1 |
227 |
jeremybenn |
/* Low level packing and unpacking of values for GDB, the GNU Debugger.
|
2 |
|
|
|
3 |
|
|
Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
|
4 |
|
|
1996, 1997, 1998, 1999, 2000, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
|
5 |
|
|
2009, 2010 Free Software Foundation, Inc.
|
6 |
|
|
|
7 |
|
|
This file is part of GDB.
|
8 |
|
|
|
9 |
|
|
This program is free software; you can redistribute it and/or modify
|
10 |
|
|
it under the terms of the GNU General Public License as published by
|
11 |
|
|
the Free Software Foundation; either version 3 of the License, or
|
12 |
|
|
(at your option) any later version.
|
13 |
|
|
|
14 |
|
|
This program is distributed in the hope that it will be useful,
|
15 |
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
16 |
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
17 |
|
|
GNU General Public License for more details.
|
18 |
|
|
|
19 |
|
|
You should have received a copy of the GNU General Public License
|
20 |
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>. */
|
21 |
|
|
|
22 |
|
|
#include "defs.h"
|
23 |
|
|
#include "arch-utils.h"
|
24 |
|
|
#include "gdb_string.h"
|
25 |
|
|
#include "symtab.h"
|
26 |
|
|
#include "gdbtypes.h"
|
27 |
|
|
#include "value.h"
|
28 |
|
|
#include "gdbcore.h"
|
29 |
|
|
#include "command.h"
|
30 |
|
|
#include "gdbcmd.h"
|
31 |
|
|
#include "target.h"
|
32 |
|
|
#include "language.h"
|
33 |
|
|
#include "demangle.h"
|
34 |
|
|
#include "doublest.h"
|
35 |
|
|
#include "gdb_assert.h"
|
36 |
|
|
#include "regcache.h"
|
37 |
|
|
#include "block.h"
|
38 |
|
|
#include "dfp.h"
|
39 |
|
|
#include "objfiles.h"
|
40 |
|
|
#include "valprint.h"
|
41 |
|
|
#include "cli/cli-decode.h"
|
42 |
|
|
|
43 |
|
|
#include "python/python.h"
|
44 |
|
|
|
45 |
|
|
/* Prototypes for exported functions. */
|
46 |
|
|
|
47 |
|
|
void _initialize_values (void);
|
48 |
|
|
|
49 |
|
|
/* Definition of a user function. */
|
50 |
|
|
struct internal_function
|
51 |
|
|
{
|
52 |
|
|
/* The name of the function. It is a bit odd to have this in the
|
53 |
|
|
function itself -- the user might use a differently-named
|
54 |
|
|
convenience variable to hold the function. */
|
55 |
|
|
char *name;
|
56 |
|
|
|
57 |
|
|
/* The handler. */
|
58 |
|
|
internal_function_fn handler;
|
59 |
|
|
|
60 |
|
|
/* User data for the handler. */
|
61 |
|
|
void *cookie;
|
62 |
|
|
};
|
63 |
|
|
|
64 |
|
|
static struct cmd_list_element *functionlist;
|
65 |
|
|
|
66 |
|
|
struct value
|
67 |
|
|
{
|
68 |
|
|
/* Type of value; either not an lval, or one of the various
|
69 |
|
|
different possible kinds of lval. */
|
70 |
|
|
enum lval_type lval;
|
71 |
|
|
|
72 |
|
|
/* Is it modifiable? Only relevant if lval != not_lval. */
|
73 |
|
|
int modifiable;
|
74 |
|
|
|
75 |
|
|
/* Location of value (if lval). */
|
76 |
|
|
union
|
77 |
|
|
{
|
78 |
|
|
/* If lval == lval_memory, this is the address in the inferior.
|
79 |
|
|
If lval == lval_register, this is the byte offset into the
|
80 |
|
|
registers structure. */
|
81 |
|
|
CORE_ADDR address;
|
82 |
|
|
|
83 |
|
|
/* Pointer to internal variable. */
|
84 |
|
|
struct internalvar *internalvar;
|
85 |
|
|
|
86 |
|
|
/* If lval == lval_computed, this is a set of function pointers
|
87 |
|
|
to use to access and describe the value, and a closure pointer
|
88 |
|
|
for them to use. */
|
89 |
|
|
struct
|
90 |
|
|
{
|
91 |
|
|
struct lval_funcs *funcs; /* Functions to call. */
|
92 |
|
|
void *closure; /* Closure for those functions to use. */
|
93 |
|
|
} computed;
|
94 |
|
|
} location;
|
95 |
|
|
|
96 |
|
|
/* Describes offset of a value within lval of a structure in bytes.
|
97 |
|
|
If lval == lval_memory, this is an offset to the address. If
|
98 |
|
|
lval == lval_register, this is a further offset from
|
99 |
|
|
location.address within the registers structure. Note also the
|
100 |
|
|
member embedded_offset below. */
|
101 |
|
|
int offset;
|
102 |
|
|
|
103 |
|
|
/* Only used for bitfields; number of bits contained in them. */
|
104 |
|
|
int bitsize;
|
105 |
|
|
|
106 |
|
|
/* Only used for bitfields; position of start of field. For
|
107 |
|
|
gdbarch_bits_big_endian=0 targets, it is the position of the LSB. For
|
108 |
|
|
gdbarch_bits_big_endian=1 targets, it is the position of the MSB. */
|
109 |
|
|
int bitpos;
|
110 |
|
|
|
111 |
|
|
/* Only used for bitfields; the containing value. This allows a
|
112 |
|
|
single read from the target when displaying multiple
|
113 |
|
|
bitfields. */
|
114 |
|
|
struct value *parent;
|
115 |
|
|
|
116 |
|
|
/* Frame register value is relative to. This will be described in
|
117 |
|
|
the lval enum above as "lval_register". */
|
118 |
|
|
struct frame_id frame_id;
|
119 |
|
|
|
120 |
|
|
/* Type of the value. */
|
121 |
|
|
struct type *type;
|
122 |
|
|
|
123 |
|
|
/* If a value represents a C++ object, then the `type' field gives
|
124 |
|
|
the object's compile-time type. If the object actually belongs
|
125 |
|
|
to some class derived from `type', perhaps with other base
|
126 |
|
|
classes and additional members, then `type' is just a subobject
|
127 |
|
|
of the real thing, and the full object is probably larger than
|
128 |
|
|
`type' would suggest.
|
129 |
|
|
|
130 |
|
|
If `type' is a dynamic class (i.e. one with a vtable), then GDB
|
131 |
|
|
can actually determine the object's run-time type by looking at
|
132 |
|
|
the run-time type information in the vtable. When this
|
133 |
|
|
information is available, we may elect to read in the entire
|
134 |
|
|
object, for several reasons:
|
135 |
|
|
|
136 |
|
|
- When printing the value, the user would probably rather see the
|
137 |
|
|
full object, not just the limited portion apparent from the
|
138 |
|
|
compile-time type.
|
139 |
|
|
|
140 |
|
|
- If `type' has virtual base classes, then even printing `type'
|
141 |
|
|
alone may require reaching outside the `type' portion of the
|
142 |
|
|
object to wherever the virtual base class has been stored.
|
143 |
|
|
|
144 |
|
|
When we store the entire object, `enclosing_type' is the run-time
|
145 |
|
|
type -- the complete object -- and `embedded_offset' is the
|
146 |
|
|
offset of `type' within that larger type, in bytes. The
|
147 |
|
|
value_contents() macro takes `embedded_offset' into account, so
|
148 |
|
|
most GDB code continues to see the `type' portion of the value,
|
149 |
|
|
just as the inferior would.
|
150 |
|
|
|
151 |
|
|
If `type' is a pointer to an object, then `enclosing_type' is a
|
152 |
|
|
pointer to the object's run-time type, and `pointed_to_offset' is
|
153 |
|
|
the offset in bytes from the full object to the pointed-to object
|
154 |
|
|
-- that is, the value `embedded_offset' would have if we followed
|
155 |
|
|
the pointer and fetched the complete object. (I don't really see
|
156 |
|
|
the point. Why not just determine the run-time type when you
|
157 |
|
|
indirect, and avoid the special case? The contents don't matter
|
158 |
|
|
until you indirect anyway.)
|
159 |
|
|
|
160 |
|
|
If we're not doing anything fancy, `enclosing_type' is equal to
|
161 |
|
|
`type', and `embedded_offset' is zero, so everything works
|
162 |
|
|
normally. */
|
163 |
|
|
struct type *enclosing_type;
|
164 |
|
|
int embedded_offset;
|
165 |
|
|
int pointed_to_offset;
|
166 |
|
|
|
167 |
|
|
/* Values are stored in a chain, so that they can be deleted easily
|
168 |
|
|
over calls to the inferior. Values assigned to internal
|
169 |
|
|
variables, put into the value history or exposed to Python are
|
170 |
|
|
taken off this list. */
|
171 |
|
|
struct value *next;
|
172 |
|
|
|
173 |
|
|
/* Register number if the value is from a register. */
|
174 |
|
|
short regnum;
|
175 |
|
|
|
176 |
|
|
/* If zero, contents of this value are in the contents field. If
|
177 |
|
|
nonzero, contents are in inferior. If the lval field is lval_memory,
|
178 |
|
|
the contents are in inferior memory at location.address plus offset.
|
179 |
|
|
The lval field may also be lval_register.
|
180 |
|
|
|
181 |
|
|
WARNING: This field is used by the code which handles watchpoints
|
182 |
|
|
(see breakpoint.c) to decide whether a particular value can be
|
183 |
|
|
watched by hardware watchpoints. If the lazy flag is set for
|
184 |
|
|
some member of a value chain, it is assumed that this member of
|
185 |
|
|
the chain doesn't need to be watched as part of watching the
|
186 |
|
|
value itself. This is how GDB avoids watching the entire struct
|
187 |
|
|
or array when the user wants to watch a single struct member or
|
188 |
|
|
array element. If you ever change the way lazy flag is set and
|
189 |
|
|
reset, be sure to consider this use as well! */
|
190 |
|
|
char lazy;
|
191 |
|
|
|
192 |
|
|
/* If nonzero, this is the value of a variable which does not
|
193 |
|
|
actually exist in the program. */
|
194 |
|
|
char optimized_out;
|
195 |
|
|
|
196 |
|
|
/* If value is a variable, is it initialized or not. */
|
197 |
|
|
int initialized;
|
198 |
|
|
|
199 |
|
|
/* If value is from the stack. If this is set, read_stack will be
|
200 |
|
|
used instead of read_memory to enable extra caching. */
|
201 |
|
|
int stack;
|
202 |
|
|
|
203 |
|
|
/* Actual contents of the value. Target byte-order. NULL or not
|
204 |
|
|
valid if lazy is nonzero. */
|
205 |
|
|
gdb_byte *contents;
|
206 |
|
|
|
207 |
|
|
/* The number of references to this value. When a value is created,
|
208 |
|
|
the value chain holds a reference, so REFERENCE_COUNT is 1. If
|
209 |
|
|
release_value is called, this value is removed from the chain but
|
210 |
|
|
the caller of release_value now has a reference to this value.
|
211 |
|
|
The caller must arrange for a call to value_free later. */
|
212 |
|
|
int reference_count;
|
213 |
|
|
};
|
214 |
|
|
|
215 |
|
|
/* Prototypes for local functions. */
|
216 |
|
|
|
217 |
|
|
static void show_values (char *, int);
|
218 |
|
|
|
219 |
|
|
static void show_convenience (char *, int);
|
220 |
|
|
|
221 |
|
|
|
222 |
|
|
/* The value-history records all the values printed
|
223 |
|
|
by print commands during this session. Each chunk
|
224 |
|
|
records 60 consecutive values. The first chunk on
|
225 |
|
|
the chain records the most recent values.
