| 1 |
227 |
jeremybenn |
/* Perform arithmetic and other operations on values, for GDB.
|
| 2 |
|
|
|
| 3 |
|
|
Copyright (C) 1986, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
|
| 4 |
|
|
1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2007, 2008, 2009,
|
| 5 |
|
|
2010 Free Software Foundation, Inc.
|
| 6 |
|
|
|
| 7 |
|
|
This file is part of GDB.
|
| 8 |
|
|
|
| 9 |
|
|
This program is free software; you can redistribute it and/or modify
|
| 10 |
|
|
it under the terms of the GNU General Public License as published by
|
| 11 |
|
|
the Free Software Foundation; either version 3 of the License, or
|
| 12 |
|
|
(at your option) any later version.
|
| 13 |
|
|
|
| 14 |
|
|
This program is distributed in the hope that it will be useful,
|
| 15 |
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
| 16 |
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
| 17 |
|
|
GNU General Public License for more details.
|
| 18 |
|
|
|
| 19 |
|
|
You should have received a copy of the GNU General Public License
|
| 20 |
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>. */
|
| 21 |
|
|
|
| 22 |
|
|
#include "defs.h"
|
| 23 |
|
|
#include "value.h"
|
| 24 |
|
|
#include "symtab.h"
|
| 25 |
|
|
#include "gdbtypes.h"
|
| 26 |
|
|
#include "expression.h"
|
| 27 |
|
|
#include "target.h"
|
| 28 |
|
|
#include "language.h"
|
| 29 |
|
|
#include "gdb_string.h"
|
| 30 |
|
|
#include "doublest.h"
|
| 31 |
|
|
#include "dfp.h"
|
| 32 |
|
|
#include <math.h>
|
| 33 |
|
|
#include "infcall.h"
|
| 34 |
|
|
|
| 35 |
|
|
/* Define whether or not the C operator '/' truncates towards zero for
|
| 36 |
|
|
differently signed operands (truncation direction is undefined in C). */
|
| 37 |
|
|
|
| 38 |
|
|
#ifndef TRUNCATION_TOWARDS_ZERO
|
| 39 |
|
|
#define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
|
| 40 |
|
|
#endif
|
| 41 |
|
|
|
| 42 |
|
|
void _initialize_valarith (void);
|
| 43 |
|
|
|
| 44 |
|
|
|
| 45 |
|
|
/* Given a pointer, return the size of its target.
|
| 46 |
|
|
If the pointer type is void *, then return 1.
|
| 47 |
|
|
If the target type is incomplete, then error out.
|
| 48 |
|
|
This isn't a general purpose function, but just a
|
| 49 |
|
|
helper for value_ptradd.
|
| 50 |
|
|
*/
|
| 51 |
|
|
|
| 52 |
|
|
static LONGEST
|
| 53 |
|
|
find_size_for_pointer_math (struct type *ptr_type)
|
| 54 |
|
|
{
|
| 55 |
|
|
LONGEST sz = -1;
|
| 56 |
|
|
struct type *ptr_target;
|
| 57 |
|
|
|
| 58 |
|
|
gdb_assert (TYPE_CODE (ptr_type) == TYPE_CODE_PTR);
|
| 59 |
|
|
ptr_target = check_typedef (TYPE_TARGET_TYPE (ptr_type));
|
| 60 |
|
|
|
| 61 |
|
|
sz = TYPE_LENGTH (ptr_target);
|
| 62 |
|
|
if (sz == 0)
|
| 63 |
|
|
{
|
| 64 |
|
|
if (TYPE_CODE (ptr_type) == TYPE_CODE_VOID)
|
| 65 |
|
|
sz = 1;
|
| 66 |
|
|
else
|
| 67 |
|
|
{
|
| 68 |
|
|
char *name;
|
| 69 |
|
|
|
| 70 |
|
|
name = TYPE_NAME (ptr_target);
|
| 71 |
|
|
if (name == NULL)
|
| 72 |
|
|
name = TYPE_TAG_NAME (ptr_target);
|
| 73 |
|
|
if (name == NULL)
|
| 74 |
|
|
error (_("Cannot perform pointer math on incomplete types, "
|
| 75 |
|
|
"try casting to a known type, or void *."));
|
| 76 |
|
|
else
|
| 77 |
|
|
error (_("Cannot perform pointer math on incomplete type \"%s\", "
|
| 78 |
|
|
"try casting to a known type, or void *."), name);
|
| 79 |
|
|
}
|
| 80 |
|
|
}
|
| 81 |
|
|
return sz;
|
| 82 |
|
|
}
|
| 83 |
|
|
|
| 84 |
|
|
/* Given a pointer ARG1 and an integral value ARG2, return the
|
| 85 |
|
|
result of C-style pointer arithmetic ARG1 + ARG2. */
|
| 86 |
|
|
|
| 87 |
|
|
struct value *
|
| 88 |
|
|
value_ptradd (struct value *arg1, LONGEST arg2)
|
| 89 |
|
|
{
|
| 90 |
|
|
struct type *valptrtype;
|
| 91 |
|
|
LONGEST sz;
|
| 92 |
|
|
|
| 93 |
|
|
arg1 = coerce_array (arg1);
|
| 94 |
|
|
valptrtype = check_typedef (value_type (arg1));
|
| 95 |
|
|
sz = find_size_for_pointer_math (valptrtype);
|
| 96 |
|
|
|
| 97 |
|
|
return value_from_pointer (valptrtype,
|
| 98 |
|
|
value_as_address (arg1) + sz * arg2);
|
| 99 |
|
|
}
|
| 100 |
|
|
|
| 101 |
|
|
/* Given two compatible pointer values ARG1 and ARG2, return the
|
| 102 |
|
|
result of C-style pointer arithmetic ARG1 - ARG2. */
|
| 103 |
|
|
|
| 104 |
|
|
LONGEST
|
| 105 |
|
|
value_ptrdiff (struct value *arg1, struct value *arg2)
|
| 106 |
|
|
{
|
| 107 |
|
|
struct type *type1, *type2;
|
| 108 |
|
|
LONGEST sz;
|
| 109 |
|
|
|
| 110 |
|
|
arg1 = coerce_array (arg1);
|
| 111 |
|
|
arg2 = coerce_array (arg2);
|
| 112 |
|
|
type1 = check_typedef (value_type (arg1));
|
| 113 |
|
|
type2 = check_typedef (value_type (arg2));
|
| 114 |
|
|
|
| 115 |
|
|
gdb_assert (TYPE_CODE (type1) == TYPE_CODE_PTR);
|
| 116 |
|
|
gdb_assert (TYPE_CODE (type2) == TYPE_CODE_PTR);
|
| 117 |
|
|
|
| 118 |
|
|
if (TYPE_LENGTH (check_typedef (TYPE_TARGET_TYPE (type1)))
|
| 119 |
|
|
!= TYPE_LENGTH (check_typedef (TYPE_TARGET_TYPE (type2))))
|
| 120 |
|
|
error (_("\
|
| 121 |
|
|
First argument of `-' is a pointer and second argument is neither\n\
|
| 122 |
|
|
an integer nor a pointer of the same type."));
|
| 123 |
|
|
|
| 124 |
|
|
sz = TYPE_LENGTH (check_typedef (TYPE_TARGET_TYPE (type1)));
|
| 125 |
|
|
if (sz == 0)
|
| 126 |
|
|
{
|
| 127 |
|
|
warning (_("Type size unknown, assuming 1. "
|
| 128 |
|
|
"Try casting to a known type, or void *."));
|
| 129 |
|
|
sz = 1;
|
| 130 |
|
|
}
|
| 131 |
|
|
|
| 132 |
|
|
return (value_as_long (arg1) - value_as_long (arg2)) / sz;
|
| 133 |
|
|
}
|
| 134 |
|
|
|
| 135 |
|
|
/* Return the value of ARRAY[IDX].
|
| 136 |
|
|
|
| 137 |
|
|
ARRAY may be of type TYPE_CODE_ARRAY or TYPE_CODE_STRING. If the
|
| 138 |
|
|
current language supports C-style arrays, it may also be TYPE_CODE_PTR.
|
| 139 |
|
|
To access TYPE_CODE_BITSTRING values, use value_bitstring_subscript.
|
| 140 |
|
|
|
| 141 |
|
|
See comments in value_coerce_array() for rationale for reason for
|
| 142 |
|
|
doing lower bounds adjustment here rather than there.
|
| 143 |
|
|
FIXME: Perhaps we should validate that the index is valid and if
|
| 144 |
|
|
verbosity is set, warn about invalid indices (but still use them). */
|
| 145 |
|
|
|
| 146 |
|
|
struct value *
|
| 147 |
|
|
value_subscript (struct value *array, LONGEST index)
|
| 148 |
|
|
{
|
| 149 |
|
|
struct value *bound;
|
| 150 |
|
|
int c_style = current_language->c_style_arrays;
|
| 151 |
|
|
struct type *tarray;
|
| 152 |
|
|
|
| 153 |
|
|
array = coerce_ref (array);
|
| 154 |
|
|
tarray = check_typedef (value_type (array));
|
| 155 |
|
|
|
| 156 |
|
|
if (TYPE_CODE (tarray) == TYPE_CODE_ARRAY
|
| 157 |
|
|
|| TYPE_CODE (tarray) == TYPE_CODE_STRING)
|
| 158 |
|
|
{
|
| 159 |
|
|
struct type *range_type = TYPE_INDEX_TYPE (tarray);
|
| 160 |
|
|
LONGEST lowerbound, upperbound;
|
| 161 |
|
|
get_discrete_bounds (range_type, &lowerbound, &upperbound);
|
| 162 |
|
|
|
| 163 |
|
|
if (VALUE_LVAL (array) != lval_memory)
|
| 164 |
|
|
return value_subscripted_rvalue (array, index, lowerbound);
|
| 165 |
|
|
|
| 166 |
|
|
if (c_style == 0)
|
| 167 |
|
|
{
|
| 168 |
|
|
if (index >= lowerbound && index <= upperbound)
|
| 169 |
|
|
return value_subscripted_rvalue (array, index, lowerbound);
|
| 170 |
|
|
/* Emit warning unless we have an array of unknown size.
