1 |
227 |
jeremybenn |
/* Generic symbol file reading for the GNU debugger, GDB.
|
2 |
|
|
|
3 |
|
|
Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
|
4 |
|
|
2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
|
5 |
|
|
Free Software Foundation, Inc.
|
6 |
|
|
|
7 |
|
|
Contributed by Cygnus Support, using pieces from other GDB modules.
|
8 |
|
|
|
9 |
|
|
This file is part of GDB.
|
10 |
|
|
|
11 |
|
|
This program is free software; you can redistribute it and/or modify
|
12 |
|
|
it under the terms of the GNU General Public License as published by
|
13 |
|
|
the Free Software Foundation; either version 3 of the License, or
|
14 |
|
|
(at your option) any later version.
|
15 |
|
|
|
16 |
|
|
This program is distributed in the hope that it will be useful,
|
17 |
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
18 |
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
19 |
|
|
GNU General Public License for more details.
|
20 |
|
|
|
21 |
|
|
You should have received a copy of the GNU General Public License
|
22 |
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>. */
|
23 |
|
|
|
24 |
|
|
#include "defs.h"
|
25 |
|
|
#include "arch-utils.h"
|
26 |
|
|
#include "bfdlink.h"
|
27 |
|
|
#include "symtab.h"
|
28 |
|
|
#include "gdbtypes.h"
|
29 |
|
|
#include "gdbcore.h"
|
30 |
|
|
#include "frame.h"
|
31 |
|
|
#include "target.h"
|
32 |
|
|
#include "value.h"
|
33 |
|
|
#include "symfile.h"
|
34 |
|
|
#include "objfiles.h"
|
35 |
|
|
#include "source.h"
|
36 |
|
|
#include "gdbcmd.h"
|
37 |
|
|
#include "breakpoint.h"
|
38 |
|
|
#include "language.h"
|
39 |
|
|
#include "complaints.h"
|
40 |
|
|
#include "demangle.h"
|
41 |
|
|
#include "inferior.h"
|
42 |
|
|
#include "regcache.h"
|
43 |
|
|
#include "filenames.h" /* for DOSish file names */
|
44 |
|
|
#include "gdb-stabs.h"
|
45 |
|
|
#include "gdb_obstack.h"
|
46 |
|
|
#include "completer.h"
|
47 |
|
|
#include "bcache.h"
|
48 |
|
|
#include "hashtab.h"
|
49 |
|
|
#include "readline/readline.h"
|
50 |
|
|
#include "gdb_assert.h"
|
51 |
|
|
#include "block.h"
|
52 |
|
|
#include "observer.h"
|
53 |
|
|
#include "exec.h"
|
54 |
|
|
#include "parser-defs.h"
|
55 |
|
|
#include "varobj.h"
|
56 |
|
|
#include "elf-bfd.h"
|
57 |
|
|
#include "solib.h"
|
58 |
|
|
#include "remote.h"
|
59 |
|
|
|
60 |
|
|
#include <sys/types.h>
|
61 |
|
|
#include <fcntl.h>
|
62 |
|
|
#include "gdb_string.h"
|
63 |
|
|
#include "gdb_stat.h"
|
64 |
|
|
#include <ctype.h>
|
65 |
|
|
#include <time.h>
|
66 |
|
|
#include <sys/time.h>
|
67 |
|
|
|
68 |
|
|
|
69 |
|
|
int (*deprecated_ui_load_progress_hook) (const char *section, unsigned long num);
|
70 |
|
|
void (*deprecated_show_load_progress) (const char *section,
|
71 |
|
|
unsigned long section_sent,
|
72 |
|
|
unsigned long section_size,
|
73 |
|
|
unsigned long total_sent,
|
74 |
|
|
unsigned long total_size);
|
75 |
|
|
void (*deprecated_pre_add_symbol_hook) (const char *);
|
76 |
|
|
void (*deprecated_post_add_symbol_hook) (void);
|
77 |
|
|
|
78 |
|
|
static void clear_symtab_users_cleanup (void *ignore);
|
79 |
|
|
|
80 |
|
|
/* Global variables owned by this file */
|
81 |
|
|
int readnow_symbol_files; /* Read full symbols immediately */
|
82 |
|
|
|
83 |
|
|
/* External variables and functions referenced. */
|
84 |
|
|
|
85 |
|
|
extern void report_transfer_performance (unsigned long, time_t, time_t);
|
86 |
|
|
|
87 |
|
|
/* Functions this file defines */
|
88 |
|
|
|
89 |
|
|
#if 0
|
90 |
|
|
static int simple_read_overlay_region_table (void);
|
91 |
|
|
static void simple_free_overlay_region_table (void);
|
92 |
|
|
#endif
|
93 |
|
|
|
94 |
|
|
static void load_command (char *, int);
|
95 |
|
|
|
96 |
|
|
static void symbol_file_add_main_1 (char *args, int from_tty, int flags);
|
97 |
|
|
|
98 |
|
|
static void add_symbol_file_command (char *, int);
|
99 |
|
|
|
100 |
|
|
bfd *symfile_bfd_open (char *);
|
101 |
|
|
|
102 |
|
|
int get_section_index (struct objfile *, char *);
|
103 |
|
|
|
104 |
|
|
static struct sym_fns *find_sym_fns (bfd *);
|
105 |
|
|
|
106 |
|
|
static void decrement_reading_symtab (void *);
|
107 |
|
|
|
108 |
|
|
static void overlay_invalidate_all (void);
|
109 |
|
|
|
110 |
|
|
void list_overlays_command (char *, int);
|
111 |
|
|
|
112 |
|
|
void map_overlay_command (char *, int);
|
113 |
|
|
|
114 |
|
|
void unmap_overlay_command (char *, int);
|
115 |
|
|
|
116 |
|
|
static void overlay_auto_command (char *, int);
|
117 |
|
|
|
118 |
|
|
static void overlay_manual_command (char *, int);
|
119 |
|
|
|
120 |
|
|
static void overlay_off_command (char *, int);
|
121 |
|
|
|
122 |
|
|
static void overlay_load_command (char *, int);
|
123 |
|
|
|
124 |
|
|
static void overlay_command (char *, int);
|
125 |
|
|
|
126 |
|
|
static void simple_free_overlay_table (void);
|
127 |
|
|
|
128 |
|
|
static void read_target_long_array (CORE_ADDR, unsigned int *, int, int,
|
129 |
|
|
enum bfd_endian);
|
130 |
|
|
|
131 |
|
|
static int simple_read_overlay_table (void);
|
132 |
|
|
|
133 |
|
|
static int simple_overlay_update_1 (struct obj_section *);
|
134 |
|
|
|
135 |
|
|
static void add_filename_language (char *ext, enum language lang);
|
136 |
|
|
|
137 |
|
|
static void info_ext_lang_command (char *args, int from_tty);
|
138 |
|
|
|
139 |
|
|
static void init_filename_language_table (void);
|
140 |
|
|
|
141 |
|
|
static void symfile_find_segment_sections (struct objfile *objfile);
|
142 |
|
|
|
143 |
|
|
void _initialize_symfile (void);
|
144 |
|
|
|
145 |
|
|
/* List of all available sym_fns. On gdb startup, each object file reader
|
146 |
|
|
calls add_symtab_fns() to register information on each format it is
|
147 |
|
|
prepared to read. */
|
148 |
|
|
|
149 |
|
|
static struct sym_fns *symtab_fns = NULL;
|
150 |
|
|
|
151 |
|
|
/* Flag for whether user will be reloading symbols multiple times.
|
152 |
|
|
Defaults to ON for VxWorks, otherwise OFF. */
|
153 |
|
|
|
154 |
|
|
#ifdef SYMBOL_RELOADING_DEFAULT
|
155 |
|
|
int symbol_reloading = SYMBOL_RELOADING_DEFAULT;
|
156 |
|
|
#else
|
157 |
|
|
int symbol_reloading = 0;
|
158 |
|
|
#endif
|
159 |
|
|
static void
|
160 |
|
|
show_symbol_reloading (struct ui_file *file, int from_tty,
|
161 |
|
|
struct cmd_list_element *c, const char *value)
|
162 |
|
|
{
|
163 |
|
|
fprintf_filtered (file, _("\
|
164 |
|
|
Dynamic symbol table reloading multiple times in one run is %s.\n"),
|
165 |
|
|
value);
|
166 |
|
|
}
|
167 |
|
|
|
168 |
|
|
/* If non-zero, shared library symbols will be added automatically
|
169 |
|
|
when the inferior is created, new libraries are loaded, or when
|
170 |
|
|
attaching to the inferior. This is almost always what users will
|
171 |
|
|
want to have happen; but for very large programs, the startup time
|
172 |
|
|
will be excessive, and so if this is a problem, the user can clear
|
173 |
|
|
this flag and then add the shared library symbols as needed. Note
|
174 |
|
|
that there is a potential for confusion, since if the shared
|
175 |
|
|
library symbols are not loaded, commands like "info fun" will *not*
|
176 |
|
|
report all the functions that are actually present. */
|
177 |
|
|
|
178 |
|
|
int auto_solib_add = 1;
|
179 |
|
|
|
180 |
|
|
/* For systems that support it, a threshold size in megabytes. If
|
181 |
|
|
automatically adding a new library's symbol table to those already
|
182 |
|
|
known to the debugger would cause the total shared library symbol
|
183 |
|
|
size to exceed this threshhold, then the shlib's symbols are not
|
184 |
|
|
added. The threshold is ignored if the user explicitly asks for a
|
185 |
|
|
shlib to be added, such as when using the "sharedlibrary"
|
186 |
|
|
command. */
|
187 |
|
|
|
188 |
|
|
int auto_solib_limit;
|
189 |
|
|
|
190 |
|
|
|
191 |
|
|
/* This compares two partial symbols by names, using strcmp_iw_ordered
|
192 |
|
|
for the comparison. */
|
193 |
|
|
|
194 |
|
|
static int
|
195 |
|
|
compare_psymbols (const void *s1p, const void *s2p)
|
196 |
|
|
{
|
197 |
|
|
struct partial_symbol *const *s1 = s1p;
|
198 |
|
|
struct partial_symbol *const *s2 = s2p;
|
199 |
|
|
|
200 |
|
|
return strcmp_iw_ordered (SYMBOL_SEARCH_NAME (*s1),
|
201 |
|
|
SYMBOL_SEARCH_NAME (*s2));
|
202 |
|
|
}
|
203 |
|
|
|
204 |
|
|
void
|
205 |
|
|
sort_pst_symbols (struct partial_symtab *pst)
|
206 |
|
|
{
|
207 |
|
|
/* Sort the global list; don't sort the static list */
|
208 |
|
|
|
209 |
|
|
qsort (pst->objfile->global_psymbols.list + pst->globals_offset,
|
210 |
|
|
pst->n_global_syms, sizeof (struct partial_symbol *),
|
211 |
|
|
compare_psymbols);
|
212 |
|
|
}
|
213 |
|
|
|
214 |
|
|
/* Make a null terminated copy of the string at PTR with SIZE characters in
|
215 |
|
|
the obstack pointed to by OBSTACKP . Returns the address of the copy.
|
216 |
|
|
Note that the string at PTR does not have to be null terminated, I.E. it
|
217 |
|
|
may be part of a larger string and we are only saving a substring. */
|
218 |
|
|
|
219 |
|
|
char *
|
220 |
|
|
obsavestring (const char *ptr, int size, struct obstack *obstackp)
|
221 |
|
|
{
|
222 |
|
|
char *p = (char *) obstack_alloc (obstackp, size + 1);
|
223 |
|
|
/* Open-coded memcpy--saves function call time. These strings are usually
|
224 |
|
|
short. FIXME: Is this really still true with a compiler that can
|
225 |
|
|
inline memcpy? */
|
226 |
|
|
{
|
227 |
|
|
const char *p1 = ptr;
|
228 |
|
|
char *p2 = p;
|
229 |
|
|
const char *end = ptr + size;
|
230 |
|
|
while (p1 != end)
|
231 |
|
|
*p2++ = *p1++;
|
232 |
|
|
}
|
233 |
|
|
p[size] = 0;
|
234 |
|
|
return p;
|
235 |
|
|
}
|
236 |
|
|
|
237 |
|
|
/* Concatenate strings S1, S2 and S3; return the new string. Space is found
|
238 |
|
|
in the obstack pointed to by OBSTACKP. */
|
239 |
|
|
|
240 |
|
|
char *
|
241 |
|
|
obconcat (struct obstack *obstackp, const char *s1, const char *s2,
|
242 |
|
|
const char *s3)
|
243 |
|
|
{
|
244 |
|
|
int len = strlen (s1) + strlen (s2) + strlen (s3) + 1;
|
245 |
|
|
char *val = (char *) obstack_alloc (obstackp, len);
|
246 |
|
|
strcpy (val, s1);
|
247 |
|
|
strcat (val, s2);
|
248 |
|
|
strcat (val, s3);
|
249 |
|
|
return val;
|
250 |
|
|
}
|
251 |
|
|
|
252 |
|
|
/* True if we are nested inside psymtab_to_symtab. */
|
253 |
|
|
|
254 |
|
|
int currently_reading_symtab = 0;
|
255 |
|
|
|
256 |
|
|
static void
|
257 |
|
|
decrement_reading_symtab (void *dummy)
|
258 |
|
|
{
|
259 |
|
|
currently_reading_symtab--;
|
260 |
|
|
}
|
261 |
|
|
|
262 |
|
|
/* Get the symbol table that corresponds to a partial_symtab.
|
263 |
|
|
This is fast after the first time you do it. In fact, there
|
264 |
|
|
is an even faster macro PSYMTAB_TO_SYMTAB that does the fast
|
265 |
|
|
case inline. */
|
266 |
|
|
|
267 |
|
|
struct symtab *
|
268 |
|
|
psymtab_to_symtab (struct partial_symtab *pst)
|
269 |
|
|
{
|
270 |
|
|
/* If it's been looked up before, return it. */
|
271 |
|
|
if (pst->symtab)
|
272 |
|
|
return pst->symtab;
|
273 |
|
|
|
274 |
|
|
/* If it has not yet been read in, read it. */
|
275 |
|
|
if (!pst->readin)
|
276 |
|
|
{
|
277 |
|
|
struct cleanup *back_to = make_cleanup (decrement_reading_symtab, NULL);
|
278 |
|
|
currently_reading_symtab++;
|
279 |
|
|
(*pst->read_symtab) (pst);
|
280 |
|
|
do_cleanups (back_to);
|
281 |
|
|
}
|
282 |
|
|
|
283 |
|
|
return pst->symtab;
|
284 |
|
|
}
|
285 |
|
|
|
286 |
|
|
/* Remember the lowest-addressed loadable section we've seen.
|
287 |
|
|
This function is called via bfd_map_over_sections.
|
288 |
|
|
|
289 |
|
|
In case of equal vmas, the section with the largest size becomes the
|
290 |
|
|
lowest-addressed loadable section.
|
291 |
|
|
|
292 |
|
|
If the vmas and sizes are equal, the last section is considered the
|
293 |
|
|
lowest-addressed loadable section. */
|
294 |
|
|
|
295 |
|
|
void
|
296 |
|
|
find_lowest_section (bfd *abfd, asection *sect, void *obj)
|
297 |
|
|
{
|
298 |
|
|
asection **lowest = (asection **) obj;
|
299 |
|
|
|
300 |
|
|
if (0 == (bfd_get_section_flags (abfd, sect) & SEC_LOAD))
|
301 |
|
|
return;
|
302 |
|
|
if (!*lowest)
|
303 |
|
|
*lowest = sect; /* First loadable section */
|
304 |
|
|
else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
|
305 |
|
|
*lowest = sect; /* A lower loadable section */
|
306 |
|
|
else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
|
307 |
|
|
&& (bfd_section_size (abfd, (*lowest))
|
308 |
|
|
<= bfd_section_size (abfd, sect)))
|
309 |
|
|
*lowest = sect;
|
310 |
|
|
}
|
311 |
|
|
|
312 |
|
|
/* Create a new section_addr_info, with room for NUM_SECTIONS. */
|
313 |
|
|
|
314 |
|
|
struct section_addr_info *
|
315 |
|
|
alloc_section_addr_info (size_t num_sections)
|
316 |
|
|
{
|
317 |
|
|
struct section_addr_info *sap;
|
318 |
|
|
size_t size;
|
319 |
|
|
|
320 |
|
|
size = (sizeof (struct section_addr_info)
|
321 |
|
|
+ sizeof (struct other_sections) * (num_sections - 1));
|
322 |
|
|
sap = (struct section_addr_info *) xmalloc (size);
|
323 |
|
|
memset (sap, 0, size);
|
324 |
|
|
sap->num_sections = num_sections;
|
325 |
|
|
|
326 |
|
|
return sap;
|
327 |
|
|
}
|
328 |
|
|
|
329 |
|
|
/* Build (allocate and populate) a section_addr_info struct from
|
330 |
|
|
an existing section table. */
|
331 |
|
|
|
332 |
|
|
extern struct section_addr_info *
|
333 |
|
|
build_section_addr_info_from_section_table (const struct target_section *start,
|
334 |
|
|
const struct target_section *end)
|
335 |
|
|
{
|
336 |
|
|
struct section_addr_info *sap;
|
337 |
|
|
const struct target_section *stp;
|
338 |
|
|
int oidx;
|
339 |
|
|
|
340 |
|
|
sap = alloc_section_addr_info (end - start);
|
341 |
|
|
|
342 |
|
|
for (stp = start, oidx = 0; stp != end; stp++)
|
343 |
|
|
{
|
344 |
|
|
if (bfd_get_section_flags (stp->bfd,
|
345 |
|
|
stp->the_bfd_section) & (SEC_ALLOC | SEC_LOAD)
|
346 |
|
|
&& oidx < end - start)
|
347 |
|
|
{
|
348 |
|
|
sap->other[oidx].addr = stp->addr;
|
349 |
|
|
sap->other[oidx].name
|
350 |
|
|
= xstrdup (bfd_section_name (stp->bfd, stp->the_bfd_section));
|
351 |
|
|
sap->other[oidx].sectindex = stp->the_bfd_section->index;
|
352 |
|
|
oidx++;
|
353 |
|
|
}
|
354 |
|
|
}
|
355 |
|
|
|
356 |
|
|
return sap;
|
357 |
|
|
}
|
358 |
|
|
|
359 |
|
|
/* Create a section_addr_info from section offsets in OBJFILE. */
|
360 |
|
|
|
361 |
|
|
struct section_addr_info *
|
362 |
|
|
build_section_addr_info_from_objfile (const struct objfile *objfile)
|
363 |
|
|
{
|
364 |
|
|
struct section_addr_info *sap;
|
365 |
|
|
int i;
|
366 |
|
|
struct bfd_section *sec;
|
367 |
|
|
|
368 |
|
|
sap = alloc_section_addr_info (objfile->num_sections);
|
369 |
|
|
for (i = 0, sec = objfile->obfd->sections; sec != NULL; sec = sec->next)
|
370 |
|
|
if (bfd_get_section_flags (objfile->obfd, sec) & (SEC_ALLOC | SEC_LOAD))
|
371 |
|
|
{
|
372 |
|
|
sap->other[i].addr = (bfd_get_section_vma (objfile->obfd, sec)
|
373 |
|
|
+ objfile->section_offsets->offsets[i]);
|
374 |
|
|
sap->other[i].name = xstrdup (bfd_get_section_name (objfile->obfd,
|
375 |
|
|
sec));
|
376 |
|
|
sap->other[i].sectindex = sec->index;
|
377 |
|
|
i++;
|
378 |
|
|
}
|
379 |
|
|
return sap;
|
380 |
|
|
}
|
381 |
|
|
|
382 |
|
|
|
383 |
|
|
/* Free all memory allocated by build_section_addr_info_from_section_table. */
|
384 |
|
|
|
385 |
|
|
extern void
|
386 |
|
|
free_section_addr_info (struct section_addr_info *sap)
|
387 |
|
|
{
|
388 |
|
|
int idx;
|
389 |
|
|
|
390 |
|
|
for (idx = 0; idx < sap->num_sections; idx++)
|
391 |
|
|
if (sap->other[idx].name)
|
392 |
|
|
xfree (sap->other[idx].name);
|
393 |
|
|
xfree (sap);
|
394 |
|
|
}
|
395 |
|
|
|
396 |
|
|
|
397 |
|
|
/* Initialize OBJFILE's sect_index_* members. */
|
398 |
|
|
static void
|
399 |
|
|
init_objfile_sect_indices (struct objfile *objfile)
|
400 |
|
|
{
|
401 |
|
|
asection *sect;
|
402 |
|
|
int i;
|
403 |
|
|
|
404 |
|
|
sect = bfd_get_section_by_name (objfile->obfd, ".text");
|
405 |
|
|
if (sect)
|
406 |
|
|
objfile->sect_index_text = sect->index;
|
407 |
|
|
|
408 |
|
|
sect = bfd_get_section_by_name (objfile->obfd, ".data");
|
409 |
|
|
if (sect)
|
410 |
|
|
objfile->sect_index_data = sect->index;
|
411 |
|
|
|
412 |
|
|
sect = bfd_get_section_by_name (objfile->obfd, ".bss");
|
413 |
|
|
if (sect)
|
414 |
|
|
objfile->sect_index_bss = sect->index;
|
415 |
|
|
|
416 |
|
|
sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
|
417 |
|
|
if (sect)
|
418 |
|
|
objfile->sect_index_rodata = sect->index;
|
419 |
|
|
|
420 |
|
|
/* This is where things get really weird... We MUST have valid
|
421 |
|
|
indices for the various sect_index_* members or gdb will abort.
|
422 |
|
|
So if for example, there is no ".text" section, we have to
|
423 |
|
|
accomodate that. First, check for a file with the standard
|
424 |
|
|
one or two segments. */
|
425 |
|
|
|
426 |
|
|
symfile_find_segment_sections (objfile);
|
427 |
|
|
|
428 |
|
|
/* Except when explicitly adding symbol files at some address,
|
429 |
|
|
section_offsets contains nothing but zeros, so it doesn't matter
|
430 |
|
|
which slot in section_offsets the individual sect_index_* members
|
431 |
|
|
index into. So if they are all zero, it is safe to just point
|
432 |
|
|
all the currently uninitialized indices to the first slot. But
|
433 |
|
|
beware: if this is the main executable, it may be relocated
|
434 |
|
|
later, e.g. by the remote qOffsets packet, and then this will
|
435 |
|
|
be wrong! That's why we try segments first. */
|
436 |
|
|
|
437 |
|
|
for (i = 0; i < objfile->num_sections; i++)
|
438 |
|
|
{
|
439 |
|
|
if (ANOFFSET (objfile->section_offsets, i) != 0)
|
440 |
|
|
{
|
441 |
|
|
break;
|
442 |
|
|
}
|
443 |
|
|
}
|
444 |
|
|
if (i == objfile->num_sections)
|
445 |
|
|
{
|
446 |
|
|
if (objfile->sect_index_text == -1)
|
447 |
|
|
objfile->sect_index_text = 0;
|
448 |
|
|
if (objfile->sect_index_data == -1)
|
449 |
|
|
objfile->sect_index_data = 0;
|
450 |
|
|
if (objfile->sect_index_bss == -1)
|
451 |
|
|
objfile->sect_index_bss = 0;
|
452 |
|
|
if (objfile->sect_index_rodata == -1)
|
453 |
|
|
objfile->sect_index_rodata = 0;
|
454 |
|
|
}
|
455 |
|
|
}
|
456 |
|
|
|
457 |
|
|
/* The arguments to place_section. */
|
458 |
|
|
|
459 |
|
|
struct place_section_arg
|
460 |
|
|
{
|
461 |
|
|
struct section_offsets *offsets;
|
462 |
|
|
CORE_ADDR lowest;
|
463 |
|
|
};
|
464 |
|
|
|
465 |
|
|
/* Find a unique offset to use for loadable section SECT if
|
466 |
|
|
the user did not provide an offset. */
|
467 |
|
|
|
468 |
|
|
static void
|
469 |
|
|
place_section (bfd *abfd, asection *sect, void *obj)
|
470 |
|
|
{
|
471 |
|
|
struct place_section_arg *arg = obj;
|
472 |
|
|
CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
|
473 |
|
|
int done;
|
474 |
|
|
ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
|
475 |
|
|
|
476 |
|
|
/* We are only interested in allocated sections. */
|
477 |
|
|
if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
|
478 |
|
|
return;
|
479 |
|
|
|
480 |
|
|
/* If the user specified an offset, honor it. */
|
481 |
|
|
if (offsets[sect->index] != 0)
|
482 |
|
|
return;
|
483 |
|
|
|
484 |
|
|
/* Otherwise, let's try to find a place for the section. */
|
485 |
|
|
start_addr = (arg->lowest + align - 1) & -align;
|
486 |
|
|
|
487 |
|
|
do {
|
488 |
|
|
asection *cur_sec;
|
489 |
|
|
|
490 |
|
|
done = 1;
|
491 |
|
|
|
492 |
|
|
for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
|
493 |
|
|
{
|
494 |
|
|
int indx = cur_sec->index;
|
495 |
|
|
CORE_ADDR cur_offset;
|
496 |
|
|
|
497 |
|
|
/* We don't need to compare against ourself. */
|
498 |
|
|
if (cur_sec == sect)
|
499 |
|
|
continue;
|
500 |
|
|
|
501 |
|
|
/* We can only conflict with allocated sections. */
|
502 |
|
|
if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
|
503 |
|
|
continue;
|
504 |
|
|
|
505 |
|
|
/* If the section offset is 0, either the section has not been placed
|
506 |
|
|
yet, or it was the lowest section placed (in which case LOWEST
|
507 |
|
|
will be past its end). */
|
508 |
|
|
if (offsets[indx] == 0)
|
509 |
|
|
continue;
|
510 |
|
|
|
511 |
|
|
/* If this section would overlap us, then we must move up. */
|
512 |
|
|
if (start_addr + bfd_get_section_size (sect) > offsets[indx]
|
513 |
|
|
&& start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
|
514 |
|
|
{
|
515 |
|
|
start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
|
516 |
|
|
start_addr = (start_addr + align - 1) & -align;
|
517 |
|
|
done = 0;
|
518 |
|
|
break;
|
519 |
|
|
}
|
520 |
|
|
|
521 |
|
|
/* Otherwise, we appear to be OK. So far. */
|
522 |
|
|
}
|
523 |
|
|
}
|
524 |
|
|
while (!done);
|
525 |
|
|
|
526 |
|
|
offsets[sect->index] = start_addr;
|
527 |
|
|
arg->lowest = start_addr + bfd_get_section_size (sect);
|
528 |
|
|
}
|
529 |
|
|
|
530 |
|
|
/* Store struct section_addr_info as prepared (made relative and with SECTINDEX
|
531 |
|
|
filled-in) by addr_info_make_relative into SECTION_OFFSETS of NUM_SECTIONS
|
532 |
|
|
entries. */
|
533 |
|
|
|
534 |
|
|
void
|
535 |
|
|
relative_addr_info_to_section_offsets (struct section_offsets *section_offsets,
|
536 |
|
|
int num_sections,
|
537 |
|
|
struct section_addr_info *addrs)
|
538 |
|
|
{
|
539 |
|
|
int i;
|
540 |
|
|
|
541 |
|
|
memset (section_offsets, 0, SIZEOF_N_SECTION_OFFSETS (num_sections));
|
542 |
|
|
|
543 |
|
|
/* Now calculate offsets for section that were specified by the caller. */
|
544 |
|
|
for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
|
545 |
|
|
{
|
546 |
|
|
struct other_sections *osp;
|
547 |
|
|
|
548 |
|
|
osp = &addrs->other[i];
|
549 |
|
|
if (osp->addr == 0)
|
550 |
|
|
continue;
|
551 |
|
|
|
552 |
|
|
/* Record all sections in offsets */
|
553 |
|
|
/* The section_offsets in the objfile are here filled in using
|
554 |
|
|
the BFD index. */
|
555 |
|
|
section_offsets->offsets[osp->sectindex] = osp->addr;
|
556 |
|
|
}
|
557 |
|
|
}
|
558 |
|
|
|
559 |
|
|
/* Relativize absolute addresses in ADDRS into offsets based on ABFD. Fill-in
|
560 |
|
|
also SECTINDEXes specific to ABFD there. This function can be used to
|
561 |
|
|
rebase ADDRS to start referencing different BFD than before. */
|
562 |
|
|
|
563 |
|
|
void
|
564 |
|
|
addr_info_make_relative (struct section_addr_info *addrs, bfd *abfd)
|
565 |
|
|
{
|
566 |
|
|
asection *lower_sect;
|
567 |
|
|
CORE_ADDR lower_offset;
|
568 |
|
|
int i;
|
569 |
|
|
|
570 |
|
|
/* Find lowest loadable section to be used as starting point for
|
571 |
|
|
continguous sections. */
|
572 |
|
|
lower_sect = NULL;
|
573 |
|
|
bfd_map_over_sections (abfd, find_lowest_section, &lower_sect);
|
574 |
|
|
if (lower_sect == NULL)
|
575 |
|
|
{
|
576 |
|
|
warning (_("no loadable sections found in added symbol-file %s"),
|
577 |
|
|
bfd_get_filename (abfd));
|
578 |
|
|
lower_offset = 0;
|
579 |
|
|
}
|
580 |
|
|
else
|
581 |
|
|
lower_offset = bfd_section_vma (bfd_get_filename (abfd), lower_sect);
|
582 |
|
|
|
583 |
|
|
/* Calculate offsets for the loadable sections.
