1 |
227 |
jeremybenn |
/* Copyright (C) 1998, Cygnus Solutions
|
2 |
|
|
|
3 |
|
|
This program is free software; you can redistribute it and/or modify
|
4 |
|
|
it under the terms of the GNU General Public License as published by
|
5 |
|
|
the Free Software Foundation; either version 2 of the License, or
|
6 |
|
|
(at your option) any later version.
|
7 |
|
|
|
8 |
|
|
This program is distributed in the hope that it will be useful,
|
9 |
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
10 |
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
11 |
|
|
GNU General Public License for more details.
|
12 |
|
|
|
13 |
|
|
You should have received a copy of the GNU General Public License
|
14 |
|
|
along with this program; if not, write to the Free Software
|
15 |
|
|
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
|
16 |
|
|
|
17 |
|
|
*/
|
18 |
|
|
|
19 |
|
|
|
20 |
|
|
#ifndef SIM_MAIN_C
|
21 |
|
|
#define SIM_MAIN_C
|
22 |
|
|
|
23 |
|
|
#include "sim-main.h"
|
24 |
|
|
#include "sim-assert.h"
|
25 |
|
|
|
26 |
|
|
|
27 |
|
|
/*---------------------------------------------------------------------------*/
|
28 |
|
|
/*-- simulator engine -------------------------------------------------------*/
|
29 |
|
|
/*---------------------------------------------------------------------------*/
|
30 |
|
|
|
31 |
|
|
|
32 |
|
|
/* Description from page A-22 of the "MIPS IV Instruction Set" manual
|
33 |
|
|
(revision 3.1) */
|
34 |
|
|
/* Translate a virtual address to a physical address and cache
|
35 |
|
|
coherence algorithm describing the mechanism used to resolve the
|
36 |
|
|
memory reference. Given the virtual address vAddr, and whether the
|
37 |
|
|
reference is to Instructions ot Data (IorD), find the corresponding
|
38 |
|
|
physical address (pAddr) and the cache coherence algorithm (CCA)
|
39 |
|
|
used to resolve the reference. If the virtual address is in one of
|
40 |
|
|
the unmapped address spaces the physical address and the CCA are
|
41 |
|
|
determined directly by the virtual address. If the virtual address
|
42 |
|
|
is in one of the mapped address spaces then the TLB is used to
|
43 |
|
|
determine the physical address and access type; if the required
|
44 |
|
|
translation is not present in the TLB or the desired access is not
|
45 |
|
|
permitted the function fails and an exception is taken.
|
46 |
|
|
|
47 |
|
|
NOTE: Normally (RAW == 0), when address translation fails, this
|
48 |
|
|
function raises an exception and does not return. */
|
49 |
|
|
|
50 |
|
|
INLINE_SIM_MAIN
|
51 |
|
|
(int)
|
52 |
|
|
address_translation (SIM_DESC sd,
|
53 |
|
|
sim_cpu * cpu,
|
54 |
|
|
address_word cia,
|
55 |
|
|
address_word vAddr,
|
56 |
|
|
int IorD,
|
57 |
|
|
int LorS,
|
58 |
|
|
address_word * pAddr,
|
59 |
|
|
int *CCA,
|
60 |
|
|
int raw)
|
61 |
|
|
{
|
62 |
|
|
int res = -1; /* TRUE : Assume good return */
|
63 |
|
|
|
64 |