|
| 171 |
|
|
An array of unknown size has lowerbound 0 and upperbound -1. */
|
| 172 |
|
|
if (upperbound > -1)
|
| 173 |
|
|
warning (_("array or string index out of range"));
|
| 174 |
|
|
/* fall doing C stuff */
|
| 175 |
|
|
c_style = 1;
|
| 176 |
|
|
}
|
| 177 |
|
|
|
| 178 |
|
|
index -= lowerbound;
|
| 179 |
|
|
array = value_coerce_array (array);
|
| 180 |
|
|
}
|
| 181 |
|
|
|
| 182 |
|
|
if (c_style)
|
| 183 |
|
|
return value_ind (value_ptradd (array, index));
|
| 184 |
|
|
else
|
| 185 |
|
|
error (_("not an array or string"));
|
| 186 |
|
|
}
|
| 187 |
|
|
|
| 188 |
|
|
/* Return the value of EXPR[IDX], expr an aggregate rvalue
|
| 189 |
|
|
(eg, a vector register). This routine used to promote floats
|
| 190 |
|
|
to doubles, but no longer does. */
|
| 191 |
|
|
|
| 192 |
|
|
struct value *
|
| 193 |
|
|
value_subscripted_rvalue (struct value *array, LONGEST index, int lowerbound)
|
| 194 |
|
|
{
|
| 195 |
|
|
struct type *array_type = check_typedef (value_type (array));
|
| 196 |
|
|
struct type *elt_type = check_typedef (TYPE_TARGET_TYPE (array_type));
|
| 197 |
|
|
unsigned int elt_size = TYPE_LENGTH (elt_type);
|
| 198 |
|
|
unsigned int elt_offs = elt_size * longest_to_int (index - lowerbound);
|
| 199 |
|
|
struct value *v;
|
| 200 |
|
|
|
| 201 |
|
|
if (index < lowerbound || elt_offs >= TYPE_LENGTH (array_type))
|
| 202 |
|
|
error (_("no such vector element"));
|
| 203 |
|
|
|
| 204 |
|
|
v = allocate_value (elt_type);
|
| 205 |
|
|
if (VALUE_LVAL (array) == lval_memory && value_lazy (array))
|
| 206 |
|
|
set_value_lazy (v, 1);
|
| 207 |
|
|
else
|
| 208 |
|
|
memcpy (value_contents_writeable (v),
|
| 209 |
|
|
value_contents (array) + elt_offs, elt_size);
|
| 210 |
|
|
|
| 211 |
|
|
set_value_component_location (v, array);
|
| 212 |
|
|
VALUE_REGNUM (v) = VALUE_REGNUM (array);
|
| 213 |
|
|
VALUE_FRAME_ID (v) = VALUE_FRAME_ID (array);
|
| 214 |
|
|
set_value_offset (v, value_offset (array) + elt_offs);
|
| 215 |
|
|
return v;
|
| 216 |
|
|
}
|
| 217 |
|
|
|
| 218 |
|
|
/* Return the value of BITSTRING[IDX] as (boolean) type TYPE. */
|
| 219 |
|
|
|
| 220 |
|
|
struct value *
|
| 221 |
|
|
value_bitstring_subscript (struct type *type,
|
| 222 |
|
|
struct value *bitstring, LONGEST index)
|
| 223 |
|
|
{
|
| 224 |
|
|
|
| 225 |
|
|
struct type *bitstring_type, *range_type;
|
| 226 |
|
|
struct value *v;
|
| 227 |
|
|
int offset, byte, bit_index;
|
| 228 |
|
|
LONGEST lowerbound, upperbound;
|
| 229 |
|
|
|
| 230 |
|
|
bitstring_type = check_typedef (value_type (bitstring));
|
| 231 |
|
|
gdb_assert (TYPE_CODE (bitstring_type) == TYPE_CODE_BITSTRING);
|
| 232 |
|
|
|
| 233 |
|
|
range_type = TYPE_INDEX_TYPE (bitstring_type);
|
| 234 |
|
|
get_discrete_bounds (range_type, &lowerbound, &upperbound);
|
| 235 |
|
|
if (index < lowerbound || index > upperbound)
|
| 236 |
|
|
error (_("bitstring index out of range"));
|
| 237 |
|
|
|
| 238 |
|
|
index -= lowerbound;
|
| 239 |
|
|
offset = index / TARGET_CHAR_BIT;
|
| 240 |
|
|
byte = *((char *) value_contents (bitstring) + offset);
|
| 241 |
|
|
|
| 242 |
|
|
bit_index = index % TARGET_CHAR_BIT;
|
| 243 |
|
|
byte >>= (gdbarch_bits_big_endian (get_type_arch (bitstring_type)) ?
|
| 244 |
|
|
TARGET_CHAR_BIT - 1 - bit_index : bit_index);
|
| 245 |
|
|
|
| 246 |
|
|
v = value_from_longest (type, byte & 1);
|
| 247 |
|
|
|
| 248 |
|
|
set_value_bitpos (v, bit_index);
|
| 249 |
|
|
set_value_bitsize (v, 1);
|
| 250 |
|
|
set_value_component_location (v, bitstring);
|
| 251 |
|
|
VALUE_FRAME_ID (v) = VALUE_FRAME_ID (bitstring);
|
| 252 |
|
|
|
| 253 |
|
|
set_value_offset (v, offset + value_offset (bitstring));
|
| 254 |
|
|
|
| 255 |
|
|
return v;
|
| 256 |
|
|
}
|
| 257 |
|
|
|
| 258 |
|
|
|
| 259 |
|
|
/* Check to see if either argument is a structure, or a reference to
|
| 260 |
|
|
one. This is called so we know whether to go ahead with the normal
|
| 261 |
|
|
binop or look for a user defined function instead.
|
| 262 |
|
|
|
| 263 |
|
|
For now, we do not overload the `=' operator. */
|
| 264 |
|
|
|
| 265 |
|
|
int
|
| 266 |
|
|
binop_types_user_defined_p (enum exp_opcode op,
|
| 267 |
|
|
struct type *type1, struct type *type2)
|
| 268 |
|
|
{
|
| 269 |
|
|
if (op == BINOP_ASSIGN || op == BINOP_CONCAT)
|
| 270 |
|
|
return 0;
|
| 271 |
|
|
|
| 272 |
|
|
type1 = check_typedef (type1);
|
| 273 |
|
|
if (TYPE_CODE (type1) == TYPE_CODE_REF)
|
| 274 |
|
|
type1 = check_typedef (TYPE_TARGET_TYPE (type1));
|
| 275 |
|
|
|
| 276 |
|
|
type2 = check_typedef (type1);
|
| 277 |
|
|
if (TYPE_CODE (type2) == TYPE_CODE_REF)
|
| 278 |
|
|
type2 = check_typedef (TYPE_TARGET_TYPE (type2));
|
| 279 |
|
|
|
| 280 |
|
|
return (TYPE_CODE (type1) == TYPE_CODE_STRUCT
|
| 281 |
|
|
|| TYPE_CODE (type2) == TYPE_CODE_STRUCT);
|
| 282 |
|
|
}
|
| 283 |
|
|
|
| 284 |
|
|
/* Check to see if either argument is a structure, or a reference to
|
| 285 |
|
|
one. This is called so we know whether to go ahead with the normal
|
| 286 |
|
|
binop or look for a user defined function instead.
|
| 287 |
|
|
|
| 288 |
|
|
For now, we do not overload the `=' operator. */
|
| 289 |
|
|
|
| 290 |
|
|
int
|
| 291 |
|
|
binop_user_defined_p (enum exp_opcode op,
|
| 292 |
|
|
struct value *arg1, struct value *arg2)
|
| 293 |
|
|
{
|
| 294 |
|
|
return binop_types_user_defined_p (op, value_type (arg1), value_type (arg2));
|
| 295 |
|
|
}
|
| 296 |
|
|
|
| 297 |
|
|
/* Check to see if argument is a structure. This is called so
|
| 298 |
|
|
we know whether to go ahead with the normal unop or look for a
|
| 299 |
|
|
user defined function instead.
|
| 300 |
|
|
|
| 301 |
|
|
For now, we do not overload the `&' operator. */
|
| 302 |
|
|
|
| 303 |
|
|
int
|
| 304 |
|
|
unop_user_defined_p (enum exp_opcode op, struct value *arg1)
|
| 305 |
|
|
{
|
| 306 |
|
|
struct type *type1;
|
| 307 |
|
|
if (op == UNOP_ADDR)
|
| 308 |
|
|
return 0;
|
| 309 |
|
|
type1 = check_typedef (value_type (arg1));
|
| 310 |
|
|
for (;;)
|
| 311 |
|
|
{
|
| 312 |
|
|
if (TYPE_CODE (type1) == TYPE_CODE_STRUCT)
|
| 313 |
|
|
return 1;
|
| 314 |
|
|
else if (TYPE_CODE (type1) == TYPE_CODE_REF)
|
| 315 |
|
|
type1 = TYPE_TARGET_TYPE (type1);
|
| 316 |
|
|
else
|
| 317 |
|
|
return 0;
|
| 318 |
|
|
}
|
| 319 |
|
|
}
|
| 320 |
|
|
|
| 321 |
|
|
/* We know either arg1 or arg2 is a structure, so try to find the right
|
| 322 |
|
|
user defined function. Create an argument vector that calls
|
| 323 |
|
|
arg1.operator @ (arg1,arg2) and return that value (where '@' is any
|
| 324 |
|
|
binary operator which is legal for GNU C++).
|
| 325 |
|
|
|
| 326 |
|
|
OP is the operatore, and if it is BINOP_ASSIGN_MODIFY, then OTHEROP
|
| 327 |
|
|
is the opcode saying how to modify it. Otherwise, OTHEROP is
|
| 328 |
|
|
unused. */
|
| 329 |
|
|
|
| 330 |
|
|
struct value *
|
| 331 |
|
|
value_x_binop (struct value *arg1, struct value *arg2, enum exp_opcode op,
|
| 332 |
|
|
enum exp_opcode otherop, enum noside noside)
|
| 333 |
|
|
{
|
| 334 |
|
|
struct value **argvec;
|
| 335 |
|
|
char *ptr;
|
| 336 |
|
|
char tstr[13];
|
| 337 |
|
|
int static_memfuncp;
|
| 338 |
|
|
|
| 339 |
|
|
arg1 = coerce_ref (arg1);
|
| 340 |
|
|
arg2 = coerce_ref (arg2);
|
| 341 |
|
|
|
| 342 |
|
|
/* now we know that what we have to do is construct our
|
| 343 |
|
|
arg vector and find the right function to call it with. */
|
| 344 |
|
|
|
| 345 |
|
|
if (TYPE_CODE (check_typedef (value_type (arg1))) != TYPE_CODE_STRUCT)
|
| 346 |
|
|
error (_("Can't do that binary op on that type")); /* FIXME be explicit */
|
| 347 |
|
|
|
| 348 |
|
|
argvec = (struct value **) alloca (sizeof (struct value *) * 4);
|
| 349 |
|
|
argvec[1] = value_addr (arg1);
|
| 350 |
|
|
argvec[2] = arg2;
|
| 351 |
|
|
argvec[3] = 0;
|
| 352 |
|
|
|
| 353 |
|
|
/* make the right function name up */
|
| 354 |
|
|
strcpy (tstr, "operator__");
|
| 355 |
|
|
ptr = tstr + 8;
|
| 356 |
|
|
switch (op)
|
| 357 |
|
|
{
|
| 358 |
|
|
case BINOP_ADD:
|
| 359 |
|
|
strcpy (ptr, "+");
|
| 360 |
|
|
break;
|
| 361 |
|
|
case BINOP_SUB:
|
| 362 |
|
|
strcpy (ptr, "-");
|
| 363 |
|
|
break;
|
| 364 |
|
|
case BINOP_MUL:
|
| 365 |
|
|
strcpy (ptr, "*");
|
| 366 |
|
|
break;
|
| 367 |
|
|
case BINOP_DIV:
|
