1 |
227 |
jeremybenn |
/* Target-dependent code for GDB, the GNU debugger.
|
2 |
|
|
|
3 |
|
|
Copyright (C) 1986, 1987, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
|
4 |
|
|
1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009,
|
5 |
|
|
2010 Free Software Foundation, Inc.
|
6 |
|
|
|
7 |
|
|
This file is part of GDB.
|
8 |
|
|
|
9 |
|
|
This program is free software; you can redistribute it and/or modify
|
10 |
|
|
it under the terms of the GNU General Public License as published by
|
11 |
|
|
the Free Software Foundation; either version 3 of the License, or
|
12 |
|
|
(at your option) any later version.
|
13 |
|
|
|
14 |
|
|
This program is distributed in the hope that it will be useful,
|
15 |
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
16 |
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
17 |
|
|
GNU General Public License for more details.
|
18 |
|
|
|
19 |
|
|
You should have received a copy of the GNU General Public License
|
20 |
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>. */
|
21 |
|
|
|
22 |
|
|
#include "defs.h"
|
23 |
|
|
#include "frame.h"
|
24 |
|
|
#include "inferior.h"
|
25 |
|
|
#include "symtab.h"
|
26 |
|
|
#include "target.h"
|
27 |
|
|
#include "gdbcore.h"
|
28 |
|
|
#include "gdbcmd.h"
|
29 |
|
|
#include "objfiles.h"
|
30 |
|
|
#include "arch-utils.h"
|
31 |
|
|
#include "regcache.h"
|
32 |
|
|
#include "regset.h"
|
33 |
|
|
#include "doublest.h"
|
34 |
|
|
#include "value.h"
|
35 |
|
|
#include "parser-defs.h"
|
36 |
|
|
#include "osabi.h"
|
37 |
|
|
#include "infcall.h"
|
38 |
|
|
#include "sim-regno.h"
|
39 |
|
|
#include "gdb/sim-ppc.h"
|
40 |
|
|
#include "reggroups.h"
|
41 |
|
|
#include "dwarf2-frame.h"
|
42 |
|
|
#include "target-descriptions.h"
|
43 |
|
|
#include "user-regs.h"
|
44 |
|
|
|
45 |
|
|
#include "libbfd.h" /* for bfd_default_set_arch_mach */
|
46 |
|
|
#include "coff/internal.h" /* for libcoff.h */
|
47 |
|
|
#include "libcoff.h" /* for xcoff_data */
|
48 |
|
|
#include "coff/xcoff.h"
|
49 |
|
|
#include "libxcoff.h"
|
50 |
|
|
|
51 |
|
|
#include "elf-bfd.h"
|
52 |
|
|
#include "elf/ppc.h"
|
53 |
|
|
|
54 |
|
|
#include "solib-svr4.h"
|
55 |
|
|
#include "ppc-tdep.h"
|
56 |
|
|
|
57 |
|
|
#include "gdb_assert.h"
|
58 |
|
|
#include "dis-asm.h"
|
59 |
|
|
|
60 |
|
|
#include "trad-frame.h"
|
61 |
|
|
#include "frame-unwind.h"
|
62 |
|
|
#include "frame-base.h"
|
63 |
|
|
|
64 |
|
|
#include "features/rs6000/powerpc-32.c"
|
65 |
|
|
#include "features/rs6000/powerpc-altivec32.c"
|
66 |
|
|
#include "features/rs6000/powerpc-vsx32.c"
|
67 |
|
|
#include "features/rs6000/powerpc-403.c"
|
68 |
|
|
#include "features/rs6000/powerpc-403gc.c"
|
69 |
|
|
#include "features/rs6000/powerpc-405.c"
|
70 |
|
|
#include "features/rs6000/powerpc-505.c"
|
71 |
|
|
#include "features/rs6000/powerpc-601.c"
|
72 |
|
|
#include "features/rs6000/powerpc-602.c"
|
73 |
|
|
#include "features/rs6000/powerpc-603.c"
|
74 |
|
|
#include "features/rs6000/powerpc-604.c"
|
75 |
|
|
#include "features/rs6000/powerpc-64.c"
|
76 |
|
|
#include "features/rs6000/powerpc-altivec64.c"
|
77 |
|
|
#include "features/rs6000/powerpc-vsx64.c"
|
78 |
|
|
#include "features/rs6000/powerpc-7400.c"
|
79 |
|
|
#include "features/rs6000/powerpc-750.c"
|
80 |
|
|
#include "features/rs6000/powerpc-860.c"
|
81 |
|
|
#include "features/rs6000/powerpc-e500.c"
|
82 |
|
|
#include "features/rs6000/rs6000.c"
|
83 |
|
|
|
84 |
|
|
/* Determine if regnum is an SPE pseudo-register. */
|
85 |
|
|
#define IS_SPE_PSEUDOREG(tdep, regnum) ((tdep)->ppc_ev0_regnum >= 0 \
|
86 |
|
|
&& (regnum) >= (tdep)->ppc_ev0_regnum \
|
87 |
|
|
&& (regnum) < (tdep)->ppc_ev0_regnum + 32)
|
88 |
|
|
|
89 |
|
|
/* Determine if regnum is a decimal float pseudo-register. */
|
90 |
|
|
#define IS_DFP_PSEUDOREG(tdep, regnum) ((tdep)->ppc_dl0_regnum >= 0 \
|
91 |
|
|
&& (regnum) >= (tdep)->ppc_dl0_regnum \
|
92 |
|
|
&& (regnum) < (tdep)->ppc_dl0_regnum + 16)
|
93 |
|
|
|
94 |
|
|
/* Determine if regnum is a POWER7 VSX register. */
|
95 |
|
|
#define IS_VSX_PSEUDOREG(tdep, regnum) ((tdep)->ppc_vsr0_regnum >= 0 \
|
96 |
|
|
&& (regnum) >= (tdep)->ppc_vsr0_regnum \
|
97 |
|
|
&& (regnum) < (tdep)->ppc_vsr0_regnum + ppc_num_vsrs)
|
98 |
|
|
|
99 |
|
|
/* Determine if regnum is a POWER7 Extended FP register. */
|
100 |
|
|
#define IS_EFP_PSEUDOREG(tdep, regnum) ((tdep)->ppc_efpr0_regnum >= 0 \
|
101 |
|
|
&& (regnum) >= (tdep)->ppc_efpr0_regnum \
|
102 |
|
|
&& (regnum) < (tdep)->ppc_efpr0_regnum + ppc_num_fprs)
|
103 |
|
|
|
104 |
|
|
/* The list of available "set powerpc ..." and "show powerpc ..."
|
105 |
|
|
commands. */
|
106 |
|
|
static struct cmd_list_element *setpowerpccmdlist = NULL;
|
107 |
|
|
static struct cmd_list_element *showpowerpccmdlist = NULL;
|
108 |
|
|
|
109 |
|
|
static enum auto_boolean powerpc_soft_float_global = AUTO_BOOLEAN_AUTO;
|
110 |
|
|
|
111 |
|
|
/* The vector ABI to use. Keep this in sync with powerpc_vector_abi. */
|
112 |
|
|
static const char *powerpc_vector_strings[] =
|
113 |
|
|
{
|
114 |
|
|
"auto",
|
115 |
|
|
"generic",
|
116 |
|
|
"altivec",
|
117 |
|
|
"spe",
|
118 |
|
|
NULL
|
119 |
|
|
};
|
120 |
|
|
|
121 |
|
|
/* A variable that can be configured by the user. */
|
122 |
|
|
static enum powerpc_vector_abi powerpc_vector_abi_global = POWERPC_VEC_AUTO;
|
123 |
|
|
static const char *powerpc_vector_abi_string = "auto";
|
124 |
|
|
|
125 |
|
|
/* To be used by skip_prologue. */
|
126 |
|
|
|
127 |
|
|
struct rs6000_framedata
|
128 |
|
|
{
|
129 |
|
|
int offset; /* total size of frame --- the distance
|
130 |
|
|
by which we decrement sp to allocate
|
131 |
|
|
the frame */
|
132 |
|
|
int saved_gpr; /* smallest # of saved gpr */
|
133 |
|
|
unsigned int gpr_mask; /* Each bit is an individual saved GPR. */
|
134 |
|
|
int saved_fpr; /* smallest # of saved fpr */
|
135 |
|
|
int saved_vr; /* smallest # of saved vr */
|
136 |
|
|
int saved_ev; /* smallest # of saved ev */
|
137 |
|
|
int alloca_reg; /* alloca register number (frame ptr) */
|
138 |
|
|
char frameless; /* true if frameless functions. */
|
139 |
|
|
char nosavedpc; /* true if pc not saved. */
|
140 |
|
|
char used_bl; /* true if link register clobbered */
|
141 |
|
|
int gpr_offset; /* offset of saved gprs from prev sp */
|
142 |
|
|
int fpr_offset; /* offset of saved fprs from prev sp */
|
143 |
|
|
int vr_offset; /* offset of saved vrs from prev sp */
|
144 |
|
|
int ev_offset; /* offset of saved evs from prev sp */
|
145 |
|
|
int lr_offset; /* offset of saved lr */
|
146 |
|
|
int lr_register; /* register of saved lr, if trustworthy */
|
147 |
|
|
int cr_offset; /* offset of saved cr */
|
148 |
|
|
int vrsave_offset; /* offset of saved vrsave register */
|
149 |
|
|
};
|
150 |
|
|
|
151 |
|
|
|
152 |
|
|
/* Is REGNO a VSX register? Return 1 if so, 0 otherwise. */
|
153 |
|
|
int
|
154 |
|
|
vsx_register_p (struct gdbarch *gdbarch, int regno)
|
155 |
|
|
{
|
156 |
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
157 |
|
|
if (tdep->ppc_vsr0_regnum < 0)
|
158 |
|
|
return 0;
|
159 |
|
|
else
|
160 |
|
|
return (regno >= tdep->ppc_vsr0_upper_regnum && regno
|
161 |
|
|
<= tdep->ppc_vsr0_upper_regnum + 31);
|
162 |
|
|
}
|
163 |
|
|
|
164 |
|
|
/* Is REGNO an AltiVec register? Return 1 if so, 0 otherwise. */
|
165 |
|
|
int
|
166 |
|
|
altivec_register_p (struct gdbarch *gdbarch, int regno)
|
167 |
|
|
{
|
168 |
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
169 |
|
|
if (tdep->ppc_vr0_regnum < 0 || tdep->ppc_vrsave_regnum < 0)
|
170 |
|
|
return 0;
|
171 |
|
|
else
|
172 |
|
|
return (regno >= tdep->ppc_vr0_regnum && regno <= tdep->ppc_vrsave_regnum);
|
173 |
|
|
}
|
174 |
|
|
|
175 |
|
|
|
176 |
|
|
/* Return true if REGNO is an SPE register, false otherwise. */
|
177 |
|
|
int
|
178 |
|
|
spe_register_p (struct gdbarch *gdbarch, int regno)
|
179 |
|
|
{
|
180 |
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
181 |
|
|
|
182 |
|
|
/* Is it a reference to EV0 -- EV31, and do we have those? */
|
183 |
|
|
if (IS_SPE_PSEUDOREG (tdep, regno))
|
184 |
|
|
return 1;
|
185 |
|
|
|
186 |
|
|
/* Is it a reference to one of the raw upper GPR halves? */
|
187 |
|
|
if (tdep->ppc_ev0_upper_regnum >= 0
|
188 |
|
|
&& tdep->ppc_ev0_upper_regnum <= regno
|
189 |
|
|
&& regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs)
|
190 |
|
|
return 1;
|
191 |
|
|
|
192 |
|
|
/* Is it a reference to the 64-bit accumulator, and do we have that? */
|
193 |
|
|
if (tdep->ppc_acc_regnum >= 0
|
194 |
|
|
&& tdep->ppc_acc_regnum == regno)
|
195 |
|
|
return 1;
|
196 |
|
|
|
197 |
|
|
/* Is it a reference to the SPE floating-point status and control register,
|
198 |
|
|
and do we have that? */
|
199 |
|
|
if (tdep->ppc_spefscr_regnum >= 0
|
200 |
|
|
&& tdep->ppc_spefscr_regnum == regno)
|
201 |
|
|
return 1;
|
202 |
|
|
|
203 |
|
|
return 0;
|
204 |
|
|
}
|
205 |
|
|
|
206 |
|
|
|
207 |
|
|
/* Return non-zero if the architecture described by GDBARCH has
|
208 |
|
|
floating-point registers (f0 --- f31 and fpscr). */
|
209 |
|
|
int
|
210 |
|
|
ppc_floating_point_unit_p (struct gdbarch *gdbarch)
|
211 |
|
|
{
|
212 |
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
213 |
|
|
|
214 |
|
|
return (tdep->ppc_fp0_regnum >= 0
|
215 |
|
|
&& tdep->ppc_fpscr_regnum >= 0);
|
216 |
|
|
}
|
217 |
|
|
|
218 |
|
|
/* Return non-zero if the architecture described by GDBARCH has
|
219 |
|
|
VSX registers (vsr0 --- vsr63). */
|
220 |
|
|
static int
|
221 |
|
|
ppc_vsx_support_p (struct gdbarch *gdbarch)
|
222 |
|
|
{
|
223 |
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
224 |
|
|
|
225 |
|
|
return tdep->ppc_vsr0_regnum >= 0;
|
226 |
|
|
}
|
227 |
|
|
|
228 |
|
|
/* Return non-zero if the architecture described by GDBARCH has
|
229 |
|
|
Altivec registers (vr0 --- vr31, vrsave and vscr). */
|
230 |
|
|
int
|
231 |
|
|
ppc_altivec_support_p (struct gdbarch *gdbarch)
|
232 |
|
|
{
|
233 |
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
234 |
|
|
|
235 |
|
|
return (tdep->ppc_vr0_regnum >= 0
|
236 |
|
|
&& tdep->ppc_vrsave_regnum >= 0);
|
237 |
|
|
}
|
238 |
|
|
|
239 |
|
|
/* Check that TABLE[GDB_REGNO] is not already initialized, and then
|
240 |
|
|
set it to SIM_REGNO.
|
241 |
|
|
|
242 |
|
|
This is a helper function for init_sim_regno_table, constructing
|
243 |
|
|
the table mapping GDB register numbers to sim register numbers; we
|
244 |
|
|
initialize every element in that table to -1 before we start
|
245 |
|
|
filling it in. */
|
246 |
|
|
static void
|
247 |
|
|
set_sim_regno (int *table, int gdb_regno, int sim_regno)
|
248 |
|
|
{
|
249 |
|
|
/* Make sure we don't try to assign any given GDB register a sim
|
250 |
|
|
register number more than once. */
|
251 |
|
|
gdb_assert (table[gdb_regno] == -1);
|
252 |
|
|
table[gdb_regno] = sim_regno;
|
253 |
|
|
}
|
254 |
|
|
|
255 |
|
|
|
256 |
|
|
/* Initialize ARCH->tdep->sim_regno, the table mapping GDB register
|
257 |
|
|
numbers to simulator register numbers, based on the values placed
|
258 |
|
|
in the ARCH->tdep->ppc_foo_regnum members. */
|
259 |
|
|
static void
|
260 |
|
|
init_sim_regno_table (struct gdbarch *arch)
|
261 |
|
|
{
|
262 |
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
|
263 |
|
|
int total_regs = gdbarch_num_regs (arch);
|
264 |
|
|
int *sim_regno = GDBARCH_OBSTACK_CALLOC (arch, total_regs, int);
|
265 |
|
|
int i;
|
266 |
|
|
static const char *const segment_regs[] = {
|
267 |
|
|
"sr0", "sr1", "sr2", "sr3", "sr4", "sr5", "sr6", "sr7",
|
268 |
|
|
"sr8", "sr9", "sr10", "sr11", "sr12", "sr13", "sr14", "sr15"
|
269 |
|
|
};
|
270 |
|
|
|
271 |
|
|
/* Presume that all registers not explicitly mentioned below are
|
272 |
|
|
unavailable from the sim. */
|
273 |
|
|
for (i = 0; i < total_regs; i++)
|
274 |
|
|
sim_regno[i] = -1;
|
275 |
|
|
|
276 |
|
|
/* General-purpose registers. */
|
277 |
|
|
for (i = 0; i < ppc_num_gprs; i++)
|
278 |
|
|
set_sim_regno (sim_regno, tdep->ppc_gp0_regnum + i, sim_ppc_r0_regnum + i);
|
279 |
|
|
|
280 |
|
|
/* Floating-point registers. */
|
281 |
|
|
if (tdep->ppc_fp0_regnum >= 0)
|
282 |
|
|
for (i = 0; i < ppc_num_fprs; i++)
|
283 |
|
|
set_sim_regno (sim_regno,
|
284 |
|
|
tdep->ppc_fp0_regnum + i,
|
285 |
|
|
sim_ppc_f0_regnum + i);
|
286 |
|
|
if (tdep->ppc_fpscr_regnum >= 0)
|
287 |
|
|
set_sim_regno (sim_regno, tdep->ppc_fpscr_regnum, sim_ppc_fpscr_regnum);
|
288 |
|
|
|
289 |
|
|
set_sim_regno (sim_regno, gdbarch_pc_regnum (arch), sim_ppc_pc_regnum);
|
290 |
|
|
set_sim_regno (sim_regno, tdep->ppc_ps_regnum, sim_ppc_ps_regnum);
|
291 |
|
|
set_sim_regno (sim_regno, tdep->ppc_cr_regnum, sim_ppc_cr_regnum);
|
292 |
|
|
|
293 |
|
|
/* Segment registers. */
|
294 |
|
|
for (i = 0; i < ppc_num_srs; i++)
|
295 |
|
|
{
|
296 |
|
|
int gdb_regno;
|
297 |
|
|
|
298 |
|
|
gdb_regno = user_reg_map_name_to_regnum (arch, segment_regs[i], -1);
|
299 |
|
|
if (gdb_regno >= 0)
|
300 |
|
|
set_sim_regno (sim_regno, gdb_regno, sim_ppc_sr0_regnum + i);
|
301 |
|
|
}
|
302 |
|
|
|
303 |
|
|
/* Altivec registers. */
|
304 |
|
|
if (tdep->ppc_vr0_regnum >= 0)
|
305 |
|
|
{
|
306 |
|
|
for (i = 0; i < ppc_num_vrs; i++)
|
307 |
|
|
set_sim_regno (sim_regno,
|
308 |
|
|
tdep->ppc_vr0_regnum + i,
|
309 |
|
|
sim_ppc_vr0_regnum + i);
|
310 |
|
|
|
311 |
|
|
/* FIXME: jimb/2004-07-15: when we have tdep->ppc_vscr_regnum,
|
312 |
|
|
we can treat this more like the other cases. */
|
313 |
|
|
set_sim_regno (sim_regno,
|
314 |
|
|
tdep->ppc_vr0_regnum + ppc_num_vrs,
|
315 |
|
|
sim_ppc_vscr_regnum);
|
316 |
|
|
}
|
317 |
|
|
/* vsave is a special-purpose register, so the code below handles it. */
|
318 |
|
|
|
319 |
|
|
/* SPE APU (E500) registers. */
|
320 |
|
|
if (tdep->ppc_ev0_upper_regnum >= 0)
|
321 |
|
|
for (i = 0; i < ppc_num_gprs; i++)
|
322 |
|
|
set_sim_regno (sim_regno,
|
323 |
|
|
tdep->ppc_ev0_upper_regnum + i,
|
324 |
|
|
sim_ppc_rh0_regnum + i);
|
325 |
|
|
if (tdep->ppc_acc_regnum >= 0)
|
326 |
|
|
set_sim_regno (sim_regno, tdep->ppc_acc_regnum, sim_ppc_acc_regnum);
|
327 |
|
|
/* spefscr is a special-purpose register, so the code below handles it. */
|
328 |
|
|
|
329 |
|
|
#ifdef WITH_SIM
|
330 |
|
|
/* Now handle all special-purpose registers. Verify that they
|
331 |
|
|
haven't mistakenly been assigned numbers by any of the above
|
332 |
|
|
code. */
|
333 |
|
|
for (i = 0; i < sim_ppc_num_sprs; i++)
|
334 |
|
|
{
|
335 |
|
|
const char *spr_name = sim_spr_register_name (i);
|
336 |
|
|
int gdb_regno = -1;
|
337 |
|
|
|
338 |
|
|
if (spr_name != NULL)
|
339 |
|
|
gdb_regno = user_reg_map_name_to_regnum (arch, spr_name, -1);
|
340 |
|
|
|
341 |
|
|
if (gdb_regno != -1)
|
342 |
|
|
set_sim_regno (sim_regno, gdb_regno, sim_ppc_spr0_regnum + i);
|
343 |
|
|
}
|
344 |
|
|
#endif
|
345 |
|
|
|
346 |
|
|
/* Drop the initialized array into place. */
|
347 |
|
|
tdep->sim_regno = sim_regno;
|
348 |
|
|
}
|
349 |
|
|
|
350 |
|
|
|
351 |
|
|
/* Given a GDB register number REG, return the corresponding SIM
|
352 |
|
|
register number. */
|
353 |
|
|
static int
|
354 |
|
|
rs6000_register_sim_regno (struct gdbarch *gdbarch, int reg)
|
355 |
|
|
{
|
356 |
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
357 |
|
|
int sim_regno;
|
358 |
|
|
|
359 |
|
|
if (tdep->sim_regno == NULL)
|
360 |
|
|
init_sim_regno_table (gdbarch);
|
361 |
|
|
|
362 |
|
|
gdb_assert (0 <= reg
|
363 |
|
|
&& reg <= gdbarch_num_regs (gdbarch)
|
364 |
|
|
+ gdbarch_num_pseudo_regs (gdbarch));
|
365 |
|
|
sim_regno = tdep->sim_regno[reg];
|
366 |
|
|
|
367 |
|
|
if (sim_regno >= 0)
|
368 |
|
|
return sim_regno;
|
369 |
|
|
else
|
370 |
|
|
return LEGACY_SIM_REGNO_IGNORE;
|
371 |
|
|
}
|
372 |
|
|
|
373 |
|
|
|
374 |
|
|
|
375 |
|
|
/* Register set support functions. */
|
376 |
|
|
|
377 |
|
|
/* REGS + OFFSET contains register REGNUM in a field REGSIZE wide.