|
226 |
|
|
The total number of values is in value_history_count. */
|
227 |
|
|
|
228 |
|
|
#define VALUE_HISTORY_CHUNK 60
|
229 |
|
|
|
230 |
|
|
struct value_history_chunk
|
231 |
|
|
{
|
232 |
|
|
struct value_history_chunk *next;
|
233 |
|
|
struct value *values[VALUE_HISTORY_CHUNK];
|
234 |
|
|
};
|
235 |
|
|
|
236 |
|
|
/* Chain of chunks now in use. */
|
237 |
|
|
|
238 |
|
|
static struct value_history_chunk *value_history_chain;
|
239 |
|
|
|
240 |
|
|
static int value_history_count; /* Abs number of last entry stored */
|
241 |
|
|
|
242 |
|
|
|
243 |
|
|
/* List of all value objects currently allocated
|
244 |
|
|
(except for those released by calls to release_value)
|
245 |
|
|
This is so they can be freed after each command. */
|
246 |
|
|
|
247 |
|
|
static struct value *all_values;
|
248 |
|
|
|
249 |
|
|
/* Allocate a lazy value for type TYPE. Its actual content is
|
250 |
|
|
"lazily" allocated too: the content field of the return value is
|
251 |
|
|
NULL; it will be allocated when it is fetched from the target. */
|
252 |
|
|
|
253 |
|
|
struct value *
|
254 |
|
|
allocate_value_lazy (struct type *type)
|
255 |
|
|
{
|
256 |
|
|
struct value *val;
|
257 |
|
|
|
258 |
|
|
/* Call check_typedef on our type to make sure that, if TYPE
|
259 |
|
|
is a TYPE_CODE_TYPEDEF, its length is set to the length
|
260 |
|
|
of the target type instead of zero. However, we do not
|
261 |
|
|
replace the typedef type by the target type, because we want
|
262 |
|
|
to keep the typedef in order to be able to set the VAL's type
|
263 |
|
|
description correctly. */
|
264 |
|
|
check_typedef (type);
|
265 |
|
|
|
266 |
|
|
val = (struct value *) xzalloc (sizeof (struct value));
|
267 |
|
|
val->contents = NULL;
|
268 |
|
|
val->next = all_values;
|
269 |
|
|
all_values = val;
|
270 |
|
|
val->type = type;
|
271 |
|
|
val->enclosing_type = type;
|
272 |
|
|
VALUE_LVAL (val) = not_lval;
|
273 |
|
|
val->location.address = 0;
|
274 |
|
|
VALUE_FRAME_ID (val) = null_frame_id;
|
275 |
|
|
val->offset = 0;
|
276 |
|
|
val->bitpos = 0;
|
277 |
|
|
val->bitsize = 0;
|
278 |
|
|
VALUE_REGNUM (val) = -1;
|
279 |
|
|
val->lazy = 1;
|
280 |
|
|
val->optimized_out = 0;
|
281 |
|
|
val->embedded_offset = 0;
|
282 |
|
|
val->pointed_to_offset = 0;
|
283 |
|
|
val->modifiable = 1;
|
284 |
|
|
val->initialized = 1; /* Default to initialized. */
|
285 |
|
|
|
286 |
|
|
/* Values start out on the all_values chain. */
|
287 |
|
|
val->reference_count = 1;
|
288 |
|
|
|
289 |
|
|
return val;
|
290 |
|
|
}
|
291 |
|
|
|
292 |
|
|
/* Allocate the contents of VAL if it has not been allocated yet. */
|
293 |
|
|
|
294 |
|
|
void
|
295 |
|
|
allocate_value_contents (struct value *val)
|
296 |
|
|
{
|
297 |
|
|
if (!val->contents)
|
298 |
|
|
val->contents = (gdb_byte *) xzalloc (TYPE_LENGTH (val->enclosing_type));
|
299 |
|
|
}
|
300 |
|
|
|
301 |
|
|
/* Allocate a value and its contents for type TYPE. */
|
302 |
|
|
|
303 |
|
|
struct value *
|
304 |
|
|
allocate_value (struct type *type)
|
305 |
|
|
{
|
306 |
|
|
struct value *val = allocate_value_lazy (type);
|
307 |
|
|
allocate_value_contents (val);
|
308 |
|
|
val->lazy = 0;
|
309 |
|
|
return val;
|
310 |
|
|
}
|
311 |
|
|
|
312 |
|
|
/* Allocate a value that has the correct length
|
313 |
|
|
for COUNT repetitions of type TYPE. */
|
314 |
|
|
|
315 |
|
|
struct value *
|
316 |
|
|
allocate_repeat_value (struct type *type, int count)
|
317 |
|
|
{
|
318 |
|
|
int low_bound = current_language->string_lower_bound; /* ??? */
|
319 |
|
|
/* FIXME-type-allocation: need a way to free this type when we are
|
320 |
|
|
done with it. */
|
321 |
|
|
struct type *array_type
|
322 |
|
|
= lookup_array_range_type (type, low_bound, count + low_bound - 1);
|
323 |
|
|
return allocate_value (array_type);
|
324 |
|
|
}
|
325 |
|
|
|
326 |
|
|
struct value *
|
327 |
|
|
allocate_computed_value (struct type *type,
|
328 |
|
|
struct lval_funcs *funcs,
|
329 |
|
|
void *closure)
|
330 |
|
|
{
|
331 |
|
|
struct value *v = allocate_value (type);
|
332 |
|
|
VALUE_LVAL (v) = lval_computed;
|
333 |
|
|
v->location.computed.funcs = funcs;
|
334 |
|
|
v->location.computed.closure = closure;
|
335 |
|
|
set_value_lazy (v, 1);
|
336 |
|
|
|
337 |
|
|
return v;
|
338 |
|
|
}
|
339 |
|
|
|
340 |
|
|
/* Accessor methods. */
|
341 |
|
|
|
342 |
|
|
struct value *
|
343 |
|
|
value_next (struct value *value)
|
344 |
|
|
{
|
345 |
|
|
return value->next;
|
346 |
|
|
}
|
347 |
|
|
|
348 |
|
|
struct type *
|
349 |
|
|
value_type (struct value *value)
|
350 |
|
|
{
|
351 |
|
|
return value->type;
|
352 |
|
|
}
|
353 |
|
|
void
|
354 |
|
|
deprecated_set_value_type (struct value *value, struct type *type)
|
355 |
|
|
{
|
356 |
|
|
value->type = type;
|
357 |
|
|
}
|
358 |
|
|
|
359 |
|
|
int
|
360 |
|
|
value_offset (struct value *value)
|
361 |
|
|
{
|
362 |
|
|
return value->offset;
|
363 |
|
|
}
|
364 |
|
|
void
|
365 |
|
|
set_value_offset (struct value *value, int offset)
|
366 |
|
|
{
|
367 |
|
|
value->offset = offset;
|
368 |
|
|
}
|
369 |
|
|
|
370 |
|
|
int
|
371 |
|
|
value_bitpos (struct value *value)
|
372 |
|
|
{
|
373 |
|
|
return value->bitpos;
|
374 |
|
|
}
|
375 |
|
|
void
|
376 |
|
|
set_value_bitpos (struct value *value, int bit)
|
377 |
|
|
{
|
378 |
|
|
value->bitpos = bit;
|
379 |
|
|
}
|
380 |
|
|
|
381 |
|
|
int
|
382 |
|
|
value_bitsize (struct value *value)
|
383 |
|
|
{
|
384 |
|
|
return value->bitsize;
|
385 |
|
|
}
|
386 |
|
|
void
|
387 |
|
|
set_value_bitsize (struct value *value, int bit)
|
388 |
|
|
{
|
389 |
|
|
value->bitsize = bit;
|
390 |
|
|
}
|
391 |
|
|
|
392 |
|
|
struct value *
|
393 |
|
|
value_parent (struct value *value)
|
394 |
|
|
{
|
395 |
|
|
return value->parent;
|
396 |
|
|
}
|
397 |
|
|
|
398 |
|
|
gdb_byte *
|
399 |
|
|
value_contents_raw (struct value *value)
|
400 |
|
|
{
|
401 |
|
|
allocate_value_contents (value);
|
402 |
|
|
return value->contents + value->embedded_offset;
|
403 |
|
|
}
|
404 |
|
|
|
405 |
|
|
gdb_byte *
|
406 |
|
|
value_contents_all_raw (struct value *value)
|
407 |
|
|
{
|
408 |
|
|
allocate_value_contents (value);
|
409 |
|
|
return value->contents;
|
410 |
|
|
}
|
411 |
|
|
|
412 |
|
|
struct type *
|
413 |
|
|
value_enclosing_type (struct value *value)
|
414 |
|
|
{
|
415 |
|
|
return value->enclosing_type;
|
416 |
|
|
}
|
417 |
|
|
|
418 |
|
|
const gdb_byte *
|
419 |
|
|
value_contents_all (struct value *value)
|
420 |
|
|
{
|
421 |
|
|
if (value->lazy)
|
422 |
|
|
value_fetch_lazy (value);
|
423 |
|
|
return value->contents;
|
424 |
|
|
}
|
425 |
|
|
|
426 |
|
|
int
|
427 |
|
|
value_lazy (struct value *value)
|
428 |
|
|
{
|
429 |
|
|
return value->lazy;
|
430 |
|
|
}
|
431 |
|
|
|
432 |
|
|
void
|
433 |
|
|
set_value_lazy (struct value *value, int val)
|
434 |
|
|
{
|
435 |
|
|
value->lazy = val;
|
436 |
|
|
}
|
437 |
|
|
|
438 |
|
|
int
|
439 |
|
|
value_stack (struct value *value)
|
440 |
|
|
{
|
441 |
|
|
return value->stack;
|
442 |
|
|
}
|
443 |
|
|
|
444 |
|
|
void
|
445 |
|
|
set_value_stack (struct value *value, int val)
|
446 |
|
|
{
|
447 |
|
|
value->stack = val;
|
448 |
|
|
}
|
449 |
|
|
|
450 |
|
|
const gdb_byte *
|
451 |
|
|
value_contents (struct value *value)
|
452 |
|
|
{
|
453 |
|
|
return value_contents_writeable (value);
|
454 |
|
|
}
|
455 |
|
|
|
456 |
|
|
gdb_byte *
|
457 |
|
|
value_contents_writeable (struct value *value)
|
458 |
|
|
{
|
459 |
|
|
if (value->lazy)
|
460 |
|
|
value_fetch_lazy (value);
|
461 |
|
|
return value_contents_raw (value);
|
462 |
|
|
}
|
463 |
|
|
|
464 |
|
|
/* Return non-zero if VAL1 and VAL2 have the same contents. Note that
|
465 |
|
|
this function is different from value_equal; in C the operator ==
|
466 |
|
|
can return 0 even if the two values being compared are equal. */
|
467 |
|
|
|
468 |
|
|
int
|
469 |
|
|
value_contents_equal (struct value *val1, struct value *val2)
|
470 |
|
|
{
|
471 |
|
|
struct type *type1;
|
472 |
|
|
struct type *type2;
|
473 |
|
|
int len;
|
474 |
|
|
|
475 |
|
|
type1 = check_typedef (value_type (val1));
|
476 |
|
|
type2 = check_typedef (value_type (val2));
|
477 |
|
|
len = TYPE_LENGTH (type1);
|
478 |
|
|
if (len != TYPE_LENGTH (type2))
|
479 |
|
|
return 0;
|
480 |
|
|
|
481 |
|
|
return (memcmp (value_contents (val1), value_contents (val2), len) == 0);
|
482 |
|
|
}
|
483 |
|
|
|
484 |
|
|
int
|
485 |
|
|
value_optimized_out (struct value *value)
|
486 |
|
|
{
|
487 |
|
|
return value->optimized_out;
|
488 |
|
|
}
|
489 |
|
|
|
490 |
|
|
void
|
491 |
|
|
set_value_optimized_out (struct value *value, int val)
|
492 |
|
|
{
|
493 |
|
|
value->optimized_out = val;
|
494 |
|
|
}
|
495 |
|
|
|
496 |
|
|
int
|
497 |
|
|
value_embedded_offset (struct value *value)
|
498 |
|
|
{
|
499 |
|
|
return value->embedded_offset;
|
500 |
|
|
}
|
501 |
|
|
|
502 |
|
|
void
|
503 |
|
|
set_value_embedded_offset (struct value *value, int val)
|
504 |
|
|
{
|
505 |
|
|
value->embedded_offset = val;
|
506 |
|
|
}
|
507 |
|
|
|
508 |
|
|
int
|
509 |
|
|
value_pointed_to_offset (struct value *value)
|
510 |
|
|
{
|
511 |
|
|
return value->pointed_to_offset;
|
512 |
|
|
}
|
513 |
|
|
|
514 |
|
|
void
|
515 |
|
|
set_value_pointed_to_offset (struct value *value, int val)
|
516 |
|
|
{
|
517 |
|
|
value->pointed_to_offset = val;
|
518 |
|
|
}
|
519 |
|
|
|
520 |
|
|
struct lval_funcs *
|
521 |
|
|
value_computed_funcs (struct value *v)
|
522 |
|
|
{
|
523 |
|
|
gdb_assert (VALUE_LVAL (v) == lval_computed);
|
524 |
|
|
|
525 |
|
|
return v->location.computed.funcs;
|
526 |
|
|
}
|
527 |
|
|
|
528 |
|
|
void *
|
529 |
|
|
value_computed_closure (struct value *v)
|
530 |
|
|
{
|
531 |
|
|
gdb_assert (VALUE_LVAL (v) == lval_computed);
|
532 |
|
|
|
533 |
|
|
return v->location.computed.closure;
|
534 |
|
|
}
|
535 |
|
|
|
536 |
|
|
enum lval_type *
|
537 |
|
|
deprecated_value_lval_hack (struct value *value)
|
538 |
|
|
{
|
539 |
|
|
return &value->lval;
|
540 |
|
|
}
|
541 |
|
|
|
542 |
|
|
CORE_ADDR
|
543 |
|
|
value_address (struct value *value)
|
544 |
|
|
{
|
545 |
|
|
if (value->lval == lval_internalvar
|
546 |
|
|
|| value->lval == lval_internalvar_component)
|
547 |
|
|
return 0;
|
548 |
|
|
return value->location.address + value->offset;
|
549 |
|
|
}
|
550 |
|
|
|
551 |
|
|
CORE_ADDR
|
552 |
|
|
value_raw_address (struct value *value)
|
553 |
|
|
{
|
554 |
|
|
if (value->lval == lval_internalvar
|
555 |
|
|
|| value->lval == lval_internalvar_component)
|
556 |
|
|
return 0;
|
557 |
|
|
return value->location.address;
|
558 |
|
|
}
|
559 |
|
|
|
560 |
|
|
void
|
561 |
|
|
set_value_address (struct value *value, CORE_ADDR addr)
|
562 |
|
|
{
|
563 |
|
|
gdb_assert (value->lval != lval_internalvar
|
564 |
|
|
&& value->lval != lval_internalvar_component);
|
565 |
|
|
value->location.address = addr;
|
566 |
|
|
}
|
567 |
|
|
|
568 |
|
|
struct internalvar **
|
569 |
|
|
deprecated_value_internalvar_hack (struct value *value)
|
570 |
|
|
{
|
571 |
|
|
return &value->location.internalvar;
|
572 |
|
|
}
|
573 |
|
|
|
574 |
|
|
struct frame_id *
|
575 |
|
|
deprecated_value_frame_id_hack (struct value *value)
|
576 |
|
|
{
|
577 |
|
|
return &value->frame_id;
|
578 |
|
|
}
|
579 |
|
|
|
580 |
|
|
short *
|
581 |
|
|
deprecated_value_regnum_hack (struct value *value)
|
582 |
|
|
{
|
583 |
|
|
return &value->regnum;
|
584 |
|
|
}
|
585 |
|
|
|
586 |
|
|
int
|
587 |
|
|
deprecated_value_modifiable (struct value *value)
|
588 |
|
|
{
|
589 |
|
|
return value->modifiable;
|
590 |
|
|
}
|
591 |
|
|
void
|
592 |
|
|
deprecated_set_value_modifiable (struct value *value, int modifiable)
|
593 |
|
|
{
|
594 |
|
|
value->modifiable = modifiable;
|
595 |
|
|
}
|
596 |
|
|
|
597 |
|
|
/* Return a mark in the value chain. All values allocated after the
|
598 |
|
|
mark is obtained (except for those released) are subject to being freed
|
599 |
|
|
if a subsequent value_free_to_mark is passed the mark. */
|
600 |
|
|
struct value *
|
601 |
|
|
value_mark (void)
|
602 |
|
|
{
|
603 |
|
|
return all_values;
|
604 |
|
|
}
|
605 |
|
|
|
606 |
|
|
/* Take a reference to VAL. VAL will not be deallocated until all
|
607 |
|
|
references are released. */
|
608 |
|
|
|
609 |
|
|
void
|
610 |
|
|
value_incref (struct value *val)
|
611 |
|
|
{
|
612 |
|
|
val->reference_count++;
|
613 |
|
|
}
|
614 |
|
|
|
615 |
|
|
/* Release a reference to VAL, which was acquired with value_incref.
|
616 |
|
|
This function is also called to deallocate values from the value
|
617 |
|
|
chain. */
|
618 |
|
|
|
619 |
|
|
void
|
620 |
|
|
value_free (struct value *val)
|
621 |
|
|
{
|
622 |
|
|
if (val)
|
623 |
|
|
{
|
624 |
|
|
gdb_assert (val->reference_count > 0);
|
625 |
|
|
val->reference_count--;
|
626 |
|
|
if (val->reference_count > 0)
|
627 |
|
|
return;
|
628 |
|
|
|
629 |
|
|
/* If there's an associated parent value, drop our reference to
|
630 |
|
|
it. */
|
631 |
|
|
if (val->parent != NULL)
|
632 |
|
|
value_free (val->parent);
|
633 |
|
|
|
634 |
|
|
if (VALUE_LVAL (val) == lval_computed)
|
635 |
|
|
{
|
636 |
|
|
struct lval_funcs *funcs = val->location.computed.funcs;
|
637 |
|
|
|
638 |
|
|
if (funcs->free_closure)
|
639 |
|
|
funcs->free_closure (val);
|
640 |
|
|
}
|
641 |
|
|
|
642 |
|
|
xfree (val->contents);
|
643 |
|
|
}
|
644 |
|
|
xfree (val);
|
645 |
|
|
}
|
646 |
|
|
|
647 |
|
|
/* Free all values allocated since MARK was obtained by value_mark
|
648 |
|
|
(except for those released). */
|
649 |
|
|
void
|
650 |
|
|
value_free_to_mark (struct value *mark)
|
651 |
|
|
{
|
652 |
|
|
struct value *val;
|
653 |
|
|
struct value *next;
|
654 |
|
|
|
655 |
|
|
for (val = all_values; val && val != mark; val = next)
|
656 |
|
|
{
|
657 |
|
|
next = val->next;
|
658 |
|
|
value_free (val);
|
659 |
|
|
}
|
660 |
|
|
all_values = val;
|
661 |
|
|
}
|
662 |
|
|
|
663 |
|
|
/* Free all the values that have been allocated (except for those released).