| 368 |
|
|
strcpy (ptr, "/");
|
| 369 |
|
|
break;
|
| 370 |
|
|
case BINOP_REM:
|
| 371 |
|
|
strcpy (ptr, "%");
|
| 372 |
|
|
break;
|
| 373 |
|
|
case BINOP_LSH:
|
| 374 |
|
|
strcpy (ptr, "<<");
|
| 375 |
|
|
break;
|
| 376 |
|
|
case BINOP_RSH:
|
| 377 |
|
|
strcpy (ptr, ">>");
|
| 378 |
|
|
break;
|
| 379 |
|
|
case BINOP_BITWISE_AND:
|
| 380 |
|
|
strcpy (ptr, "&");
|
| 381 |
|
|
break;
|
| 382 |
|
|
case BINOP_BITWISE_IOR:
|
| 383 |
|
|
strcpy (ptr, "|");
|
| 384 |
|
|
break;
|
| 385 |
|
|
case BINOP_BITWISE_XOR:
|
| 386 |
|
|
strcpy (ptr, "^");
|
| 387 |
|
|
break;
|
| 388 |
|
|
case BINOP_LOGICAL_AND:
|
| 389 |
|
|
strcpy (ptr, "&&");
|
| 390 |
|
|
break;
|
| 391 |
|
|
case BINOP_LOGICAL_OR:
|
| 392 |
|
|
strcpy (ptr, "||");
|
| 393 |
|
|
break;
|
| 394 |
|
|
case BINOP_MIN:
|
| 395 |
|
|
strcpy (ptr, "<?");
|
| 396 |
|
|
break;
|
| 397 |
|
|
case BINOP_MAX:
|
| 398 |
|
|
strcpy (ptr, ">?");
|
| 399 |
|
|
break;
|
| 400 |
|
|
case BINOP_ASSIGN:
|
| 401 |
|
|
strcpy (ptr, "=");
|
| 402 |
|
|
break;
|
| 403 |
|
|
case BINOP_ASSIGN_MODIFY:
|
| 404 |
|
|
switch (otherop)
|
| 405 |
|
|
{
|
| 406 |
|
|
case BINOP_ADD:
|
| 407 |
|
|
strcpy (ptr, "+=");
|
| 408 |
|
|
break;
|
| 409 |
|
|
case BINOP_SUB:
|
| 410 |
|
|
strcpy (ptr, "-=");
|
| 411 |
|
|
break;
|
| 412 |
|
|
case BINOP_MUL:
|
| 413 |
|
|
strcpy (ptr, "*=");
|
| 414 |
|
|
break;
|
| 415 |
|
|
case BINOP_DIV:
|
| 416 |
|
|
strcpy (ptr, "/=");
|
| 417 |
|
|
break;
|
| 418 |
|
|
case BINOP_REM:
|
| 419 |
|
|
strcpy (ptr, "%=");
|
| 420 |
|
|
break;
|
| 421 |
|
|
case BINOP_BITWISE_AND:
|
| 422 |
|
|
strcpy (ptr, "&=");
|
| 423 |
|
|
break;
|
| 424 |
|
|
case BINOP_BITWISE_IOR:
|
| 425 |
|
|
strcpy (ptr, "|=");
|
| 426 |
|
|
break;
|
| 427 |
|
|
case BINOP_BITWISE_XOR:
|
| 428 |
|
|
strcpy (ptr, "^=");
|
| 429 |
|
|
break;
|
| 430 |
|
|
case BINOP_MOD: /* invalid */
|
| 431 |
|
|
default:
|
| 432 |
|
|
error (_("Invalid binary operation specified."));
|
| 433 |
|
|
}
|
| 434 |
|
|
break;
|
| 435 |
|
|
case BINOP_SUBSCRIPT:
|
| 436 |
|
|
strcpy (ptr, "[]");
|
| 437 |
|
|
break;
|
| 438 |
|
|
case BINOP_EQUAL:
|
| 439 |
|
|
strcpy (ptr, "==");
|
| 440 |
|
|
break;
|
| 441 |
|
|
case BINOP_NOTEQUAL:
|
| 442 |
|
|
strcpy (ptr, "!=");
|
| 443 |
|
|
break;
|
| 444 |
|
|
case BINOP_LESS:
|
| 445 |
|
|
strcpy (ptr, "<");
|
| 446 |
|
|
break;
|
| 447 |
|
|
case BINOP_GTR:
|
| 448 |
|
|
strcpy (ptr, ">");
|
| 449 |
|
|
break;
|
| 450 |
|
|
case BINOP_GEQ:
|
| 451 |
|
|
strcpy (ptr, ">=");
|
| 452 |
|
|
break;
|
| 453 |
|
|
case BINOP_LEQ:
|
| 454 |
|
|
strcpy (ptr, "<=");
|
| 455 |
|
|
break;
|
| 456 |
|
|
case BINOP_MOD: /* invalid */
|
| 457 |
|
|
default:
|
| 458 |
|
|
error (_("Invalid binary operation specified."));
|
| 459 |
|
|
}
|
| 460 |
|
|
|
| 461 |
|
|
argvec[0] = value_struct_elt (&arg1, argvec + 1, tstr, &static_memfuncp, "structure");
|
| 462 |
|
|
|
| 463 |
|
|
if (argvec[0])
|
| 464 |
|
|
{
|
| 465 |
|
|
if (static_memfuncp)
|
| 466 |
|
|
{
|
| 467 |
|
|
argvec[1] = argvec[0];
|
| 468 |
|
|
argvec++;
|
| 469 |
|
|
}
|
| 470 |
|
|
if (noside == EVAL_AVOID_SIDE_EFFECTS)
|
| 471 |
|
|
{
|
| 472 |
|
|
struct type *return_type;
|
| 473 |
|
|
return_type
|
| 474 |
|
|
= TYPE_TARGET_TYPE (check_typedef (value_type (argvec[0])));
|
| 475 |
|
|
return value_zero (return_type, VALUE_LVAL (arg1));
|
| 476 |
|
|
}
|
| 477 |
|
|
return call_function_by_hand (argvec[0], 2 - static_memfuncp, argvec + 1);
|
| 478 |
|
|
}
|
| 479 |
|
|
error (_("member function %s not found"), tstr);
|
| 480 |
|
|
#ifdef lint
|
| 481 |
|
|
return call_function_by_hand (argvec[0], 2 - static_memfuncp, argvec + 1);
|
| 482 |
|
|
#endif
|
| 483 |
|
|
}
|
| 484 |
|
|
|
| 485 |
|
|
/* We know that arg1 is a structure, so try to find a unary user
|
| 486 |
|
|
defined operator that matches the operator in question.
|
| 487 |
|
|
Create an argument vector that calls arg1.operator @ (arg1)
|
| 488 |
|
|
and return that value (where '@' is (almost) any unary operator which
|
| 489 |
|
|
is legal for GNU C++). */
|
| 490 |
|
|
|
| 491 |
|
|
struct value *
|
| 492 |
|
|
value_x_unop (struct value *arg1, enum exp_opcode op, enum noside noside)
|
| 493 |
|
|
{
|
| 494 |
|
|
struct gdbarch *gdbarch = get_type_arch (value_type (arg1));
|
| 495 |
|
|
struct value **argvec;
|
| 496 |
|
|
char *ptr, *mangle_ptr;
|
| 497 |
|
|
char tstr[13], mangle_tstr[13];
|
| 498 |
|
|
int static_memfuncp, nargs;
|
| 499 |
|
|
|
| 500 |
|
|
arg1 = coerce_ref (arg1);
|
| 501 |
|
|
|
| 502 |
|
|
/* now we know that what we have to do is construct our
|
| 503 |
|
|
arg vector and find the right function to call it with. */
|
| 504 |
|
|
|
| 505 |
|
|
if (TYPE_CODE (check_typedef (value_type (arg1))) != TYPE_CODE_STRUCT)
|
| 506 |
|
|
error (_("Can't do that unary op on that type")); /* FIXME be explicit */
|
| 507 |
|
|
|
| 508 |
|
|
argvec = (struct value **) alloca (sizeof (struct value *) * 4);
|
| 509 |
|
|
argvec[1] = value_addr (arg1);
|
| 510 |
|
|
argvec[2] = 0;
|
| 511 |
|
|
|
| 512 |
|
|
nargs = 1;
|
| 513 |
|
|
|
| 514 |
|
|
/* make the right function name up */
|
| 515 |
|
|
strcpy (tstr, "operator__");
|
| 516 |
|
|
ptr = tstr + 8;
|
| 517 |
|
|
strcpy (mangle_tstr, "__");
|
| 518 |
|
|
mangle_ptr = mangle_tstr + 2;
|
| 519 |
|
|
switch (op)
|
| 520 |
|
|
{
|
| 521 |
|
|
case UNOP_PREINCREMENT:
|
| 522 |
|
|
strcpy (ptr, "++");
|
| 523 |
|
|
break;
|
| 524 |
|
|
case UNOP_PREDECREMENT:
|
| 525 |
|
|
strcpy (ptr, "--");
|
| 526 |
|
|
break;
|
| 527 |
|
|
case UNOP_POSTINCREMENT:
|
| 528 |
|
|
strcpy (ptr, "++");
|
| 529 |
|
|
argvec[2] = value_from_longest (builtin_type (gdbarch)->builtin_int, 0);
|
| 530 |
|
|
argvec[3] = 0;
|
| 531 |
|
|
nargs ++;
|
| 532 |
|
|
break;
|
| 533 |
|
|
case UNOP_POSTDECREMENT:
|
| 534 |
|
|
strcpy (ptr, "--");
|
| 535 |
|
|
argvec[2] = value_from_longest (builtin_type (gdbarch)->builtin_int, 0);
|
| 536 |
|
|
argvec[3] = 0;
|
| 537 |
|
|
nargs ++;
|
| 538 |
|
|
break;
|
| 539 |
|
|
case UNOP_LOGICAL_NOT:
|
| 540 |
|
|
strcpy (ptr, "!");
|
| 541 |
|
|
break;
|
| 542 |
|
|
case UNOP_COMPLEMENT:
|
| 543 |
|
|
strcpy (ptr, "~");
|
| 544 |
|
|
break;
|
| 545 |
|
|
case UNOP_NEG:
|
| 546 |
|
|
strcpy (ptr, "-");
|
| 547 |
|
|
break;
|
| 548 |
|
|
case UNOP_PLUS:
|
| 549 |
|
|
strcpy (ptr, "+");
|
| 550 |
|
|
break;
|
| 551 |
|
|
case UNOP_IND:
|
| 552 |
|
|
strcpy (ptr, "*");
|
| 553 |
|
|
break;
|
| 554 |
|
|
default:
|
| 555 |
|
|
error (_("Invalid unary operation specified."));
|
| 556 |
|
|
}
|
| 557 |
|
|
|
| 558 |
|
|
argvec[0] = value_struct_elt (&arg1, argvec + 1, tstr, &static_memfuncp, "structure");
|
| 559 |
|
|
|
| 560 |
|
|
if (argvec[0])
|
| 561 |
|
|
{
|
| 562 |
|
|
if (static_memfuncp)
|
| 563 |
|
|
{
|
| 564 |
|
|
argvec[1] = argvec[0];
|
| 565 |
|
|
nargs --;
|
| 566 |
|
|
argvec++;
|
| 567 |
|
|
}
|
| 568 |
|
|
if (noside == EVAL_AVOID_SIDE_EFFECTS)
|
| 569 |
|
|
{
|
| 570 |
|
|
struct type *return_type;
|
| 571 |
|
|
return_type
|
| 572 |
|
|
= TYPE_TARGET_TYPE (check_typedef (value_type (argvec[0])));
|
| 573 |
|
|
return value_zero (return_type, VALUE_LVAL (arg1));
|
| 574 |
|
|
}
|
| 575 |
|
|
return call_function_by_hand (argvec[0], nargs, argvec + 1);
|
| 576 |
|
|
}
|
| 577 |
|
|
error (_("member function %s not found"), tstr);
|
| 578 |
|
|
return 0; /* For lint -- never reached */
|
| 579 |
|
|
}
|
| 580 |
|
|
|
| 581 |
|
|
|
| 582 |
|
|
/* Concatenate two values with the following conditions:
|
| 583 |
|
|
|
| 584 |
|
|
(1) Both values must be either bitstring values or character string
|
| 585 |
|
|
values and the resulting value consists of the concatenation of
|
| 586 |
|
|
ARG1 followed by ARG2.
|
| 587 |
|
|
|
| 588 |
|
|
or
|
| 589 |
|
|
|
| 590 |
|
|
One value must be an integer value and the other value must be
|
| 591 |
|
|
either a bitstring value or character string value, which is
|
| 592 |
|
|
to be repeated by the number of times specified by the integer
|
| 593 |
|
|
value.
|
| 594 |
|
|
|
| 595 |
|
|
|
| 596 |
|
|
(2) Boolean values are also allowed and are treated as bit string
|
| 597 |
|
|
values of length 1.
|
| 598 |
|
|
|
| 599 |
|
|
(3) Character values are also allowed and are treated as character
|
| 600 |
|
|
string values of length 1.
