1 |
330 |
jeremybenn |
/* BFD back-end for HP PA-RISC ELF files.
|
2 |
|
|
Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1999, 2000, 2001,
|
3 |
|
|
2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
|
4 |
|
|
Free Software Foundation, Inc.
|
5 |
|
|
|
6 |
|
|
Original code by
|
7 |
|
|
Center for Software Science
|
8 |
|
|
Department of Computer Science
|
9 |
|
|
University of Utah
|
10 |
|
|
Largely rewritten by Alan Modra <alan@linuxcare.com.au>
|
11 |
|
|
Naming cleanup by Carlos O'Donell <carlos@systemhalted.org>
|
12 |
|
|
TLS support written by Randolph Chung <tausq@debian.org>
|
13 |
|
|
|
14 |
|
|
This file is part of BFD, the Binary File Descriptor library.
|
15 |
|
|
|
16 |
|
|
This program is free software; you can redistribute it and/or modify
|
17 |
|
|
it under the terms of the GNU General Public License as published by
|
18 |
|
|
the Free Software Foundation; either version 3 of the License, or
|
19 |
|
|
(at your option) any later version.
|
20 |
|
|
|
21 |
|
|
This program is distributed in the hope that it will be useful,
|
22 |
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
23 |
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
24 |
|
|
GNU General Public License for more details.
|
25 |
|
|
|
26 |
|
|
You should have received a copy of the GNU General Public License
|
27 |
|
|
along with this program; if not, write to the Free Software
|
28 |
|
|
Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
|
29 |
|
|
MA 02110-1301, USA. */
|
30 |
|
|
|
31 |
|
|
#include "sysdep.h"
|
32 |
|
|
#include "bfd.h"
|
33 |
|
|
#include "libbfd.h"
|
34 |
|
|
#include "elf-bfd.h"
|
35 |
|
|
#include "elf/hppa.h"
|
36 |
|
|
#include "libhppa.h"
|
37 |
|
|
#include "elf32-hppa.h"
|
38 |
|
|
#define ARCH_SIZE 32
|
39 |
|
|
#include "elf32-hppa.h"
|
40 |
|
|
#include "elf-hppa.h"
|
41 |
|
|
|
42 |
|
|
/* In order to gain some understanding of code in this file without
|
43 |
|
|
knowing all the intricate details of the linker, note the
|
44 |
|
|
following:
|
45 |
|
|
|
46 |
|
|
Functions named elf32_hppa_* are called by external routines, other
|
47 |
|
|
functions are only called locally. elf32_hppa_* functions appear
|
48 |
|
|
in this file more or less in the order in which they are called
|
49 |
|
|
from external routines. eg. elf32_hppa_check_relocs is called
|
50 |
|
|
early in the link process, elf32_hppa_finish_dynamic_sections is
|
51 |
|
|
one of the last functions. */
|
52 |
|
|
|
53 |
|
|
/* We use two hash tables to hold information for linking PA ELF objects.
|
54 |
|
|
|
55 |
|
|
The first is the elf32_hppa_link_hash_table which is derived
|
56 |
|
|
from the standard ELF linker hash table. We use this as a place to
|
57 |
|
|
attach other hash tables and static information.
|
58 |
|
|
|
59 |
|
|
The second is the stub hash table which is derived from the
|
60 |
|
|
base BFD hash table. The stub hash table holds the information
|
61 |
|
|
necessary to build the linker stubs during a link.
|
62 |
|
|
|
63 |
|
|
There are a number of different stubs generated by the linker.
|
64 |
|
|
|
65 |
|
|
Long branch stub:
|
66 |
|
|
: ldil LR'X,%r1
|
67 |
|
|
: be,n RR'X(%sr4,%r1)
|
68 |
|
|
|
69 |
|
|
PIC long branch stub:
|
70 |
|
|
: b,l .+8,%r1
|
71 |
|
|
: addil LR'X - ($PIC_pcrel$0 - 4),%r1
|
72 |
|
|
: be,n RR'X - ($PIC_pcrel$0 - 8)(%sr4,%r1)
|
73 |
|
|
|
74 |
|
|
Import stub to call shared library routine from normal object file
|
75 |
|
|
(single sub-space version)
|
76 |
|
|
: addil LR'lt_ptr+ltoff,%dp ; get procedure entry point
|
77 |
|
|
: ldw RR'lt_ptr+ltoff(%r1),%r21
|
78 |
|
|
: bv %r0(%r21)
|
79 |
|
|
: ldw RR'lt_ptr+ltoff+4(%r1),%r19 ; get new dlt value.
