1302
  /* Return early if GDB couldn't find the function.  */
1303
  if (start_addr == 0)
1304
    {
1305
      return  info;
1306
    }
1307
 
1308
  /* Get the stack pointer if we have one (if there's no process executing yet
1309
     we won't have a frame. */
1310
  this_sp = (NULL == this_frame) ? 0 :
1311
                                   get_frame_register_unsigned (this_frame,
1312
                                                                OR32_SP_REGNUM);
1313
 
1314 249 jeremybenn
  /* The default frame base of THIS frame (for ID purposes only - frame base
1315
     is an overloaded term) is its stack pointer. For now we use the value of
1316
     the SP register in THIS frame. However if the PC is in the prologue of
1317
     THIS frame, before the SP has been set up, then the value will actually
1318
     be that of the PREV frame, and we'll need to adjust it later. */
1319 227 jeremybenn
  trad_frame_set_this_base (info, this_sp);
1320 249 jeremybenn
  this_sp_for_id = this_sp;
1321 227 jeremybenn
 
1322
  /* The default is to find the PC of the PREVIOUS frame in the link register
1323
     of this frame. This may be changed if we find the link register was saved
1324
     on the stack. */
1325
  trad_frame_set_reg_realreg (info, OR32_NPC_REGNUM, OR32_LR_REGNUM);
1326
 
1327 249 jeremybenn
  /* We should only examine code that is in the prologue. This is all code up
1328
     to (but not including) end_addr. We should only populate the cache while
1329
     the address is up to (but not including) the PC or end_addr, whichever is
1330
     first. */
1331 227 jeremybenn
  gdbarch = get_frame_arch (this_frame);
1332
  end_addr = or32_skip_prologue (gdbarch, start_addr);
1333
 
1334
  /* All the following analysis only occurs if we are in the prologue and have
1335
     executed the code. Check we have a sane prologue size, and if zero we
1336
     are frameless and can give up here. */
1337
  if (end_addr < start_addr)
1338
    {
1339
      fatal ("end addr 0x%08x is less than start addr 0x%08x\n",
1340
             (unsigned int) end_addr, (unsigned int) start_addr);
1341
    }
1342
 
1343
  if (end_addr == start_addr)
1344
    {
1345
      frame_size = 0;
1346
    }
1347
  else
1348
    {
1349
      /* have a frame. Look for the various components */
1350
      CORE_ADDR  addr = start_addr;     /* Where we have got to */
1351
      uint32_t   inst = or32_fetch_instruction (gdbarch, addr);
1352
 
1353
      unsigned int  ra, rb, rd;         /* For instruction analysis */
1354
      int           simm;
1355
 
1356
      /* Look for the new stack pointer being set up. */
1357
      if (or32_analyse_l_addi (inst, &rd, &ra, &simm) &&
1358
          (OR32_SP_REGNUM == rd) && (OR32_SP_REGNUM == ra) &&
1359
          (simm < 0) && (0 == (simm % 4)))
1360
        {
1361
          frame_size  = -simm;
1362
          addr       += OR32_INSTLEN;
1363
          inst        = or32_fetch_instruction (gdbarch, addr);
1364
 
1365 249 jeremybenn
          /* If the PC has not actually got to this point, then the frame base
1366
             will be wrong, and we adjust it.
1367
 
1368
             If we are past this point, then we need to populate the stack
1369
             accoringly. */
1370
          if (this_pc <= addr)
1371
            {
1372
              /* Only do if executing */
1373
              if (0 != this_sp)
1374
                {
1375
                  this_sp_for_id = this_sp + frame_size;
1376
                  trad_frame_set_this_base (info, this_sp_for_id);
1377
                }
1378
            }
1379
          else
1380
            {
1381
              /* We are past this point, so the stack pointer of the PREV
1382
                 frame is frame_size greater than the stack pointer of THIS
1383
                 frame. */
1384
              trad_frame_set_reg_value (info, OR32_SP_REGNUM,
1385
                                        this_sp + frame_size);
1386
            }
1387 227 jeremybenn
        }
1388
 
1389 249 jeremybenn
      /* From now on we are only populating the cache, so we stop once we get
1390
         to either the end OR the current PC. */
1391
      end_addr = (this_pc < end_addr) ? this_pc : end_addr;
1392
 
1393 227 jeremybenn
      /* Look for the frame pointer being manipulated. */
1394
      if ((addr < end_addr) &&
1395
          or32_analyse_l_sw (inst, &simm, &ra, &rb) &&
1396
          (OR32_SP_REGNUM == ra) && (OR32_FP_REGNUM == rb) &&
1397
          (simm >= 0) && (0 == (simm % 4)))
1398
        {
1399
          addr += OR32_INSTLEN;
1400
          inst  = or32_fetch_instruction (gdbarch, addr);
1401
 
1402
          /* At this stage, we can find the frame pointer of the PREVIOUS
1403
             frame on the stack of the current frame. */
1404
          trad_frame_set_reg_addr (info, OR32_FP_REGNUM, this_sp + simm);
1405
 
1406
          /* Look for the new frame pointer being set up */
1407
          if (addr < end_addr)
1408
            {
1409
              gdb_assert (or32_analyse_l_addi (inst, &rd, &ra, &simm) &&
1410
                          (OR32_FP_REGNUM == rd) && (OR32_SP_REGNUM == ra) &&
1411
                          (simm == frame_size));
1412
 
1413
              addr += OR32_INSTLEN;
1414
              inst  = or32_fetch_instruction (gdbarch, addr);
1415
 
1416
              /* If we have got this far, the stack pointer of the PREVIOUS
1417
                 frame is the frame pointer of THIS frame. */
1418
              trad_frame_set_reg_realreg (info, OR32_SP_REGNUM, OR32_FP_REGNUM);
1419
            }
1420
        }
1421
 
1422
      /* Look for the link register being saved */
1423
      if ((addr < end_addr) &&
1424
          or32_analyse_l_sw (inst, &simm, &ra, &rb) &&
1425
          (OR32_SP_REGNUM == ra) && (OR32_LR_REGNUM == rb) &&
1426
          (simm >= 0) && (0 == (simm % 4)))
1427
        {
1428
          addr += OR32_INSTLEN;
1429
          inst  = or32_fetch_instruction (gdbarch, addr);
1430
 
1431
          /* If the link register is saved in the THIS frame, it holds the
1432
             value of the PC in the PREVIOUS frame. This overwrites the
1433
             previous information about finding the PC in the link
1434
             register. */
1435
          trad_frame_set_reg_addr (info, OR32_NPC_REGNUM, this_sp + simm);
1436
        }
1437
 
1438 244 jeremybenn
      /* Look for arguments or callee-saved register being saved. The register
1439
         must be one of the arguments (r3-r8) or the 10 callee saved registers
1440
         (r10, r12, r14, r16, r18, r20, r22, r24, r26, r28, r30). The base
1441
         register must be the FP (for the args) or the SP (for the
1442
         callee_saved registers). */
1443 227 jeremybenn
      while (addr < end_addr)
1444
        {
1445
          if (or32_analyse_l_sw (inst, &simm, &ra, &rb) &&
1446 244 jeremybenn
              (((OR32_FP_REGNUM == ra) && or32_is_arg_reg (rb)) ||
1447
               ((OR32_SP_REGNUM == ra) && or32_is_callee_saved_reg (rb))) &&
1448
              (0 == (simm % 4)))
1449 227 jeremybenn
            {
1450
              addr += OR32_INSTLEN;
1451
              inst  = or32_fetch_instruction (gdbarch, addr);
1452
 
