OpenCores
URL https://opencores.org/ocsvn/openrisc_me/openrisc_me/trunk

Subversion Repositories openrisc_me

[/] [openrisc/] [trunk/] [gnu-src/] [gdb-7.1/] [gdb/] [target.h] - Blame information for rev 280

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 227 jeremybenn
/* Interface between GDB and target environments, including files and processes
2
 
3
   Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
4
   2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
5
   Free Software Foundation, Inc.
6
 
7
   Contributed by Cygnus Support.  Written by John Gilmore.
8
 
9
   This file is part of GDB.
10
 
11
   This program is free software; you can redistribute it and/or modify
12
   it under the terms of the GNU General Public License as published by
13
   the Free Software Foundation; either version 3 of the License, or
14
   (at your option) any later version.
15
 
16
   This program is distributed in the hope that it will be useful,
17
   but WITHOUT ANY WARRANTY; without even the implied warranty of
18
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
19
   GNU General Public License for more details.
20
 
21
   You should have received a copy of the GNU General Public License
22
   along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
23
 
24
#if !defined (TARGET_H)
25
#define TARGET_H
26
 
27
struct objfile;
28
struct ui_file;
29
struct mem_attrib;
30
struct target_ops;
31
struct bp_target_info;
32
struct regcache;
33
struct target_section_table;
34
struct trace_state_variable;
35
struct trace_status;
36
struct uploaded_tsv;
37
struct uploaded_tp;
38
 
39
/* This include file defines the interface between the main part
40
   of the debugger, and the part which is target-specific, or
41
   specific to the communications interface between us and the
42
   target.
43
 
44
   A TARGET is an interface between the debugger and a particular
45
   kind of file or process.  Targets can be STACKED in STRATA,
46
   so that more than one target can potentially respond to a request.
47
   In particular, memory accesses will walk down the stack of targets
48
   until they find a target that is interested in handling that particular
49
   address.  STRATA are artificial boundaries on the stack, within
50
   which particular kinds of targets live.  Strata exist so that
51
   people don't get confused by pushing e.g. a process target and then
52
   a file target, and wondering why they can't see the current values
53
   of variables any more (the file target is handling them and they
54
   never get to the process target).  So when you push a file target,
55
   it goes into the file stratum, which is always below the process
56
   stratum.  */
57
 
58
#include "bfd.h"
59
#include "symtab.h"
60
#include "memattr.h"
61
#include "vec.h"
62
#include "gdb_signals.h"
63
 
64
enum strata
65
  {
66
    dummy_stratum,              /* The lowest of the low */
67
    file_stratum,               /* Executable files, etc */
68
    core_stratum,               /* Core dump files */
69
    process_stratum,            /* Executing processes */
70
    thread_stratum,             /* Executing threads */
71
    record_stratum,             /* Support record debugging */
72
    arch_stratum                /* Architecture overrides */
73
  };
74
 
75
enum thread_control_capabilities
76
  {
77
    tc_none = 0,         /* Default: can't control thread execution.  */
78
    tc_schedlock = 1,           /* Can lock the thread scheduler.  */
79
  };
80
 
81
/* Stuff for target_wait.  */
82
 
83
/* Generally, what has the program done?  */
84
enum target_waitkind
85
  {
86
    /* The program has exited.  The exit status is in value.integer.  */
87
    TARGET_WAITKIND_EXITED,
88
 
89
    /* The program has stopped with a signal.  Which signal is in
90
       value.sig.  */
91
    TARGET_WAITKIND_STOPPED,
92
 
93
    /* The program has terminated with a signal.  Which signal is in
94
       value.sig.  */
95
    TARGET_WAITKIND_SIGNALLED,
96
 
97
    /* The program is letting us know that it dynamically loaded something
98
       (e.g. it called load(2) on AIX).  */
99
    TARGET_WAITKIND_LOADED,
100
 
101
    /* The program has forked.  A "related" process' PTID is in
102
       value.related_pid.  I.e., if the child forks, value.related_pid
103
       is the parent's ID.  */
104
 
105
    TARGET_WAITKIND_FORKED,
106
 
107
    /* The program has vforked.  A "related" process's PTID is in
108
       value.related_pid.  */
109
 
110
    TARGET_WAITKIND_VFORKED,
111
 
112
    /* The program has exec'ed a new executable file.  The new file's
113
       pathname is pointed to by value.execd_pathname.  */
114
 
115
    TARGET_WAITKIND_EXECD,
116
 
117
    /* The program had previously vforked, and now the child is done
118
       with the shared memory region, because it exec'ed or exited.
119
       Note that the event is reported to the vfork parent.  This is
120
       only used if GDB did not stay attached to the vfork child,
121
       otherwise, a TARGET_WAITKIND_EXECD or
122
       TARGET_WAITKIND_EXIT|SIGNALLED event associated with the child
123
       has the same effect.  */
124
    TARGET_WAITKIND_VFORK_DONE,
125
 
126
    /* The program has entered or returned from a system call.  On
127
       HP-UX, this is used in the hardware watchpoint implementation.
128
       The syscall's unique integer ID number is in value.syscall_id */
129
 
130
    TARGET_WAITKIND_SYSCALL_ENTRY,
131
    TARGET_WAITKIND_SYSCALL_RETURN,
132
 
133
    /* Nothing happened, but we stopped anyway.  This perhaps should be handled
134
       within target_wait, but I'm not sure target_wait should be resuming the
135
       inferior.  */
136
    TARGET_WAITKIND_SPURIOUS,
137
 
138
    /* An event has occured, but we should wait again.
139
       Remote_async_wait() returns this when there is an event
140
       on the inferior, but the rest of the world is not interested in
141
       it. The inferior has not stopped, but has just sent some output
142
       to the console, for instance. In this case, we want to go back
143
       to the event loop and wait there for another event from the
144
       inferior, rather than being stuck in the remote_async_wait()
145
       function. This way the event loop is responsive to other events,
146
       like for instance the user typing.  */
147
    TARGET_WAITKIND_IGNORE,
148
 
149
    /* The target has run out of history information,
150
       and cannot run backward any further.  */
151
    TARGET_WAITKIND_NO_HISTORY
152
  };
153
 
154
struct target_waitstatus
155
  {
156
    enum target_waitkind kind;
157
 
158
    /* Forked child pid, execd pathname, exit status, signal number or
159
       syscall number.  */
160
    union
161
      {
162
        int integer;
163
        enum target_signal sig;
164
        ptid_t related_pid;
165
        char *execd_pathname;
166
        int syscall_number;
167
      }
168
    value;
169
  };
170
 
171
/* Options that can be passed to target_wait.  */
172
 
173
/* Return immediately if there's no event already queued.  If this
174
   options is not requested, target_wait blocks waiting for an
175
   event.  */
176
#define TARGET_WNOHANG 1
177
 
178
/* The structure below stores information about a system call.
179
   It is basically used in the "catch syscall" command, and in
180
   every function that gives information about a system call.
181
 
182
   It's also good to mention that its fields represent everything
183
   that we currently know about a syscall in GDB.  */
184
struct syscall
185
  {
186
    /* The syscall number.  */
187
    int number;
188
 
189
    /* The syscall name.  */
190
    const char *name;
191
  };
192
 
193
/* Return a pretty printed form of target_waitstatus.
194
   Space for the result is malloc'd, caller must free.  */
195
extern char *target_waitstatus_to_string (const struct target_waitstatus *);
196
 
197
/* Possible types of events that the inferior handler will have to
198
   deal with.  */
199
enum inferior_event_type
200
  {
201
    /* There is a request to quit the inferior, abandon it.  */
202
    INF_QUIT_REQ,
203
    /* Process a normal inferior event which will result in target_wait
204
       being called.  */
205
    INF_REG_EVENT,
206
    /* Deal with an error on the inferior.  */
207
    INF_ERROR,
208
    /* We are called because a timer went off.  */
209
    INF_TIMER,
210
    /* We are called to do stuff after the inferior stops.  */
211
    INF_EXEC_COMPLETE,
212
    /* We are called to do some stuff after the inferior stops, but we
213
       are expected to reenter the proceed() and
214
       handle_inferior_event() functions. This is used only in case of
215
       'step n' like commands.  */
216
    INF_EXEC_CONTINUE
217
  };
218
 
219
/* Target objects which can be transfered using target_read,
220
   target_write, et cetera.  */
221
 