|
378 |
|
|
Write the register to REGCACHE. */
|
379 |
|
|
|
380 |
|
|
void
|
381 |
|
|
ppc_supply_reg (struct regcache *regcache, int regnum,
|
382 |
|
|
const gdb_byte *regs, size_t offset, int regsize)
|
383 |
|
|
{
|
384 |
|
|
if (regnum != -1 && offset != -1)
|
385 |
|
|
{
|
386 |
|
|
if (regsize > 4)
|
387 |
|
|
{
|
388 |
|
|
struct gdbarch *gdbarch = get_regcache_arch (regcache);
|
389 |
|
|
int gdb_regsize = register_size (gdbarch, regnum);
|
390 |
|
|
if (gdb_regsize < regsize
|
391 |
|
|
&& gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
|
392 |
|
|
offset += regsize - gdb_regsize;
|
393 |
|
|
}
|
394 |
|
|
regcache_raw_supply (regcache, regnum, regs + offset);
|
395 |
|
|
}
|
396 |
|
|
}
|
397 |
|
|
|
398 |
|
|
/* Read register REGNUM from REGCACHE and store to REGS + OFFSET
|
399 |
|
|
in a field REGSIZE wide. Zero pad as necessary. */
|
400 |
|
|
|
401 |
|
|
void
|
402 |
|
|
ppc_collect_reg (const struct regcache *regcache, int regnum,
|
403 |
|
|
gdb_byte *regs, size_t offset, int regsize)
|
404 |
|
|
{
|
405 |
|
|
if (regnum != -1 && offset != -1)
|
406 |
|
|
{
|
407 |
|
|
if (regsize > 4)
|
408 |
|
|
{
|
409 |
|
|
struct gdbarch *gdbarch = get_regcache_arch (regcache);
|
410 |
|
|
int gdb_regsize = register_size (gdbarch, regnum);
|
411 |
|
|
if (gdb_regsize < regsize)
|
412 |
|
|
{
|
413 |
|
|
if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
|
414 |
|
|
{
|
415 |
|
|
memset (regs + offset, 0, regsize - gdb_regsize);
|
416 |
|
|
offset += regsize - gdb_regsize;
|
417 |
|
|
}
|
418 |
|
|
else
|
419 |
|
|
memset (regs + offset + regsize - gdb_regsize, 0,
|
420 |
|
|
regsize - gdb_regsize);
|
421 |
|
|
}
|
422 |
|
|
}
|
423 |
|
|
regcache_raw_collect (regcache, regnum, regs + offset);
|
424 |
|
|
}
|
425 |
|
|
}
|
426 |
|
|
|
427 |
|
|
static int
|
428 |
|
|
ppc_greg_offset (struct gdbarch *gdbarch,
|
429 |
|
|
struct gdbarch_tdep *tdep,
|
430 |
|
|
const struct ppc_reg_offsets *offsets,
|
431 |
|
|
int regnum,
|
432 |
|
|
int *regsize)
|
433 |
|
|
{
|
434 |
|
|
*regsize = offsets->gpr_size;
|
435 |
|
|
if (regnum >= tdep->ppc_gp0_regnum
|
436 |
|
|
&& regnum < tdep->ppc_gp0_regnum + ppc_num_gprs)
|
437 |
|
|
return (offsets->r0_offset
|
438 |
|
|
+ (regnum - tdep->ppc_gp0_regnum) * offsets->gpr_size);
|
439 |
|
|
|
440 |
|
|
if (regnum == gdbarch_pc_regnum (gdbarch))
|
441 |
|
|
return offsets->pc_offset;
|
442 |
|
|
|
443 |
|
|
if (regnum == tdep->ppc_ps_regnum)
|
444 |
|
|
return offsets->ps_offset;
|
445 |
|
|
|
446 |
|
|
if (regnum == tdep->ppc_lr_regnum)
|
447 |
|
|
return offsets->lr_offset;
|
448 |
|
|
|
449 |
|
|
if (regnum == tdep->ppc_ctr_regnum)
|
450 |
|
|
return offsets->ctr_offset;
|
451 |
|
|
|
452 |
|
|
*regsize = offsets->xr_size;
|
453 |
|
|
if (regnum == tdep->ppc_cr_regnum)
|
454 |
|
|
return offsets->cr_offset;
|
455 |
|
|
|
456 |
|
|
if (regnum == tdep->ppc_xer_regnum)
|
457 |
|
|
return offsets->xer_offset;
|
458 |
|
|
|
459 |
|
|
if (regnum == tdep->ppc_mq_regnum)
|
460 |
|
|
return offsets->mq_offset;
|
461 |
|
|
|
462 |
|
|
return -1;
|
463 |
|
|
}
|
464 |
|
|
|
465 |
|
|
static int
|
466 |
|
|
ppc_fpreg_offset (struct gdbarch_tdep *tdep,
|
467 |
|
|
const struct ppc_reg_offsets *offsets,
|
468 |
|
|
int regnum)
|
469 |
|
|
{
|
470 |
|
|
if (regnum >= tdep->ppc_fp0_regnum
|
471 |
|
|
&& regnum < tdep->ppc_fp0_regnum + ppc_num_fprs)
|
472 |
|
|
return offsets->f0_offset + (regnum - tdep->ppc_fp0_regnum) * 8;
|
473 |
|
|
|
474 |
|
|
if (regnum == tdep->ppc_fpscr_regnum)
|
475 |
|
|
return offsets->fpscr_offset;
|
476 |
|
|
|
477 |
|
|
return -1;
|
478 |
|
|
}
|
479 |
|
|
|
480 |
|
|
static int
|
481 |
|
|
ppc_vrreg_offset (struct gdbarch_tdep *tdep,
|
482 |
|
|
const struct ppc_reg_offsets *offsets,
|
483 |
|
|
int regnum)
|
484 |
|
|
{
|
485 |
|
|
if (regnum >= tdep->ppc_vr0_regnum
|
486 |
|
|
&& regnum < tdep->ppc_vr0_regnum + ppc_num_vrs)
|
487 |
|
|
return offsets->vr0_offset + (regnum - tdep->ppc_vr0_regnum) * 16;
|
488 |
|
|
|
489 |
|
|
if (regnum == tdep->ppc_vrsave_regnum - 1)
|
490 |
|
|
return offsets->vscr_offset;
|
491 |
|
|
|
492 |
|
|
if (regnum == tdep->ppc_vrsave_regnum)
|
493 |
|
|
return offsets->vrsave_offset;
|
494 |
|
|
|
495 |
|
|
return -1;
|
496 |
|
|
}
|
497 |
|
|
|
498 |
|
|
/* Supply register REGNUM in the general-purpose register set REGSET
|
499 |
|
|
from the buffer specified by GREGS and LEN to register cache
|
500 |
|
|
REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
|
501 |
|
|
|
502 |
|
|
void
|
503 |
|
|
ppc_supply_gregset (const struct regset *regset, struct regcache *regcache,
|
504 |
|
|
int regnum, const void *gregs, size_t len)
|
505 |
|
|
{
|
506 |
|
|
struct gdbarch *gdbarch = get_regcache_arch (regcache);
|
507 |
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
508 |
|
|
const struct ppc_reg_offsets *offsets = regset->descr;
|
509 |
|
|
size_t offset;
|
510 |
|
|
int regsize;
|
511 |
|
|
|
512 |
|
|
if (regnum == -1)
|
513 |
|
|
{
|
514 |
|
|
int i;
|
515 |
|
|
int gpr_size = offsets->gpr_size;
|
516 |
|
|
|
517 |
|
|
for (i = tdep->ppc_gp0_regnum, offset = offsets->r0_offset;
|
518 |
|
|
i < tdep->ppc_gp0_regnum + ppc_num_gprs;
|
519 |
|
|
i++, offset += gpr_size)
|
520 |
|
|
ppc_supply_reg (regcache, i, gregs, offset, gpr_size);
|
521 |
|
|
|
522 |
|
|
ppc_supply_reg (regcache, gdbarch_pc_regnum (gdbarch),
|
523 |
|
|
gregs, offsets->pc_offset, gpr_size);
|
524 |
|
|
ppc_supply_reg (regcache, tdep->ppc_ps_regnum,
|
525 |
|
|
gregs, offsets->ps_offset, gpr_size);
|
526 |
|
|
ppc_supply_reg (regcache, tdep->ppc_lr_regnum,
|
527 |
|
|
gregs, offsets->lr_offset, gpr_size);
|
528 |
|
|
ppc_supply_reg (regcache, tdep->ppc_ctr_regnum,
|
529 |
|
|
gregs, offsets->ctr_offset, gpr_size);
|
530 |
|
|
ppc_supply_reg (regcache, tdep->ppc_cr_regnum,
|
531 |
|
|
gregs, offsets->cr_offset, offsets->xr_size);
|
532 |
|
|
ppc_supply_reg (regcache, tdep->ppc_xer_regnum,
|
533 |
|
|
gregs, offsets->xer_offset, offsets->xr_size);
|
534 |
|
|
ppc_supply_reg (regcache, tdep->ppc_mq_regnum,
|
535 |
|
|
gregs, offsets->mq_offset, offsets->xr_size);
|
536 |
|
|
return;
|
537 |
|
|
}
|
538 |
|
|
|
539 |
|
|
offset = ppc_greg_offset (gdbarch, tdep, offsets, regnum, ®size);
|
540 |
|
|
ppc_supply_reg (regcache, regnum, gregs, offset, regsize);
|
541 |
|
|
}
|
542 |
|
|
|
543 |
|
|
/* Supply register REGNUM in the floating-point register set REGSET
|
544 |
|
|
from the buffer specified by FPREGS and LEN to register cache
|
545 |
|
|
REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
|
546 |
|
|
|
547 |
|
|
void
|
548 |
|
|
ppc_supply_fpregset (const struct regset *regset, struct regcache *regcache,
|
549 |
|
|
int regnum, const void *fpregs, size_t len)
|
550 |
|
|
{
|
551 |
|
|
struct gdbarch *gdbarch = get_regcache_arch (regcache);
|
552 |
|
|
struct gdbarch_tdep *tdep;
|
553 |
|
|
const struct ppc_reg_offsets *offsets;
|
554 |
|
|
size_t offset;
|
555 |
|
|
|
556 |
|
|
if (!ppc_floating_point_unit_p (gdbarch))
|
557 |
|
|
return;
|
558 |
|
|
|
559 |
|
|
tdep = gdbarch_tdep (gdbarch);
|
560 |
|
|
offsets = regset->descr;
|
561 |
|
|
if (regnum == -1)
|
562 |
|
|
{
|
563 |
|
|
int i;
|
564 |
|
|
|
565 |
|
|
for (i = tdep->ppc_fp0_regnum, offset = offsets->f0_offset;
|
566 |
|
|
i < tdep->ppc_fp0_regnum + ppc_num_fprs;
|
567 |
|
|
i++, offset += 8)
|
568 |
|
|
ppc_supply_reg (regcache, i, fpregs, offset, 8);
|
569 |
|
|
|
570 |
|
|
ppc_supply_reg (regcache, tdep->ppc_fpscr_regnum,
|
571 |
|
|
fpregs, offsets->fpscr_offset, offsets->fpscr_size);
|
572 |
|
|
return;
|
573 |
|
|
}
|
574 |
|
|
|
575 |
|
|
offset = ppc_fpreg_offset (tdep, offsets, regnum);
|
576 |
|
|
ppc_supply_reg (regcache, regnum, fpregs, offset,
|
577 |
|
|
regnum == tdep->ppc_fpscr_regnum ? offsets->fpscr_size : 8);
|
578 |
|
|
}
|
579 |
|
|
|
580 |
|
|
/* Supply register REGNUM in the VSX register set REGSET
|
581 |
|
|
from the buffer specified by VSXREGS and LEN to register cache
|
582 |
|
|
REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
|
583 |
|
|
|
584 |
|
|
void
|
585 |
|
|
ppc_supply_vsxregset (const struct regset *regset, struct regcache *regcache,
|
586 |
|
|
int regnum, const void *vsxregs, size_t len)
|
587 |
|
|
{
|
588 |
|
|
struct gdbarch *gdbarch = get_regcache_arch (regcache);
|
589 |
|
|
struct gdbarch_tdep *tdep;
|
590 |
|
|
|
591 |
|
|
if (!ppc_vsx_support_p (gdbarch))
|
592 |
|
|
return;
|
593 |
|
|
|
594 |
|
|
tdep = gdbarch_tdep (gdbarch);
|
595 |
|
|
|
596 |
|
|
if (regnum == -1)
|
597 |
|
|
{
|
598 |
|
|
int i;
|
599 |
|
|
|
600 |
|
|
for (i = tdep->ppc_vsr0_upper_regnum;
|
601 |
|
|
i < tdep->ppc_vsr0_upper_regnum + 32;
|
602 |
|
|
i++)
|
603 |
|
|
ppc_supply_reg (regcache, i, vsxregs, 0, 8);
|
604 |
|
|
|
605 |
|
|
return;
|
606 |
|
|
}
|
607 |
|
|
else
|
608 |
|
|
ppc_supply_reg (regcache, regnum, vsxregs, 0, 8);
|
609 |
|
|
}
|
610 |
|
|
|
611 |
|
|
/* Supply register REGNUM in the Altivec register set REGSET
|
612 |
|
|
from the buffer specified by VRREGS and LEN to register cache
|
613 |
|
|
REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
|
614 |
|
|
|
615 |
|
|
void
|
616 |
|
|
ppc_supply_vrregset (const struct regset *regset, struct regcache *regcache,
|
617 |
|
|
int regnum, const void *vrregs, size_t len)
|
618 |
|
|
{
|
619 |
|
|
struct gdbarch *gdbarch = get_regcache_arch (regcache);
|
620 |
|
|
struct gdbarch_tdep *tdep;
|
621 |
|
|
const struct ppc_reg_offsets *offsets;
|
622 |
|
|
size_t offset;
|
623 |
|
|
|
624 |
|
|
if (!ppc_altivec_support_p (gdbarch))
|
625 |
|
|
return;
|
626 |
|
|
|
627 |
|
|
tdep = gdbarch_tdep (gdbarch);
|
628 |
|
|
offsets = regset->descr;
|
629 |
|
|
if (regnum == -1)
|
630 |
|
|
{
|
631 |
|
|
int i;
|
632 |
|
|
|
633 |
|
|
for (i = tdep->ppc_vr0_regnum, offset = offsets->vr0_offset;
|
634 |
|
|
i < tdep->ppc_vr0_regnum + ppc_num_vrs;
|
635 |
|
|
i++, offset += 16)
|
636 |
|
|
ppc_supply_reg (regcache, i, vrregs, offset, 16);
|
637 |
|
|
|
638 |
|
|
ppc_supply_reg (regcache, (tdep->ppc_vrsave_regnum - 1),
|
639 |
|
|
vrregs, offsets->vscr_offset, 4);
|
640 |
|
|
|
641 |
|
|
ppc_supply_reg (regcache, tdep->ppc_vrsave_regnum,
|
642 |
|
|
vrregs, offsets->vrsave_offset, 4);
|
643 |
|
|
return;
|
644 |
|
|
}
|
645 |
|
|
|
646 |
|
|
offset = ppc_vrreg_offset (tdep, offsets, regnum);
|
647 |
|
|
if (regnum != tdep->ppc_vrsave_regnum
|
648 |
|
|
&& regnum != tdep->ppc_vrsave_regnum - 1)
|
649 |
|
|
ppc_supply_reg (regcache, regnum, vrregs, offset, 16);
|
650 |
|
|
else
|
651 |
|
|
ppc_supply_reg (regcache, regnum,
|
652 |
|
|
vrregs, offset, 4);
|
653 |
|
|
}
|
654 |
|
|
|
655 |
|
|
/* Collect register REGNUM in the general-purpose register set
|
656 |
|
|
REGSET from register cache REGCACHE into the buffer specified by
|
657 |
|
|
GREGS and LEN. If REGNUM is -1, do this for all registers in
|
658 |
|
|
REGSET. */
|
659 |
|
|
|
660 |
|
|
void
|
661 |
|
|
ppc_collect_gregset (const struct regset *regset,
|
662 |
|
|
const struct regcache *regcache,
|
663 |
|
|
int regnum, void *gregs, size_t len)
|
664 |
|
|
{
|
665 |
|
|
struct gdbarch *gdbarch = get_regcache_arch (regcache);
|
666 |
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
667 |
|
|
const struct ppc_reg_offsets *offsets = regset->descr;
|
668 |
|
|
size_t offset;
|
669 |
|
|
int regsize;
|
670 |
|
|
|
671 |
|
|
if (regnum == -1)
|
672 |
|
|
{
|
673 |
|
|
int i;
|
674 |
|
|
int gpr_size = offsets->gpr_size;
|
675 |
|
|
|
676 |
|
|
for (i = tdep->ppc_gp0_regnum, offset = offsets->r0_offset;
|
677 |
|
|
i < tdep->ppc_gp0_regnum + ppc_num_gprs;
|
678 |
|
|
i++, offset += gpr_size)
|
679 |
|
|
ppc_collect_reg (regcache, i, gregs, offset, gpr_size);
|
680 |
|
|
|
681 |
|
|
ppc_collect_reg (regcache, gdbarch_pc_regnum (gdbarch),
|
682 |
|
|
gregs, offsets->pc_offset, gpr_size);
|
683 |
|
|
ppc_collect_reg (regcache, tdep->ppc_ps_regnum,
|
684 |
|
|
gregs, offsets->ps_offset, gpr_size);
|
685 |
|
|
ppc_collect_reg (regcache, tdep->ppc_lr_regnum,
|
686 |
|
|
gregs, offsets->lr_offset, gpr_size);
|
687 |
|
|
ppc_collect_reg (regcache, tdep->ppc_ctr_regnum,
|
688 |
|
|
gregs, offsets->ctr_offset, gpr_size);
|
689 |
|
|
ppc_collect_reg (regcache, tdep->ppc_cr_regnum,
|
690 |
|
|
gregs, offsets->cr_offset, offsets->xr_size);
|
691 |
|
|
ppc_collect_reg (regcache, tdep->ppc_xer_regnum,
|
692 |
|
|
gregs, offsets->xer_offset, offsets->xr_size);
|
693 |
|
|
ppc_collect_reg (regcache, tdep->ppc_mq_regnum,
|
694 |
|
|
gregs, offsets->mq_offset, offsets->xr_size);
|
695 |
|
|
return;
|
696 |
|
|
}
|
697 |
|
|
|
698 |
|
|
offset = ppc_greg_offset (gdbarch, tdep, offsets, regnum, ®size);
|
699 |
|
|
ppc_collect_reg (regcache, regnum, gregs, offset, regsize);
|
700 |
|
|
}
|
701 |
|
|
|
702 |
|
|
/* Collect register REGNUM in the floating-point register set
|
703 |
|
|
REGSET from register cache REGCACHE into the buffer specified by
|
704 |
|
|
FPREGS and LEN. If REGNUM is -1, do this for all registers in
|
705 |
|
|
REGSET. */
|
706 |
|
|
|
707 |
|
|
void
|
708 |
|
|
ppc_collect_fpregset (const struct regset *regset,
|
709 |
|
|
const struct regcache *regcache,
|
710 |
|
|
int regnum, void *fpregs, size_t len)
|
711 |
|
|
{
|
712 |
|
|
struct gdbarch *gdbarch = get_regcache_arch (regcache);
|
713 |
|
|
struct gdbarch_tdep *tdep;
|
714 |
|
|
const struct ppc_reg_offsets *offsets;
|
715 |
|
|
size_t offset;
|
716 |
|
|
|
717 |
|
|
if (!ppc_floating_point_unit_p (gdbarch))
|
718 |
|
|
return;
|
719 |
|
|
|
720 |
|
|
tdep = gdbarch_tdep (gdbarch);
|
721 |
|
|
offsets = regset->descr;
|
722 |
|
|
if (regnum == -1)
|
723 |
|
|
{
|
724 |
|
|
int i;
|
725 |
|
|
|
726 |
|
|
for (i = tdep->ppc_fp0_regnum, offset = offsets->f0_offset;
|
727 |
|
|
i < tdep->ppc_fp0_regnum + ppc_num_fprs;
|
728 |
|
|
i++, offset += 8)
|
729 |
|
|
ppc_collect_reg (regcache, i, fpregs, offset, 8);
|
730 |
|
|
|
731 |
|
|
ppc_collect_reg (regcache, tdep->ppc_fpscr_regnum,
|
732 |
|
|
fpregs, offsets->fpscr_offset, offsets->fpscr_size);
|
733 |
|
|
return;
|
734 |
|
|
}
|
735 |
|
|
|
736 |
|
|
offset = ppc_fpreg_offset (tdep, offsets, regnum);
|
737 |
|
|
ppc_collect_reg (regcache, regnum, fpregs, offset,
|
738 |
|
|
regnum == tdep->ppc_fpscr_regnum ? offsets->fpscr_size : 8);
|
739 |
|
|
}
|
740 |
|
|
|
741 |
|
|
/* Collect register REGNUM in the VSX register set
|
742 |
|
|
REGSET from register cache REGCACHE into the buffer specified by
|
743 |
|
|
VSXREGS and LEN. If REGNUM is -1, do this for all registers in
|
744 |
|
|
REGSET. */
|
745 |
|
|
|
746 |
|
|
void
|
747 |
|
|
ppc_collect_vsxregset (const struct regset *regset,
|
748 |
|
|
const struct regcache *regcache,
|
749 |
|
|
int regnum, void *vsxregs, size_t len)
|
750 |
|
|
{
|
751 |
|
|
struct gdbarch *gdbarch = get_regcache_arch (regcache);
|
752 |
|
|
struct gdbarch_tdep *tdep;
|
753 |
|
|
|
754 |
|
|
if (!ppc_vsx_support_p (gdbarch))
|
755 |
|
|
return;
|
756 |
|
|
|
757 |
|
|
tdep = gdbarch_tdep (gdbarch);
|
758 |
|
|
|
759 |
|
|
if (regnum == -1)
|
760 |
|
|
{
|
761 |
|
|
int i;
|
762 |
|
|
|
763 |
|
|
for (i = tdep->ppc_vsr0_upper_regnum;
|
764 |
|
|
i < tdep->ppc_vsr0_upper_regnum + 32;
|
765 |
|
|
i++)
|
766 |
|
|
ppc_collect_reg (regcache, i, vsxregs, 0, 8);
|
767 |
|
|
|
768 |
|
|
return;
|
769 |
|
|
}
|
770 |
|
|
else
|
771 |
|
|
ppc_collect_reg (regcache, regnum, vsxregs, 0, 8);
|
772 |
|
|
}
|
773 |
|
|
|
774 |
|
|
|
775 |
|
|
/* Collect register REGNUM in the Altivec register set
|
776 |
|
|
REGSET from register cache REGCACHE into the buffer specified by
|
777 |
|
|
VRREGS and LEN. If REGNUM is -1, do this for all registers in
|
778 |
|
|
REGSET. */
|
779 |
|
|
|
780 |
|
|
void
|
781 |
|
|
ppc_collect_vrregset (const struct regset *regset,
|
782 |
|
|
const struct regcache *regcache,
|
783 |
|
|
int regnum, void *vrregs, size_t len)
|
784 |
|
|
{
|
785 |
|
|
struct gdbarch *gdbarch = get_regcache_arch (regcache);
|
786 |
|
|
struct gdbarch_tdep *tdep;
|
787 |
|
|
const struct ppc_reg_offsets *offsets;
|
788 |
|
|
size_t offset;
|
789 |
|
|
|
790 |
|
|
if (!ppc_altivec_support_p (gdbarch))
|
791 |
|
|
return;
|
792 |
|
|
|
793 |
|
|
tdep = gdbarch_tdep (gdbarch);
|
794 |
|
|
offsets = regset->descr;
|
795 |
|
|
if (regnum == -1)
|
796 |
|
|
{
|
797 |
|
|
int i;
|
798 |
|
|
|
799 |
|
|
for (i = tdep->ppc_vr0_regnum, offset = offsets->vr0_offset;
|
800 |
|
|
i < tdep->ppc_vr0_regnum + ppc_num_vrs;
|
801 |
|
|
i++, offset += 16)
|
802 |
|
|
ppc_collect_reg (regcache, i, vrregs, offset, 16);
|
803 |
|
|
|
804 |
|
|
ppc_collect_reg (regcache, (tdep->ppc_vrsave_regnum - 1),
|
805 |
|
|
vrregs, offsets->vscr_offset, 4);
|
806 |
|
|
|
807 |
|
|
ppc_collect_reg (regcache, tdep->ppc_vrsave_regnum,
|
808 |
|
|
vrregs, offsets->vrsave_offset, 4);
|
809 |
|
|
return;
|
810 |
|
|
}
|
811 |
|
|
|
812 |
|
|
offset = ppc_vrreg_offset (tdep, offsets, regnum);
|
813 |
|
|
if (regnum != tdep->ppc_vrsave_regnum
|
814 |
|
|
&& regnum != tdep->ppc_vrsave_regnum - 1)
|
815 |
|
|
ppc_collect_reg (regcache, regnum, vrregs, offset, 16);
|
816 |
|
|
else
|
817 |
|
|
ppc_collect_reg (regcache, regnum,
|
818 |
|
|
vrregs, offset, 4);
|
819 |
|
|
}
|
820 |
|
|
|
821 |
|
|
|
822 |
|
|
static int
|
823 |
|
|
insn_changes_sp_or_jumps (unsigned long insn)
|
824 |
|
|
{
|
825 |
|
|
int opcode = (insn >> 26) & 0x03f;
|
826 |
|
|
int sd = (insn >> 21) & 0x01f;
|
827 |
|
|
int a = (insn >> 16) & 0x01f;
|
828 |
|
|
int subcode = (insn >> 1) & 0x3ff;
|
829 |
|
|
|
830 |
|
|
/* Changes the stack pointer. */
|
831 |
|
|
|
832 |
|
|
/* NOTE: There are many ways to change the value of a given register.
|
833 |
|
|
The ways below are those used when the register is R1, the SP,
|
834 |
|
|
in a funtion's epilogue. */
|
835 |
|
|
|
836 |
|
|
if (opcode == 31 && subcode == 444 && a == 1)
|
837 |
|
|
return 1; /* mr R1,Rn */
|
838 |
|
|
if (opcode == 14 && sd == 1)
|
839 |
|
|
return 1; /* addi R1,Rn,simm */
|
840 |
|
|
if (opcode == 58 && sd == 1)
|
841 |
|
|
return 1; /* ld R1,ds(Rn) */
|
842 |
|
|
|
843 |
|
|
/* Transfers control. */
|
844 |
|
|
|
845 |
|
|
if (opcode == 18)
|
846 |
|
|
return 1; /* b */
|
847 |
|
|
if (opcode == 16)
|
848 |
|
|
return 1; /* bc */
|
849 |
|
|
if (opcode == 19 && subcode == 16)
|
850 |
|
|
return 1; /* bclr */
|
851 |
|
|
if (opcode == 19 && subcode == 528)
|
852 |
|
|
return 1; /* bcctr */
|
853 |
|
|
|
854 |
|
|
return 0;
|
855 |
|
|
}
|
856 |
|
|
|
857 |
|
|
/* Return true if we are in the function's epilogue, i.e. after the
|
858 |
|
|
instruction that destroyed the function's stack frame.
|
859 |
|
|
|
860 |
|
|
1) scan forward from the point of execution:
|
861 |
|
|
a) If you find an instruction that modifies the stack pointer
|
862 |
|
|
or transfers control (except a return), execution is not in
|
863 |
|
|
an epilogue, return.
|
864 |
|
|
b) Stop scanning if you find a return instruction or reach the
|
865 |
|
|
end of the function or reach the hard limit for the size of
|
866 |
|
|
an epilogue.
|
867 |
|
|
2) scan backward from the point of execution:
|
868 |
|
|
a) If you find an instruction that modifies the stack pointer,
|
869 |
|
|
execution *is* in an epilogue, return.
|
870 |
|
|
b) Stop scanning if you reach an instruction that transfers
|
871 |
|
|
control or the beginning of the function or reach the hard
|
872 |
|
|
limit for the size of an epilogue. */
|
873 |
|
|
|
874 |
|
|
static int
|
875 |
|
|
rs6000_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
|
876 |
|
|
{
|
877 |
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
878 |
|
|
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
879 |
|
|
bfd_byte insn_buf[PPC_INSN_SIZE];
|
880 |
|
|
CORE_ADDR scan_pc, func_start, func_end, epilogue_start, epilogue_end;
|
881 |
|
|
unsigned long insn;
|
882 |
|
|
struct frame_info *curfrm;
|
883 |
|
|
|
884 |
|
|
/* Find the search limits based on function boundaries and hard limit. */
|
885 |
|
|
|
886 |
|
|
if (!find_pc_partial_function (pc, NULL, &func_start, &func_end))
|
887 |
|
|
return 0;
|
888 |
|
|
|
889 |
|
|
epilogue_start = pc - PPC_MAX_EPILOGUE_INSTRUCTIONS * PPC_INSN_SIZE;
|
890 |
|
|
if (epilogue_start < func_start) epilogue_start = func_start;
|
891 |
|
|
|
892 |
|
|
epilogue_end = pc + PPC_MAX_EPILOGUE_INSTRUCTIONS * PPC_INSN_SIZE;
|
893 |
|
|
if (epilogue_end > func_end) epilogue_end = func_end;
|
894 |
|
|
|
895 |
|
|
curfrm = get_current_frame ();
|
896 |
|
|
|
897 |
|
|
/* Scan forward until next 'blr'. */
|
898 |
|
|
|
899 |
|
|
for (scan_pc = pc; scan_pc < epilogue_end; scan_pc += PPC_INSN_SIZE)
|
900 |
|
|
{
|
901 |
|
|
if (!safe_frame_unwind_memory (curfrm, scan_pc, insn_buf, PPC_INSN_SIZE))
|
902 |
|
|
return 0;
|
903 |
|
|
insn = extract_unsigned_integer (insn_buf, PPC_INSN_SIZE, byte_order);
|
904 |
|
|
if (insn == 0x4e800020)
|
905 |
|
|
break;
|
906 |
|
|
/* Assume a bctr is a tail call unless it points strictly within
|
907 |
|
|
this function. */
|
908 |
|
|
if (insn == 0x4e800420)
|
909 |
|
|
{
|
910 |
|
|
CORE_ADDR ctr = get_frame_register_unsigned (curfrm,
|
911 |
|
|
tdep->ppc_ctr_regnum);
|
912 |
|
|
if (ctr > func_start && ctr < func_end)
|
913 |
|
|
return 0;
|
914 |
|
|
else
|
915 |
|
|
break;
|
916 |
|
|
}
|
917 |
|
|
if (insn_changes_sp_or_jumps (insn))
|
918 |
|
|
return 0;
|
919 |
|
|
}
|
920 |
|
|
|
921 |
|
|
/* Scan backward until adjustment to stack pointer (R1). */
|
922 |
|
|
|
923 |
|
|
for (scan_pc = pc - PPC_INSN_SIZE;
|
924 |
|
|
scan_pc >= epilogue_start;
|
925 |
|
|
scan_pc -= PPC_INSN_SIZE)
|
926 |
|
|
{
|
927 |
|
|
if (!safe_frame_unwind_memory (curfrm, scan_pc, insn_buf, PPC_INSN_SIZE))
|
928 |
|
|
return 0;
|
929 |
|
|
insn = extract_unsigned_integer (insn_buf, PPC_INSN_SIZE, byte_order);
|
930 |
|
|
if (insn_changes_sp_or_jumps (insn))
|
931 |
|
|
return 1;
|
932 |
|
|
}
|
933 |
|
|
|
934 |
|
|
return 0;
|
935 |
|
|
}
|
936 |
|
|
|
937 |
|
|
/* Get the ith function argument for the current function. */
|
938 |
|
|
static CORE_ADDR
|
939 |
|
|
rs6000_fetch_pointer_argument (struct frame_info *frame, int argi,
|
940 |
|
|
struct type *type)
|
941 |
|
|
{
|
942 |
|
|
return get_frame_register_unsigned (frame, 3 + argi);
|
943 |
|
|
}
|
944 |
|
|
|
945 |
|
|
/* Sequence of bytes for breakpoint instruction. */
|
946 |
|
|
|
947 |
|
|
const static unsigned char *
|
948 |
|
|
rs6000_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *bp_addr,
|
949 |
|
|
int *bp_size)
|
950 |
|
|
{
|
951 |
|
|
static unsigned char big_breakpoint[] = { 0x7d, 0x82, 0x10, 0x08 };
|
952 |
|
|
static unsigned char little_breakpoint[] = { 0x08, 0x10, 0x82, 0x7d };
|
953 |
|
|
*bp_size = 4;
|
954 |
|
|
if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
|
955 |
|
|
return big_breakpoint;
|
956 |
|
|
else
|
957 |
|
|
return little_breakpoint;
|
958 |
|
|
}
|
959 |
|
|
|
960 |
|
|
/* Instruction masks for displaced stepping. */
|
961 |
|
|
#define BRANCH_MASK 0xfc000000
|
962 |
|
|
#define BP_MASK 0xFC0007FE
|
963 |
|
|
#define B_INSN 0x48000000
|
964 |
|
|
#define BC_INSN 0x40000000
|
965 |
|
|
#define BXL_INSN 0x4c000000
|
966 |
|
|
#define BP_INSN 0x7C000008
|
967 |
|
|
|
968 |
|
|
/* Fix up the state of registers and memory after having single-stepped
|
969 |
|
|
a displaced instruction. */
|
970 |
|
|
static void
|
971 |
|
|
ppc_displaced_step_fixup (struct gdbarch *gdbarch,
|
972 |
|
|
struct displaced_step_closure *closure,
|
973 |
|
|
CORE_ADDR from, CORE_ADDR to,
|
974 |
|
|
struct regcache *regs)
|
975 |
|
|
{
|
976 |
|
|
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
977 |
|
|
/* Since we use simple_displaced_step_copy_insn, our closure is a
|
978 |
|
|
copy of the instruction. */
|
979 |
|
|
ULONGEST insn = extract_unsigned_integer ((gdb_byte *) closure,
|
980 |
|
|
PPC_INSN_SIZE, byte_order);
|
981 |
|
|
ULONGEST opcode = 0;
|
982 |
|
|
/* Offset for non PC-relative instructions. */
|
983 |
|
|
LONGEST offset = PPC_INSN_SIZE;
|
984 |
|
|
|
985 |
|
|
opcode = insn & BRANCH_MASK;
|
986 |
|
|
|
987 |
|
|
if (debug_displaced)
|
988 |
|
|
fprintf_unfiltered (gdb_stdlog,
|
989 |
|
|
"displaced: (ppc) fixup (%s, %s)\n",