1453
              /* The register in the PREVIOUS frame can be found at this
1454
                 location in THIS frame */
1455
              trad_frame_set_reg_addr (info, rb, this_sp + simm);
1456
            }
1457
          else
1458
            {
1459
              break;                    /* Not a register save instruction */
1460
            }
1461
        }
1462
    }
1463
 
1464
  /* Build the frame ID */
1465 249 jeremybenn
  trad_frame_set_id (info, frame_id_build (this_sp_for_id, start_addr));
1466 227 jeremybenn
 
1467
  return info;
1468
 
1469
}       /* or32_frame_cache() */
1470
 
1471
 
1472
/* -------------------------------------------------------------------------- */
1473
/*!Find the frame ID of this frame
1474
 
1475
   This function has changed since GDB 6.8 to use THIS frame, rather than the
1476
   NEXT frame.
1477
 
1478
   Given a GDB frame, return its frame_id.
1479
 
1480
   @param[in]  this_frame      Our frame, for which the ID is wanted.
1481
   @param[in]  prologue_cache  Any cached prologue for THIS function.
1482
   @param[out] this_id         Frame ID of our own frame.
1483
 
1484
   @return  Frame ID for THIS frame */
1485
/* ------------------------------------------------------------------------- */
1486
static void
1487
or32_frame_this_id (struct frame_info  *this_frame,
1488
                    void              **prologue_cache,
1489
                    struct frame_id    *this_id)
1490
{
1491
  struct trad_frame_cache *info =
1492
    or32_frame_cache (this_frame, prologue_cache);
1493
 
1494
  trad_frame_get_id (info, this_id);
1495
 
1496
}       /* or32_frame_this_id() */
1497
 
1498
 
1499
/*----------------------------------------------------------------------------*/
1500
/*!Get a register from the PREVIOUS frame
1501
 
1502
   This function has changed from GDB 6.8. It now takes a reference to THIS
1503
   frame, not the NEXT frame. It returns it results via a structure, not its
1504
   argument list.
1505
 
1506
   Given a pointer to the THIS frame, return the details of a register in the
1507
   PREVIOUS frame.
1508
 
1509
   @param[in] this_frame      The stack frame under consideration
1510
   @param[in] prologue_cache  Any cached prologue associated with THIS frame,
1511
                              which may therefore tell us about registers in
1512
                              the PREVIOUS frame.
1513
   @param[in] regnum          The register of interest in the PREVIOUS frame
1514
 
1515
   @return  A value structure representing the register.                      */
1516
/* -------------------------------------------------------------------------- */
1517
static struct value *
1518
or32_frame_prev_register (struct frame_info  *this_frame,
1519
                          void              **prologue_cache,
1520
                          int                 regnum)
1521
{
1522
  struct trad_frame_cache *info = or32_frame_cache (this_frame,
1523
                                                    prologue_cache);
1524
 
1525
  return  trad_frame_get_register (info, this_frame, regnum);
1526
 
1527
}       /* or32_frame_prev_register() */
1528
 
1529
 
1530
/* -------------------------------------------------------------------------- */
1531
/*!Structure defining the OR32 frame unwind functions
1532
 
1533
   Must be global (to this file), since referred to by multiple functions.
1534
 
1535
   Since we are the fallback unwinder, we use the default frame sniffer, which
1536
   always accepts the frame
1537
 
1538
   This applies to NORMAL frames only. We provide the following functions.
1539
   - to give the ID of THIS frame
1540
   - to give the details of a register in PREVIOUS frame
1541
   - a frame sniffer.                                                         */
1542
/* -------------------------------------------------------------------------- */
1543
static const struct frame_unwind or32_frame_unwind = {
1544
  .type          = NORMAL_FRAME,
1545
  .this_id       = or32_frame_this_id,
1546
  .prev_register = or32_frame_prev_register,
1547
  .unwind_data   = NULL,
1548
  .sniffer       = default_frame_sniffer,
1549
  .dealloc_cache = NULL,
1550
  .prev_arch     = NULL
1551
};
1552
 
1553
 
1554
/*----------------------------------------------------------------------------*/
1555
/*!Return the base address of the frame
1556
 
1557
   The implementations has changed since GDB 6.8, since we are now provided
1558
   with the address of THIS frame, rather than the NEXT frame.
1559
 
1560 244 jeremybenn
   For the OR32, the base address is the frame pointer
1561 227 jeremybenn
 
1562
   @param[in] this_frame      The current stack frame.
1563
   @param[in] prologue_cache  Any cached prologue for THIS function.
1564
 
1565
   @return  The frame base address */
1566
/*---------------------------------------------------------------------------*/
1567
 
1568
static CORE_ADDR
1569
or32_frame_base_address (struct frame_info  *this_frame,
1570
                         void              **prologue_cache)
1571
{
1572 244 jeremybenn
  return  (CORE_ADDR) get_frame_register_unsigned (this_frame, OR32_FP_REGNUM);
1573 227 jeremybenn
 
1574
}       /* or32_frame_base_address() */
1575
 
1576
 
1577
/* -------------------------------------------------------------------------- */
1578
/*!Identify our frame base sniffer functions
1579
 
1580
   This function just identifies our family of frame sniffing functions.
1581
 
1582
   @param[in] this_frame  The frame of THIS function. Not used here.
1583
 
1584
   @return  A pointer to a struct identifying the frame base sniffing
1585
            functions.                                                        */
1586
/* -------------------------------------------------------------------------- */
1587
static const struct frame_base *
1588
or32_frame_base_sniffer (struct frame_info *this_frame)
1589
{
1590
  /* Structure defining how the frame base is to be identified. */
1591
  static const struct frame_base  or32_frame_base =
1592
    {
1593
      .unwind      = &or32_frame_unwind,
1594
      .this_base   = or32_frame_base_address,
1595
      .this_locals = or32_frame_base_address,
1596
      .this_args   = or32_frame_base_address
1597
    };
1598
 
1599
  return &or32_frame_base;
1600
 
1601
}       /* or32_frame_base_sniffer () */
1602
 
1603
 
1604
/* -------------------------------------------------------------------------- */
1605
/*!Architecture initialization for OpenRISC 1000
1606
 
1607
   Looks for a candidate architecture in the list of architectures supplied
1608
   using the info supplied. If none match, create a new architecture.
1609
 
1610
   @param[in] info    Information about the target architecture
1611
   @param[in] arches  The list of currently know architectures
1612
 
1613
   @return  A structure describing the target architecture                    */
1614
/* -------------------------------------------------------------------------- */
1615
static struct gdbarch *
1616
or32_gdbarch_init (struct gdbarch_info  info,
1617
                   struct gdbarch_list *arches)
1618
{
1619
  static struct frame_base     or32_frame_base;
1620
  struct        gdbarch       *gdbarch;
1621
  struct        gdbarch_tdep  *tdep;
1622
  const struct  bfd_arch_info *binfo;
1623
 
1624
  /* Find a candidate among the list of pre-declared architectures.  */
1625
  arches = gdbarch_list_lookup_by_info (arches, &info);
1626
  if (NULL != arches)
1627
    {
1628
      return arches->gdbarch;
1629
    }
1630
 
1631
  /* None found, create a new architecture from the information
1632
     provided. Can't initialize all the target dependencies until we actually
1633
     know which target we are talking to, but put in some defaults for now. */
1634
 
