1 |
227 |
jeremybenn |
/* Target-dependent code for the Renesas RX for GDB, the GNU debugger.
|
2 |
|
|
|
3 |
|
|
Copyright (C) 2008, 2009, 2010 Free Software Foundation, Inc.
|
4 |
|
|
|
5 |
|
|
Contributed by Red Hat, Inc.
|
6 |
|
|
|
7 |
|
|
This file is part of GDB.
|
8 |
|
|
|
9 |
|
|
This program is free software; you can redistribute it and/or modify
|
10 |
|
|
it under the terms of the GNU General Public License as published by
|
11 |
|
|
the Free Software Foundation; either version 3 of the License, or
|
12 |
|
|
(at your option) any later version.
|
13 |
|
|
|
14 |
|
|
This program is distributed in the hope that it will be useful,
|
15 |
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
16 |
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
17 |
|
|
GNU General Public License for more details.
|
18 |
|
|
|
19 |
|
|
You should have received a copy of the GNU General Public License
|
20 |
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>. */
|
21 |
|
|
|
22 |
|
|
#include "defs.h"
|
23 |
|
|
#include "arch-utils.h"
|
24 |
|
|
#include "prologue-value.h"
|
25 |
|
|
#include "target.h"
|
26 |
|
|
#include "regcache.h"
|
27 |
|
|
#include "opcode/rx.h"
|
28 |
|
|
#include "dis-asm.h"
|
29 |
|
|
#include "gdbtypes.h"
|
30 |
|
|
#include "frame.h"
|
31 |
|
|
#include "frame-unwind.h"
|
32 |
|
|
#include "frame-base.h"
|
33 |
|
|
#include "value.h"
|
34 |
|
|
#include "gdbcore.h"
|
35 |
|
|
#include "dwarf2-frame.h"
|
36 |
|
|
|
37 |
|
|
#include "elf/rx.h"
|
38 |
|
|
#include "elf-bfd.h"
|
39 |
|
|
|
40 |
|
|
/* Certain important register numbers. */
|
41 |
|
|
enum
|
42 |
|
|
{
|
43 |
|
|
RX_SP_REGNUM = 0,
|
44 |
|
|
RX_R1_REGNUM = 1,
|
45 |
|
|
RX_R4_REGNUM = 4,
|
46 |
|
|
RX_FP_REGNUM = 6,
|
47 |
|
|
RX_R15_REGNUM = 15,
|
48 |
|
|
RX_PC_REGNUM = 19,
|
49 |
|
|
RX_NUM_REGS = 25
|
50 |
|
|
};
|
51 |
|
|
|
52 |
|
|
/* Architecture specific data. */
|
53 |
|
|
struct gdbarch_tdep
|
54 |
|
|
{
|
55 |
|
|
/* The ELF header flags specify the multilib used. */
|
56 |
|
|
int elf_flags;
|
57 |
|
|
};
|
58 |
|
|
|
59 |
|
|
/* This structure holds the results of a prologue analysis. */
|
60 |
|
|
struct rx_prologue
|
61 |
|
|
{
|
62 |
|
|
/* The offset from the frame base to the stack pointer --- always
|
63 |
|
|
zero or negative.
|
64 |
|
|
|
65 |
|
|
Calling this a "size" is a bit misleading, but given that the
|
66 |
|
|
stack grows downwards, using offsets for everything keeps one
|
67 |
|
|
from going completely sign-crazy: you never change anything's
|
68 |
|
|
sign for an ADD instruction; always change the second operand's
|
69 |
|
|
sign for a SUB instruction; and everything takes care of
|
70 |
|
|
itself. */
|
71 |
|
|
int frame_size;
|
72 |
|
|
|
73 |
|
|
/* Non-zero if this function has initialized the frame pointer from
|
74 |
|
|
the stack pointer, zero otherwise. */
|
75 |
|
|
int has_frame_ptr;
|
76 |
|
|
|
77 |
|
|
/* If has_frame_ptr is non-zero, this is the offset from the frame
|
78 |
|
|
base to where the frame pointer points. This is always zero or
|
79 |
|
|
negative. */
|
80 |
|
|
int frame_ptr_offset;
|
81 |
|
|
|
82 |
|
|
/* The address of the first instruction at which the frame has been
|
83 |
|
|
set up and the arguments are where the debug info says they are
|
84 |
|
|
--- as best as we can tell. */
|
85 |
|
|
CORE_ADDR prologue_end;
|
86 |
|
|
|
87 |
|
|
/* reg_offset[R] is the offset from the CFA at which register R is
|
88 |
|
|
saved, or 1 if register R has not been saved. (Real values are
|
89 |
|
|
always zero or negative.) */
|
90 |
|
|
int reg_offset[RX_NUM_REGS];
|
91 |
|
|
};
|
92 |
|
|
|
93 |
|
|
/* Implement the "register_name" gdbarch method. */
|
94 |
|
|
static const char *
|
95 |
|
|
rx_register_name (struct gdbarch *gdbarch, int regnr)
|
96 |
|
|
{
|
97 |
|
|
static const char *const reg_names[] = {
|
98 |
|
|
"r0",
|
99 |
|
|
"r1",
|
100 |
|
|
"r2",
|
101 |
|
|
"r3",
|
102 |
|
|
"r4",
|
103 |
|
|
"r5",
|
104 |
|
|
"r6",
|
105 |
|
|
"r7",
|
106 |
|
|
"r8",
|
107 |
|
|
"r9",
|
108 |
|
|
"r10",
|
109 |
|
|
"r11",
|
110 |
|
|
"r12",
|
111 |
|
|
"r13",
|
112 |
|
|
"r14",
|
113 |
|
|
"r15",
|
114 |
|
|
"isp",
|
115 |
|
|
"usp",
|
116 |
|
|
"intb",
|
117 |
|
|
"pc",
|
118 |
|
|
"psw",
|
119 |
|
|
"bpc",
|
120 |
|
|
"bpsw",
|
121 |
|
|
"vct",
|
122 |
|
|
"fpsw"
|
123 |
|
|
};
|
124 |
|
|
|
125 |
|
|
return reg_names[regnr];
|
126 |
|
|
}
|
127 |
|
|
|
128 |
|
|
/* Implement the "register_type" gdbarch method. */
|
129 |
|
|
static struct type *
|
130 |
|
|
rx_register_type (struct gdbarch *gdbarch, int reg_nr)
|
131 |
|
|
{
|
132 |
|
|
if (reg_nr == RX_PC_REGNUM)
|
133 |
|
|
return builtin_type (gdbarch)->builtin_func_ptr;
|
134 |
|
|
else
|
135 |
|
|
return builtin_type (gdbarch)->builtin_unsigned_long;
|
136 |
|
|
}
|
137 |
|
|
|
138 |
|
|
|
139 |
|
|
/* Function for finding saved registers in a 'struct pv_area'; this
|
140 |
|
|
function is passed to pv_area_scan.