|
| 601 |
|
|
*/
|
| 602 |
|
|
|
| 603 |
|
|
struct value *
|
| 604 |
|
|
value_concat (struct value *arg1, struct value *arg2)
|
| 605 |
|
|
{
|
| 606 |
|
|
struct value *inval1;
|
| 607 |
|
|
struct value *inval2;
|
| 608 |
|
|
struct value *outval = NULL;
|
| 609 |
|
|
int inval1len, inval2len;
|
| 610 |
|
|
int count, idx;
|
| 611 |
|
|
char *ptr;
|
| 612 |
|
|
char inchar;
|
| 613 |
|
|
struct type *type1 = check_typedef (value_type (arg1));
|
| 614 |
|
|
struct type *type2 = check_typedef (value_type (arg2));
|
| 615 |
|
|
struct type *char_type;
|
| 616 |
|
|
|
| 617 |
|
|
/* First figure out if we are dealing with two values to be concatenated
|
| 618 |
|
|
or a repeat count and a value to be repeated. INVAL1 is set to the
|
| 619 |
|
|
first of two concatenated values, or the repeat count. INVAL2 is set
|
| 620 |
|
|
to the second of the two concatenated values or the value to be
|
| 621 |
|
|
repeated. */
|
| 622 |
|
|
|
| 623 |
|
|
if (TYPE_CODE (type2) == TYPE_CODE_INT)
|
| 624 |
|
|
{
|
| 625 |
|
|
struct type *tmp = type1;
|
| 626 |
|
|
type1 = tmp;
|
| 627 |
|
|
tmp = type2;
|
| 628 |
|
|
inval1 = arg2;
|
| 629 |
|
|
inval2 = arg1;
|
| 630 |
|
|
}
|
| 631 |
|
|
else
|
| 632 |
|
|
{
|
| 633 |
|
|
inval1 = arg1;
|
| 634 |
|
|
inval2 = arg2;
|
| 635 |
|
|
}
|
| 636 |
|
|
|
| 637 |
|
|
/* Now process the input values. */
|
| 638 |
|
|
|
| 639 |
|
|
if (TYPE_CODE (type1) == TYPE_CODE_INT)
|
| 640 |
|
|
{
|
| 641 |
|
|
/* We have a repeat count. Validate the second value and then
|
| 642 |
|
|
construct a value repeated that many times. */
|
| 643 |
|
|
if (TYPE_CODE (type2) == TYPE_CODE_STRING
|
| 644 |
|
|
|| TYPE_CODE (type2) == TYPE_CODE_CHAR)
|
| 645 |
|
|
{
|
| 646 |
|
|
count = longest_to_int (value_as_long (inval1));
|
| 647 |
|
|
inval2len = TYPE_LENGTH (type2);
|
| 648 |
|
|
ptr = (char *) alloca (count * inval2len);
|
| 649 |
|
|
if (TYPE_CODE (type2) == TYPE_CODE_CHAR)
|
| 650 |
|
|
{
|
| 651 |
|
|
char_type = type2;
|
| 652 |
|
|
inchar = (char) unpack_long (type2,
|
| 653 |
|
|
value_contents (inval2));
|
| 654 |
|
|
for (idx = 0; idx < count; idx++)
|
| 655 |
|
|
{
|
| 656 |
|
|
*(ptr + idx) = inchar;
|
| 657 |
|
|
}
|
| 658 |
|
|
}
|
| 659 |
|
|
else
|
| 660 |
|
|
{
|
| 661 |
|
|
char_type = TYPE_TARGET_TYPE (type2);
|
| 662 |
|
|
for (idx = 0; idx < count; idx++)
|
| 663 |
|
|
{
|
| 664 |
|
|
memcpy (ptr + (idx * inval2len), value_contents (inval2),
|
| 665 |
|
|
inval2len);
|
| 666 |
|
|
}
|
| 667 |
|
|
}
|
| 668 |
|
|
outval = value_string (ptr, count * inval2len, char_type);
|
| 669 |
|
|
}
|
| 670 |
|
|
else if (TYPE_CODE (type2) == TYPE_CODE_BITSTRING
|
| 671 |
|
|
|| TYPE_CODE (type2) == TYPE_CODE_BOOL)
|
| 672 |
|
|
{
|
| 673 |
|
|
error (_("unimplemented support for bitstring/boolean repeats"));
|
| 674 |
|
|
}
|
| 675 |
|
|
else
|
| 676 |
|
|
{
|
| 677 |
|
|
error (_("can't repeat values of that type"));
|
| 678 |
|
|
}
|
| 679 |
|
|
}
|
| 680 |
|
|
else if (TYPE_CODE (type1) == TYPE_CODE_STRING
|
| 681 |
|
|
|| TYPE_CODE (type1) == TYPE_CODE_CHAR)
|
| 682 |
|
|
{
|
| 683 |
|
|
/* We have two character strings to concatenate. */
|
| 684 |
|
|
if (TYPE_CODE (type2) != TYPE_CODE_STRING
|
| 685 |
|
|
&& TYPE_CODE (type2) != TYPE_CODE_CHAR)
|
| 686 |
|
|
{
|
| 687 |
|
|
error (_("Strings can only be concatenated with other strings."));
|
| 688 |
|
|
}
|
| 689 |
|
|
inval1len = TYPE_LENGTH (type1);
|
| 690 |
|
|
inval2len = TYPE_LENGTH (type2);
|
| 691 |
|
|
ptr = (char *) alloca (inval1len + inval2len);
|
| 692 |
|
|
if (TYPE_CODE (type1) == TYPE_CODE_CHAR)
|
| 693 |
|
|
{
|
| 694 |
|
|
char_type = type1;
|
| 695 |
|
|
*ptr = (char) unpack_long (type1, value_contents (inval1));
|
| 696 |
|
|
}
|
| 697 |
|
|
else
|
| 698 |
|
|
{
|
| 699 |
|
|
char_type = TYPE_TARGET_TYPE (type1);
|
| 700 |
|
|
memcpy (ptr, value_contents (inval1), inval1len);
|
| 701 |
|
|
}
|
| 702 |
|
|
if (TYPE_CODE (type2) == TYPE_CODE_CHAR)
|
| 703 |
|
|
{
|
| 704 |
|
|
*(ptr + inval1len) =
|
| 705 |
|
|
(char) unpack_long (type2, value_contents (inval2));
|
| 706 |
|
|
}
|
| 707 |
|
|
else
|
| 708 |
|
|
{
|
| 709 |
|
|
memcpy (ptr + inval1len, value_contents (inval2), inval2len);
|
| 710 |
|
|
}
|
| 711 |
|
|
outval = value_string (ptr, inval1len + inval2len, char_type);
|
| 712 |
|
|
}
|
| 713 |
|
|
else if (TYPE_CODE (type1) == TYPE_CODE_BITSTRING
|
| 714 |
|
|
|| TYPE_CODE (type1) == TYPE_CODE_BOOL)
|
| 715 |
|
|
{
|
| 716 |
|
|
/* We have two bitstrings to concatenate. */
|
| 717 |
|
|
if (TYPE_CODE (type2) != TYPE_CODE_BITSTRING
|
| 718 |
|
|
&& TYPE_CODE (type2) != TYPE_CODE_BOOL)
|
| 719 |
|
|
{
|
| 720 |
|
|
error (_("Bitstrings or booleans can only be concatenated with other bitstrings or booleans."));
|
| 721 |
|
|
}
|
| 722 |
|
|
error (_("unimplemented support for bitstring/boolean concatenation."));
|
| 723 |
|
|
}
|
| 724 |
|
|
else
|
| 725 |
|
|
{
|
| 726 |
|
|
/* We don't know how to concatenate these operands. */
|
| 727 |
|
|
error (_("illegal operands for concatenation."));
|
| 728 |
|
|
}
|
| 729 |
|
|
return (outval);
|
| 730 |
|
|
}
|
| 731 |
|
|
|
| 732 |
|
|
/* Integer exponentiation: V1**V2, where both arguments are
|
| 733 |
|
|
integers. Requires V1 != 0 if V2 < 0. Returns 1 for 0 ** 0. */
|
| 734 |
|
|
static LONGEST
|
| 735 |
|
|
integer_pow (LONGEST v1, LONGEST v2)
|
| 736 |
|
|
{
|
| 737 |
|
|
if (v2 < 0)
|
| 738 |
|
|
{
|
| 739 |
|
|
if (v1 == 0)
|
| 740 |
|
|
error (_("Attempt to raise 0 to negative power."));
|
| 741 |
|
|
else
|
| 742 |
|
|
return 0;
|
| 743 |
|
|
}
|
| 744 |
|
|
else
|
| 745 |
|
|
{
|
| 746 |
|
|
/* The Russian Peasant's Algorithm */
|
| 747 |
|
|
LONGEST v;
|
| 748 |
|
|
|
| 749 |
|
|
v = 1;
|
| 750 |
|
|
for (;;)
|
| 751 |
|
|
{
|
| 752 |
|
|
if (v2 & 1L)
|
| 753 |
|
|
v *= v1;
|
| 754 |
|
|
v2 >>= 1;
|
| 755 |
|
|
if (v2 == 0)
|
| 756 |
|
|
return v;
|
| 757 |
|
|
v1 *= v1;
|
| 758 |
|
|
}
|
| 759 |
|
|
}
|
| 760 |
|
|
}
|
| 761 |
|
|
|
| 762 |
|
|
/* Integer exponentiation: V1**V2, where both arguments are
|
| 763 |
|
|
integers. Requires V1 != 0 if V2 < 0. Returns 1 for 0 ** 0. */
|
| 764 |
|
|
static ULONGEST
|
| 765 |
|
|
uinteger_pow (ULONGEST v1, LONGEST v2)
|
| 766 |
|
|
{
|
| 767 |
|
|
if (v2 < 0)
|
| 768 |
|
|
{
|
| 769 |
|
|
if (v1 == 0)
|
| 770 |
|
|
error (_("Attempt to raise 0 to negative power."));
|
| 771 |
|
|
else
|
| 772 |
|
|
return 0;
|
| 773 |
|
|
}
|
| 774 |
|
|
else
|
| 775 |
|
|
{
|
| 776 |
|
|
/* The Russian Peasant's Algorithm */
|
| 777 |
|
|
ULONGEST v;
|
| 778 |
|
|
|
| 779 |
|
|
v = 1;
|
| 780 |
|
|
for (;;)
|
| 781 |
|
|
{
|
| 782 |
|
|
if (v2 & 1L)
|
| 783 |
|
|
v *= v1;
|
| 784 |
|
|
v2 >>= 1;
|
| 785 |
|
|
if (v2 == 0)
|
| 786 |
|
|
return v;
|
| 787 |
|
|
v1 *= v1;
|
| 788 |
|
|
}
|
| 789 |
|
|
}
|
| 790 |
|
|
}
|
| 791 |
|
|
|
| 792 |
|
|
/* Obtain decimal value of arguments for binary operation, converting from
|
| 793 |
|
|
other types if one of them is not decimal floating point. */
|
| 794 |
|
|
static void
|
| 795 |
|
|
value_args_as_decimal (struct value *arg1, struct value *arg2,
|
| 796 |
|
|
gdb_byte *x, int *len_x, enum bfd_endian *byte_order_x,
|
| 797 |
|
|
gdb_byte *y, int *len_y, enum bfd_endian *byte_order_y)
|
| 798 |
|
|
{
|
| 799 |
|
|
struct type *type1, *type2;
|
| 800 |
|
|
|
| 801 |
|
|
type1 = check_typedef (value_type (arg1));
|
| 802 |
|
|
type2 = check_typedef (value_type (arg2));
|
| 803 |
|
|
|
| 804 |
|
|
/* At least one of the arguments must be of decimal float type. */
|
| 805 |
|
|
gdb_assert (TYPE_CODE (type1) == TYPE_CODE_DECFLOAT
|
| 806 |
|
|
|| TYPE_CODE (type2) == TYPE_CODE_DECFLOAT);
|
| 807 |
|
|
|
| 808 |
|
|
if (TYPE_CODE (type1) == TYPE_CODE_FLT
|
| 809 |
|
|
|| TYPE_CODE (type2) == TYPE_CODE_FLT)
|
| 810 |
|
|
/* The DFP extension to the C language does not allow mixing of
|
| 811 |
|
|
* decimal float types with other float types in expressions
|
| 812 |
|
|
* (see WDTR 24732, page 12). */
|
| 813 |
|
|
error (_("Mixing decimal floating types with other floating types is not allowed."));
|
| 814 |
|
|
|
| 815 |
|
|
/* Obtain decimal value of arg1, converting from other types
|
| 816 |
|
|
if necessary. */
|
| 817 |
|
|
|
| 818 |
|
|
if (TYPE_CODE (type1) == TYPE_CODE_DECFLOAT)
|
| 819 |
|
|
{
|
| 820 |
|
|
*byte_order_x = gdbarch_byte_order (get_type_arch (type1));
|
| 821 |
|
|
*len_x = TYPE_LENGTH (type1);
|
| 822 |
|
|
memcpy (x, value_contents (arg1), *len_x);
|
| 823 |
|
|
}
|
| 824 |
|
|
else if (is_integral_type (type1))
|
| 825 |
|
|
{
|
| 826 |
|
|
*byte_order_x = gdbarch_byte_order (get_type_arch (type2));
|
| 827 |
|
|
*len_x = TYPE_LENGTH (type2);
|
| 828 |
|
|
decimal_from_integral (arg1, x, *len_x, *byte_order_x);
|
| 829 |
|
|
}
|
| 830 |
|
|
else
|
| 831 |
|
|
error (_("Don't know how to convert from %s to %s."), TYPE_NAME (type1),
|
| 832 |
|
|
TYPE_NAME (type2));
|
| 833 |
|
|
|
| 834 |
|
|
/* Obtain decimal value of arg2, converting from other types
|
| 835 |
|
|
if necessary. */
|
| 836 |
|
|
|
| 837 |
|
|
if (TYPE_CODE (type2) == TYPE_CODE_DECFLOAT)
|
| 838 |
|
|
{
|
| 839 |
|
|
*byte_order_y = gdbarch_byte_order (get_type_arch (type2));
|
| 840 |
|
|
*len_y = TYPE_LENGTH (type2);
|
| 841 |
|
|
memcpy (y, value_contents (arg2), *len_y);
|
| 842 |
|
|
}
|
| 843 |
|
|
else if (is_integral_type (type2))
|
| 844 |
|
|
{
|
| 845 |
|
|
*byte_order_y = gdbarch_byte_order (get_type_arch (type1));
|
| 846 |
|
|
*len_y = TYPE_LENGTH (type1);
|
| 847 |
|
|
decimal_from_integral (arg2, y, *len_y, *byte_order_y);
|
| 848 |
|
|
}
|
| 849 |
|
|
else
|
| 850 |
|
|
error (_("Don't know how to convert from %s to %s."), TYPE_NAME (type1),
|
| 851 |
|
|
TYPE_NAME (type2));
|
| 852 |
|
|
}
|
| 853 |
|
|
|
| 854 |
|
|
/* Perform a binary operation on two operands which have reasonable
|
| 855 |
|
|
representations as integers or floats. This includes booleans,
|
| 856 |
|
|
characters, integers, or floats.