|
80 |
|
|
|
81 |
|
|
Import stub to call shared library routine from shared library
|
82 |
|
|
(single sub-space version)
|
83 |
|
|
: addil LR'ltoff,%r19 ; get procedure entry point
|
84 |
|
|
: ldw RR'ltoff(%r1),%r21
|
85 |
|
|
: bv %r0(%r21)
|
86 |
|
|
: ldw RR'ltoff+4(%r1),%r19 ; get new dlt value.
|
87 |
|
|
|
88 |
|
|
Import stub to call shared library routine from normal object file
|
89 |
|
|
(multiple sub-space support)
|
90 |
|
|
: addil LR'lt_ptr+ltoff,%dp ; get procedure entry point
|
91 |
|
|
: ldw RR'lt_ptr+ltoff(%r1),%r21
|
92 |
|
|
: ldw RR'lt_ptr+ltoff+4(%r1),%r19 ; get new dlt value.
|
93 |
|
|
: ldsid (%r21),%r1
|
94 |
|
|
: mtsp %r1,%sr0
|
95 |
|
|
: be 0(%sr0,%r21) ; branch to target
|
96 |
|
|
: stw %rp,-24(%sp) ; save rp
|
97 |
|
|
|
98 |
|
|
Import stub to call shared library routine from shared library
|
99 |
|
|
(multiple sub-space support)
|
100 |
|
|
: addil LR'ltoff,%r19 ; get procedure entry point
|
101 |
|
|
: ldw RR'ltoff(%r1),%r21
|
102 |
|
|
: ldw RR'ltoff+4(%r1),%r19 ; get new dlt value.
|
103 |
|
|
: ldsid (%r21),%r1
|
104 |
|
|
: mtsp %r1,%sr0
|
105 |
|
|
: be 0(%sr0,%r21) ; branch to target
|
106 |
|
|
: stw %rp,-24(%sp) ; save rp
|
107 |
|
|
|
108 |
|
|
Export stub to return from shared lib routine (multiple sub-space support)
|
109 |
|
|
One of these is created for each exported procedure in a shared
|
110 |
|
|
library (and stored in the shared lib). Shared lib routines are
|
111 |
|
|
called via the first instruction in the export stub so that we can
|
112 |
|
|
do an inter-space return. Not required for single sub-space.
|
113 |
|
|
: bl,n X,%rp ; trap the return
|
114 |
|
|
: nop
|
115 |
|
|
: ldw -24(%sp),%rp ; restore the original rp
|
116 |
|
|
: ldsid (%rp),%r1
|
117 |
|
|
: mtsp %r1,%sr0
|
118 |
|
|
: be,n 0(%sr0,%rp) ; inter-space return. */
|
119 |
|
|
|
120 |
|
|
|
121 |
|
|
/* Variable names follow a coding style.
|
122 |
|
|
Please follow this (Apps Hungarian) style:
|
123 |
|
|
|
124 |
|
|
Structure/Variable Prefix
|
125 |
|
|
elf_link_hash_table "etab"
|
126 |
|
|
elf_link_hash_entry "eh"
|
127 |
|
|
|
128 |
|
|
elf32_hppa_link_hash_table "htab"
|
129 |
|
|
elf32_hppa_link_hash_entry "hh"
|
130 |
|
|
|
131 |
|
|
bfd_hash_table "btab"
|
132 |
|
|
bfd_hash_entry "bh"
|
133 |
|
|
|
134 |
|
|
bfd_hash_table containing stubs "bstab"
|
135 |
|
|
elf32_hppa_stub_hash_entry "hsh"
|
136 |
|
|
|
137 |
|
|
elf32_hppa_dyn_reloc_entry "hdh"
|
138 |
|
|
|
139 |
|
|
Always remember to use GNU Coding Style. */
|
140 |
|
|
|
141 |
|
|
#define PLT_ENTRY_SIZE 8
|
142 |
|
|
#define GOT_ENTRY_SIZE 4
|
143 |
|
|
#define ELF_DYNAMIC_INTERPRETER "/lib/ld.so.1"
|
144 |
|
|
|
145 |
|
|
static const bfd_byte plt_stub[] =
|
146 |
|
|
{
|
147 |
|
|
0x0e, 0x80, 0x10, 0x96, /* 1: ldw 0(%r20),%r22 */
|
148 |
|
|
0xea, 0xc0, 0xc0, 0x00, /* bv %r0(%r22) */
|
149 |
|
|
0x0e, 0x88, 0x10, 0x95, /* ldw 4(%r20),%r21 */
|
150 |
|
|
#define PLT_STUB_ENTRY (3*4)
|
151 |
|
|
0xea, 0x9f, 0x1f, 0xdd, /* b,l 1b,%r20 */
|
152 |
|
|
0xd6, 0x80, 0x1c, 0x1e, /* depi 0,31,2,%r20 */
|
153 |
|
|
0x00, 0xc0, 0xff, 0xee, /* 9: .word fixup_func */
|
154 |
|
|