222
enum target_object
223
{
224
  /* AVR target specific transfer.  See "avr-tdep.c" and "remote.c".  */
225
  TARGET_OBJECT_AVR,
226
  /* SPU target specific transfer.  See "spu-tdep.c".  */
227
  TARGET_OBJECT_SPU,
228
  /* Transfer up-to LEN bytes of memory starting at OFFSET.  */
229
  TARGET_OBJECT_MEMORY,
230
  /* Memory, avoiding GDB's data cache and trusting the executable.
231
     Target implementations of to_xfer_partial never need to handle
232
     this object, and most callers should not use it.  */
233
  TARGET_OBJECT_RAW_MEMORY,
234
  /* Memory known to be part of the target's stack.  This is cached even
235
     if it is not in a region marked as such, since it is known to be
236
     "normal" RAM.  */
237
  TARGET_OBJECT_STACK_MEMORY,
238
  /* Kernel Unwind Table.  See "ia64-tdep.c".  */
239
  TARGET_OBJECT_UNWIND_TABLE,
240
  /* Transfer auxilliary vector.  */
241
  TARGET_OBJECT_AUXV,
242
  /* StackGhost cookie.  See "sparc-tdep.c".  */
243
  TARGET_OBJECT_WCOOKIE,
244
  /* Target memory map in XML format.  */
245
  TARGET_OBJECT_MEMORY_MAP,
246
  /* Flash memory.  This object can be used to write contents to
247
     a previously erased flash memory.  Using it without erasing
248
     flash can have unexpected results.  Addresses are physical
249
     address on target, and not relative to flash start.  */
250
  TARGET_OBJECT_FLASH,
251
  /* Available target-specific features, e.g. registers and coprocessors.
252
     See "target-descriptions.c".  ANNEX should never be empty.  */
253
  TARGET_OBJECT_AVAILABLE_FEATURES,
254
  /* Currently loaded libraries, in XML format.  */
255
  TARGET_OBJECT_LIBRARIES,
256
  /* Get OS specific data.  The ANNEX specifies the type (running
257
     processes, etc.).  */
258
  TARGET_OBJECT_OSDATA,
259
  /* Extra signal info.  Usually the contents of `siginfo_t' on unix
260
     platforms.  */
261
  TARGET_OBJECT_SIGNAL_INFO,
262
  /* The list of threads that are being debugged.  */
263
  TARGET_OBJECT_THREADS,
264
  /* Possible future objects: TARGET_OBJECT_FILE, ... */
265
};
266
 
267
/* Enumeration of the kinds of traceframe searches that a target may
268
   be able to perform.  */
269
 
270
enum trace_find_type
271
  {
272
    tfind_number,
273
    tfind_pc,
274
    tfind_tp,
275
    tfind_range,
276
    tfind_outside,
277
  };
278
 
279
/* Request that OPS transfer up to LEN 8-bit bytes of the target's
280
   OBJECT.  The OFFSET, for a seekable object, specifies the
281
   starting point.  The ANNEX can be used to provide additional
282
   data-specific information to the target.
283
 
284
   Return the number of bytes actually transfered, or -1 if the
285
   transfer is not supported or otherwise fails.  Return of a positive
286
   value less than LEN indicates that no further transfer is possible.
287
   Unlike the raw to_xfer_partial interface, callers of these
288
   functions do not need to retry partial transfers.  */
289
 
290
extern LONGEST target_read (struct target_ops *ops,
291
                            enum target_object object,
292
                            const char *annex, gdb_byte *buf,
293
                            ULONGEST offset, LONGEST len);
294
 
295
extern LONGEST target_read_until_error (struct target_ops *ops,
296
                                        enum target_object object,
297
                                        const char *annex, gdb_byte *buf,
298
                                        ULONGEST offset, LONGEST len);
299
 
300
extern LONGEST target_write (struct target_ops *ops,
301
                             enum target_object object,
302
                             const char *annex, const gdb_byte *buf,
303
                             ULONGEST offset, LONGEST len);
304
 
305
/* Similar to target_write, except that it also calls PROGRESS with
306
   the number of bytes written and the opaque BATON after every
307
   successful partial write (and before the first write).  This is
308
   useful for progress reporting and user interaction while writing
309
   data.  To abort the transfer, the progress callback can throw an
310
   exception.  */
311
 
312
LONGEST target_write_with_progress (struct target_ops *ops,
313
                                    enum target_object object,
314
                                    const char *annex, const gdb_byte *buf,
315
                                    ULONGEST offset, LONGEST len,
316
                                    void (*progress) (ULONGEST, void *),
317
                                    void *baton);
318
 
319
/* Wrapper to perform a full read of unknown size.  OBJECT/ANNEX will
320
   be read using OPS.  The return value will be -1 if the transfer
321
   fails or is not supported; 0 if the object is empty; or the length
322
   of the object otherwise.  If a positive value is returned, a
323
   sufficiently large buffer will be allocated using xmalloc and
324
   returned in *BUF_P containing the contents of the object.
325
 
326
   This method should be used for objects sufficiently small to store
327
   in a single xmalloc'd buffer, when no fixed bound on the object's
328
   size is known in advance.  Don't try to read TARGET_OBJECT_MEMORY
329
   through this function.  */
330
 
331
extern LONGEST target_read_alloc (struct target_ops *ops,
332
                                  enum target_object object,
333
                                  const char *annex, gdb_byte **buf_p);
334
 
335
/* Read OBJECT/ANNEX using OPS.  The result is NUL-terminated and
336
   returned as a string, allocated using xmalloc.  If an error occurs
337
   or the transfer is unsupported, NULL is returned.  Empty objects
338
   are returned as allocated but empty strings.  A warning is issued
339
   if the result contains any embedded NUL bytes.  */
340
 
341
extern char *target_read_stralloc (struct target_ops *ops,
342
                                   enum target_object object,
343
                                   const char *annex);
344
 
345
/* Wrappers to target read/write that perform memory transfers.  They
346
   throw an error if the memory transfer fails.
347
 
348
   NOTE: cagney/2003-10-23: The naming schema is lifted from
349
   "frame.h".  The parameter order is lifted from get_frame_memory,
350
   which in turn lifted it from read_memory.  */
351
 
352
extern void get_target_memory (struct target_ops *ops, CORE_ADDR addr,
353
                               gdb_byte *buf, LONGEST len);
354
extern ULONGEST get_target_memory_unsigned (struct target_ops *ops,
355
                                            CORE_ADDR addr, int len,
356
                                            enum bfd_endian byte_order);
357
 
358
struct thread_info;             /* fwd decl for parameter list below: */
359
 
360
struct target_ops
361
  {
362
    struct target_ops *beneath; /* To the target under this one.  */
363
    char *to_shortname;         /* Name this target type */
364
    char *to_longname;          /* Name for printing */
365
    char *to_doc;               /* Documentation.  Does not include trailing
366
                                   newline, and starts with a one-line descrip-
367
                                   tion (probably similar to to_longname).  */
368
    /* Per-target scratch pad.  */
369
    void *to_data;
370
    /* The open routine takes the rest of the parameters from the
371
       command, and (if successful) pushes a new target onto the
372
       stack.  Targets should supply this routine, if only to provide
373
       an error message.  */
374
    void (*to_open) (char *, int);
375
    /* Old targets with a static target vector provide "to_close".
376
       New re-entrant targets provide "to_xclose" and that is expected
377
       to xfree everything (including the "struct target_ops").  */
378
    void (*to_xclose) (struct target_ops *targ, int quitting);
379
    void (*to_close) (int);
380
    void (*to_attach) (struct target_ops *ops, char *, int);
381
    void (*to_post_attach) (int);
382
    void (*to_detach) (struct target_ops *ops, char *, int);
383
    void (*to_disconnect) (struct target_ops *, char *, int);
384
    void (*to_resume) (struct target_ops *, ptid_t, int, enum target_signal);
385
    ptid_t (*to_wait) (struct target_ops *,
386
                       ptid_t, struct target_waitstatus *, int);
387
    void (*to_fetch_registers) (struct target_ops *, struct regcache *, int);
388
    void (*to_store_registers) (struct target_ops *, struct regcache *, int);
389
    void (*to_prepare_to_store) (struct regcache *);
390
 