|
141 |
|
|
|
142 |
|
|
If VALUE is a saved register, ADDR says it was saved at a constant
|
143 |
|
|
offset from the frame base, and SIZE indicates that the whole
|
144 |
|
|
register was saved, record its offset. */
|
145 |
|
|
static void
|
146 |
|
|
check_for_saved (void *result_untyped, pv_t addr, CORE_ADDR size, pv_t value)
|
147 |
|
|
{
|
148 |
|
|
struct rx_prologue *result = (struct rx_prologue *) result_untyped;
|
149 |
|
|
|
150 |
|
|
if (value.kind == pvk_register
|
151 |
|
|
&& value.k == 0
|
152 |
|
|
&& pv_is_register (addr, RX_SP_REGNUM)
|
153 |
|
|
&& size == register_size (target_gdbarch, value.reg))
|
154 |
|
|
result->reg_offset[value.reg] = addr.k;
|
155 |
|
|
}
|
156 |
|
|
|
157 |
|
|
/* Define a "handle" struct for fetching the next opcode. */
|
158 |
|
|
struct rx_get_opcode_byte_handle
|
159 |
|
|
{
|
160 |
|
|
CORE_ADDR pc;
|
161 |
|
|
};
|
162 |
|
|
|
163 |
|
|
/* Fetch a byte on behalf of the opcode decoder. HANDLE contains
|
164 |
|
|
the memory address of the next byte to fetch. If successful,
|
165 |
|
|
the address in the handle is updated and the byte fetched is
|
166 |
|
|
returned as the value of the function. If not successful, -1
|
167 |
|
|
is returned. */
|
168 |
|
|
static int
|
169 |
|
|
rx_get_opcode_byte (void *handle)
|
170 |
|
|
{
|
171 |
|
|
struct rx_get_opcode_byte_handle *opcdata = handle;
|
172 |
|
|
int status;
|
173 |
|
|
gdb_byte byte;
|
174 |
|
|
|
175 |
|
|
status = target_read_memory (opcdata->pc, &byte, 1);
|
176 |
|
|
if (status == 0)
|
177 |
|
|
{
|
178 |
|
|
opcdata->pc += 1;
|
179 |
|
|
return byte;
|
180 |
|
|
}
|
181 |
|
|
else
|
182 |
|
|
return -1;
|
183 |
|
|
}
|
184 |
|
|
|
185 |
|
|
/* Analyze a prologue starting at START_PC, going no further than
|
186 |
|
|
LIMIT_PC. Fill in RESULT as appropriate. */
|
187 |
|
|
static void
|
188 |
|
|
rx_analyze_prologue (CORE_ADDR start_pc,
|
189 |
|
|
CORE_ADDR limit_pc, struct rx_prologue *result)
|
190 |
|
|
{
|
191 |
|
|
CORE_ADDR pc, next_pc;
|
192 |
|
|
int rn;
|
193 |
|
|
pv_t reg[RX_NUM_REGS];
|
194 |
|
|
struct pv_area *stack;
|
195 |
|
|
struct cleanup *back_to;
|
196 |
|
|
CORE_ADDR after_last_frame_setup_insn = start_pc;
|
197 |
|
|
|
198 |
|
|
memset (result, 0, sizeof (*result));
|
199 |
|
|
|
200 |
|
|
for (rn = 0; rn < RX_NUM_REGS; rn++)
|
201 |
|
|
{
|
202 |
|
|
reg[rn] = pv_register (rn, 0);
|
203 |
|
|
result->reg_offset[rn] = 1;
|
204 |
|
|
}
|
205 |
|
|
|
206 |
|
|
stack = make_pv_area (RX_SP_REGNUM, gdbarch_addr_bit (target_gdbarch));
|
207 |
|
|
back_to = make_cleanup_free_pv_area (stack);
|
208 |
|
|
|
209 |
|
|
/* The call instruction has saved the return address on the stack. */
|
210 |
|
|
reg[RX_SP_REGNUM] = pv_add_constant (reg[RX_SP_REGNUM], -4);
|
211 |
|
|
pv_area_store (stack, reg[RX_SP_REGNUM], 4, reg[RX_PC_REGNUM]);
|
212 |
|
|
|
213 |
|
|
pc = start_pc;
|
214 |
|
|
while (pc < limit_pc)
|
215 |
|
|
{
|
216 |
|
|
int bytes_read;
|
217 |
|
|
struct rx_get_opcode_byte_handle opcode_handle;
|
218 |
|
|
RX_Opcode_Decoded opc;
|
219 |
|
|
|
220 |
|
|
opcode_handle.pc = pc;
|
221 |
|
|
bytes_read = rx_decode_opcode (pc, &opc, rx_get_opcode_byte,
|
222 |
|
|
&opcode_handle);
|
223 |
|
|
next_pc = pc + bytes_read;
|
224 |
|
|
|
225 |
|
|
if (opc.id == RXO_pushm /* pushm r1, r2 */
|
226 |
|
|
&& opc.op[1].type == RX_Operand_Register
|
227 |
|
|
&& opc.op[2].type == RX_Operand_Register)
|
228 |
|
|
{
|
229 |
|
|
int r1, r2;
|
230 |
|
|
int r;
|
231 |
|
|
|
232 |
|
|
r1 = opc.op[1].reg;
|
233 |
|
|
r2 = opc.op[2].reg;
|
234 |
|
|
for (r = r2; r >= r1; r--)