|
990 |
|
|
paddress (gdbarch, from), paddress (gdbarch, to));
|
991 |
|
|
|
992 |
|
|
|
993 |
|
|
/* Handle PC-relative branch instructions. */
|
994 |
|
|
if (opcode == B_INSN || opcode == BC_INSN || opcode == BXL_INSN)
|
995 |
|
|
{
|
996 |
|
|
ULONGEST current_pc;
|
997 |
|
|
|
998 |
|
|
/* Read the current PC value after the instruction has been executed
|
999 |
|
|
in a displaced location. Calculate the offset to be applied to the
|
1000 |
|
|
original PC value before the displaced stepping. */
|
1001 |
|
|
regcache_cooked_read_unsigned (regs, gdbarch_pc_regnum (gdbarch),
|
1002 |
|
|
¤t_pc);
|
1003 |
|
|
offset = current_pc - to;
|
1004 |
|
|
|
1005 |
|
|
if (opcode != BXL_INSN)
|
1006 |
|
|
{
|
1007 |
|
|
/* Check for AA bit indicating whether this is an absolute
|
1008 |
|
|
addressing or PC-relative (1: absolute, 0: relative). */
|
1009 |
|
|
if (!(insn & 0x2))
|
1010 |
|
|
{
|
1011 |
|
|
/* PC-relative addressing is being used in the branch. */
|
1012 |
|
|
if (debug_displaced)
|
1013 |
|
|
fprintf_unfiltered
|
1014 |
|
|
(gdb_stdlog,
|
1015 |
|
|
"displaced: (ppc) branch instruction: %s\n"
|
1016 |
|
|
"displaced: (ppc) adjusted PC from %s to %s\n",
|
1017 |
|
|
paddress (gdbarch, insn), paddress (gdbarch, current_pc),
|
1018 |
|
|
paddress (gdbarch, from + offset));
|
1019 |
|
|
|
1020 |
|
|
regcache_cooked_write_unsigned (regs, gdbarch_pc_regnum (gdbarch),
|
1021 |
|
|
from + offset);
|
1022 |
|
|
}
|
1023 |
|
|
}
|
1024 |
|
|
else
|
1025 |
|
|
{
|
1026 |
|
|
/* If we're here, it means we have a branch to LR or CTR. If the
|
1027 |
|
|
branch was taken, the offset is probably greater than 4 (the next
|
1028 |
|
|
instruction), so it's safe to assume that an offset of 4 means we
|
1029 |
|
|
did not take the branch. */
|
1030 |
|
|
if (offset == PPC_INSN_SIZE)
|
1031 |
|
|
regcache_cooked_write_unsigned (regs, gdbarch_pc_regnum (gdbarch),
|
1032 |
|
|
from + PPC_INSN_SIZE);
|
1033 |
|
|
}
|
1034 |
|
|
|
1035 |
|
|
/* Check for LK bit indicating whether we should set the link
|
1036 |
|
|
register to point to the next instruction
|
1037 |
|
|
(1: Set, 0: Don't set). */
|
1038 |
|
|
if (insn & 0x1)
|
1039 |
|
|
{
|
1040 |
|
|
/* Link register needs to be set to the next instruction's PC. */
|
1041 |
|
|
regcache_cooked_write_unsigned (regs,
|
1042 |
|
|
gdbarch_tdep (gdbarch)->ppc_lr_regnum,
|
1043 |
|
|
from + PPC_INSN_SIZE);
|
1044 |
|
|
if (debug_displaced)
|
1045 |
|
|
fprintf_unfiltered (gdb_stdlog,
|
1046 |
|
|
"displaced: (ppc) adjusted LR to %s\n",
|
1047 |
|
|
paddress (gdbarch, from + PPC_INSN_SIZE));
|
1048 |
|
|
|
1049 |
|
|
}
|
1050 |
|
|
}
|
1051 |
|
|
/* Check for breakpoints in the inferior. If we've found one, place the PC
|
1052 |
|
|
right at the breakpoint instruction. */
|
1053 |
|
|
else if ((insn & BP_MASK) == BP_INSN)
|
1054 |
|
|
regcache_cooked_write_unsigned (regs, gdbarch_pc_regnum (gdbarch), from);
|
1055 |
|
|
else
|
1056 |
|
|
/* Handle any other instructions that do not fit in the categories above. */
|
1057 |
|
|
regcache_cooked_write_unsigned (regs, gdbarch_pc_regnum (gdbarch),
|
1058 |
|
|
from + offset);
|
1059 |
|
|
}
|
1060 |
|
|
|
1061 |
|
|
/* Always use hardware single-stepping to execute the
|
1062 |
|
|
displaced instruction. */
|
1063 |
|
|
static int
|
1064 |
|
|
ppc_displaced_step_hw_singlestep (struct gdbarch *gdbarch,
|
1065 |
|
|
struct displaced_step_closure *closure)
|
1066 |
|
|
{
|
1067 |
|
|
return 1;
|
1068 |
|
|
}
|
1069 |
|
|
|
1070 |
|
|
/* Instruction masks used during single-stepping of atomic sequences. */
|
1071 |
|
|
#define LWARX_MASK 0xfc0007fe
|
1072 |
|
|
#define LWARX_INSTRUCTION 0x7c000028
|
1073 |
|
|
#define LDARX_INSTRUCTION 0x7c0000A8
|
1074 |
|
|
#define STWCX_MASK 0xfc0007ff
|
1075 |
|
|
#define STWCX_INSTRUCTION 0x7c00012d
|
1076 |
|
|
#define STDCX_INSTRUCTION 0x7c0001ad
|
1077 |
|
|
|
1078 |
|
|
/* Checks for an atomic sequence of instructions beginning with a LWARX/LDARX
|
1079 |
|
|
instruction and ending with a STWCX/STDCX instruction. If such a sequence
|
1080 |
|
|
is found, attempt to step through it. A breakpoint is placed at the end of
|
1081 |
|
|
the sequence. */
|
1082 |
|
|
|
1083 |
|
|
int
|
1084 |
|
|
ppc_deal_with_atomic_sequence (struct frame_info *frame)
|
1085 |
|
|
{
|
1086 |
|
|
struct gdbarch *gdbarch = get_frame_arch (frame);
|
1087 |
|
|
struct address_space *aspace = get_frame_address_space (frame);
|
1088 |
|
|
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
1089 |
|
|
CORE_ADDR pc = get_frame_pc (frame);
|
1090 |
|
|
CORE_ADDR breaks[2] = {-1, -1};
|
1091 |
|
|
CORE_ADDR loc = pc;
|
1092 |
|
|
CORE_ADDR closing_insn; /* Instruction that closes the atomic sequence. */
|
1093 |
|
|
int insn = read_memory_integer (loc, PPC_INSN_SIZE, byte_order);
|
1094 |
|
|
int insn_count;
|
1095 |
|
|
int index;
|
1096 |
|
|
int last_breakpoint = 0; /* Defaults to 0 (no breakpoints placed). */
|
1097 |
|
|
const int atomic_sequence_length = 16; /* Instruction sequence length. */
|
1098 |
|
|
int opcode; /* Branch instruction's OPcode. */
|
1099 |
|
|
int bc_insn_count = 0; /* Conditional branch instruction count. */
|
1100 |
|
|
|
1101 |
|
|
/* Assume all atomic sequences start with a lwarx/ldarx instruction. */
|
1102 |
|
|
if ((insn & LWARX_MASK) != LWARX_INSTRUCTION
|
1103 |
|
|
&& (insn & LWARX_MASK) != LDARX_INSTRUCTION)
|
1104 |
|
|
return 0;
|
1105 |
|
|
|
1106 |
|
|
/* Assume that no atomic sequence is longer than "atomic_sequence_length"
|
1107 |
|
|
instructions. */
|
1108 |
|
|
for (insn_count = 0; insn_count < atomic_sequence_length; ++insn_count)
|
1109 |
|
|
{
|
1110 |
|
|
loc += PPC_INSN_SIZE;
|
1111 |
|
|
insn = read_memory_integer (loc, PPC_INSN_SIZE, byte_order);
|
1112 |
|
|
|
1113 |
|
|
/* Assume that there is at most one conditional branch in the atomic
|
1114 |
|
|
sequence. If a conditional branch is found, put a breakpoint in
|
1115 |
|
|
its destination address. */
|
1116 |
|
|
if ((insn & BRANCH_MASK) == BC_INSN)
|
1117 |
|
|
{
|
1118 |
|
|
int immediate = ((insn & ~3) << 16) >> 16;
|
1119 |
|
|
int absolute = ((insn >> 1) & 1);
|
1120 |
|
|
|
1121 |
|
|
if (bc_insn_count >= 1)
|
1122 |
|
|
return 0; /* More than one conditional branch found, fallback
|
1123 |
|
|
to the standard single-step code. */
|
1124 |
|
|
|
1125 |
|
|
if (absolute)
|
1126 |
|
|
breaks[1] = immediate;
|
1127 |
|
|
else
|
1128 |
|
|
breaks[1] = pc + immediate;
|
1129 |
|
|
|
1130 |
|
|
bc_insn_count++;
|
1131 |
|
|
last_breakpoint++;
|
1132 |
|
|
}
|
1133 |
|
|
|
1134 |
|
|
if ((insn & STWCX_MASK) == STWCX_INSTRUCTION
|
1135 |
|
|
|| (insn & STWCX_MASK) == STDCX_INSTRUCTION)
|
1136 |
|
|
break;
|
1137 |
|
|
}
|
1138 |
|
|
|
1139 |
|
|
/* Assume that the atomic sequence ends with a stwcx/stdcx instruction. */
|
1140 |
|
|
if ((insn & STWCX_MASK) != STWCX_INSTRUCTION
|
1141 |
|
|
&& (insn & STWCX_MASK) != STDCX_INSTRUCTION)
|
1142 |
|
|
return 0;
|
1143 |
|
|
|
1144 |
|
|
closing_insn = loc;
|
1145 |
|
|
loc += PPC_INSN_SIZE;
|
1146 |
|
|
insn = read_memory_integer (loc, PPC_INSN_SIZE, byte_order);
|
1147 |
|
|
|
1148 |
|
|
/* Insert a breakpoint right after the end of the atomic sequence. */
|
1149 |
|
|
breaks[0] = loc;
|
1150 |
|
|
|
1151 |
|
|
/* Check for duplicated breakpoints. Check also for a breakpoint
|
1152 |
|
|
placed (branch instruction's destination) at the stwcx/stdcx
|
1153 |
|
|
instruction, this resets the reservation and take us back to the
|
1154 |
|
|
lwarx/ldarx instruction at the beginning of the atomic sequence. */
|
1155 |
|
|
if (last_breakpoint && ((breaks[1] == breaks[0])
|
1156 |
|
|
|| (breaks[1] == closing_insn)))
|
1157 |
|
|
last_breakpoint = 0;
|
1158 |
|
|
|
1159 |
|
|
/* Effectively inserts the breakpoints. */
|
1160 |
|
|
for (index = 0; index <= last_breakpoint; index++)
|
1161 |
|
|
insert_single_step_breakpoint (gdbarch, aspace, breaks[index]);
|
1162 |
|
|
|
1163 |
|
|
return 1;
|
1164 |
|
|
}
|
1165 |
|
|
|
1166 |
|
|
|
1167 |
|
|
#define SIGNED_SHORT(x) \
|
1168 |
|
|
((sizeof (short) == 2) \
|
1169 |
|
|
? ((int)(short)(x)) \
|
1170 |
|
|
: ((int)((((x) & 0xffff) ^ 0x8000) - 0x8000)))
|
1171 |
|
|
|
1172 |
|
|
#define GET_SRC_REG(x) (((x) >> 21) & 0x1f)
|
1173 |
|
|
|
1174 |
|
|
/* Limit the number of skipped non-prologue instructions, as the examining
|
1175 |
|
|
of the prologue is expensive. */
|
1176 |
|
|
static int max_skip_non_prologue_insns = 10;
|
1177 |
|
|
|
1178 |
|
|
/* Return nonzero if the given instruction OP can be part of the prologue
|
1179 |
|
|
of a function and saves a parameter on the stack. FRAMEP should be
|
1180 |
|
|
set if one of the previous instructions in the function has set the
|
1181 |
|
|
Frame Pointer. */
|
1182 |
|
|
|
1183 |
|
|
static int
|
1184 |
|
|
store_param_on_stack_p (unsigned long op, int framep, int *r0_contains_arg)
|
1185 |
|
|
{
|
1186 |
|
|
/* Move parameters from argument registers to temporary register. */
|
1187 |
|
|
if ((op & 0xfc0007fe) == 0x7c000378) /* mr(.) Rx,Ry */
|
1188 |
|
|
{
|
1189 |
|
|
/* Rx must be scratch register r0. */
|
1190 |
|
|
const int rx_regno = (op >> 16) & 31;
|
1191 |
|
|
/* Ry: Only r3 - r10 are used for parameter passing. */
|
1192 |
|
|
const int ry_regno = GET_SRC_REG (op);
|
1193 |
|
|
|
1194 |
|
|
if (rx_regno == 0 && ry_regno >= 3 && ry_regno <= 10)
|
1195 |
|
|
{
|
1196 |
|
|
*r0_contains_arg = 1;
|
1197 |
|
|
return 1;
|
1198 |
|
|
}
|
1199 |
|
|
else
|
1200 |
|
|
return 0;
|
1201 |
|
|
}
|
1202 |
|
|
|
1203 |
|
|
/* Save a General Purpose Register on stack. */
|
1204 |
|
|
|
1205 |
|
|
if ((op & 0xfc1f0003) == 0xf8010000 || /* std Rx,NUM(r1) */
|
1206 |
|
|
(op & 0xfc1f0000) == 0xd8010000) /* stfd Rx,NUM(r1) */
|
1207 |
|
|
{
|
1208 |
|
|
/* Rx: Only r3 - r10 are used for parameter passing. */
|
1209 |
|
|
const int rx_regno = GET_SRC_REG (op);
|
1210 |
|
|
|
1211 |
|
|
return (rx_regno >= 3 && rx_regno <= 10);
|
1212 |
|
|
}
|
1213 |
|
|
|
1214 |
|
|
/* Save a General Purpose Register on stack via the Frame Pointer. */
|
1215 |
|
|
|
1216 |
|
|
if (framep &&
|
1217 |
|
|
((op & 0xfc1f0000) == 0x901f0000 || /* st rx,NUM(r31) */
|
1218 |
|
|
(op & 0xfc1f0000) == 0x981f0000 || /* stb Rx,NUM(r31) */
|
1219 |
|
|
(op & 0xfc1f0000) == 0xd81f0000)) /* stfd Rx,NUM(r31) */
|
1220 |
|
|
{
|
1221 |
|
|
/* Rx: Usually, only r3 - r10 are used for parameter passing.
|
1222 |
|
|
However, the compiler sometimes uses r0 to hold an argument. */
|
1223 |
|
|
const int rx_regno = GET_SRC_REG (op);
|
1224 |
|
|
|
1225 |
|
|
return ((rx_regno >= 3 && rx_regno <= 10)
|
1226 |
|
|
|| (rx_regno == 0 && *r0_contains_arg));
|
1227 |
|
|
}
|
1228 |
|
|
|
1229 |
|
|
if ((op & 0xfc1f0000) == 0xfc010000) /* frsp, fp?,NUM(r1) */
|
1230 |
|
|
{
|
1231 |
|
|
/* Only f2 - f8 are used for parameter passing. */
|
1232 |
|
|
const int src_regno = GET_SRC_REG (op);
|
1233 |
|
|
|
1234 |
|
|
return (src_regno >= 2 && src_regno <= 8);
|
1235 |
|
|
}
|
1236 |
|
|
|
1237 |
|
|
if (framep && ((op & 0xfc1f0000) == 0xfc1f0000)) /* frsp, fp?,NUM(r31) */
|
1238 |
|
|
{
|
1239 |
|
|
/* Only f2 - f8 are used for parameter passing. */
|
1240 |
|
|
const int src_regno = GET_SRC_REG (op);
|
1241 |
|
|
|
1242 |
|
|
return (src_regno >= 2 && src_regno <= 8);
|
1243 |
|
|
}
|
1244 |
|
|
|
1245 |
|
|
/* Not an insn that saves a parameter on stack. */
|
1246 |
|
|
return 0;
|
1247 |
|
|
}
|
1248 |
|
|
|
1249 |
|
|
/* Assuming that INSN is a "bl" instruction located at PC, return
|
1250 |
|
|
nonzero if the destination of the branch is a "blrl" instruction.
|
1251 |
|
|
|
1252 |
|
|
This sequence is sometimes found in certain function prologues.
|
1253 |
|
|
It allows the function to load the LR register with a value that
|
1254 |
|
|
they can use to access PIC data using PC-relative offsets. */
|
1255 |
|
|
|
1256 |
|
|
static int
|
1257 |
|
|
bl_to_blrl_insn_p (CORE_ADDR pc, int insn, enum bfd_endian byte_order)
|
1258 |
|
|
{
|
1259 |
|
|
CORE_ADDR dest;
|
1260 |
|
|
int immediate;
|
1261 |
|
|
int absolute;
|
1262 |
|
|
int dest_insn;
|
1263 |
|
|
|
1264 |
|
|
absolute = (int) ((insn >> 1) & 1);
|
1265 |
|
|
immediate = ((insn & ~3) << 6) >> 6;
|
1266 |
|
|
if (absolute)
|
1267 |
|
|
dest = immediate;
|
1268 |
|
|
else
|
1269 |
|
|
dest = pc + immediate;
|
1270 |
|
|
|
1271 |
|
|
dest_insn = read_memory_integer (dest, 4, byte_order);
|
1272 |
|
|
if ((dest_insn & 0xfc00ffff) == 0x4c000021) /* blrl */
|
1273 |
|
|
return 1;
|
1274 |
|
|
|
1275 |
|
|
return 0;
|
1276 |
|
|
}
|
1277 |
|
|
|
1278 |
|
|
/* Masks for decoding a branch-and-link (bl) instruction.
|
1279 |
|
|
|
1280 |
|
|
BL_MASK and BL_INSTRUCTION are used in combination with each other.
|
1281 |
|
|
The former is anded with the opcode in question; if the result of
|
1282 |
|
|
this masking operation is equal to BL_INSTRUCTION, then the opcode in
|
1283 |
|
|
question is a ``bl'' instruction.
|
1284 |
|
|
|
1285 |
|
|
BL_DISPLACMENT_MASK is anded with the opcode in order to extract
|
1286 |
|
|
the branch displacement. */
|
1287 |
|
|
|
1288 |
|
|
#define BL_MASK 0xfc000001
|
1289 |
|
|
#define BL_INSTRUCTION 0x48000001
|
1290 |
|
|
#define BL_DISPLACEMENT_MASK 0x03fffffc
|
1291 |
|
|
|
1292 |
|
|
static unsigned long
|
1293 |
|
|
rs6000_fetch_instruction (struct gdbarch *gdbarch, const CORE_ADDR pc)
|
1294 |
|
|
{
|
1295 |
|
|
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
1296 |
|
|
gdb_byte buf[4];
|
1297 |
|
|
unsigned long op;
|
1298 |
|
|
|
1299 |
|
|
/* Fetch the instruction and convert it to an integer. */
|
1300 |
|
|
if (target_read_memory (pc, buf, 4))
|
1301 |
|
|
return 0;
|
1302 |
|
|
op = extract_unsigned_integer (buf, 4, byte_order);
|
1303 |
|
|
|
1304 |
|
|
return op;
|
1305 |
|
|
}
|
1306 |
|
|
|
1307 |
|
|
/* GCC generates several well-known sequences of instructions at the begining
|
1308 |
|
|
of each function prologue when compiling with -fstack-check. If one of
|
1309 |
|
|
such sequences starts at START_PC, then return the address of the
|
1310 |
|
|
instruction immediately past this sequence. Otherwise, return START_PC. */
|
1311 |
|
|
|
1312 |
|
|
static CORE_ADDR
|
1313 |
|
|
rs6000_skip_stack_check (struct gdbarch *gdbarch, const CORE_ADDR start_pc)
|
1314 |
|
|
{
|
1315 |
|
|
CORE_ADDR pc = start_pc;
|
1316 |
|
|
unsigned long op = rs6000_fetch_instruction (gdbarch, pc);
|
1317 |
|
|
|
1318 |
|
|
/* First possible sequence: A small number of probes.
|
1319 |
|
|
stw 0, -<some immediate>(1)
|
1320 |
|
|
[repeat this instruction any (small) number of times]
|
1321 |
|
|
*/
|
1322 |
|
|
|
1323 |
|
|
if ((op & 0xffff0000) == 0x90010000)
|
1324 |
|
|
{
|
1325 |
|
|
while ((op & 0xffff0000) == 0x90010000)
|
1326 |
|
|
{
|
1327 |
|
|
pc = pc + 4;
|
1328 |
|
|
op = rs6000_fetch_instruction (gdbarch, pc);
|
1329 |
|
|
}
|
1330 |
|
|
return pc;
|
1331 |
|
|
}
|
1332 |
|
|
|
1333 |
|
|
/* Second sequence: A probing loop.
|
1334 |
|
|
addi 12,1,-<some immediate>
|
1335 |
|
|
lis 0,-<some immediate>
|
1336 |
|
|
[possibly ori 0,0,<some immediate>]
|
1337 |
|
|
add 0,12,0
|
1338 |
|
|
cmpw 0,12,0
|
1339 |
|
|
beq 0,<disp>
|
1340 |
|
|
addi 12,12,-<some immediate>
|
1341 |
|
|
stw 0,0(12)
|
1342 |
|
|
b <disp>
|
1343 |
|
|
[possibly one last probe: stw 0,<some immediate>(12)]
|
1344 |
|
|
*/
|
1345 |
|
|
|
1346 |
|
|
while (1)
|
1347 |
|
|
{
|
1348 |
|
|
/* addi 12,1,-<some immediate> */
|
1349 |
|
|
if ((op & 0xffff0000) != 0x39810000)
|
1350 |
|
|
break;
|
1351 |
|
|
|
1352 |
|
|
/* lis 0,-<some immediate> */
|
1353 |
|
|
pc = pc + 4;
|
1354 |
|
|
op = rs6000_fetch_instruction (gdbarch, pc);
|
1355 |
|
|
if ((op & 0xffff0000) != 0x3c000000)
|
1356 |
|
|
break;
|
1357 |
|
|
|
1358 |
|
|
pc = pc + 4;
|
1359 |
|
|
op = rs6000_fetch_instruction (gdbarch, pc);
|
1360 |
|
|
/* [possibly ori 0,0,<some immediate>] */
|
1361 |
|
|
if ((op & 0xffff0000) == 0x60000000)
|
1362 |
|
|
{
|
1363 |
|
|
pc = pc + 4;
|
1364 |
|
|
op = rs6000_fetch_instruction (gdbarch, pc);
|
1365 |
|
|
}
|
1366 |
|
|
/* add 0,12,0 */
|
1367 |
|
|
if (op != 0x7c0c0214)
|
1368 |
|
|
break;
|
1369 |
|
|
|
1370 |
|
|
/* cmpw 0,12,0 */
|
1371 |
|
|
pc = pc + 4;
|
1372 |
|
|
op = rs6000_fetch_instruction (gdbarch, pc);
|
1373 |
|
|
if (op != 0x7c0c0000)
|
1374 |
|
|
break;
|
1375 |
|
|
|
1376 |
|
|
/* beq 0,<disp> */
|
1377 |
|
|
pc = pc + 4;
|
1378 |
|
|
op = rs6000_fetch_instruction (gdbarch, pc);
|
1379 |
|
|
if ((op & 0xff9f0001) != 0x41820000)
|
1380 |
|
|
break;
|
1381 |
|
|
|
1382 |
|
|
/* addi 12,12,-<some immediate> */
|
1383 |
|
|
pc = pc + 4;
|
1384 |
|
|
op = rs6000_fetch_instruction (gdbarch, pc);
|
1385 |
|
|
if ((op & 0xffff0000) != 0x398c0000)
|
1386 |
|
|
break;
|
1387 |
|
|
|
1388 |
|
|
/* stw 0,0(12) */
|
1389 |
|
|
pc = pc + 4;
|
1390 |
|
|
op = rs6000_fetch_instruction (gdbarch, pc);
|
1391 |
|
|
if (op != 0x900c0000)
|
1392 |
|
|
break;
|
1393 |
|
|
|
1394 |
|
|
/* b <disp> */
|
1395 |
|
|
pc = pc + 4;
|
1396 |
|
|
op = rs6000_fetch_instruction (gdbarch, pc);
|
1397 |
|
|
if ((op & 0xfc000001) != 0x48000000)
|
1398 |
|
|
break;
|
1399 |
|
|
|
1400 |
|
|
/* [possibly one last probe: stw 0,<some immediate>(12)] */
|
1401 |
|
|
pc = pc + 4;
|
1402 |
|
|
op = rs6000_fetch_instruction (gdbarch, pc);
|
1403 |
|
|
if ((op & 0xffff0000) == 0x900c0000)
|
1404 |
|
|
{
|
1405 |
|
|
pc = pc + 4;
|
1406 |
|
|
op = rs6000_fetch_instruction (gdbarch, pc);
|
1407 |
|
|
}
|
1408 |
|
|
|
1409 |
|
|
/* We found a valid stack-check sequence, return the new PC. */
|
1410 |
|
|
return pc;
|
1411 |
|
|
}
|
1412 |
|
|
|
1413 |
|
|
/* Third sequence: No probe; instead, a comparizon between the stack size
|
1414 |
|
|
limit (saved in a run-time global variable) and the current stack
|
1415 |
|
|
pointer:
|
1416 |
|
|
|
1417 |
|
|
addi 0,1,-<some immediate>
|
1418 |
|
|
lis 12,__gnat_stack_limit@ha
|
1419 |
|
|
lwz 12,__gnat_stack_limit@l(12)
|
1420 |
|
|
twllt 0,12
|
1421 |
|
|
|
1422 |
|
|
or, with a small variant in the case of a bigger stack frame:
|
1423 |
|
|
addis 0,1,<some immediate>
|
1424 |
|
|
addic 0,0,-<some immediate>
|
1425 |
|
|
lis 12,__gnat_stack_limit@ha
|
1426 |
|
|
lwz 12,__gnat_stack_limit@l(12)
|
1427 |
|
|
twllt 0,12
|
1428 |
|
|
*/
|
1429 |
|
|
while (1)
|
1430 |
|
|
{
|
1431 |
|
|
/* addi 0,1,-<some immediate> */
|
1432 |
|
|
if ((op & 0xffff0000) != 0x38010000)
|
1433 |
|
|
{
|
1434 |
|
|
/* small stack frame variant not recognized; try the
|
1435 |
|
|
big stack frame variant: */
|
1436 |
|
|
|
1437 |
|
|
/* addis 0,1,<some immediate> */
|
1438 |
|
|
if ((op & 0xffff0000) != 0x3c010000)
|
1439 |
|
|
break;
|
1440 |
|
|
|
1441 |
|
|
/* addic 0,0,-<some immediate> */
|
1442 |
|
|
pc = pc + 4;
|
1443 |
|
|
op = rs6000_fetch_instruction (gdbarch, pc);
|
1444 |
|
|
if ((op & 0xffff0000) != 0x30000000)
|
1445 |
|
|
break;
|
1446 |
|
|
}
|
1447 |
|
|
|
1448 |
|
|
/* lis 12,<some immediate> */
|
1449 |
|
|
pc = pc + 4;
|
1450 |
|
|
op = rs6000_fetch_instruction (gdbarch, pc);
|
1451 |
|
|
if ((op & 0xffff0000) != 0x3d800000)
|
1452 |
|
|
break;
|
1453 |
|
|
|
1454 |
|
|
/* lwz 12,<some immediate>(12) */
|
1455 |
|
|
pc = pc + 4;
|
1456 |
|
|
op = rs6000_fetch_instruction (gdbarch, pc);
|
1457 |
|
|
if ((op & 0xffff0000) != 0x818c0000)
|
1458 |
|
|
break;
|
1459 |
|
|
|
1460 |
|
|
/* twllt 0,12 */
|
1461 |
|
|
pc = pc + 4;
|
1462 |
|
|
op = rs6000_fetch_instruction (gdbarch, pc);
|
1463 |
|
|
if ((op & 0xfffffffe) != 0x7c406008)
|
1464 |
|
|
break;
|
1465 |
|
|
|
1466 |
|
|
/* We found a valid stack-check sequence, return the new PC. */
|
1467 |
|
|
return pc;
|
1468 |
|
|
}
|
1469 |
|
|
|
1470 |
|
|
/* No stack check code in our prologue, return the start_pc. */
|
1471 |
|
|
return start_pc;
|
1472 |
|
|
}
|
1473 |
|
|
|
1474 |
|
|
/* return pc value after skipping a function prologue and also return
|
1475 |
|
|
information about a function frame.
|
1476 |
|
|
|
1477 |
|
|
in struct rs6000_framedata fdata:
|
1478 |
|
|
- frameless is TRUE, if function does not have a frame.
|
1479 |
|
|
- nosavedpc is TRUE, if function does not save %pc value in its frame.
|
1480 |
|
|
- offset is the initial size of this stack frame --- the amount by
|
1481 |
|
|
which we decrement the sp to allocate the frame.
|
1482 |
|
|
- saved_gpr is the number of the first saved gpr.
|
1483 |
|
|
- saved_fpr is the number of the first saved fpr.
|
1484 |
|
|
- saved_vr is the number of the first saved vr.
|
1485 |
|
|
- saved_ev is the number of the first saved ev.
|
1486 |
|
|
- alloca_reg is the number of the register used for alloca() handling.
|
1487 |
|
|
Otherwise -1.
|
1488 |
|
|
- gpr_offset is the offset of the first saved gpr from the previous frame.
|
1489 |
|
|
- fpr_offset is the offset of the first saved fpr from the previous frame.
|
1490 |
|
|
- vr_offset is the offset of the first saved vr from the previous frame.
|
1491 |
|
|
- ev_offset is the offset of the first saved ev from the previous frame.
|
1492 |
|
|
- lr_offset is the offset of the saved lr
|
1493 |
|
|
- cr_offset is the offset of the saved cr
|
1494 |
|
|
- vrsave_offset is the offset of the saved vrsave register
|
1495 |
|
|
*/
|
1496 |
|
|
|
1497 |
|
|
static CORE_ADDR
|
1498 |
|
|
skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc, CORE_ADDR lim_pc,
|
1499 |
|
|
struct rs6000_framedata *fdata)
|
1500 |
|
|
{
|
1501 |
|
|
CORE_ADDR orig_pc = pc;
|
1502 |
|
|
CORE_ADDR last_prologue_pc = pc;
|
1503 |
|
|
CORE_ADDR li_found_pc = 0;
|
1504 |
|
|
gdb_byte buf[4];
|
1505 |
|
|
unsigned long op;
|
1506 |
|
|
long offset = 0;
|
1507 |
|
|
long vr_saved_offset = 0;
|
1508 |
|
|
int lr_reg = -1;
|
1509 |
|
|
int cr_reg = -1;
|
1510 |
|
|
int vr_reg = -1;
|
1511 |
|
|
int ev_reg = -1;
|
1512 |
|
|
long ev_offset = 0;
|
1513 |
|
|
int vrsave_reg = -1;
|
1514 |
|
|
int reg;
|
1515 |
|
|
int framep = 0;
|
1516 |
|
|
int minimal_toc_loaded = 0;
|
1517 |
|
|
int prev_insn_was_prologue_insn = 1;
|
1518 |
|
|
int num_skip_non_prologue_insns = 0;
|
1519 |
|
|
int r0_contains_arg = 0;
|
1520 |
|
|
const struct bfd_arch_info *arch_info = gdbarch_bfd_arch_info (gdbarch);
|
1521 |
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
1522 |
|
|
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
1523 |
|
|
|
1524 |
|
|
memset (fdata, 0, sizeof (struct rs6000_framedata));
|
1525 |
|
|
fdata->saved_gpr = -1;
|
1526 |
|
|
fdata->saved_fpr = -1;
|
1527 |
|
|
fdata->saved_vr = -1;
|
1528 |
|
|
fdata->saved_ev = -1;
|
1529 |
|
|
fdata->alloca_reg = -1;
|
1530 |
|
|
fdata->frameless = 1;
|
1531 |
|
|
fdata->nosavedpc = 1;
|
1532 |
|
|
fdata->lr_register = -1;
|
1533 |
|
|
|
1534 |
|
|
pc = rs6000_skip_stack_check (gdbarch, pc);
|
1535 |
|
|
if (pc >= lim_pc)
|
1536 |
|
|
pc = lim_pc;
|
1537 |
|
|
|
1538 |
|
|
for (;; pc += 4)
|
1539 |
|
|
{
|
1540 |
|
|
/* Sometimes it isn't clear if an instruction is a prologue
|
1541 |
|
|
instruction or not. When we encounter one of these ambiguous
|
1542 |
|
|
cases, we'll set prev_insn_was_prologue_insn to 0 (false).
|
1543 |
|
|
Otherwise, we'll assume that it really is a prologue instruction. */
|
1544 |
|
|
if (prev_insn_was_prologue_insn)
|
1545 |
|
|
last_prologue_pc = pc;
|
1546 |
|
|
|
1547 |
|
|
/* Stop scanning if we've hit the limit. */
|
1548 |
|
|
if (pc >= lim_pc)
|
1549 |
|
|
break;
|
1550 |
|
|
|
1551 |
|
|
prev_insn_was_prologue_insn = 1;
|
1552 |
|
|
|
1553 |
|
|
/* Fetch the instruction and convert it to an integer. */
|
1554 |
|
|
if (target_read_memory (pc, buf, 4))
|
1555 |
|
|
break;
|
1556 |
|
|
op = extract_unsigned_integer (buf, 4, byte_order);
|
1557 |
|
|
|
1558 |
|
|
if ((op & 0xfc1fffff) == 0x7c0802a6)
|
1559 |
|
|
{ /* mflr Rx */
|
1560 |
|
|
/* Since shared library / PIC code, which needs to get its
|
1561 |
|
|
address at runtime, can appear to save more than one link
|
1562 |
|
|
register vis:
|
1563 |
|
|
|
1564 |
|
|
*INDENT-OFF*
|
1565 |
|
|
stwu r1,-304(r1)
|
1566 |
|
|
mflr r3
|
1567 |
|
|
bl 0xff570d0 (blrl)
|
1568 |
|
|
stw r30,296(r1)
|
1569 |
|
|
mflr r30
|
1570 |
|
|
stw r31,300(r1)
|
1571 |
|
|
stw r3,308(r1);
|
1572 |
|
|
...