391
    /* Transfer LEN bytes of memory between GDB address MYADDR and
392
       target address MEMADDR.  If WRITE, transfer them to the target, else
393
       transfer them from the target.  TARGET is the target from which we
394
       get this function.
395
 
396
       Return value, N, is one of the following:
397
 
398
 
399
       error which prevented us from doing it (FIXME: What about bfd_error?).
400
 
401
       positive (call it N) means that we have transferred N bytes
402
       starting at MEMADDR.  We might be able to handle more bytes
403
       beyond this length, but no promises.
404
 
405
       negative (call its absolute value N) means that we cannot
406
       transfer right at MEMADDR, but we could transfer at least
407
       something at MEMADDR + N.
408
 
409
       NOTE: cagney/2004-10-01: This has been entirely superseeded by
410
       to_xfer_partial and inferior inheritance.  */
411
 
412
    int (*deprecated_xfer_memory) (CORE_ADDR memaddr, gdb_byte *myaddr,
413
                                   int len, int write,
414
                                   struct mem_attrib *attrib,
415
                                   struct target_ops *target);
416
 
417
    void (*to_files_info) (struct target_ops *);
418
    int (*to_insert_breakpoint) (struct gdbarch *, struct bp_target_info *);
419
    int (*to_remove_breakpoint) (struct gdbarch *, struct bp_target_info *);
420
    int (*to_can_use_hw_breakpoint) (int, int, int);
421
    int (*to_insert_hw_breakpoint) (struct gdbarch *, struct bp_target_info *);
422
    int (*to_remove_hw_breakpoint) (struct gdbarch *, struct bp_target_info *);
423
    int (*to_remove_watchpoint) (CORE_ADDR, int, int);
424
    int (*to_insert_watchpoint) (CORE_ADDR, int, int);
425
    int (*to_stopped_by_watchpoint) (void);
426
    int to_have_steppable_watchpoint;
427
    int to_have_continuable_watchpoint;
428
    int (*to_stopped_data_address) (struct target_ops *, CORE_ADDR *);
429
    int (*to_watchpoint_addr_within_range) (struct target_ops *,
430
                                            CORE_ADDR, CORE_ADDR, int);
431
    int (*to_region_ok_for_hw_watchpoint) (CORE_ADDR, int);
432
    void (*to_terminal_init) (void);
433
    void (*to_terminal_inferior) (void);
434
    void (*to_terminal_ours_for_output) (void);
435
    void (*to_terminal_ours) (void);
436
    void (*to_terminal_save_ours) (void);
437
    void (*to_terminal_info) (char *, int);
438
    void (*to_kill) (struct target_ops *);
439
    void (*to_load) (char *, int);
440
    int (*to_lookup_symbol) (char *, CORE_ADDR *);
441
    void (*to_create_inferior) (struct target_ops *,
442
                                char *, char *, char **, int);
443
    void (*to_post_startup_inferior) (ptid_t);
444
    void (*to_acknowledge_created_inferior) (int);
445
    void (*to_insert_fork_catchpoint) (int);
446
    int (*to_remove_fork_catchpoint) (int);
447
    void (*to_insert_vfork_catchpoint) (int);
448
    int (*to_remove_vfork_catchpoint) (int);
449
    int (*to_follow_fork) (struct target_ops *, int);
450
    void (*to_insert_exec_catchpoint) (int);
451
    int (*to_remove_exec_catchpoint) (int);
452
    int (*to_set_syscall_catchpoint) (int, int, int, int, int *);
453
    int (*to_has_exited) (int, int, int *);
454
    void (*to_mourn_inferior) (struct target_ops *);
455
    int (*to_can_run) (void);
456
    void (*to_notice_signals) (ptid_t ptid);
457
    int (*to_thread_alive) (struct target_ops *, ptid_t ptid);
458
    void (*to_find_new_threads) (struct target_ops *);
459
    char *(*to_pid_to_str) (struct target_ops *, ptid_t);
460
    char *(*to_extra_thread_info) (struct thread_info *);
461
    void (*to_stop) (ptid_t);
462
    void (*to_rcmd) (char *command, struct ui_file *output);
463
    char *(*to_pid_to_exec_file) (int pid);
464
    void (*to_log_command) (const char *);
465
    struct target_section_table *(*to_get_section_table) (struct target_ops *);
466
    enum strata to_stratum;
467
    int (*to_has_all_memory) (struct target_ops *);
468
    int (*to_has_memory) (struct target_ops *);
469
    int (*to_has_stack) (struct target_ops *);
470
    int (*to_has_registers) (struct target_ops *);
471
    int (*to_has_execution) (struct target_ops *);
472
    int to_has_thread_control;  /* control thread execution */
473
    int to_attach_no_wait;
474
    /* ASYNC target controls */
475
    int (*to_can_async_p) (void);
476
    int (*to_is_async_p) (void);
477
    void (*to_async) (void (*) (enum inferior_event_type, void *), void *);
478
    int (*to_async_mask) (int);
479
    int (*to_supports_non_stop) (void);
480
    /* find_memory_regions support method for gcore */
481
    int (*to_find_memory_regions) (int (*) (CORE_ADDR,
482
                                            unsigned long,
483
                                            int, int, int,
484
                                            void *),
485
                                   void *);
486
    /* make_corefile_notes support method for gcore */
487
    char * (*to_make_corefile_notes) (bfd *, int *);
488
    /* get_bookmark support method for bookmarks */
489
    gdb_byte * (*to_get_bookmark) (char *, int);
490
    /* goto_bookmark support method for bookmarks */
491
    void (*to_goto_bookmark) (gdb_byte *, int);
492
    /* Return the thread-local address at OFFSET in the
493
       thread-local storage for the thread PTID and the shared library
494
       or executable file given by OBJFILE.  If that block of
495
       thread-local storage hasn't been allocated yet, this function
496
       may return an error.  */
497
    CORE_ADDR (*to_get_thread_local_address) (struct target_ops *ops,
498
                                              ptid_t ptid,
499
                                              CORE_ADDR load_module_addr,
500
                                              CORE_ADDR offset);
501
 
502
    /* Request that OPS transfer up to LEN 8-bit bytes of the target's
503
       OBJECT.  The OFFSET, for a seekable object, specifies the
504
       starting point.  The ANNEX can be used to provide additional
505
       data-specific information to the target.
506
 
507
       Return the number of bytes actually transfered, zero when no
508
       further transfer is possible, and -1 when the transfer is not
509
       supported.  Return of a positive value smaller than LEN does
510
       not indicate the end of the object, only the end of the
511
       transfer; higher level code should continue transferring if
512
       desired.  This is handled in target.c.
513
 
514
       The interface does not support a "retry" mechanism.  Instead it
515
       assumes that at least one byte will be transfered on each
516
       successful call.
517
 
518
       NOTE: cagney/2003-10-17: The current interface can lead to
519
       fragmented transfers.  Lower target levels should not implement
520
       hacks, such as enlarging the transfer, in an attempt to
521
       compensate for this.  Instead, the target stack should be
522
       extended so that it implements supply/collect methods and a
523
       look-aside object cache.  With that available, the lowest
524
       target can safely and freely "push" data up the stack.
525
 
526
       See target_read and target_write for more information.  One,
527
       and only one, of readbuf or writebuf must be non-NULL.  */
528
 
529
    LONGEST (*to_xfer_partial) (struct target_ops *ops,
530
                                enum target_object object, const char *annex,
531
                                gdb_byte *readbuf, const gdb_byte *writebuf,
532
                                ULONGEST offset, LONGEST len);
533
 
534
    /* Returns the memory map for the target.  A return value of NULL
535
       means that no memory map is available.  If a memory address
536
       does not fall within any returned regions, it's assumed to be
537
       RAM.  The returned memory regions should not overlap.
538
 
539
       The order of regions does not matter; target_memory_map will
540
       sort regions by starting address. For that reason, this
541
       function should not be called directly except via
542
       target_memory_map.
543
 
544
       This method should not cache data; if the memory map could
545
       change unexpectedly, it should be invalidated, and higher
546
       layers will re-fetch it.  */
547
    VEC(mem_region_s) *(*to_memory_map) (struct target_ops *);
548
 
549
    /* Erases the region of flash memory starting at ADDRESS, of
550
       length LENGTH.
551
 
552
       Precondition: both ADDRESS and ADDRESS+LENGTH should be aligned
553
       on flash block boundaries, as reported by 'to_memory_map'.  */
554
    void (*to_flash_erase) (struct target_ops *,
555
                           ULONGEST address, LONGEST length);
556
 