|
|
#ifdef DEBUG
|
65 |
|
|
sim_io_printf (sd, "AddressTranslation(0x%s,%s,%s,...);\n", pr_addr (vAddr), (IorD ? "isDATA" : "isINSTRUCTION"), (LorS ? "iSTORE" : "isLOAD"));
|
66 |
|
|
#endif
|
67 |
|
|
|
68 |
|
|
/* Check that the address is valid for this memory model */
|
69 |
|
|
|
70 |
|
|
/* For a simple (flat) memory model, we simply pass virtual
|
71 |
|
|
addressess through (mostly) unchanged. */
|
72 |
|
|
vAddr &= 0xFFFFFFFF;
|
73 |
|
|
|
74 |
|
|
*pAddr = vAddr; /* default for isTARGET */
|
75 |
|
|
*CCA = Uncached; /* not used for isHOST */
|
76 |
|
|
|
77 |
|
|
return (res);
|
78 |
|
|
}
|
79 |
|
|
|
80 |
|
|
|
81 |
|
|
|
82 |
|
|
/* Description from page A-23 of the "MIPS IV Instruction Set" manual
|
83 |
|
|
(revision 3.1) */
|
84 |
|
|
/* Prefetch data from memory. Prefetch is an advisory instruction for
|
85 |
|
|
which an implementation specific action is taken. The action taken
|
86 |
|
|
may increase performance, but must not change the meaning of the
|
87 |
|
|
program, or alter architecturally-visible state. */
|
88 |
|
|
|
89 |
|
|
INLINE_SIM_MAIN (void)
|
90 |
|
|
prefetch (SIM_DESC sd,
|
91 |
|
|
sim_cpu *cpu,
|
92 |
|
|
address_word cia,
|
93 |
|
|
int CCA,
|
94 |
|
|
address_word pAddr,
|
95 |
|
|
address_word vAddr,
|
96 |
|
|
int DATA,
|
97 |
|
|
int hint)
|
98 |
|
|
{
|
99 |
|
|
#ifdef DEBUG
|
100 |
|
|
sim_io_printf(sd,"Prefetch(%d,0x%s,0x%s,%d,%d);\n",CCA,pr_addr(pAddr),pr_addr(vAddr),DATA,hint);
|
101 |
|
|
#endif /* DEBUG */
|
102 |
|
|
|
103 |
|
|
/* For our simple memory model we do nothing */
|
104 |
|
|
return;
|
105 |
|
|
}
|
106 |
|
|
|
107 |
|
|
/* Description from page A-22 of the "MIPS IV Instruction Set" manual
|
108 |
|
|
(revision 3.1) */
|
109 |
|
|
/* Load a value from memory. Use the cache and main memory as
|
110 |
|
|
specified in the Cache Coherence Algorithm (CCA) and the sort of
|
111 |
|
|
access (IorD) to find the contents of AccessLength memory bytes
|
112 |
|
|
starting at physical location pAddr. The data is returned in the
|
113 |
|
|
fixed width naturally-aligned memory element (MemElem). The
|
114 |
|
|
low-order two (or three) bits of the address and the AccessLength
|
115 |
|
|
indicate which of the bytes within MemElem needs to be given to the
|
116 |
|
|
processor. If the memory access type of the reference is uncached
|
117 |
|
|
then only the referenced bytes are read from memory and valid
|
118 |
|
|
within the memory element. If the access type is cached, and the
|
119 |
|
|
data is not present in cache, an implementation specific size and
|
120 |
|
|
alignment block of memory is read and loaded into the cache to
|
121 |
|
|
satisfy a load reference. At a minimum, the block is the entire
|
122 |
|
|
memory element. */
|
123 |
|
|
INLINE_SIM_MAIN (void)
|
124 |
|
|
load_memory (SIM_DESC SD,
|
125 |
|
|
sim_cpu *CPU,
|
126 |
|
|
address_word cia,
|
127 |
|
|
uword64* memvalp,
|