|
235 |
|
|
{
|
236 |
|
|
reg[RX_SP_REGNUM] = pv_add_constant (reg[RX_SP_REGNUM], -4);
|
237 |
|
|
pv_area_store (stack, reg[RX_SP_REGNUM], 4, reg[r]);
|
238 |
|
|
}
|
239 |
|
|
after_last_frame_setup_insn = next_pc;
|
240 |
|
|
}
|
241 |
|
|
else if (opc.id == RXO_mov /* mov.l rdst, rsrc */
|
242 |
|
|
&& opc.op[0].type == RX_Operand_Register
|
243 |
|
|
&& opc.op[1].type == RX_Operand_Register
|
244 |
|
|
&& opc.size == RX_Long)
|
245 |
|
|
{
|
246 |
|
|
int rdst, rsrc;
|
247 |
|
|
|
248 |
|
|
rdst = opc.op[0].reg;
|
249 |
|
|
rsrc = opc.op[1].reg;
|
250 |
|
|
reg[rdst] = reg[rsrc];
|
251 |
|
|
if (rdst == RX_FP_REGNUM && rsrc == RX_SP_REGNUM)
|
252 |
|
|
after_last_frame_setup_insn = next_pc;
|
253 |
|
|
}
|
254 |
|
|
else if (opc.id == RXO_mov /* mov.l rsrc, [-SP] */
|
255 |
|
|
&& opc.op[0].type == RX_Operand_Predec
|
256 |
|
|
&& opc.op[0].reg == RX_SP_REGNUM
|
257 |
|
|
&& opc.op[1].type == RX_Operand_Register
|
258 |
|
|
&& opc.size == RX_Long)
|
259 |
|
|
{
|
260 |
|
|
int rsrc;
|
261 |
|
|
|
262 |
|
|
rsrc = opc.op[1].reg;
|
263 |
|
|
reg[RX_SP_REGNUM] = pv_add_constant (reg[RX_SP_REGNUM], -4);
|
264 |
|
|
pv_area_store (stack, reg[RX_SP_REGNUM], 4, reg[rsrc]);
|
265 |
|
|
after_last_frame_setup_insn = next_pc;
|
266 |
|
|
}
|
267 |
|
|
else if (opc.id == RXO_add /* add #const, rsrc, rdst */
|
268 |
|
|
&& opc.op[0].type == RX_Operand_Register
|
269 |
|
|
&& opc.op[1].type == RX_Operand_Immediate
|
270 |
|
|
&& opc.op[2].type == RX_Operand_Register)
|
271 |
|
|
{
|
272 |
|
|
int rdst = opc.op[0].reg;
|
273 |
|
|
int addend = opc.op[1].addend;
|
274 |
|
|
int rsrc = opc.op[2].reg;
|
275 |
|
|
reg[rdst] = pv_add_constant (reg[rsrc], addend);
|
276 |
|
|
/* Negative adjustments to the stack pointer or frame pointer
|
277 |
|
|
are (most likely) part of the prologue. */
|
278 |
|
|
if ((rdst == RX_SP_REGNUM || rdst == RX_FP_REGNUM) && addend < 0)
|
279 |
|
|
after_last_frame_setup_insn = next_pc;
|
280 |
|
|
}
|
281 |
|
|
else if (opc.id == RXO_mov
|
282 |
|
|
&& opc.op[0].type == RX_Operand_Indirect
|
283 |
|
|
&& opc.op[1].type == RX_Operand_Register
|
284 |
|
|
&& opc.size == RX_Long
|
285 |
|
|
&& (opc.op[0].reg == RX_SP_REGNUM
|
286 |
|
|
|| opc.op[0].reg == RX_FP_REGNUM)
|
287 |
|
|
&& (RX_R1_REGNUM <= opc.op[1].reg
|
288 |
|
|
&& opc.op[1].reg <= RX_R4_REGNUM))
|
289 |
|
|
{
|
290 |
|
|
/* This moves an argument register to the stack. Don't
|
291 |
|
|
record it, but allow it to be a part of the prologue. */
|
292 |
|
|
}
|
293 |
|
|
else if (opc.id == RXO_branch
|
294 |
|
|
&& opc.op[0].type == RX_Operand_Immediate
|
295 |
|
|
&& opc.op[1].type == RX_Operand_Condition
|
296 |
|
|
&& next_pc < opc.op[0].addend)
|
297 |
|
|
{
|
298 |
|
|
/* When a loop appears as the first statement of a function
|
299 |
|
|
body, gcc 4.x will use a BRA instruction to branch to the
|
300 |
|
|
loop condition checking code. This BRA instruction is
|
301 |
|
|
marked as part of the prologue. We therefore set next_pc
|
302 |
|
|
to this branch target and also stop the prologue scan.
|
303 |
|
|
The instructions at and beyond the branch target should
|
304 |
|
|
no longer be associated with the prologue.
|
305 |
|
|
|
306 |
|
|
Note that we only consider forward branches here. We
|
307 |
|
|
presume that a forward branch is being used to skip over
|
308 |
|
|
a loop body.
|
309 |
|
|
|
310 |
|
|
A backwards branch is covered by the default case below.
|
311 |
|
|
If we were to encounter a backwards branch, that would
|
312 |
|
|
most likely mean that we've scanned through a loop body.