|
584 |
|
|
FIXME! Sections must be in order of increasing loadable section
|
585 |
|
|
so that contiguous sections can use the lower-offset!!!
|
586 |
|
|
|
587 |
|
|
Adjust offsets if the segments are not contiguous.
|
588 |
|
|
If the section is contiguous, its offset should be set to
|
589 |
|
|
the offset of the highest loadable section lower than it
|
590 |
|
|
(the loadable section directly below it in memory).
|
591 |
|
|
this_offset = lower_offset = lower_addr - lower_orig_addr */
|
592 |
|
|
|
593 |
|
|
for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
|
594 |
|
|
{
|
595 |
|
|
asection *sect = bfd_get_section_by_name (abfd, addrs->other[i].name);
|
596 |
|
|
|
597 |
|
|
if (sect)
|
598 |
|
|
{
|
599 |
|
|
/* This is the index used by BFD. */
|
600 |
|
|
addrs->other[i].sectindex = sect->index;
|
601 |
|
|
|
602 |
|
|
if (addrs->other[i].addr != 0)
|
603 |
|
|
{
|
604 |
|
|
addrs->other[i].addr -= bfd_section_vma (abfd, sect);
|
605 |
|
|
lower_offset = addrs->other[i].addr;
|
606 |
|
|
}
|
607 |
|
|
else
|
608 |
|
|
addrs->other[i].addr = lower_offset;
|
609 |
|
|
}
|
610 |
|
|
else
|
611 |
|
|
{
|
612 |
|
|
warning (_("section %s not found in %s"), addrs->other[i].name,
|
613 |
|
|
bfd_get_filename (abfd));
|
614 |
|
|
addrs->other[i].addr = 0;
|
615 |
|
|
|
616 |
|
|
/* SECTINDEX is invalid if ADDR is zero. */
|
617 |
|
|
}
|
618 |
|
|
}
|
619 |
|
|
}
|
620 |
|
|
|
621 |
|
|
/* Parse the user's idea of an offset for dynamic linking, into our idea
|
622 |
|
|
of how to represent it for fast symbol reading. This is the default
|
623 |
|
|
version of the sym_fns.sym_offsets function for symbol readers that
|
624 |
|
|
don't need to do anything special. It allocates a section_offsets table
|
625 |
|
|
for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
|
626 |
|
|
|
627 |
|
|
void
|
628 |
|
|
default_symfile_offsets (struct objfile *objfile,
|
629 |
|
|
struct section_addr_info *addrs)
|
630 |
|
|
{
|
631 |
|
|
objfile->num_sections = bfd_count_sections (objfile->obfd);
|
632 |
|
|
objfile->section_offsets = (struct section_offsets *)
|
633 |
|
|
obstack_alloc (&objfile->objfile_obstack,
|
634 |
|
|
SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
|
635 |
|
|
relative_addr_info_to_section_offsets (objfile->section_offsets,
|
636 |
|
|
objfile->num_sections, addrs);
|
637 |
|
|
|
638 |
|
|
/* For relocatable files, all loadable sections will start at zero.
|
639 |
|
|
The zero is meaningless, so try to pick arbitrary addresses such
|
640 |
|
|
that no loadable sections overlap. This algorithm is quadratic,
|
641 |
|
|
but the number of sections in a single object file is generally
|
642 |
|
|
small. */
|
643 |
|
|
if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
|
644 |
|
|
{
|
645 |
|
|
struct place_section_arg arg;
|
646 |
|
|
bfd *abfd = objfile->obfd;
|
647 |
|
|
asection *cur_sec;
|
648 |
|
|
CORE_ADDR lowest = 0;
|
649 |
|
|
|
650 |
|
|
for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
|
651 |
|
|
/* We do not expect this to happen; just skip this step if the
|
652 |
|
|
relocatable file has a section with an assigned VMA. */
|
653 |
|
|
if (bfd_section_vma (abfd, cur_sec) != 0)
|
654 |
|
|
break;
|
655 |
|
|
|
656 |
|
|
if (cur_sec == NULL)
|
657 |
|
|
{
|
658 |
|
|
CORE_ADDR *offsets = objfile->section_offsets->offsets;
|
659 |
|
|
|
660 |
|
|
/* Pick non-overlapping offsets for sections the user did not
|
661 |
|
|
place explicitly. */
|
662 |
|
|
arg.offsets = objfile->section_offsets;
|
663 |
|
|
arg.lowest = 0;
|
664 |
|
|
bfd_map_over_sections (objfile->obfd, place_section, &arg);
|
665 |
|
|
|
666 |
|
|
/* Correctly filling in the section offsets is not quite
|
667 |
|
|
enough. Relocatable files have two properties that
|
668 |
|
|
(most) shared objects do not:
|
669 |
|
|
|
670 |
|
|
- Their debug information will contain relocations. Some
|
671 |
|
|
shared libraries do also, but many do not, so this can not
|
672 |
|
|
be assumed.
|
673 |
|
|
|
674 |
|
|
- If there are multiple code sections they will be loaded
|
675 |
|
|
at different relative addresses in memory than they are
|
676 |
|
|
in the objfile, since all sections in the file will start
|
677 |
|
|
at address zero.
|
678 |
|
|
|
679 |
|
|
Because GDB has very limited ability to map from an
|
680 |
|
|
address in debug info to the correct code section,
|
681 |
|
|
it relies on adding SECT_OFF_TEXT to things which might be
|
682 |
|
|
code. If we clear all the section offsets, and set the
|
683 |
|
|
section VMAs instead, then symfile_relocate_debug_section
|
684 |
|
|
will return meaningful debug information pointing at the
|
685 |
|
|
correct sections.
|
686 |
|
|
|
687 |
|
|
GDB has too many different data structures for section
|
688 |
|
|
addresses - a bfd, objfile, and so_list all have section
|
689 |
|
|
tables, as does exec_ops. Some of these could probably
|
690 |
|
|
be eliminated. */
|
691 |
|
|
|
692 |
|
|
for (cur_sec = abfd->sections; cur_sec != NULL;
|
693 |
|
|
cur_sec = cur_sec->next)
|
694 |
|
|
{
|
695 |
|
|
if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
|
696 |
|
|
continue;
|
697 |
|
|
|
698 |
|
|
bfd_set_section_vma (abfd, cur_sec, offsets[cur_sec->index]);
|
699 |
|
|
exec_set_section_address (bfd_get_filename (abfd), cur_sec->index,
|
700 |
|
|
offsets[cur_sec->index]);
|
701 |
|
|
offsets[cur_sec->index] = 0;
|
702 |
|
|
}
|
703 |
|
|
}
|
704 |
|
|
}
|
705 |
|
|
|
706 |
|
|
/* Remember the bfd indexes for the .text, .data, .bss and
|
707 |
|
|
.rodata sections. */
|
708 |
|
|
init_objfile_sect_indices (objfile);
|
709 |
|
|
}
|
710 |
|
|
|
711 |
|
|
|
712 |
|
|
/* Divide the file into segments, which are individual relocatable units.
|
713 |
|
|
This is the default version of the sym_fns.sym_segments function for
|
714 |
|
|
symbol readers that do not have an explicit representation of segments.
|
715 |
|
|
It assumes that object files do not have segments, and fully linked
|
716 |
|
|
files have a single segment. */
|
717 |
|
|
|
718 |
|
|
struct symfile_segment_data *
|
719 |
|
|
default_symfile_segments (bfd *abfd)
|
720 |
|
|
{
|
721 |
|
|
int num_sections, i;
|
722 |
|
|
asection *sect;
|
723 |
|
|
struct symfile_segment_data *data;
|
724 |
|
|
CORE_ADDR low, high;
|
725 |
|
|
|
726 |
|
|
/* Relocatable files contain enough information to position each
|
727 |
|
|
loadable section independently; they should not be relocated
|
728 |
|
|
in segments. */
|
729 |
|
|
if ((bfd_get_file_flags (abfd) & (EXEC_P | DYNAMIC)) == 0)
|
730 |
|
|
return NULL;
|
731 |
|
|
|
732 |
|
|
/* Make sure there is at least one loadable section in the file. */
|
733 |
|
|
for (sect = abfd->sections; sect != NULL; sect = sect->next)
|
734 |
|
|
{
|
735 |
|
|
if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
|
736 |
|
|
continue;
|
737 |
|
|
|
738 |
|
|
break;
|
739 |
|
|
}
|
740 |
|
|
if (sect == NULL)
|
741 |
|
|
return NULL;
|
742 |
|
|
|
743 |
|
|
low = bfd_get_section_vma (abfd, sect);
|
744 |
|
|
high = low + bfd_get_section_size (sect);
|
745 |
|
|
|
746 |
|
|
data = XZALLOC (struct symfile_segment_data);
|
747 |
|
|
data->num_segments = 1;
|
748 |
|
|
data->segment_bases = XCALLOC (1, CORE_ADDR);
|
749 |
|
|
data->segment_sizes = XCALLOC (1, CORE_ADDR);
|
750 |
|
|
|
751 |
|
|
num_sections = bfd_count_sections (abfd);
|
752 |
|
|
data->segment_info = XCALLOC (num_sections, int);
|
753 |
|
|
|
754 |
|
|
for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
|
755 |
|
|
{
|
756 |
|
|
CORE_ADDR vma;
|
757 |
|
|
|
758 |
|
|
if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
|
759 |
|
|
continue;
|
760 |
|
|
|
761 |
|
|
vma = bfd_get_section_vma (abfd, sect);
|
762 |
|
|
if (vma < low)
|
763 |
|
|
low = vma;
|
764 |
|
|
if (vma + bfd_get_section_size (sect) > high)
|
765 |
|
|
high = vma + bfd_get_section_size (sect);
|
766 |
|
|
|
767 |
|
|
data->segment_info[i] = 1;
|
768 |
|
|
}
|
769 |
|
|
|
770 |
|
|
data->segment_bases[0] = low;
|
771 |
|
|
data->segment_sizes[0] = high - low;
|
772 |
|
|
|
773 |
|
|
return data;
|
774 |
|
|
}
|
775 |
|
|
|
776 |
|
|
/* Process a symbol file, as either the main file or as a dynamically
|
777 |
|
|
loaded file.
|
778 |
|
|
|
779 |
|
|
OBJFILE is where the symbols are to be read from.
|
780 |
|
|
|
781 |
|
|
ADDRS is the list of section load addresses. If the user has given
|
782 |
|
|
an 'add-symbol-file' command, then this is the list of offsets and
|
783 |
|
|
addresses he or she provided as arguments to the command; or, if
|
784 |
|
|
we're handling a shared library, these are the actual addresses the
|
785 |
|
|
sections are loaded at, according to the inferior's dynamic linker
|
786 |
|
|
(as gleaned by GDB's shared library code). We convert each address
|
787 |
|
|
into an offset from the section VMA's as it appears in the object
|
788 |
|
|
file, and then call the file's sym_offsets function to convert this
|
789 |
|
|
into a format-specific offset table --- a `struct section_offsets'.
|
790 |
|
|
If ADDRS is non-zero, OFFSETS must be zero.
|
791 |
|
|
|
792 |
|
|
OFFSETS is a table of section offsets already in the right
|
793 |
|
|
format-specific representation. NUM_OFFSETS is the number of
|
794 |
|
|
elements present in OFFSETS->offsets. If OFFSETS is non-zero, we
|
795 |
|
|
assume this is the proper table the call to sym_offsets described
|
796 |
|
|
above would produce. Instead of calling sym_offsets, we just dump
|
797 |
|
|
it right into objfile->section_offsets. (When we're re-reading
|
798 |
|
|
symbols from an objfile, we don't have the original load address
|
799 |
|
|
list any more; all we have is the section offset table.) If
|
800 |
|
|
OFFSETS is non-zero, ADDRS must be zero.
|
801 |
|
|
|
802 |
|
|
ADD_FLAGS encodes verbosity level, whether this is main symbol or
|
803 |
|
|
an extra symbol file such as dynamically loaded code, and wether
|
804 |
|
|
breakpoint reset should be deferred. */
|
805 |
|
|
|
806 |
|
|
void
|
807 |
|
|
syms_from_objfile (struct objfile *objfile,
|
808 |
|
|
struct section_addr_info *addrs,
|
809 |
|
|
struct section_offsets *offsets,
|
810 |
|
|
int num_offsets,
|
811 |
|
|
int add_flags)
|
812 |
|
|
{
|
813 |
|
|
struct section_addr_info *local_addr = NULL;
|
814 |
|
|
struct cleanup *old_chain;
|
815 |
|
|
const int mainline = add_flags & SYMFILE_MAINLINE;
|
816 |
|
|
|
817 |
|
|
gdb_assert (! (addrs && offsets));
|
818 |
|
|
|
819 |
|
|
init_entry_point_info (objfile);
|
820 |
|
|
objfile->sf = find_sym_fns (objfile->obfd);
|
821 |
|
|
|
822 |
|
|
if (objfile->sf == NULL)
|
823 |
|
|
return; /* No symbols. */
|
824 |
|
|
|
825 |
|
|
/* Make sure that partially constructed symbol tables will be cleaned up
|
826 |
|
|
if an error occurs during symbol reading. */
|
827 |
|
|
old_chain = make_cleanup_free_objfile (objfile);
|
828 |
|
|
|
829 |
|
|
/* If ADDRS and OFFSETS are both NULL, put together a dummy address
|
830 |
|
|
list. We now establish the convention that an addr of zero means
|
831 |
|
|
no load address was specified. */
|
832 |
|
|
if (! addrs && ! offsets)
|
833 |
|
|
{
|
834 |
|
|
local_addr
|
835 |
|
|
= alloc_section_addr_info (bfd_count_sections (objfile->obfd));
|
836 |
|
|
make_cleanup (xfree, local_addr);
|
837 |
|
|
addrs = local_addr;
|
838 |
|
|
}
|
839 |
|
|
|
840 |
|
|
/* Now either addrs or offsets is non-zero. */
|
841 |
|
|
|
842 |
|
|
if (mainline)
|
843 |
|
|
{
|
844 |
|
|
/* We will modify the main symbol table, make sure that all its users
|
845 |
|
|
will be cleaned up if an error occurs during symbol reading. */
|
846 |
|
|
make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
|
847 |
|
|
|
848 |
|
|
/* Since no error yet, throw away the old symbol table. */
|
849 |
|
|
|
850 |
|
|
if (symfile_objfile != NULL)
|
851 |
|
|
{
|
852 |
|
|
free_objfile (symfile_objfile);
|
853 |
|
|
gdb_assert (symfile_objfile == NULL);
|
854 |
|
|
}
|
855 |
|
|
|
856 |
|
|
/* Currently we keep symbols from the add-symbol-file command.
|
857 |
|
|
If the user wants to get rid of them, they should do "symbol-file"
|
858 |
|
|
without arguments first. Not sure this is the best behavior
|
859 |
|
|
(PR 2207). */
|
860 |
|
|
|
861 |
|
|
(*objfile->sf->sym_new_init) (objfile);
|
862 |
|
|
}
|
863 |
|
|
|
864 |
|
|
/* Convert addr into an offset rather than an absolute address.
|
865 |
|
|
We find the lowest address of a loaded segment in the objfile,
|
866 |
|
|
and assume that <addr> is where that got loaded.
|
867 |
|
|
|
868 |
|
|
We no longer warn if the lowest section is not a text segment (as
|
869 |
|
|
happens for the PA64 port. */
|
870 |
|
|
if (addrs && addrs->other[0].name)
|
871 |
|
|
addr_info_make_relative (addrs, objfile->obfd);
|
872 |
|
|
|
873 |
|
|
/* Initialize symbol reading routines for this objfile, allow complaints to
|
874 |
|
|
appear for this new file, and record how verbose to be, then do the
|
875 |
|
|
initial symbol reading for this file. */
|
876 |
|
|
|
877 |
|
|
(*objfile->sf->sym_init) (objfile);
|
878 |
|
|
clear_complaints (&symfile_complaints, 1, add_flags & SYMFILE_VERBOSE);
|
879 |
|
|
|
880 |
|
|
if (addrs)
|
881 |
|
|
(*objfile->sf->sym_offsets) (objfile, addrs);
|
882 |
|
|
else
|
883 |
|
|
{
|
884 |
|
|
size_t size = SIZEOF_N_SECTION_OFFSETS (num_offsets);
|
885 |
|
|
|
886 |
|
|
/* Just copy in the offset table directly as given to us. */
|
887 |
|
|
objfile->num_sections = num_offsets;
|
888 |
|
|
objfile->section_offsets
|
889 |
|
|
= ((struct section_offsets *)
|
890 |
|
|
obstack_alloc (&objfile->objfile_obstack, size));
|
891 |
|
|
memcpy (objfile->section_offsets, offsets, size);
|
892 |
|
|
|
893 |
|
|
init_objfile_sect_indices (objfile);
|
894 |
|
|
}
|
895 |
|
|
|
896 |
|
|
(*objfile->sf->sym_read) (objfile, add_flags);
|
897 |
|
|
|
898 |
|
|
/* Discard cleanups as symbol reading was successful. */
|
899 |
|
|
|
900 |
|
|
discard_cleanups (old_chain);
|
901 |
|
|
xfree (local_addr);
|
902 |
|
|
}
|
903 |
|
|
|
904 |
|
|
/* Perform required actions after either reading in the initial
|
905 |
|
|
symbols for a new objfile, or mapping in the symbols from a reusable
|
906 |
|
|
objfile. */
|
907 |
|
|
|
908 |
|
|
void
|
909 |
|
|
new_symfile_objfile (struct objfile *objfile, int add_flags)
|
910 |
|
|
{
|
911 |
|
|
|
912 |
|
|
/* If this is the main symbol file we have to clean up all users of the
|
913 |
|
|
old main symbol file. Otherwise it is sufficient to fixup all the
|
914 |
|
|
breakpoints that may have been redefined by this symbol file. */
|
915 |
|
|
if (add_flags & SYMFILE_MAINLINE)
|
916 |
|
|
{
|
917 |
|
|
/* OK, make it the "real" symbol file. */
|
918 |
|
|
symfile_objfile = objfile;
|
919 |
|
|
|
920 |
|
|
clear_symtab_users ();
|
921 |
|
|
}
|
922 |
|
|
else if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
|
923 |
|
|
{
|
924 |
|
|
breakpoint_re_set ();
|
925 |
|
|
}
|
926 |
|
|
|
927 |
|
|
/* We're done reading the symbol file; finish off complaints. */
|
928 |
|
|
clear_complaints (&symfile_complaints, 0, add_flags & SYMFILE_VERBOSE);
|
929 |
|
|
}
|
930 |
|
|
|
931 |
|
|
/* Process a symbol file, as either the main file or as a dynamically
|
932 |
|
|
loaded file.
|
933 |
|
|
|
934 |
|
|
ABFD is a BFD already open on the file, as from symfile_bfd_open.
|
935 |
|
|
This BFD will be closed on error, and is always consumed by this function.
|
936 |
|
|
|
937 |
|
|
ADD_FLAGS encodes verbosity, whether this is main symbol file or
|
938 |
|
|
extra, such as dynamically loaded code, and what to do with breakpoins.
|
939 |
|
|
|
940 |
|
|
ADDRS, OFFSETS, and NUM_OFFSETS are as described for
|
941 |
|
|
syms_from_objfile, above.
|
942 |
|
|
ADDRS is ignored when SYMFILE_MAINLINE bit is set in ADD_FLAGS.
|
943 |
|
|
|
944 |
|
|
Upon success, returns a pointer to the objfile that was added.
|
945 |
|
|
Upon failure, jumps back to command level (never returns). */
|
946 |
|
|
|
947 |
|
|
static struct objfile *
|
948 |
|
|
symbol_file_add_with_addrs_or_offsets (bfd *abfd,
|
949 |
|
|
int add_flags,
|
950 |
|
|
struct section_addr_info *addrs,
|
951 |
|
|
struct section_offsets *offsets,
|
952 |
|
|
int num_offsets,
|
953 |
|
|
int flags)
|
954 |
|
|
{
|
955 |
|
|
struct objfile *objfile;
|
956 |
|
|
struct partial_symtab *psymtab;
|
957 |
|
|
struct cleanup *my_cleanups;
|
958 |
|
|
const char *name = bfd_get_filename (abfd);
|
959 |
|
|
const int from_tty = add_flags & SYMFILE_VERBOSE;
|
960 |
|
|
|
961 |
|
|
my_cleanups = make_cleanup_bfd_close (abfd);
|
962 |
|
|
|
963 |
|
|
/* Give user a chance to burp if we'd be
|
964 |
|
|
interactively wiping out any existing symbols. */
|
965 |
|
|
|
966 |
|
|
if ((have_full_symbols () || have_partial_symbols ())
|
967 |
|
|
&& (add_flags & SYMFILE_MAINLINE)
|
968 |
|
|
&& from_tty
|
969 |
|
|
&& !query (_("Load new symbol table from \"%s\"? "), name))
|
970 |
|
|
error (_("Not confirmed."));
|
971 |
|
|
|
972 |
|
|
objfile = allocate_objfile (abfd, flags);
|
973 |
|
|
discard_cleanups (my_cleanups);
|
974 |
|
|
|
975 |
|
|
/* We either created a new mapped symbol table, mapped an existing
|
976 |
|
|
symbol table file which has not had initial symbol reading
|
977 |
|
|
performed, or need to read an unmapped symbol table. */
|
978 |
|
|
if (from_tty || info_verbose)
|
979 |
|
|
{
|
980 |
|
|
if (deprecated_pre_add_symbol_hook)
|
981 |
|
|
deprecated_pre_add_symbol_hook (name);
|
982 |
|
|
else
|
983 |
|
|
{
|
984 |
|
|
printf_unfiltered (_("Reading symbols from %s..."), name);
|
985 |
|
|
wrap_here ("");
|
986 |
|
|
gdb_flush (gdb_stdout);
|
987 |
|
|
}
|
988 |
|
|
}
|
989 |
|
|
syms_from_objfile (objfile, addrs, offsets, num_offsets,
|
990 |
|
|
add_flags);
|
991 |
|
|
|
992 |
|
|
/* We now have at least a partial symbol table. Check to see if the
|
993 |
|
|
user requested that all symbols be read on initial access via either
|
994 |
|
|
the gdb startup command line or on a per symbol file basis. Expand
|
995 |
|
|
all partial symbol tables for this objfile if so. */
|
996 |
|
|
|
997 |
|
|
if ((flags & OBJF_READNOW) || readnow_symbol_files)
|
998 |
|
|
{
|
999 |
|
|
if (from_tty || info_verbose)
|
1000 |
|
|
{
|
1001 |
|
|
printf_unfiltered (_("expanding to full symbols..."));
|
1002 |
|
|
wrap_here ("");
|
1003 |
|
|
gdb_flush (gdb_stdout);
|
1004 |
|
|
}
|
1005 |
|
|
|
1006 |
|
|
for (psymtab = objfile->psymtabs;
|
1007 |
|
|
psymtab != NULL;
|
1008 |
|
|
psymtab = psymtab->next)
|
1009 |
|
|
{
|
1010 |
|
|
psymtab_to_symtab (psymtab);
|
1011 |
|
|
}
|
1012 |
|
|
}
|
1013 |
|
|
|
1014 |
|
|
if ((from_tty || info_verbose)
|
1015 |
|
|
&& !objfile_has_symbols (objfile))
|
1016 |
|
|
{
|
1017 |
|
|
wrap_here ("");
|
1018 |
|
|
printf_unfiltered (_("(no debugging symbols found)..."));
|
1019 |
|
|
wrap_here ("");
|
1020 |
|
|
}
|
1021 |
|
|
|
1022 |
|
|
if (from_tty || info_verbose)
|
1023 |
|
|
{
|
1024 |
|
|
if (deprecated_post_add_symbol_hook)
|
1025 |
|
|
deprecated_post_add_symbol_hook ();
|
1026 |
|
|
else
|
1027 |
|
|
printf_unfiltered (_("done.\n"));
|
1028 |
|
|
}
|
1029 |
|
|
|
1030 |
|
|
/* We print some messages regardless of whether 'from_tty ||
|
1031 |
|
|
info_verbose' is true, so make sure they go out at the right
|
1032 |
|
|
time. */
|
1033 |
|
|
gdb_flush (gdb_stdout);
|
1034 |
|
|
|
1035 |
|
|
do_cleanups (my_cleanups);
|
1036 |
|
|
|
1037 |
|
|
if (objfile->sf == NULL)
|
1038 |
|
|
{
|
1039 |
|
|
observer_notify_new_objfile (objfile);
|
1040 |
|
|
return objfile; /* No symbols. */
|
1041 |
|
|
}
|
1042 |
|
|
|
1043 |
|
|
new_symfile_objfile (objfile, add_flags);
|
1044 |
|
|
|
1045 |
|
|
observer_notify_new_objfile (objfile);
|
1046 |
|
|
|
1047 |
|
|
bfd_cache_close_all ();
|
1048 |
|
|
return (objfile);
|
1049 |
|
|
}
|
1050 |
|
|
|
1051 |
|
|
/* Add BFD as a separate debug file for OBJFILE. */
|
1052 |
|
|
|
1053 |
|
|
void
|
1054 |
|
|
symbol_file_add_separate (bfd *bfd, int symfile_flags, struct objfile *objfile)
|
1055 |
|
|
{
|
1056 |
|
|
struct objfile *new_objfile;
|
1057 |
|
|
struct section_addr_info *sap;
|
1058 |
|
|
struct cleanup *my_cleanup;
|
1059 |
|
|
|
1060 |
|
|
/* Create section_addr_info. We can't directly use offsets from OBJFILE
|
1061 |
|
|
because sections of BFD may not match sections of OBJFILE and because
|
1062 |
|
|
vma may have been modified by tools such as prelink. */
|
1063 |
|
|
sap = build_section_addr_info_from_objfile (objfile);
|
1064 |
|
|
my_cleanup = make_cleanup_free_section_addr_info (sap);
|
1065 |
|
|
|
1066 |
|
|
new_objfile = symbol_file_add_with_addrs_or_offsets
|
1067 |
|
|
(bfd, symfile_flags,
|
1068 |
|
|
sap, NULL, 0,
|
1069 |
|
|
objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
|
1070 |
|
|
| OBJF_USERLOADED));
|
1071 |
|
|
|
1072 |
|
|
do_cleanups (my_cleanup);
|
1073 |
|
|
|
1074 |
|
|
add_separate_debug_objfile (new_objfile, objfile);
|
1075 |
|
|
}
|
1076 |
|
|
|
1077 |
|
|
/* Process the symbol file ABFD, as either the main file or as a
|
1078 |
|
|
dynamically loaded file.