128 |
|
|
uword64* memval1p,
|
129 |
|
|
int CCA,
|
130 |
|
|
unsigned int AccessLength,
|
131 |
|
|
address_word pAddr,
|
132 |
|
|
address_word vAddr,
|
133 |
|
|
int IorD)
|
134 |
|
|
{
|
135 |
|
|
uword64 value = 0;
|
136 |
|
|
uword64 value1 = 0;
|
137 |
|
|
|
138 |
|
|
#ifdef DEBUG
|
139 |
|
|
sim_io_printf(sd,"DBG: LoadMemory(%p,%p,%d,%d,0x%s,0x%s,%s)\n",memvalp,memval1p,CCA,AccessLength,pr_addr(pAddr),pr_addr(vAddr),(IorD ? "isDATA" : "isINSTRUCTION"));
|
140 |
|
|
#endif /* DEBUG */
|
141 |
|
|
|
142 |
|
|
#if defined(WARN_MEM)
|
143 |
|
|
if (CCA != uncached)
|
144 |
|
|
sim_io_eprintf(sd,"LoadMemory CCA (%d) is not uncached (currently all accesses treated as cached)\n",CCA);
|
145 |
|
|
#endif /* WARN_MEM */
|
146 |
|
|
|
147 |
|
|
if (((pAddr & LOADDRMASK) + AccessLength) > LOADDRMASK)
|
148 |
|
|
{
|
149 |
|
|
/* In reality this should be a Bus Error */
|
150 |
|
|
sim_io_error (SD, "LOAD AccessLength of %d would extend over %d bit aligned boundary for physical address 0x%s\n",
|
151 |
|
|
AccessLength,
|
152 |
|
|
(LOADDRMASK + 1) << 3,
|
153 |
|
|
pr_addr (pAddr));
|
154 |
|
|
}
|
155 |
|
|
|
156 |
|
|
#if defined(TRACE)
|
157 |
|
|
dotrace (SD, CPU, tracefh,((IorD == isDATA) ? 0 : 2),(unsigned int)(pAddr&0xFFFFFFFF),(AccessLength + 1),"load%s",((IorD == isDATA) ? "" : " instruction"));
|
158 |
|
|
#endif /* TRACE */
|
159 |
|
|
|
160 |
|
|
/* Read the specified number of bytes from memory. Adjust for
|
161 |
|
|
host/target byte ordering/ Align the least significant byte
|
162 |
|
|
read. */
|
163 |
|
|
|
164 |
|
|
switch (AccessLength)
|
165 |
|
|
{
|
166 |
|
|
case AccessLength_QUADWORD:
|
167 |
|
|
{
|
168 |
|
|
unsigned_16 val = sim_core_read_aligned_16 (CPU, cia, read_map, pAddr);
|
169 |
|
|
value1 = VH8_16 (val);
|
170 |
|
|
value = VL8_16 (val);
|
171 |
|
|
break;
|
172 |
|
|
}
|
173 |
|
|
case AccessLength_DOUBLEWORD:
|
174 |
|
|
value = sim_core_read_aligned_8 (CPU, cia, read_map, pAddr);
|
175 |
|
|
break;
|
176 |
|
|
case AccessLength_SEPTIBYTE:
|
177 |
|
|
value = sim_core_read_misaligned_7 (CPU, cia, read_map, pAddr);
|
178 |
|
|
break;
|
179 |
|
|
case AccessLength_SEXTIBYTE:
|
180 |
|
|
value = sim_core_read_misaligned_6 (CPU, cia, read_map, pAddr);
|
181 |
|
|
break;
|
182 |
|
|
case AccessLength_QUINTIBYTE:
|
183 |
|
|
value = sim_core_read_misaligned_5 (CPU, cia, read_map, pAddr);
|
184 |
|
|
break;
|
185 |
|
|
case AccessLength_WORD:
|
186 |
|
|
value = sim_core_read_aligned_4 (CPU, cia, read_map, pAddr);
|
187 |
|
|
break;
|
188 |
|
|
case AccessLength_TRIPLEBYTE:
|
189 |
|
|
value = sim_core_read_misaligned_3 (CPU, cia, read_map, pAddr);
|
190 |
|
|
break;
|
191 |
|
|
case AccessLength_HALFWORD:
|
192 |
|
|
value = sim_core_read_aligned_2 (CPU, cia, read_map, pAddr);
|
193 |
|
|
break;
|
194 |
|
|
case AccessLength_BYTE:
|
195 |
|
|
value = sim_core_read_aligned_1 (CPU, cia, read_map, pAddr);
|
196 |
|
|