|
313 |
|
|
We definitely want to stop the prologue scan when this
|
314 |
|
|
happens and that is precisely what is done by the default
|
315 |
|
|
case below. */
|
316 |
|
|
|
317 |
|
|
after_last_frame_setup_insn = opc.op[0].addend;
|
318 |
|
|
break; /* Scan no further if we hit this case. */
|
319 |
|
|
}
|
320 |
|
|
else
|
321 |
|
|
{
|
322 |
|
|
/* Terminate the prologue scan. */
|
323 |
|
|
break;
|
324 |
|
|
}
|
325 |
|
|
|
326 |
|
|
pc = next_pc;
|
327 |
|
|
}
|
328 |
|
|
|
329 |
|
|
/* Is the frame size (offset, really) a known constant? */
|
330 |
|
|
if (pv_is_register (reg[RX_SP_REGNUM], RX_SP_REGNUM))
|
331 |
|
|
result->frame_size = reg[RX_SP_REGNUM].k;
|
332 |
|
|
|
333 |
|
|
/* Was the frame pointer initialized? */
|
334 |
|
|
if (pv_is_register (reg[RX_FP_REGNUM], RX_SP_REGNUM))
|
335 |
|
|
{
|
336 |
|
|
result->has_frame_ptr = 1;
|
337 |
|
|
result->frame_ptr_offset = reg[RX_FP_REGNUM].k;
|
338 |
|
|
}
|
339 |
|
|
|
340 |
|
|
/* Record where all the registers were saved. */
|
341 |
|
|
pv_area_scan (stack, check_for_saved, (void *) result);
|
342 |
|
|
|
343 |
|
|
result->prologue_end = after_last_frame_setup_insn;
|
344 |
|
|
|
345 |
|
|
do_cleanups (back_to);
|
346 |
|
|
}
|
347 |
|
|
|
348 |
|
|
|
349 |
|
|
/* Implement the "skip_prologue" gdbarch method. */
|
350 |
|
|
static CORE_ADDR
|
351 |
|
|
rx_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
|
352 |
|
|
{
|
353 |
|
|
char *name;
|
354 |
|
|
CORE_ADDR func_addr, func_end;
|
355 |
|
|
struct rx_prologue p;
|
356 |
|
|
|
357 |
|
|
/* Try to find the extent of the function that contains PC. */
|
358 |
|
|
if (!find_pc_partial_function (pc, &name, &func_addr, &func_end))
|
359 |
|
|
return pc;
|
360 |
|
|
|
361 |
|
|
rx_analyze_prologue (pc, func_end, &p);
|
362 |
|
|
return p.prologue_end;
|
363 |
|
|
}
|
364 |
|
|
|
365 |
|
|
/* Given a frame described by THIS_FRAME, decode the prologue of its
|
366 |
|
|
associated function if there is not cache entry as specified by
|
367 |
|
|
THIS_PROLOGUE_CACHE. Save the decoded prologue in the cache and
|
368 |
|
|
return that struct as the value of this function. */
|
369 |
|
|
static struct rx_prologue *
|
370 |
|
|
rx_analyze_frame_prologue (struct frame_info *this_frame,
|
371 |
|
|
void **this_prologue_cache)
|
372 |
|
|
{
|
373 |
|
|
if (!*this_prologue_cache)
|
374 |
|
|
{
|
375 |
|
|
CORE_ADDR func_start, stop_addr;
|
376 |
|
|
|
377 |
|
|
*this_prologue_cache = FRAME_OBSTACK_ZALLOC (struct rx_prologue);
|
378 |
|
|
|
379 |
|
|
func_start = get_frame_func (this_frame);
|
380 |
|
|
stop_addr = get_frame_pc (this_frame);
|
381 |
|
|
|
382 |
|
|
/* If we couldn't find any function containing the PC, then
|
383 |
|
|
just initialize the prologue cache, but don't do anything. */
|
384 |
|
|
if (!func_start)
|
385 |
|
|
stop_addr = func_start;
|
386 |
|
|
|
387 |
|
|
rx_analyze_prologue (func_start, stop_addr, *this_prologue_cache);
|
388 |
|
|
}
|
389 |
|
|
|
390 |
|
|
return *this_prologue_cache;
|
391 |
|
|
}
|
392 |
|
|
|
393 |
|
|
/* Given the next frame and a prologue cache, return this frame's
|
394 |
|
|
base. */
|
395 |
|
|
static CORE_ADDR
|
396 |
|
|
rx_frame_base (struct frame_info *this_frame, void **this_prologue_cache)
|
397 |
|
|
{
|
398 |
|
|
struct rx_prologue *p
|
399 |
|
|
= rx_analyze_frame_prologue (this_frame, this_prologue_cache);
|
400 |
|
|
|
401 |
|
|
/* In functions that use alloca, the distance between the stack
|
402 |
|
|
pointer and the frame base varies dynamically, so we can't use
|
403 |
|
|
the SP plus static information like prologue analysis to find the
|
404 |
|
|
frame base. However, such functions must have a frame pointer,
|
405 |
|
|
to be able to restore the SP on exit. So whenever we do have a
|
406 |
|
|
frame pointer, use that to find the base. */
|
407 |
|
|
if (p->has_frame_ptr)
|
408 |
|
|
{
|
409 |
|
|
CORE_ADDR fp = get_frame_register_unsigned (this_frame, RX_FP_REGNUM);
|
410 |
|
|
return fp - p->frame_ptr_offset;
|
411 |
|
|
}
|
412 |
|
|
else
|
413 |
|
|
{
|
414 |
|
|
CORE_ADDR sp = get_frame_register_unsigned (this_frame, RX_SP_REGNUM);
|
415 |
|
|
return sp - p->frame_size;
|
416 |
|
|
}
|
417 |
|
|
}
|
418 |
|
|
|