1635
  binfo                   = info.bfd_arch_info;
1636
  tdep                    = xmalloc (sizeof *tdep);
1637
  tdep->num_matchpoints   = OR32_MAX_MATCHPOINTS;
1638
  tdep->num_gpr_regs      = OR32_MAX_GPR_REGS;
1639
  tdep->bytes_per_word    = binfo->bits_per_word    / binfo->bits_per_byte;
1640
  tdep->bytes_per_address = binfo->bits_per_address / binfo->bits_per_byte;
1641
  gdbarch                 = gdbarch_alloc (&info, tdep);
1642
 
1643
  /* Target data types.  */
1644
  set_gdbarch_short_bit             (gdbarch, 16);
1645
  set_gdbarch_int_bit               (gdbarch, 32);
1646
  set_gdbarch_long_bit              (gdbarch, 32);
1647
  set_gdbarch_long_long_bit         (gdbarch, 64);
1648
  set_gdbarch_float_bit             (gdbarch, 32);
1649
  set_gdbarch_float_format          (gdbarch, floatformats_ieee_single);
1650
  set_gdbarch_double_bit            (gdbarch, 64);
1651
  set_gdbarch_double_format         (gdbarch, floatformats_ieee_double);
1652
  set_gdbarch_long_double_bit       (gdbarch, 64);
1653
  set_gdbarch_long_double_format    (gdbarch, floatformats_ieee_double);
1654
  set_gdbarch_ptr_bit               (gdbarch, binfo->bits_per_address);
1655
  set_gdbarch_addr_bit              (gdbarch, binfo->bits_per_address);
1656
  set_gdbarch_char_signed           (gdbarch, 1);
1657
 
1658
  /* Information about the target architecture */
1659
  set_gdbarch_return_value          (gdbarch, or32_return_value);
1660
  set_gdbarch_breakpoint_from_pc    (gdbarch, or32_breakpoint_from_pc);
1661
  set_gdbarch_single_step_through_delay
1662
                                    (gdbarch, or32_single_step_through_delay);
1663
  set_gdbarch_have_nonsteppable_watchpoint
1664
                                    (gdbarch, 1);
1665
  switch (gdbarch_byte_order (gdbarch))
1666
    {
1667
    case BFD_ENDIAN_BIG:
1668
      set_gdbarch_print_insn        (gdbarch, print_insn_big_or32);
1669
      break;
1670
 
1671
    case BFD_ENDIAN_LITTLE:
1672
      set_gdbarch_print_insn        (gdbarch, print_insn_little_or32);
1673
      break;
1674
 
1675
    case BFD_ENDIAN_UNKNOWN:
1676
      error ("or32_gdbarch_init: Unknown endianness");
1677
      break;
1678
    }
1679
 
1680
  /* Register architecture */
1681
  set_gdbarch_pseudo_register_read  (gdbarch, or32_pseudo_register_read);
1682
  set_gdbarch_pseudo_register_write (gdbarch, or32_pseudo_register_write);
1683
  set_gdbarch_num_regs              (gdbarch, OR32_NUM_REGS);
1684
  set_gdbarch_num_pseudo_regs       (gdbarch, OR32_NUM_PSEUDO_REGS);
1685
  set_gdbarch_sp_regnum             (gdbarch, OR32_SP_REGNUM);
1686
  set_gdbarch_pc_regnum             (gdbarch, OR32_NPC_REGNUM);
1687
  set_gdbarch_ps_regnum             (gdbarch, OR32_SR_REGNUM);
1688
  set_gdbarch_deprecated_fp_regnum  (gdbarch, OR32_FP_REGNUM);
1689
 
1690
  /* Functions to supply register information */
1691
  set_gdbarch_register_name         (gdbarch, or32_register_name);
1692
  set_gdbarch_register_type         (gdbarch, or32_register_type);
1693
  set_gdbarch_print_registers_info  (gdbarch, or32_registers_info);
1694
  set_gdbarch_register_reggroup_p   (gdbarch, or32_register_reggroup_p);
1695
 
1696
  /* Functions to analyse frames */
1697
  set_gdbarch_skip_prologue         (gdbarch, or32_skip_prologue);
1698
  set_gdbarch_inner_than            (gdbarch, core_addr_lessthan);
1699
  set_gdbarch_frame_align           (gdbarch, or32_frame_align);
1700
  set_gdbarch_frame_red_zone_size   (gdbarch, OR32_FRAME_RED_ZONE_SIZE);
1701
 
1702
  /* Functions to access frame data */
1703
  set_gdbarch_unwind_pc             (gdbarch, or32_unwind_pc);
1704
  set_gdbarch_unwind_sp             (gdbarch, or32_unwind_sp);
1705
 
1706
  /* Functions handling dummy frames */
1707
  set_gdbarch_push_dummy_call       (gdbarch, or32_push_dummy_call);
1708
  set_gdbarch_dummy_id              (gdbarch, or32_dummy_id);
1709
 
1710
  /* Set up sniffers for the frame base. Use DWARF debug info if available,
1711
     otherwise use our own sniffer. */
1712
  frame_base_append_sniffer (gdbarch, dwarf2_frame_base_sniffer);
1713
  frame_base_append_sniffer (gdbarch, or32_frame_base_sniffer);
1714
 
1715
  /* Frame unwinders. Use DWARF debug info if available, otherwise use our
1716
     own unwinder. */
1717
  dwarf2_append_unwinders (gdbarch);
1718
  frame_unwind_append_unwinder (gdbarch, &or32_frame_unwind);
1719
 
1720
  return gdbarch;
1721
 
1722
}       /* or32_gdbarch_init() */
1723
 
1724
 
1725
/*----------------------------------------------------------------------------*/
1726
/*!Dump the target specific data for this architecture
1727
 
1728
   @param[in] gdbarch  The architecture of interest
1729
   @param[in] file     Where to dump the data */
1730
/*---------------------------------------------------------------------------*/
1731
 
1732
static void
1733
or32_dump_tdep (struct gdbarch *gdbarch,
1734
                struct ui_file *file)
1735
{
1736
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1737
 
1738
  if (NULL == tdep)
1739
    {
1740
      return;                   /* Nothing to report */
1741
    }
1742
 
1743
  fprintf_unfiltered (file, "or32_dump_tdep: %d matchpoints available\n",
1744
                      tdep->num_matchpoints);
1745
  fprintf_unfiltered (file, "or32_dump_tdep: %d general purpose registers\n",
1746
                      tdep->num_gpr_regs);
1747
  fprintf_unfiltered (file, "or32_dump_tdep: %d bytes per word\n",
1748
                      tdep->bytes_per_word);
1749
  fprintf_unfiltered (file, "or32_dump_tdep: %d bytes per address\n",
1750
                      tdep->bytes_per_address);
1751
 
1752
}       /* or32_dump_tdep() */
1753
 
1754
 
1755
 
1756
/* Functions to add extra commands to GDB */
1757
 
1758
 
1759
/*----------------------------------------------------------------------------*/
1760
/*!Returns a special purpose register group name
1761
 
1762
   @param[in]  group  The SPR group number
1763
 
1764
   @return  The SPR name (pointer to the name argument) */
1765
/*---------------------------------------------------------------------------*/
1766
 
1767
static const char *
1768
or32_spr_group_name (int  group)
1769
{
1770
  static const char *or32_group_names[OR32_NUM_SPGS] =
1771
    {
1772
      "SYS",
1773
      "DMMU",
1774
      "IMMU",
1775
      "DCACHE",
1776
      "ICACHE",
1777
      "MAC",
1778
      "DEBUG",
1779
      "PERF",
1780
      "POWER",
1781
      "PIC",
1782
      "TIMER",
1783
      "FPU"
1784
    };
1785
 