break;
|
197 |
|
|
default:
|
198 |
|
|
abort ();
|
199 |
|
|
}
|
200 |
|
|
|
201 |
|
|
#ifdef DEBUG
|
202 |
|
|
printf("DBG: LoadMemory() : (offset %d) : value = 0x%s%s\n",
|
203 |
|
|
(int)(pAddr & LOADDRMASK),pr_uword64(value1),pr_uword64(value));
|
204 |
|
|
#endif /* DEBUG */
|
205 |
|
|
|
206 |
|
|
/* See also store_memory. Position data in correct byte lanes. */
|
207 |
|
|
if (AccessLength <= LOADDRMASK)
|
208 |
|
|
{
|
209 |
|
|
if (BigEndianMem)
|
210 |
|
|
/* for big endian target, byte (pAddr&LOADDRMASK == 0) is
|
211 |
|
|
shifted to the most significant byte position. */
|
212 |
|
|
value <<= (((LOADDRMASK - (pAddr & LOADDRMASK)) - AccessLength) * 8);
|
213 |
|
|
else
|
214 |
|
|
/* For little endian target, byte (pAddr&LOADDRMASK == 0)
|
215 |
|
|
is already in the correct postition. */
|
216 |
|
|
value <<= ((pAddr & LOADDRMASK) * 8);
|
217 |
|
|
}
|
218 |
|
|
|
219 |
|
|
#ifdef DEBUG
|
220 |
|
|
printf("DBG: LoadMemory() : shifted value = 0x%s%s\n",
|
221 |
|
|
pr_uword64(value1),pr_uword64(value));
|
222 |
|
|
#endif /* DEBUG */
|
223 |
|
|
|
224 |
|
|
*memvalp = value;
|
225 |
|
|
if (memval1p) *memval1p = value1;
|
226 |
|
|
}
|
227 |
|
|
|
228 |
|
|
|
229 |
|
|
/* Description from page A-23 of the "MIPS IV Instruction Set" manual
|
230 |
|
|
(revision 3.1) */
|
231 |
|
|
/* Store a value to memory. The specified data is stored into the
|
232 |
|
|
physical location pAddr using the memory hierarchy (data caches and
|
233 |
|
|
main memory) as specified by the Cache Coherence Algorithm
|
234 |
|
|
(CCA). The MemElem contains the data for an aligned, fixed-width
|
235 |
|
|
memory element (word for 32-bit processors, doubleword for 64-bit
|
236 |
|
|
processors), though only the bytes that will actually be stored to
|
237 |
|
|
memory need to be valid. The low-order two (or three) bits of pAddr
|
238 |
|
|
and the AccessLength field indicates which of the bytes within the
|
239 |
|
|
MemElem data should actually be stored; only these bytes in memory
|
240 |
|
|
will be changed. */
|
241 |
|
|
|
242 |
|
|
INLINE_SIM_MAIN (void)
|
243 |
|
|
store_memory (SIM_DESC SD,
|
244 |
|
|
sim_cpu *CPU,
|
245 |
|
|
address_word cia,
|
246 |
|
|
int CCA,
|
247 |
|
|
unsigned int AccessLength,
|
248 |
|
|
uword64 MemElem,
|
249 |
|
|
uword64 MemElem1, /* High order 64 bits */
|
250 |
|
|
address_word pAddr,
|
251 |
|
|
address_word vAddr)
|
252 |
|
|
{
|
253 |
|
|
#ifdef DEBUG
|
254 |
|
|
sim_io_printf(sd,"DBG: StoreMemory(%d,%d,0x%s,0x%s,0x%s,0x%s)\n",CCA,AccessLength,pr_uword64(MemElem),pr_uword64(MemElem1),pr_addr(pAddr),pr_addr(vAddr));
|
255 |
|
|
#endif /* DEBUG */
|
256 |
|
|
|
257 |
|
|
#if defined(WARN_MEM)
|
258 |
|
|
if (CCA != uncached)
|
259 |
|
|
sim_io_eprintf(sd,"StoreMemory CCA (%d) is not uncached (currently all accesses treated as cached)\n",CCA);
|
260 |
|
|
#endif /* WARN_MEM */
|
261 |
|
|
|
262 |
|
|