|
| 857 |
|
|
Does not support addition and subtraction on pointers;
|
| 858 |
|
|
use value_ptradd, value_ptrsub or value_ptrdiff for those operations. */
|
| 859 |
|
|
|
| 860 |
|
|
struct value *
|
| 861 |
|
|
value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
|
| 862 |
|
|
{
|
| 863 |
|
|
struct value *val;
|
| 864 |
|
|
struct type *type1, *type2, *result_type;
|
| 865 |
|
|
|
| 866 |
|
|
arg1 = coerce_ref (arg1);
|
| 867 |
|
|
arg2 = coerce_ref (arg2);
|
| 868 |
|
|
|
| 869 |
|
|
type1 = check_typedef (value_type (arg1));
|
| 870 |
|
|
type2 = check_typedef (value_type (arg2));
|
| 871 |
|
|
|
| 872 |
|
|
if ((TYPE_CODE (type1) != TYPE_CODE_FLT
|
| 873 |
|
|
&& TYPE_CODE (type1) != TYPE_CODE_DECFLOAT
|
| 874 |
|
|
&& !is_integral_type (type1))
|
| 875 |
|
|
|| (TYPE_CODE (type2) != TYPE_CODE_FLT
|
| 876 |
|
|
&& TYPE_CODE (type2) != TYPE_CODE_DECFLOAT
|
| 877 |
|
|
&& !is_integral_type (type2)))
|
| 878 |
|
|
error (_("Argument to arithmetic operation not a number or boolean."));
|
| 879 |
|
|
|
| 880 |
|
|
if (TYPE_CODE (type1) == TYPE_CODE_DECFLOAT
|
| 881 |
|
|
|| TYPE_CODE (type2) == TYPE_CODE_DECFLOAT)
|
| 882 |
|
|
{
|
| 883 |
|
|
struct type *v_type;
|
| 884 |
|
|
int len_v1, len_v2, len_v;
|
| 885 |
|
|
enum bfd_endian byte_order_v1, byte_order_v2, byte_order_v;
|
| 886 |
|
|
gdb_byte v1[16], v2[16];
|
| 887 |
|
|
gdb_byte v[16];
|
| 888 |
|
|
|
| 889 |
|
|
/* If only one type is decimal float, use its type.
|
| 890 |
|
|
Otherwise use the bigger type. */
|
| 891 |
|
|
if (TYPE_CODE (type1) != TYPE_CODE_DECFLOAT)
|
| 892 |
|
|
result_type = type2;
|
| 893 |
|
|
else if (TYPE_CODE (type2) != TYPE_CODE_DECFLOAT)
|
| 894 |
|
|
result_type = type1;
|
| 895 |
|
|
else if (TYPE_LENGTH (type2) > TYPE_LENGTH (type1))
|
| 896 |
|
|
result_type = type2;
|
| 897 |
|
|
else
|
| 898 |
|
|
result_type = type1;
|
| 899 |
|
|
|
| 900 |
|
|
len_v = TYPE_LENGTH (result_type);
|
| 901 |
|
|
byte_order_v = gdbarch_byte_order (get_type_arch (result_type));
|
| 902 |
|
|
|
| 903 |
|
|
value_args_as_decimal (arg1, arg2, v1, &len_v1, &byte_order_v1,
|
| 904 |
|
|
v2, &len_v2, &byte_order_v2);
|
| 905 |
|
|
|
| 906 |
|
|
switch (op)
|
| 907 |
|
|
{
|
| 908 |
|
|
case BINOP_ADD:
|
| 909 |
|
|
case BINOP_SUB:
|
| 910 |
|
|
case BINOP_MUL:
|
| 911 |
|
|
case BINOP_DIV:
|
| 912 |
|
|
case BINOP_EXP:
|
| 913 |
|
|
decimal_binop (op, v1, len_v1, byte_order_v1,
|
| 914 |
|
|
v2, len_v2, byte_order_v2,
|
| 915 |
|
|
v, len_v, byte_order_v);
|
| 916 |
|
|
break;
|
| 917 |
|
|
|
| 918 |
|
|
default:
|
| 919 |
|
|
error (_("Operation not valid for decimal floating point number."));
|
| 920 |
|
|
}
|
| 921 |
|
|
|
| 922 |
|
|
val = value_from_decfloat (result_type, v);
|
| 923 |
|
|
}
|
| 924 |
|
|
else if (TYPE_CODE (type1) == TYPE_CODE_FLT
|
| 925 |
|
|
|| TYPE_CODE (type2) == TYPE_CODE_FLT)
|
| 926 |
|
|
{
|
| 927 |
|
|
/* FIXME-if-picky-about-floating-accuracy: Should be doing this
|
| 928 |
|
|
in target format. real.c in GCC probably has the necessary
|
| 929 |
|
|
code. */
|
| 930 |
|
|
DOUBLEST v1, v2, v = 0;
|
| 931 |
|
|
v1 = value_as_double (arg1);
|
| 932 |
|
|
v2 = value_as_double (arg2);
|
| 933 |
|
|
|
| 934 |
|
|
switch (op)
|
| 935 |
|
|
{
|
| 936 |
|
|
case BINOP_ADD:
|
| 937 |
|
|
v = v1 + v2;
|
| 938 |
|
|
break;
|
| 939 |
|
|
|
| 940 |
|
|
case BINOP_SUB:
|
| 941 |
|
|
v = v1 - v2;
|
| 942 |
|
|
break;
|
| 943 |
|
|
|
| 944 |
|
|
case BINOP_MUL:
|
| 945 |
|
|
v = v1 * v2;
|
| 946 |
|
|
break;
|
| 947 |
|
|
|
| 948 |
|
|
case BINOP_DIV:
|
| 949 |
|
|
v = v1 / v2;
|
| 950 |
|
|
break;
|
| 951 |
|
|
|
| 952 |
|
|
case BINOP_EXP:
|
| 953 |
|
|
errno = 0;
|
| 954 |
|
|
v = pow (v1, v2);
|
| 955 |
|
|
if (errno)
|
| 956 |
|
|
error (_("Cannot perform exponentiation: %s"), safe_strerror (errno));
|
| 957 |
|
|
break;
|
| 958 |
|
|
|
| 959 |
|
|
case BINOP_MIN:
|
| 960 |
|
|
v = v1 < v2 ? v1 : v2;
|
| 961 |
|
|
break;
|
| 962 |
|
|
|
| 963 |
|
|
case BINOP_MAX:
|
| 964 |
|
|
v = v1 > v2 ? v1 : v2;
|
| 965 |
|
|
break;
|
| 966 |
|
|
|
| 967 |
|
|
default:
|
| 968 |
|
|
error (_("Integer-only operation on floating point number."));
|
| 969 |
|
|
}
|
| 970 |
|
|
|
| 971 |
|
|
/* If only one type is float, use its type.
|
| 972 |
|
|
Otherwise use the bigger type. */
|
| 973 |
|
|
if (TYPE_CODE (type1) != TYPE_CODE_FLT)
|
| 974 |
|
|
result_type = type2;
|
| 975 |
|
|
else if (TYPE_CODE (type2) != TYPE_CODE_FLT)
|
| 976 |
|
|
result_type = type1;
|
| 977 |
|
|
else if (TYPE_LENGTH (type2) > TYPE_LENGTH (type1))
|
| 978 |
|
|
result_type = type2;
|
| 979 |
|
|
else
|
| 980 |
|
|
result_type = type1;
|
| 981 |
|
|
|
| 982 |
|
|
val = allocate_value (result_type);
|
| 983 |
|
|
store_typed_floating (value_contents_raw (val), value_type (val), v);
|
| 984 |
|
|
}
|
| 985 |
|
|
else if (TYPE_CODE (type1) == TYPE_CODE_BOOL
|
| 986 |
|
|
|| TYPE_CODE (type2) == TYPE_CODE_BOOL)
|
| 987 |
|
|
{
|
| 988 |
|
|
LONGEST v1, v2, v = 0;
|
| 989 |
|
|
v1 = value_as_long (arg1);
|
| 990 |
|
|
v2 = value_as_long (arg2);
|
| 991 |
|
|
|
| 992 |
|
|
switch (op)
|
| 993 |
|
|
{
|
| 994 |
|
|
case BINOP_BITWISE_AND:
|
| 995 |
|
|
v = v1 & v2;
|
| 996 |
|
|
break;
|
| 997 |
|
|
|
| 998 |
|
|
case BINOP_BITWISE_IOR:
|
| 999 |
|
|
v = v1 | v2;
|
| 1000 |
|
|
break;
|
| 1001 |
|
|
|
| 1002 |
|
|
case BINOP_BITWISE_XOR:
|
| 1003 |
|
|
v = v1 ^ v2;
|
| 1004 |
|
|
break;
|
| 1005 |
|
|
|
| 1006 |
|
|
case BINOP_EQUAL:
|
| 1007 |
|
|
v = v1 == v2;
|
| 1008 |
|
|
break;
|
| 1009 |
|
|
|
| 1010 |
|
|
case BINOP_NOTEQUAL:
|
| 1011 |
|
|
v = v1 != v2;
|
| 1012 |
|
|
break;
|
| 1013 |
|
|
|
| 1014 |
|
|
default:
|
| 1015 |
|
|
error (_("Invalid operation on booleans."));
|
| 1016 |
|
|
}
|
| 1017 |
|
|
|
| 1018 |
|
|
result_type = type1;
|
| 1019 |
|
|
|
| 1020 |
|
|
val = allocate_value (result_type);
|
| 1021 |
|
|
store_signed_integer (value_contents_raw (val),
|
| 1022 |
|
|
TYPE_LENGTH (result_type),
|
| 1023 |
|
|
gdbarch_byte_order (get_type_arch (result_type)),
|
| 1024 |
|
|
v);
|
| 1025 |
|
|
}
|
| 1026 |
|
|
else
|
| 1027 |
|
|
/* Integral operations here. */
|
| 1028 |
|
|
{
|
| 1029 |
|
|
/* Determine type length of the result, and if the operation should
|
| 1030 |
|
|
be done unsigned. For exponentiation and shift operators,
|
| 1031 |
|
|
use the length and type of the left operand. Otherwise,
|
| 1032 |
|
|
use the signedness of the operand with the greater length.