1786
  if ((0 <= group) && (group < OR32_NUM_SPGS))
1787
    {
1788
      return or32_group_names[group];
1789
    }
1790
  else
1791
    {
1792
      return "";
1793
    }
1794
}       /* or32_spr_group_name() */
1795
 
1796
 
1797
/*----------------------------------------------------------------------------*/
1798
/*!Returns a special purpose register name
1799
 
1800
   @param[in]  group  The SPR group
1801
   @param[in]  index  The index within the SPR group
1802
   @param[out] name   Array to put the name in
1803
 
1804
   @return  The SPR name (pointer to the name argument) */
1805
/*---------------------------------------------------------------------------*/
1806
 
1807
static char *
1808
or32_spr_register_name (int   group,
1809
                        int   index,
1810
                        char *name)
1811
{
1812
  char di;
1813
 
1814
  switch (group)
1815
    {
1816
 
1817
    case OR32_SPG_SYS:
1818
      /* 1:1 names */
1819
      switch (index)
1820
        {
1821
        case OR32_SPG_SYS_VR:       sprintf (name, "VR"      ); return  name;
1822
        case OR32_SPG_SYS_UPR:      sprintf (name, "UPR"     ); return  name;
1823
        case OR32_SPG_SYS_CPUCFGR:  sprintf (name, "CPUCFGR" ); return  name;
1824
        case OR32_SPG_SYS_DMMUCFGR: sprintf (name, "DMMUCFGR"); return  name;
1825
        case OR32_SPG_SYS_IMMUCFGR: sprintf (name, "IMMUCFGR"); return  name;
1826
        case OR32_SPG_SYS_DCCFGR:   sprintf (name, "DCCFGR"  ); return  name;
1827
        case OR32_SPG_SYS_ICCFGR:   sprintf (name, "ICCFGR"  ); return  name;
1828
        case OR32_SPG_SYS_DCFGR:    sprintf (name, "DCFGR"   ); return  name;
1829
        case OR32_SPG_SYS_PCCFGR:   sprintf (name, "PCCFGR"  ); return  name;
1830
        case OR32_SPG_SYS_NPC:      sprintf (name, "NPC"     ); return  name;
1831
        case OR32_SPG_SYS_SR:       sprintf (name, "SR"      ); return  name;
1832
        case OR32_SPG_SYS_PPC:      sprintf (name, "PPC"     ); return  name;
1833
        case OR32_SPG_SYS_FPCSR:    sprintf (name, "FPCSR"   ); return  name;
1834
        }
1835
 
1836
      /* Exception PC regs */
1837
      if((OR32_SPG_SYS_EPCR <= index) &&
1838
         (index             <= OR32_SPG_SYS_EPCR_END))
1839
        {
1840
          sprintf (name, "EPCR%d", index - OR32_SPG_SYS_EPCR);
1841
          return  name;
1842
        }
1843
 
1844
      /* Exception EA regs */
1845
      if((OR32_SPG_SYS_EEAR <= index) &&
1846
         (index             <= OR32_SPG_SYS_EEAR_END))
1847
        {
1848
          sprintf (name, "EEAR%d", index - OR32_SPG_SYS_EEAR);
1849
          return  name;
1850
        }
1851
 
1852
      /* Exception SR regs */
1853
      if((OR32_SPG_SYS_ESR <= index) &&
1854
         (index            <= OR32_SPG_SYS_ESR_END))
1855
        {
1856
          sprintf (name, "ESR%d", index - OR32_SPG_SYS_ESR);
1857
          return  name;
1858
        }
1859
 
1860
      /* GPRs */
1861
      if((OR32_SPG_SYS_GPR <= index) &&
1862
         (index            <= OR32_SPG_SYS_GPR_END))
1863
        {
1864
          sprintf (name, "GPR%d", index - OR32_SPG_SYS_GPR);
1865
          return  name;
1866
        }
1867
 
1868
      break;
1869
 
1870
    case OR32_SPG_DMMU:
1871
    case OR32_SPG_IMMU:
1872
      /* MMU registers. Use DMMU constants throughout, but these are identical
1873
         to the corresponding IMMU constants */
1874
      di = OR32_SPG_DMMU == group ? 'D' : 'I';
1875
 
1876
      /* 1:1 names */
1877
      switch (index)
1878
        {
1879
        case OR32_SPG_DMMU_DMMUCR:
1880
          sprintf (name, "%cMMUCR",  di); return  name;
1881
        case OR32_SPG_DMMU_DMMUPR:
1882
          sprintf (name, "%cMMUPR",  di); return  name;
1883
        case OR32_SPG_DMMU_DTLBEIR:
1884
          sprintf (name, "%cTLBEIR", di); return  name;
1885
        }
1886
 
1887
      /* ATB Match registers */
1888
      if((OR32_SPG_DMMU_DATBMR <= index) &&
1889
         (index                <= OR32_SPG_DMMU_DATBMR_END))
1890
        {
1891
          sprintf (name, "%cATBMR%d", di, index - OR32_SPG_DMMU_DATBMR);
1892
          return  name;
1893
        }
1894
 
1895
      /* ATB Translate registers */
1896
      if((OR32_SPG_DMMU_DATBTR <= index) &&
1897
         (index                <= OR32_SPG_DMMU_DATBTR_END))
1898
        {
1899
          sprintf (name, "%cATBTR%d", di, index - OR32_SPG_DMMU_DATBTR);
1900
          return  name;
1901
        }
1902
 
1903
      /* TLB Way 1 Match registers */
1904
      if((OR32_SPG_DMMU_DTLBW1MR <= index) &&
1905
         (index                <= OR32_SPG_DMMU_DTLBW1MR_END))
1906
        {
1907
          sprintf (name, "%cTLBW1MR%d", di, index - OR32_SPG_DMMU_DTLBW1MR);
1908
          return  name;
1909
        }
1910
 
1911
      /* TLB Way 1 Translate registers */
1912
      if((OR32_SPG_DMMU_DTLBW1TR <= index) &&
1913
         (index                <= OR32_SPG_DMMU_DTLBW1TR_END))
1914
        {
1915
          sprintf (name, "%cTLBW1TR%d", di, index - OR32_SPG_DMMU_DTLBW1TR);
1916
          return  name;
1917
        }
1918
 
1919
      /* TLB Way 2 Match registers */
1920
      if((OR32_SPG_DMMU_DTLBW2MR <= index) &&
1921
         (index                <= OR32_SPG_DMMU_DTLBW2MR_END))
1922
        {
1923
          sprintf (name, "%cTLBW2MR%d", di, index - OR32_SPG_DMMU_DTLBW2MR);
1924
          return  name;
1925
        }
1926
 
1927
      /* TLB Way 2 Translate registers */
1928
      if((OR32_SPG_DMMU_DTLBW2TR <= index) &&
1929
         (index                <= OR32_SPG_DMMU_DTLBW2TR_END))
1930
        {
1931
          sprintf (name, "%cTLBW2TR%d", di, index - OR32_SPG_DMMU_DTLBW2TR);
1932
          return  name;
1933
        }
1934
 