419 |
|
|
/* Implement the "frame_this_id" method for unwinding frames. */
|
420 |
|
|
static void
|
421 |
|
|
rx_frame_this_id (struct frame_info *this_frame,
|
422 |
|
|
void **this_prologue_cache, struct frame_id *this_id)
|
423 |
|
|
{
|
424 |
|
|
*this_id = frame_id_build (rx_frame_base (this_frame, this_prologue_cache),
|
425 |
|
|
get_frame_func (this_frame));
|
426 |
|
|
}
|
427 |
|
|
|
428 |
|
|
/* Implement the "frame_prev_register" method for unwinding frames. */
|
429 |
|
|
static struct value *
|
430 |
|
|
rx_frame_prev_register (struct frame_info *this_frame,
|
431 |
|
|
void **this_prologue_cache, int regnum)
|
432 |
|
|
{
|
433 |
|
|
struct rx_prologue *p
|
434 |
|
|
= rx_analyze_frame_prologue (this_frame, this_prologue_cache);
|
435 |
|
|
CORE_ADDR frame_base = rx_frame_base (this_frame, this_prologue_cache);
|
436 |
|
|
int reg_size = register_size (get_frame_arch (this_frame), regnum);
|
437 |
|
|
|
438 |
|
|
if (regnum == RX_SP_REGNUM)
|
439 |
|
|
return frame_unwind_got_constant (this_frame, regnum, frame_base);
|
440 |
|
|
|
441 |
|
|
/* If prologue analysis says we saved this register somewhere,
|
442 |
|
|
return a description of the stack slot holding it. */
|
443 |
|
|
else if (p->reg_offset[regnum] != 1)
|
444 |
|
|
return frame_unwind_got_memory (this_frame, regnum,
|
445 |
|
|
frame_base + p->reg_offset[regnum]);
|
446 |
|
|
|
447 |
|
|
/* Otherwise, presume we haven't changed the value of this
|
448 |
|
|
register, and get it from the next frame. */
|
449 |
|
|
else
|
450 |
|
|
return frame_unwind_got_register (this_frame, regnum, regnum);
|
451 |
|
|
}
|
452 |
|
|
|
453 |
|
|
static const struct frame_unwind rx_frame_unwind = {
|
454 |
|
|
NORMAL_FRAME,
|
455 |
|
|
rx_frame_this_id,
|
456 |
|
|
rx_frame_prev_register,
|
457 |
|
|
NULL,
|
458 |
|
|
default_frame_sniffer
|
459 |
|
|
};
|
460 |
|
|
|
461 |
|
|
/* Implement the "unwind_pc" gdbarch method. */
|
462 |
|
|
static CORE_ADDR
|
463 |
|
|
rx_unwind_pc (struct gdbarch *gdbarch, struct frame_info *this_frame)
|
464 |
|
|
{
|
465 |
|
|
ULONGEST pc;
|
466 |
|
|
|
467 |
|
|
pc = frame_unwind_register_unsigned (this_frame, RX_PC_REGNUM);
|
468 |
|
|
return pc;
|
469 |
|
|
}
|
470 |
|
|
|
471 |
|
|
/* Implement the "unwind_sp" gdbarch method. */
|
472 |
|
|
static CORE_ADDR
|
473 |
|
|
rx_unwind_sp (struct gdbarch *gdbarch, struct frame_info *this_frame)
|
474 |
|
|
{
|
475 |
|
|
ULONGEST sp;
|
476 |
|
|
|
477 |
|
|
sp = frame_unwind_register_unsigned (this_frame, RX_SP_REGNUM);
|
478 |
|
|
return sp;
|
479 |
|
|
}
|
480 |
|
|
|
481 |
|
|
/* Implement the "dummy_id" gdbarch method. */
|
482 |
|
|
static struct frame_id
|
483 |
|
|
rx_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
|
484 |
|
|
{
|
485 |
|
|
return
|
486 |
|
|
frame_id_build (get_frame_register_unsigned (this_frame, RX_SP_REGNUM),
|
487 |
|
|
get_frame_pc (this_frame));
|
488 |
|
|
}
|
489 |
|
|
|
490 |
|
|
/* Implement the "push_dummy_call" gdbarch method. */
|
491 |
|
|
static CORE_ADDR
|
492 |
|
|
rx_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
|
493 |
|
|
struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
|
494 |
|
|
struct value **args, CORE_ADDR sp, int struct_return,
|
495 |
|
|
CORE_ADDR struct_addr)
|
496 |
|
|
{
|
497 |
|
|
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
498 |
|
|
int write_pass;
|
499 |
|
|
int sp_off = 0;
|
500 |
|
|
CORE_ADDR cfa;
|
501 |
|
|
int num_register_candidate_args;
|
502 |
|
|
|
503 |
|
|
struct type *func_type = value_type (function);
|
504 |
|
|
|
505 |
|
|
/* Dereference function pointer types. */
|
506 |
|
|
while (TYPE_CODE (func_type) == TYPE_CODE_PTR)
|
507 |
|
|
func_type = TYPE_TARGET_TYPE (func_type);
|
508 |
|
|
|
509 |
|
|
/* The end result had better be a function or a method. */
|
510 |
|
|
gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC
|
511 |
|
|
|| TYPE_CODE (func_type) == TYPE_CODE_METHOD);
|
512 |
|
|
|
513 |
|
|
/* Functions with a variable number of arguments have all of their
|
514 |
|
|
variable arguments and the last non-variable argument passed
|
515 |
|
|
on the stack.
|
516 |
|
|
|
517 |
|
|
Otherwise, we can pass up to four arguments on the stack.