|
664 |
|
|
Call after each command, successful or not.
|
665 |
|
|
In practice this is called before each command, which is sufficient. */
|
666 |
|
|
|
667 |
|
|
void
|
668 |
|
|
free_all_values (void)
|
669 |
|
|
{
|
670 |
|
|
struct value *val;
|
671 |
|
|
struct value *next;
|
672 |
|
|
|
673 |
|
|
for (val = all_values; val; val = next)
|
674 |
|
|
{
|
675 |
|
|
next = val->next;
|
676 |
|
|
value_free (val);
|
677 |
|
|
}
|
678 |
|
|
|
679 |
|
|
all_values = 0;
|
680 |
|
|
}
|
681 |
|
|
|
682 |
|
|
/* Remove VAL from the chain all_values
|
683 |
|
|
so it will not be freed automatically. */
|
684 |
|
|
|
685 |
|
|
void
|
686 |
|
|
release_value (struct value *val)
|
687 |
|
|
{
|
688 |
|
|
struct value *v;
|
689 |
|
|
|
690 |
|
|
if (all_values == val)
|
691 |
|
|
{
|
692 |
|
|
all_values = val->next;
|
693 |
|
|
return;
|
694 |
|
|
}
|
695 |
|
|
|
696 |
|
|
for (v = all_values; v; v = v->next)
|
697 |
|
|
{
|
698 |
|
|
if (v->next == val)
|
699 |
|
|
{
|
700 |
|
|
v->next = val->next;
|
701 |
|
|
break;
|
702 |
|
|
}
|
703 |
|
|
}
|
704 |
|
|
}
|
705 |
|
|
|
706 |
|
|
/* Release all values up to mark */
|
707 |
|
|
struct value *
|
708 |
|
|
value_release_to_mark (struct value *mark)
|
709 |
|
|
{
|
710 |
|
|
struct value *val;
|
711 |
|
|
struct value *next;
|
712 |
|
|
|
713 |
|
|
for (val = next = all_values; next; next = next->next)
|
714 |
|
|
if (next->next == mark)
|
715 |
|
|
{
|
716 |
|
|
all_values = next->next;
|
717 |
|
|
next->next = NULL;
|
718 |
|
|
return val;
|
719 |
|
|
}
|
720 |
|
|
all_values = 0;
|
721 |
|
|
return val;
|
722 |
|
|
}
|
723 |
|
|
|
724 |
|
|
/* Return a copy of the value ARG.
|
725 |
|
|
It contains the same contents, for same memory address,
|
726 |
|
|
but it's a different block of storage. */
|
727 |
|
|
|
728 |
|
|
struct value *
|
729 |
|
|
value_copy (struct value *arg)
|
730 |
|
|
{
|
731 |
|
|
struct type *encl_type = value_enclosing_type (arg);
|
732 |
|
|
struct value *val;
|
733 |
|
|
|
734 |
|
|
if (value_lazy (arg))
|
735 |
|
|
val = allocate_value_lazy (encl_type);
|
736 |
|
|
else
|
737 |
|
|
val = allocate_value (encl_type);
|
738 |
|
|
val->type = arg->type;
|
739 |
|
|
VALUE_LVAL (val) = VALUE_LVAL (arg);
|
740 |
|
|
val->location = arg->location;
|
741 |
|
|
val->offset = arg->offset;
|
742 |
|
|
val->bitpos = arg->bitpos;
|
743 |
|
|
val->bitsize = arg->bitsize;
|
744 |
|
|
VALUE_FRAME_ID (val) = VALUE_FRAME_ID (arg);
|
745 |
|
|
VALUE_REGNUM (val) = VALUE_REGNUM (arg);
|
746 |
|
|
val->lazy = arg->lazy;
|
747 |
|
|
val->optimized_out = arg->optimized_out;
|
748 |
|
|
val->embedded_offset = value_embedded_offset (arg);
|
749 |
|
|
val->pointed_to_offset = arg->pointed_to_offset;
|
750 |
|
|
val->modifiable = arg->modifiable;
|
751 |
|
|
if (!value_lazy (val))
|
752 |
|
|
{
|
753 |
|
|
memcpy (value_contents_all_raw (val), value_contents_all_raw (arg),
|
754 |
|
|
TYPE_LENGTH (value_enclosing_type (arg)));
|
755 |
|
|
|
756 |
|
|
}
|
757 |
|
|
val->parent = arg->parent;
|
758 |
|
|
if (val->parent)
|
759 |
|
|
value_incref (val->parent);
|
760 |
|
|
if (VALUE_LVAL (val) == lval_computed)
|
761 |
|
|
{
|
762 |
|
|
struct lval_funcs *funcs = val->location.computed.funcs;
|
763 |
|
|
|
764 |
|
|
if (funcs->copy_closure)
|
765 |
|
|
val->location.computed.closure = funcs->copy_closure (val);
|
766 |
|
|
}
|
767 |
|
|
return val;
|
768 |
|
|
}
|
769 |
|
|
|
770 |
|
|
void
|
771 |
|
|
set_value_component_location (struct value *component, struct value *whole)
|
772 |
|
|
{
|
773 |
|
|
if (VALUE_LVAL (whole) == lval_internalvar)
|
774 |
|
|
VALUE_LVAL (component) = lval_internalvar_component;
|
775 |
|
|
else
|
776 |
|
|
VALUE_LVAL (component) = VALUE_LVAL (whole);
|
777 |
|
|
|
778 |
|
|
component->location = whole->location;
|
779 |
|
|
if (VALUE_LVAL (whole) == lval_computed)
|
780 |
|
|
{
|
781 |
|
|
struct lval_funcs *funcs = whole->location.computed.funcs;
|
782 |
|
|
|
783 |
|
|
if (funcs->copy_closure)
|
784 |
|
|
component->location.computed.closure = funcs->copy_closure (whole);
|
785 |
|
|
}
|
786 |
|
|
}
|
787 |
|
|
|
788 |
|
|
|
789 |
|
|
/* Access to the value history. */
|
790 |
|
|
|
791 |
|
|
/* Record a new value in the value history.
|
792 |
|
|
Returns the absolute history index of the entry.
|
793 |
|
|
Result of -1 indicates the value was not saved; otherwise it is the
|
794 |
|
|
value history index of this new item. */
|
795 |
|
|
|
796 |
|
|
int
|
797 |
|
|
record_latest_value (struct value *val)
|
798 |
|
|
{
|
799 |
|
|
int i;
|
800 |
|
|
|
801 |
|
|
/* We don't want this value to have anything to do with the inferior anymore.
|
802 |
|
|
In particular, "set $1 = 50" should not affect the variable from which
|
803 |
|
|
the value was taken, and fast watchpoints should be able to assume that
|
804 |
|
|
a value on the value history never changes. */
|
805 |
|
|
if (value_lazy (val))
|
806 |
|
|
value_fetch_lazy (val);
|
807 |
|
|
/* We preserve VALUE_LVAL so that the user can find out where it was fetched
|
808 |
|
|
from. This is a bit dubious, because then *&$1 does not just return $1
|
809 |
|
|
but the current contents of that location. c'est la vie... */
|
810 |
|
|
val->modifiable = 0;
|
811 |
|
|
release_value (val);
|
812 |
|
|
|
813 |
|
|
/* Here we treat value_history_count as origin-zero
|
814 |
|
|
and applying to the value being stored now. */
|
815 |
|
|
|
816 |
|
|
i = value_history_count % VALUE_HISTORY_CHUNK;
|
817 |
|
|
if (i == 0)
|
818 |
|
|
{
|
819 |
|
|
struct value_history_chunk *new
|
820 |
|
|
= (struct value_history_chunk *)
|
821 |
|
|
xmalloc (sizeof (struct value_history_chunk));
|
822 |
|
|
memset (new->values, 0, sizeof new->values);
|
823 |
|
|
new->next = value_history_chain;
|
824 |
|
|
value_history_chain = new;
|
825 |
|
|
}
|
826 |
|
|
|
827 |
|
|
value_history_chain->values[i] = val;
|
828 |
|
|
|
829 |
|
|
/* Now we regard value_history_count as origin-one
|
830 |
|
|
and applying to the value just stored. */
|
831 |
|
|
|
832 |
|
|
return ++value_history_count;
|
833 |
|
|
}
|
834 |
|
|
|
835 |
|
|
/* Return a copy of the value in the history with sequence number NUM. */
|
836 |
|
|
|
837 |
|
|
struct value *
|
838 |
|
|
access_value_history (int num)
|
839 |
|
|
{
|
840 |
|
|
struct value_history_chunk *chunk;
|
841 |
|
|
int i;
|
842 |
|
|
int absnum = num;
|
843 |
|
|
|
844 |
|
|
if (absnum <= 0)
|
845 |
|
|
absnum += value_history_count;
|
846 |
|
|
|
847 |
|
|
if (absnum <= 0)
|
848 |
|
|
{
|
849 |
|
|
if (num == 0)
|
850 |
|
|
error (_("The history is empty."));
|
851 |
|
|
else if (num == 1)
|
852 |
|
|
error (_("There is only one value in the history."));
|
853 |
|
|
else
|
854 |
|
|
error (_("History does not go back to $$%d."), -num);
|
855 |
|
|
}
|
856 |
|
|
if (absnum > value_history_count)
|
857 |
|
|
error (_("History has not yet reached $%d."), absnum);
|
858 |
|
|
|
859 |
|
|
absnum--;
|
860 |
|
|
|
861 |
|
|
/* Now absnum is always absolute and origin zero. */
|
862 |
|
|
|
863 |
|
|
chunk = value_history_chain;
|
864 |
|
|
for (i = (value_history_count - 1) / VALUE_HISTORY_CHUNK - absnum / VALUE_HISTORY_CHUNK;
|
865 |
|
|
i > 0; i--)
|
866 |
|
|
chunk = chunk->next;
|
867 |
|
|
|
868 |
|
|
return value_copy (chunk->values[absnum % VALUE_HISTORY_CHUNK]);
|
869 |
|
|
}
|
870 |
|
|
|
871 |
|
|
static void
|
872 |
|
|
show_values (char *num_exp, int from_tty)
|
873 |
|
|
{
|
874 |
|
|
int i;
|
875 |
|
|
struct value *val;
|
876 |
|
|
static int num = 1;
|
877 |
|
|
|
878 |
|
|
if (num_exp)
|
879 |
|
|
{
|
880 |
|
|
/* "show values +" should print from the stored position.
|
881 |
|
|
"show values <exp>" should print around value number <exp>. */
|
882 |
|
|
if (num_exp[0] != '+' || num_exp[1] != '\0')
|
883 |
|
|
num = parse_and_eval_long (num_exp) - 5;
|
884 |
|
|
}
|
885 |
|
|
else
|
886 |
|
|
{
|
887 |
|
|
/* "show values" means print the last 10 values. */
|
888 |
|
|
num = value_history_count - 9;
|
889 |
|
|
}
|
890 |
|
|
|
891 |
|
|
if (num <= 0)
|
892 |
|
|
num = 1;
|
893 |
|
|
|
894 |
|
|
for (i = num; i < num + 10 && i <= value_history_count; i++)
|
895 |
|
|
{
|
896 |
|
|
struct value_print_options opts;
|
897 |
|
|
val = access_value_history (i);
|
898 |
|
|
printf_filtered (("$%d = "), i);
|
899 |
|
|
get_user_print_options (&opts);
|
900 |
|
|
value_print (val, gdb_stdout, &opts);
|
901 |
|
|
printf_filtered (("\n"));
|
902 |
|
|
}
|
903 |
|
|
|
904 |
|
|
/* The next "show values +" should start after what we just printed. */
|
905 |
|
|
num += 10;
|
906 |
|
|
|
907 |
|
|
/* Hitting just return after this command should do the same thing as
|
908 |
|
|
"show values +". If num_exp is null, this is unnecessary, since
|
909 |
|
|
"show values +" is not useful after "show values". */
|
910 |
|
|
if (from_tty && num_exp)
|
911 |
|
|
{
|
912 |
|
|
num_exp[0] = '+';
|
913 |
|
|
num_exp[1] = '\0';
|
914 |
|
|
}
|
915 |
|
|
}
|
916 |
|
|
|
917 |
|
|
/* Internal variables. These are variables within the debugger
|
918 |
|
|
that hold values assigned by debugger commands.
|
919 |
|
|
The user refers to them with a '$' prefix
|
920 |
|
|
that does not appear in the variable names stored internally. */
|
921 |
|
|
|
922 |
|
|
struct internalvar
|
923 |
|
|
{
|
924 |
|
|
struct internalvar *next;
|
925 |
|
|
char *name;
|
926 |
|
|
|
927 |
|
|
/* We support various different kinds of content of an internal variable.
|
928 |
|
|
enum internalvar_kind specifies the kind, and union internalvar_data
|
929 |
|
|
provides the data associated with this particular kind. */
|
930 |
|
|
|
931 |
|
|
enum internalvar_kind
|
932 |
|
|
{
|
933 |
|
|
/* The internal variable is empty. */
|
934 |
|
|
INTERNALVAR_VOID,
|
935 |
|
|
|
936 |
|
|
/* The value of the internal variable is provided directly as
|
937 |
|
|
a GDB value object. */
|
938 |
|
|
INTERNALVAR_VALUE,
|
939 |
|
|
|
940 |
|
|
/* A fresh value is computed via a call-back routine on every
|
941 |
|
|
access to the internal variable. */
|
942 |
|
|
INTERNALVAR_MAKE_VALUE,
|
943 |
|
|
|
944 |
|
|
/* The internal variable holds a GDB internal convenience function. */
|
945 |
|
|
INTERNALVAR_FUNCTION,
|
946 |
|
|
|
947 |
|
|
/* The variable holds an integer value. */
|
948 |
|
|
INTERNALVAR_INTEGER,
|
949 |
|
|
|
950 |
|
|
/* The variable holds a pointer value. */
|
951 |
|
|
INTERNALVAR_POINTER,
|
952 |
|
|
|
953 |
|
|
/* The variable holds a GDB-provided string. */
|
954 |
|
|
INTERNALVAR_STRING,
|
955 |
|
|
|
956 |
|
|
} kind;
|
957 |
|
|
|
958 |
|
|
union internalvar_data
|
959 |
|
|
{
|
960 |
|
|
/* A value object used with INTERNALVAR_VALUE. */
|
961 |
|
|
struct value *value;
|
962 |
|
|
|
963 |
|
|
/* The call-back routine used with INTERNALVAR_MAKE_VALUE. */
|
964 |
|
|
internalvar_make_value make_value;
|
965 |
|
|
|
966 |
|
|
/* The internal function used with INTERNALVAR_FUNCTION. */
|
967 |
|
|
struct
|
968 |
|
|
{
|
969 |
|
|
struct internal_function *function;
|
970 |
|
|
/* True if this is the canonical name for the function. */
|
971 |
|
|
int canonical;
|
972 |
|
|
} fn;
|
973 |
|
|
|
974 |
|
|
/* An integer value used with INTERNALVAR_INTEGER. */
|
975 |
|
|
struct
|
976 |
|
|
{
|
977 |
|
|
/* If type is non-NULL, it will be used as the type to generate
|
978 |
|
|
a value for this internal variable. If type is NULL, a default
|
979 |
|
|
integer type for the architecture is used. */
|
980 |
|
|
struct type *type;
|
981 |
|
|
LONGEST val;
|
982 |
|
|
} integer;
|
983 |
|
|
|
984 |
|
|
/* A pointer value used with INTERNALVAR_POINTER. */
|
985 |
|
|
struct
|
986 |
|
|
{
|
987 |
|
|
struct type *type;
|
988 |
|
|
CORE_ADDR val;
|
989 |
|
|
} pointer;
|
990 |
|
|
|
991 |
|
|
/* A string value used with INTERNALVAR_STRING. */
|
992 |
|
|
char *string;
|
993 |
|
|
} u;
|
994 |
|
|
};
|
995 |
|
|
|
996 |
|
|
static struct internalvar *internalvars;
|
997 |
|
|
|
998 |
|
|
/* If the variable does not already exist create it and give it the value given.