1935
      /* TLB Way 3 Match registers */
1936
      if((OR32_SPG_DMMU_DTLBW3MR <= index) &&
1937
         (index                <= OR32_SPG_DMMU_DTLBW3MR_END))
1938
        {
1939
          sprintf (name, "%cTLBW3MR%d", di, index - OR32_SPG_DMMU_DTLBW3MR);
1940
          return  name;
1941
        }
1942
 
1943
      /* TLB Way 3 Translate registers */
1944
      if((OR32_SPG_DMMU_DTLBW3TR <= index) &&
1945
         (index                <= OR32_SPG_DMMU_DTLBW3TR_END))
1946
        {
1947
          sprintf (name, "%cTLBW3TR%d", di, index - OR32_SPG_DMMU_DTLBW3TR);
1948
          return  name;
1949
        }
1950
 
1951
      break;
1952
 
1953
    case OR32_SPG_DC:
1954
      /* Data cache registers. These do not have an exact correspondence with
1955
         their instruction cache counterparts, so must be done separately. */
1956
 
1957
      /* 1:1 names */
1958
      switch (index)
1959
        {
1960
        case OR32_SPG_DC_DCCR:  sprintf (name, "DCCR" ); return  name;
1961
        case OR32_SPG_DC_DCBPR: sprintf (name, "DCBPR"); return  name;
1962
        case OR32_SPG_DC_DCBFR: sprintf (name, "DCBFR"); return  name;
1963
        case OR32_SPG_DC_DCBIR: sprintf (name, "DCBIR"); return  name;
1964
        case OR32_SPG_DC_DCBWR: sprintf (name, "DCBWR"); return  name;
1965
        case OR32_SPG_DC_DCBLR: sprintf (name, "DCBLR"); return  name;
1966
        }
1967
 
1968
      break;
1969
 
1970
    case OR32_SPG_IC:
1971
      /* Instruction cache registers */
1972
 
1973
      /* 1:1 names */
1974
      switch (index)
1975
        {
1976
        case OR32_SPG_IC_ICCR:  sprintf (name, "ICCR" ); return  name;
1977
        case OR32_SPG_IC_ICBPR: sprintf (name, "ICBPR"); return  name;
1978
        case OR32_SPG_IC_ICBIR: sprintf (name, "ICBIR"); return  name;
1979
        case OR32_SPG_IC_ICBLR: sprintf (name, "ICBLR"); return  name;
1980
        }
1981
 
1982
      break;
1983
 
1984
    case OR32_SPG_MAC:
1985
      /* MAC registers */
1986
 
1987
      /* 1:1 names */
1988
      switch (index)
1989
        {
1990
        case OR32_SPG_MAC_MACLO: sprintf (name, "MACLO"); return  name;
1991
        case OR32_SPG_MAC_MACHI: sprintf (name, "MACHI"); return  name;
1992
        }
1993
 
1994
      break;
1995
 
1996
    case OR32_SPG_DEBUG:
1997
      /* Debug registers */
1998
 
1999
      /* Debug Value registers */
2000
      if((OR32_SPG_DEBUG_DVR <= index) &&
2001
         (index                <= OR32_SPG_DEBUG_DVR_END))
2002
        {
2003
          sprintf (name, "DVR%d", index - OR32_SPG_DEBUG_DVR);
2004
          return  name;
2005
        }
2006
 
2007
      /* Debug Control registers */
2008
      if((OR32_SPG_DEBUG_DCR <= index) &&
2009
         (index                <= OR32_SPG_DEBUG_DCR_END))
2010
        {
2011
          sprintf (name, "DCR%d", index - OR32_SPG_DEBUG_DCR);
2012
          return  name;
2013
        }
2014
 
2015
      /* 1:1 names */
2016
      switch (index)
2017
        {
2018
        case OR32_SPG_DEBUG_DMR1:  sprintf (name, "DMR1" ); return  name;
2019
        case OR32_SPG_DEBUG_DMR2:  sprintf (name, "DMR2" ); return  name;
2020
        case OR32_SPG_DEBUG_DCWR0: sprintf (name, "DCWR0"); return  name;
2021
        case OR32_SPG_DEBUG_DCWR1: sprintf (name, "DCWR1"); return  name;
2022
        case OR32_SPG_DEBUG_DSR:   sprintf (name, "DSR"  ); return  name;
2023
        case OR32_SPG_DEBUG_DRR:   sprintf (name, "DRR"  ); return  name;
2024
        }
2025
 
2026
      break;
2027
 
2028
    case OR32_SPG_PC:
2029
      /* Performance Counter registers */
2030
 
2031
      /* Performance Counters Count registers */
2032
      if((OR32_SPG_PC_PCCR <= index) &&
2033
         (index                <= OR32_SPG_PC_PCCR_END))
2034
        {
2035
          sprintf (name, "PCCR%d", index - OR32_SPG_PC_PCCR);
2036
          return  name;
2037
        }
2038
 
2039
      /* Performance Counters Mode registers */
2040
      if((OR32_SPG_PC_PCMR <= index) &&
2041
         (index                <= OR32_SPG_PC_PCMR_END))
2042
        {
2043
          sprintf (name, "PCMR%d", index - OR32_SPG_PC_PCMR);
2044
          return  name;
2045
        }
2046
 
2047
      break;
2048
 
2049
    case OR32_SPG_PM:
2050
      /* Power Management registers */
2051
 
2052
      /* 1:1 names */
2053
      switch (index)
2054
        {
2055
        case OR32_SPG_PM_PMR:  sprintf (name, "PMR"); return  name;
2056
        }
2057
 
2058
      break;
2059
 
2060
    case OR32_SPG_PIC:
2061
      /* Programmable Interrupt Controller registers */
2062
 
2063
      /* 1:1 names */
2064
      switch (index)
2065
        {
2066
        case OR32_SPG_PIC_PICMR:  sprintf (name, "PICMR"); return  name;
2067
        case OR32_SPG_PIC_PICSR:  sprintf (name, "PICSR"); return  name;
2068
        }
2069
 
2070
      break;
2071
 
2072
    case OR32_SPG_TT:
2073
      /* Tick Timer registers */
2074
 
2075
      /* 1:1 names */
2076
      switch (index)
2077
        {
2078
        case OR32_SPG_TT_TTMR:  sprintf (name, "TTMR"); return  name;
2079
        case OR32_SPG_TT_TTCR:  sprintf (name, "TTCR"); return  name;
2080
        }
2081
 
2082
      break;
2083
 
2084
    case OR32_SPG_FPU:
2085
 
2086
      break;
2087
    }
2088
 
2089
  /* Not a recognized register */
2090
  strcpy (name, "");
2091
  return  name;
2092
 
2093
}       /* or32_spr_register_name() */
2094
 
2095
 
2096
/*----------------------------------------------------------------------------*/
2097
/*!Get SPR group number from a name
2098
 
2099
   @param[in] group_name  SPR register group
2100
 
2101
   @return  The index, or negative if no match. */
2102
/*----------------------------------------------------------------------------*/
2103
 
2104
static int
2105
or32_groupnum_from_name (char *group_name)
2106
{
2107
  int  group;
2108
 
2109
  for (group = 0; group < OR32_NUM_SPGS; group++)
2110
    {
2111
      if (0 == strcasecmp (group_name, or32_spr_group_name (group)))
2112
        {
2113
          return group;
2114
        }
2115
    }
2116
 
2117
  return -1;
2118
 
2119
}       /* or32_groupnum_from_name() */
2120
 
2121
 
2122
/*----------------------------------------------------------------------------*/
2123
/*!Get register index in special purpose register group from name
2124
 
