OpenCores
URL https://opencores.org/ocsvn/openrisc_me/openrisc_me/trunk

Subversion Repositories openrisc_me

[/] [openrisc/] [trunk/] [gnu-src/] [gdb-7.1/] [gdb/] [testsuite/] [gdb.base/] [bigcore.c] - Blame information for rev 227

Details | Compare with Previous | View Log

Line No. Rev Author Line
1 227 jeremybenn
/* This testcase is part of GDB, the GNU debugger.
2
 
3
   Copyright 2004, 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
4
 
5
   This program is free software; you can redistribute it and/or modify
6
   it under the terms of the GNU General Public License as published by
7
   the Free Software Foundation; either version 3 of the License, or
8
   (at your option) any later version.
9
 
10
   This program is distributed in the hope that it will be useful,
11
   but WITHOUT ANY WARRANTY; without even the implied warranty of
12
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13
   GNU General Public License for more details.
14
 
15
   You should have received a copy of the GNU General Public License
16
   along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
17
 
18
/* Get 64-bit stuff if on a GNU system.  */
19
#define _GNU_SOURCE
20
 
21
#include <sys/types.h>
22
#include <sys/time.h>
23
#include <sys/resource.h>
24
#include <sys/stat.h>
25
#include <fcntl.h>
26
 
27
#include <stdlib.h>
28
#include <unistd.h>
29
 
30
/* This test was written for >2GB core files on 32-bit systems.  On
31
   current 64-bit systems, generating a >4EB (2 ** 63) core file is
32
   not practical, and getting as close as we can takes a lot of
33
   useless CPU time.  So limit ourselves to a bit bigger than
34
   32-bit, which is still a useful test.  */
35
#define RLIMIT_CAP (1ULL << 34)
36
 
37
/* Print routines:
38
 
39
   The following are so that printf et.al. can be avoided.  Those
40
   might try to use malloc() and that, for this code, would be a
41
   disaster.  */
42
 
43
#define printf do not use
44
 
45
const char digit[] = "0123456789abcdefghijklmnopqrstuvwxyz";
46
 
47
static void
48
print_char (char c)
49
{
50
  write (1, &c, sizeof (c));
51
}
52
 
53
static void
54
print_unsigned (unsigned long long u)
55
{
56
  if (u >= 10)
57
    print_unsigned (u / 10);
58
  print_char (digit[u % 10]);
59
}
60
 
61
static void
62
print_hex (unsigned long long u)
63
{
64
  if (u >= 16)
65
    print_hex (u / 16);
66
  print_char (digit[u % 16]);
67
}
68
 
69
static void
70
print_string (const char *s)
71
{
72
  for (; (*s) != '\0'; s++)
73
    print_char ((*s));
74
}
75
 
76
static void
77
print_address (const void *a)
78
{
79
  print_string ("0x");
80
  print_hex ((unsigned long) a);
81
}
82
 
83
static void
84
print_byte_count (unsigned long long u)
85
{
86
  print_unsigned (u);
87
  print_string (" (");
88
  print_string ("0x");
89
  print_hex (u);
90
  print_string (") bytes");
91
}
92
 
93
/* Print the current values of RESOURCE.  */
94
 
95
static void
96
print_rlimit (int resource)
97
{
98
  struct rlimit rl;
99
  getrlimit (resource, &rl);
100
  print_string ("cur=0x");
101
  print_hex (rl.rlim_cur);
102
  print_string (" max=0x");
103
  print_hex (rl.rlim_max);
104
}
105
 
106
static void
107
maximize_rlimit (int resource, const char *prefix)
108
{
109
  struct rlimit rl;
110
  print_string ("  ");
111
  print_string (prefix);
112
  print_string (": ");
113
  print_rlimit (resource);
114
  getrlimit (resource, &rl);
115
  rl.rlim_cur = rl.rlim_max;
116
  if (sizeof (rl.rlim_cur) >= sizeof (RLIMIT_CAP))
117
    rl.rlim_cur = (rlim_t) RLIMIT_CAP;
118
  setrlimit (resource, &rl);
119
  print_string (" -> ");
120
  print_rlimit (resource);
121
  print_string ("\n");
122
}
123
 
124
/* Maintain a doublely linked list.  */
125
struct list
126
{
127
  struct list *next;
128
  struct list *prev;
129
  size_t size;
130
};
131
 
132
/* Put the "heap" in the DATA section.  That way it is more likely
133
   that the variable will occur early in the core file (an address
134
   before the heap) and hence more likely that GDB will at least get
135
   its value right.
136
 
137
   To simplify the list append logic, start the heap out with one
138
   entry (that lives in the BSS section).  */
139
 
140
static struct list dummy;
141
static struct list heap = { &dummy, &dummy };
142
 