|
1573 |
|
|
*INDENT-ON*
|
1574 |
|
|
|
1575 |
|
|
remember just the first one, but skip over additional
|
1576 |
|
|
ones. */
|
1577 |
|
|
if (lr_reg == -1)
|
1578 |
|
|
lr_reg = (op & 0x03e00000) >> 21;
|
1579 |
|
|
if (lr_reg == 0)
|
1580 |
|
|
r0_contains_arg = 0;
|
1581 |
|
|
continue;
|
1582 |
|
|
}
|
1583 |
|
|
else if ((op & 0xfc1fffff) == 0x7c000026)
|
1584 |
|
|
{ /* mfcr Rx */
|
1585 |
|
|
cr_reg = (op & 0x03e00000);
|
1586 |
|
|
if (cr_reg == 0)
|
1587 |
|
|
r0_contains_arg = 0;
|
1588 |
|
|
continue;
|
1589 |
|
|
|
1590 |
|
|
}
|
1591 |
|
|
else if ((op & 0xfc1f0000) == 0xd8010000)
|
1592 |
|
|
{ /* stfd Rx,NUM(r1) */
|
1593 |
|
|
reg = GET_SRC_REG (op);
|
1594 |
|
|
if (fdata->saved_fpr == -1 || fdata->saved_fpr > reg)
|
1595 |
|
|
{
|
1596 |
|
|
fdata->saved_fpr = reg;
|
1597 |
|
|
fdata->fpr_offset = SIGNED_SHORT (op) + offset;
|
1598 |
|
|
}
|
1599 |
|
|
continue;
|
1600 |
|
|
|
1601 |
|
|
}
|
1602 |
|
|
else if (((op & 0xfc1f0000) == 0xbc010000) || /* stm Rx, NUM(r1) */
|
1603 |
|
|
(((op & 0xfc1f0000) == 0x90010000 || /* st rx,NUM(r1) */
|
1604 |
|
|
(op & 0xfc1f0003) == 0xf8010000) && /* std rx,NUM(r1) */
|
1605 |
|
|
(op & 0x03e00000) >= 0x01a00000)) /* rx >= r13 */
|
1606 |
|
|
{
|
1607 |
|
|
|
1608 |
|
|
reg = GET_SRC_REG (op);
|
1609 |
|
|
if ((op & 0xfc1f0000) == 0xbc010000)
|
1610 |
|
|
fdata->gpr_mask |= ~((1U << reg) - 1);
|
1611 |
|
|
else
|
1612 |
|
|
fdata->gpr_mask |= 1U << reg;
|
1613 |
|
|
if (fdata->saved_gpr == -1 || fdata->saved_gpr > reg)
|
1614 |
|
|
{
|
1615 |
|
|
fdata->saved_gpr = reg;
|
1616 |
|
|
if ((op & 0xfc1f0003) == 0xf8010000)
|
1617 |
|
|
op &= ~3UL;
|
1618 |
|
|
fdata->gpr_offset = SIGNED_SHORT (op) + offset;
|
1619 |
|
|
}
|
1620 |
|
|
continue;
|
1621 |
|
|
|
1622 |
|
|
}
|
1623 |
|
|
else if ((op & 0xffff0000) == 0x60000000)
|
1624 |
|
|
{
|
1625 |
|
|
/* nop */
|
1626 |
|
|
/* Allow nops in the prologue, but do not consider them to
|
1627 |
|
|
be part of the prologue unless followed by other prologue
|
1628 |
|
|
instructions. */
|
1629 |
|
|
prev_insn_was_prologue_insn = 0;
|
1630 |
|
|
continue;
|
1631 |
|
|
|
1632 |
|
|
}
|
1633 |
|
|
else if ((op & 0xffff0000) == 0x3c000000)
|
1634 |
|
|
{ /* addis 0,0,NUM, used
|
1635 |
|
|
for >= 32k frames */
|
1636 |
|
|
fdata->offset = (op & 0x0000ffff) << 16;
|
1637 |
|
|
fdata->frameless = 0;
|
1638 |
|
|
r0_contains_arg = 0;
|
1639 |
|
|
continue;
|
1640 |
|
|
|
1641 |
|
|
}
|
1642 |
|
|
else if ((op & 0xffff0000) == 0x60000000)
|
1643 |
|
|
{ /* ori 0,0,NUM, 2nd ha
|
1644 |
|
|
lf of >= 32k frames */
|
1645 |
|
|
fdata->offset |= (op & 0x0000ffff);
|
1646 |
|
|
fdata->frameless = 0;
|
1647 |
|
|
r0_contains_arg = 0;
|
1648 |
|
|
continue;
|
1649 |
|
|
|
1650 |
|
|
}
|
1651 |
|
|
else if (lr_reg >= 0 &&
|
1652 |
|
|
/* std Rx, NUM(r1) || stdu Rx, NUM(r1) */
|
1653 |
|
|
(((op & 0xffff0000) == (lr_reg | 0xf8010000)) ||
|
1654 |
|
|
/* stw Rx, NUM(r1) */
|
1655 |
|
|
((op & 0xffff0000) == (lr_reg | 0x90010000)) ||
|
1656 |
|
|
/* stwu Rx, NUM(r1) */
|
1657 |
|
|
((op & 0xffff0000) == (lr_reg | 0x94010000))))
|
1658 |
|
|
{ /* where Rx == lr */
|
1659 |
|
|
fdata->lr_offset = offset;
|
1660 |
|
|
fdata->nosavedpc = 0;
|
1661 |
|
|
/* Invalidate lr_reg, but don't set it to -1.
|
1662 |
|
|
That would mean that it had never been set. */
|
1663 |
|
|
lr_reg = -2;
|
1664 |
|
|
if ((op & 0xfc000003) == 0xf8000000 || /* std */
|
1665 |
|
|
(op & 0xfc000000) == 0x90000000) /* stw */
|
1666 |
|
|
{
|
1667 |
|
|
/* Does not update r1, so add displacement to lr_offset. */
|
1668 |
|
|
fdata->lr_offset += SIGNED_SHORT (op);
|
1669 |
|
|
}
|
1670 |
|
|
continue;
|
1671 |
|
|
|
1672 |
|
|
}
|
1673 |
|
|
else if (cr_reg >= 0 &&
|
1674 |
|
|
/* std Rx, NUM(r1) || stdu Rx, NUM(r1) */
|
1675 |
|
|
(((op & 0xffff0000) == (cr_reg | 0xf8010000)) ||
|
1676 |
|
|
/* stw Rx, NUM(r1) */
|
1677 |
|
|
((op & 0xffff0000) == (cr_reg | 0x90010000)) ||
|
1678 |
|
|
/* stwu Rx, NUM(r1) */
|
1679 |
|
|
((op & 0xffff0000) == (cr_reg | 0x94010000))))
|
1680 |
|
|
{ /* where Rx == cr */
|
1681 |
|
|
fdata->cr_offset = offset;
|
1682 |
|
|
/* Invalidate cr_reg, but don't set it to -1.
|
1683 |
|
|
That would mean that it had never been set. */
|
1684 |
|
|
cr_reg = -2;
|
1685 |
|
|
if ((op & 0xfc000003) == 0xf8000000 ||
|
1686 |
|
|
(op & 0xfc000000) == 0x90000000)
|
1687 |
|
|
{
|
1688 |
|
|
/* Does not update r1, so add displacement to cr_offset. */
|
1689 |
|
|
fdata->cr_offset += SIGNED_SHORT (op);
|
1690 |
|
|
}
|
1691 |
|
|
continue;
|
1692 |
|
|
|
1693 |
|
|
}
|
1694 |
|
|
else if ((op & 0xfe80ffff) == 0x42800005 && lr_reg != -1)
|
1695 |
|
|
{
|
1696 |
|
|
/* bcl 20,xx,.+4 is used to get the current PC, with or without
|
1697 |
|
|
prediction bits. If the LR has already been saved, we can
|
1698 |
|
|
skip it. */
|
1699 |
|
|
continue;
|
1700 |
|
|
}
|
1701 |
|
|
else if (op == 0x48000005)
|
1702 |
|
|
{ /* bl .+4 used in
|
1703 |
|
|
-mrelocatable */
|
1704 |
|
|
fdata->used_bl = 1;
|
1705 |
|
|
continue;
|
1706 |
|
|
|
1707 |
|
|
}
|
1708 |
|
|
else if (op == 0x48000004)
|
1709 |
|
|
{ /* b .+4 (xlc) */
|
1710 |
|
|
break;
|
1711 |
|
|
|
1712 |
|
|
}
|
1713 |
|
|
else if ((op & 0xffff0000) == 0x3fc00000 || /* addis 30,0,foo@ha, used
|
1714 |
|
|
in V.4 -mminimal-toc */
|
1715 |
|
|
(op & 0xffff0000) == 0x3bde0000)
|
1716 |
|
|
{ /* addi 30,30,foo@l */
|
1717 |
|
|
continue;
|
1718 |
|
|
|
1719 |
|
|
}
|
1720 |
|
|
else if ((op & 0xfc000001) == 0x48000001)
|
1721 |
|
|
{ /* bl foo,
|
1722 |
|
|
to save fprs??? */
|
1723 |
|
|
|
1724 |
|
|
fdata->frameless = 0;
|
1725 |
|
|
|
1726 |
|
|
/* If the return address has already been saved, we can skip
|
1727 |
|
|
calls to blrl (for PIC). */
|
1728 |
|
|
if (lr_reg != -1 && bl_to_blrl_insn_p (pc, op, byte_order))
|
1729 |
|
|
{
|
1730 |
|
|
fdata->used_bl = 1;
|
1731 |
|
|
continue;
|
1732 |
|
|
}
|
1733 |
|
|
|
1734 |
|
|
/* Don't skip over the subroutine call if it is not within
|
1735 |
|
|
the first three instructions of the prologue and either
|
1736 |
|
|
we have no line table information or the line info tells
|
1737 |
|
|
us that the subroutine call is not part of the line
|
1738 |
|
|
associated with the prologue. */
|
1739 |
|
|
if ((pc - orig_pc) > 8)
|
1740 |
|
|
{
|
1741 |
|
|
struct symtab_and_line prologue_sal = find_pc_line (orig_pc, 0);
|
1742 |
|
|
struct symtab_and_line this_sal = find_pc_line (pc, 0);
|
1743 |
|
|
|
1744 |
|
|
if ((prologue_sal.line == 0) || (prologue_sal.line != this_sal.line))
|
1745 |
|
|
break;
|
1746 |
|
|
}
|
1747 |
|
|
|
1748 |
|
|
op = read_memory_integer (pc + 4, 4, byte_order);
|
1749 |
|
|
|
1750 |
|
|
/* At this point, make sure this is not a trampoline
|
1751 |
|
|
function (a function that simply calls another functions,
|
1752 |
|
|
and nothing else). If the next is not a nop, this branch
|
1753 |
|
|
was part of the function prologue. */
|
1754 |
|
|
|
1755 |
|
|
if (op == 0x4def7b82 || op == 0) /* crorc 15, 15, 15 */
|
1756 |
|
|
break; /* don't skip over
|
1757 |
|
|
this branch */
|
1758 |
|
|
|
1759 |
|
|
fdata->used_bl = 1;
|
1760 |
|
|
continue;
|
1761 |
|
|
}
|
1762 |
|
|
/* update stack pointer */
|
1763 |
|
|
else if ((op & 0xfc1f0000) == 0x94010000)
|
1764 |
|
|
{ /* stu rX,NUM(r1) || stwu rX,NUM(r1) */
|
1765 |
|
|
fdata->frameless = 0;
|
1766 |
|
|
fdata->offset = SIGNED_SHORT (op);
|
1767 |
|
|
offset = fdata->offset;
|
1768 |
|
|
continue;
|
1769 |
|
|
}
|
1770 |
|
|
else if ((op & 0xfc1f016a) == 0x7c01016e)
|
1771 |
|
|
{ /* stwux rX,r1,rY */
|
1772 |
|
|
/* no way to figure out what r1 is going to be */
|
1773 |
|
|
fdata->frameless = 0;
|
1774 |
|
|
offset = fdata->offset;
|
1775 |
|
|
continue;
|
1776 |
|
|
}
|
1777 |
|
|
else if ((op & 0xfc1f0003) == 0xf8010001)
|
1778 |
|
|
{ /* stdu rX,NUM(r1) */
|
1779 |
|
|
fdata->frameless = 0;
|
1780 |
|
|
fdata->offset = SIGNED_SHORT (op & ~3UL);
|
1781 |
|
|
offset = fdata->offset;
|
1782 |
|
|
continue;
|
1783 |
|
|
}
|
1784 |
|
|
else if ((op & 0xfc1f016a) == 0x7c01016a)
|
1785 |
|
|
{ /* stdux rX,r1,rY */
|
1786 |
|
|
/* no way to figure out what r1 is going to be */
|
1787 |
|
|
fdata->frameless = 0;
|
1788 |
|
|
offset = fdata->offset;
|
1789 |
|
|
continue;
|
1790 |
|
|
}
|
1791 |
|
|
else if ((op & 0xffff0000) == 0x38210000)
|
1792 |
|
|
{ /* addi r1,r1,SIMM */
|
1793 |
|
|
fdata->frameless = 0;
|
1794 |
|
|
fdata->offset += SIGNED_SHORT (op);
|
1795 |
|
|
offset = fdata->offset;
|
1796 |
|
|
continue;
|
1797 |
|
|
}
|
1798 |
|
|
/* Load up minimal toc pointer. Do not treat an epilogue restore
|
1799 |
|
|
of r31 as a minimal TOC load. */
|
1800 |
|
|
else if (((op >> 22) == 0x20f || /* l r31,... or l r30,... */
|
1801 |
|
|
(op >> 22) == 0x3af) /* ld r31,... or ld r30,... */
|
1802 |
|
|
&& !framep
|
1803 |
|
|
&& !minimal_toc_loaded)
|
1804 |
|
|
{
|
1805 |
|
|
minimal_toc_loaded = 1;
|
1806 |
|
|
continue;
|
1807 |
|
|
|
1808 |
|
|
/* move parameters from argument registers to local variable
|
1809 |
|
|
registers */
|
1810 |
|
|
}
|
1811 |
|
|
else if ((op & 0xfc0007fe) == 0x7c000378 && /* mr(.) Rx,Ry */
|
1812 |
|
|
(((op >> 21) & 31) >= 3) && /* R3 >= Ry >= R10 */
|
1813 |
|
|
(((op >> 21) & 31) <= 10) &&
|
1814 |
|
|
((long) ((op >> 16) & 31) >= fdata->saved_gpr)) /* Rx: local var reg */
|
1815 |
|
|
{
|
1816 |
|
|
continue;
|
1817 |
|
|
|
1818 |
|
|
/* store parameters in stack */
|
1819 |
|
|
}
|
1820 |
|
|
/* Move parameters from argument registers to temporary register. */
|
1821 |
|
|
else if (store_param_on_stack_p (op, framep, &r0_contains_arg))
|
1822 |
|
|
{
|
1823 |
|
|
continue;
|
1824 |
|
|
|
1825 |
|
|
/* Set up frame pointer */
|
1826 |
|
|
}
|
1827 |
|
|
else if (op == 0x603f0000 /* oril r31, r1, 0x0 */
|
1828 |
|
|
|| op == 0x7c3f0b78)
|
1829 |
|
|
{ /* mr r31, r1 */
|
1830 |
|
|
fdata->frameless = 0;
|
1831 |
|
|
framep = 1;
|
1832 |
|
|
fdata->alloca_reg = (tdep->ppc_gp0_regnum + 31);
|
1833 |
|
|
continue;
|
1834 |
|
|
|
1835 |
|
|
/* Another way to set up the frame pointer. */
|
1836 |
|
|
}
|
1837 |
|
|
else if ((op & 0xfc1fffff) == 0x38010000)
|
1838 |
|
|
{ /* addi rX, r1, 0x0 */
|
1839 |
|
|
fdata->frameless = 0;
|
1840 |
|
|
framep = 1;
|
1841 |
|
|
fdata->alloca_reg = (tdep->ppc_gp0_regnum
|
1842 |
|
|
+ ((op & ~0x38010000) >> 21));
|
1843 |
|
|
continue;
|
1844 |
|
|
}
|
1845 |
|
|
/* AltiVec related instructions. */
|
1846 |
|
|
/* Store the vrsave register (spr 256) in another register for
|
1847 |
|
|
later manipulation, or load a register into the vrsave
|
1848 |
|
|
register. 2 instructions are used: mfvrsave and
|
1849 |
|
|
mtvrsave. They are shorthand notation for mfspr Rn, SPR256
|
1850 |
|
|
and mtspr SPR256, Rn. */
|
1851 |
|
|
/* mfspr Rn SPR256 == 011111 nnnnn 0000001000 01010100110
|
1852 |
|
|
mtspr SPR256 Rn == 011111 nnnnn 0000001000 01110100110 */
|
1853 |
|
|
else if ((op & 0xfc1fffff) == 0x7c0042a6) /* mfvrsave Rn */
|
1854 |
|
|
{
|
1855 |
|
|
vrsave_reg = GET_SRC_REG (op);
|
1856 |
|
|
continue;
|
1857 |
|
|
}
|
1858 |
|
|
else if ((op & 0xfc1fffff) == 0x7c0043a6) /* mtvrsave Rn */
|
1859 |
|
|
{
|
1860 |
|
|
continue;
|
1861 |
|
|
}
|
1862 |
|
|
/* Store the register where vrsave was saved to onto the stack:
|
1863 |
|
|
rS is the register where vrsave was stored in a previous
|
1864 |
|
|
instruction. */
|
1865 |
|
|
/* 100100 sssss 00001 dddddddd dddddddd */
|
1866 |
|
|
else if ((op & 0xfc1f0000) == 0x90010000) /* stw rS, d(r1) */
|
1867 |
|
|
{
|
1868 |
|
|
if (vrsave_reg == GET_SRC_REG (op))
|
1869 |
|
|
{
|
1870 |
|
|
fdata->vrsave_offset = SIGNED_SHORT (op) + offset;
|
1871 |
|
|
vrsave_reg = -1;
|
1872 |
|
|
}
|
1873 |
|
|
continue;
|
1874 |
|
|
}
|
1875 |
|
|
/* Compute the new value of vrsave, by modifying the register
|
1876 |
|
|
where vrsave was saved to. */
|
1877 |
|
|
else if (((op & 0xfc000000) == 0x64000000) /* oris Ra, Rs, UIMM */
|
1878 |
|
|
|| ((op & 0xfc000000) == 0x60000000))/* ori Ra, Rs, UIMM */
|
1879 |
|
|
{
|
1880 |
|
|
continue;
|
1881 |
|
|
}
|
1882 |
|
|
/* li r0, SIMM (short for addi r0, 0, SIMM). This is the first
|
1883 |
|
|
in a pair of insns to save the vector registers on the
|
1884 |
|
|
stack. */
|
1885 |
|
|
/* 001110 00000 00000 iiii iiii iiii iiii */
|
1886 |
|
|
/* 001110 01110 00000 iiii iiii iiii iiii */
|
1887 |
|
|
else if ((op & 0xffff0000) == 0x38000000 /* li r0, SIMM */
|
1888 |
|
|
|| (op & 0xffff0000) == 0x39c00000) /* li r14, SIMM */
|
1889 |
|
|
{
|
1890 |
|
|
if ((op & 0xffff0000) == 0x38000000)
|
1891 |
|
|
r0_contains_arg = 0;
|
1892 |
|
|
li_found_pc = pc;
|
1893 |
|
|
vr_saved_offset = SIGNED_SHORT (op);
|
1894 |
|
|
|
1895 |
|
|
/* This insn by itself is not part of the prologue, unless
|
1896 |
|
|
if part of the pair of insns mentioned above. So do not
|
1897 |
|
|
record this insn as part of the prologue yet. */
|
1898 |
|
|
prev_insn_was_prologue_insn = 0;
|
1899 |
|
|
}
|
1900 |
|
|
/* Store vector register S at (r31+r0) aligned to 16 bytes. */
|
1901 |
|
|
/* 011111 sssss 11111 00000 00111001110 */
|
1902 |
|
|
else if ((op & 0xfc1fffff) == 0x7c1f01ce) /* stvx Vs, R31, R0 */
|
1903 |
|
|
{
|
1904 |
|
|
if (pc == (li_found_pc + 4))
|
1905 |
|
|
{
|
1906 |
|
|
vr_reg = GET_SRC_REG (op);
|
1907 |
|
|
/* If this is the first vector reg to be saved, or if
|
1908 |
|
|
it has a lower number than others previously seen,
|
1909 |
|
|
reupdate the frame info. */
|
1910 |
|
|
if (fdata->saved_vr == -1 || fdata->saved_vr > vr_reg)
|
1911 |
|
|
{
|
1912 |
|
|
fdata->saved_vr = vr_reg;
|
1913 |
|
|
fdata->vr_offset = vr_saved_offset + offset;
|
1914 |
|
|
}
|
1915 |
|
|
vr_saved_offset = -1;
|
1916 |
|
|
vr_reg = -1;
|
1917 |
|
|
li_found_pc = 0;
|
1918 |
|
|
}
|
1919 |
|
|
}
|
1920 |
|
|
/* End AltiVec related instructions. */
|
1921 |
|
|
|
1922 |
|
|
/* Start BookE related instructions. */
|
1923 |
|
|
/* Store gen register S at (r31+uimm).
|
1924 |
|
|
Any register less than r13 is volatile, so we don't care. */
|
1925 |
|
|
/* 000100 sssss 11111 iiiii 01100100001 */
|
1926 |
|
|
else if (arch_info->mach == bfd_mach_ppc_e500
|
1927 |
|
|
&& (op & 0xfc1f07ff) == 0x101f0321) /* evstdd Rs,uimm(R31) */
|
1928 |
|
|
{
|
1929 |
|
|
if ((op & 0x03e00000) >= 0x01a00000) /* Rs >= r13 */
|
1930 |
|
|
{
|
1931 |
|
|
unsigned int imm;
|
1932 |
|
|
ev_reg = GET_SRC_REG (op);
|
1933 |
|
|
imm = (op >> 11) & 0x1f;
|
1934 |
|
|
ev_offset = imm * 8;
|
1935 |
|
|
/* If this is the first vector reg to be saved, or if
|
1936 |
|
|
it has a lower number than others previously seen,
|
1937 |
|
|
reupdate the frame info. */
|
1938 |
|
|
if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
|
1939 |
|
|
{
|
1940 |
|
|
fdata->saved_ev = ev_reg;
|
1941 |
|
|
fdata->ev_offset = ev_offset + offset;
|
1942 |
|
|
}
|
1943 |
|
|
}
|
1944 |
|
|
continue;
|
1945 |
|
|
}
|
1946 |
|
|
/* Store gen register rS at (r1+rB). */
|
1947 |
|
|
/* 000100 sssss 00001 bbbbb 01100100000 */
|
1948 |
|
|
else if (arch_info->mach == bfd_mach_ppc_e500
|
1949 |
|
|
&& (op & 0xffe007ff) == 0x13e00320) /* evstddx RS,R1,Rb */
|
1950 |
|
|
{
|
1951 |
|
|
if (pc == (li_found_pc + 4))
|
1952 |
|
|
{
|
1953 |
|
|
ev_reg = GET_SRC_REG (op);
|
1954 |
|
|
/* If this is the first vector reg to be saved, or if
|
1955 |
|
|
it has a lower number than others previously seen,
|
1956 |
|
|
reupdate the frame info. */
|
1957 |
|
|
/* We know the contents of rB from the previous instruction. */
|
1958 |
|
|
if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
|
1959 |
|
|
{
|
1960 |
|
|
fdata->saved_ev = ev_reg;
|
1961 |
|
|
fdata->ev_offset = vr_saved_offset + offset;
|
1962 |
|
|
}
|
1963 |
|
|
vr_saved_offset = -1;
|
1964 |
|
|
ev_reg = -1;
|
1965 |
|
|
li_found_pc = 0;
|
1966 |
|
|
}
|
1967 |
|
|
continue;
|
1968 |
|
|
}
|
1969 |
|
|
/* Store gen register r31 at (rA+uimm). */
|
1970 |
|
|
/* 000100 11111 aaaaa iiiii 01100100001 */
|
1971 |
|
|
else if (arch_info->mach == bfd_mach_ppc_e500
|
1972 |
|
|
&& (op & 0xffe007ff) == 0x13e00321) /* evstdd R31,Ra,UIMM */
|
1973 |
|
|
{
|
1974 |
|
|
/* Wwe know that the source register is 31 already, but
|
1975 |
|
|
it can't hurt to compute it. */
|
1976 |
|
|
ev_reg = GET_SRC_REG (op);
|
1977 |
|
|
ev_offset = ((op >> 11) & 0x1f) * 8;
|
1978 |
|
|
/* If this is the first vector reg to be saved, or if
|
1979 |
|
|
it has a lower number than others previously seen,
|
1980 |
|
|
reupdate the frame info. */
|
1981 |
|
|
if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
|
1982 |
|
|
{
|
1983 |
|
|
fdata->saved_ev = ev_reg;
|
1984 |
|
|
fdata->ev_offset = ev_offset + offset;
|
1985 |
|
|
}
|
1986 |
|
|
|
1987 |
|
|
continue;
|
1988 |
|
|
}
|
1989 |
|
|
/* Store gen register S at (r31+r0).
|
1990 |
|
|
Store param on stack when offset from SP bigger than 4 bytes. */
|
1991 |
|
|
/* 000100 sssss 11111 00000 01100100000 */
|
1992 |
|
|
else if (arch_info->mach == bfd_mach_ppc_e500
|
1993 |
|
|
&& (op & 0xfc1fffff) == 0x101f0320) /* evstddx Rs,R31,R0 */
|
1994 |
|
|
{
|
1995 |
|
|
if (pc == (li_found_pc + 4))
|
1996 |
|
|
{
|
1997 |
|
|
if ((op & 0x03e00000) >= 0x01a00000)
|
1998 |
|
|
{
|
1999 |
|
|
ev_reg = GET_SRC_REG (op);
|
2000 |
|
|
/* If this is the first vector reg to be saved, or if
|
2001 |
|
|
it has a lower number than others previously seen,
|
2002 |
|
|
reupdate the frame info. */
|
2003 |
|
|
/* We know the contents of r0 from the previous
|
2004 |
|
|
instruction. */
|
2005 |
|
|
if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
|
2006 |
|
|
{
|
2007 |
|
|
fdata->saved_ev = ev_reg;
|
2008 |
|
|
fdata->ev_offset = vr_saved_offset + offset;
|
2009 |
|
|
}
|
2010 |
|
|
ev_reg = -1;
|
2011 |
|
|
}
|
2012 |
|
|
vr_saved_offset = -1;
|
2013 |
|
|
li_found_pc = 0;
|
2014 |
|
|
continue;
|
2015 |
|
|
}
|
2016 |
|
|
}
|
2017 |
|
|
/* End BookE related instructions. */
|
2018 |
|
|
|
2019 |
|
|
else
|
2020 |
|
|
{
|
2021 |
|
|
unsigned int all_mask = ~((1U << fdata->saved_gpr) - 1);
|
2022 |
|
|
|
2023 |
|
|
/* Not a recognized prologue instruction.
|
2024 |
|
|
Handle optimizer code motions into the prologue by continuing
|
2025 |
|
|
the search if we have no valid frame yet or if the return
|
2026 |
|
|
address is not yet saved in the frame. Also skip instructions
|
2027 |
|
|
if some of the GPRs expected to be saved are not yet saved. */
|
2028 |
|
|
if (fdata->frameless == 0 && fdata->nosavedpc == 0
|
2029 |
|
|
&& (fdata->gpr_mask & all_mask) == all_mask)
|
2030 |
|
|
break;
|
2031 |
|
|
|
2032 |
|
|
if (op == 0x4e800020 /* blr */
|
2033 |
|
|
|| op == 0x4e800420) /* bctr */
|
2034 |
|
|
/* Do not scan past epilogue in frameless functions or
|
2035 |
|
|
trampolines. */
|
2036 |
|
|
break;
|
2037 |
|
|
if ((op & 0xf4000000) == 0x40000000) /* bxx */
|
2038 |
|
|
/* Never skip branches. */
|
2039 |
|
|
break;
|
2040 |
|
|
|
2041 |
|
|
if (num_skip_non_prologue_insns++ > max_skip_non_prologue_insns)
|
2042 |
|
|
/* Do not scan too many insns, scanning insns is expensive with
|
2043 |
|
|
remote targets. */
|
2044 |
|
|
break;
|
2045 |
|
|
|
2046 |
|
|
/* Continue scanning. */
|
2047 |
|
|
prev_insn_was_prologue_insn = 0;
|
2048 |
|
|
continue;
|
2049 |
|
|
}
|
2050 |
|
|
}
|
2051 |
|
|
|
2052 |
|
|
#if 0
|
2053 |
|
|
/* I have problems with skipping over __main() that I need to address
|
2054 |
|
|
* sometime. Previously, I used to use misc_function_vector which
|
2055 |
|
|
* didn't work as well as I wanted to be. -MGO */
|
2056 |
|
|
|
2057 |
|
|
/* If the first thing after skipping a prolog is a branch to a function,
|
2058 |
|
|
this might be a call to an initializer in main(), introduced by gcc2.
|
2059 |
|
|
We'd like to skip over it as well. Fortunately, xlc does some extra
|
2060 |
|
|
work before calling a function right after a prologue, thus we can
|
2061 |
|
|
single out such gcc2 behaviour. */
|
2062 |
|
|
|
2063 |
|
|
|
2064 |
|
|
if ((op & 0xfc000001) == 0x48000001)
|
2065 |
|
|
{ /* bl foo, an initializer function? */
|
2066 |
|
|
op = read_memory_integer (pc + 4, 4, byte_order);
|
2067 |
|
|
|
2068 |
|
|
if (op == 0x4def7b82)
|
2069 |
|
|
{ /* cror 0xf, 0xf, 0xf (nop) */
|
2070 |
|
|
|
2071 |
|
|
/* Check and see if we are in main. If so, skip over this
|
2072 |
|
|
initializer function as well. */
|
2073 |
|
|
|
2074 |
|
|
tmp = find_pc_misc_function (pc);
|
2075 |
|
|
if (tmp >= 0
|
2076 |
|
|
&& strcmp (misc_function_vector[tmp].name, main_name ()) == 0)
|
2077 |
|
|
return pc + 8;
|
2078 |
|
|
}
|
2079 |
|
|
}
|
2080 |
|
|
#endif /* 0 */
|
2081 |
|
|
|
2082 |
|
|
if (pc == lim_pc && lr_reg >= 0)
|
2083 |
|
|
fdata->lr_register = lr_reg;
|
2084 |
|
|
|
2085 |
|
|
fdata->offset = -fdata->offset;
|
2086 |
|
|
return last_prologue_pc;
|
2087 |
|
|
}
|
2088 |
|
|
|
2089 |
|
|
static CORE_ADDR
|
2090 |
|
|
rs6000_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
|
2091 |
|
|
{
|
2092 |
|
|
struct rs6000_framedata frame;
|
2093 |
|
|
CORE_ADDR limit_pc, func_addr;
|
2094 |
|
|
|
2095 |
|
|
/* See if we can determine the end of the prologue via the symbol table.