|
518 |
|
|
|
519 |
|
|
Once computed, we leave this value alone. I.e. we don't update
|
520 |
|
|
it in case of a struct return going in a register or an argument
|
521 |
|
|
requiring multiple registers, etc. We rely instead on the value
|
522 |
|
|
of the ``arg_reg'' variable to get these other details correct. */
|
523 |
|
|
|
524 |
|
|
if (TYPE_VARARGS (func_type))
|
525 |
|
|
num_register_candidate_args = TYPE_NFIELDS (func_type) - 1;
|
526 |
|
|
else
|
527 |
|
|
num_register_candidate_args = 4;
|
528 |
|
|
|
529 |
|
|
/* We make two passes; the first does the stack allocation,
|
530 |
|
|
the second actually stores the arguments. */
|
531 |
|
|
for (write_pass = 0; write_pass <= 1; write_pass++)
|
532 |
|
|
{
|
533 |
|
|
int i;
|
534 |
|
|
int arg_reg = RX_R1_REGNUM;
|
535 |
|
|
|
536 |
|
|
if (write_pass)
|
537 |
|
|
sp = align_down (sp - sp_off, 4);
|
538 |
|
|
sp_off = 0;
|
539 |
|
|
|
540 |
|
|
if (struct_return)
|
541 |
|
|
{
|
542 |
|
|
struct type *return_type = TYPE_TARGET_TYPE (func_type);
|
543 |
|
|
|
544 |
|
|
gdb_assert (TYPE_CODE (return_type) == TYPE_CODE_STRUCT
|
545 |
|
|
|| TYPE_CODE (func_type) == TYPE_CODE_UNION);
|
546 |
|
|
|
547 |
|
|
if (TYPE_LENGTH (return_type) > 16
|
548 |
|
|
|| TYPE_LENGTH (return_type) % 4 != 0)
|
549 |
|
|
{
|
550 |
|
|
if (write_pass)
|
551 |
|
|
regcache_cooked_write_unsigned (regcache, RX_R15_REGNUM,
|
552 |
|
|
struct_addr);
|
553 |
|
|
}
|
554 |
|
|
}
|
555 |
|
|
|
556 |
|
|
/* Push the arguments. */
|
557 |
|
|
for (i = 0; i < nargs; i++)
|
558 |
|
|
{
|
559 |
|
|
struct value *arg = args[i];
|
560 |
|
|
const gdb_byte *arg_bits = value_contents_all (arg);
|
561 |
|
|
struct type *arg_type = check_typedef (value_type (arg));
|
562 |
|
|
ULONGEST arg_size = TYPE_LENGTH (arg_type);
|
563 |
|
|
|
564 |
|
|
if (i == 0 && struct_addr != 0 && !struct_return
|
565 |
|
|
&& TYPE_CODE (arg_type) == TYPE_CODE_PTR
|
566 |
|
|
&& extract_unsigned_integer (arg_bits, 4,
|
567 |
|
|
byte_order) == struct_addr)
|
568 |
|
|
{
|
569 |
|
|
/* This argument represents the address at which C++ (and
|
570 |
|
|
possibly other languages) store their return value.
|
571 |
|
|
Put this value in R15. */
|
572 |
|
|
if (write_pass)
|
573 |
|
|
regcache_cooked_write_unsigned (regcache, RX_R15_REGNUM,
|
574 |
|
|
struct_addr);
|
575 |
|
|
}
|
576 |
|
|
else if (TYPE_CODE (arg_type) != TYPE_CODE_STRUCT
|
577 |
|
|
&& TYPE_CODE (arg_type) != TYPE_CODE_UNION)
|
578 |
|
|
{
|
579 |
|
|
/* Argument is a scalar. */
|
580 |
|
|
if (arg_size == 8)
|
581 |
|
|
{
|
582 |
|
|
if (i < num_register_candidate_args
|
583 |
|
|
&& arg_reg <= RX_R4_REGNUM - 1)
|
584 |
|
|
{
|
585 |
|
|
/* If argument registers are going to be used to pass
|
586 |
|
|
an 8 byte scalar, the ABI specifies that two registers
|
587 |
|
|
must be available. */
|
588 |
|
|
if (write_pass)
|
589 |
|
|
{
|
590 |
|
|
regcache_cooked_write_unsigned (regcache, arg_reg,
|
591 |
|
|
extract_unsigned_integer
|
592 |
|
|
(arg_bits, 4,
|
593 |
|
|
byte_order));
|
594 |
|
|
regcache_cooked_write_unsigned (regcache,
|
595 |
|
|
arg_reg + 1,
|
596 |
|
|
extract_unsigned_integer
|
597 |
|
|
(arg_bits + 4, 4,
|
598 |
|
|
byte_order));
|
599 |
|
|
}
|
600 |
|
|
arg_reg += 2;
|
601 |
|
|
}
|
602 |
|
|
else
|
603 |
|
|
{
|
604 |
|
|
sp_off = align_up (sp_off, 4);
|
605 |
|
|
/* Otherwise, pass the 8 byte scalar on the stack. */
|
606 |
|
|
if (write_pass)
|
607 |
|
|
write_memory (sp + sp_off, arg_bits, 8);
|
608 |
|
|
sp_off += 8;
|
609 |
|
|
}
|
610 |
|
|
}
|
611 |
|
|
else
|
612 |
|
|
{
|
613 |
|
|
ULONGEST u;
|
614 |
|
|
|
615 |
|
|
gdb_assert (arg_size <= 4);
|
616 |
|
|
|
617 |
|
|
u =
|
618 |
|
|
extract_unsigned_integer (arg_bits, arg_size, byte_order);
|
619 |
|
|
|
620 |
|
|
if (i < num_register_candidate_args
|
621 |
|
|
&& arg_reg <= RX_R4_REGNUM)
|
622 |
|
|
{
|
623 |
|
|
if (write_pass)
|
624 |
|
|
regcache_cooked_write_unsigned (regcache, arg_reg, u);
|
625 |
|
|
arg_reg += 1;
|
626 |
|
|
}
|
627 |
|
|
else
|
628 |
|
|
{
|
629 |
|
|
int p_arg_size = 4;
|
630 |
|
|
|
631 |
|
|
if (TYPE_PROTOTYPED (func_type)
|
632 |
|
|
&& i < TYPE_NFIELDS (func_type))
|
633 |
|
|
{
|
634 |
|
|
struct type *p_arg_type =
|
635 |
|
|
TYPE_FIELD_TYPE (func_type, i);
|
636 |
|
|
p_arg_size = TYPE_LENGTH (p_arg_type);
|
637 |
|
|
}
|
638 |
|
|
|
639 |
|
|
sp_off = align_up (sp_off, p_arg_size);
|
640 |
|
|
|
641 |
|
|
if (write_pass)
|
642 |
|
|
write_memory_unsigned_integer (sp + sp_off,
|
643 |
|
|
p_arg_size, byte_order,
|
644 |
|
|
u);
|
645 |
|
|
sp_off += p_arg_size;
|
646 |
|
|
}
|
647 |
|
|
}
|
648 |
|
|
}
|
649 |
|
|
else
|
650 |
|
|
{
|
651 |
|
|
/* Argument is a struct or union. Pass as much of the struct
|
652 |
|
|
in registers, if possible. Pass the rest on the stack. */
|
653 |
|
|
while (arg_size > 0)
|
654 |
|
|
{
|
655 |
|
|
if (i < num_register_candidate_args
|
656 |
|
|
&& arg_reg <= RX_R4_REGNUM
|
657 |
|
|
&& arg_size <= 4 * (RX_R4_REGNUM - arg_reg + 1)
|
658 |
|
|
&& arg_size % 4 == 0)
|
659 |
|
|
{
|
660 |
|
|
int len = min (arg_size, 4);
|
661 |
|
|
|
662 |
|
|
if (write_pass)
|
663 |
|
|
regcache_cooked_write_unsigned (regcache, arg_reg,
|
664 |
|
|
extract_unsigned_integer
|
665 |
|
|
(arg_bits, len,
|
666 |
|
|
byte_order));
|
667 |
|
|
arg_bits += len;
|
668 |
|
|
arg_size -= len;
|
669 |
|
|
arg_reg++;
|
670 |
|
|
}
|
671 |
|
|
else
|
672 |
|
|
{
|
673 |
|
|
sp_off = align_up (sp_off, 4);
|
674 |
|
|
if (write_pass)
|
675 |
|
|
write_memory (sp + sp_off, arg_bits, arg_size);
|
676 |
|
|
sp_off += align_up (arg_size, 4);
|
677 |
|
|
arg_size = 0;
|
678 |
|
|
}
|
679 |
|
|
}
|
680 |
|
|
}
|
681 |
|
|
}
|
682 |
|
|
}
|
683 |
|
|
|
684 |
|
|
/* Keep track of the stack address prior to pushing the return address.