2125
   The name may either be SPR<group_num>_<index> or a known unique name. In
2126
   either case the group number must match the supplied group number.
2127
 
2128
   @param[in] group  SPR register group
2129
   @param[in] name   Register name
2130
 
2131
   @return  The index, or negative if no match. */
2132
/*----------------------------------------------------------------------------*/
2133
 
2134
static int
2135
or32_regnum_from_name (int   group,
2136
                       char *name)
2137
{
2138
  /* Last valid register in each group. */
2139
  static const int  or32_spr_group_last[OR32_NUM_SPGS] =
2140
    {
2141
      OR32_SPG_SYS_LAST,
2142
      OR32_SPG_DMMU_LAST,
2143
      OR32_SPG_IMMU_LAST,
2144
      OR32_SPG_DC_LAST,
2145
      OR32_SPG_IC_LAST,
2146
      OR32_SPG_MAC_LAST,
2147
      OR32_SPG_DEBUG_LAST,
2148
      OR32_SPG_PC_LAST,
2149
      OR32_SPG_PM_LAST,
2150
      OR32_SPG_PIC_LAST,
2151
      OR32_SPG_TT_LAST,
2152
      OR32_SPG_FPU_LAST
2153
    };
2154
 
2155
  int  i;
2156
  char  spr_name[32];
2157
 
2158
  if (0 == strcasecmp (name, "SPR"))
2159
    {
2160
      char *ptr_c;
2161
 
2162
      /* Skip SPR */
2163
      name += 3;
2164
 
2165
      /* Get group number */
2166
      i = (int) strtoul (name, &ptr_c, 10);
2167
      if (*ptr_c != '_' || i != group)
2168
        {
2169
          return -1;
2170
        }
2171
 
2172
      /* Get index */
2173
      ptr_c++;
2174
      i = (int) strtoul (name, &ptr_c, 10);
2175
      if (*ptr_c)
2176
        {
2177
          return -1;
2178
        }
2179
      else
2180
        {
2181
          return  i;
2182
        }
2183
    }
2184
 
2185
  /* Look for a "known" name in this group */
2186
  for (i = 0; i <= or32_spr_group_last[group]; i++)
2187
    {
2188
      char *s = or32_spr_register_name (group, i, spr_name);
2189
 
2190
      if (0 == strcasecmp (name, s))
2191
        {
2192
          return i;
2193
        }
2194
    }
2195
 
2196
  /* Failure */
2197
  return -1;
2198
 
2199
}       /* or32_regnum_from_name() */
2200
 
2201
 
2202
/*----------------------------------------------------------------------------*/
2203
/*!Get the next token from a string
2204
 
2205
   I can't believe there isn't a library argument for this, but strtok is
2206
   deprecated.
2207
 
2208
   Take a string and find the start of the next token and its length. A token
2209
   is anything containing non-blank characters.
2210
 
2211
   @param[in]  str  The string to look at (may be NULL).
2212
   @param[out] tok  Pointer to the start of the token within str. May be NULL
2213
                    if this result is not wanted (e.g. just the length is
2214
                    wanted. If no token is found will be the NULL char at the
2215
                    end of the string, if the original str was NULL, this will
2216
                    be NULL.
2217
 
2218
                    @return  The length of the token found */
2219
/*----------------------------------------------------------------------------*/
2220
 
2221
static int
2222
or32_tokenize (char  *str,
2223
               char **tok)
2224
{
2225
  char *ptr;
2226
  int   len;
2227
 
2228
  /* Deal with NULL argument */
2229
  if (NULL == str)
2230
    {
2231
      if (NULL != tok)
2232
        {
2233
          *tok = NULL;
2234
        }
2235
      return 0;
2236
    }
2237
 
2238
  /* Find the start */
2239
  for (ptr = str; ISBLANK (*ptr) ; ptr++)
2240
    {
2241
      continue;
2242
    }
2243
 
2244
  /* Return the start pointer if requested */
2245
  if (NULL != tok)
2246
    {
2247
      *tok = ptr;
2248
    }
2249
 
2250
  /* Find the end and put in EOS */
2251
  for (len = 0;  ('\0' != ptr[len]) && (!ISBLANK (ptr[len])); len++)
2252
    {
2253
      continue;
2254
    }
2255
 
2256
  return len;
2257
 
2258
}       /* or32_tokenize() */
2259
 
2260
 
2261
/*----------------------------------------------------------------------------*/
2262
/*!Parses args for spr commands
2263
 
2264
   Determines the special purpose register (SPR) name and puts result into
2265
   group and index
2266
 
2267
   Syntax is:
2268
 
2269
   @verbatim
2270
   <spr_args>    -> <group_ref> | <reg_name>
2271
   <group_ref>   -> <group_id> <index>
2272
   <group_id>    -> <group_num> | <group_name>
2273
   @endverbatim
2274
 
2275
   Where the indices/names have to be valid.
2276
 
2277
   So to parse, we look for 1 or 2 args. If 1 it must be a unique register
2278
   name. If 2, the first must be a group number or name and the second an
2279
   index within that group.
2280
 
2281
   Also responsible for providing diagnostics if the arguments do not match.
2282
 
2283
   Rewritten for GDB 6.8 to use the new UI calls and remove assorted
2284
   bugs. Syntax also slightly restricted to be more comprehensible.
2285
 
2286
   @param[in]  arg_str  The argument string
2287
   @param[out] group    The group this SPR belongs in, or -1 to indicate
2288
                        failure
2289
   @param[out] index    Index of the register within the group, or -1 to
2290
                        indicate the whole group
2291
   @param[in]  is_set   1 (true) if we are called from the "spr" command (so
2292
                        there is an extra arg) rather than the "info spr"
2293
                        command. Needed to distinguish between the case where
2294
                        info is sought from a register specified as group and
2295
                        index and setting a uniquely identified register to a
2296
                        value.
2297
 
2298
                        @return  A pointer to any remaining args */
2299
/*---------------------------------------------------------------------------*/
2300
 
2301
static char *
2302
or32_parse_spr_params (char *arg_str,
2303
                       int  *group,
2304
                       int  *index,
2305
                       int   is_set)
2306
{
2307
  struct {
2308
    char              *str;
2309
    int                len;
2310
    unsigned long int  val;
2311
    int                is_num;
2312
  } arg[3] = {
2313
    {
2314
      .str    = NULL,
2315
      .len    = 0,
2316
      .val    = 0,
2317
      .is_num = 0,
2318
    },
2319
   {
2320
      .str    = NULL,
2321
      .len    = 0,
2322
      .val    = 0,
2323
      .is_num = 0,
2324
    },
2325
   {
2326
      .str    = NULL,
2327
      .len    = 0,
2328
      .val    = 0,
2329
      .is_num = 0,
2330
    }
2331
  };
2332
 
2333
  int   num_args;
2334
  char *trailer  = arg_str;
2335
  char *tmp_str;
2336
  int   i;
2337
 
2338
  char  spr_name[32];
2339
 
2340
  /* Break out the arguments. Note that the strings are NOT null terminated
2341
     (we don't want to change arg_str), so we must rely on len. The stroul
2342
     call will still work, since there is always a non-digit char (possibly EOS)
2343
     after the last digit. */
2344
  if (NULL == arg_str)
2345
    {
2346
      num_args = 0;
2347
    }
2348
  else
2349
    {
2350
      for (num_args = 0; num_args < 3; num_args++)
2351
        {
2352
          arg[num_args].len = or32_tokenize (trailer, &(arg[num_args].str));
2353
          trailer           = arg[num_args].str + arg[num_args].len;
2354
 