557
    /* Finishes a flash memory write sequence.  After this operation
558
       all flash memory should be available for writing and the result
559
       of reading from areas written by 'to_flash_write' should be
560
       equal to what was written.  */
561
    void (*to_flash_done) (struct target_ops *);
562
 
563
    /* Describe the architecture-specific features of this target.
564
       Returns the description found, or NULL if no description
565
       was available.  */
566
    const struct target_desc *(*to_read_description) (struct target_ops *ops);
567
 
568
    /* Build the PTID of the thread on which a given task is running,
569
       based on LWP and THREAD.  These values are extracted from the
570
       task Private_Data section of the Ada Task Control Block, and
571
       their interpretation depends on the target.  */
572
    ptid_t (*to_get_ada_task_ptid) (long lwp, long thread);
573
 
574
    /* Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
575
       Return 0 if *READPTR is already at the end of the buffer.
576
       Return -1 if there is insufficient buffer for a whole entry.
577
       Return 1 if an entry was read into *TYPEP and *VALP.  */
578
    int (*to_auxv_parse) (struct target_ops *ops, gdb_byte **readptr,
579
                         gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp);
580
 
581
    /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
582
       sequence of bytes in PATTERN with length PATTERN_LEN.
583
 
584
       The result is 1 if found, 0 if not found, and -1 if there was an error
585
       requiring halting of the search (e.g. memory read error).
586
       If the pattern is found the address is recorded in FOUND_ADDRP.  */
587
    int (*to_search_memory) (struct target_ops *ops,
588
                             CORE_ADDR start_addr, ULONGEST search_space_len,
589
                             const gdb_byte *pattern, ULONGEST pattern_len,
590
                             CORE_ADDR *found_addrp);
591
 
592
    /* Can target execute in reverse?  */
593
    int (*to_can_execute_reverse) (void);
594
 
595
    /* Does this target support debugging multiple processes
596
       simultaneously?  */
597
    int (*to_supports_multi_process) (void);
598
 
599
    /* Determine current architecture of thread PTID.
600
 
601
       The target is supposed to determine the architecture of the code where
602
       the target is currently stopped at (on Cell, if a target is in spu_run,
603
       to_thread_architecture would return SPU, otherwise PPC32 or PPC64).
604
       This is architecture used to perform decr_pc_after_break adjustment,
605
       and also determines the frame architecture of the innermost frame.
606
       ptrace operations need to operate according to target_gdbarch.
607
 
608
       The default implementation always returns target_gdbarch.  */
609
    struct gdbarch *(*to_thread_architecture) (struct target_ops *, ptid_t);
610
 
611
    /* Determine current address space of thread PTID.
612
 
613
       The default implementation always returns the inferior's
614
       address space.  */
615
    struct address_space *(*to_thread_address_space) (struct target_ops *,
616
                                                      ptid_t);
617
 
618
    /* Tracepoint-related operations.  */
619
 
620
    /* Prepare the target for a tracing run.  */
621
    void (*to_trace_init) (void);
622
 
623
    /* Send full details of a tracepoint to the target.  */
624
    void (*to_download_tracepoint) (struct breakpoint *t);
625
 
626
    /* Send full details of a trace state variable to the target.  */
627
    void (*to_download_trace_state_variable) (struct trace_state_variable *tsv);
628
 
629
    /* Inform the target info of memory regions that are readonly
630
       (such as text sections), and so it should return data from
631
       those rather than look in the trace buffer.  */
632
    void (*to_trace_set_readonly_regions) (void);
633
 
634
    /* Start a trace run.  */
635
    void (*to_trace_start) (void);
636
 
637
    /* Get the current status of a tracing run.  */
638
    int (*to_get_trace_status) (struct trace_status *ts);
639
 
640
    /* Stop a trace run.  */
641
    void (*to_trace_stop) (void);
642
 
643
   /* Ask the target to find a trace frame of the given type TYPE,
644
      using NUM, ADDR1, and ADDR2 as search parameters.  Returns the
645
      number of the trace frame, and also the tracepoint number at
646
      TPP.  */
647
    int (*to_trace_find) (enum trace_find_type type, int num,
648
                          ULONGEST addr1, ULONGEST addr2, int *tpp);
649
 
650
    /* Get the value of the trace state variable number TSV, returning
651
       1 if the value is known and writing the value itself into the
652
       location pointed to by VAL, else returning 0.  */
653
    int (*to_get_trace_state_variable_value) (int tsv, LONGEST *val);
654
 
655
    int (*to_save_trace_data) (char *filename);
656
 
657
    int (*to_upload_tracepoints) (struct uploaded_tp **utpp);
658
 
659
    int (*to_upload_trace_state_variables) (struct uploaded_tsv **utsvp);
660
 
661
    LONGEST (*to_get_raw_trace_data) (gdb_byte *buf,
662
                                      ULONGEST offset, LONGEST len);
663
 
664
    /* Set the target's tracing behavior in response to unexpected
665
       disconnection - set VAL to 1 to keep tracing, 0 to stop.  */
666
    void (*to_set_disconnected_tracing) (int val);
667
 
668
    /* Return the processor core that thread PTID was last seen on.
669
       This information is updated only when:
670
       - update_thread_list is called
671
       - thread stops
672
       If the core cannot be determined -- either for the specified thread, or
673
       right now, or in this debug session, or for this target -- return -1.  */
674
    int (*to_core_of_thread) (struct target_ops *, ptid_t ptid);
675
 
676
    int to_magic;
677
    /* Need sub-structure for target machine related rather than comm related?
678
     */
679
  };
680
 
681
/* Magic number for checking ops size.  If a struct doesn't end with this
682
   number, somebody changed the declaration but didn't change all the
683
   places that initialize one.  */
684
 
685
#define OPS_MAGIC       3840
686
 
687
/* The ops structure for our "current" target process.  This should
688
   never be NULL.  If there is no target, it points to the dummy_target.  */
689
 
690
extern struct target_ops current_target;
691
 
692
/* Define easy words for doing these operations on our current target.  */
693
 
694
#define target_shortname        (current_target.to_shortname)
695
#define target_longname         (current_target.to_longname)
696
 
697
/* Does whatever cleanup is required for a target that we are no
698
   longer going to be calling.  QUITTING indicates that GDB is exiting
699
   and should not get hung on an error (otherwise it is important to
700
   perform clean termination, even if it takes a while).  This routine
701
   is automatically always called when popping the target off the
702
   target stack (to_beneath is undefined).  Closing file descriptors
703
   and freeing all memory allocated memory are typical things it
704
   should do.  */
705
 
706
void target_close (struct target_ops *targ, int quitting);
707
 
708
/* Attaches to a process on the target side.  Arguments are as passed
709
   to the `attach' command by the user.  This routine can be called
710
   when the target is not on the target-stack, if the target_can_run
711
   routine returns 1; in that case, it must push itself onto the stack.
712
   Upon exit, the target should be ready for normal operations, and
713
   should be ready to deliver the status of the process immediately
714
   (without waiting) to an upcoming target_wait call.  */
715
 
716
void target_attach (char *, int);
717
 
718
/* Some targets don't generate traps when attaching to the inferior,
719
   or their target_attach implementation takes care of the waiting.
720
   These targets must set to_attach_no_wait.  */
721
 
722
#define target_attach_no_wait \
723
     (current_target.to_attach_no_wait)
724
 
725
/* The target_attach operation places a process under debugger control,
726
   and stops the process.
727
 
728
   This operation provides a target-specific hook that allows the
729
   necessary bookkeeping to be performed after an attach completes.  */
730
#define target_post_attach(pid) \
731
     (*current_target.to_post_attach) (pid)
732
 
733
/* Takes a program previously attached to and detaches it.
734
   The program may resume execution (some targets do, some don't) and will
735
   no longer stop on signals, etc.  We better not have left any breakpoints
736
   in the program or it'll die when it hits one.  ARGS is arguments
737
   typed by the user (e.g. a signal to send the process).  FROM_TTY
738
   says whether to be verbose or not.  */
739
 
740
extern void target_detach (char *, int);
741
 
742
/* Disconnect from the current target without resuming it (leaving it
743
   waiting for a debugger).  */
744
 