143
static unsigned long bytes_allocated;
144
 
145
#ifdef O_LARGEFILE
146
#define large_off_t off64_t
147
#define large_lseek lseek64
148
#else
149
#define large_off_t off_t
150
#define O_LARGEFILE 0
151
#define large_lseek lseek
152
#endif
153
 
154
int
155
main ()
156
{
157
  size_t max_chunk_size;
158
  large_off_t max_core_size;
159
 
160
  /* Try to expand all the resource limits beyond the point of sanity
161
     - we're after the biggest possible core file.  */
162
 
163
  print_string ("Maximize resource limits ...\n");
164
#ifdef RLIMIT_CORE
165
  maximize_rlimit (RLIMIT_CORE, "core");
166
#endif
167
#ifdef RLIMIT_DATA
168
  maximize_rlimit (RLIMIT_DATA, "data");
169
#endif
170
#ifdef RLIMIT_STACK
171
  maximize_rlimit (RLIMIT_STACK, "stack");
172
#endif
173
#ifdef RLIMIT_AS
174
  maximize_rlimit (RLIMIT_AS, "stack");
175
#endif
176
 
177
  print_string ("Maximize allocation limits ...\n");
178
 
179
  /* Compute the largest possible corefile size.  No point in trying
180
     to create a corefile larger than the largest file supported by
181
     the file system.  What about 64-bit lseek64?  */
182
  {
183
    int fd;
184
    large_off_t tmp;
185
    unlink ("bigcore.corefile");
186
    fd = open ("bigcore.corefile", O_RDWR | O_CREAT | O_TRUNC | O_LARGEFILE,
187
               0666);
188
    for (tmp = 1; tmp > 0; tmp <<= 1)
189
      {
190
        if (large_lseek (fd, tmp, SEEK_SET) > 0)
191
          max_core_size = tmp;
192
      }
193
    close (fd);
194
  }
195
 
196
  /* Compute an initial chunk size.  The math is dodgy but it works
197
     for the moment.  Perhaphs there's a constant around somewhere.
198
     Limit this to max_core_size bytes - no point in trying to
199
     allocate more than can be written to the corefile.  */
200
  {
201
    size_t tmp;
202
    for (tmp = 1; tmp > 0 && tmp < max_core_size; tmp <<= 1)
203
      max_chunk_size = tmp;
204
  }
205
 
206
  print_string ("  core: ");
207
  print_byte_count (max_core_size);
208
  print_string ("\n");
209
  print_string ("  chunk: ");
210
  print_byte_count (max_chunk_size);
211
  print_string ("\n");
212
  print_string ("  large? ");
213
  if (O_LARGEFILE)
214
    print_string ("yes\n");
215
  else
216
    print_string ("no\n");
217
 
218
  /* Allocate as much memory as possible creating a linked list of
219
     each section.  The linking ensures that some, but not all, the
220
     memory is allocated.  NB: Some kernels handle this efficiently -
221
     only allocating and writing out referenced pages leaving holes in
222
     the file for unmodified pages - while others handle this poorly -
223
     writing out all pages including those that weren't modified.  */
224
 
225
  print_string ("Alocating the entire heap ...\n");
226
  {
227
    size_t chunk_size;
228
    unsigned long chunks_allocated = 0;
229
    /* Create a linked list of memory chunks.  Start with
230
       MAX_CHUNK_SIZE blocks of memory and then try allocating smaller
231
       and smaller amounts until all (well at least most) memory has
232
       been allocated.  */
233
    for (chunk_size = max_chunk_size;
234
         chunk_size >= sizeof (struct list);
235
         chunk_size >>= 1)
236
      {
237
        unsigned long count = 0;
238
        print_string ("  ");
239
        print_byte_count (chunk_size);
240
        print_string (" ... ");
241
        while (bytes_allocated + (1 + count) * chunk_size
242
               < max_core_size)
243
          {
244
            struct list *chunk = malloc (chunk_size);
245
            if (chunk == NULL)
246
              break;
247
            chunk->size = chunk_size;
248
            /* Link it in.  */
249
            chunk->next = NULL;
250
            chunk->prev = heap.prev;
251
            heap.prev->next = chunk;
252
            heap.prev = chunk;
253
            count++;
254
          }
255
        print_unsigned (count);
256
        print_string (" chunks\n");
257
        chunks_allocated += count;
258
        bytes_allocated += chunk_size * count;
259
      }
260
    print_string ("Total of ");
261
    print_byte_count (bytes_allocated);
262
    print_string (" bytes ");
263
    print_unsigned (chunks_allocated);
264
    print_string (" chunks\n");
265
  }
266
 
267
  /* Push everything out to disk.  */
268
 
269
  print_string ("Dump core ....\n");
270
  *(char*)0 = 0;
271
}

powered by: WebSVN 2.1.0

© copyright 1999-2025 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.