if (((pAddr & LOADDRMASK) + AccessLength) > LOADDRMASK)
|
263 |
|
|
sim_io_error (SD, "STORE AccessLength of %d would extend over %d bit aligned boundary for physical address 0x%s\n",
|
264 |
|
|
AccessLength,
|
265 |
|
|
(LOADDRMASK + 1) << 3,
|
266 |
|
|
pr_addr(pAddr));
|
267 |
|
|
|
268 |
|
|
#if defined(TRACE)
|
269 |
|
|
dotrace (SD, CPU, tracefh,1,(unsigned int)(pAddr&0xFFFFFFFF),(AccessLength + 1),"store");
|
270 |
|
|
#endif /* TRACE */
|
271 |
|
|
|
272 |
|
|
#ifdef DEBUG
|
273 |
|
|
printf("DBG: StoreMemory: offset = %d MemElem = 0x%s%s\n",(unsigned int)(pAddr & LOADDRMASK),pr_uword64(MemElem1),pr_uword64(MemElem));
|
274 |
|
|
#endif /* DEBUG */
|
275 |
|
|
|
276 |
|
|
/* See also load_memory. Position data in correct byte lanes. */
|
277 |
|
|
if (AccessLength <= LOADDRMASK)
|
278 |
|
|
{
|
279 |
|
|
if (BigEndianMem)
|
280 |
|
|
/* for big endian target, byte (pAddr&LOADDRMASK == 0) is
|
281 |
|
|
shifted to the most significant byte position. */
|
282 |
|
|
MemElem >>= (((LOADDRMASK - (pAddr & LOADDRMASK)) - AccessLength) * 8);
|
283 |
|
|
else
|
284 |
|
|
/* For little endian target, byte (pAddr&LOADDRMASK == 0)
|
285 |
|
|
is already in the correct postition. */
|
286 |
|
|
MemElem >>= ((pAddr & LOADDRMASK) * 8);
|
287 |
|
|
}
|
288 |
|
|
|
289 |
|
|
#ifdef DEBUG
|
290 |
|
|
printf("DBG: StoreMemory: shift = %d MemElem = 0x%s%s\n",shift,pr_uword64(MemElem1),pr_uword64(MemElem));
|
291 |
|
|
#endif /* DEBUG */
|
292 |
|
|
|
293 |
|
|
switch (AccessLength)
|
294 |
|
|
{
|
295 |
|
|
case AccessLength_QUADWORD:
|
296 |
|
|
{
|
297 |
|
|
unsigned_16 val = U16_8 (MemElem1, MemElem);
|
298 |
|
|
sim_core_write_aligned_16 (CPU, cia, write_map, pAddr, val);
|
299 |
|
|
break;
|
300 |
|
|
}
|
301 |
|
|
case AccessLength_DOUBLEWORD:
|
302 |
|
|
sim_core_write_aligned_8 (CPU, cia, write_map, pAddr, MemElem);
|
303 |
|
|
break;
|
304 |
|
|
case AccessLength_SEPTIBYTE:
|
305 |
|
|
sim_core_write_misaligned_7 (CPU, cia, write_map, pAddr, MemElem);
|
306 |
|
|
break;
|
307 |
|
|
case AccessLength_SEXTIBYTE:
|
308 |
|
|
sim_core_write_misaligned_6 (CPU, cia, write_map, pAddr, MemElem);
|
309 |
|
|
break;
|
310 |
|
|
case AccessLength_QUINTIBYTE:
|
311 |
|
|
sim_core_write_misaligned_5 (CPU, cia, write_map, pAddr, MemElem);
|
312 |
|
|
break;
|
313 |
|
|
case AccessLength_WORD:
|
314 |
|
|
sim_core_write_aligned_4 (CPU, cia, write_map, pAddr, MemElem);
|
315 |
|
|
break;
|
316 |
|
|
case AccessLength_TRIPLEBYTE:
|
317 |
|
|
sim_core_write_misaligned_3 (CPU, cia, write_map, pAddr, MemElem);
|
318 |
|
|
break;
|
319 |
|
|
case AccessLength_HALFWORD:
|
320 |
|
|
sim_core_write_aligned_2 (CPU, cia, write_map, pAddr, MemElem);
|
321 |
|
|
break;
|
322 |
|
|
case AccessLength_BYTE:
|
323 |
|
|
sim_core_write_aligned_1 (CPU, cia, write_map, pAddr, MemElem);
|
324 |
|
|
break;
|
325 |
|
|
default:
|
326 |
|
|
abort ();
|
327 |
|
|
}
|
328 |
|
|
|
329 |
|
|
return;
|
330 |