|
2096 |
|
|
If so, then return either PC, or the PC after the prologue, whichever
|
2097 |
|
|
is greater. */
|
2098 |
|
|
if (find_pc_partial_function (pc, NULL, &func_addr, NULL))
|
2099 |
|
|
{
|
2100 |
|
|
CORE_ADDR post_prologue_pc
|
2101 |
|
|
= skip_prologue_using_sal (gdbarch, func_addr);
|
2102 |
|
|
if (post_prologue_pc != 0)
|
2103 |
|
|
return max (pc, post_prologue_pc);
|
2104 |
|
|
}
|
2105 |
|
|
|
2106 |
|
|
/* Can't determine prologue from the symbol table, need to examine
|
2107 |
|
|
instructions. */
|
2108 |
|
|
|
2109 |
|
|
/* Find an upper limit on the function prologue using the debug
|
2110 |
|
|
information. If the debug information could not be used to provide
|
2111 |
|
|
that bound, then use an arbitrary large number as the upper bound. */
|
2112 |
|
|
limit_pc = skip_prologue_using_sal (gdbarch, pc);
|
2113 |
|
|
if (limit_pc == 0)
|
2114 |
|
|
limit_pc = pc + 100; /* Magic. */
|
2115 |
|
|
|
2116 |
|
|
pc = skip_prologue (gdbarch, pc, limit_pc, &frame);
|
2117 |
|
|
return pc;
|
2118 |
|
|
}
|
2119 |
|
|
|
2120 |
|
|
/* When compiling for EABI, some versions of GCC emit a call to __eabi
|
2121 |
|
|
in the prologue of main().
|
2122 |
|
|
|
2123 |
|
|
The function below examines the code pointed at by PC and checks to
|
2124 |
|
|
see if it corresponds to a call to __eabi. If so, it returns the
|
2125 |
|
|
address of the instruction following that call. Otherwise, it simply
|
2126 |
|
|
returns PC. */
|
2127 |
|
|
|
2128 |
|
|
static CORE_ADDR
|
2129 |
|
|
rs6000_skip_main_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
|
2130 |
|
|
{
|
2131 |
|
|
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
2132 |
|
|
gdb_byte buf[4];
|
2133 |
|
|
unsigned long op;
|
2134 |
|
|
|
2135 |
|
|
if (target_read_memory (pc, buf, 4))
|
2136 |
|
|
return pc;
|
2137 |
|
|
op = extract_unsigned_integer (buf, 4, byte_order);
|
2138 |
|
|
|
2139 |
|
|
if ((op & BL_MASK) == BL_INSTRUCTION)
|
2140 |
|
|
{
|
2141 |
|
|
CORE_ADDR displ = op & BL_DISPLACEMENT_MASK;
|
2142 |
|
|
CORE_ADDR call_dest = pc + 4 + displ;
|
2143 |
|
|
struct minimal_symbol *s = lookup_minimal_symbol_by_pc (call_dest);
|
2144 |
|
|
|
2145 |
|
|
/* We check for ___eabi (three leading underscores) in addition
|
2146 |
|
|
to __eabi in case the GCC option "-fleading-underscore" was
|
2147 |
|
|
used to compile the program. */
|
2148 |
|
|
if (s != NULL
|
2149 |
|
|
&& SYMBOL_LINKAGE_NAME (s) != NULL
|
2150 |
|
|
&& (strcmp (SYMBOL_LINKAGE_NAME (s), "__eabi") == 0
|
2151 |
|
|
|| strcmp (SYMBOL_LINKAGE_NAME (s), "___eabi") == 0))
|
2152 |
|
|
pc += 4;
|
2153 |
|
|
}
|
2154 |
|
|
return pc;
|
2155 |
|
|
}
|
2156 |
|
|
|
2157 |
|
|
/* All the ABI's require 16 byte alignment. */
|
2158 |
|
|
static CORE_ADDR
|
2159 |
|
|
rs6000_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
|
2160 |
|
|
{
|
2161 |
|
|
return (addr & -16);
|
2162 |
|
|
}
|
2163 |
|
|
|
2164 |
|
|
/* Return whether handle_inferior_event() should proceed through code
|
2165 |
|
|
starting at PC in function NAME when stepping.
|
2166 |
|
|
|
2167 |
|
|
The AIX -bbigtoc linker option generates functions @FIX0, @FIX1, etc. to
|
2168 |
|
|
handle memory references that are too distant to fit in instructions
|
2169 |
|
|
generated by the compiler. For example, if 'foo' in the following
|
2170 |
|
|
instruction:
|
2171 |
|
|
|
2172 |
|
|
lwz r9,foo(r2)
|
2173 |
|
|
|
2174 |
|
|
is greater than 32767, the linker might replace the lwz with a branch to
|
2175 |
|
|
somewhere in @FIX1 that does the load in 2 instructions and then branches
|
2176 |
|
|
back to where execution should continue.
|
2177 |
|
|
|
2178 |
|
|
GDB should silently step over @FIX code, just like AIX dbx does.
|
2179 |
|
|
Unfortunately, the linker uses the "b" instruction for the
|
2180 |
|
|
branches, meaning that the link register doesn't get set.
|
2181 |
|
|
Therefore, GDB's usual step_over_function () mechanism won't work.
|
2182 |
|
|
|
2183 |
|
|
Instead, use the gdbarch_skip_trampoline_code and
|
2184 |
|
|
gdbarch_skip_trampoline_code hooks in handle_inferior_event() to skip past
|
2185 |
|
|
@FIX code. */
|
2186 |
|
|
|
2187 |
|
|
static int
|
2188 |
|
|
rs6000_in_solib_return_trampoline (struct gdbarch *gdbarch,
|
2189 |
|
|
CORE_ADDR pc, char *name)
|
2190 |
|
|
{
|
2191 |
|
|
return name && !strncmp (name, "@FIX", 4);
|
2192 |
|
|
}
|
2193 |
|
|
|
2194 |
|
|
/* Skip code that the user doesn't want to see when stepping:
|
2195 |
|
|
|
2196 |
|
|
1. Indirect function calls use a piece of trampoline code to do context
|
2197 |
|
|
switching, i.e. to set the new TOC table. Skip such code if we are on
|
2198 |
|
|
its first instruction (as when we have single-stepped to here).
|
2199 |
|
|
|
2200 |
|
|
2. Skip shared library trampoline code (which is different from
|
2201 |
|
|
indirect function call trampolines).
|
2202 |
|
|
|
2203 |
|
|
3. Skip bigtoc fixup code.
|
2204 |
|
|
|
2205 |
|
|
Result is desired PC to step until, or NULL if we are not in
|
2206 |
|
|
code that should be skipped. */
|
2207 |
|
|
|
2208 |
|
|
static CORE_ADDR
|
2209 |
|
|
rs6000_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
|
2210 |
|
|
{
|
2211 |
|
|
struct gdbarch *gdbarch = get_frame_arch (frame);
|
2212 |
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
2213 |
|
|
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
2214 |
|
|
unsigned int ii, op;
|
2215 |
|
|
int rel;
|
2216 |
|
|
CORE_ADDR solib_target_pc;
|
2217 |
|
|
struct minimal_symbol *msymbol;
|
2218 |
|
|
|
2219 |
|
|
static unsigned trampoline_code[] =
|
2220 |
|
|
{
|
2221 |
|
|
0x800b0000, /* l r0,0x0(r11) */
|
2222 |
|
|
0x90410014, /* st r2,0x14(r1) */
|
2223 |
|
|
0x7c0903a6, /* mtctr r0 */
|
2224 |
|
|
0x804b0004, /* l r2,0x4(r11) */
|
2225 |
|
|
0x816b0008, /* l r11,0x8(r11) */
|
2226 |
|
|
0x4e800420, /* bctr */
|
2227 |
|
|
0x4e800020, /* br */
|
2228 |
|
|
|
2229 |
|
|
};
|
2230 |
|
|
|
2231 |
|
|
/* Check for bigtoc fixup code. */
|
2232 |
|
|
msymbol = lookup_minimal_symbol_by_pc (pc);
|
2233 |
|
|
if (msymbol
|
2234 |
|
|
&& rs6000_in_solib_return_trampoline (gdbarch, pc,
|
2235 |
|
|
SYMBOL_LINKAGE_NAME (msymbol)))
|
2236 |
|
|
{
|
2237 |
|
|
/* Double-check that the third instruction from PC is relative "b". */
|
2238 |
|
|
op = read_memory_integer (pc + 8, 4, byte_order);
|
2239 |
|
|
if ((op & 0xfc000003) == 0x48000000)
|
2240 |
|
|
{
|
2241 |
|
|
/* Extract bits 6-29 as a signed 24-bit relative word address and
|
2242 |
|
|
add it to the containing PC. */
|
2243 |
|
|
rel = ((int)(op << 6) >> 6);
|
2244 |
|
|
return pc + 8 + rel;
|
2245 |
|
|
}
|
2246 |
|
|
}
|
2247 |
|
|
|
2248 |
|
|
/* If pc is in a shared library trampoline, return its target. */
|
2249 |
|
|
solib_target_pc = find_solib_trampoline_target (frame, pc);
|
2250 |
|
|
if (solib_target_pc)
|
2251 |
|
|
return solib_target_pc;
|
2252 |
|
|
|
2253 |
|
|
for (ii = 0; trampoline_code[ii]; ++ii)
|
2254 |
|
|
{
|
2255 |
|
|
op = read_memory_integer (pc + (ii * 4), 4, byte_order);
|
2256 |
|
|
if (op != trampoline_code[ii])
|
2257 |
|
|
return 0;
|
2258 |
|
|
}
|
2259 |
|
|
ii = get_frame_register_unsigned (frame, 11); /* r11 holds destination addr */
|
2260 |
|
|
pc = read_memory_unsigned_integer (ii, tdep->wordsize, byte_order);
|
2261 |
|
|
return pc;
|
2262 |
|
|
}
|
2263 |
|
|
|
2264 |
|
|
/* ISA-specific vector types. */
|
2265 |
|
|
|
2266 |
|
|
static struct type *
|
2267 |
|
|
rs6000_builtin_type_vec64 (struct gdbarch *gdbarch)
|
2268 |
|
|
{
|
2269 |
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
2270 |
|
|
|
2271 |
|
|
if (!tdep->ppc_builtin_type_vec64)
|
2272 |
|
|
{
|
2273 |
|
|
const struct builtin_type *bt = builtin_type (gdbarch);
|
2274 |
|
|
|
2275 |
|
|
/* The type we're building is this: */
|
2276 |
|
|
#if 0
|
2277 |
|
|
union __gdb_builtin_type_vec64
|
2278 |
|
|
{
|
2279 |
|
|
int64_t uint64;
|
2280 |
|
|
float v2_float[2];
|
2281 |
|
|
int32_t v2_int32[2];
|
2282 |
|
|
int16_t v4_int16[4];
|
2283 |
|
|
int8_t v8_int8[8];
|
2284 |
|
|
};
|
2285 |
|
|
#endif
|
2286 |
|
|
|
2287 |
|
|
struct type *t;
|
2288 |
|
|
|
2289 |
|
|
t = arch_composite_type (gdbarch,
|
2290 |
|
|
"__ppc_builtin_type_vec64", TYPE_CODE_UNION);
|
2291 |
|
|
append_composite_type_field (t, "uint64", bt->builtin_int64);
|
2292 |
|
|
append_composite_type_field (t, "v2_float",
|
2293 |
|
|
init_vector_type (bt->builtin_float, 2));
|
2294 |
|
|
append_composite_type_field (t, "v2_int32",
|
2295 |
|
|
init_vector_type (bt->builtin_int32, 2));
|
2296 |
|
|
append_composite_type_field (t, "v4_int16",
|
2297 |
|
|
init_vector_type (bt->builtin_int16, 4));
|
2298 |
|
|
append_composite_type_field (t, "v8_int8",
|
2299 |
|
|
init_vector_type (bt->builtin_int8, 8));
|
2300 |
|
|
|
2301 |
|
|
TYPE_VECTOR (t) = 1;
|
2302 |
|
|
TYPE_NAME (t) = "ppc_builtin_type_vec64";
|
2303 |
|
|
tdep->ppc_builtin_type_vec64 = t;
|
2304 |
|
|
}
|
2305 |
|
|
|
2306 |
|
|
return tdep->ppc_builtin_type_vec64;
|
2307 |
|
|
}
|
2308 |
|
|
|
2309 |
|
|
/* Vector 128 type. */
|
2310 |
|
|
|
2311 |
|
|
static struct type *
|
2312 |
|
|
rs6000_builtin_type_vec128 (struct gdbarch *gdbarch)
|
2313 |
|
|
{
|
2314 |
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
2315 |
|
|
|
2316 |
|
|
if (!tdep->ppc_builtin_type_vec128)
|
2317 |
|
|
{
|
2318 |
|
|
const struct builtin_type *bt = builtin_type (gdbarch);
|
2319 |
|
|
|
2320 |
|
|
/* The type we're building is this
|
2321 |
|
|
|
2322 |
|
|
type = union __ppc_builtin_type_vec128 {
|
2323 |
|
|
uint128_t uint128;
|
2324 |
|
|
double v2_double[2];
|
2325 |
|
|
float v4_float[4];
|
2326 |
|
|
int32_t v4_int32[4];
|
2327 |
|
|
int16_t v8_int16[8];
|
2328 |
|
|
int8_t v16_int8[16];
|
2329 |
|
|
}
|
2330 |
|
|
*/
|
2331 |
|
|
|
2332 |
|
|
struct type *t;
|
2333 |
|
|
|
2334 |
|
|
t = arch_composite_type (gdbarch,
|
2335 |
|
|
"__ppc_builtin_type_vec128", TYPE_CODE_UNION);
|
2336 |
|
|
append_composite_type_field (t, "uint128", bt->builtin_uint128);
|
2337 |
|
|
append_composite_type_field (t, "v2_double",
|
2338 |
|
|
init_vector_type (bt->builtin_double, 2));
|
2339 |
|
|
append_composite_type_field (t, "v4_float",
|
2340 |
|
|
init_vector_type (bt->builtin_float, 4));
|
2341 |
|
|
append_composite_type_field (t, "v4_int32",
|
2342 |
|
|
init_vector_type (bt->builtin_int32, 4));
|
2343 |
|
|
append_composite_type_field (t, "v8_int16",
|
2344 |
|
|
init_vector_type (bt->builtin_int16, 8));
|
2345 |
|
|
append_composite_type_field (t, "v16_int8",
|
2346 |
|
|
init_vector_type (bt->builtin_int8, 16));
|
2347 |
|
|
|
2348 |
|
|
TYPE_VECTOR (t) = 1;
|
2349 |
|
|
TYPE_NAME (t) = "ppc_builtin_type_vec128";
|
2350 |
|
|
tdep->ppc_builtin_type_vec128 = t;
|
2351 |
|
|
}
|
2352 |
|
|
|
2353 |
|
|
return tdep->ppc_builtin_type_vec128;
|
2354 |
|
|
}
|
2355 |
|
|
|
2356 |
|
|
/* Return the name of register number REGNO, or the empty string if it
|
2357 |
|
|
is an anonymous register. */
|
2358 |
|
|
|
2359 |
|
|
static const char *
|
2360 |
|
|
rs6000_register_name (struct gdbarch *gdbarch, int regno)
|
2361 |
|
|
{
|
2362 |
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
2363 |
|
|
|
2364 |
|
|
/* The upper half "registers" have names in the XML description,
|
2365 |
|
|
but we present only the low GPRs and the full 64-bit registers
|
2366 |
|
|
to the user. */
|
2367 |
|
|
if (tdep->ppc_ev0_upper_regnum >= 0
|
2368 |
|
|
&& tdep->ppc_ev0_upper_regnum <= regno
|
2369 |
|
|
&& regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs)
|
2370 |
|
|
return "";
|
2371 |
|
|
|
2372 |
|
|
/* Hide the upper halves of the vs0~vs31 registers. */
|
2373 |
|
|
if (tdep->ppc_vsr0_regnum >= 0
|
2374 |
|
|
&& tdep->ppc_vsr0_upper_regnum <= regno
|
2375 |
|
|
&& regno < tdep->ppc_vsr0_upper_regnum + ppc_num_gprs)
|
2376 |
|
|
return "";
|
2377 |
|
|
|
2378 |
|
|
/* Check if the SPE pseudo registers are available. */
|
2379 |
|
|
if (IS_SPE_PSEUDOREG (tdep, regno))
|
2380 |
|
|
{
|
2381 |
|
|
static const char *const spe_regnames[] = {
|
2382 |
|
|
"ev0", "ev1", "ev2", "ev3", "ev4", "ev5", "ev6", "ev7",
|
2383 |
|
|
"ev8", "ev9", "ev10", "ev11", "ev12", "ev13", "ev14", "ev15",
|
2384 |
|
|
"ev16", "ev17", "ev18", "ev19", "ev20", "ev21", "ev22", "ev23",
|
2385 |
|
|
"ev24", "ev25", "ev26", "ev27", "ev28", "ev29", "ev30", "ev31",
|
2386 |
|
|
};
|
2387 |
|
|
return spe_regnames[regno - tdep->ppc_ev0_regnum];
|
2388 |
|
|
}
|
2389 |
|
|
|
2390 |
|
|
/* Check if the decimal128 pseudo-registers are available. */
|
2391 |
|
|
if (IS_DFP_PSEUDOREG (tdep, regno))
|
2392 |
|
|
{
|
2393 |
|
|
static const char *const dfp128_regnames[] = {
|
2394 |
|
|
"dl0", "dl1", "dl2", "dl3",
|
2395 |
|
|
"dl4", "dl5", "dl6", "dl7",
|
2396 |
|
|
"dl8", "dl9", "dl10", "dl11",
|
2397 |
|
|
"dl12", "dl13", "dl14", "dl15"
|
2398 |
|
|
};
|
2399 |
|
|
return dfp128_regnames[regno - tdep->ppc_dl0_regnum];
|
2400 |
|
|
}
|
2401 |
|
|
|
2402 |
|
|
/* Check if this is a VSX pseudo-register. */
|
2403 |
|
|
if (IS_VSX_PSEUDOREG (tdep, regno))
|
2404 |
|
|
{
|
2405 |
|
|
static const char *const vsx_regnames[] = {
|
2406 |
|
|
"vs0", "vs1", "vs2", "vs3", "vs4", "vs5", "vs6", "vs7",
|
2407 |
|
|
"vs8", "vs9", "vs10", "vs11", "vs12", "vs13", "vs14",
|
2408 |
|
|
"vs15", "vs16", "vs17", "vs18", "vs19", "vs20", "vs21",
|
2409 |
|
|
"vs22", "vs23", "vs24", "vs25", "vs26", "vs27", "vs28",
|
2410 |
|
|
"vs29", "vs30", "vs31", "vs32", "vs33", "vs34", "vs35",
|
2411 |
|
|
"vs36", "vs37", "vs38", "vs39", "vs40", "vs41", "vs42",
|
2412 |
|
|
"vs43", "vs44", "vs45", "vs46", "vs47", "vs48", "vs49",
|
2413 |
|
|
"vs50", "vs51", "vs52", "vs53", "vs54", "vs55", "vs56",
|
2414 |
|
|
"vs57", "vs58", "vs59", "vs60", "vs61", "vs62", "vs63"
|
2415 |
|
|
};
|
2416 |
|
|
return vsx_regnames[regno - tdep->ppc_vsr0_regnum];
|
2417 |
|
|
}
|
2418 |
|
|
|
2419 |
|
|
/* Check if the this is a Extended FP pseudo-register. */
|
2420 |
|
|
if (IS_EFP_PSEUDOREG (tdep, regno))
|
2421 |
|
|
{
|
2422 |
|
|
static const char *const efpr_regnames[] = {
|
2423 |
|
|
"f32", "f33", "f34", "f35", "f36", "f37", "f38",
|
2424 |
|
|
"f39", "f40", "f41", "f42", "f43", "f44", "f45",
|
2425 |
|
|
"f46", "f47", "f48", "f49", "f50", "f51",
|
2426 |
|
|
"f52", "f53", "f54", "f55", "f56", "f57",
|
2427 |
|
|
"f58", "f59", "f60", "f61", "f62", "f63"
|
2428 |
|
|
};
|
2429 |
|
|
return efpr_regnames[regno - tdep->ppc_efpr0_regnum];
|
2430 |
|
|
}
|
2431 |
|
|
|
2432 |
|
|
return tdesc_register_name (gdbarch, regno);
|
2433 |
|
|
}
|
2434 |
|
|
|
2435 |
|
|
/* Return the GDB type object for the "standard" data type of data in
|
2436 |
|
|
register N. */
|
2437 |
|
|
|
2438 |
|
|
static struct type *
|
2439 |
|
|
rs6000_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
|
2440 |
|
|
{
|
2441 |
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
2442 |
|
|
|
2443 |
|
|
/* These are the only pseudo-registers we support. */
|
2444 |
|
|
gdb_assert (IS_SPE_PSEUDOREG (tdep, regnum)
|
2445 |
|
|
|| IS_DFP_PSEUDOREG (tdep, regnum)
|
2446 |
|
|
|| IS_VSX_PSEUDOREG (tdep, regnum)
|
2447 |
|
|
|| IS_EFP_PSEUDOREG (tdep, regnum));
|
2448 |
|
|
|
2449 |
|
|
/* These are the e500 pseudo-registers. */
|
2450 |
|
|
if (IS_SPE_PSEUDOREG (tdep, regnum))
|
2451 |
|
|
return rs6000_builtin_type_vec64 (gdbarch);
|
2452 |
|
|
else if (IS_DFP_PSEUDOREG (tdep, regnum))
|
2453 |
|
|
/* PPC decimal128 pseudo-registers. */
|
2454 |
|
|
return builtin_type (gdbarch)->builtin_declong;
|
2455 |
|
|
else if (IS_VSX_PSEUDOREG (tdep, regnum))
|
2456 |
|
|
/* POWER7 VSX pseudo-registers. */
|
2457 |
|
|
return rs6000_builtin_type_vec128 (gdbarch);
|
2458 |
|
|
else
|
2459 |
|
|
/* POWER7 Extended FP pseudo-registers. */
|
2460 |
|
|
return builtin_type (gdbarch)->builtin_double;
|
2461 |
|
|
}
|
2462 |
|
|
|
2463 |
|
|
/* Is REGNUM a member of REGGROUP? */
|
2464 |
|
|
static int
|
2465 |
|
|
rs6000_pseudo_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
|
2466 |
|
|
struct reggroup *group)
|
2467 |
|
|
{
|
2468 |
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
2469 |
|
|
|
2470 |
|
|
/* These are the only pseudo-registers we support. */
|
2471 |
|
|
gdb_assert (IS_SPE_PSEUDOREG (tdep, regnum)
|
2472 |
|
|
|| IS_DFP_PSEUDOREG (tdep, regnum)
|
2473 |
|
|
|| IS_VSX_PSEUDOREG (tdep, regnum)
|
2474 |
|
|
|| IS_EFP_PSEUDOREG (tdep, regnum));
|
2475 |
|
|
|
2476 |
|
|
/* These are the e500 pseudo-registers or the POWER7 VSX registers. */
|
2477 |
|
|
if (IS_SPE_PSEUDOREG (tdep, regnum) || IS_VSX_PSEUDOREG (tdep, regnum))
|
2478 |
|
|
return group == all_reggroup || group == vector_reggroup;
|
2479 |
|
|
else
|
2480 |
|
|
/* PPC decimal128 or Extended FP pseudo-registers. */
|
2481 |
|
|
return group == all_reggroup || group == float_reggroup;
|
2482 |
|
|
}
|
2483 |
|
|
|
2484 |
|
|
/* The register format for RS/6000 floating point registers is always
|
2485 |
|
|
double, we need a conversion if the memory format is float. */
|
2486 |
|
|
|
2487 |
|
|
static int
|
2488 |
|
|
rs6000_convert_register_p (struct gdbarch *gdbarch, int regnum,
|
2489 |
|
|
struct type *type)
|
2490 |
|
|
{
|
2491 |
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
2492 |
|
|
|
2493 |
|
|
return (tdep->ppc_fp0_regnum >= 0
|
2494 |
|
|
&& regnum >= tdep->ppc_fp0_regnum
|
2495 |
|
|
&& regnum < tdep->ppc_fp0_regnum + ppc_num_fprs
|
2496 |
|
|
&& TYPE_CODE (type) == TYPE_CODE_FLT
|
2497 |
|
|
&& TYPE_LENGTH (type)
|
2498 |
|
|
!= TYPE_LENGTH (builtin_type (gdbarch)->builtin_double));
|
2499 |
|
|
}
|
2500 |
|
|
|
2501 |
|
|
static void
|
2502 |
|
|
rs6000_register_to_value (struct frame_info *frame,
|
2503 |
|
|
int regnum,
|
2504 |
|
|
struct type *type,
|
2505 |
|
|
gdb_byte *to)
|
2506 |
|
|
{
|
2507 |
|
|
struct gdbarch *gdbarch = get_frame_arch (frame);
|
2508 |
|
|
gdb_byte from[MAX_REGISTER_SIZE];
|
2509 |
|
|
|
2510 |
|
|
gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT);
|
2511 |
|
|
|
2512 |
|
|
get_frame_register (frame, regnum, from);
|
2513 |
|
|
convert_typed_floating (from, builtin_type (gdbarch)->builtin_double,
|
2514 |
|
|
to, type);
|
2515 |
|
|
}
|
2516 |
|
|
|
2517 |
|
|
static void
|
2518 |
|
|
rs6000_value_to_register (struct frame_info *frame,
|
2519 |
|
|
int regnum,
|
2520 |
|
|
struct type *type,
|
2521 |
|
|
const gdb_byte *from)
|
2522 |
|
|
{
|
2523 |
|
|
struct gdbarch *gdbarch = get_frame_arch (frame);
|
2524 |
|
|
gdb_byte to[MAX_REGISTER_SIZE];
|
2525 |
|
|
|
2526 |
|
|
gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT);
|
2527 |
|
|
|
2528 |
|
|
convert_typed_floating (from, type,
|
2529 |
|
|
to, builtin_type (gdbarch)->builtin_double);
|
2530 |
|
|
put_frame_register (frame, regnum, to);
|
2531 |
|
|
}
|
2532 |
|
|
|
2533 |
|
|
/* Move SPE vector register values between a 64-bit buffer and the two
|
2534 |
|
|
32-bit raw register halves in a regcache. This function handles
|
2535 |
|
|
both splitting a 64-bit value into two 32-bit halves, and joining
|
2536 |
|
|
two halves into a whole 64-bit value, depending on the function
|
2537 |
|
|
passed as the MOVE argument.
|
2538 |
|
|
|
2539 |
|
|
EV_REG must be the number of an SPE evN vector register --- a
|
2540 |
|
|
pseudoregister. REGCACHE must be a regcache, and BUFFER must be a
|
2541 |
|
|
64-bit buffer.
|
2542 |
|
|
|
2543 |
|
|
Call MOVE once for each 32-bit half of that register, passing
|
2544 |
|
|
REGCACHE, the number of the raw register corresponding to that
|
2545 |
|
|
half, and the address of the appropriate half of BUFFER.
|
2546 |
|
|
|
2547 |
|
|
For example, passing 'regcache_raw_read' as the MOVE function will
|
2548 |
|
|
fill BUFFER with the full 64-bit contents of EV_REG. Or, passing
|
2549 |
|
|
'regcache_raw_supply' will supply the contents of BUFFER to the
|
2550 |
|
|
appropriate pair of raw registers in REGCACHE.