|
1079 |
|
|
|
1080 |
|
|
See symbol_file_add_with_addrs_or_offsets's comments for
|
1081 |
|
|
details. */
|
1082 |
|
|
struct objfile *
|
1083 |
|
|
symbol_file_add_from_bfd (bfd *abfd, int add_flags,
|
1084 |
|
|
struct section_addr_info *addrs,
|
1085 |
|
|
int flags)
|
1086 |
|
|
{
|
1087 |
|
|
return symbol_file_add_with_addrs_or_offsets (abfd, add_flags, addrs, 0, 0,
|
1088 |
|
|
flags);
|
1089 |
|
|
}
|
1090 |
|
|
|
1091 |
|
|
|
1092 |
|
|
/* Process a symbol file, as either the main file or as a dynamically
|
1093 |
|
|
loaded file. See symbol_file_add_with_addrs_or_offsets's comments
|
1094 |
|
|
for details. */
|
1095 |
|
|
struct objfile *
|
1096 |
|
|
symbol_file_add (char *name, int add_flags, struct section_addr_info *addrs,
|
1097 |
|
|
int flags)
|
1098 |
|
|
{
|
1099 |
|
|
return symbol_file_add_from_bfd (symfile_bfd_open (name), add_flags, addrs,
|
1100 |
|
|
flags);
|
1101 |
|
|
}
|
1102 |
|
|
|
1103 |
|
|
|
1104 |
|
|
/* Call symbol_file_add() with default values and update whatever is
|
1105 |
|
|
affected by the loading of a new main().
|
1106 |
|
|
Used when the file is supplied in the gdb command line
|
1107 |
|
|
and by some targets with special loading requirements.
|
1108 |
|
|
The auxiliary function, symbol_file_add_main_1(), has the flags
|
1109 |
|
|
argument for the switches that can only be specified in the symbol_file
|
1110 |
|
|
command itself. */
|
1111 |
|
|
|
1112 |
|
|
void
|
1113 |
|
|
symbol_file_add_main (char *args, int from_tty)
|
1114 |
|
|
{
|
1115 |
|
|
symbol_file_add_main_1 (args, from_tty, 0);
|
1116 |
|
|
}
|
1117 |
|
|
|
1118 |
|
|
static void
|
1119 |
|
|
symbol_file_add_main_1 (char *args, int from_tty, int flags)
|
1120 |
|
|
{
|
1121 |
|
|
const int add_flags = SYMFILE_MAINLINE | (from_tty ? SYMFILE_VERBOSE : 0);
|
1122 |
|
|
symbol_file_add (args, add_flags, NULL, flags);
|
1123 |
|
|
|
1124 |
|
|
/* Getting new symbols may change our opinion about
|
1125 |
|
|
what is frameless. */
|
1126 |
|
|
reinit_frame_cache ();
|
1127 |
|
|
|
1128 |
|
|
set_initial_language ();
|
1129 |
|
|
}
|
1130 |
|
|
|
1131 |
|
|
void
|
1132 |
|
|
symbol_file_clear (int from_tty)
|
1133 |
|
|
{
|
1134 |
|
|
if ((have_full_symbols () || have_partial_symbols ())
|
1135 |
|
|
&& from_tty
|
1136 |
|
|
&& (symfile_objfile
|
1137 |
|
|
? !query (_("Discard symbol table from `%s'? "),
|
1138 |
|
|
symfile_objfile->name)
|
1139 |
|
|
: !query (_("Discard symbol table? "))))
|
1140 |
|
|
error (_("Not confirmed."));
|
1141 |
|
|
|
1142 |
|
|
free_all_objfiles ();
|
1143 |
|
|
|
1144 |
|
|
/* solib descriptors may have handles to objfiles. Since their
|
1145 |
|
|
storage has just been released, we'd better wipe the solib
|
1146 |
|
|
descriptors as well. */
|
1147 |
|
|
no_shared_libraries (NULL, from_tty);
|
1148 |
|
|
|
1149 |
|
|
gdb_assert (symfile_objfile == NULL);
|
1150 |
|
|
if (from_tty)
|
1151 |
|
|
printf_unfiltered (_("No symbol file now.\n"));
|
1152 |
|
|
}
|
1153 |
|
|
|
1154 |
|
|
static char *
|
1155 |
|
|
get_debug_link_info (struct objfile *objfile, unsigned long *crc32_out)
|
1156 |
|
|
{
|
1157 |
|
|
asection *sect;
|
1158 |
|
|
bfd_size_type debuglink_size;
|
1159 |
|
|
unsigned long crc32;
|
1160 |
|
|
char *contents;
|
1161 |
|
|
int crc_offset;
|
1162 |
|
|
unsigned char *p;
|
1163 |
|
|
|
1164 |
|
|
sect = bfd_get_section_by_name (objfile->obfd, ".gnu_debuglink");
|
1165 |
|
|
|
1166 |
|
|
if (sect == NULL)
|
1167 |
|
|
return NULL;
|
1168 |
|
|
|
1169 |
|
|
debuglink_size = bfd_section_size (objfile->obfd, sect);
|
1170 |
|
|
|
1171 |
|
|
contents = xmalloc (debuglink_size);
|
1172 |
|
|
bfd_get_section_contents (objfile->obfd, sect, contents,
|
1173 |
|
|
(file_ptr)0, (bfd_size_type)debuglink_size);
|
1174 |
|
|
|
1175 |
|
|
/* Crc value is stored after the filename, aligned up to 4 bytes. */
|
1176 |
|
|
crc_offset = strlen (contents) + 1;
|
1177 |
|
|
crc_offset = (crc_offset + 3) & ~3;
|
1178 |
|
|
|
1179 |
|
|
crc32 = bfd_get_32 (objfile->obfd, (bfd_byte *) (contents + crc_offset));
|
1180 |
|
|
|
1181 |
|
|
*crc32_out = crc32;
|
1182 |
|
|
return contents;
|
1183 |
|
|
}
|
1184 |
|
|
|
1185 |
|
|
static int
|
1186 |
|
|
separate_debug_file_exists (const char *name, unsigned long crc,
|
1187 |
|
|
struct objfile *parent_objfile)
|
1188 |
|
|
{
|
1189 |
|
|
unsigned long file_crc = 0;
|
1190 |
|
|
bfd *abfd;
|
1191 |
|
|
gdb_byte buffer[8*1024];
|
1192 |
|
|
int count;
|
1193 |
|
|
struct stat parent_stat, abfd_stat;
|
1194 |
|
|
|
1195 |
|
|
/* Find a separate debug info file as if symbols would be present in
|
1196 |
|
|
PARENT_OBJFILE itself this function would not be called. .gnu_debuglink
|
1197 |
|
|
section can contain just the basename of PARENT_OBJFILE without any
|
1198 |
|
|
".debug" suffix as "/usr/lib/debug/path/to/file" is a separate tree where
|
1199 |
|
|
the separate debug infos with the same basename can exist. */
|
1200 |
|
|
|
1201 |
|
|
if (strcmp (name, parent_objfile->name) == 0)
|
1202 |
|
|
return 0;
|
1203 |
|
|
|
1204 |
|
|
abfd = bfd_open_maybe_remote (name);
|
1205 |
|
|
|
1206 |
|
|
if (!abfd)
|
1207 |
|
|
return 0;
|
1208 |
|
|
|
1209 |
|
|
/* Verify symlinks were not the cause of strcmp name difference above.
|
1210 |
|
|
|
1211 |
|
|
Some operating systems, e.g. Windows, do not provide a meaningful
|
1212 |
|
|
st_ino; they always set it to zero. (Windows does provide a
|
1213 |
|
|
meaningful st_dev.) Do not indicate a duplicate library in that
|
1214 |
|
|
case. While there is no guarantee that a system that provides
|
1215 |
|
|
meaningful inode numbers will never set st_ino to zero, this is
|
1216 |
|
|
merely an optimization, so we do not need to worry about false
|
1217 |
|
|
negatives. */
|
1218 |
|
|
|
1219 |
|
|
if (bfd_stat (abfd, &abfd_stat) == 0
|
1220 |
|
|
&& bfd_stat (parent_objfile->obfd, &parent_stat) == 0
|
1221 |
|
|
&& abfd_stat.st_dev == parent_stat.st_dev
|
1222 |
|
|
&& abfd_stat.st_ino == parent_stat.st_ino
|
1223 |
|
|
&& abfd_stat.st_ino != 0)
|
1224 |
|
|
{
|
1225 |
|
|
bfd_close (abfd);
|
1226 |
|
|
return 0;
|
1227 |
|
|
}
|
1228 |
|
|
|
1229 |
|
|
while ((count = bfd_bread (buffer, sizeof (buffer), abfd)) > 0)
|
1230 |
|
|
file_crc = gnu_debuglink_crc32 (file_crc, buffer, count);
|
1231 |
|
|
|
1232 |
|
|
bfd_close (abfd);
|
1233 |
|
|
|
1234 |
|
|
if (crc != file_crc)
|
1235 |
|
|
{
|
1236 |
|
|
warning (_("the debug information found in \"%s\""
|
1237 |
|
|
" does not match \"%s\" (CRC mismatch).\n"),
|
1238 |
|
|
name, parent_objfile->name);
|
1239 |
|
|
return 0;
|
1240 |
|
|
}
|
1241 |
|
|
|
1242 |
|
|
return 1;
|
1243 |
|
|
}
|
1244 |
|
|
|
1245 |
|
|
char *debug_file_directory = NULL;
|
1246 |
|
|
static void
|
1247 |
|
|
show_debug_file_directory (struct ui_file *file, int from_tty,
|
1248 |
|
|
struct cmd_list_element *c, const char *value)
|
1249 |
|
|
{
|
1250 |
|
|
fprintf_filtered (file, _("\
|
1251 |
|
|
The directory where separate debug symbols are searched for is \"%s\".\n"),
|
1252 |
|
|
value);
|
1253 |
|
|
}
|
1254 |
|
|
|
1255 |
|
|
#if ! defined (DEBUG_SUBDIRECTORY)
|
1256 |
|
|
#define DEBUG_SUBDIRECTORY ".debug"
|
1257 |
|
|
#endif
|
1258 |
|
|
|
1259 |
|
|
char *
|
1260 |
|
|
find_separate_debug_file_by_debuglink (struct objfile *objfile)
|
1261 |
|
|
{
|
1262 |
|
|
asection *sect;
|
1263 |
|
|
char *basename, *name_copy, *debugdir;
|
1264 |
|
|
char *dir = NULL;
|
1265 |
|
|
char *debugfile = NULL;
|
1266 |
|
|
char *canon_name = NULL;
|
1267 |
|
|
bfd_size_type debuglink_size;
|
1268 |
|
|
unsigned long crc32;
|
1269 |
|
|
int i;
|
1270 |
|
|
|
1271 |
|
|
basename = get_debug_link_info (objfile, &crc32);
|
1272 |
|
|
|
1273 |
|
|
if (basename == NULL)
|
1274 |
|
|
/* There's no separate debug info, hence there's no way we could
|
1275 |
|
|
load it => no warning. */
|
1276 |
|
|
goto cleanup_return_debugfile;
|
1277 |
|
|
|
1278 |
|
|
dir = xstrdup (objfile->name);
|
1279 |
|
|
|
1280 |
|
|
/* Strip off the final filename part, leaving the directory name,
|
1281 |
|
|
followed by a slash. Objfile names should always be absolute and
|
1282 |
|
|
tilde-expanded, so there should always be a slash in there
|
1283 |
|
|
somewhere. */
|
1284 |
|
|
for (i = strlen(dir) - 1; i >= 0; i--)
|
1285 |
|
|
{
|
1286 |
|
|
if (IS_DIR_SEPARATOR (dir[i]))
|
1287 |
|
|
break;
|
1288 |
|
|
}
|
1289 |
|
|
gdb_assert (i >= 0 && IS_DIR_SEPARATOR (dir[i]));
|
1290 |
|
|
dir[i+1] = '\0';
|
1291 |
|
|
|
1292 |
|
|
/* Set I to max (strlen (canon_name), strlen (dir)). */
|
1293 |
|
|
canon_name = lrealpath (dir);
|
1294 |
|
|
i = strlen (dir);
|
1295 |
|
|
if (canon_name && strlen (canon_name) > i)
|
1296 |
|
|
i = strlen (canon_name);
|
1297 |
|
|
|
1298 |
|
|
debugfile = xmalloc (strlen (debug_file_directory) + 1
|
1299 |
|
|
+ i
|
1300 |
|
|
+ strlen (DEBUG_SUBDIRECTORY)
|
1301 |
|
|
+ strlen ("/")
|
1302 |
|
|
+ strlen (basename)
|
1303 |
|
|
+ 1);
|
1304 |
|
|
|
1305 |
|
|
/* First try in the same directory as the original file. */
|
1306 |
|
|
strcpy (debugfile, dir);
|
1307 |
|
|
strcat (debugfile, basename);
|
1308 |
|
|
|
1309 |
|
|
if (separate_debug_file_exists (debugfile, crc32, objfile))
|
1310 |
|
|
goto cleanup_return_debugfile;
|
1311 |
|
|
|
1312 |
|
|
/* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
|
1313 |
|
|
strcpy (debugfile, dir);
|
1314 |
|
|
strcat (debugfile, DEBUG_SUBDIRECTORY);
|
1315 |
|
|
strcat (debugfile, "/");
|
1316 |
|
|
strcat (debugfile, basename);
|
1317 |
|
|
|
1318 |
|
|
if (separate_debug_file_exists (debugfile, crc32, objfile))
|
1319 |
|
|
goto cleanup_return_debugfile;
|
1320 |
|
|
|
1321 |
|
|
/* Then try in the global debugfile directories.
|
1322 |
|
|
|
1323 |
|
|
Keep backward compatibility so that DEBUG_FILE_DIRECTORY being "" will
|
1324 |
|
|
cause "/..." lookups. */
|
1325 |
|
|
|
1326 |
|
|
debugdir = debug_file_directory;
|
1327 |
|
|
do
|
1328 |
|
|
{
|
1329 |
|
|
char *debugdir_end;
|
1330 |
|
|
|
1331 |
|
|
while (*debugdir == DIRNAME_SEPARATOR)
|
1332 |
|
|
debugdir++;
|
1333 |
|
|
|
1334 |
|
|
debugdir_end = strchr (debugdir, DIRNAME_SEPARATOR);
|
1335 |
|
|
if (debugdir_end == NULL)
|
1336 |
|
|
debugdir_end = &debugdir[strlen (debugdir)];
|
1337 |
|
|
|
1338 |
|
|
memcpy (debugfile, debugdir, debugdir_end - debugdir);
|
1339 |
|
|
debugfile[debugdir_end - debugdir] = 0;
|
1340 |
|
|
strcat (debugfile, "/");
|
1341 |
|
|
strcat (debugfile, dir);
|
1342 |
|
|
strcat (debugfile, basename);
|
1343 |
|
|
|
1344 |
|
|
if (separate_debug_file_exists (debugfile, crc32, objfile))
|
1345 |
|
|
goto cleanup_return_debugfile;
|
1346 |
|
|
|
1347 |
|
|
/* If the file is in the sysroot, try using its base path in the
|
1348 |
|
|
global debugfile directory. */
|
1349 |
|
|
if (canon_name
|
1350 |
|
|
&& strncmp (canon_name, gdb_sysroot, strlen (gdb_sysroot)) == 0
|
1351 |
|
|
&& IS_DIR_SEPARATOR (canon_name[strlen (gdb_sysroot)]))
|
1352 |
|
|
{
|
1353 |
|
|
memcpy (debugfile, debugdir, debugdir_end - debugdir);
|
1354 |
|
|
debugfile[debugdir_end - debugdir] = 0;
|
1355 |
|
|
strcat (debugfile, canon_name + strlen (gdb_sysroot));
|
1356 |
|
|
strcat (debugfile, "/");
|
1357 |
|
|
strcat (debugfile, basename);
|
1358 |
|
|
|
1359 |
|
|
if (separate_debug_file_exists (debugfile, crc32, objfile))
|
1360 |
|
|
goto cleanup_return_debugfile;
|
1361 |
|
|
}
|
1362 |
|
|
|
1363 |
|
|
debugdir = debugdir_end;
|
1364 |
|
|
}
|
1365 |
|
|
while (*debugdir != 0);
|
1366 |
|
|
|
1367 |
|
|
xfree (debugfile);
|
1368 |
|
|
debugfile = NULL;
|
1369 |
|
|
|
1370 |
|
|
cleanup_return_debugfile:
|
1371 |
|
|
xfree (canon_name);
|
1372 |
|
|
xfree (basename);
|
1373 |
|
|
xfree (dir);
|
1374 |
|
|
return debugfile;
|
1375 |
|
|
}
|
1376 |
|
|
|
1377 |
|
|
|
1378 |
|
|
/* This is the symbol-file command. Read the file, analyze its
|
1379 |
|
|
symbols, and add a struct symtab to a symtab list. The syntax of
|
1380 |
|
|
the command is rather bizarre:
|
1381 |
|
|
|
1382 |
|
|
1. The function buildargv implements various quoting conventions
|
1383 |
|
|
which are undocumented and have little or nothing in common with
|
1384 |
|
|
the way things are quoted (or not quoted) elsewhere in GDB.
|
1385 |
|
|
|
1386 |
|
|
2. Options are used, which are not generally used in GDB (perhaps
|
1387 |
|
|
"set mapped on", "set readnow on" would be better)
|
1388 |
|
|
|
1389 |
|
|
3. The order of options matters, which is contrary to GNU
|
1390 |
|
|
conventions (because it is confusing and inconvenient). */
|
1391 |
|
|
|
1392 |
|
|
void
|
1393 |
|
|
symbol_file_command (char *args, int from_tty)
|
1394 |
|
|
{
|
1395 |
|
|
dont_repeat ();
|
1396 |
|
|
|
1397 |
|
|
if (args == NULL)
|
1398 |
|
|
{
|
1399 |
|
|
symbol_file_clear (from_tty);
|
1400 |
|
|
}
|
1401 |
|
|
else
|
1402 |
|
|
{
|
1403 |
|
|
char **argv = gdb_buildargv (args);
|
1404 |
|
|
int flags = OBJF_USERLOADED;
|
1405 |
|
|
struct cleanup *cleanups;
|
1406 |
|
|
char *name = NULL;
|
1407 |
|
|
|
1408 |
|
|
cleanups = make_cleanup_freeargv (argv);
|
1409 |
|
|
while (*argv != NULL)
|
1410 |
|
|
{
|
1411 |
|
|
if (strcmp (*argv, "-readnow") == 0)
|
1412 |
|
|
flags |= OBJF_READNOW;
|
1413 |
|
|
else if (**argv == '-')
|
1414 |
|
|
error (_("unknown option `%s'"), *argv);
|
1415 |
|
|
else
|
1416 |
|
|
{
|
1417 |
|
|
symbol_file_add_main_1 (*argv, from_tty, flags);
|
1418 |
|
|
name = *argv;
|
1419 |
|
|
}
|
1420 |
|
|
|
1421 |
|
|
argv++;
|
1422 |
|
|
}
|
1423 |
|
|
|
1424 |
|
|
if (name == NULL)
|
1425 |
|
|
error (_("no symbol file name was specified"));
|
1426 |
|
|
|
1427 |
|
|
do_cleanups (cleanups);
|
1428 |
|
|
}
|
1429 |
|
|
}
|
1430 |
|
|
|
1431 |
|
|
/* Set the initial language.