745
extern void target_disconnect (char *, int);
746
 
747
/* Resume execution of the target process PTID.  STEP says whether to
748
   single-step or to run free; SIGGNAL is the signal to be given to
749
   the target, or TARGET_SIGNAL_0 for no signal.  The caller may not
750
   pass TARGET_SIGNAL_DEFAULT.  */
751
 
752
extern void target_resume (ptid_t ptid, int step, enum target_signal signal);
753
 
754
/* Wait for process pid to do something.  PTID = -1 to wait for any
755
   pid to do something.  Return pid of child, or -1 in case of error;
756
   store status through argument pointer STATUS.  Note that it is
757
   _NOT_ OK to throw_exception() out of target_wait() without popping
758
   the debugging target from the stack; GDB isn't prepared to get back
759
   to the prompt with a debugging target but without the frame cache,
760
   stop_pc, etc., set up.  OPTIONS is a bitwise OR of TARGET_W*
761
   options.  */
762
 
763
extern ptid_t target_wait (ptid_t ptid, struct target_waitstatus *status,
764
                           int options);
765
 
766
/* Fetch at least register REGNO, or all regs if regno == -1.  No result.  */
767
 
768
extern void target_fetch_registers (struct regcache *regcache, int regno);
769
 
770
/* Store at least register REGNO, or all regs if REGNO == -1.
771
   It can store as many registers as it wants to, so target_prepare_to_store
772
   must have been previously called.  Calls error() if there are problems.  */
773
 
774
extern void target_store_registers (struct regcache *regcache, int regs);
775
 
776
/* Get ready to modify the registers array.  On machines which store
777
   individual registers, this doesn't need to do anything.  On machines
778
   which store all the registers in one fell swoop, this makes sure
779
   that REGISTERS contains all the registers from the program being
780
   debugged.  */
781
 
782
#define target_prepare_to_store(regcache)       \
783
     (*current_target.to_prepare_to_store) (regcache)
784
 
785
/* Determine current address space of thread PTID.  */
786
 
787
struct address_space *target_thread_address_space (ptid_t);
788
 
789
/* Returns true if this target can debug multiple processes
790
   simultaneously.  */
791
 
792
#define target_supports_multi_process() \
793
     (*current_target.to_supports_multi_process) ()
794
 
795
/* Invalidate all target dcaches.  */
796
extern void target_dcache_invalidate (void);
797
 
798
extern int target_read_string (CORE_ADDR, char **, int, int *);
799
 
800
extern int target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, int len);
801
 
802
extern int target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, int len);
803
 
804
extern int target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr,
805
                                int len);
806
 
807
/* Fetches the target's memory map.  If one is found it is sorted
808
   and returned, after some consistency checking.  Otherwise, NULL
809
   is returned.  */
810
VEC(mem_region_s) *target_memory_map (void);
811
 
812
/* Erase the specified flash region.  */
813
void target_flash_erase (ULONGEST address, LONGEST length);
814
 
815
/* Finish a sequence of flash operations.  */
816
void target_flash_done (void);
817
 
818
/* Describes a request for a memory write operation.  */
819
struct memory_write_request
820
  {
821
    /* Begining address that must be written. */
822
    ULONGEST begin;
823
    /* Past-the-end address. */
824
    ULONGEST end;
825
    /* The data to write. */
826
    gdb_byte *data;
827
    /* A callback baton for progress reporting for this request.  */
828
    void *baton;
829
  };
830
typedef struct memory_write_request memory_write_request_s;
831
DEF_VEC_O(memory_write_request_s);
832
 
833
/* Enumeration specifying different flash preservation behaviour.  */
834
enum flash_preserve_mode
835
  {
836
    flash_preserve,
837
    flash_discard
838
  };
839
 
840
/* Write several memory blocks at once.  This version can be more
841
   efficient than making several calls to target_write_memory, in
842
   particular because it can optimize accesses to flash memory.
843
 
844
   Moreover, this is currently the only memory access function in gdb
845
   that supports writing to flash memory, and it should be used for
846
   all cases where access to flash memory is desirable.
847
 
848
   REQUESTS is the vector (see vec.h) of memory_write_request.
849
   PRESERVE_FLASH_P indicates what to do with blocks which must be
850
     erased, but not completely rewritten.
851
   PROGRESS_CB is a function that will be periodically called to provide
852
     feedback to user.  It will be called with the baton corresponding
853
     to the request currently being written.  It may also be called
854
     with a NULL baton, when preserved flash sectors are being rewritten.
855
 
856
   The function returns 0 on success, and error otherwise.  */
857
int target_write_memory_blocks (VEC(memory_write_request_s) *requests,
858
                                enum flash_preserve_mode preserve_flash_p,
859
                                void (*progress_cb) (ULONGEST, void *));
860
 
861
/* From infrun.c.  */
862
 
863
extern int inferior_has_forked (ptid_t pid, ptid_t *child_pid);
864
 
865
extern int inferior_has_vforked (ptid_t pid, ptid_t *child_pid);
866
 
867
extern int inferior_has_execd (ptid_t pid, char **execd_pathname);
868
 
869
extern int inferior_has_called_syscall (ptid_t pid, int *syscall_number);
870
 
871
/* Print a line about the current target.  */
872
 
873
#define target_files_info()     \
874
     (*current_target.to_files_info) (&current_target)
875
 
876
/* Insert a breakpoint at address BP_TGT->placed_address in the target
877
   machine.  Result is 0 for success, or an errno value.  */
878
 
879
#define target_insert_breakpoint(gdbarch, bp_tgt)       \
880
     (*current_target.to_insert_breakpoint) (gdbarch, bp_tgt)
881
 
882
/* Remove a breakpoint at address BP_TGT->placed_address in the target
883
   machine.  Result is 0 for success, or an errno value.  */
884
 
885
#define target_remove_breakpoint(gdbarch, bp_tgt)       \
886
     (*current_target.to_remove_breakpoint) (gdbarch, bp_tgt)
887
 
888
/* Initialize the terminal settings we record for the inferior,
889
   before we actually run the inferior.  */
890
 
891
#define target_terminal_init() \
892
     (*current_target.to_terminal_init) ()
893
 
894
/* Put the inferior's terminal settings into effect.
895
   This is preparation for starting or resuming the inferior.  */
896
 
897
extern void target_terminal_inferior (void);
898
 
899
/* Put some of our terminal settings into effect,
900
   enough to get proper results from our output,
901
   but do not change into or out of RAW mode
902
   so that no input is discarded.
903
 
904
   After doing this, either terminal_ours or terminal_inferior
905
   should be called to get back to a normal state of affairs.  */
906
 
907
#define target_terminal_ours_for_output() \
908
     (*current_target.to_terminal_ours_for_output) ()
909
 
910
/* Put our terminal settings into effect.
911
   First record the inferior's terminal settings
912
   so they can be restored properly later.  */
913
 
914
#define target_terminal_ours() \
915
     (*current_target.to_terminal_ours) ()
916
 
917
/* Save our terminal settings.
918
   This is called from TUI after entering or leaving the curses
919
   mode.  Since curses modifies our terminal this call is here
920
   to take this change into account.  */
921
 
922
#define target_terminal_save_ours() \
923
     (*current_target.to_terminal_save_ours) ()
924
 
925
/* Print useful information about our terminal status, if such a thing
926
   exists.  */
927
 
928
#define target_terminal_info(arg, from_tty) \
929
     (*current_target.to_terminal_info) (arg, from_tty)
930
 
931
/* Kill the inferior process.   Make it go away.  */
932
 
933
extern void target_kill (void);
934
 
935
/* Load an executable file into the target process.  This is expected
936
   to not only bring new code into the target process, but also to
937
   update GDB's symbol tables to match.
938
 
939
   ARG contains command-line arguments, to be broken down with
940
   buildargv ().  The first non-switch argument is the filename to
941
   load, FILE; the second is a number (as parsed by strtoul (..., ...,
942
   0)), which is an offset to apply to the load addresses of FILE's
943
   sections.  The target may define switches, or other non-switch
944
   arguments, as it pleases.  */
945
 
946
extern void target_load (char *arg, int from_tty);
947
 
948
/* Look up a symbol in the target's symbol table.  NAME is the symbol
949
   name.  ADDRP is a CORE_ADDR * pointing to where the value of the
950
   symbol should be returned.  The result is 0 if successful, nonzero
951
   if the symbol does not exist in the target environment.  This
952
   function should not call error() if communication with the target
953
   is interrupted, since it is called from symbol reading, but should
954
   return nonzero, possibly doing a complain().  */
955
 