|
| 1033 |
|
|
If both operands are of equal length, use unsigned operation
|
| 1034 |
|
|
if one of the operands is unsigned. */
|
| 1035 |
|
|
if (op == BINOP_RSH || op == BINOP_LSH || op == BINOP_EXP)
|
| 1036 |
|
|
result_type = type1;
|
| 1037 |
|
|
else if (TYPE_LENGTH (type1) > TYPE_LENGTH (type2))
|
| 1038 |
|
|
result_type = type1;
|
| 1039 |
|
|
else if (TYPE_LENGTH (type2) > TYPE_LENGTH (type1))
|
| 1040 |
|
|
result_type = type2;
|
| 1041 |
|
|
else if (TYPE_UNSIGNED (type1))
|
| 1042 |
|
|
result_type = type1;
|
| 1043 |
|
|
else if (TYPE_UNSIGNED (type2))
|
| 1044 |
|
|
result_type = type2;
|
| 1045 |
|
|
else
|
| 1046 |
|
|
result_type = type1;
|
| 1047 |
|
|
|
| 1048 |
|
|
if (TYPE_UNSIGNED (result_type))
|
| 1049 |
|
|
{
|
| 1050 |
|
|
LONGEST v2_signed = value_as_long (arg2);
|
| 1051 |
|
|
ULONGEST v1, v2, v = 0;
|
| 1052 |
|
|
v1 = (ULONGEST) value_as_long (arg1);
|
| 1053 |
|
|
v2 = (ULONGEST) v2_signed;
|
| 1054 |
|
|
|
| 1055 |
|
|
switch (op)
|
| 1056 |
|
|
{
|
| 1057 |
|
|
case BINOP_ADD:
|
| 1058 |
|
|
v = v1 + v2;
|
| 1059 |
|
|
break;
|
| 1060 |
|
|
|
| 1061 |
|
|
case BINOP_SUB:
|
| 1062 |
|
|
v = v1 - v2;
|
| 1063 |
|
|
break;
|
| 1064 |
|
|
|
| 1065 |
|
|
case BINOP_MUL:
|
| 1066 |
|
|
v = v1 * v2;
|
| 1067 |
|
|
break;
|
| 1068 |
|
|
|
| 1069 |
|
|
case BINOP_DIV:
|
| 1070 |
|
|
case BINOP_INTDIV:
|
| 1071 |
|
|
if (v2 != 0)
|
| 1072 |
|
|
v = v1 / v2;
|
| 1073 |
|
|
else
|
| 1074 |
|
|
error (_("Division by zero"));
|
| 1075 |
|
|
break;
|
| 1076 |
|
|
|
| 1077 |
|
|
case BINOP_EXP:
|
| 1078 |
|
|
v = uinteger_pow (v1, v2_signed);
|
| 1079 |
|
|
break;
|
| 1080 |
|
|
|
| 1081 |
|
|
case BINOP_REM:
|
| 1082 |
|
|
if (v2 != 0)
|
| 1083 |
|
|
v = v1 % v2;
|
| 1084 |
|
|
else
|
| 1085 |
|
|
error (_("Division by zero"));
|
| 1086 |
|
|
break;
|
| 1087 |
|
|
|
| 1088 |
|
|
case BINOP_MOD:
|
| 1089 |
|
|
/* Knuth 1.2.4, integer only. Note that unlike the C '%' op,
|
| 1090 |
|
|
v1 mod 0 has a defined value, v1. */
|
| 1091 |
|
|
if (v2 == 0)
|
| 1092 |
|
|
{
|
| 1093 |
|
|
v = v1;
|
| 1094 |
|
|
}
|
| 1095 |
|
|
else
|
| 1096 |
|
|
{
|
| 1097 |
|
|
v = v1 / v2;
|
| 1098 |
|
|
/* Note floor(v1/v2) == v1/v2 for unsigned. */
|
| 1099 |
|
|
v = v1 - (v2 * v);
|
| 1100 |
|
|
}
|
| 1101 |
|
|
break;
|
| 1102 |
|
|
|
| 1103 |
|
|
case BINOP_LSH:
|
| 1104 |
|
|
v = v1 << v2;
|
| 1105 |
|
|
break;
|
| 1106 |
|
|
|
| 1107 |
|
|
case BINOP_RSH:
|
| 1108 |
|
|
v = v1 >> v2;
|
| 1109 |
|
|
break;
|
| 1110 |
|
|
|
| 1111 |
|
|
case BINOP_BITWISE_AND:
|
| 1112 |
|
|
v = v1 & v2;
|
| 1113 |
|
|
break;
|
| 1114 |
|
|
|
| 1115 |
|
|
case BINOP_BITWISE_IOR:
|
| 1116 |
|
|
v = v1 | v2;
|
| 1117 |
|
|
break;
|
| 1118 |
|
|
|
| 1119 |
|
|
case BINOP_BITWISE_XOR:
|
| 1120 |
|
|
v = v1 ^ v2;
|
| 1121 |
|
|
break;
|
| 1122 |
|
|
|
| 1123 |
|
|
case BINOP_LOGICAL_AND:
|
| 1124 |
|
|
v = v1 && v2;
|
| 1125 |
|
|
break;
|
| 1126 |
|
|
|
| 1127 |
|
|
case BINOP_LOGICAL_OR:
|
| 1128 |
|
|
v = v1 || v2;
|
| 1129 |
|
|
break;
|
| 1130 |
|
|
|
| 1131 |
|
|
case BINOP_MIN:
|
| 1132 |
|
|
v = v1 < v2 ? v1 : v2;
|
| 1133 |
|
|
break;
|
| 1134 |
|
|
|
| 1135 |
|
|
case BINOP_MAX:
|
| 1136 |
|
|
v = v1 > v2 ? v1 : v2;
|
| 1137 |
|
|
break;
|
| 1138 |
|
|
|
| 1139 |
|
|
case BINOP_EQUAL:
|
| 1140 |
|
|
v = v1 == v2;
|
| 1141 |
|
|
break;
|
| 1142 |
|
|
|
| 1143 |
|
|
case BINOP_NOTEQUAL:
|
| 1144 |
|
|
v = v1 != v2;
|
| 1145 |
|
|
break;
|
| 1146 |
|
|
|
| 1147 |
|
|
case BINOP_LESS:
|
| 1148 |
|
|
v = v1 < v2;
|
| 1149 |
|
|
break;
|
| 1150 |
|
|
|
| 1151 |
|
|
case BINOP_GTR:
|
| 1152 |
|
|
v = v1 > v2;
|
| 1153 |
|
|
break;
|
| 1154 |
|
|
|
| 1155 |
|
|
case BINOP_LEQ:
|
| 1156 |
|
|
v = v1 <= v2;
|
| 1157 |
|
|
break;
|
| 1158 |
|
|
|
| 1159 |
|
|
case BINOP_GEQ:
|
| 1160 |
|
|
v = v1 >= v2;
|
| 1161 |
|
|
break;
|
| 1162 |
|
|
|
| 1163 |
|
|
default:
|
| 1164 |
|
|
error (_("Invalid binary operation on numbers."));
|
| 1165 |
|
|
}
|
| 1166 |
|
|
|
| 1167 |
|
|
val = allocate_value (result_type);
|
| 1168 |
|
|
store_unsigned_integer (value_contents_raw (val),
|
| 1169 |
|
|
TYPE_LENGTH (value_type (val)),
|
| 1170 |
|
|
gdbarch_byte_order
|
| 1171 |
|
|
(get_type_arch (result_type)),
|
| 1172 |
|
|
v);
|
| 1173 |
|
|
}
|
| 1174 |
|
|
else
|
| 1175 |
|
|
{
|
| 1176 |
|
|
LONGEST v1, v2, v = 0;
|
| 1177 |
|
|
v1 = value_as_long (arg1);
|
| 1178 |
|
|
v2 = value_as_long (arg2);
|
| 1179 |
|
|
|
| 1180 |
|
|
switch (op)
|
| 1181 |
|
|
{
|
| 1182 |
|
|
case BINOP_ADD:
|
| 1183 |
|
|
v = v1 + v2;
|
| 1184 |
|
|
break;
|
| 1185 |
|
|
|
| 1186 |
|
|
case BINOP_SUB:
|
| 1187 |
|
|
v = v1 - v2;
|
| 1188 |
|
|
break;
|
| 1189 |
|
|
|
| 1190 |
|
|
case BINOP_MUL:
|
| 1191 |
|
|
v = v1 * v2;
|
| 1192 |
|
|
break;
|
| 1193 |
|
|
|
| 1194 |
|
|
case BINOP_DIV:
|
| 1195 |
|
|
case BINOP_INTDIV:
|
| 1196 |
|
|
if (v2 != 0)
|
| 1197 |
|
|
v = v1 / v2;
|
| 1198 |
|
|
else
|
| 1199 |
|
|
error (_("Division by zero"));
|
| 1200 |
|
|
break;
|
| 1201 |
|
|
|
| 1202 |
|
|
case BINOP_EXP:
|
| 1203 |
|
|
v = integer_pow (v1, v2);
|
| 1204 |
|
|
break;
|
| 1205 |
|
|
|
| 1206 |
|
|
case BINOP_REM:
|
| 1207 |
|
|
if (v2 != 0)
|
| 1208 |
|
|
v = v1 % v2;
|
| 1209 |
|
|
else
|
| 1210 |
|
|
error (_("Division by zero"));
|
| 1211 |
|
|
break;
|
| 1212 |
|
|
|
| 1213 |
|
|
case BINOP_MOD:
|
| 1214 |
|
|
/* Knuth 1.2.4, integer only. Note that unlike the C '%' op,
|
| 1215 |
|
|
X mod 0 has a defined value, X. */
|
| 1216 |
|
|
if (v2 == 0)
|
| 1217 |
|
|
{
|
| 1218 |
|
|
v = v1;
|
| 1219 |
|
|
}
|
| 1220 |
|
|
else
|
| 1221 |
|
|
{
|
| 1222 |
|
|
v = v1 / v2;
|
| 1223 |
|
|
/* Compute floor. */
|
| 1224 |
|
|
if (TRUNCATION_TOWARDS_ZERO && (v < 0) && ((v1 % v2) != 0))
|
| 1225 |
|
|
{
|
| 1226 |
|
|
v--;
|
| 1227 |
|
|
}
|
| 1228 |
|
|
v = v1 - (v2 * v);
|
| 1229 |
|
|
}
|
| 1230 |
|
|
break;
|
| 1231 |
|
|
|
| 1232 |
|
|
case BINOP_LSH:
|
| 1233 |
|
|
v = v1 << v2;
|
| 1234 |
|
|
break;
|
| 1235 |
|
|
|
| 1236 |
|
|
case BINOP_RSH:
|
| 1237 |
|
|
v = v1 >> v2;
|
| 1238 |
|
|
break;
|
| 1239 |
|
|
|
| 1240 |
|
|
case BINOP_BITWISE_AND:
|
| 1241 |
|
|
v = v1 & v2;
|
| 1242 |
|
|
break;
|
| 1243 |
|
|
|
| 1244 |
|
|
case BINOP_BITWISE_IOR:
|
| 1245 |
|
|
v = v1 | v2;
|
| 1246 |
|
|
break;
|
| 1247 |
|
|
|
| 1248 |
|
|
case BINOP_BITWISE_XOR:
|
| 1249 |
|
|
v = v1 ^ v2;
|
| 1250 |
|
|
break;
|
| 1251 |
|
|
|
| 1252 |
|
|
case BINOP_LOGICAL_AND:
|
| 1253 |
|
|
v = v1 && v2;
|
| 1254 |
|
|
break;
|
| 1255 |
|
|
|
| 1256 |
|
|
case BINOP_LOGICAL_OR:
|
| 1257 |
|
|
v = v1 || v2;
|
| 1258 |
|
|
break;
|
| 1259 |
|
|
|
| 1260 |
|
|
case BINOP_MIN:
|
| 1261 |
|
|
v = v1 < v2 ? v1 : v2;
|
| 1262 |
|
|
break;
|
| 1263 |
|
|
|
| 1264 |
|
|
case BINOP_MAX:
|
| 1265 |
|
|
v = v1 > v2 ? v1 : v2;
|
| 1266 |
|
|
break;
|
| 1267 |
|
|
|
| 1268 |
|
|
case BINOP_EQUAL:
|
| 1269 |
|
|
v = v1 == v2;
|
| 1270 |
|
|
break;
|
| 1271 |
|
|
|
| 1272 |
|
|
case BINOP_NOTEQUAL:
|
| 1273 |
|
|
v = v1 != v2;
|
| 1274 |
|
|
break;
|
| 1275 |
|
|
|
| 1276 |
|
|
case BINOP_LESS:
|
| 1277 |
|
|
v = v1 < v2;
|
| 1278 |
|
|
break;
|
| 1279 |
|
|
|
| 1280 |
|
|
case BINOP_GTR:
|
| 1281 |
|
|
v = v1 > v2;
|
| 1282 |
|
|
break;
|
| 1283 |
|
|
|
| 1284 |
|
|
case BINOP_LEQ:
|
| 1285 |
|
|
v = v1 <= v2;
|
| 1286 |
|
|
break;
|
| 1287 |
|
|
|
| 1288 |
|
|
case BINOP_GEQ:
|
| 1289 |
|
|
v = v1 >= v2;
|
| 1290 |
|
|
break;
|
| 1291 |
|
|
|
| 1292 |
|
|
default:
|
| 1293 |
|
|