|
1432 |
|
|
|
1433 |
|
|
FIXME: A better solution would be to record the language in the
|
1434 |
|
|
psymtab when reading partial symbols, and then use it (if known) to
|
1435 |
|
|
set the language. This would be a win for formats that encode the
|
1436 |
|
|
language in an easily discoverable place, such as DWARF. For
|
1437 |
|
|
stabs, we can jump through hoops looking for specially named
|
1438 |
|
|
symbols or try to intuit the language from the specific type of
|
1439 |
|
|
stabs we find, but we can't do that until later when we read in
|
1440 |
|
|
full symbols. */
|
1441 |
|
|
|
1442 |
|
|
void
|
1443 |
|
|
set_initial_language (void)
|
1444 |
|
|
{
|
1445 |
|
|
struct partial_symtab *pst;
|
1446 |
|
|
enum language lang = language_unknown;
|
1447 |
|
|
|
1448 |
|
|
pst = find_main_psymtab ();
|
1449 |
|
|
if (pst != NULL)
|
1450 |
|
|
{
|
1451 |
|
|
if (pst->filename != NULL)
|
1452 |
|
|
lang = deduce_language_from_filename (pst->filename);
|
1453 |
|
|
|
1454 |
|
|
if (lang == language_unknown)
|
1455 |
|
|
{
|
1456 |
|
|
/* Make C the default language */
|
1457 |
|
|
lang = language_c;
|
1458 |
|
|
}
|
1459 |
|
|
|
1460 |
|
|
set_language (lang);
|
1461 |
|
|
expected_language = current_language; /* Don't warn the user. */
|
1462 |
|
|
}
|
1463 |
|
|
}
|
1464 |
|
|
|
1465 |
|
|
/* If NAME is a remote name open the file using remote protocol, otherwise
|
1466 |
|
|
open it normally. */
|
1467 |
|
|
|
1468 |
|
|
bfd *
|
1469 |
|
|
bfd_open_maybe_remote (const char *name)
|
1470 |
|
|
{
|
1471 |
|
|
if (remote_filename_p (name))
|
1472 |
|
|
return remote_bfd_open (name, gnutarget);
|
1473 |
|
|
else
|
1474 |
|
|
return bfd_openr (name, gnutarget);
|
1475 |
|
|
}
|
1476 |
|
|
|
1477 |
|
|
|
1478 |
|
|
/* Open the file specified by NAME and hand it off to BFD for
|
1479 |
|
|
preliminary analysis. Return a newly initialized bfd *, which
|
1480 |
|
|
includes a newly malloc'd` copy of NAME (tilde-expanded and made
|
1481 |
|
|
absolute). In case of trouble, error() is called. */
|
1482 |
|
|
|
1483 |
|
|
bfd *
|
1484 |
|
|
symfile_bfd_open (char *name)
|
1485 |
|
|
{
|
1486 |
|
|
bfd *sym_bfd;
|
1487 |
|
|
int desc;
|
1488 |
|
|
char *absolute_name;
|
1489 |
|
|
|
1490 |
|
|
if (remote_filename_p (name))
|
1491 |
|
|
{
|
1492 |
|
|
name = xstrdup (name);
|
1493 |
|
|
sym_bfd = remote_bfd_open (name, gnutarget);
|
1494 |
|
|
if (!sym_bfd)
|
1495 |
|
|
{
|
1496 |
|
|
make_cleanup (xfree, name);
|
1497 |
|
|
error (_("`%s': can't open to read symbols: %s."), name,
|
1498 |
|
|
bfd_errmsg (bfd_get_error ()));
|
1499 |
|
|
}
|
1500 |
|
|
|
1501 |
|
|
if (!bfd_check_format (sym_bfd, bfd_object))
|
1502 |
|
|
{
|
1503 |
|
|
bfd_close (sym_bfd);
|
1504 |
|
|
make_cleanup (xfree, name);
|
1505 |
|
|
error (_("`%s': can't read symbols: %s."), name,
|
1506 |
|
|
bfd_errmsg (bfd_get_error ()));
|
1507 |
|
|
}
|
1508 |
|
|
|
1509 |
|
|
return sym_bfd;
|
1510 |
|
|
}
|
1511 |
|
|
|
1512 |
|
|
name = tilde_expand (name); /* Returns 1st new malloc'd copy. */
|
1513 |
|
|
|
1514 |
|
|
/* Look down path for it, allocate 2nd new malloc'd copy. */
|
1515 |
|
|
desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, name,
|
1516 |
|
|
O_RDONLY | O_BINARY, &absolute_name);
|
1517 |
|
|
#if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
|
1518 |
|
|
if (desc < 0)
|
1519 |
|
|
{
|
1520 |
|
|
char *exename = alloca (strlen (name) + 5);
|
1521 |
|
|
strcat (strcpy (exename, name), ".exe");
|
1522 |
|
|
desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, exename,
|
1523 |
|
|
O_RDONLY | O_BINARY, &absolute_name);
|
1524 |
|
|
}
|
1525 |
|
|
#endif
|
1526 |
|
|
if (desc < 0)
|
1527 |
|
|
{
|
1528 |
|
|
make_cleanup (xfree, name);
|
1529 |
|
|
perror_with_name (name);
|
1530 |
|
|
}
|
1531 |
|
|
|
1532 |
|
|
/* Free 1st new malloc'd copy, but keep the 2nd malloc'd copy in
|
1533 |
|
|
bfd. It'll be freed in free_objfile(). */
|
1534 |
|
|
xfree (name);
|
1535 |
|
|
name = absolute_name;
|
1536 |
|
|
|
1537 |
|
|
sym_bfd = bfd_fopen (name, gnutarget, FOPEN_RB, desc);
|
1538 |
|
|
if (!sym_bfd)
|
1539 |
|
|
{
|
1540 |
|
|
close (desc);
|
1541 |
|
|
make_cleanup (xfree, name);
|
1542 |
|
|
error (_("`%s': can't open to read symbols: %s."), name,
|
1543 |
|
|
bfd_errmsg (bfd_get_error ()));
|
1544 |
|
|
}
|
1545 |
|
|
bfd_set_cacheable (sym_bfd, 1);
|
1546 |
|
|
|
1547 |
|
|
if (!bfd_check_format (sym_bfd, bfd_object))
|
1548 |
|
|
{
|
1549 |
|
|
/* FIXME: should be checking for errors from bfd_close (for one
|
1550 |
|
|
thing, on error it does not free all the storage associated
|
1551 |
|
|
with the bfd). */
|
1552 |
|
|
bfd_close (sym_bfd); /* This also closes desc. */
|
1553 |
|
|
make_cleanup (xfree, name);
|
1554 |
|
|
error (_("`%s': can't read symbols: %s."), name,
|
1555 |
|
|
bfd_errmsg (bfd_get_error ()));
|
1556 |
|
|
}
|
1557 |
|
|
|
1558 |
|
|
/* bfd_usrdata exists for applications and libbfd must not touch it. */
|
1559 |
|
|
gdb_assert (bfd_usrdata (sym_bfd) == NULL);
|
1560 |
|
|
|
1561 |
|
|
return sym_bfd;
|
1562 |
|
|
}
|
1563 |
|
|
|
1564 |
|
|
/* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
|
1565 |
|
|
the section was not found. */
|
1566 |
|
|
|
1567 |
|
|
int
|
1568 |
|
|
get_section_index (struct objfile *objfile, char *section_name)
|
1569 |
|
|
{
|
1570 |
|
|
asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
|
1571 |
|
|
|
1572 |
|
|
if (sect)
|
1573 |
|
|
return sect->index;
|
1574 |
|
|
else
|
1575 |
|
|
return -1;
|
1576 |
|
|
}
|
1577 |
|
|
|
1578 |
|
|
/* Link SF into the global symtab_fns list. Called on startup by the
|
1579 |
|
|
_initialize routine in each object file format reader, to register
|
1580 |
|
|
information about each format the the reader is prepared to
|
1581 |
|
|
handle. */
|
1582 |
|
|
|
1583 |
|
|
void
|
1584 |
|
|
add_symtab_fns (struct sym_fns *sf)
|
1585 |
|
|
{
|
1586 |
|
|
sf->next = symtab_fns;
|
1587 |
|
|
symtab_fns = sf;
|
1588 |
|
|
}
|
1589 |
|
|
|
1590 |
|
|
/* Initialize OBJFILE to read symbols from its associated BFD. It
|
1591 |
|
|
either returns or calls error(). The result is an initialized
|
1592 |
|
|
struct sym_fns in the objfile structure, that contains cached
|
1593 |
|
|
information about the symbol file. */
|
1594 |
|
|
|
1595 |
|
|
static struct sym_fns *
|
1596 |
|
|
find_sym_fns (bfd *abfd)
|
1597 |
|
|
{
|
1598 |
|
|
struct sym_fns *sf;
|
1599 |
|
|
enum bfd_flavour our_flavour = bfd_get_flavour (abfd);
|
1600 |
|
|
|
1601 |
|
|
if (our_flavour == bfd_target_srec_flavour
|
1602 |
|
|
|| our_flavour == bfd_target_ihex_flavour
|
1603 |
|
|
|| our_flavour == bfd_target_tekhex_flavour)
|
1604 |
|
|
return NULL; /* No symbols. */
|
1605 |
|
|
|
1606 |
|
|
for (sf = symtab_fns; sf != NULL; sf = sf->next)
|
1607 |
|
|
if (our_flavour == sf->sym_flavour)
|
1608 |
|
|
return sf;
|
1609 |
|
|
|
1610 |
|
|
error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
|
1611 |
|
|
bfd_get_target (abfd));
|
1612 |
|
|
}
|
1613 |
|
|
|
1614 |
|
|
|
1615 |
|
|
/* This function runs the load command of our current target. */
|
1616 |
|
|
|
1617 |
|
|
static void
|
1618 |
|
|
load_command (char *arg, int from_tty)
|
1619 |
|
|
{
|
1620 |
|
|
/* The user might be reloading because the binary has changed. Take
|
1621 |
|
|
this opportunity to check. */
|
1622 |
|
|
reopen_exec_file ();
|
1623 |
|
|
reread_symbols ();
|
1624 |
|
|
|
1625 |
|
|
if (arg == NULL)
|
1626 |
|
|
{
|
1627 |
|
|
char *parg;
|
1628 |
|
|
int count = 0;
|
1629 |
|
|
|
1630 |
|
|
parg = arg = get_exec_file (1);
|
1631 |
|
|
|
1632 |
|
|
/* Count how many \ " ' tab space there are in the name. */
|
1633 |
|
|
while ((parg = strpbrk (parg, "\\\"'\t ")))
|
1634 |
|
|
{
|
1635 |
|
|
parg++;
|
1636 |
|
|
count++;
|
1637 |
|
|
}
|
1638 |
|
|
|
1639 |
|
|
if (count)
|
1640 |
|
|
{
|
1641 |
|
|
/* We need to quote this string so buildargv can pull it apart. */
|
1642 |
|
|
char *temp = xmalloc (strlen (arg) + count + 1 );
|
1643 |
|
|
char *ptemp = temp;
|
1644 |
|
|
char *prev;
|
1645 |
|
|
|
1646 |
|
|
make_cleanup (xfree, temp);
|
1647 |
|
|
|
1648 |
|
|
prev = parg = arg;
|
1649 |
|
|
while ((parg = strpbrk (parg, "\\\"'\t ")))
|
1650 |
|
|
{
|
1651 |
|
|
strncpy (ptemp, prev, parg - prev);
|
1652 |
|
|
ptemp += parg - prev;
|
1653 |
|
|
prev = parg++;
|
1654 |
|
|
*ptemp++ = '\\';
|
1655 |
|
|
}
|
1656 |
|
|
strcpy (ptemp, prev);
|
1657 |
|
|
|
1658 |
|
|
arg = temp;
|
1659 |
|
|
}
|
1660 |
|
|
}
|
1661 |
|
|
|
1662 |
|
|
target_load (arg, from_tty);
|
1663 |
|
|
|
1664 |
|
|
/* After re-loading the executable, we don't really know which
|
1665 |
|
|
overlays are mapped any more. */
|
1666 |
|
|
overlay_cache_invalid = 1;
|
1667 |
|
|
}
|
1668 |
|
|
|
1669 |
|
|
/* This version of "load" should be usable for any target. Currently
|
1670 |
|
|
it is just used for remote targets, not inftarg.c or core files,
|
1671 |
|
|
on the theory that only in that case is it useful.
|
1672 |
|
|
|
1673 |
|
|
Avoiding xmodem and the like seems like a win (a) because we don't have
|
1674 |
|
|
to worry about finding it, and (b) On VMS, fork() is very slow and so
|
1675 |
|
|
we don't want to run a subprocess. On the other hand, I'm not sure how
|
1676 |
|
|
performance compares. */
|
1677 |
|
|
|
1678 |
|
|
static int validate_download = 0;
|
1679 |
|
|
|
1680 |
|
|
/* Callback service function for generic_load (bfd_map_over_sections). */
|
1681 |
|
|
|
1682 |
|
|
static void
|
1683 |
|
|
add_section_size_callback (bfd *abfd, asection *asec, void *data)
|
1684 |
|
|
{
|
1685 |
|
|
bfd_size_type *sum = data;
|
1686 |
|
|
|
1687 |
|
|
*sum += bfd_get_section_size (asec);
|
1688 |
|
|
}
|
1689 |
|
|
|
1690 |
|
|
/* Opaque data for load_section_callback. */
|
1691 |
|
|
struct load_section_data {
|
1692 |
|
|
unsigned long load_offset;
|
1693 |
|
|
struct load_progress_data *progress_data;
|
1694 |
|
|
VEC(memory_write_request_s) *requests;
|
1695 |
|
|
};
|
1696 |
|
|
|
1697 |
|
|
/* Opaque data for load_progress. */
|
1698 |
|
|
struct load_progress_data {
|
1699 |
|
|
/* Cumulative data. */
|
1700 |
|
|
unsigned long write_count;
|
1701 |
|
|
unsigned long data_count;
|
1702 |
|
|
bfd_size_type total_size;
|
1703 |
|
|
};
|
1704 |
|
|
|
1705 |
|
|
/* Opaque data for load_progress for a single section. */
|
1706 |
|
|
struct load_progress_section_data {
|
1707 |
|
|
struct load_progress_data *cumulative;
|
1708 |
|
|
|
1709 |
|
|
/* Per-section data. */
|
1710 |
|
|
const char *section_name;
|
1711 |
|
|
ULONGEST section_sent;
|
1712 |
|
|
ULONGEST section_size;
|
1713 |
|
|
CORE_ADDR lma;
|
1714 |
|
|
gdb_byte *buffer;
|
1715 |
|
|
};
|
1716 |
|
|
|
1717 |
|
|
/* Target write callback routine for progress reporting. */
|
1718 |
|
|
|
1719 |
|
|
static void
|
1720 |
|
|
load_progress (ULONGEST bytes, void *untyped_arg)
|
1721 |
|
|
{
|
1722 |
|
|
struct load_progress_section_data *args = untyped_arg;
|
1723 |
|
|
struct load_progress_data *totals;
|
1724 |
|
|
|
1725 |
|
|
if (args == NULL)
|
1726 |
|
|
/* Writing padding data. No easy way to get at the cumulative
|
1727 |
|
|
stats, so just ignore this. */
|
1728 |
|
|
return;
|
1729 |
|
|
|
1730 |
|
|
totals = args->cumulative;
|
1731 |
|
|
|
1732 |
|
|
if (bytes == 0 && args->section_sent == 0)
|
1733 |
|
|
{
|
1734 |
|
|
/* The write is just starting. Let the user know we've started
|
1735 |
|
|
this section. */
|
1736 |
|
|
ui_out_message (uiout, 0, "Loading section %s, size %s lma %s\n",
|
1737 |
|
|
args->section_name, hex_string (args->section_size),
|
1738 |
|
|
paddress (target_gdbarch, args->lma));
|
1739 |
|
|
return;
|
1740 |
|
|
}
|
1741 |
|
|
|
1742 |
|
|
if (validate_download)
|
1743 |
|
|
{
|
1744 |
|
|
/* Broken memories and broken monitors manifest themselves here
|
1745 |
|
|
when bring new computers to life. This doubles already slow
|
1746 |
|
|
downloads. */
|
1747 |
|
|
/* NOTE: cagney/1999-10-18: A more efficient implementation
|
1748 |
|
|
might add a verify_memory() method to the target vector and
|
1749 |
|
|
then use that. remote.c could implement that method using
|
1750 |
|
|
the ``qCRC'' packet. */
|
1751 |
|
|
gdb_byte *check = xmalloc (bytes);
|
1752 |
|
|
struct cleanup *verify_cleanups = make_cleanup (xfree, check);
|
1753 |
|
|
|
1754 |
|
|
if (target_read_memory (args->lma, check, bytes) != 0)
|
1755 |
|
|
error (_("Download verify read failed at %s"),
|
1756 |
|
|
paddress (target_gdbarch, args->lma));
|
1757 |
|
|
if (memcmp (args->buffer, check, bytes) != 0)
|
1758 |
|
|
error (_("Download verify compare failed at %s"),
|
1759 |
|
|
paddress (target_gdbarch, args->lma));
|
1760 |
|
|
do_cleanups (verify_cleanups);
|
1761 |
|
|
}
|
1762 |
|
|
totals->data_count += bytes;
|
1763 |
|
|
args->lma += bytes;
|
1764 |
|
|
args->buffer += bytes;
|
1765 |
|
|
totals->write_count += 1;
|
1766 |
|
|
args->section_sent += bytes;
|
1767 |
|
|
if (quit_flag
|
1768 |
|
|
|| (deprecated_ui_load_progress_hook != NULL
|
1769 |
|
|
&& deprecated_ui_load_progress_hook (args->section_name,
|
1770 |
|
|
args->section_sent)))
|
1771 |
|
|
error (_("Canceled the download"));
|
1772 |
|
|
|
1773 |
|
|
if (deprecated_show_load_progress != NULL)
|
1774 |
|
|
deprecated_show_load_progress (args->section_name,
|
1775 |
|
|
args->section_sent,
|
1776 |
|
|
args->section_size,
|
1777 |
|
|
totals->data_count,
|
1778 |
|
|
totals->total_size);
|
1779 |
|
|
}
|
1780 |
|
|
|
1781 |
|
|
/* Callback service function for generic_load (bfd_map_over_sections). */
|
1782 |
|
|
|
1783 |
|
|
static void
|
1784 |
|
|
load_section_callback (bfd *abfd, asection *asec, void *data)
|
1785 |
|
|
{
|
1786 |
|
|
struct memory_write_request *new_request;
|
1787 |
|
|
struct load_section_data *args = data;
|
1788 |
|
|
struct load_progress_section_data *section_data;
|
1789 |
|
|
bfd_size_type size = bfd_get_section_size (asec);
|
1790 |
|
|
gdb_byte *buffer;
|
1791 |
|
|
const char *sect_name = bfd_get_section_name (abfd, asec);
|
1792 |
|
|
|
1793 |
|
|
if ((bfd_get_section_flags (abfd, asec) & SEC_LOAD) == 0)
|
1794 |
|
|
return;
|
1795 |
|
|
|
1796 |
|
|
if (size == 0)
|
1797 |
|
|
return;
|
1798 |
|
|
|
1799 |
|
|
new_request = VEC_safe_push (memory_write_request_s,
|
1800 |
|
|
args->requests, NULL);
|
1801 |
|
|
memset (new_request, 0, sizeof (struct memory_write_request));
|
1802 |
|
|
section_data = xcalloc (1, sizeof (struct load_progress_section_data));
|
1803 |
|
|
new_request->begin = bfd_section_lma (abfd, asec) + args->load_offset;
|
1804 |
|
|
new_request->end = new_request->begin + size; /* FIXME Should size be in instead? */
|
1805 |
|
|
new_request->data = xmalloc (size);
|
1806 |
|
|
new_request->baton = section_data;
|
1807 |
|
|
|
1808 |
|
|
buffer = new_request->data;
|
1809 |
|
|
|
1810 |
|
|
section_data->cumulative = args->progress_data;
|
1811 |
|
|
section_data->section_name = sect_name;
|
1812 |
|
|
section_data->section_size = size;
|
1813 |
|
|
section_data->lma = new_request->begin;
|
1814 |
|
|
section_data->buffer = buffer;
|
1815 |
|
|
|
1816 |
|
|
bfd_get_section_contents (abfd, asec, buffer, 0, size);
|
1817 |
|
|
}
|
1818 |
|
|
|
1819 |
|
|
/* Clean up an entire memory request vector, including load
|
1820 |
|
|
data and progress records. */
|
1821 |
|
|
|
1822 |
|
|
static void
|
1823 |
|
|
clear_memory_write_data (void *arg)
|
1824 |
|
|
{
|
1825 |
|
|
VEC(memory_write_request_s) **vec_p = arg;
|
1826 |
|
|
VEC(memory_write_request_s) *vec = *vec_p;
|
1827 |
|
|
int i;
|
1828 |
|
|
struct memory_write_request *mr;
|
1829 |
|
|
|
1830 |
|
|
for (i = 0; VEC_iterate (memory_write_request_s, vec, i, mr); ++i)
|
1831 |
|
|
{
|
1832 |
|
|
xfree (mr->data);
|
1833 |
|
|
xfree (mr->baton);
|
1834 |
|
|
}
|
1835 |
|
|
VEC_free (memory_write_request_s, vec);
|
1836 |
|
|
}
|
1837 |
|
|
|
1838 |
|
|
void
|
1839 |
|
|
generic_load (char *args, int from_tty)
|
1840 |
|
|
{
|
1841 |
|
|
bfd *loadfile_bfd;
|
1842 |
|
|
struct timeval start_time, end_time;
|
1843 |
|
|
char *filename;
|
1844 |
|
|
struct cleanup *old_cleanups = make_cleanup (null_cleanup, 0);
|
1845 |
|
|
struct load_section_data cbdata;
|
1846 |
|
|
struct load_progress_data total_progress;
|
1847 |
|
|
|
1848 |
|
|
CORE_ADDR entry;
|
1849 |
|
|
char **argv;
|
1850 |
|
|
|
1851 |
|
|
memset (&cbdata, 0, sizeof (cbdata));
|
1852 |
|
|
memset (&total_progress, 0, sizeof (total_progress));
|
1853 |
|
|
cbdata.progress_data = &total_progress;
|
1854 |
|
|
|
1855 |
|
|
make_cleanup (clear_memory_write_data, &cbdata.requests);
|
1856 |
|
|
|
1857 |
|
|
if (args == NULL)
|
1858 |
|
|
error_no_arg (_("file to load"));
|
1859 |
|
|
|
1860 |
|
|
argv = gdb_buildargv (args);
|
1861 |
|
|
make_cleanup_freeargv (argv);
|
1862 |
|
|
|
1863 |
|
|
filename = tilde_expand (argv[0]);
|
1864 |
|
|
make_cleanup (xfree, filename);
|
1865 |
|
|
|
1866 |
|
|
if (argv[1] != NULL)
|
1867 |
|
|
{
|
1868 |
|
|
char *endptr;
|
1869 |
|
|
|
1870 |
|
|
cbdata.load_offset = strtoul (argv[1], &endptr, 0);
|
1871 |
|
|
|
1872 |
|
|
/* If the last word was not a valid number then
|
1873 |
|
|
treat it as a file name with spaces in. */
|
1874 |
|
|
if (argv[1] == endptr)
|
1875 |
|
|
error (_("Invalid download offset:%s."), argv[1]);
|
1876 |
|
|
|
1877 |
|
|
if (argv[2] != NULL)
|
1878 |
|
|
error (_("Too many parameters."));
|
1879 |
|
|
}
|
1880 |
|
|
|
1881 |
|
|
/* Open the file for loading. */
|
1882 |
|
|
loadfile_bfd = bfd_openr (filename, gnutarget);
|
1883 |
|
|
if (loadfile_bfd == NULL)
|
1884 |
|
|
{
|
1885 |
|
|
perror_with_name (filename);
|
1886 |
|
|
return;
|
1887 |
|
|
}
|
1888 |
|
|
|
1889 |
|
|
/* FIXME: should be checking for errors from bfd_close (for one thing,
|
1890 |
|
|
on error it does not free all the storage associated with the
|
1891 |
|
|
bfd). */
|
1892 |
|
|
make_cleanup_bfd_close (loadfile_bfd);
|
1893 |
|
|
|
1894 |
|
|
if (!bfd_check_format (loadfile_bfd, bfd_object))
|
1895 |
|
|
{
|
1896 |
|
|
error (_("\"%s\" is not an object file: %s"), filename,
|
1897 |
|
|
bfd_errmsg (bfd_get_error ()));
|
1898 |
|
|
}
|
1899 |
|
|
|
1900 |
|
|
bfd_map_over_sections (loadfile_bfd, add_section_size_callback,
|
1901 |
|
|
(void *) &total_progress.total_size);
|
1902 |
|
|
|
1903 |
|
|
bfd_map_over_sections (loadfile_bfd, load_section_callback, &cbdata);
|
1904 |
|
|
|
1905 |
|
|
gettimeofday (&start_time, NULL);
|
1906 |
|
|
|
1907 |
|
|
if (target_write_memory_blocks (cbdata.requests, flash_discard,
|
1908 |
|
|
load_progress) != 0)
|
1909 |
|
|
error (_("Load failed"));
|
1910 |
|
|
|
1911 |
|
|
gettimeofday (&end_time, NULL);
|
1912 |
|
|
|
1913 |
|
|
entry = bfd_get_start_address (loadfile_bfd);
|
1914 |
|
|
ui_out_text (uiout, "Start address ");
|
1915 |
|
|
ui_out_field_fmt (uiout, "address", "%s", paddress (target_gdbarch, entry));
|
1916 |
|
|
ui_out_text (uiout, ", load size ");
|
1917 |
|
|
ui_out_field_fmt (uiout, "load-size", "%lu", total_progress.data_count);
|
1918 |
|
|
ui_out_text (uiout, "\n");
|
1919 |
|
|
/* We were doing this in remote-mips.c, I suspect it is right
|
1920 |
|
|
for other targets too. */
|
1921 |
|
|
regcache_write_pc (get_current_regcache (), entry);
|
1922 |
|
|
|
1923 |
|
|
/* Reset breakpoints, now that we have changed the load image. For
|
1924 |
|
|
instance, breakpoints may have been set (or reset, by
|
1925 |
|
|
post_create_inferior) while connected to the target but before we
|
1926 |
|
|
loaded the program. In that case, the prologue analyzer could
|
1927 |
|
|
have read instructions from the target to find the right
|
1928 |
|
|
breakpoint locations. Loading has changed the contents of that
|
1929 |
|
|
memory. */
|
1930 |
|
|
|
1931 |
|
|
breakpoint_re_set ();
|
1932 |
|
|
|
1933 |
|
|
/* FIXME: are we supposed to call symbol_file_add or not? According
|
1934 |
|
|
to a comment from remote-mips.c (where a call to symbol_file_add
|
1935 |
|
|
was commented out), making the call confuses GDB if more than one
|
1936 |
|
|
file is loaded in. Some targets do (e.g., remote-vx.c) but
|
1937 |
|
|
others don't (or didn't - perhaps they have all been deleted). */
|
1938 |
|
|
|
1939 |
|
|
print_transfer_performance (gdb_stdout, total_progress.data_count,
|
1940 |
|
|
total_progress.write_count,
|
1941 |
|
|
&start_time, &end_time);
|
1942 |
|
|
|
1943 |
|
|
do_cleanups (old_cleanups);
|
1944 |
|
|
}
|
1945 |
|
|
|
1946 |
|
|
/* Report how fast the transfer went. */
|
1947 |
|
|
|
1948 |
|
|
/* DEPRECATED: cagney/1999-10-18: report_transfer_performance is being
|
1949 |
|
|
replaced by print_transfer_performance (with a very different
|
1950 |
|
|
function signature). */
|
1951 |
|
|
|
1952 |
|
|
void
|
1953 |
|
|
report_transfer_performance (unsigned long data_count, time_t start_time,
|
1954 |
|
|
time_t end_time)
|
1955 |
|
|
{
|
1956 |
|
|
struct timeval start, end;
|
1957 |
|
|
|
1958 |
|
|
start.tv_sec = start_time;
|
1959 |
|
|
start.tv_usec = 0;
|
1960 |
|
|
end.tv_sec = end_time;
|
1961 |
|
|
end.tv_usec = 0;
|
1962 |
|
|
|
1963 |
|
|
print_transfer_performance (gdb_stdout, data_count, 0, &start, &end);
|
1964 |
|
|
}
|
1965 |
|
|
|
1966 |
|
|
void
|
1967 |
|
|
print_transfer_performance (struct ui_file *stream,
|
1968 |
|
|
unsigned long data_count,
|
1969 |
|
|
unsigned long write_count,
|
1970 |
|
|
const struct timeval *start_time,
|
1971 |
|
|
const struct timeval *end_time)
|
1972 |
|
|
{
|
1973 |
|
|
ULONGEST time_count;
|
1974 |
|
|
|
1975 |
|
|
/* Compute the elapsed time in milliseconds, as a tradeoff between
|
1976 |
|
|
accuracy and overflow. */
|
1977 |
|
|
time_count = (end_time->tv_sec - start_time->tv_sec) * 1000;
|
1978 |
|
|
time_count += (end_time->tv_usec - start_time->tv_usec) / 1000;
|
1979 |
|
|
|
1980 |
|
|
ui_out_text (uiout, "Transfer rate: ");
|
1981 |
|
|
if (time_count > 0)
|
1982 |
|
|
{
|
1983 |
|
|
unsigned long rate = ((ULONGEST) data_count * 1000) / time_count;
|
1984 |
|
|
|
1985 |
|
|
if (ui_out_is_mi_like_p (uiout))
|
1986 |
|
|
{
|
1987 |
|
|
ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate * 8);
|
1988 |
|
|
ui_out_text (uiout, " bits/sec");
|
1989 |
|
|
}
|
1990 |
|
|
else if (rate < 1024)
|
1991 |
|
|
{
|
1992 |
|
|
ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate);
|
1993 |
|
|
ui_out_text (uiout, " bytes/sec");
|
1994 |
|
|
}
|
1995 |
|
|
else
|
1996 |
|
|
{
|
1997 |
|
|
ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate / 1024);
|
1998 |
|
|
ui_out_text (uiout, " KB/sec");
|
1999 |
|
|
}
|
2000 |
|
|
}
|
2001 |
|
|
else
|
2002 |
|
|
{
|
2003 |
|
|
ui_out_field_fmt (uiout, "transferred-bits", "%lu", (data_count * 8));
|
2004 |
|
|
ui_out_text (uiout, " bits in <1 sec");
|
2005 |
|
|
}
|
2006 |
|
|
if (write_count > 0)
|
2007 |
|
|
{
|
2008 |
|
|
ui_out_text (uiout, ", ");
|
2009 |
|
|
ui_out_field_fmt (uiout, "write-rate", "%lu", data_count / write_count);
|
2010 |
|
|
ui_out_text (uiout, " bytes/write");
|
2011 |
|
|
}
|
2012 |
|
|
ui_out_text (uiout, ".\n");
|
2013 |
|
|
}
|
2014 |
|
|
|
2015 |
|
|
/* This function allows the addition of incrementally linked object files.