956
#define target_lookup_symbol(name, addrp) \
957
     (*current_target.to_lookup_symbol) (name, addrp)
958
 
959
/* Start an inferior process and set inferior_ptid to its pid.
960
   EXEC_FILE is the file to run.
961
   ALLARGS is a string containing the arguments to the program.
962
   ENV is the environment vector to pass.  Errors reported with error().
963
   On VxWorks and various standalone systems, we ignore exec_file.  */
964
 
965
void target_create_inferior (char *exec_file, char *args,
966
                             char **env, int from_tty);
967
 
968
/* Some targets (such as ttrace-based HPUX) don't allow us to request
969
   notification of inferior events such as fork and vork immediately
970
   after the inferior is created.  (This because of how gdb gets an
971
   inferior created via invoking a shell to do it.  In such a scenario,
972
   if the shell init file has commands in it, the shell will fork and
973
   exec for each of those commands, and we will see each such fork
974
   event.  Very bad.)
975
 
976
   Such targets will supply an appropriate definition for this function.  */
977
 
978
#define target_post_startup_inferior(ptid) \
979
     (*current_target.to_post_startup_inferior) (ptid)
980
 
981
/* On some targets, the sequence of starting up an inferior requires
982
   some synchronization between gdb and the new inferior process, PID.  */
983
 
984
#define target_acknowledge_created_inferior(pid) \
985
     (*current_target.to_acknowledge_created_inferior) (pid)
986
 
987
/* On some targets, we can catch an inferior fork or vfork event when
988
   it occurs.  These functions insert/remove an already-created
989
   catchpoint for such events.  */
990
 
991
#define target_insert_fork_catchpoint(pid) \
992
     (*current_target.to_insert_fork_catchpoint) (pid)
993
 
994
#define target_remove_fork_catchpoint(pid) \
995
     (*current_target.to_remove_fork_catchpoint) (pid)
996
 
997
#define target_insert_vfork_catchpoint(pid) \
998
     (*current_target.to_insert_vfork_catchpoint) (pid)
999
 
1000
#define target_remove_vfork_catchpoint(pid) \
1001
     (*current_target.to_remove_vfork_catchpoint) (pid)
1002
 
1003
/* If the inferior forks or vforks, this function will be called at
1004
   the next resume in order to perform any bookkeeping and fiddling
1005
   necessary to continue debugging either the parent or child, as
1006
   requested, and releasing the other.  Information about the fork
1007
   or vfork event is available via get_last_target_status ().
1008
   This function returns 1 if the inferior should not be resumed
1009
   (i.e. there is another event pending).  */
1010
 
1011
int target_follow_fork (int follow_child);
1012
 
1013
/* On some targets, we can catch an inferior exec event when it
1014
   occurs.  These functions insert/remove an already-created
1015
   catchpoint for such events.  */
1016
 
1017
#define target_insert_exec_catchpoint(pid) \
1018
     (*current_target.to_insert_exec_catchpoint) (pid)
1019
 
1020
#define target_remove_exec_catchpoint(pid) \
1021
     (*current_target.to_remove_exec_catchpoint) (pid)
1022
 
1023
/* Syscall catch.
1024
 
1025
   NEEDED is nonzero if any syscall catch (of any kind) is requested.
1026
   If NEEDED is zero, it means the target can disable the mechanism to
1027
   catch system calls because there are no more catchpoints of this type.
1028
 
1029
   ANY_COUNT is nonzero if a generic (filter-less) syscall catch is
1030
   being requested.  In this case, both TABLE_SIZE and TABLE should
1031
   be ignored.
1032
 
1033
   TABLE_SIZE is the number of elements in TABLE.  It only matters if
1034
   ANY_COUNT is zero.
1035
 
1036
   TABLE is an array of ints, indexed by syscall number.  An element in
1037
   this array is nonzero if that syscall should be caught.  This argument
1038
   only matters if ANY_COUNT is zero.  */
1039
 
1040
#define target_set_syscall_catchpoint(pid, needed, any_count, table_size, table) \
1041
     (*current_target.to_set_syscall_catchpoint) (pid, needed, any_count, \
1042
                                                  table_size, table)
1043
 
1044
/* Returns TRUE if PID has exited.  And, also sets EXIT_STATUS to the
1045
   exit code of PID, if any.  */
1046
 
1047
#define target_has_exited(pid,wait_status,exit_status) \
1048
     (*current_target.to_has_exited) (pid,wait_status,exit_status)
1049
 
1050
/* The debugger has completed a blocking wait() call.  There is now
1051
   some process event that must be processed.  This function should
1052
   be defined by those targets that require the debugger to perform
1053
   cleanup or internal state changes in response to the process event.  */
1054
 
1055
/* The inferior process has died.  Do what is right.  */
1056
 
1057
void target_mourn_inferior (void);
1058
 
1059
/* Does target have enough data to do a run or attach command? */
1060
 
1061
#define target_can_run(t) \
1062
     ((t)->to_can_run) ()
1063
 
1064
/* post process changes to signal handling in the inferior.  */
1065
 
1066
#define target_notice_signals(ptid) \
1067
     (*current_target.to_notice_signals) (ptid)
1068
 
1069
/* Check to see if a thread is still alive.  */
1070
 
1071
extern int target_thread_alive (ptid_t ptid);
1072
 
1073
/* Query for new threads and add them to the thread list.  */
1074
 
1075
extern void target_find_new_threads (void);
1076
 
1077
/* Make target stop in a continuable fashion.  (For instance, under
1078
   Unix, this should act like SIGSTOP).  This function is normally
1079
   used by GUIs to implement a stop button.  */
1080
 
1081
#define target_stop(ptid) (*current_target.to_stop) (ptid)
1082
 
1083
/* Send the specified COMMAND to the target's monitor
1084
   (shell,interpreter) for execution.  The result of the query is
1085
   placed in OUTBUF.  */
1086
 
1087
#define target_rcmd(command, outbuf) \
1088
     (*current_target.to_rcmd) (command, outbuf)
1089
 
1090
 
1091
/* Does the target include all of memory, or only part of it?  This
1092
   determines whether we look up the target chain for other parts of
1093
   memory if this target can't satisfy a request.  */
1094
 
1095
extern int target_has_all_memory_1 (void);
1096
#define target_has_all_memory target_has_all_memory_1 ()
1097
 
1098
/* Does the target include memory?  (Dummy targets don't.)  */
1099
 
1100
extern int target_has_memory_1 (void);
1101
#define target_has_memory target_has_memory_1 ()
1102
 
1103
/* Does the target have a stack?  (Exec files don't, VxWorks doesn't, until
1104
   we start a process.)  */
1105
 
1106
extern int target_has_stack_1 (void);
1107
#define target_has_stack target_has_stack_1 ()
1108
 
1109
/* Does the target have registers?  (Exec files don't.)  */
1110
 
1111
extern int target_has_registers_1 (void);
1112
#define target_has_registers target_has_registers_1 ()
1113
 
1114
/* Does the target have execution?  Can we make it jump (through
1115
   hoops), or pop its stack a few times?  This means that the current
1116
   target is currently executing; for some targets, that's the same as
1117
   whether or not the target is capable of execution, but there are
1118
   also targets which can be current while not executing.  In that
1119
   case this will become true after target_create_inferior or
1120
   target_attach.  */
1121
 
1122
extern int target_has_execution_1 (void);
1123
#define target_has_execution target_has_execution_1 ()
1124
 
1125
/* Default implementations for process_stratum targets.  Return true
1126
   if there's a selected inferior, false otherwise.  */
1127
 
1128
extern int default_child_has_all_memory (struct target_ops *ops);
1129
extern int default_child_has_memory (struct target_ops *ops);
1130
extern int default_child_has_stack (struct target_ops *ops);
1131
extern int default_child_has_registers (struct target_ops *ops);
1132
extern int default_child_has_execution (struct target_ops *ops);
1133
 
1134
/* Can the target support the debugger control of thread execution?
1135
   Can it lock the thread scheduler?  */
1136
 
1137
#define target_can_lock_scheduler \
1138
     (current_target.to_has_thread_control & tc_schedlock)
1139
 