2355
          if (0 == arg[num_args].len)
2356
            {
2357
              break;
2358
            }
2359
        }
2360
    }
2361
 
2362
  /* Patch nulls into the arg strings and see about values. Couldn't do this
2363
     earlier, since we needed the next char clean to check later args. This
2364
     means advancing trailer, UNLESS it was already at EOS */
2365
 
2366
  if((NULL != arg_str) && ('\0' != *trailer))
2367
    {
2368
      trailer++;
2369
    }
2370
 
2371
  for (i = 0; i < num_args; i++)
2372
    {
2373
      (arg[i].str)[arg[i].len] = '\0';
2374
      errno                    = 0;
2375
      arg[i].val               = strtoul (arg[i].str, &tmp_str, 0);
2376
      arg[i].is_num            = (0 == errno) && ('\0' == *tmp_str);
2377
    }
2378
 
2379
  /* Deal with the case where we are setting a register, so the final argument
2380
     should be disregarded (it is the trailer). Do this anyway if we get a
2381
     third argument */
2382
  if ((is_set & (num_args > 0)) || (num_args > 2))
2383
    {
2384
      trailer = arg[num_args - 1].str;
2385
      num_args--;
2386
    }
2387
 
2388
  /* Deal with different numbers of args */
2389
 
2390
  switch (num_args)
2391
    {
2392
 
2393
    case 0:
2394
      ui_out_message (uiout, 0,
2395
                      "Usage: <command> <register>      |\n"
2396
                      "       <command> <group>         |\n"
2397
                      "       <command> <group> <index>\n"
2398
                      "Valid groups are:\n");
2399
      for (i = 0; i < OR32_NUM_SPGS; i++)
2400
        {
2401
          ui_out_field_string (uiout, NULL, or32_spr_group_name  (i));
2402
          ui_out_spaces (uiout, 1);
2403
          ui_out_wrap_hint (uiout, NULL);
2404
        }
2405
      ui_out_field_string (uiout, NULL, "\n");
2406
 
2407
      *index = -1;
2408
      return  trailer;
2409
 
2410
    case 1:
2411
      /* See if it is a numeric group */
2412
      if (arg[0].is_num)
2413
        {
2414
          if (arg[0].val < OR32_NUM_SPGS)
2415
            {
2416
              *group = arg[0].val;
2417
              *index = -1;
2418
              return trailer;
2419
            }
2420
          else
2421
            {
2422
              ui_out_message (uiout, 0,
2423
                              "Group index should be in the range 0 - %d\n",
2424
                              OR32_NUM_SPGS);
2425
              *group = -1;
2426
              *index = -1;
2427
              return trailer;
2428
            }
2429
        }
2430
 
2431
      /* Is is it a group name? */
2432
      *group = or32_groupnum_from_name (arg[0].str);
2433
      if (*group >= 0)
2434
        {
2435
          *index = -1;
2436
          return trailer;
2437
        }
2438
 
2439
      /* See if it is a valid register name in any group */
2440
      for (*group = 0; *group < OR32_NUM_SPGS; (*group)++)
2441
        {
2442
          *index = or32_regnum_from_name (*group, arg[0].str);
2443
 
2444
          if (*index >= 0)
2445
            {
2446
              return  trailer;
2447
            }
2448
        }
2449
 
2450
      /* Couldn't find it - print out a rude message */
2451
      ui_out_message (uiout, 0,
2452
                      "Group or register name not recognized.\n"
2453
                      "Valid groups are:\n");
2454
      for (i = 0; i < OR32_NUM_SPGS; i++)
2455
        {
2456
          ui_out_field_string (uiout, NULL, or32_spr_group_name (i));
2457
          ui_out_spaces (uiout, 1);
2458
          ui_out_wrap_hint (uiout, NULL);
2459
        }
2460
      ui_out_field_string (uiout, NULL, "\n");
2461
 
2462
      *group = -1;
2463
      *index = -1;
2464
      return  trailer;
2465
 
2466
    case 2:
2467
      /* See if first arg is a numeric group */
2468
      if (arg[0].is_num)
2469
        {
2470
          if (arg[0].val < OR32_NUM_SPGS)
2471
            {
2472
              *group = arg[0].val;
2473
              *index = -1;
2474
            }
2475
          else
2476
            {
2477
              ui_out_message (uiout, 0,
2478
                              "Group index should be in the range 0 - %d\n",
2479
                              OR32_NUM_SPGS - 1);
2480
              *group = -1;
2481
              *index = -1;
2482
              return trailer;
2483
            }
2484
        }
2485
      else
2486
        {
2487
          /* Is is it a group name? */
2488
          *group = or32_groupnum_from_name (arg[0].str);
2489
          if (*group >= 0)
2490
            {
2491
              *index = -1;
2492
            }
2493
          else
2494
            {
2495
              ui_out_message (uiout, 0,
2496
                              "Group name not recognized.\n"
2497
                              "Valid groups are:\n");
2498
              for (i = 0; i < OR32_NUM_SPGS; i++)
2499
                {
2500
                  ui_out_field_string (uiout, NULL, or32_spr_group_name (i));
2501
                  ui_out_spaces (uiout, 1);
2502
                  ui_out_wrap_hint (uiout, NULL);
2503
                }
2504
              ui_out_field_string (uiout, NULL, "\n");
2505
 
2506
              *group = -1;
2507
              *index = -1;
2508
              return  trailer;
2509
            }
2510
        }
2511
 
2512
      /* Is second arg an index or name? */
2513
      if (arg[1].is_num)
2514
        {
2515
          if (arg[1].val < OR32_SPG_SIZE)
2516
            {
2517
              /* Check this really is a register */
2518
              if (0 != strlen (or32_spr_register_name (*group, arg[1].val,
2519
                                                       spr_name)))
2520
                {
2521
                  *index = arg[1].val;
2522
                  return trailer;
2523
                }
2524
              else
2525
                {
2526
                  ui_out_message (uiout, 0,
2527
                                  "No valid register at that index in group\n");
2528
                  *group = -1;
2529
                  *index = -1;
2530
                  return  trailer;
2531
                }
2532
            }
2533
          else
2534
            {
2535
              ui_out_message (uiout, 0,
2536
                              "Register index should be in the range 0 - %d\n",
2537
                              OR32_SPG_SIZE - 1);
2538
              *group = -1;
2539
              *index = -1;
2540
              return  trailer;
2541
            }
2542
        }
2543
 
2544
      /* Must be a name */
2545
      *index = or32_regnum_from_name (*group, arg[1].str);
2546
 
2547
      if (*index >= 0)
2548
        {
2549
          return trailer;
2550
        }
2551
 
2552
      /* Couldn't find it - print out a rude message */
2553
      ui_out_message (uiout, 0, "Register name not recognized in group.\n");
2554
      *group = -1;
2555
      *index = -1;
2556
      return  trailer;
2557
 
2558
    default:
2559
      /* Anything else is an error */
2560
      ui_out_message (uiout, 0, "Unable to parse arguments\n");
2561
      *group = -1;
2562
      *index = -1;
2563
      return  trailer;
2564
    }
2565
}       /* or32_parse_spr_params() */
2566
 
2567
 
2568
/*---------------------------------------------------------------------------*/
2569
/*!Read a special purpose register from the target
2570
 
2571
   This has to be done using the target remote command "readspr"
2572
 
2573
   @param[in] regnum  The register to read
2574
 
2575
   @return  The value read */
2576
/*---------------------------------------------------------------------------*/
2577
 