|
2016 |
|
|
It does not modify any state in the target, only in the debugger. */
|
2017 |
|
|
/* Note: ezannoni 2000-04-13 This function/command used to have a
|
2018 |
|
|
special case syntax for the rombug target (Rombug is the boot
|
2019 |
|
|
monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
|
2020 |
|
|
rombug case, the user doesn't need to supply a text address,
|
2021 |
|
|
instead a call to target_link() (in target.c) would supply the
|
2022 |
|
|
value to use. We are now discontinuing this type of ad hoc syntax. */
|
2023 |
|
|
|
2024 |
|
|
static void
|
2025 |
|
|
add_symbol_file_command (char *args, int from_tty)
|
2026 |
|
|
{
|
2027 |
|
|
struct gdbarch *gdbarch = get_current_arch ();
|
2028 |
|
|
char *filename = NULL;
|
2029 |
|
|
int flags = OBJF_USERLOADED;
|
2030 |
|
|
char *arg;
|
2031 |
|
|
int expecting_option = 0;
|
2032 |
|
|
int section_index = 0;
|
2033 |
|
|
int argcnt = 0;
|
2034 |
|
|
int sec_num = 0;
|
2035 |
|
|
int i;
|
2036 |
|
|
int expecting_sec_name = 0;
|
2037 |
|
|
int expecting_sec_addr = 0;
|
2038 |
|
|
char **argv;
|
2039 |
|
|
|
2040 |
|
|
struct sect_opt
|
2041 |
|
|
{
|
2042 |
|
|
char *name;
|
2043 |
|
|
char *value;
|
2044 |
|
|
};
|
2045 |
|
|
|
2046 |
|
|
struct section_addr_info *section_addrs;
|
2047 |
|
|
struct sect_opt *sect_opts = NULL;
|
2048 |
|
|
size_t num_sect_opts = 0;
|
2049 |
|
|
struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
|
2050 |
|
|
|
2051 |
|
|
num_sect_opts = 16;
|
2052 |
|
|
sect_opts = (struct sect_opt *) xmalloc (num_sect_opts
|
2053 |
|
|
* sizeof (struct sect_opt));
|
2054 |
|
|
|
2055 |
|
|
dont_repeat ();
|
2056 |
|
|
|
2057 |
|
|
if (args == NULL)
|
2058 |
|
|
error (_("add-symbol-file takes a file name and an address"));
|
2059 |
|
|
|
2060 |
|
|
argv = gdb_buildargv (args);
|
2061 |
|
|
make_cleanup_freeargv (argv);
|
2062 |
|
|
|
2063 |
|
|
for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
|
2064 |
|
|
{
|
2065 |
|
|
/* Process the argument. */
|
2066 |
|
|
if (argcnt == 0)
|
2067 |
|
|
{
|
2068 |
|
|
/* The first argument is the file name. */
|
2069 |
|
|
filename = tilde_expand (arg);
|
2070 |
|
|
make_cleanup (xfree, filename);
|
2071 |
|
|
}
|
2072 |
|
|
else
|
2073 |
|
|
if (argcnt == 1)
|
2074 |
|
|
{
|
2075 |
|
|
/* The second argument is always the text address at which
|
2076 |
|
|
to load the program. */
|
2077 |
|
|
sect_opts[section_index].name = ".text";
|
2078 |
|
|
sect_opts[section_index].value = arg;
|
2079 |
|
|
if (++section_index >= num_sect_opts)
|
2080 |
|
|
{
|
2081 |
|
|
num_sect_opts *= 2;
|
2082 |
|
|
sect_opts = ((struct sect_opt *)
|
2083 |
|
|
xrealloc (sect_opts,
|
2084 |
|
|
num_sect_opts
|
2085 |
|
|
* sizeof (struct sect_opt)));
|
2086 |
|
|
}
|
2087 |
|
|
}
|
2088 |
|
|
else
|
2089 |
|
|
{
|
2090 |
|
|
/* It's an option (starting with '-') or it's an argument
|
2091 |
|
|
to an option */
|
2092 |
|
|
|
2093 |
|
|
if (*arg == '-')
|
2094 |
|
|
{
|
2095 |
|
|
if (strcmp (arg, "-readnow") == 0)
|
2096 |
|
|
flags |= OBJF_READNOW;
|
2097 |
|
|
else if (strcmp (arg, "-s") == 0)
|
2098 |
|
|
{
|
2099 |
|
|
expecting_sec_name = 1;
|
2100 |
|
|
expecting_sec_addr = 1;
|
2101 |
|
|
}
|
2102 |
|
|
}
|
2103 |
|
|
else
|
2104 |
|
|
{
|
2105 |
|
|
if (expecting_sec_name)
|
2106 |
|
|
{
|
2107 |
|
|
sect_opts[section_index].name = arg;
|
2108 |
|
|
expecting_sec_name = 0;
|
2109 |
|
|
}
|
2110 |
|
|
else
|
2111 |
|
|
if (expecting_sec_addr)
|
2112 |
|
|
{
|
2113 |
|
|
sect_opts[section_index].value = arg;
|
2114 |
|
|
expecting_sec_addr = 0;
|
2115 |
|
|
if (++section_index >= num_sect_opts)
|
2116 |
|
|
{
|
2117 |
|
|
num_sect_opts *= 2;
|
2118 |
|
|
sect_opts = ((struct sect_opt *)
|
2119 |
|
|
xrealloc (sect_opts,
|
2120 |
|
|
num_sect_opts
|
2121 |
|
|
* sizeof (struct sect_opt)));
|
2122 |
|
|
}
|
2123 |
|
|
}
|
2124 |
|
|
else
|
2125 |
|
|
error (_("USAGE: add-symbol-file <filename> <textaddress> [-mapped] [-readnow] [-s <secname> <addr>]*"));
|
2126 |
|
|
}
|
2127 |
|
|
}
|
2128 |
|
|
}
|
2129 |
|
|
|
2130 |
|
|
/* This command takes at least two arguments. The first one is a
|
2131 |
|
|
filename, and the second is the address where this file has been
|
2132 |
|
|
loaded. Abort now if this address hasn't been provided by the
|
2133 |
|
|
user. */
|
2134 |
|
|
if (section_index < 1)
|
2135 |
|
|
error (_("The address where %s has been loaded is missing"), filename);
|
2136 |
|
|
|
2137 |
|
|
/* Print the prompt for the query below. And save the arguments into
|
2138 |
|
|
a sect_addr_info structure to be passed around to other
|
2139 |
|
|
functions. We have to split this up into separate print
|
2140 |
|
|
statements because hex_string returns a local static
|
2141 |
|
|
string. */
|
2142 |
|
|
|
2143 |
|
|
printf_unfiltered (_("add symbol table from file \"%s\" at\n"), filename);
|
2144 |
|
|
section_addrs = alloc_section_addr_info (section_index);
|
2145 |
|
|
make_cleanup (xfree, section_addrs);
|
2146 |
|
|
for (i = 0; i < section_index; i++)
|
2147 |
|
|
{
|
2148 |
|
|
CORE_ADDR addr;
|
2149 |
|
|
char *val = sect_opts[i].value;
|
2150 |
|
|
char *sec = sect_opts[i].name;
|
2151 |
|
|
|
2152 |
|
|
addr = parse_and_eval_address (val);
|
2153 |
|
|
|
2154 |
|
|
/* Here we store the section offsets in the order they were
|
2155 |
|
|
entered on the command line. */
|
2156 |
|
|
section_addrs->other[sec_num].name = sec;
|
2157 |
|
|
section_addrs->other[sec_num].addr = addr;
|
2158 |
|
|
printf_unfiltered ("\t%s_addr = %s\n", sec,
|
2159 |
|
|
paddress (gdbarch, addr));
|
2160 |
|
|
sec_num++;
|
2161 |
|
|
|
2162 |
|
|
/* The object's sections are initialized when a
|
2163 |
|
|
call is made to build_objfile_section_table (objfile).
|
2164 |
|
|
This happens in reread_symbols.
|
2165 |
|
|
At this point, we don't know what file type this is,
|
2166 |
|
|
so we can't determine what section names are valid. */
|
2167 |
|
|
}
|
2168 |
|
|
|
2169 |
|
|
if (from_tty && (!query ("%s", "")))
|
2170 |
|
|
error (_("Not confirmed."));
|
2171 |
|
|
|
2172 |
|
|
symbol_file_add (filename, from_tty ? SYMFILE_VERBOSE : 0,
|
2173 |
|
|
section_addrs, flags);
|
2174 |
|
|
|
2175 |
|
|
/* Getting new symbols may change our opinion about what is
|
2176 |
|
|
frameless. */
|
2177 |
|
|
reinit_frame_cache ();
|
2178 |
|
|
do_cleanups (my_cleanups);
|
2179 |
|
|
}
|
2180 |
|
|
|
2181 |
|
|
|
2182 |
|
|
/* Re-read symbols if a symbol-file has changed. */
|
2183 |
|
|
void
|
2184 |
|
|
reread_symbols (void)
|
2185 |
|
|
{
|
2186 |
|
|
struct objfile *objfile;
|
2187 |
|
|
long new_modtime;
|
2188 |
|
|
int reread_one = 0;
|
2189 |
|
|
struct stat new_statbuf;
|
2190 |
|
|
int res;
|
2191 |
|
|
|
2192 |
|
|
/* With the addition of shared libraries, this should be modified,
|
2193 |
|
|
the load time should be saved in the partial symbol tables, since
|
2194 |
|
|
different tables may come from different source files. FIXME.
|
2195 |
|
|
This routine should then walk down each partial symbol table
|
2196 |
|
|
and see if the symbol table that it originates from has been changed */
|
2197 |
|
|
|
2198 |
|
|
for (objfile = object_files; objfile; objfile = objfile->next)
|
2199 |
|
|
{
|
2200 |
|
|
/* solib-sunos.c creates one objfile with obfd. */
|
2201 |
|
|
if (objfile->obfd == NULL)
|
2202 |
|
|
continue;
|
2203 |
|
|
|
2204 |
|
|
/* Separate debug objfiles are handled in the main objfile. */
|
2205 |
|
|
if (objfile->separate_debug_objfile_backlink)
|
2206 |
|
|
continue;
|
2207 |
|
|
|
2208 |
|
|
#ifdef DEPRECATED_IBM6000_TARGET
|
2209 |
|
|
/* If this object is from a shared library, then you should
|
2210 |
|
|
stat on the library name, not member name. */
|
2211 |
|
|
|
2212 |
|
|
if (objfile->obfd->my_archive)
|
2213 |
|
|
res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
|
2214 |
|
|
else
|
2215 |
|
|
#endif
|
2216 |
|
|
res = stat (objfile->name, &new_statbuf);
|
2217 |
|
|
if (res != 0)
|
2218 |
|
|
{
|
2219 |
|
|
/* FIXME, should use print_sys_errmsg but it's not filtered. */
|
2220 |
|
|
printf_unfiltered (_("`%s' has disappeared; keeping its symbols.\n"),
|
2221 |
|
|
objfile->name);
|
2222 |
|
|
continue;
|
2223 |
|
|
}
|
2224 |
|
|
new_modtime = new_statbuf.st_mtime;
|
2225 |
|
|
if (new_modtime != objfile->mtime)
|
2226 |
|
|
{
|
2227 |
|
|
struct cleanup *old_cleanups;
|
2228 |
|
|
struct section_offsets *offsets;
|
2229 |
|
|
int num_offsets;
|
2230 |
|
|
char *obfd_filename;
|
2231 |
|
|
|
2232 |
|
|
printf_unfiltered (_("`%s' has changed; re-reading symbols.\n"),
|
2233 |
|
|
objfile->name);
|
2234 |
|
|
|
2235 |
|
|
/* There are various functions like symbol_file_add,
|
2236 |
|
|
symfile_bfd_open, syms_from_objfile, etc., which might
|
2237 |
|
|
appear to do what we want. But they have various other
|
2238 |
|
|
effects which we *don't* want. So we just do stuff
|
2239 |
|
|
ourselves. We don't worry about mapped files (for one thing,
|
2240 |
|
|
any mapped file will be out of date). */
|
2241 |
|
|
|
2242 |
|
|
/* If we get an error, blow away this objfile (not sure if
|
2243 |
|
|
that is the correct response for things like shared
|
2244 |
|
|
libraries). */
|
2245 |
|
|
old_cleanups = make_cleanup_free_objfile (objfile);
|
2246 |
|
|
/* We need to do this whenever any symbols go away. */
|
2247 |
|
|
make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
|
2248 |
|
|
|
2249 |
|
|
if (exec_bfd != NULL && strcmp (bfd_get_filename (objfile->obfd),
|
2250 |
|
|
bfd_get_filename (exec_bfd)) == 0)
|
2251 |
|
|
{
|
2252 |
|
|
/* Reload EXEC_BFD without asking anything. */
|
2253 |
|
|
|
2254 |
|
|
exec_file_attach (bfd_get_filename (objfile->obfd), 0);
|
2255 |
|
|
}
|
2256 |
|
|
|
2257 |
|
|
/* Clean up any state BFD has sitting around. We don't need
|
2258 |
|
|
to close the descriptor but BFD lacks a way of closing the
|
2259 |
|
|
BFD without closing the descriptor. */
|
2260 |
|
|
obfd_filename = bfd_get_filename (objfile->obfd);
|
2261 |
|
|
if (!bfd_close (objfile->obfd))
|
2262 |
|
|
error (_("Can't close BFD for %s: %s"), objfile->name,
|
2263 |
|
|
bfd_errmsg (bfd_get_error ()));
|
2264 |
|
|
objfile->obfd = bfd_open_maybe_remote (obfd_filename);
|
2265 |
|
|
if (objfile->obfd == NULL)
|
2266 |
|
|
error (_("Can't open %s to read symbols."), objfile->name);
|
2267 |
|
|
else
|
2268 |
|
|
objfile->obfd = gdb_bfd_ref (objfile->obfd);
|
2269 |
|
|
/* bfd_openr sets cacheable to true, which is what we want. */
|
2270 |
|
|
if (!bfd_check_format (objfile->obfd, bfd_object))
|
2271 |
|
|
error (_("Can't read symbols from %s: %s."), objfile->name,
|
2272 |
|
|
bfd_errmsg (bfd_get_error ()));
|
2273 |
|
|
|
2274 |
|
|
/* Save the offsets, we will nuke them with the rest of the
|
2275 |
|
|
objfile_obstack. */
|
2276 |
|
|
num_offsets = objfile->num_sections;
|
2277 |
|
|
offsets = ((struct section_offsets *)
|
2278 |
|
|
alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
|
2279 |
|
|
memcpy (offsets, objfile->section_offsets,
|
2280 |
|
|
SIZEOF_N_SECTION_OFFSETS (num_offsets));
|
2281 |
|
|
|
2282 |
|
|
/* Remove any references to this objfile in the global
|
2283 |
|
|
value lists. */
|
2284 |
|
|
preserve_values (objfile);
|
2285 |
|
|
|
2286 |
|
|
/* Nuke all the state that we will re-read. Much of the following
|
2287 |
|
|
code which sets things to NULL really is necessary to tell
|
2288 |
|
|
other parts of GDB that there is nothing currently there.
|
2289 |
|
|
|
2290 |
|
|
Try to keep the freeing order compatible with free_objfile. */
|
2291 |
|
|
|
2292 |
|
|
if (objfile->sf != NULL)
|
2293 |
|
|
{
|
2294 |
|
|
(*objfile->sf->sym_finish) (objfile);
|
2295 |
|
|
}
|
2296 |
|
|
|
2297 |
|
|
clear_objfile_data (objfile);
|
2298 |
|
|
|
2299 |
|
|
/* Free the separate debug objfiles. It will be
|
2300 |
|
|
automatically recreated by sym_read. */
|
2301 |
|
|
free_objfile_separate_debug (objfile);
|
2302 |
|
|
|
2303 |
|
|
/* FIXME: Do we have to free a whole linked list, or is this
|
2304 |
|
|
enough? */
|
2305 |
|
|
if (objfile->global_psymbols.list)
|
2306 |
|
|
xfree (objfile->global_psymbols.list);
|
2307 |
|
|
memset (&objfile->global_psymbols, 0,
|
2308 |
|
|
sizeof (objfile->global_psymbols));
|
2309 |
|
|
if (objfile->static_psymbols.list)
|
2310 |
|
|
xfree (objfile->static_psymbols.list);
|
2311 |
|
|
memset (&objfile->static_psymbols, 0,
|
2312 |
|
|
sizeof (objfile->static_psymbols));
|
2313 |
|
|
|
2314 |
|
|
/* Free the obstacks for non-reusable objfiles */
|
2315 |
|
|
bcache_xfree (objfile->psymbol_cache);
|
2316 |
|
|
objfile->psymbol_cache = bcache_xmalloc ();
|
2317 |
|
|
bcache_xfree (objfile->macro_cache);
|
2318 |
|
|
objfile->macro_cache = bcache_xmalloc ();
|
2319 |
|
|
bcache_xfree (objfile->filename_cache);
|
2320 |
|
|
objfile->filename_cache = bcache_xmalloc ();
|
2321 |
|
|
if (objfile->demangled_names_hash != NULL)
|
2322 |
|
|
{
|
2323 |
|
|
htab_delete (objfile->demangled_names_hash);
|
2324 |
|
|
objfile->demangled_names_hash = NULL;
|
2325 |
|
|
}
|
2326 |
|
|
obstack_free (&objfile->objfile_obstack, 0);
|
2327 |
|
|
objfile->sections = NULL;
|
2328 |
|
|
objfile->symtabs = NULL;
|
2329 |
|
|
objfile->psymtabs = NULL;
|
2330 |
|
|
objfile->psymtabs_addrmap = NULL;
|
2331 |
|
|
objfile->free_psymtabs = NULL;
|
2332 |
|
|
objfile->cp_namespace_symtab = NULL;
|
2333 |
|
|
objfile->msymbols = NULL;
|
2334 |
|
|
objfile->deprecated_sym_private = NULL;
|
2335 |
|
|
objfile->minimal_symbol_count = 0;
|
2336 |
|
|
memset (&objfile->msymbol_hash, 0,
|
2337 |
|
|
sizeof (objfile->msymbol_hash));
|
2338 |
|
|
memset (&objfile->msymbol_demangled_hash, 0,
|
2339 |
|
|
sizeof (objfile->msymbol_demangled_hash));
|
2340 |
|
|
|
2341 |
|
|
objfile->psymbol_cache = bcache_xmalloc ();
|
2342 |
|
|
objfile->macro_cache = bcache_xmalloc ();
|
2343 |
|
|
objfile->filename_cache = bcache_xmalloc ();
|
2344 |
|
|
/* obstack_init also initializes the obstack so it is
|
2345 |
|
|
empty. We could use obstack_specify_allocation but
|
2346 |
|
|
gdb_obstack.h specifies the alloc/dealloc
|
2347 |
|
|
functions. */
|
2348 |
|
|
obstack_init (&objfile->objfile_obstack);
|
2349 |
|
|
if (build_objfile_section_table (objfile))
|
2350 |
|
|
{
|
2351 |
|
|
error (_("Can't find the file sections in `%s': %s"),
|
2352 |
|
|
objfile->name, bfd_errmsg (bfd_get_error ()));
|
2353 |
|
|
}
|
2354 |
|
|
terminate_minimal_symbol_table (objfile);
|
2355 |
|
|
|
2356 |
|
|
/* We use the same section offsets as from last time. I'm not
|
2357 |
|
|
sure whether that is always correct for shared libraries. */
|
2358 |
|
|
objfile->section_offsets = (struct section_offsets *)
|
2359 |
|
|
obstack_alloc (&objfile->objfile_obstack,
|
2360 |
|
|
SIZEOF_N_SECTION_OFFSETS (num_offsets));
|
2361 |
|
|
memcpy (objfile->section_offsets, offsets,
|
2362 |
|
|
SIZEOF_N_SECTION_OFFSETS (num_offsets));
|
2363 |
|
|
objfile->num_sections = num_offsets;
|
2364 |
|
|
|
2365 |
|
|
/* What the hell is sym_new_init for, anyway? The concept of
|
2366 |
|
|
distinguishing between the main file and additional files
|
2367 |
|
|
in this way seems rather dubious. */
|
2368 |
|
|
if (objfile == symfile_objfile)
|
2369 |
|
|
{
|
2370 |
|
|
(*objfile->sf->sym_new_init) (objfile);
|
2371 |
|
|
}
|
2372 |
|
|
|
2373 |
|
|
(*objfile->sf->sym_init) (objfile);
|
2374 |
|
|
clear_complaints (&symfile_complaints, 1, 1);
|
2375 |
|
|
/* Do not set flags as this is safe and we don't want to be
|
2376 |
|
|
verbose. */
|
2377 |
|
|
(*objfile->sf->sym_read) (objfile, 0);
|
2378 |
|
|
if (!objfile_has_symbols (objfile))
|
2379 |
|
|
{
|
2380 |
|
|
wrap_here ("");
|
2381 |
|
|
printf_unfiltered (_("(no debugging symbols found)\n"));
|
2382 |
|
|
wrap_here ("");
|
2383 |
|
|
}
|
2384 |
|
|
|
2385 |
|
|
/* We're done reading the symbol file; finish off complaints. */
|
2386 |
|
|
clear_complaints (&symfile_complaints, 0, 1);
|
2387 |
|
|
|
2388 |
|
|
/* Getting new symbols may change our opinion about what is
|
2389 |
|
|
frameless. */
|
2390 |
|
|
|
2391 |
|
|
reinit_frame_cache ();
|
2392 |
|
|
|
2393 |
|
|
/* Discard cleanups as symbol reading was successful. */
|
2394 |
|
|
discard_cleanups (old_cleanups);
|
2395 |
|
|
|
2396 |
|
|
/* If the mtime has changed between the time we set new_modtime
|
2397 |
|
|
and now, we *want* this to be out of date, so don't call stat
|
2398 |
|
|
again now. */
|
2399 |
|
|
objfile->mtime = new_modtime;
|
2400 |
|
|
reread_one = 1;
|
2401 |
|
|
init_entry_point_info (objfile);
|
2402 |
|
|
}
|
2403 |
|
|
}
|
2404 |
|
|
|
2405 |
|
|
if (reread_one)
|
2406 |
|
|
{
|
2407 |
|
|
/* Notify objfiles that we've modified objfile sections. */
|
2408 |
|
|
objfiles_changed ();
|
2409 |
|
|
|
2410 |
|
|
clear_symtab_users ();
|
2411 |
|
|
/* At least one objfile has changed, so we can consider that
|
2412 |
|
|
the executable we're debugging has changed too. */
|
2413 |
|
|
observer_notify_executable_changed ();
|
2414 |
|
|
}
|
2415 |
|
|
}
|
2416 |
|
|
|
2417 |
|
|
|
2418 |
|
|
|
2419 |
|
|
typedef struct
|
2420 |
|
|
{
|
2421 |
|
|
char *ext;
|
2422 |
|
|
enum language lang;
|
2423 |
|
|
}
|
2424 |
|
|
filename_language;
|
2425 |
|
|
|
2426 |
|
|
static filename_language *filename_language_table;
|
2427 |
|
|
static int fl_table_size, fl_table_next;
|
2428 |
|
|
|
2429 |
|
|
static void
|
2430 |
|
|
add_filename_language (char *ext, enum language lang)
|
2431 |
|
|
{
|
2432 |
|
|
if (fl_table_next >= fl_table_size)
|
2433 |
|
|
{
|
2434 |
|
|
fl_table_size += 10;
|
2435 |
|
|
filename_language_table =
|
2436 |
|
|
xrealloc (filename_language_table,
|
2437 |
|
|
fl_table_size * sizeof (*filename_language_table));
|
2438 |
|
|
}
|
2439 |
|
|
|
2440 |
|
|
filename_language_table[fl_table_next].ext = xstrdup (ext);
|
2441 |
|
|
filename_language_table[fl_table_next].lang = lang;
|
2442 |
|
|
fl_table_next++;
|
2443 |
|
|
}
|
2444 |
|
|
|
2445 |
|
|
static char *ext_args;
|
2446 |
|
|
static void
|
2447 |
|
|
show_ext_args (struct ui_file *file, int from_tty,
|
2448 |
|
|
struct cmd_list_element *c, const char *value)
|
2449 |
|
|
{
|
2450 |
|
|
fprintf_filtered (file, _("\
|
2451 |
|
|
Mapping between filename extension and source language is \"%s\".\n"),
|
2452 |
|
|
value);
|
2453 |
|
|
}
|
2454 |
|
|
|
2455 |
|
|
static void
|
2456 |
|
|
set_ext_lang_command (char *args, int from_tty, struct cmd_list_element *e)
|
2457 |
|
|
{
|
2458 |
|
|
int i;
|
2459 |
|
|
char *cp = ext_args;
|
2460 |
|
|
enum language lang;
|
2461 |
|
|
|
2462 |
|
|
/* First arg is filename extension, starting with '.' */
|
2463 |
|
|
if (*cp != '.')