|
999 |
|
|
If no value is given then the default is zero. */
|
1000 |
|
|
static void
|
1001 |
|
|
init_if_undefined_command (char* args, int from_tty)
|
1002 |
|
|
{
|
1003 |
|
|
struct internalvar* intvar;
|
1004 |
|
|
|
1005 |
|
|
/* Parse the expression - this is taken from set_command(). */
|
1006 |
|
|
struct expression *expr = parse_expression (args);
|
1007 |
|
|
register struct cleanup *old_chain =
|
1008 |
|
|
make_cleanup (free_current_contents, &expr);
|
1009 |
|
|
|
1010 |
|
|
/* Validate the expression.
|
1011 |
|
|
Was the expression an assignment?
|
1012 |
|
|
Or even an expression at all? */
|
1013 |
|
|
if (expr->nelts == 0 || expr->elts[0].opcode != BINOP_ASSIGN)
|
1014 |
|
|
error (_("Init-if-undefined requires an assignment expression."));
|
1015 |
|
|
|
1016 |
|
|
/* Extract the variable from the parsed expression.
|
1017 |
|
|
In the case of an assign the lvalue will be in elts[1] and elts[2]. */
|
1018 |
|
|
if (expr->elts[1].opcode != OP_INTERNALVAR)
|
1019 |
|
|
error (_("The first parameter to init-if-undefined should be a GDB variable."));
|
1020 |
|
|
intvar = expr->elts[2].internalvar;
|
1021 |
|
|
|
1022 |
|
|
/* Only evaluate the expression if the lvalue is void.
|
1023 |
|
|
This may still fail if the expresssion is invalid. */
|
1024 |
|
|
if (intvar->kind == INTERNALVAR_VOID)
|
1025 |
|
|
evaluate_expression (expr);
|
1026 |
|
|
|
1027 |
|
|
do_cleanups (old_chain);
|
1028 |
|
|
}
|
1029 |
|
|
|
1030 |
|
|
|
1031 |
|
|
/* Look up an internal variable with name NAME. NAME should not
|
1032 |
|
|
normally include a dollar sign.
|
1033 |
|
|
|
1034 |
|
|
If the specified internal variable does not exist,
|
1035 |
|
|
the return value is NULL. */
|
1036 |
|
|
|
1037 |
|
|
struct internalvar *
|
1038 |
|
|
lookup_only_internalvar (const char *name)
|
1039 |
|
|
{
|
1040 |
|
|
struct internalvar *var;
|
1041 |
|
|
|
1042 |
|
|
for (var = internalvars; var; var = var->next)
|
1043 |
|
|
if (strcmp (var->name, name) == 0)
|
1044 |
|
|
return var;
|
1045 |
|
|
|
1046 |
|
|
return NULL;
|
1047 |
|
|
}
|
1048 |
|
|
|
1049 |
|
|
|
1050 |
|
|
/* Create an internal variable with name NAME and with a void value.
|
1051 |
|
|
NAME should not normally include a dollar sign. */
|
1052 |
|
|
|
1053 |
|
|
struct internalvar *
|
1054 |
|
|
create_internalvar (const char *name)
|
1055 |
|
|
{
|
1056 |
|
|
struct internalvar *var;
|
1057 |
|
|
var = (struct internalvar *) xmalloc (sizeof (struct internalvar));
|
1058 |
|
|
var->name = concat (name, (char *)NULL);
|
1059 |
|
|
var->kind = INTERNALVAR_VOID;
|
1060 |
|
|
var->next = internalvars;
|
1061 |
|
|
internalvars = var;
|
1062 |
|
|
return var;
|
1063 |
|
|
}
|
1064 |
|
|
|
1065 |
|
|
/* Create an internal variable with name NAME and register FUN as the
|
1066 |
|
|
function that value_of_internalvar uses to create a value whenever
|
1067 |
|
|
this variable is referenced. NAME should not normally include a
|
1068 |
|
|
dollar sign. */
|
1069 |
|
|
|
1070 |
|
|
struct internalvar *
|
1071 |
|
|
create_internalvar_type_lazy (char *name, internalvar_make_value fun)
|
1072 |
|
|
{
|
1073 |
|
|
struct internalvar *var = create_internalvar (name);
|
1074 |
|
|
var->kind = INTERNALVAR_MAKE_VALUE;
|
1075 |
|
|
var->u.make_value = fun;
|
1076 |
|
|
return var;
|
1077 |
|
|
}
|
1078 |
|
|
|
1079 |
|
|
/* Look up an internal variable with name NAME. NAME should not
|
1080 |
|
|
normally include a dollar sign.
|
1081 |
|
|
|
1082 |
|
|
If the specified internal variable does not exist,
|
1083 |
|
|
one is created, with a void value. */
|
1084 |
|
|
|
1085 |
|
|
struct internalvar *
|
1086 |
|
|
lookup_internalvar (const char *name)
|
1087 |
|
|
{
|
1088 |
|
|
struct internalvar *var;
|
1089 |
|
|
|
1090 |
|
|
var = lookup_only_internalvar (name);
|
1091 |
|
|
if (var)
|
1092 |
|
|
return var;
|
1093 |
|
|
|
1094 |
|
|
return create_internalvar (name);
|
1095 |
|
|
}
|
1096 |
|
|
|
1097 |
|
|
/* Return current value of internal variable VAR. For variables that
|
1098 |
|
|
are not inherently typed, use a value type appropriate for GDBARCH. */
|
1099 |
|
|
|
1100 |
|
|
struct value *
|
1101 |
|
|
value_of_internalvar (struct gdbarch *gdbarch, struct internalvar *var)
|
1102 |
|
|
{
|
1103 |
|
|
struct value *val;
|
1104 |
|
|
|
1105 |
|
|
switch (var->kind)
|
1106 |
|
|
{
|
1107 |
|
|
case INTERNALVAR_VOID:
|
1108 |
|
|
val = allocate_value (builtin_type (gdbarch)->builtin_void);
|
1109 |
|
|
break;
|
1110 |
|
|
|
1111 |
|
|
case INTERNALVAR_FUNCTION:
|
1112 |
|
|
val = allocate_value (builtin_type (gdbarch)->internal_fn);
|
1113 |
|
|
break;
|
1114 |
|
|
|
1115 |
|
|
case INTERNALVAR_INTEGER:
|
1116 |
|
|
if (!var->u.integer.type)
|
1117 |
|
|
val = value_from_longest (builtin_type (gdbarch)->builtin_int,
|
1118 |
|
|
var->u.integer.val);
|
1119 |
|
|
else
|
1120 |
|
|
val = value_from_longest (var->u.integer.type, var->u.integer.val);
|
1121 |
|
|
break;
|
1122 |
|
|
|
1123 |
|
|
case INTERNALVAR_POINTER:
|
1124 |
|
|
val = value_from_pointer (var->u.pointer.type, var->u.pointer.val);
|
1125 |
|
|
break;
|
1126 |
|
|
|
1127 |
|
|
case INTERNALVAR_STRING:
|
1128 |
|
|
val = value_cstring (var->u.string, strlen (var->u.string),
|
1129 |
|
|
builtin_type (gdbarch)->builtin_char);
|
1130 |
|
|
break;
|
1131 |
|
|
|
1132 |
|
|
case INTERNALVAR_VALUE:
|
1133 |
|
|
val = value_copy (var->u.value);
|
1134 |
|
|
if (value_lazy (val))
|
1135 |
|
|
value_fetch_lazy (val);
|
1136 |
|
|
break;
|
1137 |
|
|
|
1138 |
|
|
case INTERNALVAR_MAKE_VALUE:
|
1139 |
|
|
val = (*var->u.make_value) (gdbarch, var);
|
1140 |
|
|
break;
|
1141 |
|
|
|
1142 |
|
|
default:
|
1143 |
|
|
internal_error (__FILE__, __LINE__, "bad kind");
|
1144 |
|
|
}
|
1145 |
|
|
|
1146 |
|
|
/* Change the VALUE_LVAL to lval_internalvar so that future operations
|
1147 |
|
|
on this value go back to affect the original internal variable.
|
1148 |
|
|
|
1149 |
|
|
Do not do this for INTERNALVAR_MAKE_VALUE variables, as those have
|
1150 |
|
|
no underlying modifyable state in the internal variable.
|
1151 |
|
|
|
1152 |
|
|
Likewise, if the variable's value is a computed lvalue, we want
|
1153 |
|
|
references to it to produce another computed lvalue, where
|
1154 |
|
|
references and assignments actually operate through the
|
1155 |
|
|
computed value's functions.
|
1156 |
|
|
|
1157 |
|
|
This means that internal variables with computed values
|
1158 |
|
|
behave a little differently from other internal variables:
|
1159 |
|
|
assignments to them don't just replace the previous value
|
1160 |
|
|
altogether. At the moment, this seems like the behavior we
|
1161 |
|
|
want. */
|
1162 |
|
|
|
1163 |
|
|
if (var->kind != INTERNALVAR_MAKE_VALUE
|
1164 |
|
|
&& val->lval != lval_computed)
|
1165 |
|
|
{
|
1166 |
|
|
VALUE_LVAL (val) = lval_internalvar;
|
1167 |
|
|
VALUE_INTERNALVAR (val) = var;
|
1168 |
|
|
}
|
1169 |
|
|
|
1170 |
|
|
return val;
|
1171 |
|
|
}
|
1172 |
|
|
|
1173 |
|
|
int
|
1174 |
|
|
get_internalvar_integer (struct internalvar *var, LONGEST *result)
|
1175 |
|
|
{
|
1176 |
|
|
switch (var->kind)
|
1177 |
|
|
{
|
1178 |
|
|
case INTERNALVAR_INTEGER:
|
1179 |
|
|
*result = var->u.integer.val;
|
1180 |
|
|
return 1;
|
1181 |
|
|
|
1182 |
|
|
default:
|
1183 |
|
|
return 0;
|
1184 |
|
|
}
|
1185 |
|
|
}
|
1186 |
|
|
|
1187 |
|
|
static int
|
1188 |
|
|
get_internalvar_function (struct internalvar *var,
|
1189 |
|
|
struct internal_function **result)
|
1190 |
|
|
{
|
1191 |
|
|
switch (var->kind)
|
1192 |
|
|
{
|
1193 |
|
|
case INTERNALVAR_FUNCTION:
|
1194 |
|
|
*result = var->u.fn.function;
|
1195 |
|
|
return 1;
|
1196 |
|
|
|
1197 |
|
|
default:
|
1198 |
|
|
return 0;
|
1199 |
|
|
}
|
1200 |
|
|
}
|
1201 |
|
|
|
1202 |
|
|
void
|
1203 |
|
|
set_internalvar_component (struct internalvar *var, int offset, int bitpos,
|
1204 |
|
|
int bitsize, struct value *newval)
|
1205 |
|
|
{
|
1206 |
|
|
gdb_byte *addr;
|
1207 |
|
|
|
1208 |
|
|
switch (var->kind)
|
1209 |
|
|
{
|
1210 |
|
|
case INTERNALVAR_VALUE:
|
1211 |
|
|
addr = value_contents_writeable (var->u.value);
|
1212 |
|
|
|
1213 |
|
|
if (bitsize)
|
1214 |
|
|
modify_field (value_type (var->u.value), addr + offset,
|
1215 |
|
|
value_as_long (newval), bitpos, bitsize);
|
1216 |
|
|
else
|
1217 |
|
|
memcpy (addr + offset, value_contents (newval),
|
1218 |
|
|
TYPE_LENGTH (value_type (newval)));
|
1219 |
|
|
break;
|
1220 |
|
|
|
1221 |
|
|
default:
|
1222 |
|
|
/* We can never get a component of any other kind. */
|
1223 |
|
|
internal_error (__FILE__, __LINE__, "set_internalvar_component");
|
1224 |
|
|
}
|
1225 |
|
|
}
|
1226 |
|
|
|
1227 |
|
|
void
|
1228 |
|
|
set_internalvar (struct internalvar *var, struct value *val)
|
1229 |
|
|
{
|
1230 |
|
|
enum internalvar_kind new_kind;
|
1231 |
|
|
union internalvar_data new_data = { 0 };
|
1232 |
|
|
|
1233 |
|
|
if (var->kind == INTERNALVAR_FUNCTION && var->u.fn.canonical)
|
1234 |
|
|
error (_("Cannot overwrite convenience function %s"), var->name);
|
1235 |
|
|
|
1236 |
|
|
/* Prepare new contents. */
|
1237 |
|
|
switch (TYPE_CODE (check_typedef (value_type (val))))
|
1238 |
|
|
{
|
1239 |
|
|
case TYPE_CODE_VOID:
|
1240 |
|
|
new_kind = INTERNALVAR_VOID;
|
1241 |
|
|
break;
|
1242 |
|
|
|
1243 |
|
|
case TYPE_CODE_INTERNAL_FUNCTION:
|
1244 |
|
|
gdb_assert (VALUE_LVAL (val) == lval_internalvar);
|
1245 |
|
|
new_kind = INTERNALVAR_FUNCTION;
|
1246 |
|
|
get_internalvar_function (VALUE_INTERNALVAR (val),
|
1247 |
|
|
&new_data.fn.function);
|
1248 |
|
|
/* Copies created here are never canonical. */
|
1249 |
|
|
break;
|
1250 |
|
|
|
1251 |
|
|
case TYPE_CODE_INT:
|
1252 |
|
|
new_kind = INTERNALVAR_INTEGER;
|
1253 |
|
|
new_data.integer.type = value_type (val);
|
1254 |
|
|
new_data.integer.val = value_as_long (val);
|
1255 |
|
|
break;
|
1256 |
|
|
|
1257 |
|
|
case TYPE_CODE_PTR:
|
1258 |
|
|
new_kind = INTERNALVAR_POINTER;
|
1259 |
|
|
new_data.pointer.type = value_type (val);
|
1260 |
|
|
new_data.pointer.val = value_as_address (val);
|
1261 |
|
|
break;
|
1262 |
|
|
|
1263 |
|
|
default:
|
1264 |
|
|
new_kind = INTERNALVAR_VALUE;
|
1265 |
|
|
new_data.value = value_copy (val);
|
1266 |
|
|
new_data.value->modifiable = 1;
|
1267 |
|
|
|
1268 |
|
|
/* Force the value to be fetched from the target now, to avoid problems
|
1269 |
|
|
later when this internalvar is referenced and the target is gone or
|
1270 |
|
|
has changed. */
|
1271 |
|
|
if (value_lazy (new_data.value))
|
1272 |
|
|
value_fetch_lazy (new_data.value);
|
1273 |
|
|
|
1274 |
|
|
/* Release the value from the value chain to prevent it from being
|
1275 |
|
|
deleted by free_all_values. From here on this function should not