2578
static ULONGEST
2579
or32_read_spr (unsigned int  regnum)
2580
{
2581
  struct ui_file    *uibuf = mem_fileopen ();
2582
  char               cmd[sizeof ("readspr ffff")];
2583
  unsigned long int  data;
2584
  char              *res;
2585
  long int           len;
2586
 
2587
  /* Create the command string and pass it to target remote command function */
2588
  sprintf (cmd, "readspr %4x", regnum);
2589
  target_rcmd (cmd, uibuf);
2590
 
2591
  /* Get the output for the UI file as a string */
2592
  res = ui_file_xstrdup (uibuf, &len);
2593
  sscanf (res, "%lx", &data);
2594
 
2595
  /* Tidy up */
2596
  xfree (res);
2597
  ui_file_delete (uibuf);
2598
 
2599
  return  (ULONGEST)data;
2600
 
2601
}       /* or32_read_spr() */
2602
 
2603
 
2604
/*---------------------------------------------------------------------------*/
2605
/*!Write a special purpose register on the target
2606
 
2607
   This has to be done using the target remote command "writespr"
2608
 
2609
   Since the SPRs may map to GPR's or the other GDB register (PPC, NPC, SR),
2610
   any register cache is flushed.
2611
 
2612
   @param[in] regnum  The register to write
2613
   @param[in] data  The value to write */
2614
/*---------------------------------------------------------------------------*/
2615
 
2616
static void
2617
or32_write_spr (unsigned int  regnum,
2618
                ULONGEST      data)
2619
{
2620
  struct ui_file    *uibuf = mem_fileopen ();
2621
  char               cmd[sizeof ("writespr ffff ffffffff")];
2622
  char              *res;
2623
  long int           len;
2624
 
2625
  /* Create the command string and pass it to target remote command function */
2626
  sprintf (cmd, "writespr %4x %8llx", regnum, (long long unsigned int)data);
2627
  target_rcmd (cmd, uibuf);
2628
 
2629
  /* Flush the register cache */
2630
  registers_changed ();
2631
 
2632
  /* We ignore the result - Rcmd can put out its own error messages. Just
2633
     tidy up */
2634
  ui_file_delete (uibuf);
2635
 
2636
}       /* or32_write_spr() */
2637
 
2638
 
2639
/*----------------------------------------------------------------------------*/
2640
/*!Show the value of a special purpose register or group
2641
 
2642
   This is a custom extension to the GDB info command.
2643
 
2644
   @param[in] args
2645
   @param[in] from_tty  True (1) if GDB is running from a TTY, false (0)
2646
   otherwise. */
2647
/*---------------------------------------------------------------------------*/
2648
 
2649
static void
2650
or32_info_spr_command (char *args,
2651
                       int   from_tty)
2652
{
2653
  int  group;
2654
  int  index;
2655
 
2656
  char  spr_name[32];
2657
 
2658
  or32_parse_spr_params (args, &group, &index, 0);
2659
 
2660
  if (group < 0)
2661
    {
2662
      return;                   /* Couldn't parse the args */
2663
    }
2664
 
2665
  if (index >= 0)
2666
    {
2667
      ULONGEST  value = or32_read_spr (OR32_SPR (group, index));
2668
 
2669
      ui_out_field_fmt (uiout, NULL, "%s.%s = SPR%i_%i = %llu (0x%llx)\n",
2670
                        or32_spr_group_name (group),
2671
                        or32_spr_register_name (group, index, spr_name), group,
2672
                        index, (long long unsigned int)value, (long long unsigned int)value);
2673
    }
2674
  else
2675
    {
2676
      /* Print all valid registers in the group */
2677
      for (index = 0; index < OR32_SPG_SIZE; index++)
2678
        {
2679
          if (0 != strlen (or32_spr_register_name (group, index, spr_name)))
2680
            {
2681
              ULONGEST  value = or32_read_spr (OR32_SPR (group, index));
2682
 
2683
              ui_out_field_fmt (uiout, NULL,
2684
                                "%s.%s = SPR%i_%i = %llu (0x%llx)\n",
2685
                                or32_spr_group_name (group),
2686
                                or32_spr_register_name (group, index, spr_name),
2687
                                group, index, (long long unsigned int)value, (long long unsigned int)value);
2688
            }
2689
        }
2690
    }
2691
}       /* or32_info_spr_command() */
2692
 
2693
 
2694
/*----------------------------------------------------------------------------*/
2695
/*!Set a special purpose register
2696
 
2697
   This is a custom command added to GDB.
2698
 
2699
   @param[in] args
2700
   @param[in] from_tty  True (1) if GDB is running from a TTY, false (0)
2701
   otherwise. */
2702
/*---------------------------------------------------------------------------*/
2703
 
2704
static void
2705
or32_spr_command (char *args,
2706
                  int   from_tty)
2707
{
2708
  int   group;
2709
  int   index;
2710
  char *tmp_str;
2711
  char *nargs = or32_parse_spr_params (args, &group, &index, 1);
2712
 
2713
  ULONGEST  old_val;
2714
  ULONGEST  new_val;
2715
 
2716
  char  spr_name[32];
2717
 
2718
  /* Do we have a valid register spec? */
2719
  if (index < 0)
2720
    {
2721
      return;           /* Parser will have printed the error message */
2722
    }
2723
 
2724
  /* Do we have a value to set? */
2725
 
2726
  errno = 0;
2727
  new_val = (ULONGEST)strtoul (nargs, &tmp_str, 0);
2728
 
2729
  if((0 != errno) || ('\0' != *tmp_str))
2730
    {
2731
      ui_out_message (uiout, 0, "Invalid value - register not changed\n");
2732
      return;
2733
    }
2734
 
2735
  old_val = or32_read_spr (OR32_SPR (group, index));
2736
 
2737
  or32_write_spr (OR32_SPR (group, index) , new_val);
2738
 
2739
  ui_out_field_fmt (uiout, NULL,
2740
                    "%s.%s (SPR%i_%i) set to %llu (0x%llx), "
2741
                    "was: %llu (0x%llx)\n",
2742
                    or32_spr_group_name (group),
2743
                    or32_spr_register_name (group, index, spr_name) , group,
2744
                    index, (long long unsigned int)new_val, (long long unsigned int)new_val, (long long unsigned int)old_val, (long long unsigned int)old_val);
2745
 
2746
}       /* or32_spr_command() */
2747
 
2748
 
2749
/*----------------------------------------------------------------------------*/
2750
/*!Main entry point for target architecture initialization
2751
 
2752
   In this version initializes the architecture via
2753
   registers_gdbarch_init(). Add a command to set and show special purpose
2754
   registers. */
2755
/*---------------------------------------------------------------------------*/
2756
 
2757
void
2758
_initialize_or32_tdep (void)
2759
{
2760
  /* Register this architecture. We should do this for or16 and or64 when
2761
     they have their BFD defined. */
2762
  gdbarch_register (bfd_arch_or32, or32_gdbarch_init, or32_dump_tdep);
2763
 
2764
  /* Initialize the automata for the assembler */
2765
  build_automata();
2766
 
2767
  /* Commands to show and set special purpose registers */
2768
  add_info ("spr", or32_info_spr_command,
2769
            "Show the value of a special purpose register");
2770
  add_com ("spr", class_support, or32_spr_command,
2771
           "Set a special purpose register");
2772
 
2773
}       /* _initialize_or32_tdep() */

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.