|
2464 |
|
|
error (_("'%s': Filename extension must begin with '.'"), ext_args);
|
2465 |
|
|
|
2466 |
|
|
/* Find end of first arg. */
|
2467 |
|
|
while (*cp && !isspace (*cp))
|
2468 |
|
|
cp++;
|
2469 |
|
|
|
2470 |
|
|
if (*cp == '\0')
|
2471 |
|
|
error (_("'%s': two arguments required -- filename extension and language"),
|
2472 |
|
|
ext_args);
|
2473 |
|
|
|
2474 |
|
|
/* Null-terminate first arg */
|
2475 |
|
|
*cp++ = '\0';
|
2476 |
|
|
|
2477 |
|
|
/* Find beginning of second arg, which should be a source language. */
|
2478 |
|
|
while (*cp && isspace (*cp))
|
2479 |
|
|
cp++;
|
2480 |
|
|
|
2481 |
|
|
if (*cp == '\0')
|
2482 |
|
|
error (_("'%s': two arguments required -- filename extension and language"),
|
2483 |
|
|
ext_args);
|
2484 |
|
|
|
2485 |
|
|
/* Lookup the language from among those we know. */
|
2486 |
|
|
lang = language_enum (cp);
|
2487 |
|
|
|
2488 |
|
|
/* Now lookup the filename extension: do we already know it? */
|
2489 |
|
|
for (i = 0; i < fl_table_next; i++)
|
2490 |
|
|
if (0 == strcmp (ext_args, filename_language_table[i].ext))
|
2491 |
|
|
break;
|
2492 |
|
|
|
2493 |
|
|
if (i >= fl_table_next)
|
2494 |
|
|
{
|
2495 |
|
|
/* new file extension */
|
2496 |
|
|
add_filename_language (ext_args, lang);
|
2497 |
|
|
}
|
2498 |
|
|
else
|
2499 |
|
|
{
|
2500 |
|
|
/* redefining a previously known filename extension */
|
2501 |
|
|
|
2502 |
|
|
/* if (from_tty) */
|
2503 |
|
|
/* query ("Really make files of type %s '%s'?", */
|
2504 |
|
|
/* ext_args, language_str (lang)); */
|
2505 |
|
|
|
2506 |
|
|
xfree (filename_language_table[i].ext);
|
2507 |
|
|
filename_language_table[i].ext = xstrdup (ext_args);
|
2508 |
|
|
filename_language_table[i].lang = lang;
|
2509 |
|
|
}
|
2510 |
|
|
}
|
2511 |
|
|
|
2512 |
|
|
static void
|
2513 |
|
|
info_ext_lang_command (char *args, int from_tty)
|
2514 |
|
|
{
|
2515 |
|
|
int i;
|
2516 |
|
|
|
2517 |
|
|
printf_filtered (_("Filename extensions and the languages they represent:"));
|
2518 |
|
|
printf_filtered ("\n\n");
|
2519 |
|
|
for (i = 0; i < fl_table_next; i++)
|
2520 |
|
|
printf_filtered ("\t%s\t- %s\n",
|
2521 |
|
|
filename_language_table[i].ext,
|
2522 |
|
|
language_str (filename_language_table[i].lang));
|
2523 |
|
|
}
|
2524 |
|
|
|
2525 |
|
|
static void
|
2526 |
|
|
init_filename_language_table (void)
|
2527 |
|
|
{
|
2528 |
|
|
if (fl_table_size == 0) /* protect against repetition */
|
2529 |
|
|
{
|
2530 |
|
|
fl_table_size = 20;
|
2531 |
|
|
fl_table_next = 0;
|
2532 |
|
|
filename_language_table =
|
2533 |
|
|
xmalloc (fl_table_size * sizeof (*filename_language_table));
|
2534 |
|
|
add_filename_language (".c", language_c);
|
2535 |
|
|
add_filename_language (".C", language_cplus);
|
2536 |
|
|
add_filename_language (".cc", language_cplus);
|
2537 |
|
|
add_filename_language (".cp", language_cplus);
|
2538 |
|
|
add_filename_language (".cpp", language_cplus);
|
2539 |
|
|
add_filename_language (".cxx", language_cplus);
|
2540 |
|
|
add_filename_language (".c++", language_cplus);
|
2541 |
|
|
add_filename_language (".java", language_java);
|
2542 |
|
|
add_filename_language (".class", language_java);
|
2543 |
|
|
add_filename_language (".m", language_objc);
|
2544 |
|
|
add_filename_language (".f", language_fortran);
|
2545 |
|
|
add_filename_language (".F", language_fortran);
|
2546 |
|
|
add_filename_language (".s", language_asm);
|
2547 |
|
|
add_filename_language (".sx", language_asm);
|
2548 |
|
|
add_filename_language (".S", language_asm);
|
2549 |
|
|
add_filename_language (".pas", language_pascal);
|
2550 |
|
|
add_filename_language (".p", language_pascal);
|
2551 |
|
|
add_filename_language (".pp", language_pascal);
|
2552 |
|
|
add_filename_language (".adb", language_ada);
|
2553 |
|
|
add_filename_language (".ads", language_ada);
|
2554 |
|
|
add_filename_language (".a", language_ada);
|
2555 |
|
|
add_filename_language (".ada", language_ada);
|
2556 |
|
|
}
|
2557 |
|
|
}
|
2558 |
|
|
|
2559 |
|
|
enum language
|
2560 |
|
|
deduce_language_from_filename (char *filename)
|
2561 |
|
|
{
|
2562 |
|
|
int i;
|
2563 |
|
|
char *cp;
|
2564 |
|
|
|
2565 |
|
|
if (filename != NULL)
|
2566 |
|
|
if ((cp = strrchr (filename, '.')) != NULL)
|
2567 |
|
|
for (i = 0; i < fl_table_next; i++)
|
2568 |
|
|
if (strcmp (cp, filename_language_table[i].ext) == 0)
|
2569 |
|
|
return filename_language_table[i].lang;
|
2570 |
|
|
|
2571 |
|
|
return language_unknown;
|
2572 |
|
|
}
|
2573 |
|
|
|
2574 |
|
|
/* allocate_symtab:
|
2575 |
|
|
|
2576 |
|
|
Allocate and partly initialize a new symbol table. Return a pointer
|
2577 |
|
|
to it. error() if no space.
|
2578 |
|
|
|
2579 |
|
|
Caller must set these fields:
|
2580 |
|
|
LINETABLE(symtab)
|
2581 |
|
|
symtab->blockvector
|
2582 |
|
|
symtab->dirname
|
2583 |
|
|
symtab->free_code
|
2584 |
|
|
symtab->free_ptr
|
2585 |
|
|
*/
|
2586 |
|
|
|
2587 |
|
|
struct symtab *
|
2588 |
|
|
allocate_symtab (char *filename, struct objfile *objfile)
|
2589 |
|
|
{
|
2590 |
|
|
struct symtab *symtab;
|
2591 |
|
|
|
2592 |
|
|
symtab = (struct symtab *)
|
2593 |
|
|
obstack_alloc (&objfile->objfile_obstack, sizeof (struct symtab));
|
2594 |
|
|
memset (symtab, 0, sizeof (*symtab));
|
2595 |
|
|
symtab->filename = (char *) bcache (filename, strlen (filename) + 1,
|
2596 |
|
|
objfile->filename_cache);
|
2597 |
|
|
symtab->fullname = NULL;
|
2598 |
|
|
symtab->language = deduce_language_from_filename (filename);
|
2599 |
|
|
symtab->debugformat = "unknown";
|
2600 |
|
|
|
2601 |
|
|
/* Hook it to the objfile it comes from */
|
2602 |
|
|
|
2603 |
|
|
symtab->objfile = objfile;
|
2604 |
|
|
symtab->next = objfile->symtabs;
|
2605 |
|
|
objfile->symtabs = symtab;
|
2606 |
|
|
|
2607 |
|
|
return (symtab);
|
2608 |
|
|
}
|
2609 |
|
|
|
2610 |
|
|
struct partial_symtab *
|
2611 |
|
|
allocate_psymtab (const char *filename, struct objfile *objfile)
|
2612 |
|
|
{
|
2613 |
|
|
struct partial_symtab *psymtab;
|
2614 |
|
|
|
2615 |
|
|
if (objfile->free_psymtabs)
|
2616 |
|
|
{
|
2617 |
|
|
psymtab = objfile->free_psymtabs;
|
2618 |
|
|
objfile->free_psymtabs = psymtab->next;
|
2619 |
|
|
}
|
2620 |
|
|
else
|
2621 |
|
|
psymtab = (struct partial_symtab *)
|
2622 |
|
|
obstack_alloc (&objfile->objfile_obstack,
|
2623 |
|
|
sizeof (struct partial_symtab));
|
2624 |
|
|
|
2625 |
|
|
memset (psymtab, 0, sizeof (struct partial_symtab));
|
2626 |
|
|
psymtab->filename = (char *) bcache (filename, strlen (filename) + 1,
|
2627 |
|
|
objfile->filename_cache);
|
2628 |
|
|
psymtab->symtab = NULL;
|
2629 |
|
|
|
2630 |
|
|
/* Prepend it to the psymtab list for the objfile it belongs to.
|
2631 |
|
|
Psymtabs are searched in most recent inserted -> least recent
|
2632 |
|
|
inserted order. */
|
2633 |
|
|
|
2634 |
|
|
psymtab->objfile = objfile;
|
2635 |
|
|
psymtab->next = objfile->psymtabs;
|
2636 |
|
|
objfile->psymtabs = psymtab;
|
2637 |
|
|
#if 0
|
2638 |
|
|
{
|
2639 |
|
|
struct partial_symtab **prev_pst;
|
2640 |
|
|
psymtab->objfile = objfile;
|
2641 |
|
|
psymtab->next = NULL;
|
2642 |
|
|
prev_pst = &(objfile->psymtabs);
|
2643 |
|
|
while ((*prev_pst) != NULL)
|
2644 |
|
|
prev_pst = &((*prev_pst)->next);
|
2645 |
|
|
(*prev_pst) = psymtab;
|
2646 |
|
|
}
|
2647 |
|
|
#endif
|
2648 |
|
|
|
2649 |
|
|
return (psymtab);
|
2650 |
|
|
}
|
2651 |
|
|
|
2652 |
|
|
void
|
2653 |
|
|
discard_psymtab (struct partial_symtab *pst)
|
2654 |
|
|
{
|
2655 |
|
|
struct partial_symtab **prev_pst;
|
2656 |
|
|
|
2657 |
|
|
/* From dbxread.c:
|
2658 |
|
|
Empty psymtabs happen as a result of header files which don't
|
2659 |
|
|
have any symbols in them. There can be a lot of them. But this
|
2660 |
|
|
check is wrong, in that a psymtab with N_SLINE entries but
|
2661 |
|
|
nothing else is not empty, but we don't realize that. Fixing
|
2662 |
|
|
that without slowing things down might be tricky. */
|
2663 |
|
|
|
2664 |
|
|
/* First, snip it out of the psymtab chain */
|
2665 |
|
|
|
2666 |
|
|
prev_pst = &(pst->objfile->psymtabs);
|
2667 |
|
|
while ((*prev_pst) != pst)
|
2668 |
|
|
prev_pst = &((*prev_pst)->next);
|
2669 |
|
|
(*prev_pst) = pst->next;
|
2670 |
|
|
|
2671 |
|
|
/* Next, put it on a free list for recycling */
|
2672 |
|
|
|
2673 |
|
|
pst->next = pst->objfile->free_psymtabs;
|
2674 |
|
|
pst->objfile->free_psymtabs = pst;
|
2675 |
|
|
}
|
2676 |
|
|
|
2677 |
|
|
|
2678 |
|
|
/* Reset all data structures in gdb which may contain references to symbol
|
2679 |
|
|
table data. */
|
2680 |
|
|
|
2681 |
|
|
void
|
2682 |
|
|
clear_symtab_users (void)
|
2683 |
|
|
{
|
2684 |
|
|
/* Someday, we should do better than this, by only blowing away
|
2685 |
|
|
the things that really need to be blown. */
|
2686 |
|
|
|
2687 |
|
|
/* Clear the "current" symtab first, because it is no longer valid.
|
2688 |
|
|
breakpoint_re_set may try to access the current symtab. */
|
2689 |
|
|
clear_current_source_symtab_and_line ();
|
2690 |
|
|
|
2691 |
|
|
clear_displays ();
|
2692 |
|
|
breakpoint_re_set ();
|
2693 |
|
|
set_default_breakpoint (0, NULL, 0, 0, 0);
|
2694 |
|
|
clear_pc_function_cache ();
|
2695 |
|
|
observer_notify_new_objfile (NULL);
|
2696 |
|
|
|
2697 |
|
|
/* Clear globals which might have pointed into a removed objfile.
|
2698 |
|
|
FIXME: It's not clear which of these are supposed to persist
|
2699 |
|
|
between expressions and which ought to be reset each time. */
|
2700 |
|
|
expression_context_block = NULL;
|
2701 |
|
|
innermost_block = NULL;
|
2702 |
|
|
|
2703 |
|
|
/* Varobj may refer to old symbols, perform a cleanup. */
|
2704 |
|
|
varobj_invalidate ();
|
2705 |
|
|
|
2706 |
|
|
}
|
2707 |
|
|
|
2708 |
|
|
static void
|
2709 |
|
|
clear_symtab_users_cleanup (void *ignore)
|
2710 |
|
|
{
|
2711 |
|
|
clear_symtab_users ();
|
2712 |
|
|
}
|
2713 |
|
|
|
2714 |
|
|
/* Allocate and partially fill a partial symtab. It will be
|
2715 |
|
|
completely filled at the end of the symbol list.
|
2716 |
|
|
|
2717 |
|
|
FILENAME is the name of the symbol-file we are reading from. */
|
2718 |
|
|
|
2719 |
|
|
struct partial_symtab *
|
2720 |
|
|
start_psymtab_common (struct objfile *objfile,
|
2721 |
|
|
struct section_offsets *section_offsets,
|
2722 |
|
|
const char *filename,
|
2723 |
|
|
CORE_ADDR textlow, struct partial_symbol **global_syms,
|
2724 |
|
|
struct partial_symbol **static_syms)
|
2725 |
|
|
{
|
2726 |
|
|
struct partial_symtab *psymtab;
|
2727 |
|
|
|
2728 |
|
|
psymtab = allocate_psymtab (filename, objfile);
|
2729 |
|
|
psymtab->section_offsets = section_offsets;
|
2730 |
|
|
psymtab->textlow = textlow;
|
2731 |
|
|
psymtab->texthigh = psymtab->textlow; /* default */
|
2732 |
|
|
psymtab->globals_offset = global_syms - objfile->global_psymbols.list;
|
2733 |
|
|
psymtab->statics_offset = static_syms - objfile->static_psymbols.list;
|
2734 |
|
|
return (psymtab);
|
2735 |
|
|
}
|
2736 |
|
|
|
2737 |
|
|
/* Helper function, initialises partial symbol structure and stashes
|
2738 |
|
|
it into objfile's bcache. Note that our caching mechanism will
|
2739 |
|
|
use all fields of struct partial_symbol to determine hash value of the
|
2740 |
|
|
structure. In other words, having two symbols with the same name but
|
2741 |
|
|
different domain (or address) is possible and correct. */
|
2742 |
|
|
|
2743 |
|
|
static const struct partial_symbol *
|
2744 |
|
|
add_psymbol_to_bcache (char *name, int namelength, int copy_name,
|
2745 |
|
|
domain_enum domain,
|
2746 |
|
|
enum address_class class,
|
2747 |
|
|
long val, /* Value as a long */
|
2748 |
|
|
CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
|
2749 |
|
|
enum language language, struct objfile *objfile,
|
2750 |
|
|
int *added)
|
2751 |
|
|
{
|
2752 |
|
|
/* psymbol is static so that there will be no uninitialized gaps in the
|
2753 |
|
|
structure which might contain random data, causing cache misses in
|
2754 |
|
|
bcache. */
|
2755 |
|
|
static struct partial_symbol psymbol;
|
2756 |
|
|
|
2757 |
|
|
/* However, we must ensure that the entire 'value' field has been
|
2758 |
|
|
zeroed before assigning to it, because an assignment may not
|
2759 |
|
|
write the entire field. */
|
2760 |
|
|
memset (&psymbol.ginfo.value, 0, sizeof (psymbol.ginfo.value));
|
2761 |
|
|
/* val and coreaddr are mutually exclusive, one of them *will* be zero */
|
2762 |
|
|
if (val != 0)
|
2763 |
|
|
{
|
2764 |
|
|
SYMBOL_VALUE (&psymbol) = val;
|
2765 |
|
|
}
|
2766 |
|
|
else
|
2767 |
|
|
{
|
2768 |
|
|
SYMBOL_VALUE_ADDRESS (&psymbol) = coreaddr;
|
2769 |
|
|
}
|
2770 |
|
|
SYMBOL_SECTION (&psymbol) = 0;
|
2771 |
|
|
SYMBOL_LANGUAGE (&psymbol) = language;
|
2772 |
|
|
PSYMBOL_DOMAIN (&psymbol) = domain;
|
2773 |
|
|
PSYMBOL_CLASS (&psymbol) = class;
|
2774 |
|
|
|
2775 |
|
|
SYMBOL_SET_NAMES (&psymbol, name, namelength, copy_name, objfile);
|
2776 |
|
|
|
2777 |
|
|
/* Stash the partial symbol away in the cache */
|
2778 |
|
|
return bcache_full (&psymbol, sizeof (struct partial_symbol),
|
2779 |
|
|
objfile->psymbol_cache, added);
|
2780 |
|
|
}
|
2781 |
|
|
|
2782 |
|
|
/* Helper function, adds partial symbol to the given partial symbol
|
2783 |
|
|
list. */
|
2784 |
|
|
|
2785 |
|
|
static void
|
2786 |
|
|
append_psymbol_to_list (struct psymbol_allocation_list *list,
|
2787 |
|
|
const struct partial_symbol *psym,
|
2788 |
|
|
struct objfile *objfile)
|
2789 |
|
|
{
|
2790 |
|
|
if (list->next >= list->list + list->size)
|
2791 |
|
|
extend_psymbol_list (list, objfile);
|
2792 |
|
|
*list->next++ = (struct partial_symbol *) psym;
|
2793 |
|
|
OBJSTAT (objfile, n_psyms++);
|
2794 |
|
|
}
|
2795 |
|
|
|
2796 |
|
|
/* Add a symbol with a long value to a psymtab.
|
2797 |
|
|
Since one arg is a struct, we pass in a ptr and deref it (sigh).
|
2798 |
|
|
Return the partial symbol that has been added. */
|
2799 |
|
|
|
2800 |
|
|
/* NOTE: carlton/2003-09-11: The reason why we return the partial
|
2801 |
|
|
symbol is so that callers can get access to the symbol's demangled
|
2802 |
|
|
name, which they don't have any cheap way to determine otherwise.
|
2803 |
|
|
(Currenly, dwarf2read.c is the only file who uses that information,
|
2804 |
|
|
though it's possible that other readers might in the future.)
|
2805 |
|
|
Elena wasn't thrilled about that, and I don't blame her, but we
|
2806 |
|
|
couldn't come up with a better way to get that information. If
|
2807 |
|
|
it's needed in other situations, we could consider breaking up
|
2808 |
|
|
SYMBOL_SET_NAMES to provide access to the demangled name lookup
|
2809 |
|
|
cache. */
|
2810 |
|
|
|
2811 |
|
|
const struct partial_symbol *
|
2812 |
|
|
add_psymbol_to_list (char *name, int namelength, int copy_name,
|
2813 |
|
|
domain_enum domain,
|
2814 |
|
|
enum address_class class,
|
2815 |
|
|
struct psymbol_allocation_list *list,
|
2816 |
|
|
long val, /* Value as a long */
|
2817 |
|
|
CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
|
2818 |
|
|
enum language language, struct objfile *objfile)
|
2819 |
|
|
{
|
2820 |
|
|
const struct partial_symbol *psym;
|
2821 |
|
|
|
2822 |
|
|
int added;
|
2823 |
|
|
|
2824 |
|
|
/* Stash the partial symbol away in the cache */
|
2825 |
|
|
psym = add_psymbol_to_bcache (name, namelength, copy_name, domain, class,
|
2826 |
|
|
val, coreaddr, language, objfile, &added);
|
2827 |
|
|
|
2828 |
|
|
/* Do not duplicate global partial symbols. */
|
2829 |
|
|
if (list == &objfile->global_psymbols
|
2830 |
|
|
&& !added)
|
2831 |
|
|
return psym;
|
2832 |
|
|
|
2833 |
|
|
/* Save pointer to partial symbol in psymtab, growing symtab if needed. */
|
2834 |
|
|
append_psymbol_to_list (list, psym, objfile);
|
2835 |
|
|
return psym;
|
2836 |
|
|
}
|
2837 |
|
|
|
2838 |
|
|
/* Initialize storage for partial symbols. */
|
2839 |
|
|
|
2840 |
|
|
void
|
2841 |
|
|
init_psymbol_list (struct objfile *objfile, int total_symbols)
|
2842 |
|
|
{
|
2843 |
|
|
/* Free any previously allocated psymbol lists. */
|
2844 |
|
|
|
2845 |
|
|
if (objfile->global_psymbols.list)
|
2846 |
|
|
{
|
2847 |
|
|
xfree (objfile->global_psymbols.list);
|
2848 |
|
|
}
|
2849 |
|
|
if (objfile->static_psymbols.list)
|
2850 |
|
|
{
|
2851 |
|
|
xfree (objfile->static_psymbols.list);
|
2852 |
|
|
}
|
2853 |
|
|
|
2854 |
|
|
/* Current best guess is that approximately a twentieth
|
2855 |
|
|
of the total symbols (in a debugging file) are global or static
|
2856 |
|
|
oriented symbols */
|
2857 |
|
|
|
2858 |
|
|
objfile->global_psymbols.size = total_symbols / 10;
|
2859 |
|
|
objfile->static_psymbols.size = total_symbols / 10;
|
2860 |
|
|
|
2861 |
|
|
if (objfile->global_psymbols.size > 0)
|
2862 |
|
|
{
|
2863 |
|
|
objfile->global_psymbols.next =
|
2864 |
|
|
objfile->global_psymbols.list = (struct partial_symbol **)
|
2865 |
|
|
xmalloc ((objfile->global_psymbols.size
|
2866 |
|
|
* sizeof (struct partial_symbol *)));
|
2867 |
|
|
}
|
2868 |
|
|
if (objfile->static_psymbols.size > 0)
|
2869 |
|
|
{
|
2870 |
|
|
objfile->static_psymbols.next =
|
2871 |
|
|
objfile->static_psymbols.list = (struct partial_symbol **)
|
2872 |
|
|
xmalloc ((objfile->static_psymbols.size
|
2873 |
|
|
* sizeof (struct partial_symbol *)));
|
2874 |
|
|
}
|
2875 |
|
|
}
|
2876 |
|
|
|
2877 |
|
|
/* OVERLAYS:
|
2878 |
|
|
The following code implements an abstraction for debugging overlay sections.
|
2879 |
|
|
|
2880 |
|
|
The target model is as follows:
|
2881 |
|
|
1) The gnu linker will permit multiple sections to be mapped into the
|
2882 |
|
|
same VMA, each with its own unique LMA (or load address).
|
2883 |
|
|
2) It is assumed that some runtime mechanism exists for mapping the
|
2884 |
|
|
sections, one by one, from the load address into the VMA address.
|
2885 |
|
|
3) This code provides a mechanism for gdb to keep track of which
|
2886 |
|
|
sections should be considered to be mapped from the VMA to the LMA.
|
2887 |
|
|
This information is used for symbol lookup, and memory read/write.
|
2888 |
|
|
For instance, if a section has been mapped then its contents
|
2889 |
|
|
should be read from the VMA, otherwise from the LMA.
|
2890 |
|
|
|
2891 |
|
|
Two levels of debugger support for overlays are available. One is
|
2892 |
|
|
"manual", in which the debugger relies on the user to tell it which
|
2893 |
|
|
overlays are currently mapped. This level of support is
|
2894 |
|
|
implemented entirely in the core debugger, and the information about
|
2895 |
|
|
whether a section is mapped is kept in the objfile->obj_section table.
|
2896 |
|
|
|
2897 |
|
|
The second level of support is "automatic", and is only available if
|
2898 |
|
|
the target-specific code provides functionality to read the target's
|
2899 |
|
|
overlay mapping table, and translate its contents for the debugger
|
2900 |
|
|
(by updating the mapped state information in the obj_section tables).
|
2901 |
|
|
|
2902 |
|
|
The interface is as follows:
|
2903 |
|
|
User commands:
|
2904 |
|
|
overlay map <name> -- tell gdb to consider this section mapped
|
2905 |
|
|
overlay unmap <name> -- tell gdb to consider this section unmapped
|
2906 |
|
|
overlay list -- list the sections that GDB thinks are mapped
|
2907 |
|
|
overlay read-target -- get the target's state of what's mapped
|
2908 |
|
|
overlay off/manual/auto -- set overlay debugging state
|
2909 |
|
|
Functional interface:
|
2910 |
|
|
find_pc_mapped_section(pc): if the pc is in the range of a mapped
|
2911 |
|
|
section, return that section.
|
2912 |
|
|
find_pc_overlay(pc): find any overlay section that contains
|
2913 |
|
|
the pc, either in its VMA or its LMA
|
2914 |
|
|
section_is_mapped(sect): true if overlay is marked as mapped
|
2915 |
|
|
section_is_overlay(sect): true if section's VMA != LMA
|
2916 |
|
|
pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
|
2917 |
|
|
pc_in_unmapped_range(...): true if pc belongs to section's LMA
|
2918 |
|
|
sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
|
2919 |
|
|
overlay_mapped_address(...): map an address from section's LMA to VMA
|
2920 |
|
|
overlay_unmapped_address(...): map an address from section's VMA to LMA
|
2921 |
|
|
symbol_overlayed_address(...): Return a "current" address for symbol:
|
2922 |
|
|
either in VMA or LMA depending on whether
|
2923 |
|
|
the symbol's section is currently mapped
|
2924 |
|
|
*/
|
2925 |
|
|
|
2926 |
|
|
/* Overlay debugging state: */
|
2927 |
|
|
|
2928 |
|
|
enum overlay_debugging_state overlay_debugging = ovly_off;
|
2929 |
|
|
int overlay_cache_invalid = 0; /* True if need to refresh mapped state */
|
2930 |
|
|
|
2931 |
|
|
/* Function: section_is_overlay (SECTION)
|
2932 |
|
|
Returns true if SECTION has VMA not equal to LMA, ie.