|
1276 |
|
|
call error () until new_data is installed into the var->u to avoid
|
1277 |
|
|
leaking memory. */
|
1278 |
|
|
release_value (new_data.value);
|
1279 |
|
|
break;
|
1280 |
|
|
}
|
1281 |
|
|
|
1282 |
|
|
/* Clean up old contents. */
|
1283 |
|
|
clear_internalvar (var);
|
1284 |
|
|
|
1285 |
|
|
/* Switch over. */
|
1286 |
|
|
var->kind = new_kind;
|
1287 |
|
|
var->u = new_data;
|
1288 |
|
|
/* End code which must not call error(). */
|
1289 |
|
|
}
|
1290 |
|
|
|
1291 |
|
|
void
|
1292 |
|
|
set_internalvar_integer (struct internalvar *var, LONGEST l)
|
1293 |
|
|
{
|
1294 |
|
|
/* Clean up old contents. */
|
1295 |
|
|
clear_internalvar (var);
|
1296 |
|
|
|
1297 |
|
|
var->kind = INTERNALVAR_INTEGER;
|
1298 |
|
|
var->u.integer.type = NULL;
|
1299 |
|
|
var->u.integer.val = l;
|
1300 |
|
|
}
|
1301 |
|
|
|
1302 |
|
|
void
|
1303 |
|
|
set_internalvar_string (struct internalvar *var, const char *string)
|
1304 |
|
|
{
|
1305 |
|
|
/* Clean up old contents. */
|
1306 |
|
|
clear_internalvar (var);
|
1307 |
|
|
|
1308 |
|
|
var->kind = INTERNALVAR_STRING;
|
1309 |
|
|
var->u.string = xstrdup (string);
|
1310 |
|
|
}
|
1311 |
|
|
|
1312 |
|
|
static void
|
1313 |
|
|
set_internalvar_function (struct internalvar *var, struct internal_function *f)
|
1314 |
|
|
{
|
1315 |
|
|
/* Clean up old contents. */
|
1316 |
|
|
clear_internalvar (var);
|
1317 |
|
|
|
1318 |
|
|
var->kind = INTERNALVAR_FUNCTION;
|
1319 |
|
|
var->u.fn.function = f;
|
1320 |
|
|
var->u.fn.canonical = 1;
|
1321 |
|
|
/* Variables installed here are always the canonical version. */
|
1322 |
|
|
}
|
1323 |
|
|
|
1324 |
|
|
void
|
1325 |
|
|
clear_internalvar (struct internalvar *var)
|
1326 |
|
|
{
|
1327 |
|
|
/* Clean up old contents. */
|
1328 |
|
|
switch (var->kind)
|
1329 |
|
|
{
|
1330 |
|
|
case INTERNALVAR_VALUE:
|
1331 |
|
|
value_free (var->u.value);
|
1332 |
|
|
break;
|
1333 |
|
|
|
1334 |
|
|
case INTERNALVAR_STRING:
|
1335 |
|
|
xfree (var->u.string);
|
1336 |
|
|
break;
|
1337 |
|
|
|
1338 |
|
|
default:
|
1339 |
|
|
break;
|
1340 |
|
|
}
|
1341 |
|
|
|
1342 |
|
|
/* Reset to void kind. */
|
1343 |
|
|
var->kind = INTERNALVAR_VOID;
|
1344 |
|
|
}
|
1345 |
|
|
|
1346 |
|
|
char *
|
1347 |
|
|
internalvar_name (struct internalvar *var)
|
1348 |
|
|
{
|
1349 |
|
|
return var->name;
|
1350 |
|
|
}
|
1351 |
|
|
|
1352 |
|
|
static struct internal_function *
|
1353 |
|
|
create_internal_function (const char *name,
|
1354 |
|
|
internal_function_fn handler, void *cookie)
|
1355 |
|
|
{
|
1356 |
|
|
struct internal_function *ifn = XNEW (struct internal_function);
|
1357 |
|
|
ifn->name = xstrdup (name);
|
1358 |
|
|
ifn->handler = handler;
|
1359 |
|
|
ifn->cookie = cookie;
|
1360 |
|
|
return ifn;
|
1361 |
|
|
}
|
1362 |
|
|
|
1363 |
|
|
char *
|
1364 |
|
|
value_internal_function_name (struct value *val)
|
1365 |
|
|
{
|
1366 |
|
|
struct internal_function *ifn;
|
1367 |
|
|
int result;
|
1368 |
|
|
|
1369 |
|
|
gdb_assert (VALUE_LVAL (val) == lval_internalvar);
|
1370 |
|
|
result = get_internalvar_function (VALUE_INTERNALVAR (val), &ifn);
|
1371 |
|
|
gdb_assert (result);
|
1372 |
|
|
|
1373 |
|
|
return ifn->name;
|
1374 |
|
|
}
|
1375 |
|
|
|
1376 |
|
|
struct value *
|
1377 |
|
|
call_internal_function (struct gdbarch *gdbarch,
|
1378 |
|
|
const struct language_defn *language,
|
1379 |
|
|
struct value *func, int argc, struct value **argv)
|
1380 |
|
|
{
|
1381 |
|
|
struct internal_function *ifn;
|
1382 |
|
|
int result;
|
1383 |
|
|
|
1384 |
|
|
gdb_assert (VALUE_LVAL (func) == lval_internalvar);
|
1385 |
|
|
result = get_internalvar_function (VALUE_INTERNALVAR (func), &ifn);
|
1386 |
|
|
gdb_assert (result);
|
1387 |
|
|
|
1388 |
|
|
return (*ifn->handler) (gdbarch, language, ifn->cookie, argc, argv);
|
1389 |
|
|
}
|
1390 |
|
|
|
1391 |
|
|
/* The 'function' command. This does nothing -- it is just a
|
1392 |
|
|
placeholder to let "help function NAME" work. This is also used as
|
1393 |
|
|
the implementation of the sub-command that is created when
|
1394 |
|
|
registering an internal function. */
|
1395 |
|
|
static void
|
1396 |
|
|
function_command (char *command, int from_tty)
|
1397 |
|
|
{
|
1398 |
|
|
/* Do nothing. */
|
1399 |
|
|
}
|
1400 |
|
|
|
1401 |
|
|
/* Clean up if an internal function's command is destroyed. */
|
1402 |
|
|
static void
|
1403 |
|
|
function_destroyer (struct cmd_list_element *self, void *ignore)
|
1404 |
|
|
{
|
1405 |
|
|
xfree (self->name);
|
1406 |
|
|
xfree (self->doc);
|
1407 |
|
|
}
|
1408 |
|
|
|
1409 |
|
|
/* Add a new internal function. NAME is the name of the function; DOC
|
1410 |
|
|
is a documentation string describing the function. HANDLER is
|
1411 |
|
|
called when the function is invoked. COOKIE is an arbitrary
|
1412 |
|
|
pointer which is passed to HANDLER and is intended for "user
|
1413 |
|
|
data". */
|
1414 |
|
|
void
|
1415 |
|
|
add_internal_function (const char *name, const char *doc,
|
1416 |
|
|
internal_function_fn handler, void *cookie)
|
1417 |
|
|
{
|
1418 |
|
|
struct cmd_list_element *cmd;
|
1419 |
|
|
struct internal_function *ifn;
|
1420 |
|
|
struct internalvar *var = lookup_internalvar (name);
|
1421 |
|
|
|
1422 |
|
|
ifn = create_internal_function (name, handler, cookie);
|
1423 |
|
|
set_internalvar_function (var, ifn);
|
1424 |
|
|
|
1425 |
|
|
cmd = add_cmd (xstrdup (name), no_class, function_command, (char *) doc,
|
1426 |
|
|
&functionlist);
|
1427 |
|
|
cmd->destroyer = function_destroyer;
|
1428 |
|
|
}
|
1429 |
|
|
|
1430 |
|
|
/* Update VALUE before discarding OBJFILE. COPIED_TYPES is used to
|
1431 |
|
|
prevent cycles / duplicates. */
|
1432 |
|
|
|
1433 |
|
|
void
|
1434 |
|
|
preserve_one_value (struct value *value, struct objfile *objfile,
|
1435 |
|
|
htab_t copied_types)
|
1436 |
|
|
{
|
1437 |
|
|
if (TYPE_OBJFILE (value->type) == objfile)
|
1438 |
|
|
value->type = copy_type_recursive (objfile, value->type, copied_types);
|
1439 |
|
|
|
1440 |
|
|
if (TYPE_OBJFILE (value->enclosing_type) == objfile)
|
1441 |
|
|
value->enclosing_type = copy_type_recursive (objfile,
|
1442 |
|
|
value->enclosing_type,
|
1443 |
|
|
copied_types);
|
1444 |
|
|
}
|
1445 |
|
|
|
1446 |
|
|
/* Likewise for internal variable VAR. */
|
1447 |
|
|
|
1448 |
|
|
static void
|
1449 |
|
|
preserve_one_internalvar (struct internalvar *var, struct objfile *objfile,
|
1450 |
|
|
htab_t copied_types)
|
1451 |
|
|
{
|
1452 |
|
|
switch (var->kind)
|
1453 |
|
|
{
|
1454 |
|
|
case INTERNALVAR_INTEGER:
|
1455 |
|
|
if (var->u.integer.type && TYPE_OBJFILE (var->u.integer.type) == objfile)
|
1456 |
|
|
var->u.integer.type
|
1457 |
|
|
= copy_type_recursive (objfile, var->u.integer.type, copied_types);
|
1458 |
|
|
break;
|
1459 |
|
|
|
1460 |
|
|
case INTERNALVAR_POINTER:
|
1461 |
|
|
if (TYPE_OBJFILE (var->u.pointer.type) == objfile)
|
1462 |
|
|
var->u.pointer.type
|
1463 |
|
|
= copy_type_recursive (objfile, var->u.pointer.type, copied_types);
|
1464 |
|
|
break;
|
1465 |
|
|
|
1466 |
|
|
case INTERNALVAR_VALUE:
|
1467 |
|
|
preserve_one_value (var->u.value, objfile, copied_types);
|
1468 |
|
|
break;
|
1469 |
|
|
}
|
1470 |
|
|
}
|
1471 |
|
|
|
1472 |
|
|
/* Update the internal variables and value history when OBJFILE is
|
1473 |
|
|
discarded; we must copy the types out of the objfile. New global types
|
1474 |
|
|
will be created for every convenience variable which currently points to
|
1475 |
|
|
this objfile's types, and the convenience variables will be adjusted to
|
1476 |
|
|
use the new global types. */
|
1477 |
|
|
|
1478 |
|
|
void
|
1479 |
|
|
preserve_values (struct objfile *objfile)
|
1480 |
|
|
{
|
1481 |
|
|
htab_t copied_types;
|
1482 |
|
|
struct value_history_chunk *cur;
|
1483 |
|
|
struct internalvar *var;
|
1484 |
|
|
struct value *val;
|
1485 |
|
|
int i;
|
1486 |
|
|
|
1487 |
|
|
/* Create the hash table. We allocate on the objfile's obstack, since
|
1488 |
|
|
it is soon to be deleted. */
|
1489 |
|
|
copied_types = create_copied_types_hash (objfile);
|
1490 |
|
|
|
1491 |
|
|
for (cur = value_history_chain; cur; cur = cur->next)
|
1492 |
|
|
for (i = 0; i < VALUE_HISTORY_CHUNK; i++)
|
1493 |
|
|
if (cur->values[i])
|
1494 |
|
|
preserve_one_value (cur->values[i], objfile, copied_types);
|
1495 |
|
|
|
1496 |
|
|
for (var = internalvars; var; var = var->next)
|
1497 |
|
|
preserve_one_internalvar (var, objfile, copied_types);
|
1498 |
|
|
|
1499 |
|
|
preserve_python_values (objfile, copied_types);
|
1500 |
|
|
|
1501 |
|
|
htab_delete (copied_types);
|
1502 |
|
|
}
|
1503 |
|
|
|
1504 |
|
|
static void
|
1505 |
|
|
show_convenience (char *ignore, int from_tty)
|
1506 |
|
|
{
|
1507 |
|
|
struct gdbarch *gdbarch = get_current_arch ();
|
1508 |
|
|
struct internalvar *var;
|
1509 |
|
|
int varseen = 0;
|
1510 |
|
|
struct value_print_options opts;
|
1511 |
|
|
|
1512 |
|
|
get_user_print_options (&opts);
|
1513 |
|
|
for (var = internalvars; var; var = var->next)
|
1514 |
|
|
{
|
1515 |
|
|
if (!varseen)
|
1516 |
|
|
{
|
1517 |
|
|
varseen = 1;
|
1518 |
|
|
}
|
1519 |
|
|
printf_filtered (("$%s = "), var->name);
|
1520 |
|
|
value_print (value_of_internalvar (gdbarch, var), gdb_stdout,
|
1521 |
|
|
&opts);
|
1522 |
|
|
printf_filtered (("\n"));
|
1523 |
|
|
}
|
1524 |
|
|
if (!varseen)
|
1525 |
|
|
printf_unfiltered (_("\
|
1526 |
|
|
No debugger convenience variables now defined.\n\
|
1527 |
|
|
Convenience variables have names starting with \"$\";\n\
|
1528 |
|
|
use \"set\" as in \"set $foo = 5\" to define them.\n"));
|
1529 |
|
|
}
|
1530 |
|
|
|
1531 |
|
|
/* Extract a value as a C number (either long or double).
|
1532 |
|
|
Knows how to convert fixed values to double, or
|
1533 |
|
|
floating values to long.
|
1534 |
|
|
Does not deallocate the value. */
|
1535 |
|
|
|
1536 |
|
|
LONGEST
|
1537 |
|
|
value_as_long (struct value *val)
|
1538 |
|
|
{
|
1539 |
|
|
/* This coerces arrays and functions, which is necessary (e.g.
|
1540 |
|
|
in disassemble_command). It also dereferences references, which
|
1541 |
|
|
I suspect is the most logical thing to do. */
|
1542 |
|
|
val = coerce_array (val);
|
1543 |
|
|
return unpack_long (value_type (val), value_contents (val));
|
1544 |
|
|
}
|
1545 |
|
|
|
1546 |
|
|
DOUBLEST
|
1547 |
|
|
value_as_double (struct value *val)
|
1548 |
|
|
{
|
1549 |
|
|
DOUBLEST foo;
|
1550 |
|
|
int inv;
|
1551 |
|
|
|
1552 |
|
|
foo = unpack_double (value_type (val), value_contents (val), &inv);
|
1553 |
|
|
if (inv)
|
1554 |
|
|
error (_("Invalid floating value found in program."));
|
1555 |
|
|
return foo;
|
1556 |
|
|
}
|
1557 |
|
|
|
1558 |
|
|
/* Extract a value as a C pointer. Does not deallocate the value.