error (_("Invalid binary operation on numbers."));
|
| 1294 |
|
|
}
|
| 1295 |
|
|
|
| 1296 |
|
|
val = allocate_value (result_type);
|
| 1297 |
|
|
store_signed_integer (value_contents_raw (val),
|
| 1298 |
|
|
TYPE_LENGTH (value_type (val)),
|
| 1299 |
|
|
gdbarch_byte_order
|
| 1300 |
|
|
(get_type_arch (result_type)),
|
| 1301 |
|
|
v);
|
| 1302 |
|
|
}
|
| 1303 |
|
|
}
|
| 1304 |
|
|
|
| 1305 |
|
|
return val;
|
| 1306 |
|
|
}
|
| 1307 |
|
|
|
| 1308 |
|
|
/* Simulate the C operator ! -- return 1 if ARG1 contains zero. */
|
| 1309 |
|
|
|
| 1310 |
|
|
int
|
| 1311 |
|
|
value_logical_not (struct value *arg1)
|
| 1312 |
|
|
{
|
| 1313 |
|
|
int len;
|
| 1314 |
|
|
const gdb_byte *p;
|
| 1315 |
|
|
struct type *type1;
|
| 1316 |
|
|
|
| 1317 |
|
|
arg1 = coerce_array (arg1);
|
| 1318 |
|
|
type1 = check_typedef (value_type (arg1));
|
| 1319 |
|
|
|
| 1320 |
|
|
if (TYPE_CODE (type1) == TYPE_CODE_FLT)
|
| 1321 |
|
|
return 0 == value_as_double (arg1);
|
| 1322 |
|
|
else if (TYPE_CODE (type1) == TYPE_CODE_DECFLOAT)
|
| 1323 |
|
|
return decimal_is_zero (value_contents (arg1), TYPE_LENGTH (type1),
|
| 1324 |
|
|
gdbarch_byte_order (get_type_arch (type1)));
|
| 1325 |
|
|
|
| 1326 |
|
|
len = TYPE_LENGTH (type1);
|
| 1327 |
|
|
p = value_contents (arg1);
|
| 1328 |
|
|
|
| 1329 |
|
|
while (--len >= 0)
|
| 1330 |
|
|
{
|
| 1331 |
|
|
if (*p++)
|
| 1332 |
|
|
break;
|
| 1333 |
|
|
}
|
| 1334 |
|
|
|
| 1335 |
|
|
return len < 0;
|
| 1336 |
|
|
}
|
| 1337 |
|
|
|
| 1338 |
|
|
/* Perform a comparison on two string values (whose content are not
|
| 1339 |
|
|
necessarily null terminated) based on their length */
|
| 1340 |
|
|
|
| 1341 |
|
|
static int
|
| 1342 |
|
|
value_strcmp (struct value *arg1, struct value *arg2)
|
| 1343 |
|
|
{
|
| 1344 |
|
|
int len1 = TYPE_LENGTH (value_type (arg1));
|
| 1345 |
|
|
int len2 = TYPE_LENGTH (value_type (arg2));
|
| 1346 |
|
|
const gdb_byte *s1 = value_contents (arg1);
|
| 1347 |
|
|
const gdb_byte *s2 = value_contents (arg2);
|
| 1348 |
|
|
int i, len = len1 < len2 ? len1 : len2;
|
| 1349 |
|
|
|
| 1350 |
|
|
for (i = 0; i < len; i++)
|
| 1351 |
|
|
{
|
| 1352 |
|
|
if (s1[i] < s2[i])
|
| 1353 |
|
|
return -1;
|
| 1354 |
|
|
else if (s1[i] > s2[i])
|
| 1355 |
|
|
return 1;
|
| 1356 |
|
|
else
|
| 1357 |
|
|
continue;
|
| 1358 |
|
|
}
|
| 1359 |
|
|
|
| 1360 |
|
|
if (len1 < len2)
|
| 1361 |
|
|
return -1;
|
| 1362 |
|
|
else if (len1 > len2)
|
| 1363 |
|
|
return 1;
|
| 1364 |
|
|
else
|
| 1365 |
|
|
return 0;
|
| 1366 |
|
|
}
|
| 1367 |
|
|
|
| 1368 |
|
|
/* Simulate the C operator == by returning a 1
|
| 1369 |
|
|
iff ARG1 and ARG2 have equal contents. */
|
| 1370 |
|
|
|
| 1371 |
|
|
int
|
| 1372 |
|
|
value_equal (struct value *arg1, struct value *arg2)
|
| 1373 |
|
|
{
|
| 1374 |
|
|
int len;
|
| 1375 |
|
|
const gdb_byte *p1;
|
| 1376 |
|
|
const gdb_byte *p2;
|
| 1377 |
|
|
struct type *type1, *type2;
|
| 1378 |
|
|
enum type_code code1;
|
| 1379 |
|
|
enum type_code code2;
|
| 1380 |
|
|
int is_int1, is_int2;
|
| 1381 |
|
|
|
| 1382 |
|
|
arg1 = coerce_array (arg1);
|
| 1383 |
|
|
arg2 = coerce_array (arg2);
|
| 1384 |
|
|
|
| 1385 |
|
|
type1 = check_typedef (value_type (arg1));
|
| 1386 |
|
|
type2 = check_typedef (value_type (arg2));
|
| 1387 |
|
|
code1 = TYPE_CODE (type1);
|
| 1388 |
|
|
code2 = TYPE_CODE (type2);
|
| 1389 |
|
|
is_int1 = is_integral_type (type1);
|
| 1390 |
|
|
is_int2 = is_integral_type (type2);
|
| 1391 |
|
|
|
| 1392 |
|
|
if (is_int1 && is_int2)
|
| 1393 |
|
|
return longest_to_int (value_as_long (value_binop (arg1, arg2,
|
| 1394 |
|
|
BINOP_EQUAL)));
|
| 1395 |
|
|
else if ((code1 == TYPE_CODE_FLT || is_int1)
|
| 1396 |
|
|
&& (code2 == TYPE_CODE_FLT || is_int2))
|
| 1397 |
|
|
{
|
| 1398 |
|
|
/* NOTE: kettenis/20050816: Avoid compiler bug on systems where
|
| 1399 |
|
|
`long double' values are returned in static storage (m68k). */
|
| 1400 |
|
|
DOUBLEST d = value_as_double (arg1);
|
| 1401 |
|
|
return d == value_as_double (arg2);
|
| 1402 |
|
|
}
|
| 1403 |
|
|
else if ((code1 == TYPE_CODE_DECFLOAT || is_int1)
|
| 1404 |
|
|
&& (code2 == TYPE_CODE_DECFLOAT || is_int2))
|
| 1405 |
|
|
{
|
| 1406 |
|
|
gdb_byte v1[16], v2[16];
|
| 1407 |
|
|
int len_v1, len_v2;
|
| 1408 |
|
|
enum bfd_endian byte_order_v1, byte_order_v2;
|
| 1409 |
|
|
|
| 1410 |
|
|
value_args_as_decimal (arg1, arg2, v1, &len_v1, &byte_order_v1,
|
| 1411 |
|
|
v2, &len_v2, &byte_order_v2);
|
| 1412 |
|
|
|
| 1413 |
|
|
return decimal_compare (v1, len_v1, byte_order_v1,
|
| 1414 |
|
|
v2, len_v2, byte_order_v2) == 0;
|
| 1415 |
|
|
}
|
| 1416 |
|
|
|
| 1417 |
|
|
/* FIXME: Need to promote to either CORE_ADDR or LONGEST, whichever
|
| 1418 |
|
|
is bigger. */
|
| 1419 |
|
|
else if (code1 == TYPE_CODE_PTR && is_int2)
|
| 1420 |
|
|
return value_as_address (arg1) == (CORE_ADDR) value_as_long (arg2);
|
| 1421 |
|
|
else if (code2 == TYPE_CODE_PTR && is_int1)
|
| 1422 |
|
|
return (CORE_ADDR) value_as_long (arg1) == value_as_address (arg2);
|
| 1423 |
|
|
|
| 1424 |
|
|
else if (code1 == code2
|
| 1425 |
|
|
&& ((len = (int) TYPE_LENGTH (type1))
|
| 1426 |
|
|
== (int) TYPE_LENGTH (type2)))
|
| 1427 |
|
|
{
|
| 1428 |
|
|
p1 = value_contents (arg1);
|
| 1429 |
|
|
p2 = value_contents (arg2);
|
| 1430 |
|
|
while (--len >= 0)
|
| 1431 |
|
|
{
|
| 1432 |
|
|
if (*p1++ != *p2++)
|
| 1433 |
|
|
break;
|
| 1434 |
|
|
}
|
| 1435 |
|
|
return len < 0;
|
| 1436 |
|
|
}
|
| 1437 |
|
|
else if (code1 == TYPE_CODE_STRING && code2 == TYPE_CODE_STRING)
|
| 1438 |
|
|
{
|
| 1439 |
|
|
return value_strcmp (arg1, arg2) == 0;
|
| 1440 |
|
|
}
|
| 1441 |
|
|
else
|
| 1442 |
|
|
{
|
| 1443 |
|
|
error (_("Invalid type combination in equality test."));
|
| 1444 |
|
|
return 0; /* For lint -- never reached */
|
| 1445 |
|
|
}
|
| 1446 |
|
|
}
|
| 1447 |
|
|
|
| 1448 |
|
|
/* Compare values based on their raw contents. Useful for arrays since
|
| 1449 |
|
|
value_equal coerces them to pointers, thus comparing just the address
|
| 1450 |
|
|
of the array instead of its contents. */
|
| 1451 |
|
|
|
| 1452 |
|
|
int
|
| 1453 |
|
|
value_equal_contents (struct value *arg1, struct value *arg2)
|
| 1454 |
|
|
{
|
| 1455 |
|
|
struct type *type1, *type2;
|
| 1456 |
|
|
|
| 1457 |
|
|
type1 = check_typedef (value_type (arg1));
|
| 1458 |
|
|
type2 = check_typedef (value_type (arg2));
|
| 1459 |
|
|
|
| 1460 |
|
|
return (TYPE_CODE (type1) == TYPE_CODE (type2)
|
| 1461 |
|
|
&& TYPE_LENGTH (type1) == TYPE_LENGTH (type2)
|
| 1462 |
|
|
&& memcmp (value_contents (arg1), value_contents (arg2),
|
| 1463 |
|
|
TYPE_LENGTH (type1)) == 0);
|
| 1464 |
|
|
}
|
| 1465 |
|
|
|
| 1466 |
|
|
/* Simulate the C operator < by returning 1
|
| 1467 |
|
|
iff ARG1's contents are less than ARG2's. */
|
| 1468 |
|
|
|
| 1469 |
|
|
int
|
| 1470 |
|
|
value_less (struct value *arg1, struct value *arg2)
|
| 1471 |
|
|
{
|
| 1472 |
|
|
enum type_code code1;
|
| 1473 |
|
|
enum type_code code2;
|
| 1474 |
|
|
struct type *type1, *type2;
|
| 1475 |
|
|
int is_int1, is_int2;
|
| 1476 |
|
|
|
| 1477 |
|
|
arg1 = coerce_array (arg1);
|
| 1478 |
|
|
arg2 = coerce_array (arg2);
|
| 1479 |
|
|
|
| 1480 |
|
|
type1 = check_typedef (value_type (arg1));
|
| 1481 |
|
|
type2 = check_typedef (value_type (arg2));
|
| 1482 |
|
|
code1 = TYPE_CODE (type1);
|
| 1483 |
|
|
code2 = TYPE_CODE (type2);
|
| 1484 |
|
|
is_int1 = is_integral_type (type1);