|
685 |
|
|
This is the value that we'll return. */
|
686 |
|
|
cfa = sp;
|
687 |
|
|
|
688 |
|
|
/* Push the return address. */
|
689 |
|
|
sp = sp - 4;
|
690 |
|
|
write_memory_unsigned_integer (sp, 4, byte_order, bp_addr);
|
691 |
|
|
|
692 |
|
|
/* Update the stack pointer. */
|
693 |
|
|
regcache_cooked_write_unsigned (regcache, RX_SP_REGNUM, sp);
|
694 |
|
|
|
695 |
|
|
return cfa;
|
696 |
|
|
}
|
697 |
|
|
|
698 |
|
|
/* Implement the "return_value" gdbarch method. */
|
699 |
|
|
static enum return_value_convention
|
700 |
|
|
rx_return_value (struct gdbarch *gdbarch,
|
701 |
|
|
struct type *func_type,
|
702 |
|
|
struct type *valtype,
|
703 |
|
|
struct regcache *regcache,
|
704 |
|
|
gdb_byte *readbuf, const gdb_byte *writebuf)
|
705 |
|
|
{
|
706 |
|
|
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
707 |
|
|
ULONGEST valtype_len = TYPE_LENGTH (valtype);
|
708 |
|
|
|
709 |
|
|
if (TYPE_LENGTH (valtype) > 16
|
710 |
|
|
|| ((TYPE_CODE (valtype) == TYPE_CODE_STRUCT
|
711 |
|
|
|| TYPE_CODE (valtype) == TYPE_CODE_UNION)
|
712 |
|
|
&& TYPE_LENGTH (valtype) % 4 != 0))
|
713 |
|
|
return RETURN_VALUE_STRUCT_CONVENTION;
|
714 |
|
|
|
715 |
|
|
if (readbuf)
|
716 |
|
|
{
|
717 |
|
|
ULONGEST u;
|
718 |
|
|
int argreg = RX_R1_REGNUM;
|
719 |
|
|
int offset = 0;
|
720 |
|
|
|
721 |
|
|
while (valtype_len > 0)
|
722 |
|
|
{
|
723 |
|
|
int len = min (valtype_len, 4);
|
724 |
|
|
|
725 |
|
|
regcache_cooked_read_unsigned (regcache, argreg, &u);
|
726 |
|
|
store_unsigned_integer (readbuf + offset, len, byte_order, u);
|
727 |
|
|
valtype_len -= len;
|
728 |
|
|
offset += len;
|
729 |
|
|
argreg++;
|
730 |
|
|
}
|
731 |
|
|
}
|
732 |
|
|
|
733 |
|
|
if (writebuf)
|
734 |
|
|
{
|
735 |
|
|
ULONGEST u;
|
736 |
|
|
int argreg = RX_R1_REGNUM;
|
737 |
|
|
int offset = 0;
|
738 |
|
|
|
739 |
|
|
while (valtype_len > 0)
|
740 |
|
|
{
|
741 |
|
|
int len = min (valtype_len, 4);
|
742 |
|
|
|
743 |
|
|
u = extract_unsigned_integer (writebuf + offset, len, byte_order);
|
744 |
|
|
regcache_cooked_write_unsigned (regcache, argreg, u);
|
745 |
|
|
valtype_len -= len;
|
746 |
|
|
offset += len;
|
747 |
|
|
argreg++;
|
748 |
|
|
}
|
749 |
|
|
}
|
750 |
|
|
|
751 |
|
|
return RETURN_VALUE_REGISTER_CONVENTION;
|
752 |
|
|
}
|
753 |
|
|
|
754 |
|
|
/* Implement the "breakpoint_from_pc" gdbarch method. */
|
755 |
|
|
const gdb_byte *
|
756 |
|
|
rx_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr, int *lenptr)
|
757 |
|
|
{
|
758 |
|
|
static gdb_byte breakpoint[] = { 0x00 };
|
759 |
|
|
*lenptr = sizeof breakpoint;
|
760 |
|
|
return breakpoint;
|
761 |
|
|
}
|
762 |
|
|
|
763 |
|
|
/* Allocate and initialize a gdbarch object. */
|
764 |
|
|
static struct gdbarch *
|
765 |
|
|
rx_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
|
766 |
|
|
{
|
767 |
|
|
struct gdbarch *gdbarch;
|
768 |
|
|
struct gdbarch_tdep *tdep;
|
769 |
|
|
int elf_flags;
|
770 |
|
|
|
771 |
|
|
/* Extract the elf_flags if available. */
|
772 |
|
|
if (info.abfd != NULL
|
773 |
|
|
&& bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
|
774 |
|
|
elf_flags = elf_elfheader (info.abfd)->e_flags;
|
775 |
|
|
else
|
776 |
|
|
elf_flags = 0;
|
777 |
|
|
|
778 |
|
|
|
779 |
|
|
/* Try to find the architecture in the list of already defined
|
780 |
|
|
architectures. */
|
781 |
|
|
for (arches = gdbarch_list_lookup_by_info (arches, &info);
|
782 |
|
|
arches != NULL;
|
783 |
|
|
arches = gdbarch_list_lookup_by_info (arches->next, &info))
|
784 |
|
|
{
|
785 |
|
|