|
1559 |
|
|
Note that val's type may not actually be a pointer; value_as_long
|
1560 |
|
|
handles all the cases. */
|
1561 |
|
|
CORE_ADDR
|
1562 |
|
|
value_as_address (struct value *val)
|
1563 |
|
|
{
|
1564 |
|
|
struct gdbarch *gdbarch = get_type_arch (value_type (val));
|
1565 |
|
|
|
1566 |
|
|
/* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
|
1567 |
|
|
whether we want this to be true eventually. */
|
1568 |
|
|
#if 0
|
1569 |
|
|
/* gdbarch_addr_bits_remove is wrong if we are being called for a
|
1570 |
|
|
non-address (e.g. argument to "signal", "info break", etc.), or
|
1571 |
|
|
for pointers to char, in which the low bits *are* significant. */
|
1572 |
|
|
return gdbarch_addr_bits_remove (gdbarch, value_as_long (val));
|
1573 |
|
|
#else
|
1574 |
|
|
|
1575 |
|
|
/* There are several targets (IA-64, PowerPC, and others) which
|
1576 |
|
|
don't represent pointers to functions as simply the address of
|
1577 |
|
|
the function's entry point. For example, on the IA-64, a
|
1578 |
|
|
function pointer points to a two-word descriptor, generated by
|
1579 |
|
|
the linker, which contains the function's entry point, and the
|
1580 |
|
|
value the IA-64 "global pointer" register should have --- to
|
1581 |
|
|
support position-independent code. The linker generates
|
1582 |
|
|
descriptors only for those functions whose addresses are taken.
|
1583 |
|
|
|
1584 |
|
|
On such targets, it's difficult for GDB to convert an arbitrary
|
1585 |
|
|
function address into a function pointer; it has to either find
|
1586 |
|
|
an existing descriptor for that function, or call malloc and
|
1587 |
|
|
build its own. On some targets, it is impossible for GDB to
|
1588 |
|
|
build a descriptor at all: the descriptor must contain a jump
|
1589 |
|
|
instruction; data memory cannot be executed; and code memory
|
1590 |
|
|
cannot be modified.
|
1591 |
|
|
|
1592 |
|
|
Upon entry to this function, if VAL is a value of type `function'
|
1593 |
|
|
(that is, TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FUNC), then
|
1594 |
|
|
value_address (val) is the address of the function. This is what
|
1595 |
|
|
you'll get if you evaluate an expression like `main'. The call
|
1596 |
|
|
to COERCE_ARRAY below actually does all the usual unary
|
1597 |
|
|
conversions, which includes converting values of type `function'
|
1598 |
|
|
to `pointer to function'. This is the challenging conversion
|
1599 |
|
|
discussed above. Then, `unpack_long' will convert that pointer
|
1600 |
|
|
back into an address.
|
1601 |
|
|
|
1602 |
|
|
So, suppose the user types `disassemble foo' on an architecture
|
1603 |
|
|
with a strange function pointer representation, on which GDB
|
1604 |
|
|
cannot build its own descriptors, and suppose further that `foo'
|
1605 |
|
|
has no linker-built descriptor. The address->pointer conversion
|
1606 |
|
|
will signal an error and prevent the command from running, even
|
1607 |
|
|
though the next step would have been to convert the pointer
|
1608 |
|
|
directly back into the same address.
|
1609 |
|
|
|
1610 |
|
|
The following shortcut avoids this whole mess. If VAL is a
|
1611 |
|
|
function, just return its address directly. */
|
1612 |
|
|
if (TYPE_CODE (value_type (val)) == TYPE_CODE_FUNC
|
1613 |
|
|
|| TYPE_CODE (value_type (val)) == TYPE_CODE_METHOD)
|
1614 |
|
|
return value_address (val);
|
1615 |
|
|
|
1616 |
|
|
val = coerce_array (val);
|
1617 |
|
|
|
1618 |
|
|
/* Some architectures (e.g. Harvard), map instruction and data
|
1619 |
|
|
addresses onto a single large unified address space. For
|
1620 |
|
|
instance: An architecture may consider a large integer in the
|
1621 |
|
|
range 0x10000000 .. 0x1000ffff to already represent a data
|
1622 |
|
|
addresses (hence not need a pointer to address conversion) while
|
1623 |
|
|
a small integer would still need to be converted integer to
|
1624 |
|
|
pointer to address. Just assume such architectures handle all
|
1625 |
|
|
integer conversions in a single function. */
|
1626 |
|
|
|
1627 |
|
|
/* JimB writes:
|
1628 |
|
|
|
1629 |
|
|
I think INTEGER_TO_ADDRESS is a good idea as proposed --- but we
|
1630 |
|
|
must admonish GDB hackers to make sure its behavior matches the
|
1631 |
|
|
compiler's, whenever possible.
|
1632 |
|
|
|
1633 |
|
|
In general, I think GDB should evaluate expressions the same way
|
1634 |
|
|
the compiler does. When the user copies an expression out of
|
1635 |
|
|
their source code and hands it to a `print' command, they should
|
1636 |
|
|
get the same value the compiler would have computed. Any
|
1637 |
|
|
deviation from this rule can cause major confusion and annoyance,
|
1638 |
|
|
and needs to be justified carefully. In other words, GDB doesn't
|
1639 |
|
|
really have the freedom to do these conversions in clever and
|
1640 |
|
|
useful ways.
|
1641 |
|
|
|
1642 |
|
|
AndrewC pointed out that users aren't complaining about how GDB
|
1643 |
|
|
casts integers to pointers; they are complaining that they can't
|
1644 |
|
|
take an address from a disassembly listing and give it to `x/i'.
|
1645 |
|
|
This is certainly important.
|
1646 |
|
|
|
1647 |
|
|
Adding an architecture method like integer_to_address() certainly
|
1648 |
|
|
makes it possible for GDB to "get it right" in all circumstances
|
1649 |
|
|
--- the target has complete control over how things get done, so
|
1650 |
|
|
people can Do The Right Thing for their target without breaking
|
1651 |
|
|
anyone else. The standard doesn't specify how integers get
|
1652 |
|
|
converted to pointers; usually, the ABI doesn't either, but
|
1653 |
|
|
ABI-specific code is a more reasonable place to handle it. */
|
1654 |
|
|
|
1655 |
|
|
if (TYPE_CODE (value_type (val)) != TYPE_CODE_PTR
|
1656 |
|
|
&& TYPE_CODE (value_type (val)) != TYPE_CODE_REF
|
1657 |
|
|
&& gdbarch_integer_to_address_p (gdbarch))
|
1658 |
|
|
return gdbarch_integer_to_address (gdbarch, value_type (val),
|
1659 |
|
|
value_contents (val));
|
1660 |
|
|
|
1661 |
|
|
return unpack_long (value_type (val), value_contents (val));
|
1662 |
|
|
#endif
|
1663 |
|
|
}
|
1664 |
|
|
|
1665 |
|
|
/* Unpack raw data (copied from debugee, target byte order) at VALADDR
|
1666 |
|
|
as a long, or as a double, assuming the raw data is described
|
1667 |
|
|
by type TYPE. Knows how to convert different sizes of values
|
1668 |
|
|
and can convert between fixed and floating point. We don't assume
|
1669 |
|
|
any alignment for the raw data. Return value is in host byte order.
|
1670 |
|
|
|
1671 |
|
|
If you want functions and arrays to be coerced to pointers, and
|
1672 |
|
|
references to be dereferenced, call value_as_long() instead.
|
1673 |
|
|
|
1674 |
|
|
C++: It is assumed that the front-end has taken care of
|
1675 |
|
|
all matters concerning pointers to members. A pointer
|
1676 |
|
|
to member which reaches here is considered to be equivalent
|
1677 |
|
|
to an INT (or some size). After all, it is only an offset. */
|
1678 |
|
|
|
1679 |
|
|
LONGEST
|
1680 |
|
|
unpack_long (struct type *type, const gdb_byte *valaddr)
|
1681 |
|
|
{
|
1682 |
|
|
enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
|
1683 |
|
|
enum type_code code = TYPE_CODE (type);
|
1684 |
|
|
int len = TYPE_LENGTH (type);
|
1685 |
|
|
int nosign = TYPE_UNSIGNED (type);
|
1686 |
|
|
|
1687 |
|
|
switch (code)
|
1688 |
|
|
{
|
1689 |
|
|
case TYPE_CODE_TYPEDEF:
|
1690 |
|
|
return unpack_long (check_typedef (type), valaddr);
|
1691 |
|
|
case TYPE_CODE_ENUM:
|
1692 |
|
|
case TYPE_CODE_FLAGS:
|
1693 |
|
|
case TYPE_CODE_BOOL:
|
1694 |
|
|
case TYPE_CODE_INT:
|
1695 |
|
|
case TYPE_CODE_CHAR:
|
1696 |
|
|
case TYPE_CODE_RANGE:
|
1697 |
|
|
case TYPE_CODE_MEMBERPTR:
|
1698 |
|
|
if (nosign)
|
1699 |
|
|
return extract_unsigned_integer (valaddr, len, byte_order);
|
1700 |
|
|
else
|
1701 |
|
|
return extract_signed_integer (valaddr, len, byte_order);
|
1702 |
|
|
|
1703 |
|
|
case TYPE_CODE_FLT:
|
1704 |
|
|
return extract_typed_floating (valaddr, type);
|
1705 |
|
|
|
1706 |
|
|
case TYPE_CODE_DECFLOAT:
|
1707 |
|
|
/* libdecnumber has a function to convert from decimal to integer, but
|
1708 |
|
|
it doesn't work when the decimal number has a fractional part. */
|
1709 |
|
|
return decimal_to_doublest (valaddr, len, byte_order);
|
1710 |
|
|
|
1711 |
|
|
case TYPE_CODE_PTR:
|
1712 |
|
|
case TYPE_CODE_REF:
|
1713 |
|
|
/* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
|
1714 |
|
|
whether we want this to be true eventually. */
|
1715 |
|
|
return extract_typed_address (valaddr, type);
|
1716 |
|
|
|
1717 |
|
|
default:
|
1718 |
|
|
error (_("Value can't be converted to integer."));
|
1719 |
|
|
}
|
1720 |
|
|
return 0; /* Placate lint. */
|
1721 |
|
|
}
|
1722 |
|
|
|
1723 |
|
|
/* Return a double value from the specified type and address.
|
1724 |
|
|
INVP points to an int which is set to 0 for valid value,
|
1725 |
|
|
1 for invalid value (bad float format). In either case,
|
1726 |
|
|
the returned double is OK to use. Argument is in target
|
1727 |
|
|
format, result is in host format. */
|
1728 |
|
|
|
1729 |
|
|
DOUBLEST
|
1730 |
|
|
unpack_double (struct type *type, const gdb_byte *valaddr, int *invp)
|
1731 |
|
|
{
|
1732 |
|
|
enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
|
1733 |
|
|
enum type_code code;
|
1734 |
|
|
int len;
|
1735 |
|
|
int nosign;
|
1736 |
|
|
|
1737 |
|
|
*invp = 0; /* Assume valid. */
|
1738 |
|
|
CHECK_TYPEDEF (type);
|
1739 |
|
|
code = TYPE_CODE (type);
|
1740 |
|
|
len = TYPE_LENGTH (type);
|
1741 |
|
|
nosign = TYPE_UNSIGNED (type);
|
1742 |
|
|
if (code == TYPE_CODE_FLT)
|
1743 |
|
|
{
|
1744 |
|
|
/* NOTE: cagney/2002-02-19: There was a test here to see if the
|
1745 |
|
|
floating-point value was valid (using the macro
|
1746 |
|
|
INVALID_FLOAT). That test/macro have been removed.
|
1747 |
|
|
|
1748 |
|
|
It turns out that only the VAX defined this macro and then
|
1749 |
|
|
only in a non-portable way. Fixing the portability problem
|
1750 |
|
|
wouldn't help since the VAX floating-point code is also badly
|
1751 |
|
|
bit-rotten. The target needs to add definitions for the
|
1752 |
|
|
methods gdbarch_float_format and gdbarch_double_format - these
|
1753 |
|
|
exactly describe the target floating-point format. The
|
1754 |
|
|
problem here is that the corresponding floatformat_vax_f and
|
1755 |
|
|
floatformat_vax_d values these methods should be set to are
|
1756 |
|
|
also not defined either. Oops!
|
1757 |
|
|
|
1758 |
|
|
Hopefully someone will add both the missing floatformat
|
1759 |
|
|
definitions and the new cases for floatformat_is_valid (). */
|
1760 |
|
|
|
1761 |
|
|
if (!floatformat_is_valid (floatformat_from_type (type), valaddr))
|
1762 |
|
|
{
|
1763 |
|
|
*invp = 1;
|
1764 |
|
|
return 0.0;
|
1765 |
|
|
}
|
1766 |
|
|
|
1767 |
|
|
return extract_typed_floating (valaddr, type);
|
1768 |
|
|
}
|
1769 |
|
|
else if (code == TYPE_CODE_DECFLOAT)
|
1770 |
|
|
return decimal_to_doublest (valaddr, len, byte_order);
|
1771 |
|
|
else if (nosign)
|
1772 |
|
|
{
|
1773 |
|
|
/* Unsigned -- be sure we compensate for signed LONGEST. */
|
1774 |
|
|
return (ULONGEST) unpack_long (type, valaddr);
|
1775 |
|
|
}
|
1776 |
|
|
else
|
1777 |
|
|
{
|
1778 |
|
|
/* Signed -- we are OK with unpack_long. */
|
1779 |
|
|
return unpack_long (type, valaddr);
|
1780 |
|
|
}
|
1781 |
|
|
}
|
1782 |
|
|
|
1783 |
|
|
/* Unpack raw data (copied from debugee, target byte order) at VALADDR
|
1784 |
|
|
as a CORE_ADDR, assuming the raw data is described by type TYPE.
|
1785 |
|
|
We don't assume any alignment for the raw data. Return value is in
|
1786 |
|
|
host byte order.
|
1787 |
|
|
|
1788 |
|
|
If you want functions and arrays to be coerced to pointers, and
|
1789 |
|
|
references to be dereferenced, call value_as_address() instead.