|
|
}
|
331 |
|
|
|
332 |
|
|
|
333 |
|
|
INLINE_SIM_MAIN (unsigned32)
|
334 |
|
|
ifetch32 (SIM_DESC SD,
|
335 |
|
|
sim_cpu *CPU,
|
336 |
|
|
address_word cia,
|
337 |
|
|
address_word vaddr)
|
338 |
|
|
{
|
339 |
|
|
/* Copy the action of the LW instruction */
|
340 |
|
|
address_word mask = LOADDRMASK;
|
341 |
|
|
address_word access = AccessLength_WORD;
|
342 |
|
|
address_word reverseendian = (ReverseEndian ? (mask ^ access) : 0);
|
343 |
|
|
address_word bigendiancpu = (BigEndianCPU ? (mask ^ access) : 0);
|
344 |
|
|
unsigned int byte;
|
345 |
|
|
address_word paddr;
|
346 |
|
|
int uncached;
|
347 |
|
|
unsigned64 memval;
|
348 |
|
|
|
349 |
|
|
if ((vaddr & access) != 0)
|
350 |
|
|
SignalExceptionInstructionFetch ();
|
351 |
|
|
AddressTranslation (vaddr, isINSTRUCTION, isLOAD, &paddr, &uncached, isTARGET, isREAL);
|
352 |
|
|
paddr = ((paddr & ~mask) | ((paddr & mask) ^ reverseendian));
|
353 |
|
|
LoadMemory (&memval, NULL, uncached, access, paddr, vaddr, isINSTRUCTION, isREAL);
|
354 |
|
|
byte = ((vaddr & mask) ^ bigendiancpu);
|
355 |
|
|
return (memval >> (8 * byte));
|
356 |
|
|
}
|
357 |
|
|
|
358 |
|
|
|
359 |
|
|
INLINE_SIM_MAIN (unsigned16)
|
360 |
|
|
ifetch16 (SIM_DESC SD,
|
361 |
|
|
sim_cpu *CPU,
|
362 |
|
|
address_word cia,
|
363 |
|
|
address_word vaddr)
|
364 |
|
|
{
|
365 |
|
|
/* Copy the action of the LH instruction */
|
366 |
|
|
address_word mask = LOADDRMASK;
|
367 |
|
|
address_word access = AccessLength_HALFWORD;
|
368 |
|
|
address_word reverseendian = (ReverseEndian ? (mask ^ access) : 0);
|
369 |
|
|
address_word bigendiancpu = (BigEndianCPU ? (mask ^ access) : 0);
|
370 |
|
|
unsigned int byte;
|
371 |
|
|
address_word paddr;
|
372 |
|
|
int uncached;
|
373 |
|
|
unsigned64 memval;
|
374 |
|
|
|
375 |
|
|
if ((vaddr & access) != 0)
|
376 |
|
|
SignalExceptionInstructionFetch ();
|
377 |
|
|
AddressTranslation (vaddr, isINSTRUCTION, isLOAD, &paddr, &uncached, isTARGET, isREAL);
|
378 |
|
|
paddr = ((paddr & ~mask) | ((paddr & mask) ^ reverseendian));
|
379 |
|
|
LoadMemory (&memval, NULL, uncached, access, paddr, vaddr, isINSTRUCTION, isREAL);
|
380 |
|
|
byte = ((vaddr & mask) ^ bigendiancpu);
|
381 |
|
|
return (memval >> (8 * byte));
|
382 |
|
|
}
|
383 |
|
|
|
384 |
|
|
|
385 |
|
|
|
386 |
|
|
/* Description from page A-26 of the "MIPS IV Instruction Set" manual (revision 3.1) */
|
387 |
|
|
/* Order loads and stores to synchronise shared memory. Perform the
|
388 |
|
|
action necessary to make the effects of groups of synchronizable
|
389 |
|
|
loads and stores indicated by stype occur in the same order for all
|
390 |
|
|
processors. */
|
391 |
|
|
INLINE_SIM_MAIN (void)
|
392 |
|
|
sync_operation (SIM_DESC sd,
|
393 |
|
|
sim_cpu *cpu,
|
394 |
|
|
address_word cia,
|
395 |
|
|
int stype)
|
396 |
|
|
{
|
397 |
|
|
#ifdef DEBUG
|
398 |
|
|
sim_io_printf(sd,"SyncOperation(%d) : TODO\n",stype);
|
399 |