|
2933 |
|
|
SECTION is loaded at an address different from where it will "run". */
|
2934 |
|
|
|
2935 |
|
|
int
|
2936 |
|
|
section_is_overlay (struct obj_section *section)
|
2937 |
|
|
{
|
2938 |
|
|
if (overlay_debugging && section)
|
2939 |
|
|
{
|
2940 |
|
|
bfd *abfd = section->objfile->obfd;
|
2941 |
|
|
asection *bfd_section = section->the_bfd_section;
|
2942 |
|
|
|
2943 |
|
|
if (bfd_section_lma (abfd, bfd_section) != 0
|
2944 |
|
|
&& bfd_section_lma (abfd, bfd_section)
|
2945 |
|
|
!= bfd_section_vma (abfd, bfd_section))
|
2946 |
|
|
return 1;
|
2947 |
|
|
}
|
2948 |
|
|
|
2949 |
|
|
return 0;
|
2950 |
|
|
}
|
2951 |
|
|
|
2952 |
|
|
/* Function: overlay_invalidate_all (void)
|
2953 |
|
|
Invalidate the mapped state of all overlay sections (mark it as stale). */
|
2954 |
|
|
|
2955 |
|
|
static void
|
2956 |
|
|
overlay_invalidate_all (void)
|
2957 |
|
|
{
|
2958 |
|
|
struct objfile *objfile;
|
2959 |
|
|
struct obj_section *sect;
|
2960 |
|
|
|
2961 |
|
|
ALL_OBJSECTIONS (objfile, sect)
|
2962 |
|
|
if (section_is_overlay (sect))
|
2963 |
|
|
sect->ovly_mapped = -1;
|
2964 |
|
|
}
|
2965 |
|
|
|
2966 |
|
|
/* Function: section_is_mapped (SECTION)
|
2967 |
|
|
Returns true if section is an overlay, and is currently mapped.
|
2968 |
|
|
|
2969 |
|
|
Access to the ovly_mapped flag is restricted to this function, so
|
2970 |
|
|
that we can do automatic update. If the global flag
|
2971 |
|
|
OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
|
2972 |
|
|
overlay_invalidate_all. If the mapped state of the particular
|
2973 |
|
|
section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
|
2974 |
|
|
|
2975 |
|
|
int
|
2976 |
|
|
section_is_mapped (struct obj_section *osect)
|
2977 |
|
|
{
|
2978 |
|
|
struct gdbarch *gdbarch;
|
2979 |
|
|
|
2980 |
|
|
if (osect == 0 || !section_is_overlay (osect))
|
2981 |
|
|
return 0;
|
2982 |
|
|
|
2983 |
|
|
switch (overlay_debugging)
|
2984 |
|
|
{
|
2985 |
|
|
default:
|
2986 |
|
|
case ovly_off:
|
2987 |
|
|
return 0; /* overlay debugging off */
|
2988 |
|
|
case ovly_auto: /* overlay debugging automatic */
|
2989 |
|
|
/* Unles there is a gdbarch_overlay_update function,
|
2990 |
|
|
there's really nothing useful to do here (can't really go auto) */
|
2991 |
|
|
gdbarch = get_objfile_arch (osect->objfile);
|
2992 |
|
|
if (gdbarch_overlay_update_p (gdbarch))
|
2993 |
|
|
{
|
2994 |
|
|
if (overlay_cache_invalid)
|
2995 |
|
|
{
|
2996 |
|
|
overlay_invalidate_all ();
|
2997 |
|
|
overlay_cache_invalid = 0;
|
2998 |
|
|
}
|
2999 |
|
|
if (osect->ovly_mapped == -1)
|
3000 |
|
|
gdbarch_overlay_update (gdbarch, osect);
|
3001 |
|
|
}
|
3002 |
|
|
/* fall thru to manual case */
|
3003 |
|
|
case ovly_on: /* overlay debugging manual */
|
3004 |
|
|
return osect->ovly_mapped == 1;
|
3005 |
|
|
}
|
3006 |
|
|
}
|
3007 |
|
|
|
3008 |
|
|
/* Function: pc_in_unmapped_range
|
3009 |
|
|
If PC falls into the lma range of SECTION, return true, else false. */
|
3010 |
|
|
|
3011 |
|
|
CORE_ADDR
|
3012 |
|
|
pc_in_unmapped_range (CORE_ADDR pc, struct obj_section *section)
|
3013 |
|
|
{
|
3014 |
|
|
if (section_is_overlay (section))
|
3015 |
|
|
{
|
3016 |
|
|
bfd *abfd = section->objfile->obfd;
|
3017 |
|
|
asection *bfd_section = section->the_bfd_section;
|
3018 |
|
|
|
3019 |
|
|
/* We assume the LMA is relocated by the same offset as the VMA. */
|
3020 |
|
|
bfd_vma size = bfd_get_section_size (bfd_section);
|
3021 |
|
|
CORE_ADDR offset = obj_section_offset (section);
|
3022 |
|
|
|
3023 |
|
|
if (bfd_get_section_lma (abfd, bfd_section) + offset <= pc
|
3024 |
|
|
&& pc < bfd_get_section_lma (abfd, bfd_section) + offset + size)
|
3025 |
|
|
return 1;
|
3026 |
|
|
}
|
3027 |
|
|
|
3028 |
|
|
return 0;
|
3029 |
|
|
}
|
3030 |
|
|
|
3031 |
|
|
/* Function: pc_in_mapped_range
|
3032 |
|
|
If PC falls into the vma range of SECTION, return true, else false. */
|
3033 |
|
|
|
3034 |
|
|
CORE_ADDR
|
3035 |
|
|
pc_in_mapped_range (CORE_ADDR pc, struct obj_section *section)
|
3036 |
|
|
{
|
3037 |
|
|
if (section_is_overlay (section))
|
3038 |
|
|
{
|
3039 |
|
|
if (obj_section_addr (section) <= pc
|
3040 |
|
|
&& pc < obj_section_endaddr (section))
|
3041 |
|
|
return 1;
|
3042 |
|
|
}
|
3043 |
|
|
|
3044 |
|
|
return 0;
|
3045 |
|
|
}
|
3046 |
|
|
|
3047 |
|
|
|
3048 |
|
|
/* Return true if the mapped ranges of sections A and B overlap, false
|
3049 |
|
|
otherwise. */
|
3050 |
|
|
static int
|
3051 |
|
|
sections_overlap (struct obj_section *a, struct obj_section *b)
|
3052 |
|
|
{
|
3053 |
|
|
CORE_ADDR a_start = obj_section_addr (a);
|
3054 |
|
|
CORE_ADDR a_end = obj_section_endaddr (a);
|
3055 |
|
|
CORE_ADDR b_start = obj_section_addr (b);
|
3056 |
|
|
CORE_ADDR b_end = obj_section_endaddr (b);
|
3057 |
|
|
|
3058 |
|
|
return (a_start < b_end && b_start < a_end);
|
3059 |
|
|
}
|
3060 |
|
|
|
3061 |
|
|
/* Function: overlay_unmapped_address (PC, SECTION)
|
3062 |
|
|
Returns the address corresponding to PC in the unmapped (load) range.
|
3063 |
|
|
May be the same as PC. */
|
3064 |
|
|
|
3065 |
|
|
CORE_ADDR
|
3066 |
|
|
overlay_unmapped_address (CORE_ADDR pc, struct obj_section *section)
|
3067 |
|
|
{
|
3068 |
|
|
if (section_is_overlay (section) && pc_in_mapped_range (pc, section))
|
3069 |
|
|
{
|
3070 |
|
|
bfd *abfd = section->objfile->obfd;
|
3071 |
|
|
asection *bfd_section = section->the_bfd_section;
|
3072 |
|
|
|
3073 |
|
|
return pc + bfd_section_lma (abfd, bfd_section)
|
3074 |
|
|
- bfd_section_vma (abfd, bfd_section);
|
3075 |
|
|
}
|
3076 |
|
|
|
3077 |
|
|
return pc;
|
3078 |
|
|
}
|
3079 |
|
|
|
3080 |
|
|
/* Function: overlay_mapped_address (PC, SECTION)
|
3081 |
|
|
Returns the address corresponding to PC in the mapped (runtime) range.
|
3082 |
|
|
May be the same as PC. */
|
3083 |
|
|
|
3084 |
|
|
CORE_ADDR
|
3085 |
|
|
overlay_mapped_address (CORE_ADDR pc, struct obj_section *section)
|
3086 |
|
|
{
|
3087 |
|
|
if (section_is_overlay (section) && pc_in_unmapped_range (pc, section))
|
3088 |
|
|
{
|
3089 |
|
|
bfd *abfd = section->objfile->obfd;
|
3090 |
|
|
asection *bfd_section = section->the_bfd_section;
|
3091 |
|
|
|
3092 |
|
|
return pc + bfd_section_vma (abfd, bfd_section)
|
3093 |
|
|
- bfd_section_lma (abfd, bfd_section);
|
3094 |
|
|
}
|
3095 |
|
|
|
3096 |
|
|
return pc;
|
3097 |
|
|
}
|
3098 |
|
|
|
3099 |
|
|
|
3100 |
|
|
/* Function: symbol_overlayed_address
|
3101 |
|
|
Return one of two addresses (relative to the VMA or to the LMA),
|
3102 |
|
|
depending on whether the section is mapped or not. */
|
3103 |
|
|
|
3104 |
|
|
CORE_ADDR
|
3105 |
|
|
symbol_overlayed_address (CORE_ADDR address, struct obj_section *section)
|
3106 |
|
|
{
|
3107 |
|
|
if (overlay_debugging)
|
3108 |
|
|
{
|
3109 |
|
|
/* If the symbol has no section, just return its regular address. */
|
3110 |
|
|
if (section == 0)
|
3111 |
|
|
return address;
|
3112 |
|
|
/* If the symbol's section is not an overlay, just return its address */
|
3113 |
|
|
if (!section_is_overlay (section))
|
3114 |
|
|
return address;
|
3115 |
|
|
/* If the symbol's section is mapped, just return its address */
|
3116 |
|
|
if (section_is_mapped (section))
|
3117 |
|
|
return address;
|
3118 |
|
|
/*
|
3119 |
|
|
* HOWEVER: if the symbol is in an overlay section which is NOT mapped,
|
3120 |
|
|
* then return its LOADED address rather than its vma address!!
|
3121 |
|
|
*/
|
3122 |
|
|
return overlay_unmapped_address (address, section);
|
3123 |
|
|
}
|
3124 |
|
|
return address;
|
3125 |
|
|
}
|
3126 |
|
|
|
3127 |
|
|
/* Function: find_pc_overlay (PC)
|
3128 |
|
|
Return the best-match overlay section for PC:
|
3129 |
|
|
If PC matches a mapped overlay section's VMA, return that section.
|
3130 |
|
|
Else if PC matches an unmapped section's VMA, return that section.
|
3131 |
|
|
Else if PC matches an unmapped section's LMA, return that section. */
|
3132 |
|
|
|
3133 |
|
|
struct obj_section *
|
3134 |
|
|
find_pc_overlay (CORE_ADDR pc)
|
3135 |
|
|
{
|
3136 |
|
|
struct objfile *objfile;
|
3137 |
|
|
struct obj_section *osect, *best_match = NULL;
|
3138 |
|
|
|
3139 |
|
|
if (overlay_debugging)
|
3140 |
|
|
ALL_OBJSECTIONS (objfile, osect)
|
3141 |
|
|
if (section_is_overlay (osect))
|
3142 |
|
|
{
|
3143 |
|
|
if (pc_in_mapped_range (pc, osect))
|
3144 |
|
|
{
|
3145 |
|
|
if (section_is_mapped (osect))
|
3146 |
|
|
return osect;
|
3147 |
|
|
else
|
3148 |
|
|
best_match = osect;
|
3149 |
|
|
}
|
3150 |
|
|
else if (pc_in_unmapped_range (pc, osect))
|
3151 |
|
|
best_match = osect;
|
3152 |
|
|
}
|
3153 |
|
|
return best_match;
|
3154 |
|
|
}
|
3155 |
|
|
|
3156 |
|
|
/* Function: find_pc_mapped_section (PC)
|
3157 |
|
|
If PC falls into the VMA address range of an overlay section that is
|
3158 |
|
|
currently marked as MAPPED, return that section. Else return NULL. */
|
3159 |
|
|
|
3160 |
|
|
struct obj_section *
|
3161 |
|
|
find_pc_mapped_section (CORE_ADDR pc)
|
3162 |
|
|
{
|
3163 |
|
|
struct objfile *objfile;
|
3164 |
|
|
struct obj_section *osect;
|
3165 |
|
|
|
3166 |
|
|
if (overlay_debugging)
|
3167 |
|
|
ALL_OBJSECTIONS (objfile, osect)
|
3168 |
|
|
if (pc_in_mapped_range (pc, osect) && section_is_mapped (osect))
|
3169 |
|
|
return osect;
|
3170 |
|
|
|
3171 |
|
|
return NULL;
|
3172 |
|
|
}
|
3173 |
|
|
|
3174 |
|
|
/* Function: list_overlays_command
|
3175 |
|
|
Print a list of mapped sections and their PC ranges */
|
3176 |
|
|
|
3177 |
|
|
void
|
3178 |
|
|
list_overlays_command (char *args, int from_tty)
|
3179 |
|
|
{
|
3180 |
|
|
int nmapped = 0;
|
3181 |
|
|
struct objfile *objfile;
|
3182 |
|
|
struct obj_section *osect;
|
3183 |
|
|
|
3184 |
|
|
if (overlay_debugging)
|
3185 |
|
|
ALL_OBJSECTIONS (objfile, osect)
|
3186 |
|
|
if (section_is_mapped (osect))
|
3187 |
|
|
{
|
3188 |
|
|
struct gdbarch *gdbarch = get_objfile_arch (objfile);
|
3189 |
|
|
const char *name;
|
3190 |
|
|
bfd_vma lma, vma;
|
3191 |
|
|
int size;
|
3192 |
|
|
|
3193 |
|
|
vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
|
3194 |
|
|
lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
|
3195 |
|
|
size = bfd_get_section_size (osect->the_bfd_section);
|
3196 |
|
|
name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
|
3197 |
|
|
|
3198 |
|
|
printf_filtered ("Section %s, loaded at ", name);
|
3199 |
|
|
fputs_filtered (paddress (gdbarch, lma), gdb_stdout);
|
3200 |
|
|
puts_filtered (" - ");
|
3201 |
|
|
fputs_filtered (paddress (gdbarch, lma + size), gdb_stdout);
|
3202 |
|
|
printf_filtered (", mapped at ");
|
3203 |
|
|
fputs_filtered (paddress (gdbarch, vma), gdb_stdout);
|
3204 |
|
|
puts_filtered (" - ");
|
3205 |
|
|
fputs_filtered (paddress (gdbarch, vma + size), gdb_stdout);
|
3206 |
|
|
puts_filtered ("\n");
|
3207 |
|
|
|
3208 |
|
|
nmapped++;
|
3209 |
|
|
}
|
3210 |
|
|
if (nmapped == 0)
|
3211 |
|
|
printf_filtered (_("No sections are mapped.\n"));
|
3212 |
|
|
}
|
3213 |
|
|
|
3214 |
|
|
/* Function: map_overlay_command
|
3215 |
|
|
Mark the named section as mapped (ie. residing at its VMA address). */
|
3216 |
|
|
|
3217 |
|
|
void
|
3218 |
|
|
map_overlay_command (char *args, int from_tty)
|
3219 |
|
|
{
|
3220 |
|
|
struct objfile *objfile, *objfile2;
|
3221 |
|
|
struct obj_section *sec, *sec2;
|
3222 |
|
|
|
3223 |
|
|
if (!overlay_debugging)
|
3224 |
|
|
error (_("\
|
3225 |
|
|
Overlay debugging not enabled. Use either the 'overlay auto' or\n\
|
3226 |
|
|
the 'overlay manual' command."));
|
3227 |
|
|
|
3228 |
|
|
if (args == 0 || *args == 0)
|
3229 |
|
|
error (_("Argument required: name of an overlay section"));
|
3230 |
|
|
|
3231 |
|
|
/* First, find a section matching the user supplied argument */
|
3232 |
|
|
ALL_OBJSECTIONS (objfile, sec)
|
3233 |
|
|
if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
|
3234 |
|
|
{
|
3235 |
|
|
/* Now, check to see if the section is an overlay. */
|
3236 |
|
|
if (!section_is_overlay (sec))
|
3237 |
|
|
continue; /* not an overlay section */
|
3238 |
|
|
|
3239 |
|
|
/* Mark the overlay as "mapped" */
|
3240 |
|
|
sec->ovly_mapped = 1;
|
3241 |
|
|
|
3242 |
|
|
/* Next, make a pass and unmap any sections that are
|
3243 |
|
|
overlapped by this new section: */
|
3244 |
|
|
ALL_OBJSECTIONS (objfile2, sec2)
|
3245 |
|
|
if (sec2->ovly_mapped && sec != sec2 && sections_overlap (sec, sec2))
|
3246 |
|
|
{
|
3247 |
|
|
if (info_verbose)
|
3248 |
|
|
printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
|
3249 |
|
|
bfd_section_name (objfile->obfd,
|
3250 |
|
|
sec2->the_bfd_section));
|
3251 |
|
|
sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2 */
|
3252 |
|
|
}
|
3253 |
|
|
return;
|
3254 |
|
|
}
|
3255 |
|
|
error (_("No overlay section called %s"), args);
|
3256 |
|
|
}
|
3257 |
|
|
|
3258 |
|
|
/* Function: unmap_overlay_command
|
3259 |
|
|
Mark the overlay section as unmapped
|
3260 |
|
|
(ie. resident in its LMA address range, rather than the VMA range). */
|
3261 |
|
|
|
3262 |
|
|
void
|
3263 |
|
|
unmap_overlay_command (char *args, int from_tty)
|
3264 |
|
|
{
|
3265 |
|
|
struct objfile *objfile;
|
3266 |
|
|
struct obj_section *sec;
|
3267 |
|
|
|
3268 |
|
|
if (!overlay_debugging)
|
3269 |
|
|
error (_("\
|
3270 |
|
|
Overlay debugging not enabled. Use either the 'overlay auto' or\n\
|
3271 |
|
|
the 'overlay manual' command."));
|
3272 |
|
|
|
3273 |
|
|
if (args == 0 || *args == 0)
|
3274 |
|
|
error (_("Argument required: name of an overlay section"));
|
3275 |
|
|
|
3276 |
|
|
/* First, find a section matching the user supplied argument */
|
3277 |
|
|
ALL_OBJSECTIONS (objfile, sec)
|
3278 |
|
|
if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
|
3279 |
|
|
{
|
3280 |
|
|
if (!sec->ovly_mapped)
|
3281 |
|
|
error (_("Section %s is not mapped"), args);
|
3282 |
|
|
sec->ovly_mapped = 0;
|
3283 |
|
|
return;
|
3284 |
|
|
}
|
3285 |
|
|
error (_("No overlay section called %s"), args);
|
3286 |
|
|
}
|
3287 |
|
|
|
3288 |
|
|
/* Function: overlay_auto_command
|
3289 |
|
|
A utility command to turn on overlay debugging.
|
3290 |
|
|
Possibly this should be done via a set/show command. */
|
3291 |
|
|
|
3292 |
|
|
static void
|
3293 |
|
|
overlay_auto_command (char *args, int from_tty)
|
3294 |
|
|
{
|
3295 |
|
|
overlay_debugging = ovly_auto;
|
3296 |
|
|
enable_overlay_breakpoints ();
|
3297 |
|
|
if (info_verbose)
|
3298 |
|
|
printf_unfiltered (_("Automatic overlay debugging enabled."));
|
3299 |
|
|
}
|
3300 |
|
|
|
3301 |
|
|
/* Function: overlay_manual_command
|
3302 |
|
|
A utility command to turn on overlay debugging.
|
3303 |
|
|
Possibly this should be done via a set/show command. */
|
3304 |
|
|
|
3305 |
|
|
static void
|
3306 |
|
|
overlay_manual_command (char *args, int from_tty)
|
3307 |
|
|
{
|
3308 |
|
|
overlay_debugging = ovly_on;
|
3309 |
|
|
disable_overlay_breakpoints ();
|
3310 |
|
|
if (info_verbose)
|
3311 |
|
|
printf_unfiltered (_("Overlay debugging enabled."));
|
3312 |
|
|
}
|
3313 |
|
|
|
3314 |
|
|
/* Function: overlay_off_command
|
3315 |
|
|
A utility command to turn on overlay debugging.
|
3316 |
|
|
Possibly this should be done via a set/show command. */
|
3317 |
|
|
|
3318 |
|
|
static void
|
3319 |
|
|
overlay_off_command (char *args, int from_tty)
|
3320 |
|
|
{
|
3321 |
|
|
overlay_debugging = ovly_off;
|
3322 |
|
|
disable_overlay_breakpoints ();
|
3323 |
|
|
if (info_verbose)
|
3324 |
|
|
printf_unfiltered (_("Overlay debugging disabled."));
|
3325 |
|
|
}
|
3326 |
|
|
|
3327 |
|
|
static void
|
3328 |
|
|
overlay_load_command (char *args, int from_tty)
|
3329 |
|
|
{
|
3330 |
|
|
struct gdbarch *gdbarch = get_current_arch ();
|
3331 |
|
|
|
3332 |
|
|
if (gdbarch_overlay_update_p (gdbarch))
|
3333 |
|
|
gdbarch_overlay_update (gdbarch, NULL);
|
3334 |
|
|
else
|
3335 |
|
|
error (_("This target does not know how to read its overlay state."));
|
3336 |
|
|
}
|
3337 |
|
|
|
3338 |
|
|
/* Function: overlay_command
|
3339 |
|
|
A place-holder for a mis-typed command */
|
3340 |
|
|
|
3341 |
|
|
/* Command list chain containing all defined "overlay" subcommands. */
|
3342 |
|
|
struct cmd_list_element *overlaylist;
|
3343 |
|
|
|
3344 |
|
|
static void
|
3345 |
|
|
overlay_command (char *args, int from_tty)
|
3346 |
|
|
{
|
3347 |
|
|
printf_unfiltered
|
3348 |
|
|
("\"overlay\" must be followed by the name of an overlay command.\n");
|
3349 |
|
|
help_list (overlaylist, "overlay ", -1, gdb_stdout);
|
3350 |
|
|
}
|
3351 |
|
|
|
3352 |
|
|
|
3353 |
|
|
/* Target Overlays for the "Simplest" overlay manager:
|
3354 |
|
|
|
3355 |
|
|
This is GDB's default target overlay layer. It works with the
|
3356 |
|
|
minimal overlay manager supplied as an example by Cygnus. The
|
3357 |
|
|
entry point is via a function pointer "gdbarch_overlay_update",
|
3358 |
|
|
so targets that use a different runtime overlay manager can
|
3359 |
|
|
substitute their own overlay_update function and take over the
|
3360 |
|
|
function pointer.
|
3361 |
|
|
|
3362 |
|
|
The overlay_update function pokes around in the target's data structures
|
3363 |
|
|
to see what overlays are mapped, and updates GDB's overlay mapping with
|
3364 |
|
|
this information.
|
3365 |
|
|
|
3366 |
|
|
In this simple implementation, the target data structures are as follows:
|
3367 |
|
|
unsigned _novlys; /# number of overlay sections #/
|
3368 |
|
|
unsigned _ovly_table[_novlys][4] = {
|
3369 |
|
|
{VMA, SIZE, LMA, MAPPED}, /# one entry per overlay section #/
|
3370 |
|
|
{..., ..., ..., ...},
|
3371 |
|
|
}
|
3372 |
|
|
unsigned _novly_regions; /# number of overlay regions #/
|
3373 |
|
|
unsigned _ovly_region_table[_novly_regions][3] = {
|
3374 |
|
|
{VMA, SIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
|
3375 |
|
|
{..., ..., ...},
|
3376 |
|
|
}
|
3377 |
|
|
These functions will attempt to update GDB's mappedness state in the
|
3378 |
|
|
symbol section table, based on the target's mappedness state.
|
3379 |
|
|
|
3380 |
|
|
To do this, we keep a cached copy of the target's _ovly_table, and
|
3381 |
|
|
attempt to detect when the cached copy is invalidated. The main
|
3382 |
|
|
entry point is "simple_overlay_update(SECT), which looks up SECT in
|
3383 |
|
|
the cached table and re-reads only the entry for that section from
|
3384 |
|
|
the target (whenever possible).
|
3385 |
|
|
*/
|
3386 |
|
|
|
3387 |
|
|
/* Cached, dynamically allocated copies of the target data structures: */
|
3388 |
|
|
static unsigned (*cache_ovly_table)[4] = 0;
|
3389 |
|
|
#if 0
|
3390 |
|
|
static unsigned (*cache_ovly_region_table)[3] = 0;
|
3391 |
|
|
#endif
|
3392 |
|
|
static unsigned cache_novlys = 0;
|
3393 |
|
|
#if 0
|
3394 |
|
|
static unsigned cache_novly_regions = 0;
|
3395 |
|
|
#endif
|
3396 |
|
|
static CORE_ADDR cache_ovly_table_base = 0;
|
3397 |
|
|
#if 0
|
3398 |
|
|
static CORE_ADDR cache_ovly_region_table_base = 0;
|
3399 |
|
|
#endif
|
3400 |
|
|
enum ovly_index
|
3401 |
|
|
{
|
3402 |
|
|
VMA, SIZE, LMA, MAPPED
|
3403 |
|
|
};
|
3404 |
|
|
|
3405 |
|
|
/* Throw away the cached copy of _ovly_table */
|
3406 |
|
|
static void
|
3407 |
|
|
simple_free_overlay_table (void)
|
3408 |
|
|
{
|
3409 |
|
|
if (cache_ovly_table)
|
3410 |
|
|
xfree (cache_ovly_table);
|
3411 |
|
|
cache_novlys = 0;
|
3412 |
|
|
cache_ovly_table = NULL;
|
3413 |
|
|
cache_ovly_table_base = 0;
|
3414 |
|
|
}
|
3415 |
|
|
|
3416 |
|
|
#if 0
|
3417 |
|
|
/* Throw away the cached copy of _ovly_region_table */
|
3418 |
|
|
static void
|
3419 |
|
|
simple_free_overlay_region_table (void)
|
3420 |
|
|
{
|
3421 |
|
|
if (cache_ovly_region_table)
|
3422 |
|
|
xfree (cache_ovly_region_table);
|
3423 |
|
|
cache_novly_regions = 0;
|
3424 |
|
|
cache_ovly_region_table = NULL;
|
3425 |
|
|
cache_ovly_region_table_base = 0;
|
3426 |
|
|
}
|
3427 |
|
|
#endif
|
3428 |
|
|
|
3429 |
|
|
/* Read an array of ints of size SIZE from the target into a local buffer.