|
1790 |
|
|
|
1791 |
|
|
C++: It is assumed that the front-end has taken care of
|
1792 |
|
|
all matters concerning pointers to members. A pointer
|
1793 |
|
|
to member which reaches here is considered to be equivalent
|
1794 |
|
|
to an INT (or some size). After all, it is only an offset. */
|
1795 |
|
|
|
1796 |
|
|
CORE_ADDR
|
1797 |
|
|
unpack_pointer (struct type *type, const gdb_byte *valaddr)
|
1798 |
|
|
{
|
1799 |
|
|
/* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
|
1800 |
|
|
whether we want this to be true eventually. */
|
1801 |
|
|
return unpack_long (type, valaddr);
|
1802 |
|
|
}
|
1803 |
|
|
|
1804 |
|
|
|
1805 |
|
|
/* Get the value of the FIELDN'th field (which must be static) of
|
1806 |
|
|
TYPE. Return NULL if the field doesn't exist or has been
|
1807 |
|
|
optimized out. */
|
1808 |
|
|
|
1809 |
|
|
struct value *
|
1810 |
|
|
value_static_field (struct type *type, int fieldno)
|
1811 |
|
|
{
|
1812 |
|
|
struct value *retval;
|
1813 |
|
|
|
1814 |
|
|
if (TYPE_FIELD_LOC_KIND (type, fieldno) == FIELD_LOC_KIND_PHYSADDR)
|
1815 |
|
|
{
|
1816 |
|
|
retval = value_at (TYPE_FIELD_TYPE (type, fieldno),
|
1817 |
|
|
TYPE_FIELD_STATIC_PHYSADDR (type, fieldno));
|
1818 |
|
|
}
|
1819 |
|
|
else
|
1820 |
|
|
{
|
1821 |
|
|
char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (type, fieldno);
|
1822 |
|
|
struct symbol *sym = lookup_symbol (phys_name, 0, VAR_DOMAIN, 0);
|
1823 |
|
|
if (sym == NULL)
|
1824 |
|
|
{
|
1825 |
|
|
/* With some compilers, e.g. HP aCC, static data members are reported
|
1826 |
|
|
as non-debuggable symbols */
|
1827 |
|
|
struct minimal_symbol *msym = lookup_minimal_symbol (phys_name, NULL, NULL);
|
1828 |
|
|
if (!msym)
|
1829 |
|
|
return NULL;
|
1830 |
|
|
else
|
1831 |
|
|
{
|
1832 |
|
|
retval = value_at (TYPE_FIELD_TYPE (type, fieldno),
|
1833 |
|
|
SYMBOL_VALUE_ADDRESS (msym));
|
1834 |
|
|
}
|
1835 |
|
|
}
|
1836 |
|
|
else
|
1837 |
|
|
{
|
1838 |
|
|
/* SYM should never have a SYMBOL_CLASS which will require
|
1839 |
|
|
read_var_value to use the FRAME parameter. */
|
1840 |
|
|
if (symbol_read_needs_frame (sym))
|
1841 |
|
|
warning (_("static field's value depends on the current "
|
1842 |
|
|
"frame - bad debug info?"));
|
1843 |
|
|
retval = read_var_value (sym, NULL);
|
1844 |
|
|
}
|
1845 |
|
|
if (retval && VALUE_LVAL (retval) == lval_memory)
|
1846 |
|
|
SET_FIELD_PHYSADDR (TYPE_FIELD (type, fieldno),
|
1847 |
|
|
value_address (retval));
|
1848 |
|
|
}
|
1849 |
|
|
return retval;
|
1850 |
|
|
}
|
1851 |
|
|
|
1852 |
|
|
/* Change the enclosing type of a value object VAL to NEW_ENCL_TYPE.
|
1853 |
|
|
You have to be careful here, since the size of the data area for the value
|
1854 |
|
|
is set by the length of the enclosing type. So if NEW_ENCL_TYPE is bigger
|
1855 |
|
|
than the old enclosing type, you have to allocate more space for the data.
|
1856 |
|
|
The return value is a pointer to the new version of this value structure. */
|
1857 |
|
|
|
1858 |
|
|
struct value *
|
1859 |
|
|
value_change_enclosing_type (struct value *val, struct type *new_encl_type)
|
1860 |
|
|
{
|
1861 |
|
|
if (TYPE_LENGTH (new_encl_type) > TYPE_LENGTH (value_enclosing_type (val)))
|
1862 |
|
|
val->contents =
|
1863 |
|
|
(gdb_byte *) xrealloc (val->contents, TYPE_LENGTH (new_encl_type));
|
1864 |
|
|
|
1865 |
|
|
val->enclosing_type = new_encl_type;
|
1866 |
|
|
return val;
|
1867 |
|
|
}
|
1868 |
|
|
|
1869 |
|
|
/* Given a value ARG1 (offset by OFFSET bytes)
|
1870 |
|
|
of a struct or union type ARG_TYPE,
|
1871 |
|
|
extract and return the value of one of its (non-static) fields.
|
1872 |
|
|
FIELDNO says which field. */
|
1873 |
|
|
|
1874 |
|
|
struct value *
|
1875 |
|
|
value_primitive_field (struct value *arg1, int offset,
|
1876 |
|
|
int fieldno, struct type *arg_type)
|
1877 |
|
|
{
|
1878 |
|
|
struct value *v;
|
1879 |
|
|
struct type *type;
|
1880 |
|
|
|
1881 |
|
|
CHECK_TYPEDEF (arg_type);
|
1882 |
|
|
type = TYPE_FIELD_TYPE (arg_type, fieldno);
|
1883 |
|
|
|
1884 |
|
|
/* Call check_typedef on our type to make sure that, if TYPE
|
1885 |
|
|
is a TYPE_CODE_TYPEDEF, its length is set to the length
|
1886 |
|
|
of the target type instead of zero. However, we do not
|
1887 |
|
|
replace the typedef type by the target type, because we want
|
1888 |
|
|
to keep the typedef in order to be able to print the type
|
1889 |
|
|
description correctly. */
|
1890 |
|
|
check_typedef (type);
|
1891 |
|
|
|
1892 |
|
|
/* Handle packed fields */
|
1893 |
|
|
|
1894 |
|
|
if (TYPE_FIELD_BITSIZE (arg_type, fieldno))
|
1895 |
|
|
{
|
1896 |
|
|
/* Create a new value for the bitfield, with bitpos and bitsize
|
1897 |
|
|
set. If possible, arrange offset and bitpos so that we can
|
1898 |
|
|
do a single aligned read of the size of the containing type.
|
1899 |
|
|
Otherwise, adjust offset to the byte containing the first
|
1900 |
|
|
bit. Assume that the address, offset, and embedded offset
|
1901 |
|
|
are sufficiently aligned. */
|
1902 |
|
|
int bitpos = TYPE_FIELD_BITPOS (arg_type, fieldno);
|
1903 |
|
|
int container_bitsize = TYPE_LENGTH (type) * 8;
|
1904 |
|
|
|
1905 |
|
|
v = allocate_value_lazy (type);
|
1906 |
|
|
v->bitsize = TYPE_FIELD_BITSIZE (arg_type, fieldno);
|
1907 |
|
|
if ((bitpos % container_bitsize) + v->bitsize <= container_bitsize
|
1908 |
|
|
&& TYPE_LENGTH (type) <= (int) sizeof (LONGEST))
|
1909 |
|
|
v->bitpos = bitpos % container_bitsize;
|
1910 |
|
|
else
|
1911 |
|
|
v->bitpos = bitpos % 8;
|
1912 |
|
|
v->offset = value_embedded_offset (arg1)
|
1913 |
|
|
+ (bitpos - v->bitpos) / 8;
|
1914 |
|
|
v->parent = arg1;
|
1915 |
|
|
value_incref (v->parent);
|
1916 |
|
|
if (!value_lazy (arg1))
|
1917 |
|
|
value_fetch_lazy (v);
|
1918 |
|
|
}
|
1919 |
|
|
else if (fieldno < TYPE_N_BASECLASSES (arg_type))
|
1920 |
|
|
{
|
1921 |
|
|
/* This field is actually a base subobject, so preserve the
|
1922 |
|
|
entire object's contents for later references to virtual
|
1923 |
|
|
bases, etc. */
|
1924 |
|
|
|
1925 |
|
|
/* Lazy register values with offsets are not supported. */
|
1926 |
|
|
if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1))
|
1927 |
|
|
value_fetch_lazy (arg1);
|
1928 |
|
|
|
1929 |
|
|
if (value_lazy (arg1))
|
1930 |
|
|
v = allocate_value_lazy (value_enclosing_type (arg1));
|
1931 |
|
|
else
|
1932 |
|
|
{
|
1933 |
|
|
v = allocate_value (value_enclosing_type (arg1));
|
1934 |
|
|
memcpy (value_contents_all_raw (v), value_contents_all_raw (arg1),
|
1935 |
|
|
TYPE_LENGTH (value_enclosing_type (arg1)));
|
1936 |
|
|
}
|
1937 |
|
|
v->type = type;
|
1938 |
|
|
v->offset = value_offset (arg1);
|
1939 |
|
|
v->embedded_offset = (offset + value_embedded_offset (arg1)
|
1940 |
|
|
+ TYPE_FIELD_BITPOS (arg_type, fieldno) / 8);
|
1941 |
|
|
}
|
1942 |
|
|
else
|
1943 |
|
|
{
|
1944 |
|
|
/* Plain old data member */
|
1945 |
|
|
offset += TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
|
1946 |
|
|
|
1947 |
|
|
/* Lazy register values with offsets are not supported. */
|
1948 |
|
|
if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1))
|
1949 |
|
|
value_fetch_lazy (arg1);
|
1950 |
|
|
|
1951 |
|
|
if (value_lazy (arg1))
|
1952 |
|
|
v = allocate_value_lazy (type);
|
1953 |
|
|
else
|
1954 |
|
|
{
|
1955 |
|
|
v = allocate_value (type);
|
1956 |
|
|
memcpy (value_contents_raw (v),
|
1957 |
|
|
value_contents_raw (arg1) + offset,
|
1958 |
|
|
TYPE_LENGTH (type));
|
1959 |
|
|
}
|
1960 |
|
|
v->offset = (value_offset (arg1) + offset
|
1961 |
|
|
+ value_embedded_offset (arg1));
|
1962 |
|
|
}
|
1963 |
|
|
set_value_component_location (v, arg1);
|
1964 |
|
|
VALUE_REGNUM (v) = VALUE_REGNUM (arg1);
|
1965 |
|
|
VALUE_FRAME_ID (v) = VALUE_FRAME_ID (arg1);
|
1966 |
|
|
return v;
|
1967 |
|
|
}
|
1968 |
|
|
|
1969 |
|
|
/* Given a value ARG1 of a struct or union type,
|
1970 |
|
|
extract and return the value of one of its (non-static) fields.
|
1971 |
|
|
FIELDNO says which field. */
|
1972 |
|
|
|
1973 |
|
|
struct value *
|
1974 |
|
|
value_field (struct value *arg1, int fieldno)
|
1975 |
|
|
{
|
1976 |
|
|
return value_primitive_field (arg1, 0, fieldno, value_type (arg1));
|
1977 |
|
|
}
|
1978 |
|
|
|
1979 |
|
|
/* Return a non-virtual function as a value.
|
1980 |
|
|
F is the list of member functions which contains the desired method.
|
1981 |
|
|
J is an index into F which provides the desired method.
|
1982 |
|
|
|
1983 |
|
|
We only use the symbol for its address, so be happy with either a
|
1984 |
|
|
full symbol or a minimal symbol.
|
1985 |
|
|
*/
|
1986 |
|
|
|
1987 |
|
|
struct value *
|
1988 |
|
|
value_fn_field (struct value **arg1p, struct fn_field *f, int j, struct type *type,
|
1989 |
|
|
int offset)
|
1990 |
|
|
{
|
1991 |
|
|
struct value *v;
|
1992 |
|
|
struct type *ftype = TYPE_FN_FIELD_TYPE (f, j);
|
1993 |
|
|
char *physname = TYPE_FN_FIELD_PHYSNAME (f, j);
|
1994 |
|
|
struct symbol *sym;
|
1995 |
|
|
struct minimal_symbol *msym;
|
1996 |
|
|
|
1997 |
|
|
sym = lookup_symbol (physname, 0, VAR_DOMAIN, 0);
|
1998 |
|
|
if (sym != NULL)
|
1999 |
|
|
{
|
2000 |
|
|
msym = NULL;
|
2001 |
|
|
}
|
2002 |
|
|
else
|
2003 |
|
|
{
|
2004 |
|
|
gdb_assert (sym == NULL);
|
2005 |
|
|
msym = lookup_minimal_symbol (physname, NULL, NULL);
|
2006 |
|
|
if (msym == NULL)
|
2007 |
|
|
return NULL;
|
2008 |
|
|
}
|
2009 |
|
|
|
2010 |
|
|
v = allocate_value (ftype);
|
2011 |
|
|
if (sym)
|
2012 |
|
|
{
|
2013 |
|
|
set_value_address (v, BLOCK_START (SYMBOL_BLOCK_VALUE (sym)));
|
2014 |
|
|
}
|
2015 |
|
|
else
|
2016 |
|
|
{
|
2017 |
|
|
/* The minimal symbol might point to a function descriptor;
|
2018 |
|
|
resolve it to the actual code address instead. */
|
2019 |
|
|
struct objfile *objfile = msymbol_objfile (msym);
|
2020 |
|
|
struct gdbarch *gdbarch = get_objfile_arch (objfile);
|
2021 |
|
|
|
2022 |
|
|
set_value_address (v,
|
2023 |
|
|
gdbarch_convert_from_func_ptr_addr
|
2024 |
|
|
(gdbarch, SYMBOL_VALUE_ADDRESS (msym), ¤t_target));
|
2025 |
|
|
}
|
2026 |
|
|
|
2027 |
|
|
if (arg1p)
|
2028 |
|
|
{
|
2029 |
|
|
if (type != value_type (*arg1p))
|
2030 |
|
|
*arg1p = value_ind (value_cast (lookup_pointer_type (type),
|
2031 |
|
|
value_addr (*arg1p)));
|
2032 |
|
|
|
2033 |
|
|
/* Move the `this' pointer according to the offset.
|
2034 |
|
|
VALUE_OFFSET (*arg1p) += offset;
|
2035 |
|
|
*/
|
2036 |
|
|
}
|
2037 |
|
|
|
2038 |
|
|
return v;
|
2039 |
|
|
}
|
2040 |
|
|
|
2041 |
|
|
|
2042 |
|
|
/* Unpack a bitfield of the specified FIELD_TYPE, from the anonymous
|
2043 |
|
|
object at VALADDR. The bitfield starts at BITPOS bits and contains
|
2044 |
|
|
BITSIZE bits.
|
2045 |
|
|
|
2046 |
|
|
Extracting bits depends on endianness of the machine. Compute the
|
2047 |
|
|
number of least significant bits to discard. For big endian machines,
|
2048 |
|
|
we compute the total number of bits in the anonymous object, subtract
|
2049 |
|
|
off the bit count from the MSB of the object to the MSB of the
|
2050 |
|
|
bitfield, then the size of the bitfield, which leaves the LSB discard
|
2051 |
|
|
count. For little endian machines, the discard count is simply the
|
2052 |
|
|
number of bits from the LSB of the anonymous object to the LSB of the
|
2053 |
|
|
bitfield.
|
2054 |
|
|
|
2055 |
|
|
If the field is signed, we also do sign extension. */
|
2056 |
|
|
|
2057 |
|
|
LONGEST
|
2058 |
|
|
unpack_bits_as_long (struct type *field_type, const gdb_byte *valaddr,
|
2059 |
|
|
int bitpos, int bitsize)
|
2060 |
|
|
{
|
2061 |
|
|
enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (field_type));
|
2062 |
|
|
ULONGEST val;
|
2063 |
|
|
ULONGEST valmask;
|
2064 |
|
|
int lsbcount;
|
2065 |
|
|
int bytes_read;
|
2066 |
|
|
|
2067 |
|
|
/* Read the minimum number of bytes required; there may not be
|
2068 |
|
|
enough bytes to read an entire ULONGEST. */
|
2069 |
|
|
CHECK_TYPEDEF (field_type);
|
2070 |
|
|
if (bitsize)
|
2071 |
|
|
bytes_read = ((bitpos % 8) + bitsize + 7) / 8;
|
2072 |
|
|
else
|
2073 |
|
|
bytes_read = TYPE_LENGTH (field_type);
|
2074 |
|
|
|
2075 |
|
|
val = extract_unsigned_integer (valaddr + bitpos / 8,
|
2076 |
|
|
bytes_read, byte_order);
|
2077 |
|
|
|
2078 |
|
|
/* Extract bits. See comment above. */
|
2079 |
|
|
|
2080 |
|
|
if (gdbarch_bits_big_endian (get_type_arch (field_type)))
|
2081 |
|
|
lsbcount = (bytes_read * 8 - bitpos % 8 - bitsize);
|
2082 |
|
|
else
|
2083 |
|
|
lsbcount = (bitpos % 8);
|
2084 |
|
|
val >>= lsbcount;
|
2085 |
|
|
|
2086 |
|
|
/* If the field does not entirely fill a LONGEST, then zero the sign bits.