if (gdbarch_tdep (arches->gdbarch)->elf_flags != elf_flags)
|
786 |
|
|
continue;
|
787 |
|
|
|
788 |
|
|
return arches->gdbarch;
|
789 |
|
|
}
|
790 |
|
|
|
791 |
|
|
/* None found, create a new architecture from the information
|
792 |
|
|
provided. */
|
793 |
|
|
tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep));
|
794 |
|
|
gdbarch = gdbarch_alloc (&info, tdep);
|
795 |
|
|
tdep->elf_flags = elf_flags;
|
796 |
|
|
|
797 |
|
|
set_gdbarch_num_regs (gdbarch, RX_NUM_REGS);
|
798 |
|
|
set_gdbarch_num_pseudo_regs (gdbarch, 0);
|
799 |
|
|
set_gdbarch_register_name (gdbarch, rx_register_name);
|
800 |
|
|
set_gdbarch_register_type (gdbarch, rx_register_type);
|
801 |
|
|
set_gdbarch_pc_regnum (gdbarch, RX_PC_REGNUM);
|
802 |
|
|
set_gdbarch_sp_regnum (gdbarch, RX_SP_REGNUM);
|
803 |
|
|
set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
|
804 |
|
|
set_gdbarch_decr_pc_after_break (gdbarch, 1);
|
805 |
|
|
set_gdbarch_breakpoint_from_pc (gdbarch, rx_breakpoint_from_pc);
|
806 |
|
|
set_gdbarch_skip_prologue (gdbarch, rx_skip_prologue);
|
807 |
|
|
|
808 |
|
|
set_gdbarch_print_insn (gdbarch, print_insn_rx);
|
809 |
|
|
|
810 |
|
|
set_gdbarch_unwind_pc (gdbarch, rx_unwind_pc);
|
811 |
|
|
set_gdbarch_unwind_sp (gdbarch, rx_unwind_sp);
|
812 |
|
|
|
813 |
|
|
/* Target builtin data types. */
|
814 |
|
|
set_gdbarch_char_signed (gdbarch, 0);
|
815 |
|
|
set_gdbarch_short_bit (gdbarch, 16);
|
816 |
|
|
set_gdbarch_int_bit (gdbarch, 32);
|
817 |
|
|
set_gdbarch_long_bit (gdbarch, 32);
|
818 |
|
|
set_gdbarch_long_long_bit (gdbarch, 64);
|
819 |
|
|
set_gdbarch_ptr_bit (gdbarch, 32);
|
820 |
|
|
set_gdbarch_float_bit (gdbarch, 32);
|
821 |
|
|
set_gdbarch_float_format (gdbarch, floatformats_ieee_single);
|
822 |
|
|
if (elf_flags & E_FLAG_RX_64BIT_DOUBLES)
|
823 |
|
|
{
|
824 |
|
|
set_gdbarch_double_bit (gdbarch, 64);
|
825 |
|
|
set_gdbarch_long_double_bit (gdbarch, 64);
|
826 |
|
|
set_gdbarch_double_format (gdbarch, floatformats_ieee_double);
|
827 |
|
|
set_gdbarch_long_double_format (gdbarch, floatformats_ieee_double);
|
828 |
|
|
}
|
829 |
|
|
else
|
830 |
|
|
{
|
831 |
|
|
set_gdbarch_double_bit (gdbarch, 32);
|
832 |
|
|
set_gdbarch_long_double_bit (gdbarch, 32);
|
833 |
|
|
set_gdbarch_double_format (gdbarch, floatformats_ieee_single);
|
834 |
|
|
set_gdbarch_long_double_format (gdbarch, floatformats_ieee_single);
|
835 |
|
|
}
|
836 |
|
|
|
837 |
|
|
/* Frame unwinding. */
|
838 |
|
|
#if 0
|
839 |
|
|
/* Note: The test results are better with the dwarf2 unwinder disabled,
|
840 |
|
|
so it's turned off for now. */
|
841 |
|
|
dwarf2_append_unwinders (gdbarch);
|
842 |
|
|
#endif
|
843 |
|
|
frame_unwind_append_unwinder (gdbarch, &rx_frame_unwind);
|
844 |
|
|
|
845 |
|
|
/* Methods for saving / extracting a dummy frame's ID.
|
846 |
|
|
The ID's stack address must match the SP value returned by
|
847 |
|
|
PUSH_DUMMY_CALL, and saved by generic_save_dummy_frame_tos. */
|
848 |
|
|
set_gdbarch_dummy_id (gdbarch, rx_dummy_id);
|
849 |
|
|
set_gdbarch_push_dummy_call (gdbarch, rx_push_dummy_call);
|
850 |
|
|
set_gdbarch_return_value (gdbarch, rx_return_value);
|
851 |
|
|
|
852 |
|
|
/* Virtual tables. */
|
853 |
|
|
set_gdbarch_vbit_in_delta (gdbarch, 1);
|
854 |
|
|
|
855 |
|
|
return gdbarch;
|
856 |
|
|
}
|
857 |
|
|
|
858 |
|
|
/* Register the above initialization routine. */
|
859 |
|
|
void
|
860 |
|
|
_initialize_rx_tdep (void)
|
861 |
|
|
{
|
862 |
|
|
register_gdbarch_init (bfd_arch_rx, rx_gdbarch_init);
|
863 |
|
|
}
|