|
2551 |
|
|
|
2552 |
|
|
You may need to cast away some 'const' qualifiers when passing
|
2553 |
|
|
MOVE, since this function can't tell at compile-time which of
|
2554 |
|
|
REGCACHE or BUFFER is acting as the source of the data. If C had
|
2555 |
|
|
co-variant type qualifiers, ... */
|
2556 |
|
|
static void
|
2557 |
|
|
e500_move_ev_register (void (*move) (struct regcache *regcache,
|
2558 |
|
|
int regnum, gdb_byte *buf),
|
2559 |
|
|
struct regcache *regcache, int ev_reg,
|
2560 |
|
|
gdb_byte *buffer)
|
2561 |
|
|
{
|
2562 |
|
|
struct gdbarch *arch = get_regcache_arch (regcache);
|
2563 |
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
|
2564 |
|
|
int reg_index;
|
2565 |
|
|
gdb_byte *byte_buffer = buffer;
|
2566 |
|
|
|
2567 |
|
|
gdb_assert (IS_SPE_PSEUDOREG (tdep, ev_reg));
|
2568 |
|
|
|
2569 |
|
|
reg_index = ev_reg - tdep->ppc_ev0_regnum;
|
2570 |
|
|
|
2571 |
|
|
if (gdbarch_byte_order (arch) == BFD_ENDIAN_BIG)
|
2572 |
|
|
{
|
2573 |
|
|
move (regcache, tdep->ppc_ev0_upper_regnum + reg_index, byte_buffer);
|
2574 |
|
|
move (regcache, tdep->ppc_gp0_regnum + reg_index, byte_buffer + 4);
|
2575 |
|
|
}
|
2576 |
|
|
else
|
2577 |
|
|
{
|
2578 |
|
|
move (regcache, tdep->ppc_gp0_regnum + reg_index, byte_buffer);
|
2579 |
|
|
move (regcache, tdep->ppc_ev0_upper_regnum + reg_index, byte_buffer + 4);
|
2580 |
|
|
}
|
2581 |
|
|
}
|
2582 |
|
|
|
2583 |
|
|
static void
|
2584 |
|
|
e500_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
|
2585 |
|
|
int reg_nr, gdb_byte *buffer)
|
2586 |
|
|
{
|
2587 |
|
|
e500_move_ev_register (regcache_raw_read, regcache, reg_nr, buffer);
|
2588 |
|
|
}
|
2589 |
|
|
|
2590 |
|
|
static void
|
2591 |
|
|
e500_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
|
2592 |
|
|
int reg_nr, const gdb_byte *buffer)
|
2593 |
|
|
{
|
2594 |
|
|
e500_move_ev_register ((void (*) (struct regcache *, int, gdb_byte *))
|
2595 |
|
|
regcache_raw_write,
|
2596 |
|
|
regcache, reg_nr, (gdb_byte *) buffer);
|
2597 |
|
|
}
|
2598 |
|
|
|
2599 |
|
|
/* Read method for DFP pseudo-registers. */
|
2600 |
|
|
static void
|
2601 |
|
|
dfp_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
|
2602 |
|
|
int reg_nr, gdb_byte *buffer)
|
2603 |
|
|
{
|
2604 |
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
2605 |
|
|
int reg_index = reg_nr - tdep->ppc_dl0_regnum;
|
2606 |
|
|
|
2607 |
|
|
if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
|
2608 |
|
|
{
|
2609 |
|
|
/* Read two FP registers to form a whole dl register. */
|
2610 |
|
|
regcache_raw_read (regcache, tdep->ppc_fp0_regnum +
|
2611 |
|
|
2 * reg_index, buffer);
|
2612 |
|
|
regcache_raw_read (regcache, tdep->ppc_fp0_regnum +
|
2613 |
|
|
2 * reg_index + 1, buffer + 8);
|
2614 |
|
|
}
|
2615 |
|
|
else
|
2616 |
|
|
{
|
2617 |
|
|
regcache_raw_read (regcache, tdep->ppc_fp0_regnum +
|
2618 |
|
|
2 * reg_index + 1, buffer + 8);
|
2619 |
|
|
regcache_raw_read (regcache, tdep->ppc_fp0_regnum +
|
2620 |
|
|
2 * reg_index, buffer);
|
2621 |
|
|
}
|
2622 |
|
|
}
|
2623 |
|
|
|
2624 |
|
|
/* Write method for DFP pseudo-registers. */
|
2625 |
|
|
static void
|
2626 |
|
|
dfp_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
|
2627 |
|
|
int reg_nr, const gdb_byte *buffer)
|
2628 |
|
|
{
|
2629 |
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
2630 |
|
|
int reg_index = reg_nr - tdep->ppc_dl0_regnum;
|
2631 |
|
|
|
2632 |
|
|
if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
|
2633 |
|
|
{
|
2634 |
|
|
/* Write each half of the dl register into a separate
|
2635 |
|
|
FP register. */
|
2636 |
|
|
regcache_raw_write (regcache, tdep->ppc_fp0_regnum +
|
2637 |
|
|
2 * reg_index, buffer);
|
2638 |
|
|
regcache_raw_write (regcache, tdep->ppc_fp0_regnum +
|
2639 |
|
|
2 * reg_index + 1, buffer + 8);
|
2640 |
|
|
}
|
2641 |
|
|
else
|
2642 |
|
|
{
|
2643 |
|
|
regcache_raw_write (regcache, tdep->ppc_fp0_regnum +
|
2644 |
|
|
2 * reg_index + 1, buffer + 8);
|
2645 |
|
|
regcache_raw_write (regcache, tdep->ppc_fp0_regnum +
|
2646 |
|
|
2 * reg_index, buffer);
|
2647 |
|
|
}
|
2648 |
|
|
}
|
2649 |
|
|
|
2650 |
|
|
/* Read method for POWER7 VSX pseudo-registers. */
|
2651 |
|
|
static void
|
2652 |
|
|
vsx_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
|
2653 |
|
|
int reg_nr, gdb_byte *buffer)
|
2654 |
|
|
{
|
2655 |
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
2656 |
|
|
int reg_index = reg_nr - tdep->ppc_vsr0_regnum;
|
2657 |
|
|
|
2658 |
|
|
/* Read the portion that overlaps the VMX registers. */
|
2659 |
|
|
if (reg_index > 31)
|
2660 |
|
|
regcache_raw_read (regcache, tdep->ppc_vr0_regnum +
|
2661 |
|
|
reg_index - 32, buffer);
|
2662 |
|
|
else
|
2663 |
|
|
/* Read the portion that overlaps the FPR registers. */
|
2664 |
|
|
if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
|
2665 |
|
|
{
|
2666 |
|
|
regcache_raw_read (regcache, tdep->ppc_fp0_regnum +
|
2667 |
|
|
reg_index, buffer);
|
2668 |
|
|
regcache_raw_read (regcache, tdep->ppc_vsr0_upper_regnum +
|
2669 |
|
|
reg_index, buffer + 8);
|
2670 |
|
|
}
|
2671 |
|
|
else
|
2672 |
|
|
{
|
2673 |
|
|
regcache_raw_read (regcache, tdep->ppc_fp0_regnum +
|
2674 |
|
|
reg_index, buffer + 8);
|
2675 |
|
|
regcache_raw_read (regcache, tdep->ppc_vsr0_upper_regnum +
|
2676 |
|
|
reg_index, buffer);
|
2677 |
|
|
}
|
2678 |
|
|
}
|
2679 |
|
|
|
2680 |
|
|
/* Write method for POWER7 VSX pseudo-registers. */
|
2681 |
|
|
static void
|
2682 |
|
|
vsx_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
|
2683 |
|
|
int reg_nr, const gdb_byte *buffer)
|
2684 |
|
|
{
|
2685 |
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
2686 |
|
|
int reg_index = reg_nr - tdep->ppc_vsr0_regnum;
|
2687 |
|
|
|
2688 |
|
|
/* Write the portion that overlaps the VMX registers. */
|
2689 |
|
|
if (reg_index > 31)
|
2690 |
|
|
regcache_raw_write (regcache, tdep->ppc_vr0_regnum +
|
2691 |
|
|
reg_index - 32, buffer);
|
2692 |
|
|
else
|
2693 |
|
|
/* Write the portion that overlaps the FPR registers. */
|
2694 |
|
|
if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
|
2695 |
|
|
{
|
2696 |
|
|
regcache_raw_write (regcache, tdep->ppc_fp0_regnum +
|
2697 |
|
|
reg_index, buffer);
|
2698 |
|
|
regcache_raw_write (regcache, tdep->ppc_vsr0_upper_regnum +
|
2699 |
|
|
reg_index, buffer + 8);
|
2700 |
|
|
}
|
2701 |
|
|
else
|
2702 |
|
|
{
|
2703 |
|
|
regcache_raw_write (regcache, tdep->ppc_fp0_regnum +
|
2704 |
|
|
reg_index, buffer + 8);
|
2705 |
|
|
regcache_raw_write (regcache, tdep->ppc_vsr0_upper_regnum +
|
2706 |
|
|
reg_index, buffer);
|
2707 |
|
|
}
|
2708 |
|
|
}
|
2709 |
|
|
|
2710 |
|
|
/* Read method for POWER7 Extended FP pseudo-registers. */
|
2711 |
|
|
static void
|
2712 |
|
|
efpr_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
|
2713 |
|
|
int reg_nr, gdb_byte *buffer)
|
2714 |
|
|
{
|
2715 |
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
2716 |
|
|
int reg_index = reg_nr - tdep->ppc_efpr0_regnum;
|
2717 |
|
|
|
2718 |
|
|
/* Read the portion that overlaps the VMX registers. */
|
2719 |
|
|
regcache_raw_read (regcache, tdep->ppc_vr0_regnum +
|
2720 |
|
|
reg_index, buffer);
|
2721 |
|
|
}
|
2722 |
|
|
|
2723 |
|
|
/* Write method for POWER7 Extended FP pseudo-registers. */
|
2724 |
|
|
static void
|
2725 |
|
|
efpr_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
|
2726 |
|
|
int reg_nr, const gdb_byte *buffer)
|
2727 |
|
|
{
|
2728 |
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
2729 |
|
|
int reg_index = reg_nr - tdep->ppc_efpr0_regnum;
|
2730 |
|
|
|
2731 |
|
|
/* Write the portion that overlaps the VMX registers. */
|
2732 |
|
|
regcache_raw_write (regcache, tdep->ppc_vr0_regnum +
|
2733 |
|
|
reg_index, buffer);
|
2734 |
|
|
}
|
2735 |
|
|
|
2736 |
|
|
static void
|
2737 |
|
|
rs6000_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
|
2738 |
|
|
int reg_nr, gdb_byte *buffer)
|
2739 |
|
|
{
|
2740 |
|
|
struct gdbarch *regcache_arch = get_regcache_arch (regcache);
|
2741 |
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
2742 |
|
|
|
2743 |
|
|
gdb_assert (regcache_arch == gdbarch);
|
2744 |
|
|
|
2745 |
|
|
if (IS_SPE_PSEUDOREG (tdep, reg_nr))
|
2746 |
|
|
e500_pseudo_register_read (gdbarch, regcache, reg_nr, buffer);
|
2747 |
|
|
else if (IS_DFP_PSEUDOREG (tdep, reg_nr))
|
2748 |
|
|
dfp_pseudo_register_read (gdbarch, regcache, reg_nr, buffer);
|
2749 |
|
|
else if (IS_VSX_PSEUDOREG (tdep, reg_nr))
|
2750 |
|
|
vsx_pseudo_register_read (gdbarch, regcache, reg_nr, buffer);
|
2751 |
|
|
else if (IS_EFP_PSEUDOREG (tdep, reg_nr))
|
2752 |
|
|
efpr_pseudo_register_read (gdbarch, regcache, reg_nr, buffer);
|
2753 |
|
|
else
|
2754 |
|
|
internal_error (__FILE__, __LINE__,
|
2755 |
|
|
_("rs6000_pseudo_register_read: "
|
2756 |
|
|
"called on unexpected register '%s' (%d)"),
|
2757 |
|
|
gdbarch_register_name (gdbarch, reg_nr), reg_nr);
|
2758 |
|
|
}
|
2759 |
|
|
|
2760 |
|
|
static void
|
2761 |
|
|
rs6000_pseudo_register_write (struct gdbarch *gdbarch,
|
2762 |
|
|
struct regcache *regcache,
|
2763 |
|
|
int reg_nr, const gdb_byte *buffer)
|
2764 |
|
|
{
|
2765 |
|
|
struct gdbarch *regcache_arch = get_regcache_arch (regcache);
|
2766 |
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
2767 |
|
|
|
2768 |
|
|
gdb_assert (regcache_arch == gdbarch);
|
2769 |
|
|
|
2770 |
|
|
if (IS_SPE_PSEUDOREG (tdep, reg_nr))
|
2771 |
|
|
e500_pseudo_register_write (gdbarch, regcache, reg_nr, buffer);
|
2772 |
|
|
else if (IS_DFP_PSEUDOREG (tdep, reg_nr))
|
2773 |
|
|
dfp_pseudo_register_write (gdbarch, regcache, reg_nr, buffer);
|
2774 |
|
|
else if (IS_VSX_PSEUDOREG (tdep, reg_nr))
|
2775 |
|
|
vsx_pseudo_register_write (gdbarch, regcache, reg_nr, buffer);
|
2776 |
|
|
else if (IS_EFP_PSEUDOREG (tdep, reg_nr))
|
2777 |
|
|
efpr_pseudo_register_write (gdbarch, regcache, reg_nr, buffer);
|
2778 |
|
|
else
|
2779 |
|
|
internal_error (__FILE__, __LINE__,
|
2780 |
|
|
_("rs6000_pseudo_register_write: "
|
2781 |
|
|
"called on unexpected register '%s' (%d)"),
|
2782 |
|
|
gdbarch_register_name (gdbarch, reg_nr), reg_nr);
|
2783 |
|
|
}
|
2784 |
|
|
|
2785 |
|
|
/* Convert a DBX STABS register number to a GDB register number. */
|
2786 |
|
|
static int
|
2787 |
|
|
rs6000_stab_reg_to_regnum (struct gdbarch *gdbarch, int num)
|
2788 |
|
|
{
|
2789 |
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
2790 |
|
|
|
2791 |
|
|
if (0 <= num && num <= 31)
|
2792 |
|
|
return tdep->ppc_gp0_regnum + num;
|
2793 |
|
|
else if (32 <= num && num <= 63)
|
2794 |
|
|
/* FIXME: jimb/2004-05-05: What should we do when the debug info
|
2795 |
|
|
specifies registers the architecture doesn't have? Our
|
2796 |
|
|
callers don't check the value we return. */
|
2797 |
|
|
return tdep->ppc_fp0_regnum + (num - 32);
|
2798 |
|
|
else if (77 <= num && num <= 108)
|
2799 |
|
|
return tdep->ppc_vr0_regnum + (num - 77);
|
2800 |
|
|
else if (1200 <= num && num < 1200 + 32)
|
2801 |
|
|
return tdep->ppc_ev0_regnum + (num - 1200);
|
2802 |
|
|
else
|
2803 |
|
|
switch (num)
|
2804 |
|
|
{
|
2805 |
|
|
case 64:
|
2806 |
|
|
return tdep->ppc_mq_regnum;
|
2807 |
|
|
case 65:
|
2808 |
|
|
return tdep->ppc_lr_regnum;
|
2809 |
|
|
case 66:
|
2810 |
|
|
return tdep->ppc_ctr_regnum;
|
2811 |
|
|
case 76:
|
2812 |
|
|
return tdep->ppc_xer_regnum;
|
2813 |
|
|
case 109:
|
2814 |
|
|
return tdep->ppc_vrsave_regnum;
|
2815 |
|
|
case 110:
|
2816 |
|
|
return tdep->ppc_vrsave_regnum - 1; /* vscr */
|
2817 |
|
|
case 111:
|
2818 |
|
|
return tdep->ppc_acc_regnum;
|
2819 |
|
|
case 112:
|
2820 |
|
|
return tdep->ppc_spefscr_regnum;
|
2821 |
|
|
default:
|
2822 |
|
|
return num;
|
2823 |
|
|
}
|
2824 |
|
|
}
|
2825 |
|
|
|
2826 |
|
|
|
2827 |
|
|
/* Convert a Dwarf 2 register number to a GDB register number. */
|
2828 |
|
|
static int
|
2829 |
|
|
rs6000_dwarf2_reg_to_regnum (struct gdbarch *gdbarch, int num)
|
2830 |
|
|
{
|
2831 |
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
2832 |
|
|
|
2833 |
|
|
if (0 <= num && num <= 31)
|
2834 |
|
|
return tdep->ppc_gp0_regnum + num;
|
2835 |
|
|
else if (32 <= num && num <= 63)
|
2836 |
|
|
/* FIXME: jimb/2004-05-05: What should we do when the debug info
|
2837 |
|
|
specifies registers the architecture doesn't have? Our
|
2838 |
|
|
callers don't check the value we return. */
|
2839 |
|
|
return tdep->ppc_fp0_regnum + (num - 32);
|
2840 |
|
|
else if (1124 <= num && num < 1124 + 32)
|
2841 |
|
|
return tdep->ppc_vr0_regnum + (num - 1124);
|
2842 |
|
|
else if (1200 <= num && num < 1200 + 32)
|
2843 |
|
|
return tdep->ppc_ev0_regnum + (num - 1200);
|
2844 |
|
|
else
|
2845 |
|
|
switch (num)
|
2846 |
|
|
{
|
2847 |
|
|
case 64:
|
2848 |
|
|
return tdep->ppc_cr_regnum;
|
2849 |
|
|
case 67:
|
2850 |
|
|
return tdep->ppc_vrsave_regnum - 1; /* vscr */
|
2851 |
|
|
case 99:
|
2852 |
|
|
return tdep->ppc_acc_regnum;
|
2853 |
|
|
case 100:
|
2854 |
|
|
return tdep->ppc_mq_regnum;
|
2855 |
|
|
case 101:
|
2856 |
|
|
return tdep->ppc_xer_regnum;
|
2857 |
|
|
case 108:
|
2858 |
|
|
return tdep->ppc_lr_regnum;
|
2859 |
|
|
case 109:
|
2860 |
|
|
return tdep->ppc_ctr_regnum;
|
2861 |
|
|
case 356:
|
2862 |
|
|
return tdep->ppc_vrsave_regnum;
|
2863 |
|
|
case 612:
|
2864 |
|
|
return tdep->ppc_spefscr_regnum;
|
2865 |
|
|
default:
|
2866 |
|
|
return num;
|
2867 |
|
|
}
|
2868 |
|
|
}
|
2869 |
|
|
|
2870 |
|
|
/* Translate a .eh_frame register to DWARF register, or adjust a
|
2871 |
|
|
.debug_frame register. */
|
2872 |
|
|
|
2873 |
|
|
static int
|
2874 |
|
|
rs6000_adjust_frame_regnum (struct gdbarch *gdbarch, int num, int eh_frame_p)
|
2875 |
|
|
{
|
2876 |
|
|
/* GCC releases before 3.4 use GCC internal register numbering in
|
2877 |
|
|
.debug_frame (and .debug_info, et cetera). The numbering is
|
2878 |
|
|
different from the standard SysV numbering for everything except
|
2879 |
|
|
for GPRs and FPRs. We can not detect this problem in most cases
|
2880 |
|
|
- to get accurate debug info for variables living in lr, ctr, v0,
|
2881 |
|
|
et cetera, use a newer version of GCC. But we must detect
|
2882 |
|
|
one important case - lr is in column 65 in .debug_frame output,
|
2883 |
|
|
instead of 108.
|
2884 |
|
|
|
2885 |
|
|
GCC 3.4, and the "hammer" branch, have a related problem. They
|
2886 |
|
|
record lr register saves in .debug_frame as 108, but still record
|
2887 |
|
|
the return column as 65. We fix that up too.
|
2888 |
|
|
|
2889 |
|
|
We can do this because 65 is assigned to fpsr, and GCC never
|
2890 |
|
|
generates debug info referring to it. To add support for
|
2891 |
|
|
handwritten debug info that restores fpsr, we would need to add a
|
2892 |
|
|
producer version check to this. */
|
2893 |
|
|
if (!eh_frame_p)
|
2894 |
|
|
{
|
2895 |
|
|
if (num == 65)
|
2896 |
|
|
return 108;
|
2897 |
|
|
else
|
2898 |
|
|
return num;
|
2899 |
|
|
}
|
2900 |
|
|
|
2901 |
|
|
/* .eh_frame is GCC specific. For binary compatibility, it uses GCC
|
2902 |
|
|
internal register numbering; translate that to the standard DWARF2
|
2903 |
|
|
register numbering. */
|
2904 |
|
|
if (0 <= num && num <= 63) /* r0-r31,fp0-fp31 */
|
2905 |
|
|
return num;
|
2906 |
|
|
else if (68 <= num && num <= 75) /* cr0-cr8 */
|
2907 |
|
|
return num - 68 + 86;
|
2908 |
|
|
else if (77 <= num && num <= 108) /* vr0-vr31 */
|
2909 |
|
|
return num - 77 + 1124;
|
2910 |
|
|
else
|
2911 |
|
|
switch (num)
|
2912 |
|
|
{
|
2913 |
|
|
case 64: /* mq */
|
2914 |
|
|
return 100;
|
2915 |
|
|
case 65: /* lr */
|
2916 |
|
|
return 108;
|
2917 |
|
|
case 66: /* ctr */
|
2918 |
|
|
return 109;
|
2919 |
|
|
case 76: /* xer */
|
2920 |
|
|
return 101;
|
2921 |
|
|
case 109: /* vrsave */
|
2922 |
|
|
return 356;
|
2923 |
|
|
case 110: /* vscr */
|
2924 |
|
|
return 67;
|
2925 |
|
|
case 111: /* spe_acc */
|
2926 |
|
|
return 99;
|
2927 |
|
|
case 112: /* spefscr */
|
2928 |
|
|
return 612;
|
2929 |
|
|
default:
|
2930 |
|
|
return num;
|
2931 |
|
|
}
|
2932 |
|
|
}
|
2933 |
|
|
|
2934 |
|
|
|
2935 |
|
|
/* Handling the various POWER/PowerPC variants. */
|
2936 |
|
|
|
2937 |
|
|
/* Information about a particular processor variant. */
|
2938 |
|
|
|
2939 |
|
|
struct variant
|
2940 |
|
|
{
|
2941 |
|
|
/* Name of this variant. */
|
2942 |
|
|
char *name;
|
2943 |
|
|
|
2944 |
|
|
/* English description of the variant. */
|
2945 |
|
|
char *description;
|
2946 |
|
|
|
2947 |
|
|
/* bfd_arch_info.arch corresponding to variant. */
|
2948 |
|
|
enum bfd_architecture arch;
|
2949 |
|
|
|
2950 |
|
|
/* bfd_arch_info.mach corresponding to variant. */
|
2951 |
|
|
unsigned long mach;
|
2952 |
|
|
|
2953 |
|
|
/* Target description for this variant. */
|
2954 |
|
|
struct target_desc **tdesc;
|
2955 |
|
|
};
|
2956 |
|
|
|
2957 |
|
|
static struct variant variants[] =
|
2958 |
|
|
{
|
2959 |
|
|
{"powerpc", "PowerPC user-level", bfd_arch_powerpc,
|
2960 |
|
|
bfd_mach_ppc, &tdesc_powerpc_altivec32},
|
2961 |
|
|
{"power", "POWER user-level", bfd_arch_rs6000,
|
2962 |
|
|
bfd_mach_rs6k, &tdesc_rs6000},
|
2963 |
|
|
{"403", "IBM PowerPC 403", bfd_arch_powerpc,
|
2964 |
|
|
bfd_mach_ppc_403, &tdesc_powerpc_403},
|
2965 |
|
|
{"405", "IBM PowerPC 405", bfd_arch_powerpc,
|
2966 |
|
|
bfd_mach_ppc_405, &tdesc_powerpc_405},
|
2967 |
|
|
{"601", "Motorola PowerPC 601", bfd_arch_powerpc,
|
2968 |
|
|
bfd_mach_ppc_601, &tdesc_powerpc_601},
|
2969 |
|
|
{"602", "Motorola PowerPC 602", bfd_arch_powerpc,
|
2970 |
|
|
bfd_mach_ppc_602, &tdesc_powerpc_602},
|
2971 |
|
|
{"603", "Motorola/IBM PowerPC 603 or 603e", bfd_arch_powerpc,
|
2972 |
|
|
bfd_mach_ppc_603, &tdesc_powerpc_603},
|
2973 |
|
|
{"604", "Motorola PowerPC 604 or 604e", bfd_arch_powerpc,
|
2974 |
|
|
604, &tdesc_powerpc_604},
|
2975 |
|
|
{"403GC", "IBM PowerPC 403GC", bfd_arch_powerpc,
|
2976 |
|
|
bfd_mach_ppc_403gc, &tdesc_powerpc_403gc},
|
2977 |
|
|
{"505", "Motorola PowerPC 505", bfd_arch_powerpc,
|
2978 |
|
|
bfd_mach_ppc_505, &tdesc_powerpc_505},
|
2979 |
|
|
{"860", "Motorola PowerPC 860 or 850", bfd_arch_powerpc,
|
2980 |
|
|
bfd_mach_ppc_860, &tdesc_powerpc_860},
|
2981 |
|
|
{"750", "Motorola/IBM PowerPC 750 or 740", bfd_arch_powerpc,
|
2982 |
|
|
bfd_mach_ppc_750, &tdesc_powerpc_750},
|
2983 |
|
|
{"7400", "Motorola/IBM PowerPC 7400 (G4)", bfd_arch_powerpc,
|
2984 |
|
|
bfd_mach_ppc_7400, &tdesc_powerpc_7400},
|
2985 |
|
|
{"e500", "Motorola PowerPC e500", bfd_arch_powerpc,
|
2986 |
|
|
bfd_mach_ppc_e500, &tdesc_powerpc_e500},
|
2987 |
|
|
|
2988 |
|
|
/* 64-bit */
|
2989 |
|
|
{"powerpc64", "PowerPC 64-bit user-level", bfd_arch_powerpc,
|
2990 |
|
|
bfd_mach_ppc64, &tdesc_powerpc_altivec64},
|
2991 |
|
|
{"620", "Motorola PowerPC 620", bfd_arch_powerpc,
|
2992 |
|
|
bfd_mach_ppc_620, &tdesc_powerpc_64},
|
2993 |
|
|
{"630", "Motorola PowerPC 630", bfd_arch_powerpc,
|
2994 |
|
|
bfd_mach_ppc_630, &tdesc_powerpc_64},
|
2995 |
|
|
{"a35", "PowerPC A35", bfd_arch_powerpc,
|
2996 |
|
|
bfd_mach_ppc_a35, &tdesc_powerpc_64},
|
2997 |
|
|
{"rs64ii", "PowerPC rs64ii", bfd_arch_powerpc,
|
2998 |
|
|
bfd_mach_ppc_rs64ii, &tdesc_powerpc_64},
|
2999 |
|
|
{"rs64iii", "PowerPC rs64iii", bfd_arch_powerpc,
|
3000 |
|
|
bfd_mach_ppc_rs64iii, &tdesc_powerpc_64},
|
3001 |
|
|
|
3002 |
|
|
/* FIXME: I haven't checked the register sets of the following. */
|
3003 |
|
|
{"rs1", "IBM POWER RS1", bfd_arch_rs6000,
|
3004 |
|
|
bfd_mach_rs6k_rs1, &tdesc_rs6000},
|
3005 |
|
|
{"rsc", "IBM POWER RSC", bfd_arch_rs6000,
|
3006 |
|
|
bfd_mach_rs6k_rsc, &tdesc_rs6000},
|
3007 |
|
|
{"rs2", "IBM POWER RS2", bfd_arch_rs6000,
|
3008 |
|
|
bfd_mach_rs6k_rs2, &tdesc_rs6000},
|
3009 |
|
|
|
3010 |
|
|
{0, 0, 0, 0, 0}
|
3011 |
|
|
};
|
3012 |
|
|
|
3013 |
|
|
/* Return the variant corresponding to architecture ARCH and machine number
|
3014 |
|
|
MACH. If no such variant exists, return null. */
|
3015 |
|
|
|
3016 |
|
|
static const struct variant *
|
3017 |
|
|
find_variant_by_arch (enum bfd_architecture arch, unsigned long mach)
|
3018 |
|
|
{
|
3019 |
|
|
const struct variant *v;
|
3020 |
|
|
|
3021 |
|
|
for (v = variants; v->name; v++)
|
3022 |
|
|
if (arch == v->arch && mach == v->mach)
|
3023 |
|
|
return v;
|
3024 |
|
|
|
3025 |
|
|
return NULL;
|
3026 |
|
|
}
|
3027 |
|
|
|
3028 |
|
|
static int
|
3029 |
|
|
gdb_print_insn_powerpc (bfd_vma memaddr, disassemble_info *info)
|
3030 |
|
|
{
|
3031 |
|
|
if (!info->disassembler_options)
|
3032 |
|
|
info->disassembler_options = "any";
|
3033 |
|
|
|
3034 |
|
|
if (info->endian == BFD_ENDIAN_BIG)
|
3035 |
|
|
return print_insn_big_powerpc (memaddr, info);
|
3036 |
|
|
else
|
3037 |
|
|
return print_insn_little_powerpc (memaddr, info);
|
3038 |
|
|
}
|
3039 |
|
|
|
3040 |
|
|
static CORE_ADDR
|
3041 |
|
|
rs6000_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
|
3042 |
|
|
{
|
3043 |
|
|
return frame_unwind_register_unsigned (next_frame,
|
3044 |
|
|
gdbarch_pc_regnum (gdbarch));
|
3045 |
|
|
}
|
3046 |
|
|
|
3047 |
|
|
static struct frame_id
|
3048 |
|
|
rs6000_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
|
3049 |
|
|
{
|
3050 |
|
|
return frame_id_build (get_frame_register_unsigned
|
3051 |
|
|
(this_frame, gdbarch_sp_regnum (gdbarch)),
|
3052 |
|
|
get_frame_pc (this_frame));
|
3053 |
|
|
}
|
3054 |
|
|
|
3055 |
|
|
struct rs6000_frame_cache
|
3056 |
|
|
{
|
3057 |
|
|
CORE_ADDR base;
|
3058 |
|
|
CORE_ADDR initial_sp;
|
3059 |
|
|
struct trad_frame_saved_reg *saved_regs;
|
3060 |
|
|
};
|
3061 |
|
|
|
3062 |
|
|
static struct rs6000_frame_cache *
|
3063 |
|
|
rs6000_frame_cache (struct frame_info *this_frame, void **this_cache)
|
3064 |
|
|
{
|
3065 |
|
|
struct rs6000_frame_cache *cache;
|
3066 |
|
|
struct gdbarch *gdbarch = get_frame_arch (this_frame);
|
3067 |
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
3068 |
|
|
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
3069 |
|
|
struct rs6000_framedata fdata;
|
3070 |
|
|
int wordsize = tdep->wordsize;
|
3071 |
|
|
CORE_ADDR func, pc;
|
3072 |
|
|
|
3073 |
|
|
if ((*this_cache) != NULL)
|
3074 |
|
|
return (*this_cache);
|
3075 |
|
|
cache = FRAME_OBSTACK_ZALLOC (struct rs6000_frame_cache);
|
3076 |
|
|
(*this_cache) = cache;
|
3077 |
|
|
cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
|
3078 |
|
|
|
3079 |
|
|
func = get_frame_func (this_frame);
|
3080 |
|
|
pc = get_frame_pc (this_frame);
|
3081 |
|
|
skip_prologue (gdbarch, func, pc, &fdata);
|
3082 |
|
|
|
3083 |
|
|
/* Figure out the parent's stack pointer. */
|
3084 |
|
|
|
3085 |
|
|
/* NOTE: cagney/2002-04-14: The ->frame points to the inner-most
|
3086 |
|
|
address of the current frame. Things might be easier if the
|
3087 |
|
|
->frame pointed to the outer-most address of the frame. In
|
3088 |
|
|
the mean time, the address of the prev frame is used as the
|
3089 |
|
|
base address of this frame. */
|
3090 |
|
|
cache->base = get_frame_register_unsigned
|
3091 |
|
|
(this_frame, gdbarch_sp_regnum (gdbarch));
|
3092 |
|
|
|
3093 |
|
|
/* If the function appears to be frameless, check a couple of likely
|
3094 |
|
|
indicators that we have simply failed to find the frame setup.
|
3095 |
|
|
Two common cases of this are missing symbols (i.e.
|
3096 |
|
|
get_frame_func returns the wrong address or 0), and assembly
|
3097 |
|
|
stubs which have a fast exit path but set up a frame on the slow
|
3098 |
|
|
path.
|
3099 |
|
|
|
3100 |
|
|
If the LR appears to return to this function, then presume that
|
3101 |
|
|
we have an ABI compliant frame that we failed to find. */
|
3102 |
|
|
if (fdata.frameless && fdata.lr_offset == 0)
|
3103 |
|
|
{
|
3104 |
|
|
CORE_ADDR saved_lr;
|
3105 |
|
|
int make_frame = 0;
|
3106 |
|
|
|
3107 |
|
|
saved_lr = get_frame_register_unsigned (this_frame, tdep->ppc_lr_regnum);
|
3108 |
|
|
if (func == 0 && saved_lr == pc)
|
3109 |
|
|
make_frame = 1;
|
3110 |
|
|
else if (func != 0)
|
3111 |
|
|
{
|
3112 |
|
|
CORE_ADDR saved_func = get_pc_function_start (saved_lr);
|
3113 |
|
|
if (func == saved_func)
|
3114 |
|
|
make_frame = 1;
|
3115 |
|
|
}
|
3116 |
|
|
|
3117 |
|
|
if (make_frame)
|
3118 |
|
|
{
|
3119 |
|
|
fdata.frameless = 0;
|
3120 |
|
|
fdata.lr_offset = tdep->lr_frame_offset;
|
3121 |
|
|
}
|
3122 |
|
|
}
|
3123 |
|
|
|
3124 |
|
|
if (!fdata.frameless)
|
3125 |
|
|
/* Frameless really means stackless. */
|
3126 |
|
|
cache->base
|
3127 |
|
|
= read_memory_unsigned_integer (cache->base, wordsize, byte_order);
|
3128 |
|
|
|
3129 |
|
|
trad_frame_set_value (cache->saved_regs,
|
3130 |
|
|
gdbarch_sp_regnum (gdbarch), cache->base);
|
3131 |
|
|
|
3132 |
|
|
/* if != -1, fdata.saved_fpr is the smallest number of saved_fpr.