|
3430 |
|
|
Convert to host order. int LEN is number of ints */
|
3431 |
|
|
static void
|
3432 |
|
|
read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr,
|
3433 |
|
|
int len, int size, enum bfd_endian byte_order)
|
3434 |
|
|
{
|
3435 |
|
|
/* FIXME (alloca): Not safe if array is very large. */
|
3436 |
|
|
gdb_byte *buf = alloca (len * size);
|
3437 |
|
|
int i;
|
3438 |
|
|
|
3439 |
|
|
read_memory (memaddr, buf, len * size);
|
3440 |
|
|
for (i = 0; i < len; i++)
|
3441 |
|
|
myaddr[i] = extract_unsigned_integer (size * i + buf, size, byte_order);
|
3442 |
|
|
}
|
3443 |
|
|
|
3444 |
|
|
/* Find and grab a copy of the target _ovly_table
|
3445 |
|
|
(and _novlys, which is needed for the table's size) */
|
3446 |
|
|
static int
|
3447 |
|
|
simple_read_overlay_table (void)
|
3448 |
|
|
{
|
3449 |
|
|
struct minimal_symbol *novlys_msym, *ovly_table_msym;
|
3450 |
|
|
struct gdbarch *gdbarch;
|
3451 |
|
|
int word_size;
|
3452 |
|
|
enum bfd_endian byte_order;
|
3453 |
|
|
|
3454 |
|
|
simple_free_overlay_table ();
|
3455 |
|
|
novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
|
3456 |
|
|
if (! novlys_msym)
|
3457 |
|
|
{
|
3458 |
|
|
error (_("Error reading inferior's overlay table: "
|
3459 |
|
|
"couldn't find `_novlys' variable\n"
|
3460 |
|
|
"in inferior. Use `overlay manual' mode."));
|
3461 |
|
|
return 0;
|
3462 |
|
|
}
|
3463 |
|
|
|
3464 |
|
|
ovly_table_msym = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
|
3465 |
|
|
if (! ovly_table_msym)
|
3466 |
|
|
{
|
3467 |
|
|
error (_("Error reading inferior's overlay table: couldn't find "
|
3468 |
|
|
"`_ovly_table' array\n"
|
3469 |
|
|
"in inferior. Use `overlay manual' mode."));
|
3470 |
|
|
return 0;
|
3471 |
|
|
}
|
3472 |
|
|
|
3473 |
|
|
gdbarch = get_objfile_arch (msymbol_objfile (ovly_table_msym));
|
3474 |
|
|
word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
|
3475 |
|
|
byte_order = gdbarch_byte_order (gdbarch);
|
3476 |
|
|
|
3477 |
|
|
cache_novlys = read_memory_integer (SYMBOL_VALUE_ADDRESS (novlys_msym),
|
3478 |
|
|
4, byte_order);
|
3479 |
|
|
cache_ovly_table
|
3480 |
|
|
= (void *) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
|
3481 |
|
|
cache_ovly_table_base = SYMBOL_VALUE_ADDRESS (ovly_table_msym);
|
3482 |
|
|
read_target_long_array (cache_ovly_table_base,
|
3483 |
|
|
(unsigned int *) cache_ovly_table,
|
3484 |
|
|
cache_novlys * 4, word_size, byte_order);
|
3485 |
|
|
|
3486 |
|
|
return 1; /* SUCCESS */
|
3487 |
|
|
}
|
3488 |
|
|
|
3489 |
|
|
#if 0
|
3490 |
|
|
/* Find and grab a copy of the target _ovly_region_table
|
3491 |
|
|
(and _novly_regions, which is needed for the table's size) */
|
3492 |
|
|
static int
|
3493 |
|
|
simple_read_overlay_region_table (void)
|
3494 |
|
|
{
|
3495 |
|
|
struct minimal_symbol *msym;
|
3496 |
|
|
struct gdbarch *gdbarch;
|
3497 |
|
|
int word_size;
|
3498 |
|
|
enum bfd_endian byte_order;
|
3499 |
|
|
|
3500 |
|
|
simple_free_overlay_region_table ();
|
3501 |
|
|
msym = lookup_minimal_symbol ("_novly_regions", NULL, NULL);
|
3502 |
|
|
if (msym == NULL)
|
3503 |
|
|
return 0; /* failure */
|
3504 |
|
|
|
3505 |
|
|
gdbarch = get_objfile_arch (msymbol_objfile (msym));
|
3506 |
|
|
word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
|
3507 |
|
|
byte_order = gdbarch_byte_order (gdbarch);
|
3508 |
|
|
|
3509 |
|
|
cache_novly_regions = read_memory_integer (SYMBOL_VALUE_ADDRESS (msym),
|
3510 |
|
|
4, byte_order);
|
3511 |
|
|
|
3512 |
|
|
cache_ovly_region_table = (void *) xmalloc (cache_novly_regions * 12);
|
3513 |
|
|
if (cache_ovly_region_table != NULL)
|
3514 |
|
|
{
|
3515 |
|
|
msym = lookup_minimal_symbol ("_ovly_region_table", NULL, NULL);
|
3516 |
|
|
if (msym != NULL)
|
3517 |
|
|
{
|
3518 |
|
|
cache_ovly_region_table_base = SYMBOL_VALUE_ADDRESS (msym);
|
3519 |
|
|
read_target_long_array (cache_ovly_region_table_base,
|
3520 |
|
|
(unsigned int *) cache_ovly_region_table,
|
3521 |
|
|
cache_novly_regions * 3,
|
3522 |
|
|
word_size, byte_order);
|
3523 |
|
|
}
|
3524 |
|
|
else
|
3525 |
|
|
return 0; /* failure */
|
3526 |
|
|
}
|
3527 |
|
|
else
|
3528 |
|
|
return 0; /* failure */
|
3529 |
|
|
return 1; /* SUCCESS */
|
3530 |
|
|
}
|
3531 |
|
|
#endif
|
3532 |
|
|
|
3533 |
|
|
/* Function: simple_overlay_update_1
|
3534 |
|
|
A helper function for simple_overlay_update. Assuming a cached copy
|
3535 |
|
|
of _ovly_table exists, look through it to find an entry whose vma,
|
3536 |
|
|
lma and size match those of OSECT. Re-read the entry and make sure
|
3537 |
|
|
it still matches OSECT (else the table may no longer be valid).
|
3538 |
|
|
Set OSECT's mapped state to match the entry. Return: 1 for
|
3539 |
|
|
success, 0 for failure. */
|
3540 |
|
|
|
3541 |
|
|
static int
|
3542 |
|
|
simple_overlay_update_1 (struct obj_section *osect)
|
3543 |
|
|
{
|
3544 |
|
|
int i, size;
|
3545 |
|
|
bfd *obfd = osect->objfile->obfd;
|
3546 |
|
|
asection *bsect = osect->the_bfd_section;
|
3547 |
|
|
struct gdbarch *gdbarch = get_objfile_arch (osect->objfile);
|
3548 |
|
|
int word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
|
3549 |
|
|
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
3550 |
|
|
|
3551 |
|
|
size = bfd_get_section_size (osect->the_bfd_section);
|
3552 |
|
|
for (i = 0; i < cache_novlys; i++)
|
3553 |
|
|
if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
|
3554 |
|
|
&& cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
|
3555 |
|
|
/* && cache_ovly_table[i][SIZE] == size */ )
|
3556 |
|
|
{
|
3557 |
|
|
read_target_long_array (cache_ovly_table_base + i * word_size,
|
3558 |
|
|
(unsigned int *) cache_ovly_table[i],
|
3559 |
|
|
4, word_size, byte_order);
|
3560 |
|
|
if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
|
3561 |
|
|
&& cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
|
3562 |
|
|
/* && cache_ovly_table[i][SIZE] == size */ )
|
3563 |
|
|
{
|
3564 |
|
|
osect->ovly_mapped = cache_ovly_table[i][MAPPED];
|
3565 |
|
|
return 1;
|
3566 |
|
|
}
|
3567 |
|
|
else /* Warning! Warning! Target's ovly table has changed! */
|
3568 |
|
|
return 0;
|
3569 |
|
|
}
|
3570 |
|
|
return 0;
|
3571 |
|
|
}
|
3572 |
|
|
|
3573 |
|
|
/* Function: simple_overlay_update
|
3574 |
|
|
If OSECT is NULL, then update all sections' mapped state
|
3575 |
|
|
(after re-reading the entire target _ovly_table).
|
3576 |
|
|
If OSECT is non-NULL, then try to find a matching entry in the
|
3577 |
|
|
cached ovly_table and update only OSECT's mapped state.
|
3578 |
|
|
If a cached entry can't be found or the cache isn't valid, then
|
3579 |
|
|
re-read the entire cache, and go ahead and update all sections. */
|
3580 |
|
|
|
3581 |
|
|
void
|
3582 |
|
|
simple_overlay_update (struct obj_section *osect)
|
3583 |
|
|
{
|
3584 |
|
|
struct objfile *objfile;
|
3585 |
|
|
|
3586 |
|
|
/* Were we given an osect to look up? NULL means do all of them. */
|
3587 |
|
|
if (osect)
|
3588 |
|
|
/* Have we got a cached copy of the target's overlay table? */
|
3589 |
|
|
if (cache_ovly_table != NULL)
|
3590 |
|
|
/* Does its cached location match what's currently in the symtab? */
|
3591 |
|
|
if (cache_ovly_table_base ==
|
3592 |
|
|
SYMBOL_VALUE_ADDRESS (lookup_minimal_symbol ("_ovly_table", NULL, NULL)))
|
3593 |
|
|
/* Then go ahead and try to look up this single section in the cache */
|
3594 |
|
|
if (simple_overlay_update_1 (osect))
|
3595 |
|
|
/* Found it! We're done. */
|
3596 |
|
|
return;
|
3597 |
|
|
|
3598 |
|
|
/* Cached table no good: need to read the entire table anew.
|
3599 |
|
|
Or else we want all the sections, in which case it's actually
|
3600 |
|
|
more efficient to read the whole table in one block anyway. */
|
3601 |
|
|
|
3602 |
|
|
if (! simple_read_overlay_table ())
|
3603 |
|
|
return;
|
3604 |
|
|
|
3605 |
|
|
/* Now may as well update all sections, even if only one was requested. */
|
3606 |
|
|
ALL_OBJSECTIONS (objfile, osect)
|
3607 |
|
|
if (section_is_overlay (osect))
|
3608 |
|
|
{
|
3609 |
|
|
int i, size;
|
3610 |
|
|
bfd *obfd = osect->objfile->obfd;
|
3611 |
|
|
asection *bsect = osect->the_bfd_section;
|
3612 |
|
|
|
3613 |
|
|
size = bfd_get_section_size (bsect);
|
3614 |
|
|
for (i = 0; i < cache_novlys; i++)
|
3615 |
|
|
if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
|
3616 |
|
|
&& cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
|
3617 |
|
|
/* && cache_ovly_table[i][SIZE] == size */ )
|
3618 |
|
|
{ /* obj_section matches i'th entry in ovly_table */
|
3619 |
|
|
osect->ovly_mapped = cache_ovly_table[i][MAPPED];
|
3620 |
|
|
break; /* finished with inner for loop: break out */
|
3621 |
|
|
}
|
3622 |
|
|
}
|
3623 |
|
|
}
|
3624 |
|
|
|
3625 |
|
|
/* Set the output sections and output offsets for section SECTP in
|
3626 |
|
|
ABFD. The relocation code in BFD will read these offsets, so we
|
3627 |
|
|
need to be sure they're initialized. We map each section to itself,
|
3628 |
|
|
with no offset; this means that SECTP->vma will be honored. */
|
3629 |
|
|
|
3630 |
|
|
static void
|
3631 |
|
|
symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
|
3632 |
|
|
{
|
3633 |
|
|
sectp->output_section = sectp;
|
3634 |
|
|
sectp->output_offset = 0;
|
3635 |
|
|
}
|
3636 |
|
|
|
3637 |
|
|
/* Default implementation for sym_relocate. */
|
3638 |
|
|
|
3639 |
|
|
|
3640 |
|
|
bfd_byte *
|
3641 |
|
|
default_symfile_relocate (struct objfile *objfile, asection *sectp,
|
3642 |
|
|
bfd_byte *buf)
|
3643 |
|
|
{
|
3644 |
|
|
bfd *abfd = objfile->obfd;
|
3645 |
|
|
|
3646 |
|
|
/* We're only interested in sections with relocation
|
3647 |
|
|
information. */
|
3648 |
|
|
if ((sectp->flags & SEC_RELOC) == 0)
|
3649 |
|
|
return NULL;
|
3650 |
|
|
|
3651 |
|
|
/* We will handle section offsets properly elsewhere, so relocate as if
|
3652 |
|
|
all sections begin at 0. */
|
3653 |
|
|
bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
|
3654 |
|
|
|
3655 |
|
|
return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
|
3656 |
|
|
}
|
3657 |
|
|
|
3658 |
|
|
/* Relocate the contents of a debug section SECTP in ABFD. The
|
3659 |
|
|
contents are stored in BUF if it is non-NULL, or returned in a
|
3660 |
|
|
malloc'd buffer otherwise.
|
3661 |
|
|
|
3662 |
|
|
For some platforms and debug info formats, shared libraries contain
|
3663 |
|
|
relocations against the debug sections (particularly for DWARF-2;
|
3664 |
|
|
one affected platform is PowerPC GNU/Linux, although it depends on
|
3665 |
|
|
the version of the linker in use). Also, ELF object files naturally
|
3666 |
|
|
have unresolved relocations for their debug sections. We need to apply
|
3667 |
|
|
the relocations in order to get the locations of symbols correct.
|
3668 |
|
|
Another example that may require relocation processing, is the
|
3669 |
|
|
DWARF-2 .eh_frame section in .o files, although it isn't strictly a
|
3670 |
|
|
debug section. */
|
3671 |
|
|
|
3672 |
|
|
bfd_byte *
|
3673 |
|
|
symfile_relocate_debug_section (struct objfile *objfile,
|
3674 |
|
|
asection *sectp, bfd_byte *buf)
|
3675 |
|
|
{
|
3676 |
|
|
gdb_assert (objfile->sf->sym_relocate);
|
3677 |
|
|
|
3678 |
|
|
return (*objfile->sf->sym_relocate) (objfile, sectp, buf);
|
3679 |
|
|
}
|
3680 |
|
|
|
3681 |
|
|
struct symfile_segment_data *
|
3682 |
|
|
get_symfile_segment_data (bfd *abfd)
|
3683 |
|
|
{
|
3684 |
|
|
struct sym_fns *sf = find_sym_fns (abfd);
|
3685 |
|
|
|
3686 |
|
|
if (sf == NULL)
|
3687 |
|
|
return NULL;
|
3688 |
|
|
|
3689 |
|
|
return sf->sym_segments (abfd);
|
3690 |
|
|
}
|
3691 |
|
|
|
3692 |
|
|
void
|
3693 |
|
|
free_symfile_segment_data (struct symfile_segment_data *data)
|
3694 |
|
|
{
|
3695 |
|
|
xfree (data->segment_bases);
|
3696 |
|
|
xfree (data->segment_sizes);
|
3697 |
|
|
xfree (data->segment_info);
|
3698 |
|
|
xfree (data);
|
3699 |
|
|
}
|
3700 |
|
|
|
3701 |
|
|
|
3702 |
|
|
/* Given:
|
3703 |
|
|
- DATA, containing segment addresses from the object file ABFD, and
|
3704 |
|
|
the mapping from ABFD's sections onto the segments that own them,
|
3705 |
|
|
and
|
3706 |
|
|
- SEGMENT_BASES[0 .. NUM_SEGMENT_BASES - 1], holding the actual
|
3707 |
|
|
segment addresses reported by the target,
|
3708 |
|
|
store the appropriate offsets for each section in OFFSETS.
|
3709 |
|
|
|
3710 |
|
|
If there are fewer entries in SEGMENT_BASES than there are segments
|
3711 |
|
|
in DATA, then apply SEGMENT_BASES' last entry to all the segments.
|
3712 |
|
|
|
3713 |
|
|
If there are more entries, then ignore the extra. The target may
|
3714 |
|
|
not be able to distinguish between an empty data segment and a
|
3715 |
|
|
missing data segment; a missing text segment is less plausible. */
|
3716 |
|
|
int
|
3717 |
|
|
symfile_map_offsets_to_segments (bfd *abfd, struct symfile_segment_data *data,
|
3718 |
|
|
struct section_offsets *offsets,
|
3719 |
|
|
int num_segment_bases,
|
3720 |
|
|
const CORE_ADDR *segment_bases)
|
3721 |
|
|
{
|
3722 |
|
|
int i;
|
3723 |
|
|
asection *sect;
|
3724 |
|
|
|
3725 |
|
|
/* It doesn't make sense to call this function unless you have some
|
3726 |
|
|
segment base addresses. */
|
3727 |
|
|
gdb_assert (num_segment_bases > 0);
|
3728 |
|
|
|
3729 |
|
|
/* If we do not have segment mappings for the object file, we
|
3730 |
|
|
can not relocate it by segments. */
|
3731 |
|
|
gdb_assert (data != NULL);
|
3732 |
|
|
gdb_assert (data->num_segments > 0);
|
3733 |
|
|
|
3734 |
|
|
for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
|
3735 |
|
|
{
|
3736 |
|
|
int which = data->segment_info[i];
|
3737 |
|
|
|
3738 |
|
|
gdb_assert (0 <= which && which <= data->num_segments);
|
3739 |
|
|
|
3740 |
|
|
/* Don't bother computing offsets for sections that aren't
|
3741 |
|
|
loaded as part of any segment. */
|
3742 |
|
|
if (! which)
|
3743 |
|
|
continue;
|
3744 |
|
|
|
3745 |
|
|
/* Use the last SEGMENT_BASES entry as the address of any extra
|
3746 |
|
|
segments mentioned in DATA->segment_info. */
|
3747 |
|
|
if (which > num_segment_bases)
|
3748 |
|
|
which = num_segment_bases;
|
3749 |
|
|
|
3750 |
|
|
offsets->offsets[i] = (segment_bases[which - 1]
|
3751 |
|
|
- data->segment_bases[which - 1]);
|
3752 |
|
|
}
|
3753 |
|
|
|
3754 |
|
|
return 1;
|
3755 |
|
|
}
|
3756 |
|
|
|
3757 |
|
|
static void
|
3758 |
|
|
symfile_find_segment_sections (struct objfile *objfile)
|
3759 |
|
|
{
|
3760 |
|
|
bfd *abfd = objfile->obfd;
|
3761 |
|
|
int i;
|
3762 |
|
|
asection *sect;
|
3763 |
|
|
struct symfile_segment_data *data;
|
3764 |
|
|
|
3765 |
|
|
data = get_symfile_segment_data (objfile->obfd);
|
3766 |
|
|
if (data == NULL)
|
3767 |
|
|
return;
|
3768 |
|
|
|
3769 |
|
|
if (data->num_segments != 1 && data->num_segments != 2)
|
3770 |
|
|
{
|
3771 |
|
|
free_symfile_segment_data (data);
|
3772 |
|
|
return;
|
3773 |
|
|
}
|
3774 |
|
|
|
3775 |
|
|
for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
|
3776 |
|
|
{
|
3777 |
|
|
CORE_ADDR vma;
|
3778 |
|
|
int which = data->segment_info[i];
|
3779 |
|
|
|
3780 |
|
|
if (which == 1)
|
3781 |
|
|
{
|
3782 |
|
|
if (objfile->sect_index_text == -1)
|
3783 |
|
|
objfile->sect_index_text = sect->index;
|
3784 |
|
|
|
3785 |
|
|
if (objfile->sect_index_rodata == -1)
|
3786 |
|
|
objfile->sect_index_rodata = sect->index;
|
3787 |
|
|
}
|
3788 |
|
|
else if (which == 2)
|
3789 |
|
|
{
|
3790 |
|
|
if (objfile->sect_index_data == -1)
|
3791 |
|
|
objfile->sect_index_data = sect->index;
|
3792 |
|
|
|
3793 |
|
|
if (objfile->sect_index_bss == -1)
|
3794 |
|
|
objfile->sect_index_bss = sect->index;
|
3795 |
|
|
}
|
3796 |
|
|
}
|
3797 |
|
|
|
3798 |
|
|
free_symfile_segment_data (data);
|
3799 |
|
|
}
|
3800 |
|
|
|
3801 |
|
|
void
|
3802 |
|
|
_initialize_symfile (void)
|
3803 |
|
|
{
|
3804 |
|
|
struct cmd_list_element *c;
|
3805 |
|
|
|
3806 |
|
|
c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
|
3807 |
|
|
Load symbol table from executable file FILE.\n\
|
3808 |
|
|
The `file' command can also load symbol tables, as well as setting the file\n\
|
3809 |
|
|
to execute."), &cmdlist);
|
3810 |
|
|
set_cmd_completer (c, filename_completer);
|
3811 |
|
|
|
3812 |
|
|
c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
|
3813 |
|
|
Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
|
3814 |
|
|
Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR> ...]\n\
|
3815 |
|
|
ADDR is the starting address of the file's text.\n\
|
3816 |
|
|
The optional arguments are section-name section-address pairs and\n\
|
3817 |
|
|
should be specified if the data and bss segments are not contiguous\n\
|
3818 |
|
|
with the text. SECT is a section name to be loaded at SECT_ADDR."),
|
3819 |
|
|
&cmdlist);
|
3820 |
|
|
set_cmd_completer (c, filename_completer);
|
3821 |
|
|
|
3822 |
|
|
c = add_cmd ("load", class_files, load_command, _("\
|
3823 |
|
|
Dynamically load FILE into the running program, and record its symbols\n\
|
3824 |
|
|
for access from GDB.\n\
|
3825 |
|
|
A load OFFSET may also be given."), &cmdlist);
|
3826 |
|
|
set_cmd_completer (c, filename_completer);
|
3827 |
|
|
|
3828 |
|
|
add_setshow_boolean_cmd ("symbol-reloading", class_support,
|
3829 |
|
|
&symbol_reloading, _("\
|
3830 |
|
|
Set dynamic symbol table reloading multiple times in one run."), _("\
|
3831 |
|
|
Show dynamic symbol table reloading multiple times in one run."), NULL,
|
3832 |
|
|
NULL,
|
3833 |
|
|
show_symbol_reloading,
|
3834 |
|
|
&setlist, &showlist);
|
3835 |
|
|
|
3836 |
|
|
add_prefix_cmd ("overlay", class_support, overlay_command,
|
3837 |
|
|
_("Commands for debugging overlays."), &overlaylist,
|
3838 |
|
|
"overlay ", 0, &cmdlist);
|
3839 |
|
|
|
3840 |
|
|
add_com_alias ("ovly", "overlay", class_alias, 1);
|
3841 |
|
|
add_com_alias ("ov", "overlay", class_alias, 1);
|
3842 |
|
|
|
3843 |
|
|
add_cmd ("map-overlay", class_support, map_overlay_command,
|
3844 |
|
|
_("Assert that an overlay section is mapped."), &overlaylist);
|
3845 |
|
|
|
3846 |
|
|
add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
|
3847 |
|
|
_("Assert that an overlay section is unmapped."), &overlaylist);
|
3848 |
|
|
|
3849 |
|
|
add_cmd ("list-overlays", class_support, list_overlays_command,
|
3850 |
|
|
_("List mappings of overlay sections."), &overlaylist);
|
3851 |
|
|
|
3852 |
|
|
add_cmd ("manual", class_support, overlay_manual_command,
|
3853 |
|
|
_("Enable overlay debugging."), &overlaylist);
|
3854 |
|
|
add_cmd ("off", class_support, overlay_off_command,
|
3855 |
|
|
_("Disable overlay debugging."), &overlaylist);
|
3856 |
|
|
add_cmd ("auto", class_support, overlay_auto_command,
|
3857 |
|
|
_("Enable automatic overlay debugging."), &overlaylist);
|
3858 |
|
|
add_cmd ("load-target", class_support, overlay_load_command,
|
3859 |
|
|
_("Read the overlay mapping state from the target."), &overlaylist);
|
3860 |
|
|
|
3861 |
|
|
/* Filename extension to source language lookup table: */
|
3862 |
|
|
init_filename_language_table ();
|
3863 |
|
|
add_setshow_string_noescape_cmd ("extension-language", class_files,
|
3864 |
|
|
&ext_args, _("\
|
3865 |
|
|
Set mapping between filename extension and source language."), _("\
|
3866 |
|
|
Show mapping between filename extension and source language."), _("\
|
3867 |
|
|
Usage: set extension-language .foo bar"),
|
3868 |
|
|
set_ext_lang_command,
|
3869 |
|
|
show_ext_args,
|
3870 |
|
|
&setlist, &showlist);
|
3871 |
|
|
|
3872 |
|
|
add_info ("extensions", info_ext_lang_command,
|
3873 |
|
|
_("All filename extensions associated with a source language."));
|
3874 |
|
|
|
3875 |
|
|
add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
|
3876 |
|
|
&debug_file_directory, _("\
|
3877 |
|
|
Set the directories where separate debug symbols are searched for."), _("\
|
3878 |
|
|
Show the directories where separate debug symbols are searched for."), _("\
|
3879 |
|
|
Separate debug symbols are first searched for in the same\n\
|
3880 |
|
|
directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
|
3881 |
|
|
and lastly at the path of the directory of the binary with\n\
|
3882 |
|
|
each global debug-file-directory component prepended."),
|
3883 |
|
|
NULL,
|
3884 |
|
|
show_debug_file_directory,
|
3885 |
|
|
&setlist, &showlist);
|
3886 |
|
|
}
|