|
| 1485 |
|
|
is_int2 = is_integral_type (type2);
|
| 1486 |
|
|
|
| 1487 |
|
|
if (is_int1 && is_int2)
|
| 1488 |
|
|
return longest_to_int (value_as_long (value_binop (arg1, arg2,
|
| 1489 |
|
|
BINOP_LESS)));
|
| 1490 |
|
|
else if ((code1 == TYPE_CODE_FLT || is_int1)
|
| 1491 |
|
|
&& (code2 == TYPE_CODE_FLT || is_int2))
|
| 1492 |
|
|
{
|
| 1493 |
|
|
/* NOTE: kettenis/20050816: Avoid compiler bug on systems where
|
| 1494 |
|
|
`long double' values are returned in static storage (m68k). */
|
| 1495 |
|
|
DOUBLEST d = value_as_double (arg1);
|
| 1496 |
|
|
return d < value_as_double (arg2);
|
| 1497 |
|
|
}
|
| 1498 |
|
|
else if ((code1 == TYPE_CODE_DECFLOAT || is_int1)
|
| 1499 |
|
|
&& (code2 == TYPE_CODE_DECFLOAT || is_int2))
|
| 1500 |
|
|
{
|
| 1501 |
|
|
gdb_byte v1[16], v2[16];
|
| 1502 |
|
|
int len_v1, len_v2;
|
| 1503 |
|
|
enum bfd_endian byte_order_v1, byte_order_v2;
|
| 1504 |
|
|
|
| 1505 |
|
|
value_args_as_decimal (arg1, arg2, v1, &len_v1, &byte_order_v1,
|
| 1506 |
|
|
v2, &len_v2, &byte_order_v2);
|
| 1507 |
|
|
|
| 1508 |
|
|
return decimal_compare (v1, len_v1, byte_order_v1,
|
| 1509 |
|
|
v2, len_v2, byte_order_v2) == -1;
|
| 1510 |
|
|
}
|
| 1511 |
|
|
else if (code1 == TYPE_CODE_PTR && code2 == TYPE_CODE_PTR)
|
| 1512 |
|
|
return value_as_address (arg1) < value_as_address (arg2);
|
| 1513 |
|
|
|
| 1514 |
|
|
/* FIXME: Need to promote to either CORE_ADDR or LONGEST, whichever
|
| 1515 |
|
|
is bigger. */
|
| 1516 |
|
|
else if (code1 == TYPE_CODE_PTR && is_int2)
|
| 1517 |
|
|
return value_as_address (arg1) < (CORE_ADDR) value_as_long (arg2);
|
| 1518 |
|
|
else if (code2 == TYPE_CODE_PTR && is_int1)
|
| 1519 |
|
|
return (CORE_ADDR) value_as_long (arg1) < value_as_address (arg2);
|
| 1520 |
|
|
else if (code1 == TYPE_CODE_STRING && code2 == TYPE_CODE_STRING)
|
| 1521 |
|
|
return value_strcmp (arg1, arg2) < 0;
|
| 1522 |
|
|
else
|
| 1523 |
|
|
{
|
| 1524 |
|
|
error (_("Invalid type combination in ordering comparison."));
|
| 1525 |
|
|
return 0;
|
| 1526 |
|
|
}
|
| 1527 |
|
|
}
|
| 1528 |
|
|
|
| 1529 |
|
|
/* The unary operators +, - and ~. They free the argument ARG1. */
|
| 1530 |
|
|
|
| 1531 |
|
|
struct value *
|
| 1532 |
|
|
value_pos (struct value *arg1)
|
| 1533 |
|
|
{
|
| 1534 |
|
|
struct type *type;
|
| 1535 |
|
|
|
| 1536 |
|
|
arg1 = coerce_ref (arg1);
|
| 1537 |
|
|
type = check_typedef (value_type (arg1));
|
| 1538 |
|
|
|
| 1539 |
|
|
if (TYPE_CODE (type) == TYPE_CODE_FLT)
|
| 1540 |
|
|
return value_from_double (type, value_as_double (arg1));
|
| 1541 |
|
|
else if (TYPE_CODE (type) == TYPE_CODE_DECFLOAT)
|
| 1542 |
|
|
return value_from_decfloat (type, value_contents (arg1));
|
| 1543 |
|
|
else if (is_integral_type (type))
|
| 1544 |
|
|
{
|
| 1545 |
|
|
return value_from_longest (type, value_as_long (arg1));
|
| 1546 |
|
|
}
|
| 1547 |
|
|
else
|
| 1548 |
|
|
{
|
| 1549 |
|
|
error ("Argument to positive operation not a number.");
|
| 1550 |
|
|
return 0; /* For lint -- never reached */
|
| 1551 |
|
|
}
|
| 1552 |
|
|
}
|
| 1553 |
|
|
|
| 1554 |
|
|
struct value *
|
| 1555 |
|
|
value_neg (struct value *arg1)
|
| 1556 |
|
|
{
|
| 1557 |
|
|
struct type *type;
|
| 1558 |
|
|
|
| 1559 |
|
|
arg1 = coerce_ref (arg1);
|
| 1560 |
|
|
type = check_typedef (value_type (arg1));
|
| 1561 |
|
|
|
| 1562 |
|
|
if (TYPE_CODE (type) == TYPE_CODE_DECFLOAT)
|
| 1563 |
|
|
{
|
| 1564 |
|
|
struct value *val = allocate_value (type);
|
| 1565 |
|
|
int len = TYPE_LENGTH (type);
|
| 1566 |
|
|
gdb_byte decbytes[16]; /* a decfloat is at most 128 bits long */
|
| 1567 |
|
|
|
| 1568 |
|
|
memcpy (decbytes, value_contents (arg1), len);
|
| 1569 |
|
|
|
| 1570 |
|
|
if (gdbarch_byte_order (get_type_arch (type)) == BFD_ENDIAN_LITTLE)
|
| 1571 |
|
|
decbytes[len-1] = decbytes[len - 1] | 0x80;
|
| 1572 |
|
|
else
|
| 1573 |
|
|
decbytes[0] = decbytes[0] | 0x80;
|
| 1574 |
|
|
|
| 1575 |
|
|
memcpy (value_contents_raw (val), decbytes, len);
|
| 1576 |
|
|
return val;
|
| 1577 |
|
|
}
|
| 1578 |
|
|
else if (TYPE_CODE (type) == TYPE_CODE_FLT)
|
| 1579 |
|
|
return value_from_double (type, -value_as_double (arg1));
|
| 1580 |
|
|
else if (is_integral_type (type))
|
| 1581 |
|
|
{
|
| 1582 |
|
|
return value_from_longest (type, -value_as_long (arg1));
|
| 1583 |
|
|
}
|
| 1584 |
|
|
else
|
| 1585 |
|
|
{
|
| 1586 |
|
|
error (_("Argument to negate operation not a number."));
|
| 1587 |
|
|
return 0; /* For lint -- never reached */
|
| 1588 |
|
|
}
|
| 1589 |
|
|
}
|
| 1590 |
|
|
|
| 1591 |
|
|
struct value *
|
| 1592 |
|
|
value_complement (struct value *arg1)
|
| 1593 |
|
|
{
|
| 1594 |
|
|
struct type *type;
|
| 1595 |
|
|
|
| 1596 |
|
|
arg1 = coerce_ref (arg1);
|
| 1597 |
|
|
type = check_typedef (value_type (arg1));
|
| 1598 |
|
|
|
| 1599 |
|
|
if (!is_integral_type (type))
|
| 1600 |
|
|
error (_("Argument to complement operation not an integer or boolean."));
|
| 1601 |
|
|
|
| 1602 |
|
|
return value_from_longest (type, ~value_as_long (arg1));
|
| 1603 |
|
|
}
|
| 1604 |
|
|
|
| 1605 |
|
|
/* The INDEX'th bit of SET value whose value_type is TYPE,
|
| 1606 |
|
|
and whose value_contents is valaddr.
|
| 1607 |
|
|
Return -1 if out of range, -2 other error. */
|
| 1608 |
|
|
|
| 1609 |
|
|
int
|
| 1610 |
|
|
value_bit_index (struct type *type, const gdb_byte *valaddr, int index)
|
| 1611 |
|
|
{
|
| 1612 |
|
|
struct gdbarch *gdbarch = get_type_arch (type);
|
| 1613 |
|
|
LONGEST low_bound, high_bound;
|
| 1614 |
|
|
LONGEST word;
|
| 1615 |
|
|
unsigned rel_index;
|
| 1616 |
|
|
struct type *range = TYPE_INDEX_TYPE (type);
|
| 1617 |
|
|
if (get_discrete_bounds (range, &low_bound, &high_bound) < 0)
|
| 1618 |
|
|
return -2;
|
| 1619 |
|
|
if (index < low_bound || index > high_bound)
|
| 1620 |
|
|
return -1;
|
| 1621 |
|
|
rel_index = index - low_bound;
|
| 1622 |
|
|
word = extract_unsigned_integer (valaddr + (rel_index / TARGET_CHAR_BIT), 1,
|
| 1623 |
|
|
gdbarch_byte_order (gdbarch));
|
| 1624 |
|
|
rel_index %= TARGET_CHAR_BIT;
|
| 1625 |
|
|
if (gdbarch_bits_big_endian (gdbarch))
|
| 1626 |
|
|
rel_index = TARGET_CHAR_BIT - 1 - rel_index;
|
| 1627 |
|
|
return (word >> rel_index) & 1;
|
| 1628 |
|
|
}
|
| 1629 |
|
|
|
| 1630 |
|
|
int
|
| 1631 |
|
|
value_in (struct value *element, struct value *set)
|
| 1632 |
|
|
{
|
| 1633 |
|
|
int member;
|
| 1634 |
|
|
struct type *settype = check_typedef (value_type (set));
|
| 1635 |
|
|
struct type *eltype = check_typedef (value_type (element));
|
| 1636 |
|
|
if (TYPE_CODE (eltype) == TYPE_CODE_RANGE)
|
| 1637 |
|
|
eltype = TYPE_TARGET_TYPE (eltype);
|
| 1638 |
|
|
if (TYPE_CODE (settype) != TYPE_CODE_SET)
|
| 1639 |
|
|
error (_("Second argument of 'IN' has wrong type"));
|
| 1640 |
|
|
if (TYPE_CODE (eltype) != TYPE_CODE_INT
|
| 1641 |
|
|
&& TYPE_CODE (eltype) != TYPE_CODE_CHAR
|
| 1642 |
|
|
&& TYPE_CODE (eltype) != TYPE_CODE_ENUM
|
| 1643 |
|
|
&& TYPE_CODE (eltype) != TYPE_CODE_BOOL)
|
| 1644 |
|
|
error (_("First argument of 'IN' has wrong type"));
|
| 1645 |
|
|
member = value_bit_index (settype, value_contents (set),
|
| 1646 |
|
|
value_as_long (element));
|
| 1647 |
|
|
if (member < 0)
|
| 1648 |
|
|
error (_("First argument of 'IN' not in range"));
|
| 1649 |
|
|
return member;
|
| 1650 |
|
|
}
|
| 1651 |
|
|
|
| 1652 |
|
|
void
|
| 1653 |
|
|
_initialize_valarith (void)
|
| 1654 |
|
|
{
|
| 1655 |
|
|
}
|