|
3133 |
|
|
All fpr's from saved_fpr to fp31 are saved. */
|
3134 |
|
|
|
3135 |
|
|
if (fdata.saved_fpr >= 0)
|
3136 |
|
|
{
|
3137 |
|
|
int i;
|
3138 |
|
|
CORE_ADDR fpr_addr = cache->base + fdata.fpr_offset;
|
3139 |
|
|
|
3140 |
|
|
/* If skip_prologue says floating-point registers were saved,
|
3141 |
|
|
but the current architecture has no floating-point registers,
|
3142 |
|
|
then that's strange. But we have no indices to even record
|
3143 |
|
|
the addresses under, so we just ignore it. */
|
3144 |
|
|
if (ppc_floating_point_unit_p (gdbarch))
|
3145 |
|
|
for (i = fdata.saved_fpr; i < ppc_num_fprs; i++)
|
3146 |
|
|
{
|
3147 |
|
|
cache->saved_regs[tdep->ppc_fp0_regnum + i].addr = fpr_addr;
|
3148 |
|
|
fpr_addr += 8;
|
3149 |
|
|
}
|
3150 |
|
|
}
|
3151 |
|
|
|
3152 |
|
|
/* if != -1, fdata.saved_gpr is the smallest number of saved_gpr.
|
3153 |
|
|
All gpr's from saved_gpr to gpr31 are saved (except during the
|
3154 |
|
|
prologue). */
|
3155 |
|
|
|
3156 |
|
|
if (fdata.saved_gpr >= 0)
|
3157 |
|
|
{
|
3158 |
|
|
int i;
|
3159 |
|
|
CORE_ADDR gpr_addr = cache->base + fdata.gpr_offset;
|
3160 |
|
|
for (i = fdata.saved_gpr; i < ppc_num_gprs; i++)
|
3161 |
|
|
{
|
3162 |
|
|
if (fdata.gpr_mask & (1U << i))
|
3163 |
|
|
cache->saved_regs[tdep->ppc_gp0_regnum + i].addr = gpr_addr;
|
3164 |
|
|
gpr_addr += wordsize;
|
3165 |
|
|
}
|
3166 |
|
|
}
|
3167 |
|
|
|
3168 |
|
|
/* if != -1, fdata.saved_vr is the smallest number of saved_vr.
|
3169 |
|
|
All vr's from saved_vr to vr31 are saved. */
|
3170 |
|
|
if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1)
|
3171 |
|
|
{
|
3172 |
|
|
if (fdata.saved_vr >= 0)
|
3173 |
|
|
{
|
3174 |
|
|
int i;
|
3175 |
|
|
CORE_ADDR vr_addr = cache->base + fdata.vr_offset;
|
3176 |
|
|
for (i = fdata.saved_vr; i < 32; i++)
|
3177 |
|
|
{
|
3178 |
|
|
cache->saved_regs[tdep->ppc_vr0_regnum + i].addr = vr_addr;
|
3179 |
|
|
vr_addr += register_size (gdbarch, tdep->ppc_vr0_regnum);
|
3180 |
|
|
}
|
3181 |
|
|
}
|
3182 |
|
|
}
|
3183 |
|
|
|
3184 |
|
|
/* if != -1, fdata.saved_ev is the smallest number of saved_ev.
|
3185 |
|
|
All vr's from saved_ev to ev31 are saved. ????? */
|
3186 |
|
|
if (tdep->ppc_ev0_regnum != -1)
|
3187 |
|
|
{
|
3188 |
|
|
if (fdata.saved_ev >= 0)
|
3189 |
|
|
{
|
3190 |
|
|
int i;
|
3191 |
|
|
CORE_ADDR ev_addr = cache->base + fdata.ev_offset;
|
3192 |
|
|
for (i = fdata.saved_ev; i < ppc_num_gprs; i++)
|
3193 |
|
|
{
|
3194 |
|
|
cache->saved_regs[tdep->ppc_ev0_regnum + i].addr = ev_addr;
|
3195 |
|
|
cache->saved_regs[tdep->ppc_gp0_regnum + i].addr = ev_addr + 4;
|
3196 |
|
|
ev_addr += register_size (gdbarch, tdep->ppc_ev0_regnum);
|
3197 |
|
|
}
|
3198 |
|
|
}
|
3199 |
|
|
}
|
3200 |
|
|
|
3201 |
|
|
/* If != 0, fdata.cr_offset is the offset from the frame that
|
3202 |
|
|
holds the CR. */
|
3203 |
|
|
if (fdata.cr_offset != 0)
|
3204 |
|
|
cache->saved_regs[tdep->ppc_cr_regnum].addr = cache->base + fdata.cr_offset;
|
3205 |
|
|
|
3206 |
|
|
/* If != 0, fdata.lr_offset is the offset from the frame that
|
3207 |
|
|
holds the LR. */
|
3208 |
|
|
if (fdata.lr_offset != 0)
|
3209 |
|
|
cache->saved_regs[tdep->ppc_lr_regnum].addr = cache->base + fdata.lr_offset;
|
3210 |
|
|
else if (fdata.lr_register != -1)
|
3211 |
|
|
cache->saved_regs[tdep->ppc_lr_regnum].realreg = fdata.lr_register;
|
3212 |
|
|
/* The PC is found in the link register. */
|
3213 |
|
|
cache->saved_regs[gdbarch_pc_regnum (gdbarch)] =
|
3214 |
|
|
cache->saved_regs[tdep->ppc_lr_regnum];
|
3215 |
|
|
|
3216 |
|
|
/* If != 0, fdata.vrsave_offset is the offset from the frame that
|
3217 |
|
|
holds the VRSAVE. */
|
3218 |
|
|
if (fdata.vrsave_offset != 0)
|
3219 |
|
|
cache->saved_regs[tdep->ppc_vrsave_regnum].addr = cache->base + fdata.vrsave_offset;
|
3220 |
|
|
|
3221 |
|
|
if (fdata.alloca_reg < 0)
|
3222 |
|
|
/* If no alloca register used, then fi->frame is the value of the
|
3223 |
|
|
%sp for this frame, and it is good enough. */
|
3224 |
|
|
cache->initial_sp
|
3225 |
|
|
= get_frame_register_unsigned (this_frame, gdbarch_sp_regnum (gdbarch));
|
3226 |
|
|
else
|
3227 |
|
|
cache->initial_sp
|
3228 |
|
|
= get_frame_register_unsigned (this_frame, fdata.alloca_reg);
|
3229 |
|
|
|
3230 |
|
|
return cache;
|
3231 |
|
|
}
|
3232 |
|
|
|
3233 |
|
|
static void
|
3234 |
|
|
rs6000_frame_this_id (struct frame_info *this_frame, void **this_cache,
|
3235 |
|
|
struct frame_id *this_id)
|
3236 |
|
|
{
|
3237 |
|
|
struct rs6000_frame_cache *info = rs6000_frame_cache (this_frame,
|
3238 |
|
|
this_cache);
|
3239 |
|
|
/* This marks the outermost frame. */
|
3240 |
|
|
if (info->base == 0)
|
3241 |
|
|
return;
|
3242 |
|
|
|
3243 |
|
|
(*this_id) = frame_id_build (info->base, get_frame_func (this_frame));
|
3244 |
|
|
}
|
3245 |
|
|
|
3246 |
|
|
static struct value *
|
3247 |
|
|
rs6000_frame_prev_register (struct frame_info *this_frame,
|
3248 |
|
|
void **this_cache, int regnum)
|
3249 |
|
|
{
|
3250 |
|
|
struct rs6000_frame_cache *info = rs6000_frame_cache (this_frame,
|
3251 |
|
|
this_cache);
|
3252 |
|
|
return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
|
3253 |
|
|
}
|
3254 |
|
|
|
3255 |
|
|
static const struct frame_unwind rs6000_frame_unwind =
|
3256 |
|
|
{
|
3257 |
|
|
NORMAL_FRAME,
|
3258 |
|
|
rs6000_frame_this_id,
|
3259 |
|
|
rs6000_frame_prev_register,
|
3260 |
|
|
NULL,
|
3261 |
|
|
default_frame_sniffer
|
3262 |
|
|
};
|
3263 |
|
|
|
3264 |
|
|
|
3265 |
|
|
static CORE_ADDR
|
3266 |
|
|
rs6000_frame_base_address (struct frame_info *this_frame, void **this_cache)
|
3267 |
|
|
{
|
3268 |
|
|
struct rs6000_frame_cache *info = rs6000_frame_cache (this_frame,
|
3269 |
|
|
this_cache);
|
3270 |
|
|
return info->initial_sp;
|
3271 |
|
|
}
|
3272 |
|
|
|
3273 |
|
|
static const struct frame_base rs6000_frame_base = {
|
3274 |
|
|
&rs6000_frame_unwind,
|
3275 |
|
|
rs6000_frame_base_address,
|
3276 |
|
|
rs6000_frame_base_address,
|
3277 |
|
|
rs6000_frame_base_address
|
3278 |
|
|
};
|
3279 |
|
|
|
3280 |
|
|
static const struct frame_base *
|
3281 |
|
|
rs6000_frame_base_sniffer (struct frame_info *this_frame)
|
3282 |
|
|
{
|
3283 |
|
|
return &rs6000_frame_base;
|
3284 |
|
|
}
|
3285 |
|
|
|
3286 |
|
|
/* DWARF-2 frame support. Used to handle the detection of
|
3287 |
|
|
clobbered registers during function calls. */
|
3288 |
|
|
|
3289 |
|
|
static void
|
3290 |
|
|
ppc_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
|
3291 |
|
|
struct dwarf2_frame_state_reg *reg,
|
3292 |
|
|
struct frame_info *this_frame)
|
3293 |
|
|
{
|
3294 |
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
3295 |
|
|
|
3296 |
|
|
/* PPC32 and PPC64 ABI's are the same regarding volatile and
|
3297 |
|
|
non-volatile registers. We will use the same code for both. */
|
3298 |
|
|
|
3299 |
|
|
/* Call-saved GP registers. */
|
3300 |
|
|
if ((regnum >= tdep->ppc_gp0_regnum + 14
|
3301 |
|
|
&& regnum <= tdep->ppc_gp0_regnum + 31)
|
3302 |
|
|
|| (regnum == tdep->ppc_gp0_regnum + 1))
|
3303 |
|
|
reg->how = DWARF2_FRAME_REG_SAME_VALUE;
|
3304 |
|
|
|
3305 |
|
|
/* Call-clobbered GP registers. */
|
3306 |
|
|
if ((regnum >= tdep->ppc_gp0_regnum + 3
|
3307 |
|
|
&& regnum <= tdep->ppc_gp0_regnum + 12)
|
3308 |
|
|
|| (regnum == tdep->ppc_gp0_regnum))
|
3309 |
|
|
reg->how = DWARF2_FRAME_REG_UNDEFINED;
|
3310 |
|
|
|
3311 |
|
|
/* Deal with FP registers, if supported. */
|
3312 |
|
|
if (tdep->ppc_fp0_regnum >= 0)
|
3313 |
|
|
{
|
3314 |
|
|
/* Call-saved FP registers. */
|
3315 |
|
|
if ((regnum >= tdep->ppc_fp0_regnum + 14
|
3316 |
|
|
&& regnum <= tdep->ppc_fp0_regnum + 31))
|
3317 |
|
|
reg->how = DWARF2_FRAME_REG_SAME_VALUE;
|
3318 |
|
|
|
3319 |
|
|
/* Call-clobbered FP registers. */
|
3320 |
|
|
if ((regnum >= tdep->ppc_fp0_regnum
|
3321 |
|
|
&& regnum <= tdep->ppc_fp0_regnum + 13))
|
3322 |
|
|
reg->how = DWARF2_FRAME_REG_UNDEFINED;
|
3323 |
|
|
}
|
3324 |
|
|
|
3325 |
|
|
/* Deal with ALTIVEC registers, if supported. */
|
3326 |
|
|
if (tdep->ppc_vr0_regnum > 0 && tdep->ppc_vrsave_regnum > 0)
|
3327 |
|
|
{
|
3328 |
|
|
/* Call-saved Altivec registers. */
|
3329 |
|
|
if ((regnum >= tdep->ppc_vr0_regnum + 20
|
3330 |
|
|
&& regnum <= tdep->ppc_vr0_regnum + 31)
|
3331 |
|
|
|| regnum == tdep->ppc_vrsave_regnum)
|
3332 |
|
|
reg->how = DWARF2_FRAME_REG_SAME_VALUE;
|
3333 |
|
|
|
3334 |
|
|
/* Call-clobbered Altivec registers. */
|
3335 |
|
|
if ((regnum >= tdep->ppc_vr0_regnum
|
3336 |
|
|
&& regnum <= tdep->ppc_vr0_regnum + 19))
|
3337 |
|
|
reg->how = DWARF2_FRAME_REG_UNDEFINED;
|
3338 |
|
|
}
|
3339 |
|
|
|
3340 |
|
|
/* Handle PC register and Stack Pointer correctly. */
|
3341 |
|
|
if (regnum == gdbarch_pc_regnum (gdbarch))
|
3342 |
|
|
reg->how = DWARF2_FRAME_REG_RA;
|
3343 |
|
|
else if (regnum == gdbarch_sp_regnum (gdbarch))
|
3344 |
|
|
reg->how = DWARF2_FRAME_REG_CFA;
|
3345 |
|
|
}
|
3346 |
|
|
|
3347 |
|
|
|
3348 |
|
|
/* Initialize the current architecture based on INFO. If possible, re-use an
|
3349 |
|
|
architecture from ARCHES, which is a list of architectures already created
|
3350 |
|
|
during this debugging session.
|
3351 |
|
|
|
3352 |
|
|
Called e.g. at program startup, when reading a core file, and when reading
|
3353 |
|
|
a binary file. */
|
3354 |
|
|
|
3355 |
|
|
static struct gdbarch *
|
3356 |
|
|
rs6000_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
|
3357 |
|
|
{
|
3358 |
|
|
struct gdbarch *gdbarch;
|
3359 |
|
|
struct gdbarch_tdep *tdep;
|
3360 |
|
|
int wordsize, from_xcoff_exec, from_elf_exec;
|
3361 |
|
|
enum bfd_architecture arch;
|
3362 |
|
|
unsigned long mach;
|
3363 |
|
|
bfd abfd;
|
3364 |
|
|
asection *sect;
|
3365 |
|
|
enum auto_boolean soft_float_flag = powerpc_soft_float_global;
|
3366 |
|
|
int soft_float;
|
3367 |
|
|
enum powerpc_vector_abi vector_abi = powerpc_vector_abi_global;
|
3368 |
|
|
int have_fpu = 1, have_spe = 0, have_mq = 0, have_altivec = 0, have_dfp = 0,
|
3369 |
|
|
have_vsx = 0;
|
3370 |
|
|
int tdesc_wordsize = -1;
|
3371 |
|
|
const struct target_desc *tdesc = info.target_desc;
|
3372 |
|
|
struct tdesc_arch_data *tdesc_data = NULL;
|
3373 |
|
|
int num_pseudoregs = 0;
|
3374 |
|
|
int cur_reg;
|
3375 |
|
|
|
3376 |
|
|
/* INFO may refer to a binary that is not of the PowerPC architecture,
|
3377 |
|
|
e.g. when debugging a stand-alone SPE executable on a Cell/B.E. system.
|
3378 |
|
|
In this case, we must not attempt to infer properties of the (PowerPC
|
3379 |
|
|
side) of the target system from properties of that executable. Trust
|
3380 |
|
|
the target description instead. */
|
3381 |
|
|
if (info.abfd
|
3382 |
|
|
&& bfd_get_arch (info.abfd) != bfd_arch_powerpc
|
3383 |
|
|
&& bfd_get_arch (info.abfd) != bfd_arch_rs6000)
|
3384 |
|
|
info.abfd = NULL;
|
3385 |
|
|
|
3386 |
|
|
from_xcoff_exec = info.abfd && info.abfd->format == bfd_object &&
|
3387 |
|
|
bfd_get_flavour (info.abfd) == bfd_target_xcoff_flavour;
|
3388 |
|
|
|
3389 |
|
|
from_elf_exec = info.abfd && info.abfd->format == bfd_object &&
|
3390 |
|
|
bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
|
3391 |
|
|
|
3392 |
|
|
/* Check word size. If INFO is from a binary file, infer it from
|
3393 |
|
|
that, else choose a likely default. */
|
3394 |
|
|
if (from_xcoff_exec)
|
3395 |
|
|
{
|
3396 |
|
|
if (bfd_xcoff_is_xcoff64 (info.abfd))
|
3397 |
|
|
wordsize = 8;
|
3398 |
|
|
else
|
3399 |
|
|
wordsize = 4;
|
3400 |
|
|
}
|
3401 |
|
|
else if (from_elf_exec)
|
3402 |
|
|
{
|
3403 |
|
|
if (elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
|
3404 |
|
|
wordsize = 8;
|
3405 |
|
|
else
|
3406 |
|
|
wordsize = 4;
|
3407 |
|
|
}
|
3408 |
|
|
else if (tdesc_has_registers (tdesc))
|
3409 |
|
|
wordsize = -1;
|
3410 |
|
|
else
|
3411 |
|
|
{
|
3412 |
|
|
if (info.bfd_arch_info != NULL && info.bfd_arch_info->bits_per_word != 0)
|
3413 |
|
|
wordsize = info.bfd_arch_info->bits_per_word /
|
3414 |
|
|
info.bfd_arch_info->bits_per_byte;
|
3415 |
|
|
else
|
3416 |
|
|
wordsize = 4;
|
3417 |
|
|
}
|
3418 |
|
|
|
3419 |
|
|
/* Get the architecture and machine from the BFD. */
|
3420 |
|
|
arch = info.bfd_arch_info->arch;
|
3421 |
|
|
mach = info.bfd_arch_info->mach;
|
3422 |
|
|
|
3423 |
|
|
/* For e500 executables, the apuinfo section is of help here. Such
|
3424 |
|
|
section contains the identifier and revision number of each
|
3425 |
|
|
Application-specific Processing Unit that is present on the
|
3426 |
|
|
chip. The content of the section is determined by the assembler
|
3427 |
|
|
which looks at each instruction and determines which unit (and
|
3428 |
|
|
which version of it) can execute it. In our case we just look for
|
3429 |
|
|
the existance of the section. */
|
3430 |
|
|
|
3431 |
|
|
if (info.abfd)
|
3432 |
|
|
{
|
3433 |
|
|
sect = bfd_get_section_by_name (info.abfd, ".PPC.EMB.apuinfo");
|
3434 |
|
|
if (sect)
|
3435 |
|
|
{
|
3436 |
|
|
arch = info.bfd_arch_info->arch;
|
3437 |
|
|
mach = bfd_mach_ppc_e500;
|
3438 |
|
|
bfd_default_set_arch_mach (&abfd, arch, mach);
|
3439 |
|
|
info.bfd_arch_info = bfd_get_arch_info (&abfd);
|
3440 |
|
|
}
|
3441 |
|
|
}
|
3442 |
|
|
|
3443 |
|
|
/* Find a default target description which describes our register
|
3444 |
|
|
layout, if we do not already have one. */
|
3445 |
|
|
if (! tdesc_has_registers (tdesc))
|
3446 |
|
|
{
|
3447 |
|
|
const struct variant *v;
|
3448 |
|
|
|
3449 |
|
|
/* Choose variant. */
|
3450 |
|
|
v = find_variant_by_arch (arch, mach);
|
3451 |
|
|
if (!v)
|
3452 |
|
|
return NULL;
|
3453 |
|
|
|
3454 |
|
|
tdesc = *v->tdesc;
|
3455 |
|
|
}
|
3456 |
|
|
|
3457 |
|
|
gdb_assert (tdesc_has_registers (tdesc));
|
3458 |
|
|
|
3459 |
|
|
/* Check any target description for validity. */
|
3460 |
|
|
if (tdesc_has_registers (tdesc))
|
3461 |
|
|
{
|
3462 |
|
|
static const char *const gprs[] = {
|
3463 |
|
|
"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
|
3464 |
|
|
"r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
|
3465 |
|
|
"r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
|
3466 |
|
|
"r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31"
|
3467 |
|
|
};
|
3468 |
|
|
static const char *const segment_regs[] = {
|
3469 |
|
|
"sr0", "sr1", "sr2", "sr3", "sr4", "sr5", "sr6", "sr7",
|
3470 |
|
|
"sr8", "sr9", "sr10", "sr11", "sr12", "sr13", "sr14", "sr15"
|
3471 |
|
|
};
|
3472 |
|
|
const struct tdesc_feature *feature;
|
3473 |
|
|
int i, valid_p;
|
3474 |
|
|
static const char *const msr_names[] = { "msr", "ps" };
|
3475 |
|
|
static const char *const cr_names[] = { "cr", "cnd" };
|
3476 |
|
|
static const char *const ctr_names[] = { "ctr", "cnt" };
|
3477 |
|
|
|
3478 |
|
|
feature = tdesc_find_feature (tdesc,
|
3479 |
|
|
"org.gnu.gdb.power.core");
|
3480 |
|
|
if (feature == NULL)
|
3481 |
|
|
return NULL;
|
3482 |
|
|
|
3483 |
|
|
tdesc_data = tdesc_data_alloc ();
|
3484 |
|
|
|
3485 |
|
|
valid_p = 1;
|
3486 |
|
|
for (i = 0; i < ppc_num_gprs; i++)
|
3487 |
|
|
valid_p &= tdesc_numbered_register (feature, tdesc_data, i, gprs[i]);
|
3488 |
|
|
valid_p &= tdesc_numbered_register (feature, tdesc_data, PPC_PC_REGNUM,
|
3489 |
|
|
"pc");
|
3490 |
|
|
valid_p &= tdesc_numbered_register (feature, tdesc_data, PPC_LR_REGNUM,
|
3491 |
|
|
"lr");
|
3492 |
|
|
valid_p &= tdesc_numbered_register (feature, tdesc_data, PPC_XER_REGNUM,
|
3493 |
|
|
"xer");
|
3494 |
|
|
|
3495 |
|
|
/* Allow alternate names for these registers, to accomodate GDB's
|
3496 |
|
|
historic naming. */
|
3497 |
|
|
valid_p &= tdesc_numbered_register_choices (feature, tdesc_data,
|
3498 |
|
|
PPC_MSR_REGNUM, msr_names);
|
3499 |
|
|
valid_p &= tdesc_numbered_register_choices (feature, tdesc_data,
|
3500 |
|
|
PPC_CR_REGNUM, cr_names);
|
3501 |
|
|
valid_p &= tdesc_numbered_register_choices (feature, tdesc_data,
|
3502 |
|
|
PPC_CTR_REGNUM, ctr_names);
|
3503 |
|
|
|
3504 |
|
|
if (!valid_p)
|
3505 |
|
|
{
|
3506 |
|
|
tdesc_data_cleanup (tdesc_data);
|
3507 |
|
|
return NULL;
|
3508 |
|
|
}
|
3509 |
|
|
|
3510 |
|
|
have_mq = tdesc_numbered_register (feature, tdesc_data, PPC_MQ_REGNUM,
|
3511 |
|
|
"mq");
|
3512 |
|
|
|
3513 |
|
|
tdesc_wordsize = tdesc_register_size (feature, "pc") / 8;
|
3514 |
|
|
if (wordsize == -1)
|
3515 |
|
|
wordsize = tdesc_wordsize;
|
3516 |
|
|
|
3517 |
|
|
feature = tdesc_find_feature (tdesc,
|
3518 |
|
|
"org.gnu.gdb.power.fpu");
|
3519 |
|
|
if (feature != NULL)
|
3520 |
|
|
{
|
3521 |
|
|
static const char *const fprs[] = {
|
3522 |
|
|
"f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
|
3523 |
|
|
"f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
|
3524 |
|
|
"f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
|
3525 |
|
|
"f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31"
|
3526 |
|
|
};
|
3527 |
|
|
valid_p = 1;
|
3528 |
|
|
for (i = 0; i < ppc_num_fprs; i++)
|
3529 |
|
|
valid_p &= tdesc_numbered_register (feature, tdesc_data,
|
3530 |
|
|
PPC_F0_REGNUM + i, fprs[i]);
|
3531 |
|
|
valid_p &= tdesc_numbered_register (feature, tdesc_data,
|
3532 |
|
|
PPC_FPSCR_REGNUM, "fpscr");
|
3533 |
|
|
|
3534 |
|
|
if (!valid_p)
|
3535 |
|
|
{
|
3536 |
|
|
tdesc_data_cleanup (tdesc_data);
|
3537 |
|
|
return NULL;
|
3538 |
|
|
}
|
3539 |
|
|
have_fpu = 1;
|
3540 |
|
|
}
|
3541 |
|
|
else
|
3542 |
|
|
have_fpu = 0;
|
3543 |
|
|
|
3544 |
|
|
/* The DFP pseudo-registers will be available when there are floating
|
3545 |
|
|
point registers. */
|
3546 |
|
|
have_dfp = have_fpu;
|
3547 |
|
|
|
3548 |
|
|
feature = tdesc_find_feature (tdesc,
|
3549 |
|
|
"org.gnu.gdb.power.altivec");
|
3550 |
|
|
if (feature != NULL)
|
3551 |
|
|
{
|
3552 |
|
|
static const char *const vector_regs[] = {
|
3553 |
|
|
"vr0", "vr1", "vr2", "vr3", "vr4", "vr5", "vr6", "vr7",
|
3554 |
|
|
"vr8", "vr9", "vr10", "vr11", "vr12", "vr13", "vr14", "vr15",
|
3555 |
|
|
"vr16", "vr17", "vr18", "vr19", "vr20", "vr21", "vr22", "vr23",
|
3556 |
|
|
"vr24", "vr25", "vr26", "vr27", "vr28", "vr29", "vr30", "vr31"
|
3557 |
|
|
};
|
3558 |
|
|
|
3559 |
|
|
valid_p = 1;
|
3560 |
|
|
for (i = 0; i < ppc_num_gprs; i++)
|
3561 |
|
|
valid_p &= tdesc_numbered_register (feature, tdesc_data,
|
3562 |
|
|
PPC_VR0_REGNUM + i,
|
3563 |
|
|
vector_regs[i]);
|
3564 |
|
|
valid_p &= tdesc_numbered_register (feature, tdesc_data,
|
3565 |
|
|
PPC_VSCR_REGNUM, "vscr");
|
3566 |
|
|
valid_p &= tdesc_numbered_register (feature, tdesc_data,
|
3567 |
|
|
PPC_VRSAVE_REGNUM, "vrsave");
|
3568 |
|
|
|
3569 |
|
|
if (have_spe || !valid_p)
|
3570 |
|
|
{
|
3571 |
|
|
tdesc_data_cleanup (tdesc_data);
|
3572 |
|
|
return NULL;
|
3573 |
|
|
}
|
3574 |
|
|
have_altivec = 1;
|
3575 |
|
|
}
|
3576 |
|
|
else
|
3577 |
|
|
have_altivec = 0;
|
3578 |
|
|
|
3579 |
|
|
/* Check for POWER7 VSX registers support. */
|
3580 |
|
|
feature = tdesc_find_feature (tdesc,
|
3581 |
|
|
"org.gnu.gdb.power.vsx");
|
3582 |
|
|
|
3583 |
|
|
if (feature != NULL)
|
3584 |
|
|
{
|
3585 |
|
|
static const char *const vsx_regs[] = {
|
3586 |
|
|
"vs0h", "vs1h", "vs2h", "vs3h", "vs4h", "vs5h",
|
3587 |
|
|
"vs6h", "vs7h", "vs8h", "vs9h", "vs10h", "vs11h",
|
3588 |
|
|
"vs12h", "vs13h", "vs14h", "vs15h", "vs16h", "vs17h",
|
3589 |
|
|
"vs18h", "vs19h", "vs20h", "vs21h", "vs22h", "vs23h",
|
3590 |
|
|
"vs24h", "vs25h", "vs26h", "vs27h", "vs28h", "vs29h",
|
3591 |
|
|
"vs30h", "vs31h"
|
3592 |
|
|
};
|
3593 |
|
|
|
3594 |
|
|
valid_p = 1;
|
3595 |
|
|
|
3596 |
|
|
for (i = 0; i < ppc_num_vshrs; i++)
|
3597 |
|
|
valid_p &= tdesc_numbered_register (feature, tdesc_data,
|
3598 |
|
|
PPC_VSR0_UPPER_REGNUM + i,
|
3599 |
|
|
vsx_regs[i]);
|
3600 |
|
|
if (!valid_p)
|
3601 |
|
|
{
|
3602 |
|
|
tdesc_data_cleanup (tdesc_data);
|
3603 |
|
|
return NULL;
|
3604 |
|
|
}
|
3605 |
|
|
|
3606 |
|
|
have_vsx = 1;
|
3607 |
|
|
}
|
3608 |
|
|
else
|
3609 |
|
|
have_vsx = 0;
|
3610 |
|
|
|
3611 |
|
|
/* On machines supporting the SPE APU, the general-purpose registers
|
3612 |
|
|
are 64 bits long. There are SIMD vector instructions to treat them
|
3613 |
|
|
as pairs of floats, but the rest of the instruction set treats them
|
3614 |
|
|
as 32-bit registers, and only operates on their lower halves.
|
3615 |
|
|
|
3616 |
|
|
In the GDB regcache, we treat their high and low halves as separate
|
3617 |
|
|
registers. The low halves we present as the general-purpose
|
3618 |
|
|
registers, and then we have pseudo-registers that stitch together
|
3619 |
|
|
the upper and lower halves and present them as pseudo-registers.