1140
/* Should the target enable async mode if it is supported?  Temporary
1141
   cludge until async mode is a strict superset of sync mode.  */
1142
extern int target_async_permitted;
1143
 
1144
/* Can the target support asynchronous execution? */
1145
#define target_can_async_p() (current_target.to_can_async_p ())
1146
 
1147
/* Is the target in asynchronous execution mode? */
1148
#define target_is_async_p() (current_target.to_is_async_p ())
1149
 
1150
int target_supports_non_stop (void);
1151
 
1152
/* Put the target in async mode with the specified callback function. */
1153
#define target_async(CALLBACK,CONTEXT) \
1154
     (current_target.to_async ((CALLBACK), (CONTEXT)))
1155
 
1156
/* This is to be used ONLY within call_function_by_hand(). It provides
1157
   a workaround, to have inferior function calls done in sychronous
1158
   mode, even though the target is asynchronous. After
1159
   target_async_mask(0) is called, calls to target_can_async_p() will
1160
   return FALSE , so that target_resume() will not try to start the
1161
   target asynchronously. After the inferior stops, we IMMEDIATELY
1162
   restore the previous nature of the target, by calling
1163
   target_async_mask(1). After that, target_can_async_p() will return
1164
   TRUE. ANY OTHER USE OF THIS FEATURE IS DEPRECATED.
1165
 
1166
   FIXME ezannoni 1999-12-13: we won't need this once we move
1167
   the turning async on and off to the single execution commands,
1168
   from where it is done currently, in remote_resume().  */
1169
 
1170
#define target_async_mask(MASK) \
1171
  (current_target.to_async_mask (MASK))
1172
 
1173
/* Converts a process id to a string.  Usually, the string just contains
1174
   `process xyz', but on some systems it may contain
1175
   `process xyz thread abc'.  */
1176
 
1177
extern char *target_pid_to_str (ptid_t ptid);
1178
 
1179
extern char *normal_pid_to_str (ptid_t ptid);
1180
 
1181
/* Return a short string describing extra information about PID,
1182
   e.g. "sleeping", "runnable", "running on LWP 3".  Null return value
1183
   is okay.  */
1184
 
1185
#define target_extra_thread_info(TP) \
1186
     (current_target.to_extra_thread_info (TP))
1187
 
1188
/* Attempts to find the pathname of the executable file
1189
   that was run to create a specified process.
1190
 
1191
   The process PID must be stopped when this operation is used.
1192
 
1193
   If the executable file cannot be determined, NULL is returned.
1194
 
1195
   Else, a pointer to a character string containing the pathname
1196
   is returned.  This string should be copied into a buffer by
1197
   the client if the string will not be immediately used, or if
1198
   it must persist.  */
1199
 
1200
#define target_pid_to_exec_file(pid) \
1201
     (current_target.to_pid_to_exec_file) (pid)
1202
 
1203
/* See the to_thread_architecture description in struct target_ops.  */
1204
 
1205
#define target_thread_architecture(ptid) \
1206
     (current_target.to_thread_architecture (&current_target, ptid))
1207
 
1208
/*
1209
 * Iterator function for target memory regions.
1210
 * Calls a callback function once for each memory region 'mapped'
1211
 * in the child process.  Defined as a simple macro rather than
1212
 * as a function macro so that it can be tested for nullity.
1213
 */
1214
 
1215
#define target_find_memory_regions(FUNC, DATA) \
1216
     (current_target.to_find_memory_regions) (FUNC, DATA)
1217
 
1218
/*
1219
 * Compose corefile .note section.
1220
 */
1221
 
1222
#define target_make_corefile_notes(BFD, SIZE_P) \
1223
     (current_target.to_make_corefile_notes) (BFD, SIZE_P)
1224
 
1225
/* Bookmark interfaces.  */
1226
#define target_get_bookmark(ARGS, FROM_TTY) \
1227
     (current_target.to_get_bookmark) (ARGS, FROM_TTY)
1228
 
1229
#define target_goto_bookmark(ARG, FROM_TTY) \
1230
     (current_target.to_goto_bookmark) (ARG, FROM_TTY)
1231
 
1232
/* Hardware watchpoint interfaces.  */
1233
 
1234
/* Returns non-zero if we were stopped by a hardware watchpoint (memory read or
1235
   write).  Only the INFERIOR_PTID task is being queried.  */
1236
 
1237
#define target_stopped_by_watchpoint \
1238
   (*current_target.to_stopped_by_watchpoint)
1239
 
1240
/* Non-zero if we have steppable watchpoints  */
1241
 
1242
#define target_have_steppable_watchpoint \
1243
   (current_target.to_have_steppable_watchpoint)
1244
 
1245
/* Non-zero if we have continuable watchpoints  */
1246
 
1247
#define target_have_continuable_watchpoint \
1248
   (current_target.to_have_continuable_watchpoint)
1249
 
1250
/* Provide defaults for hardware watchpoint functions.  */
1251
 
1252
/* If the *_hw_beakpoint functions have not been defined
1253
   elsewhere use the definitions in the target vector.  */
1254
 
1255
/* Returns non-zero if we can set a hardware watchpoint of type TYPE.  TYPE is
1256
   one of bp_hardware_watchpoint, bp_read_watchpoint, bp_write_watchpoint, or
1257
   bp_hardware_breakpoint.  CNT is the number of such watchpoints used so far
1258
   (including this one?).  OTHERTYPE is who knows what...  */
1259
 
1260
#define target_can_use_hardware_watchpoint(TYPE,CNT,OTHERTYPE) \
1261
 (*current_target.to_can_use_hw_breakpoint) (TYPE, CNT, OTHERTYPE);
1262
 
1263
#define target_region_ok_for_hw_watchpoint(addr, len) \
1264
    (*current_target.to_region_ok_for_hw_watchpoint) (addr, len)
1265
 
1266
 
1267
/* Set/clear a hardware watchpoint starting at ADDR, for LEN bytes.  TYPE is 0
1268
   for write, 1 for read, and 2 for read/write accesses.  Returns 0 for
1269
   success, non-zero for failure.  */
1270
 
1271
#define target_insert_watchpoint(addr, len, type)       \
1272
     (*current_target.to_insert_watchpoint) (addr, len, type)
1273
 
1274
#define target_remove_watchpoint(addr, len, type)       \
1275
     (*current_target.to_remove_watchpoint) (addr, len, type)
1276
 
1277
#define target_insert_hw_breakpoint(gdbarch, bp_tgt) \
1278
     (*current_target.to_insert_hw_breakpoint) (gdbarch, bp_tgt)
1279
 
1280
#define target_remove_hw_breakpoint(gdbarch, bp_tgt) \
1281
     (*current_target.to_remove_hw_breakpoint) (gdbarch, bp_tgt)
1282
 
1283
/* Return non-zero if target knows the data address which triggered this
1284
   target_stopped_by_watchpoint, in such case place it to *ADDR_P.  Only the
1285
   INFERIOR_PTID task is being queried.  */
1286
#define target_stopped_data_address(target, addr_p) \
1287
    (*target.to_stopped_data_address) (target, addr_p)
1288
 
1289
#define target_watchpoint_addr_within_range(target, addr, start, length) \
1290
  (*target.to_watchpoint_addr_within_range) (target, addr, start, length)
1291
 
1292
/* Target can execute in reverse?  */
1293
#define target_can_execute_reverse \
1294
     (current_target.to_can_execute_reverse ? \
1295
      current_target.to_can_execute_reverse () : 0)
1296
 
1297
extern const struct target_desc *target_read_description (struct target_ops *);
1298
 
1299
#define target_get_ada_task_ptid(lwp, tid) \
1300
     (*current_target.to_get_ada_task_ptid) (lwp,tid)
1301
 
1302
/* Utility implementation of searching memory.  */
1303
extern int simple_search_memory (struct target_ops* ops,
1304
                                 CORE_ADDR start_addr,
1305
                                 ULONGEST search_space_len,
1306
                                 const gdb_byte *pattern,
1307
                                 ULONGEST pattern_len,
1308
                                 CORE_ADDR *found_addrp);
1309
 
1310
/* Main entry point for searching memory.  */
1311
extern int target_search_memory (CORE_ADDR start_addr,
1312
                                 ULONGEST search_space_len,
1313
                                 const gdb_byte *pattern,
1314
                                 ULONGEST pattern_len,
1315
                                 CORE_ADDR *found_addrp);
1316
 