|
|
#endif /* DEBUG */
|
400 |
|
|
return;
|
401 |
|
|
}
|
402 |
|
|
|
403 |
|
|
INLINE_SIM_MAIN (void)
|
404 |
|
|
cache_op (SIM_DESC SD,
|
405 |
|
|
sim_cpu *CPU,
|
406 |
|
|
address_word cia,
|
407 |
|
|
int op,
|
408 |
|
|
address_word pAddr,
|
409 |
|
|
address_word vAddr,
|
410 |
|
|
unsigned int instruction)
|
411 |
|
|
{
|
412 |
|
|
#if 1 /* stop warning message being displayed (we should really just remove the code) */
|
413 |
|
|
static int icache_warning = 1;
|
414 |
|
|
static int dcache_warning = 1;
|
415 |
|
|
#else
|
416 |
|
|
static int icache_warning = 0;
|
417 |
|
|
static int dcache_warning = 0;
|
418 |
|
|
#endif
|
419 |
|
|
|
420 |
|
|
/* If CP0 is not useable (User or Supervisor mode) and the CP0
|
421 |
|
|
enable bit in the Status Register is clear - a coprocessor
|
422 |
|
|
unusable exception is taken. */
|
423 |
|
|
#if 0
|
424 |
|
|
sim_io_printf(SD,"TODO: Cache availability checking (PC = 0x%s)\n",pr_addr(cia));
|
425 |
|
|
#endif
|
426 |
|
|
|
427 |
|
|
switch (op & 0x3) {
|
428 |
|
|
case 0: /* instruction cache */
|
429 |
|
|
switch (op >> 2) {
|
430 |
|
|
case 0: /* Index Invalidate */
|
431 |
|
|
case 1: /* Index Load Tag */
|
432 |
|
|
case 2: /* Index Store Tag */
|
433 |
|
|
case 4: /* Hit Invalidate */
|
434 |
|
|
case 5: /* Fill */
|
435 |
|
|
case 6: /* Hit Writeback */
|
436 |
|
|
if (!icache_warning)
|
437 |
|
|
{
|
438 |
|
|
sim_io_eprintf(SD,"Instruction CACHE operation %d to be coded\n",(op >> 2));
|
439 |
|
|
icache_warning = 1;
|
440 |
|
|
}
|
441 |
|
|
break;
|
442 |
|
|
|
443 |
|
|
default:
|
444 |
|
|
SignalException(ReservedInstruction,instruction);
|
445 |
|
|
break;
|
446 |
|
|
}
|
447 |
|
|
break;
|
448 |
|
|
|
449 |
|
|
case 1: /* data cache */
|
450 |
|
|
case 3: /* secondary data cache */
|
451 |
|
|
switch (op >> 2) {
|
452 |
|
|
case 0: /* Index Writeback Invalidate */
|
453 |
|
|
case 1: /* Index Load Tag */
|
454 |
|
|
case 2: /* Index Store Tag */
|
455 |
|
|
case 3: /* Create Dirty */
|
456 |
|
|
case 4: /* Hit Invalidate */
|
457 |
|
|
case 5: /* Hit Writeback Invalidate */
|
458 |
|
|
case 6: /* Hit Writeback */
|
459 |
|
|
if (!dcache_warning)
|
460 |
|
|
{
|
461 |
|
|
sim_io_eprintf(SD,"Data CACHE operation %d to be coded\n",(op >> 2));
|
462 |
|
|
dcache_warning = 1;
|
463 |
|
|
}
|
464 |
|
|
break;
|
465 |
|
|
|
466 |
|
|
default:
|
467 |
|
|
SignalException(ReservedInstruction,instruction);
|
468 |
|
|
break;
|
469 |
|
|
}
|
470 |
|
|
break;
|
471 |
|
|
|
472 |
|
|
default: /* unrecognised cache ID */
|
473 |
|
|
SignalException(ReservedInstruction,instruction);
|
474 |
|
|
break;
|
475 |
|
|
}
|
476 |
|
|
|
477 |
|
|
return;
|
478 |
|
|
}
|
479 |
|
|
|
480 |
|
|
|
481 |
|
|
INLINE_SIM_MAIN (void)
|
482 |
|
|
pending_tick (SIM_DESC SD,
|
483 |
|
|
sim_cpu *CPU,
|
484 |
|
|
address_word cia)
|
485 |
|
|
{
|
486 |
|
|
if (PENDING_TRACE)
|
487 |
|
|