|
2087 |
|
|
If the field is signed, and is negative, then sign extend. */
|
2088 |
|
|
|
2089 |
|
|
if ((bitsize > 0) && (bitsize < 8 * (int) sizeof (val)))
|
2090 |
|
|
{
|
2091 |
|
|
valmask = (((ULONGEST) 1) << bitsize) - 1;
|
2092 |
|
|
val &= valmask;
|
2093 |
|
|
if (!TYPE_UNSIGNED (field_type))
|
2094 |
|
|
{
|
2095 |
|
|
if (val & (valmask ^ (valmask >> 1)))
|
2096 |
|
|
{
|
2097 |
|
|
val |= ~valmask;
|
2098 |
|
|
}
|
2099 |
|
|
}
|
2100 |
|
|
}
|
2101 |
|
|
return (val);
|
2102 |
|
|
}
|
2103 |
|
|
|
2104 |
|
|
/* Unpack a field FIELDNO of the specified TYPE, from the anonymous object at
|
2105 |
|
|
VALADDR. See unpack_bits_as_long for more details. */
|
2106 |
|
|
|
2107 |
|
|
LONGEST
|
2108 |
|
|
unpack_field_as_long (struct type *type, const gdb_byte *valaddr, int fieldno)
|
2109 |
|
|
{
|
2110 |
|
|
int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
|
2111 |
|
|
int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
|
2112 |
|
|
struct type *field_type = TYPE_FIELD_TYPE (type, fieldno);
|
2113 |
|
|
|
2114 |
|
|
return unpack_bits_as_long (field_type, valaddr, bitpos, bitsize);
|
2115 |
|
|
}
|
2116 |
|
|
|
2117 |
|
|
/* Modify the value of a bitfield. ADDR points to a block of memory in
|
2118 |
|
|
target byte order; the bitfield starts in the byte pointed to. FIELDVAL
|
2119 |
|
|
is the desired value of the field, in host byte order. BITPOS and BITSIZE
|
2120 |
|
|
indicate which bits (in target bit order) comprise the bitfield.
|
2121 |
|
|
Requires 0 < BITSIZE <= lbits, 0 <= BITPOS+BITSIZE <= lbits, and
|
2122 |
|
|
|
2123 |
|
|
|
2124 |
|
|
void
|
2125 |
|
|
modify_field (struct type *type, gdb_byte *addr,
|
2126 |
|
|
LONGEST fieldval, int bitpos, int bitsize)
|
2127 |
|
|
{
|
2128 |
|
|
enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
|
2129 |
|
|
ULONGEST oword;
|
2130 |
|
|
ULONGEST mask = (ULONGEST) -1 >> (8 * sizeof (ULONGEST) - bitsize);
|
2131 |
|
|
|
2132 |
|
|
/* If a negative fieldval fits in the field in question, chop
|
2133 |
|
|
off the sign extension bits. */
|
2134 |
|
|
if ((~fieldval & ~(mask >> 1)) == 0)
|
2135 |
|
|
fieldval &= mask;
|
2136 |
|
|
|
2137 |
|
|
/* Warn if value is too big to fit in the field in question. */
|
2138 |
|
|
if (0 != (fieldval & ~mask))
|
2139 |
|
|
{
|
2140 |
|
|
/* FIXME: would like to include fieldval in the message, but
|
2141 |
|
|
we don't have a sprintf_longest. */
|
2142 |
|
|
warning (_("Value does not fit in %d bits."), bitsize);
|
2143 |
|
|
|
2144 |
|
|
/* Truncate it, otherwise adjoining fields may be corrupted. */
|
2145 |
|
|
fieldval &= mask;
|
2146 |
|
|
}
|
2147 |
|
|
|
2148 |
|
|
oword = extract_unsigned_integer (addr, sizeof oword, byte_order);
|
2149 |
|
|
|
2150 |
|
|
/* Shifting for bit field depends on endianness of the target machine. */
|
2151 |
|
|
if (gdbarch_bits_big_endian (get_type_arch (type)))
|
2152 |
|
|
bitpos = sizeof (oword) * 8 - bitpos - bitsize;
|
2153 |
|
|
|
2154 |
|
|
oword &= ~(mask << bitpos);
|
2155 |
|
|
oword |= fieldval << bitpos;
|
2156 |
|
|
|
2157 |
|
|
store_unsigned_integer (addr, sizeof oword, byte_order, oword);
|
2158 |
|
|
}
|
2159 |
|
|
|
2160 |
|
|
/* Pack NUM into BUF using a target format of TYPE. */
|
2161 |
|
|
|
2162 |
|
|
void
|
2163 |
|
|
pack_long (gdb_byte *buf, struct type *type, LONGEST num)
|
2164 |
|
|
{
|
2165 |
|
|
enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
|
2166 |
|
|
int len;
|
2167 |
|
|
|
2168 |
|
|
type = check_typedef (type);
|
2169 |
|
|
len = TYPE_LENGTH (type);
|
2170 |
|
|
|
2171 |
|
|
switch (TYPE_CODE (type))
|
2172 |
|
|
{
|
2173 |
|
|
case TYPE_CODE_INT:
|
2174 |
|
|
case TYPE_CODE_CHAR:
|
2175 |
|
|
case TYPE_CODE_ENUM:
|
2176 |
|
|
case TYPE_CODE_FLAGS:
|
2177 |
|
|
case TYPE_CODE_BOOL:
|
2178 |
|
|
case TYPE_CODE_RANGE:
|
2179 |
|
|
case TYPE_CODE_MEMBERPTR:
|
2180 |
|
|
store_signed_integer (buf, len, byte_order, num);
|
2181 |
|
|
break;
|
2182 |
|
|
|
2183 |
|
|
case TYPE_CODE_REF:
|
2184 |
|
|
case TYPE_CODE_PTR:
|
2185 |
|
|
store_typed_address (buf, type, (CORE_ADDR) num);
|
2186 |
|
|
break;
|
2187 |
|
|
|
2188 |
|
|
default:
|
2189 |
|
|
error (_("Unexpected type (%d) encountered for integer constant."),
|
2190 |
|
|
TYPE_CODE (type));
|
2191 |
|
|
}
|
2192 |
|
|
}
|
2193 |
|
|
|
2194 |
|
|
|
2195 |
|
|
/* Convert C numbers into newly allocated values. */
|
2196 |
|
|
|
2197 |
|
|
struct value *
|
2198 |
|
|
value_from_longest (struct type *type, LONGEST num)
|
2199 |
|
|
{
|
2200 |
|
|
struct value *val = allocate_value (type);
|
2201 |
|
|
|
2202 |
|
|
pack_long (value_contents_raw (val), type, num);
|
2203 |
|
|
|
2204 |
|
|
return val;
|
2205 |
|
|
}
|
2206 |
|
|
|
2207 |
|
|
|
2208 |
|
|
/* Create a value representing a pointer of type TYPE to the address
|
2209 |
|
|
ADDR. */
|
2210 |
|
|
struct value *
|
2211 |
|
|
value_from_pointer (struct type *type, CORE_ADDR addr)
|
2212 |
|
|
{
|
2213 |
|
|
struct value *val = allocate_value (type);
|
2214 |
|
|
store_typed_address (value_contents_raw (val), check_typedef (type), addr);
|
2215 |
|
|
return val;
|
2216 |
|
|
}
|
2217 |
|
|
|
2218 |
|
|
|
2219 |
|
|
/* Create a value of type TYPE whose contents come from VALADDR, if it
|
2220 |
|
|
is non-null, and whose memory address (in the inferior) is
|
2221 |
|
|
ADDRESS. */
|
2222 |
|
|
|
2223 |
|
|
struct value *
|
2224 |
|
|
value_from_contents_and_address (struct type *type,
|
2225 |
|
|
const gdb_byte *valaddr,
|
2226 |
|
|
CORE_ADDR address)
|
2227 |
|
|
{
|
2228 |
|
|
struct value *v = allocate_value (type);
|
2229 |
|
|
if (valaddr == NULL)
|
2230 |
|
|
set_value_lazy (v, 1);
|
2231 |
|
|
else
|
2232 |
|
|
memcpy (value_contents_raw (v), valaddr, TYPE_LENGTH (type));
|
2233 |
|
|
set_value_address (v, address);
|
2234 |
|
|
VALUE_LVAL (v) = lval_memory;
|
2235 |
|
|
return v;
|
2236 |
|
|
}
|
2237 |
|
|
|
2238 |
|
|
struct value *
|
2239 |
|
|
value_from_double (struct type *type, DOUBLEST num)
|
2240 |
|
|
{
|
2241 |
|
|
struct value *val = allocate_value (type);
|
2242 |
|
|
struct type *base_type = check_typedef (type);
|
2243 |
|
|
enum type_code code = TYPE_CODE (base_type);
|
2244 |
|
|
int len = TYPE_LENGTH (base_type);
|
2245 |
|
|
|
2246 |
|
|
if (code == TYPE_CODE_FLT)
|
2247 |
|
|
{
|
2248 |
|
|
store_typed_floating (value_contents_raw (val), base_type, num);
|
2249 |
|
|
}
|
2250 |
|
|
else
|
2251 |
|
|
error (_("Unexpected type encountered for floating constant."));
|
2252 |
|
|
|
2253 |
|
|
return val;
|
2254 |
|
|
}
|
2255 |
|
|
|
2256 |
|
|
struct value *
|
2257 |
|
|
value_from_decfloat (struct type *type, const gdb_byte *dec)
|
2258 |
|
|
{
|
2259 |
|
|
struct value *val = allocate_value (type);
|
2260 |
|
|
|
2261 |
|
|
memcpy (value_contents_raw (val), dec, TYPE_LENGTH (type));
|
2262 |
|
|
|
2263 |
|
|
return val;
|
2264 |
|
|
}
|
2265 |
|
|
|
2266 |
|
|
struct value *
|
2267 |
|
|
coerce_ref (struct value *arg)
|
2268 |
|
|
{
|
2269 |
|
|
struct type *value_type_arg_tmp = check_typedef (value_type (arg));
|
2270 |
|
|
if (TYPE_CODE (value_type_arg_tmp) == TYPE_CODE_REF)
|
2271 |
|
|
arg = value_at_lazy (TYPE_TARGET_TYPE (value_type_arg_tmp),
|
2272 |
|
|
unpack_pointer (value_type (arg),
|
2273 |
|
|
value_contents (arg)));
|
2274 |
|
|
return arg;
|
2275 |
|
|
}
|
2276 |
|
|
|
2277 |
|
|
struct value *
|
2278 |
|
|
coerce_array (struct value *arg)
|
2279 |
|
|
{
|
2280 |
|
|
struct type *type;
|
2281 |
|
|
|
2282 |
|
|
arg = coerce_ref (arg);
|
2283 |
|
|
type = check_typedef (value_type (arg));
|
2284 |
|
|
|
2285 |
|
|
switch (TYPE_CODE (type))
|
2286 |
|
|
{
|
2287 |
|
|
case TYPE_CODE_ARRAY:
|
2288 |
|
|
if (current_language->c_style_arrays)
|
2289 |
|
|
arg = value_coerce_array (arg);
|
2290 |
|
|
break;
|
2291 |
|
|
case TYPE_CODE_FUNC:
|
2292 |
|
|
arg = value_coerce_function (arg);
|
2293 |
|
|
break;
|
2294 |
|
|
}
|
2295 |
|
|
return arg;
|
2296 |
|
|
}
|
2297 |
|
|
|
2298 |
|
|
|
2299 |
|
|
/* Return true if the function returning the specified type is using
|
2300 |
|
|
the convention of returning structures in memory (passing in the
|
2301 |
|
|
address as a hidden first parameter). */
|
2302 |
|
|
|
2303 |
|
|
int
|
2304 |
|
|
using_struct_return (struct gdbarch *gdbarch,
|
2305 |
|
|
struct type *func_type, struct type *value_type)
|
2306 |
|
|
{
|
2307 |
|
|
enum type_code code = TYPE_CODE (value_type);
|
2308 |
|
|
|
2309 |
|
|
if (code == TYPE_CODE_ERROR)
|
2310 |
|
|
error (_("Function return type unknown."));
|
2311 |
|
|
|
2312 |
|
|
if (code == TYPE_CODE_VOID)
|
2313 |
|
|
/* A void return value is never in memory. See also corresponding
|
2314 |
|
|
code in "print_return_value". */
|
2315 |
|
|
return 0;
|
2316 |
|
|
|
2317 |
|
|
/* Probe the architecture for the return-value convention. */
|
2318 |
|
|
return (gdbarch_return_value (gdbarch, func_type, value_type,
|
2319 |
|
|
NULL, NULL, NULL)
|
2320 |
|
|
!= RETURN_VALUE_REGISTER_CONVENTION);
|
2321 |
|
|
}
|
2322 |
|
|
|
2323 |
|
|
/* Set the initialized field in a value struct. */
|
2324 |
|
|
|
2325 |
|
|
void
|
2326 |
|
|
set_value_initialized (struct value *val, int status)
|
2327 |
|
|
{
|
2328 |
|
|
val->initialized = status;
|
2329 |
|
|
}
|
2330 |
|
|
|
2331 |
|
|
/* Return the initialized field in a value struct. */
|
2332 |
|
|
|
2333 |
|
|
int
|
2334 |
|
|
value_initialized (struct value *val)
|
2335 |
|
|
{
|
2336 |
|
|
return val->initialized;
|
2337 |
|
|
}
|
2338 |
|
|
|
2339 |
|
|
void
|
2340 |
|
|
_initialize_values (void)
|
2341 |
|
|
{
|
2342 |
|
|
add_cmd ("convenience", no_class, show_convenience, _("\
|
2343 |
|
|
Debugger convenience (\"$foo\") variables.\n\
|
2344 |
|
|
These variables are created when you assign them values;\n\
|
2345 |
|
|
thus, \"print $foo=1\" gives \"$foo\" the value 1. Values may be any type.\n\
|
2346 |
|
|
\n\
|
2347 |
|
|
A few convenience variables are given values automatically:\n\
|
2348 |
|
|
\"$_\"holds the last address examined with \"x\" or \"info lines\",\n\
|
2349 |
|
|
\"$__\" holds the contents of the last address examined with \"x\"."),
|
2350 |
|
|
&showlist);
|
2351 |
|
|
|
2352 |
|
|
add_cmd ("values", no_class, show_values,
|
2353 |
|
|
_("Elements of value history around item number IDX (or last ten)."),
|
2354 |
|
|
&showlist);
|
2355 |
|
|
|
2356 |
|
|
add_com ("init-if-undefined", class_vars, init_if_undefined_command, _("\
|
2357 |
|
|
Initialize a convenience variable if necessary.\n\
|
2358 |
|
|
init-if-undefined VARIABLE = EXPRESSION\n\
|
2359 |
|
|
Set an internal VARIABLE to the result of the EXPRESSION if it does not\n\
|
2360 |
|
|
exist or does not contain a value. The EXPRESSION is not evaluated if the\n\
|
2361 |
|
|
VARIABLE is already initialized."));
|
2362 |
|
|
|
2363 |
|
|
add_prefix_cmd ("function", no_class, function_command, _("\
|
2364 |
|
|
Placeholder command for showing help on convenience functions."),
|
2365 |
|
|
&functionlist, "function ", 0, &cmdlist);
|
2366 |
|
|
}
|