1317
/* Tracepoint-related operations.  */
1318
 
1319
#define target_trace_init() \
1320
  (*current_target.to_trace_init) ()
1321
 
1322
#define target_download_tracepoint(t) \
1323
  (*current_target.to_download_tracepoint) (t)
1324
 
1325
#define target_download_trace_state_variable(tsv) \
1326
  (*current_target.to_download_trace_state_variable) (tsv)
1327
 
1328
#define target_trace_start() \
1329
  (*current_target.to_trace_start) ()
1330
 
1331
#define target_trace_set_readonly_regions() \
1332
  (*current_target.to_trace_set_readonly_regions) ()
1333
 
1334
#define target_get_trace_status(ts) \
1335
  (*current_target.to_get_trace_status) (ts)
1336
 
1337
#define target_trace_stop() \
1338
  (*current_target.to_trace_stop) ()
1339
 
1340
#define target_trace_find(type,num,addr1,addr2,tpp) \
1341
  (*current_target.to_trace_find) ((type), (num), (addr1), (addr2), (tpp))
1342
 
1343
#define target_get_trace_state_variable_value(tsv,val) \
1344
  (*current_target.to_get_trace_state_variable_value) ((tsv), (val))
1345
 
1346
#define target_save_trace_data(filename) \
1347
  (*current_target.to_save_trace_data) (filename)
1348
 
1349
#define target_upload_tracepoints(utpp) \
1350
  (*current_target.to_upload_tracepoints) (utpp)
1351
 
1352
#define target_upload_trace_state_variables(utsvp) \
1353
  (*current_target.to_upload_trace_state_variables) (utsvp)
1354
 
1355
#define target_get_raw_trace_data(buf,offset,len) \
1356
  (*current_target.to_get_raw_trace_data) ((buf), (offset), (len))
1357
 
1358
#define target_set_disconnected_tracing(val) \
1359
  (*current_target.to_set_disconnected_tracing) (val)
1360
 
1361
/* Command logging facility.  */
1362
 
1363
#define target_log_command(p)                                           \
1364
  do                                                                    \
1365
    if (current_target.to_log_command)                                  \
1366
      (*current_target.to_log_command) (p);                             \
1367
  while (0)
1368
 
1369
 
1370
extern int target_core_of_thread (ptid_t ptid);
1371
 
1372
/* Routines for maintenance of the target structures...
1373
 
1374
   add_target:   Add a target to the list of all possible targets.
1375
 
1376
   push_target:  Make this target the top of the stack of currently used
1377
   targets, within its particular stratum of the stack.  Result
1378
   is 0 if now atop the stack, nonzero if not on top (maybe
1379
   should warn user).
1380
 
1381
   unpush_target: Remove this from the stack of currently used targets,
1382
   no matter where it is on the list.  Returns 0 if no
1383
   change, 1 if removed from stack.
1384
 
1385
   pop_target:   Remove the top thing on the stack of current targets.  */
1386
 
1387
extern void add_target (struct target_ops *);
1388
 
1389
extern int push_target (struct target_ops *);
1390
 
1391
extern int unpush_target (struct target_ops *);
1392
 
1393
extern void target_pre_inferior (int);
1394
 
1395
extern void target_preopen (int);
1396
 
1397
extern void pop_target (void);
1398
 
1399
/* Does whatever cleanup is required to get rid of all pushed targets.
1400
   QUITTING is propagated to target_close; it indicates that GDB is
1401
   exiting and should not get hung on an error (otherwise it is
1402
   important to perform clean termination, even if it takes a
1403
   while).  */
1404
extern void pop_all_targets (int quitting);
1405
 
1406
/* Like pop_all_targets, but pops only targets whose stratum is
1407
   strictly above ABOVE_STRATUM.  */
1408
extern void pop_all_targets_above (enum strata above_stratum, int quitting);
1409
 
1410
extern CORE_ADDR target_translate_tls_address (struct objfile *objfile,
1411
                                               CORE_ADDR offset);
1412
 
1413
/* Struct target_section maps address ranges to file sections.  It is
1414
   mostly used with BFD files, but can be used without (e.g. for handling
1415
   raw disks, or files not in formats handled by BFD).  */
1416
 
1417
struct target_section
1418
  {
1419
    CORE_ADDR addr;             /* Lowest address in section */
1420
    CORE_ADDR endaddr;          /* 1+highest address in section */
1421
 
1422
    struct bfd_section *the_bfd_section;
1423
 
1424
    bfd *bfd;                   /* BFD file pointer */
1425
  };
1426
 
1427
/* Holds an array of target sections.  Defined by [SECTIONS..SECTIONS_END[.  */
1428
 
1429
struct target_section_table
1430
{
1431
  struct target_section *sections;
1432
  struct target_section *sections_end;
1433
};
1434
 
1435
/* Return the "section" containing the specified address.  */
1436
struct target_section *target_section_by_addr (struct target_ops *target,
1437
                                               CORE_ADDR addr);
1438
 
1439
/* Return the target section table this target (or the targets
1440
   beneath) currently manipulate.  */
1441
 
1442
extern struct target_section_table *target_get_section_table
1443
  (struct target_ops *target);
1444
 
1445
/* From mem-break.c */
1446
 
1447
extern int memory_remove_breakpoint (struct gdbarch *, struct bp_target_info *);
1448
 
1449
extern int memory_insert_breakpoint (struct gdbarch *, struct bp_target_info *);
1450
 
1451
extern int default_memory_remove_breakpoint (struct gdbarch *, struct bp_target_info *);
1452
 
1453
extern int default_memory_insert_breakpoint (struct gdbarch *, struct bp_target_info *);
1454
 
1455
 
1456
/* From target.c */
1457
 
1458
extern void initialize_targets (void);
1459
 
1460
extern NORETURN void noprocess (void) ATTR_NORETURN;
1461
 
1462
extern void target_require_runnable (void);
1463
 
1464
extern void find_default_attach (struct target_ops *, char *, int);
1465
 
1466
extern void find_default_create_inferior (struct target_ops *,
1467
                                          char *, char *, char **, int);
1468
 
1469
extern struct target_ops *find_run_target (void);
1470
 
1471
extern struct target_ops *find_core_target (void);
1472
 
1473
extern struct target_ops *find_target_beneath (struct target_ops *);
1474
 
1475
/* Read OS data object of type TYPE from the target, and return it in
1476
   XML format.  The result is NUL-terminated and returned as a string,
1477
   allocated using xmalloc.  If an error occurs or the transfer is
1478
   unsupported, NULL is returned.  Empty objects are returned as
1479
   allocated but empty strings.  */
1480
 
1481
extern char *target_get_osdata (const char *type);
1482
 
1483
 
1484
/* Stuff that should be shared among the various remote targets.  */
1485
 
1486
/* Debugging level.  0 is off, and non-zero values mean to print some debug
1487
   information (higher values, more information).  */
1488
extern int remote_debug;
1489
 
1490
/* Speed in bits per second, or -1 which means don't mess with the speed.  */
1491
extern int baud_rate;
1492
/* Timeout limit for response from target. */
1493
extern int remote_timeout;
1494
 
1495
 
1496
/* Functions for helping to write a native target.  */
1497
 
1498
/* This is for native targets which use a unix/POSIX-style waitstatus.  */
1499
extern void store_waitstatus (struct target_waitstatus *, int);
1500
 
1501
/* These are in common/signals.c, but they're only used by gdb.  */
1502
extern enum target_signal default_target_signal_from_host (struct gdbarch *,
1503
                                                           int);
1504
extern int default_target_signal_to_host (struct gdbarch *,
1505
                                          enum target_signal);
1506
 
1507
/* Convert from a number used in a GDB command to an enum target_signal.  */
1508
extern enum target_signal target_signal_from_command (int);
1509
/* End of files in common/signals.c.  */
1510
 
1511
/* Set the show memory breakpoints mode to show, and installs a cleanup
1512
   to restore it back to the current value.  */
1513
extern struct cleanup *make_show_memory_breakpoints_cleanup (int show);
1514
 
1515
 
1516
/* Imported from machine dependent code */
1517
 
1518
/* Blank target vector entries are initialized to target_ignore. */
1519
void target_ignore (void);
1520
 
1521
extern struct target_ops deprecated_child_ops;
1522
 
1523
#endif /* !defined (TARGET_H) */

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.