sim_io_eprintf (SD, "PENDING_DRAIN - 0x%lx - pending_in = %d, pending_out = %d, pending_total = %d\n", (unsigned long) cia, PENDING_IN, PENDING_OUT, PENDING_TOTAL);
|
488 |
|
|
if (PENDING_OUT != PENDING_IN)
|
489 |
|
|
{
|
490 |
|
|
int loop;
|
491 |
|
|
int index = PENDING_OUT;
|
492 |
|
|
int total = PENDING_TOTAL;
|
493 |
|
|
if (PENDING_TOTAL == 0)
|
494 |
|
|
sim_engine_abort (SD, CPU, cia, "PENDING_DRAIN - Mis-match on pending update pointers\n");
|
495 |
|
|
for (loop = 0, index = PENDING_OUT;
|
496 |
|
|
(loop < total);
|
497 |
|
|
loop++, index = (index + 1) % PSLOTS)
|
498 |
|
|
{
|
499 |
|
|
if (PENDING_SLOT_DEST[index] != NULL)
|
500 |
|
|
{
|
501 |
|
|
PENDING_SLOT_DELAY[index] -= 1;
|
502 |
|
|
if (PENDING_SLOT_DELAY[index] == 0)
|
503 |
|
|
{
|
504 |
|
|
if (PENDING_TRACE)
|
505 |
|
|
sim_io_eprintf (SD, "PENDING_DRAIN - drained - index %d, dest 0x%lx, bit %d, val 0x%lx, size %d\n",
|
506 |
|
|
index,
|
507 |
|
|
(unsigned long) PENDING_SLOT_DEST[index],
|
508 |
|
|
PENDING_SLOT_BIT[index],
|
509 |
|
|
(unsigned long) PENDING_SLOT_VALUE[index],
|
510 |
|
|
PENDING_SLOT_SIZE[index]);
|
511 |
|
|
if (PENDING_SLOT_BIT[index] >= 0)
|
512 |
|
|
switch (PENDING_SLOT_SIZE[index])
|
513 |
|
|
{
|
514 |
|
|
case 4:
|
515 |
|
|
if (PENDING_SLOT_VALUE[index])
|
516 |
|
|
*(unsigned32*)PENDING_SLOT_DEST[index] |=
|
517 |
|
|
BIT32 (PENDING_SLOT_BIT[index]);
|
518 |
|
|
else
|
519 |
|
|
*(unsigned32*)PENDING_SLOT_DEST[index] &=
|
520 |
|
|
BIT32 (PENDING_SLOT_BIT[index]);
|
521 |
|
|
break;
|
522 |
|
|
case 8:
|
523 |
|
|
if (PENDING_SLOT_VALUE[index])
|
524 |
|
|
*(unsigned64*)PENDING_SLOT_DEST[index] |=
|
525 |
|
|
BIT64 (PENDING_SLOT_BIT[index]);
|
526 |
|
|
else
|
527 |
|
|
*(unsigned64*)PENDING_SLOT_DEST[index] &=
|
528 |
|
|
BIT64 (PENDING_SLOT_BIT[index]);
|
529 |
|
|
break;
|
530 |
|
|
}
|
531 |
|
|
else
|
532 |
|
|
switch (PENDING_SLOT_SIZE[index])
|
533 |
|
|
{
|
534 |
|
|
case 4:
|
535 |
|
|
*(unsigned32*)PENDING_SLOT_DEST[index] =
|
536 |
|
|
PENDING_SLOT_VALUE[index];
|
537 |
|
|
break;
|
538 |
|
|
case 8:
|
539 |
|
|
*(unsigned64*)PENDING_SLOT_DEST[index] =
|
540 |
|
|
PENDING_SLOT_VALUE[index];
|
541 |
|
|
break;
|
542 |
|
|
}
|
543 |
|
|
if (PENDING_OUT == index)
|
544 |
|
|
{
|
545 |
|
|
PENDING_SLOT_DEST[index] = NULL;
|
546 |
|
|
PENDING_OUT = (PENDING_OUT + 1) % PSLOTS;
|
547 |
|
|
PENDING_TOTAL--;
|
548 |
|
|
}
|
549 |
|
|
}
|
550 |
|
|
else if (PENDING_TRACE && PENDING_SLOT_DELAY[index] > 0)
|
551 |
|
|
sim_io_eprintf (SD, "PENDING_DRAIN - queued - index %d, delay %d, dest 0x%lx, bit %d, val 0x%lx, size %d\n",
|
552 |
|
|
index, PENDING_SLOT_DELAY[index],
|
553 |
|
|
(unsigned long) PENDING_SLOT_DEST[index],
|
554 |
|
|
PENDING_SLOT_BIT[index],
|
555 |
|
|
(unsigned long) PENDING_SLOT_VALUE[index],
|
556 |
|
|
PENDING_SLOT_SIZE[index]);
|
557 |
|
|
|
558 |
|
|
}
|
559 |
|
|
}
|
560 |
|
|
}
|
561 |
|
|
}
|
562 |
|
|
|
563 |
|
|
|
564 |
|
|
#endif
|