|
3620 |
|
|
|
3621 |
|
|
Thus, the target description is expected to supply the upper
|
3622 |
|
|
halves separately. */
|
3623 |
|
|
|
3624 |
|
|
feature = tdesc_find_feature (tdesc,
|
3625 |
|
|
"org.gnu.gdb.power.spe");
|
3626 |
|
|
if (feature != NULL)
|
3627 |
|
|
{
|
3628 |
|
|
static const char *const upper_spe[] = {
|
3629 |
|
|
"ev0h", "ev1h", "ev2h", "ev3h",
|
3630 |
|
|
"ev4h", "ev5h", "ev6h", "ev7h",
|
3631 |
|
|
"ev8h", "ev9h", "ev10h", "ev11h",
|
3632 |
|
|
"ev12h", "ev13h", "ev14h", "ev15h",
|
3633 |
|
|
"ev16h", "ev17h", "ev18h", "ev19h",
|
3634 |
|
|
"ev20h", "ev21h", "ev22h", "ev23h",
|
3635 |
|
|
"ev24h", "ev25h", "ev26h", "ev27h",
|
3636 |
|
|
"ev28h", "ev29h", "ev30h", "ev31h"
|
3637 |
|
|
};
|
3638 |
|
|
|
3639 |
|
|
valid_p = 1;
|
3640 |
|
|
for (i = 0; i < ppc_num_gprs; i++)
|
3641 |
|
|
valid_p &= tdesc_numbered_register (feature, tdesc_data,
|
3642 |
|
|
PPC_SPE_UPPER_GP0_REGNUM + i,
|
3643 |
|
|
upper_spe[i]);
|
3644 |
|
|
valid_p &= tdesc_numbered_register (feature, tdesc_data,
|
3645 |
|
|
PPC_SPE_ACC_REGNUM, "acc");
|
3646 |
|
|
valid_p &= tdesc_numbered_register (feature, tdesc_data,
|
3647 |
|
|
PPC_SPE_FSCR_REGNUM, "spefscr");
|
3648 |
|
|
|
3649 |
|
|
if (have_mq || have_fpu || !valid_p)
|
3650 |
|
|
{
|
3651 |
|
|
tdesc_data_cleanup (tdesc_data);
|
3652 |
|
|
return NULL;
|
3653 |
|
|
}
|
3654 |
|
|
have_spe = 1;
|
3655 |
|
|
}
|
3656 |
|
|
else
|
3657 |
|
|
have_spe = 0;
|
3658 |
|
|
}
|
3659 |
|
|
|
3660 |
|
|
/* If we have a 64-bit binary on a 32-bit target, complain. Also
|
3661 |
|
|
complain for a 32-bit binary on a 64-bit target; we do not yet
|
3662 |
|
|
support that. For instance, the 32-bit ABI routines expect
|
3663 |
|
|
32-bit GPRs.
|
3664 |
|
|
|
3665 |
|
|
As long as there isn't an explicit target description, we'll
|
3666 |
|
|
choose one based on the BFD architecture and get a word size
|
3667 |
|
|
matching the binary (probably powerpc:common or
|
3668 |
|
|
powerpc:common64). So there is only trouble if a 64-bit target
|
3669 |
|
|
supplies a 64-bit description while debugging a 32-bit
|
3670 |
|
|
binary. */
|
3671 |
|
|
if (tdesc_wordsize != -1 && tdesc_wordsize != wordsize)
|
3672 |
|
|
{
|
3673 |
|
|
tdesc_data_cleanup (tdesc_data);
|
3674 |
|
|
return NULL;
|
3675 |
|
|
}
|
3676 |
|
|
|
3677 |
|
|
#ifdef HAVE_ELF
|
3678 |
|
|
if (soft_float_flag == AUTO_BOOLEAN_AUTO && from_elf_exec)
|
3679 |
|
|
{
|
3680 |
|
|
switch (bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_GNU,
|
3681 |
|
|
Tag_GNU_Power_ABI_FP))
|
3682 |
|
|
{
|
3683 |
|
|
case 1:
|
3684 |
|
|
soft_float_flag = AUTO_BOOLEAN_FALSE;
|
3685 |
|
|
break;
|
3686 |
|
|
case 2:
|
3687 |
|
|
soft_float_flag = AUTO_BOOLEAN_TRUE;
|
3688 |
|
|
break;
|
3689 |
|
|
default:
|
3690 |
|
|
break;
|
3691 |
|
|
}
|
3692 |
|
|
}
|
3693 |
|
|
|
3694 |
|
|
if (vector_abi == POWERPC_VEC_AUTO && from_elf_exec)
|
3695 |
|
|
{
|
3696 |
|
|
switch (bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_GNU,
|
3697 |
|
|
Tag_GNU_Power_ABI_Vector))
|
3698 |
|
|
{
|
3699 |
|
|
case 1:
|
3700 |
|
|
vector_abi = POWERPC_VEC_GENERIC;
|
3701 |
|
|
break;
|
3702 |
|
|
case 2:
|
3703 |
|
|
vector_abi = POWERPC_VEC_ALTIVEC;
|
3704 |
|
|
break;
|
3705 |
|
|
case 3:
|
3706 |
|
|
vector_abi = POWERPC_VEC_SPE;
|
3707 |
|
|
break;
|
3708 |
|
|
default:
|
3709 |
|
|
break;
|
3710 |
|
|
}
|
3711 |
|
|
}
|
3712 |
|
|
#endif
|
3713 |
|
|
|
3714 |
|
|
if (soft_float_flag == AUTO_BOOLEAN_TRUE)
|
3715 |
|
|
soft_float = 1;
|
3716 |
|
|
else if (soft_float_flag == AUTO_BOOLEAN_FALSE)
|
3717 |
|
|
soft_float = 0;
|
3718 |
|
|
else
|
3719 |
|
|
soft_float = !have_fpu;
|
3720 |
|
|
|
3721 |
|
|
/* If we have a hard float binary or setting but no floating point
|
3722 |
|
|
registers, downgrade to soft float anyway. We're still somewhat
|
3723 |
|
|
useful in this scenario. */
|
3724 |
|
|
if (!soft_float && !have_fpu)
|
3725 |
|
|
soft_float = 1;
|
3726 |
|
|
|
3727 |
|
|
/* Similarly for vector registers. */
|
3728 |
|
|
if (vector_abi == POWERPC_VEC_ALTIVEC && !have_altivec)
|
3729 |
|
|
vector_abi = POWERPC_VEC_GENERIC;
|
3730 |
|
|
|
3731 |
|
|
if (vector_abi == POWERPC_VEC_SPE && !have_spe)
|
3732 |
|
|
vector_abi = POWERPC_VEC_GENERIC;
|
3733 |
|
|
|
3734 |
|
|
if (vector_abi == POWERPC_VEC_AUTO)
|
3735 |
|
|
{
|
3736 |
|
|
if (have_altivec)
|
3737 |
|
|
vector_abi = POWERPC_VEC_ALTIVEC;
|
3738 |
|
|
else if (have_spe)
|
3739 |
|
|
vector_abi = POWERPC_VEC_SPE;
|
3740 |
|
|
else
|
3741 |
|
|
vector_abi = POWERPC_VEC_GENERIC;
|
3742 |
|
|
}
|
3743 |
|
|
|
3744 |
|
|
/* Do not limit the vector ABI based on available hardware, since we
|
3745 |
|
|
do not yet know what hardware we'll decide we have. Yuck! FIXME! */
|
3746 |
|
|
|
3747 |
|
|
/* Find a candidate among extant architectures. */
|
3748 |
|
|
for (arches = gdbarch_list_lookup_by_info (arches, &info);
|
3749 |
|
|
arches != NULL;
|
3750 |
|
|
arches = gdbarch_list_lookup_by_info (arches->next, &info))
|
3751 |
|
|
{
|
3752 |
|
|
/* Word size in the various PowerPC bfd_arch_info structs isn't
|
3753 |
|
|
meaningful, because 64-bit CPUs can run in 32-bit mode. So, perform
|
3754 |
|
|
separate word size check. */
|
3755 |
|
|
tdep = gdbarch_tdep (arches->gdbarch);
|
3756 |
|
|
if (tdep && tdep->soft_float != soft_float)
|
3757 |
|
|
continue;
|
3758 |
|
|
if (tdep && tdep->vector_abi != vector_abi)
|
3759 |
|
|
continue;
|
3760 |
|
|
if (tdep && tdep->wordsize == wordsize)
|
3761 |
|
|
{
|
3762 |
|
|
if (tdesc_data != NULL)
|
3763 |
|
|
tdesc_data_cleanup (tdesc_data);
|
3764 |
|
|
return arches->gdbarch;
|
3765 |
|
|
}
|
3766 |
|
|
}
|
3767 |
|
|
|
3768 |
|
|
/* None found, create a new architecture from INFO, whose bfd_arch_info
|
3769 |
|
|
validity depends on the source:
|
3770 |
|
|
- executable useless
|
3771 |
|
|
- rs6000_host_arch() good
|
3772 |
|
|
- core file good
|
3773 |
|
|
- "set arch" trust blindly
|
3774 |
|
|
- GDB startup useless but harmless */
|
3775 |
|
|
|
3776 |
|
|
tdep = XCALLOC (1, struct gdbarch_tdep);
|
3777 |
|
|
tdep->wordsize = wordsize;
|
3778 |
|
|
tdep->soft_float = soft_float;
|
3779 |
|
|
tdep->vector_abi = vector_abi;
|
3780 |
|
|
|
3781 |
|
|
gdbarch = gdbarch_alloc (&info, tdep);
|
3782 |
|
|
|
3783 |
|
|
tdep->ppc_gp0_regnum = PPC_R0_REGNUM;
|
3784 |
|
|
tdep->ppc_toc_regnum = PPC_R0_REGNUM + 2;
|
3785 |
|
|
tdep->ppc_ps_regnum = PPC_MSR_REGNUM;
|
3786 |
|
|
tdep->ppc_cr_regnum = PPC_CR_REGNUM;
|
3787 |
|
|
tdep->ppc_lr_regnum = PPC_LR_REGNUM;
|
3788 |
|
|
tdep->ppc_ctr_regnum = PPC_CTR_REGNUM;
|
3789 |
|
|
tdep->ppc_xer_regnum = PPC_XER_REGNUM;
|
3790 |
|
|
tdep->ppc_mq_regnum = have_mq ? PPC_MQ_REGNUM : -1;
|
3791 |
|
|
|
3792 |
|
|
tdep->ppc_fp0_regnum = have_fpu ? PPC_F0_REGNUM : -1;
|
3793 |
|
|
tdep->ppc_fpscr_regnum = have_fpu ? PPC_FPSCR_REGNUM : -1;
|
3794 |
|
|
tdep->ppc_vsr0_upper_regnum = have_vsx ? PPC_VSR0_UPPER_REGNUM : -1;
|
3795 |
|
|
tdep->ppc_vr0_regnum = have_altivec ? PPC_VR0_REGNUM : -1;
|
3796 |
|
|
tdep->ppc_vrsave_regnum = have_altivec ? PPC_VRSAVE_REGNUM : -1;
|
3797 |
|
|
tdep->ppc_ev0_upper_regnum = have_spe ? PPC_SPE_UPPER_GP0_REGNUM : -1;
|
3798 |
|
|
tdep->ppc_acc_regnum = have_spe ? PPC_SPE_ACC_REGNUM : -1;
|
3799 |
|
|
tdep->ppc_spefscr_regnum = have_spe ? PPC_SPE_FSCR_REGNUM : -1;
|
3800 |
|
|
|
3801 |
|
|
set_gdbarch_pc_regnum (gdbarch, PPC_PC_REGNUM);
|
3802 |
|
|
set_gdbarch_sp_regnum (gdbarch, PPC_R0_REGNUM + 1);
|
3803 |
|
|
set_gdbarch_deprecated_fp_regnum (gdbarch, PPC_R0_REGNUM + 1);
|
3804 |
|
|
set_gdbarch_fp0_regnum (gdbarch, tdep->ppc_fp0_regnum);
|
3805 |
|
|
set_gdbarch_register_sim_regno (gdbarch, rs6000_register_sim_regno);
|
3806 |
|
|
|
3807 |
|
|
/* The XML specification for PowerPC sensibly calls the MSR "msr".
|
3808 |
|
|
GDB traditionally called it "ps", though, so let GDB add an
|
3809 |
|
|
alias. */
|
3810 |
|
|
set_gdbarch_ps_regnum (gdbarch, tdep->ppc_ps_regnum);
|
3811 |
|
|
|
3812 |
|
|
if (wordsize == 8)
|
3813 |
|
|
set_gdbarch_return_value (gdbarch, ppc64_sysv_abi_return_value);
|
3814 |
|
|
else
|
3815 |
|
|
set_gdbarch_return_value (gdbarch, ppc_sysv_abi_return_value);
|
3816 |
|
|
|
3817 |
|
|
/* Set lr_frame_offset. */
|
3818 |
|
|
if (wordsize == 8)
|
3819 |
|
|
tdep->lr_frame_offset = 16;
|
3820 |
|
|
else
|
3821 |
|
|
tdep->lr_frame_offset = 4;
|
3822 |
|
|
|
3823 |
|
|
if (have_spe || have_dfp || have_vsx)
|
3824 |
|
|
{
|
3825 |
|
|
set_gdbarch_pseudo_register_read (gdbarch, rs6000_pseudo_register_read);
|
3826 |
|
|
set_gdbarch_pseudo_register_write (gdbarch, rs6000_pseudo_register_write);
|
3827 |
|
|
}
|
3828 |
|
|
|
3829 |
|
|
set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
|
3830 |
|
|
|
3831 |
|
|
/* Select instruction printer. */
|
3832 |
|
|
if (arch == bfd_arch_rs6000)
|
3833 |
|
|
set_gdbarch_print_insn (gdbarch, print_insn_rs6000);
|
3834 |
|
|
else
|
3835 |
|
|
set_gdbarch_print_insn (gdbarch, gdb_print_insn_powerpc);
|
3836 |
|
|
|
3837 |
|
|
set_gdbarch_num_regs (gdbarch, PPC_NUM_REGS);
|
3838 |
|
|
|
3839 |
|
|
if (have_spe)
|
3840 |
|
|
num_pseudoregs += 32;
|
3841 |
|
|
if (have_dfp)
|
3842 |
|
|
num_pseudoregs += 16;
|
3843 |
|
|
if (have_vsx)
|
3844 |
|
|
/* Include both VSX and Extended FP registers. */
|
3845 |
|
|
num_pseudoregs += 96;
|
3846 |
|
|
|
3847 |
|
|
set_gdbarch_num_pseudo_regs (gdbarch, num_pseudoregs);
|
3848 |
|
|
|
3849 |
|
|
set_gdbarch_ptr_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
|
3850 |
|
|
set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
|
3851 |
|
|
set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
|
3852 |
|
|
set_gdbarch_long_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
|
3853 |
|
|
set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
|
3854 |
|
|
set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
|
3855 |
|
|
set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
|
3856 |
|
|
set_gdbarch_long_double_bit (gdbarch, 16 * TARGET_CHAR_BIT);
|
3857 |
|
|
set_gdbarch_char_signed (gdbarch, 0);
|
3858 |
|
|
|
3859 |
|
|
set_gdbarch_frame_align (gdbarch, rs6000_frame_align);
|
3860 |
|
|
if (wordsize == 8)
|
3861 |
|
|
/* PPC64 SYSV. */
|
3862 |
|
|
set_gdbarch_frame_red_zone_size (gdbarch, 288);
|
3863 |
|
|
|
3864 |
|
|
set_gdbarch_convert_register_p (gdbarch, rs6000_convert_register_p);
|
3865 |
|
|
set_gdbarch_register_to_value (gdbarch, rs6000_register_to_value);
|
3866 |
|
|
set_gdbarch_value_to_register (gdbarch, rs6000_value_to_register);
|
3867 |
|
|
|
3868 |
|
|
set_gdbarch_stab_reg_to_regnum (gdbarch, rs6000_stab_reg_to_regnum);
|
3869 |
|
|
set_gdbarch_dwarf2_reg_to_regnum (gdbarch, rs6000_dwarf2_reg_to_regnum);
|
3870 |
|
|
|
3871 |
|
|
if (wordsize == 4)
|
3872 |
|
|
set_gdbarch_push_dummy_call (gdbarch, ppc_sysv_abi_push_dummy_call);
|
3873 |
|
|
else if (wordsize == 8)
|
3874 |
|
|
set_gdbarch_push_dummy_call (gdbarch, ppc64_sysv_abi_push_dummy_call);
|
3875 |
|
|
|
3876 |
|
|
set_gdbarch_skip_prologue (gdbarch, rs6000_skip_prologue);
|
3877 |
|
|
set_gdbarch_in_function_epilogue_p (gdbarch, rs6000_in_function_epilogue_p);
|
3878 |
|
|
set_gdbarch_skip_main_prologue (gdbarch, rs6000_skip_main_prologue);
|
3879 |
|
|
|
3880 |
|
|
set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
|
3881 |
|
|
set_gdbarch_breakpoint_from_pc (gdbarch, rs6000_breakpoint_from_pc);
|
3882 |
|
|
|
3883 |
|
|
/* The value of symbols of type N_SO and N_FUN maybe null when
|
3884 |
|
|
it shouldn't be. */
|
3885 |
|
|
set_gdbarch_sofun_address_maybe_missing (gdbarch, 1);
|
3886 |
|
|
|
3887 |
|
|
/* Handles single stepping of atomic sequences. */
|
3888 |
|
|
set_gdbarch_software_single_step (gdbarch, ppc_deal_with_atomic_sequence);
|
3889 |
|
|
|
3890 |
|
|
/* Not sure on this. FIXMEmgo */
|
3891 |
|
|
set_gdbarch_frame_args_skip (gdbarch, 8);
|
3892 |
|
|
|
3893 |
|
|
/* Helpers for function argument information. */
|
3894 |
|
|
set_gdbarch_fetch_pointer_argument (gdbarch, rs6000_fetch_pointer_argument);
|
3895 |
|
|
|
3896 |
|
|
/* Trampoline. */
|
3897 |
|
|
set_gdbarch_in_solib_return_trampoline
|
3898 |
|
|
(gdbarch, rs6000_in_solib_return_trampoline);
|
3899 |
|
|
set_gdbarch_skip_trampoline_code (gdbarch, rs6000_skip_trampoline_code);
|
3900 |
|
|
|
3901 |
|
|
/* Hook in the DWARF CFI frame unwinder. */
|
3902 |
|
|
dwarf2_append_unwinders (gdbarch);
|
3903 |
|
|
dwarf2_frame_set_adjust_regnum (gdbarch, rs6000_adjust_frame_regnum);
|
3904 |
|
|
|
3905 |
|
|
/* Frame handling. */
|
3906 |
|
|
dwarf2_frame_set_init_reg (gdbarch, ppc_dwarf2_frame_init_reg);
|
3907 |
|
|
|
3908 |
|
|
/* Setup displaced stepping. */
|
3909 |
|
|
set_gdbarch_displaced_step_copy_insn (gdbarch,
|
3910 |
|
|
simple_displaced_step_copy_insn);
|
3911 |
|
|
set_gdbarch_displaced_step_hw_singlestep (gdbarch,
|
3912 |
|
|
ppc_displaced_step_hw_singlestep);
|
3913 |
|
|
set_gdbarch_displaced_step_fixup (gdbarch, ppc_displaced_step_fixup);
|
3914 |
|
|
set_gdbarch_displaced_step_free_closure (gdbarch,
|
3915 |
|
|
simple_displaced_step_free_closure);
|
3916 |
|
|
set_gdbarch_displaced_step_location (gdbarch,
|
3917 |
|
|
displaced_step_at_entry_point);
|
3918 |
|
|
|
3919 |
|
|
set_gdbarch_max_insn_length (gdbarch, PPC_INSN_SIZE);
|
3920 |
|
|
|
3921 |
|
|
/* Hook in ABI-specific overrides, if they have been registered. */
|
3922 |
|
|
info.target_desc = tdesc;
|
3923 |
|
|
info.tdep_info = (void *) tdesc_data;
|
3924 |
|
|
gdbarch_init_osabi (info, gdbarch);
|
3925 |
|
|
|
3926 |
|
|
switch (info.osabi)
|
3927 |
|
|
{
|
3928 |
|
|
case GDB_OSABI_LINUX:
|
3929 |
|
|
case GDB_OSABI_NETBSD_AOUT:
|
3930 |
|
|
case GDB_OSABI_NETBSD_ELF:
|
3931 |
|
|
case GDB_OSABI_UNKNOWN:
|
3932 |
|
|
set_gdbarch_unwind_pc (gdbarch, rs6000_unwind_pc);
|
3933 |
|
|
frame_unwind_append_unwinder (gdbarch, &rs6000_frame_unwind);
|
3934 |
|
|
set_gdbarch_dummy_id (gdbarch, rs6000_dummy_id);
|
3935 |
|
|
frame_base_append_sniffer (gdbarch, rs6000_frame_base_sniffer);
|
3936 |
|
|
break;
|
3937 |
|
|
default:
|
3938 |
|
|
set_gdbarch_believe_pcc_promotion (gdbarch, 1);
|
3939 |
|
|
|
3940 |
|
|
set_gdbarch_unwind_pc (gdbarch, rs6000_unwind_pc);
|
3941 |
|
|
frame_unwind_append_unwinder (gdbarch, &rs6000_frame_unwind);
|
3942 |
|
|
set_gdbarch_dummy_id (gdbarch, rs6000_dummy_id);
|
3943 |
|
|
frame_base_append_sniffer (gdbarch, rs6000_frame_base_sniffer);
|
3944 |
|
|
}
|
3945 |
|
|
|
3946 |
|
|
set_tdesc_pseudo_register_type (gdbarch, rs6000_pseudo_register_type);
|
3947 |
|
|
set_tdesc_pseudo_register_reggroup_p (gdbarch,
|
3948 |
|
|
rs6000_pseudo_register_reggroup_p);
|
3949 |
|
|
tdesc_use_registers (gdbarch, tdesc, tdesc_data);
|
3950 |
|
|
|
3951 |
|
|
/* Override the normal target description method to make the SPE upper
|
3952 |
|
|
halves anonymous. */
|
3953 |
|
|
set_gdbarch_register_name (gdbarch, rs6000_register_name);
|
3954 |
|
|
|
3955 |
|
|
/* Choose register numbers for all supported pseudo-registers. */
|
3956 |
|
|
tdep->ppc_ev0_regnum = -1;
|
3957 |
|
|
tdep->ppc_dl0_regnum = -1;
|
3958 |
|
|
tdep->ppc_vsr0_regnum = -1;
|
3959 |
|
|
tdep->ppc_efpr0_regnum = -1;
|
3960 |
|
|
|
3961 |
|
|
cur_reg = gdbarch_num_regs (gdbarch);
|
3962 |
|
|
|
3963 |
|
|
if (have_spe)
|
3964 |
|
|
{
|
3965 |
|
|
tdep->ppc_ev0_regnum = cur_reg;
|
3966 |
|
|
cur_reg += 32;
|
3967 |
|
|
}
|
3968 |
|
|
if (have_dfp)
|
3969 |
|
|
{
|
3970 |
|
|
tdep->ppc_dl0_regnum = cur_reg;
|
3971 |
|
|
cur_reg += 16;
|
3972 |
|
|
}
|
3973 |
|
|
if (have_vsx)
|
3974 |
|
|
{
|
3975 |
|
|
tdep->ppc_vsr0_regnum = cur_reg;
|
3976 |
|
|
cur_reg += 64;
|
3977 |
|
|
tdep->ppc_efpr0_regnum = cur_reg;
|
3978 |
|
|
cur_reg += 32;
|
3979 |
|
|
}
|
3980 |
|
|
|
3981 |
|
|
gdb_assert (gdbarch_num_regs (gdbarch)
|
3982 |
|
|
+ gdbarch_num_pseudo_regs (gdbarch) == cur_reg);
|
3983 |
|
|
|
3984 |
|
|
return gdbarch;
|
3985 |
|
|
}
|
3986 |
|
|
|
3987 |
|
|
static void
|
3988 |
|
|
rs6000_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
|
3989 |
|
|
{
|
3990 |
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
3991 |
|
|
|
3992 |
|
|
if (tdep == NULL)
|
3993 |
|
|
return;
|
3994 |
|
|
|
3995 |
|
|
/* FIXME: Dump gdbarch_tdep. */
|
3996 |
|
|
}
|
3997 |
|
|
|
3998 |
|
|
/* PowerPC-specific commands. */
|
3999 |
|
|
|
4000 |
|
|
static void
|
4001 |
|
|
set_powerpc_command (char *args, int from_tty)
|
4002 |
|
|
{
|
4003 |
|
|
printf_unfiltered (_("\
|
4004 |
|
|
\"set powerpc\" must be followed by an appropriate subcommand.\n"));
|
4005 |
|
|
help_list (setpowerpccmdlist, "set powerpc ", all_commands, gdb_stdout);
|
4006 |
|
|
}
|
4007 |
|
|
|
4008 |
|
|
static void
|
4009 |
|
|
show_powerpc_command (char *args, int from_tty)
|
4010 |
|
|
{
|
4011 |
|
|
cmd_show_list (showpowerpccmdlist, from_tty, "");
|
4012 |
|
|
}
|
4013 |
|
|
|
4014 |
|
|
static void
|
4015 |
|
|
powerpc_set_soft_float (char *args, int from_tty,
|
4016 |
|
|
struct cmd_list_element *c)
|
4017 |
|
|
{
|
4018 |
|
|
struct gdbarch_info info;
|
4019 |
|
|
|
4020 |
|
|
/* Update the architecture. */
|
4021 |
|
|
gdbarch_info_init (&info);
|
4022 |
|
|
if (!gdbarch_update_p (info))
|
4023 |
|
|
internal_error (__FILE__, __LINE__, "could not update architecture");
|
4024 |
|
|
}
|
4025 |
|
|
|
4026 |
|
|
static void
|
4027 |
|
|
powerpc_set_vector_abi (char *args, int from_tty,
|
4028 |
|
|
struct cmd_list_element *c)
|
4029 |
|
|
{
|
4030 |
|
|
struct gdbarch_info info;
|
4031 |
|
|
enum powerpc_vector_abi vector_abi;
|
4032 |
|
|
|
4033 |
|
|
for (vector_abi = POWERPC_VEC_AUTO;
|
4034 |
|
|
vector_abi != POWERPC_VEC_LAST;
|
4035 |
|
|
vector_abi++)
|
4036 |
|
|
if (strcmp (powerpc_vector_abi_string,
|
4037 |
|
|
powerpc_vector_strings[vector_abi]) == 0)
|
4038 |
|
|
{
|
4039 |
|
|
powerpc_vector_abi_global = vector_abi;
|
4040 |
|
|
break;
|
4041 |
|
|
}
|
4042 |
|
|
|
4043 |
|
|
if (vector_abi == POWERPC_VEC_LAST)
|
4044 |
|
|
internal_error (__FILE__, __LINE__, _("Invalid vector ABI accepted: %s."),
|
4045 |
|
|
powerpc_vector_abi_string);
|
4046 |
|
|
|
4047 |
|
|
/* Update the architecture. */
|
4048 |
|
|
gdbarch_info_init (&info);
|
4049 |
|
|
if (!gdbarch_update_p (info))
|
4050 |
|
|
internal_error (__FILE__, __LINE__, "could not update architecture");
|
4051 |
|
|
}
|
4052 |
|
|
|
4053 |
|
|
/* Initialization code. */
|
4054 |
|
|
|
4055 |
|
|
extern initialize_file_ftype _initialize_rs6000_tdep; /* -Wmissing-prototypes */
|
4056 |
|
|
|
4057 |
|
|
void
|
4058 |
|
|
_initialize_rs6000_tdep (void)
|
4059 |
|
|
{
|
4060 |
|
|
gdbarch_register (bfd_arch_rs6000, rs6000_gdbarch_init, rs6000_dump_tdep);
|
4061 |
|
|
gdbarch_register (bfd_arch_powerpc, rs6000_gdbarch_init, rs6000_dump_tdep);
|
4062 |
|
|
|
4063 |
|
|
/* Initialize the standard target descriptions. */
|
4064 |
|
|
initialize_tdesc_powerpc_32 ();
|
4065 |
|
|
initialize_tdesc_powerpc_altivec32 ();
|
4066 |
|
|
initialize_tdesc_powerpc_vsx32 ();
|
4067 |
|
|
initialize_tdesc_powerpc_403 ();
|
4068 |
|
|
initialize_tdesc_powerpc_403gc ();
|
4069 |
|
|
initialize_tdesc_powerpc_405 ();
|
4070 |
|
|
initialize_tdesc_powerpc_505 ();
|
4071 |
|
|
initialize_tdesc_powerpc_601 ();
|
4072 |
|
|
initialize_tdesc_powerpc_602 ();
|
4073 |
|
|
initialize_tdesc_powerpc_603 ();
|
4074 |
|
|
initialize_tdesc_powerpc_604 ();
|
4075 |
|
|
initialize_tdesc_powerpc_64 ();
|
4076 |
|
|
initialize_tdesc_powerpc_altivec64 ();
|
4077 |
|
|
initialize_tdesc_powerpc_vsx64 ();
|
4078 |
|
|
initialize_tdesc_powerpc_7400 ();
|
4079 |
|
|
initialize_tdesc_powerpc_750 ();
|
4080 |
|
|
initialize_tdesc_powerpc_860 ();
|
4081 |
|
|
initialize_tdesc_powerpc_e500 ();
|
4082 |
|
|
initialize_tdesc_rs6000 ();
|
4083 |
|
|
|
4084 |
|
|
/* Add root prefix command for all "set powerpc"/"show powerpc"
|
4085 |
|
|
commands. */
|
4086 |
|
|
add_prefix_cmd ("powerpc", no_class, set_powerpc_command,
|
4087 |
|
|
_("Various PowerPC-specific commands."),
|
4088 |
|
|
&setpowerpccmdlist, "set powerpc ", 0, &setlist);
|
4089 |
|
|
|
4090 |
|
|
add_prefix_cmd ("powerpc", no_class, show_powerpc_command,
|
4091 |
|
|
_("Various PowerPC-specific commands."),
|
4092 |
|
|
&showpowerpccmdlist, "show powerpc ", 0, &showlist);
|
4093 |
|
|
|
4094 |
|
|
/* Add a command to allow the user to force the ABI. */
|
4095 |
|
|
add_setshow_auto_boolean_cmd ("soft-float", class_support,
|
4096 |
|
|
&powerpc_soft_float_global,
|
4097 |
|
|
_("Set whether to use a soft-float ABI."),
|
4098 |
|
|
_("Show whether to use a soft-float ABI."),
|
4099 |
|
|
NULL,
|
4100 |
|
|
powerpc_set_soft_float, NULL,
|
4101 |
|
|
&setpowerpccmdlist, &showpowerpccmdlist);
|
4102 |
|
|
|
4103 |
|
|
add_setshow_enum_cmd ("vector-abi", class_support, powerpc_vector_strings,
|
4104 |
|
|
&powerpc_vector_abi_string,
|
4105 |
|
|
_("Set the vector ABI."),
|
4106 |
|
|
_("Show the vector ABI."),
|
4107 |
|
|
NULL, powerpc_set_vector_abi, NULL,
|
4108 |
|
|
&setpowerpccmdlist, &showpowerpccmdlist);
|
4109 |
|
|
}
|