0xde, 0xad, 0xbe, 0xef /* .word fixup_ltp */
|
155 |
|
|
};
|
156 |
|
|
|
157 |
|
|
/* Section name for stubs is the associated section name plus this
|
158 |
|
|
string. */
|
159 |
|
|
#define STUB_SUFFIX ".stub"
|
160 |
|
|
|
161 |
|
|
/* We don't need to copy certain PC- or GP-relative dynamic relocs
|
162 |
|
|
into a shared object's dynamic section. All the relocs of the
|
163 |
|
|
limited class we are interested in, are absolute. */
|
164 |
|
|
#ifndef RELATIVE_DYNRELOCS
|
165 |
|
|
#define RELATIVE_DYNRELOCS 0
|
166 |
|
|
#define IS_ABSOLUTE_RELOC(r_type) 1
|
167 |
|
|
#endif
|
168 |
|
|
|
169 |
|
|
/* If ELIMINATE_COPY_RELOCS is non-zero, the linker will try to avoid
|
170 |
|
|
copying dynamic variables from a shared lib into an app's dynbss
|
171 |
|
|
section, and instead use a dynamic relocation to point into the
|
172 |
|
|
shared lib. */
|
173 |
|
|
#define ELIMINATE_COPY_RELOCS 1
|
174 |
|
|
|
175 |
|
|
enum elf32_hppa_stub_type
|
176 |
|
|
{
|
177 |
|
|
hppa_stub_long_branch,
|
178 |
|
|
hppa_stub_long_branch_shared,
|
179 |
|
|
hppa_stub_import,
|
180 |
|
|
hppa_stub_import_shared,
|
181 |
|
|
hppa_stub_export,
|
182 |
|
|
hppa_stub_none
|
183 |
|
|
};
|
184 |
|
|
|
185 |
|
|
struct elf32_hppa_stub_hash_entry
|
186 |
|
|
{
|
187 |
|
|
/* Base hash table entry structure. */
|
188 |
|
|
struct bfd_hash_entry bh_root;
|
189 |
|
|
|
190 |
|
|
/* The stub section. */
|
191 |
|
|
asection *stub_sec;
|
192 |
|
|
|
193 |
|
|
/* Offset within stub_sec of the beginning of this stub. */
|
194 |
|
|
bfd_vma stub_offset;
|
195 |
|
|
|
196 |
|
|
/* Given the symbol's value and its section we can determine its final
|
197 |
|
|
value when building the stubs (so the stub knows where to jump. */
|
198 |
|
|
bfd_vma target_value;
|
199 |
|
|
asection *target_section;
|
200 |
|
|
|
201 |
|
|
enum elf32_hppa_stub_type stub_type;
|
202 |
|
|
|
203 |
|
|
/* The symbol table entry, if any, that this was derived from. */
|
204 |
|
|
struct elf32_hppa_link_hash_entry *hh;
|
205 |
|
|
|
206 |
|
|
/* Where this stub is being called from, or, in the case of combined
|
207 |
|
|
stub sections, the first input section in the group. */
|
208 |
|
|
asection *id_sec;
|
209 |
|
|
};
|
210 |
|
|
|
211 |
|
|
struct elf32_hppa_link_hash_entry
|
212 |
|
|
{
|
213 |
|
|
struct elf_link_hash_entry eh;
|
214 |
|
|
|
215 |
|
|
/* A pointer to the most recently used stub hash entry against this
|
216 |
|
|
symbol. */
|
217 |
|
|
struct elf32_hppa_stub_hash_entry *hsh_cache;
|
218 |
|
|
|
219 |
|
|
/* Used to count relocations for delayed sizing of relocation
|
220 |
|
|
sections. */
|
221 |
|
|
struct elf32_hppa_dyn_reloc_entry
|
222 |
|
|
{
|
223 |
|
|
/* Next relocation in the chain. */
|
224 |
|
|
struct elf32_hppa_dyn_reloc_entry *hdh_next;
|
225 |
|
|
|
226 |
|
|
/* The input section of the reloc. */
|
227 |
|
|
asection *sec;
|
228 |
|
|
|
229 |
|
|
/* Number of relocs copied in this section. */
|
230 |
|
|
bfd_size_type count;
|
231 |
|
|
|
232 |
|
|
#if RELATIVE_DYNRELOCS
|
233 |
|
|
/* Number of relative relocs copied for the input section. */
|
234 |
|
|
bfd_size_type relative_count;
|
235 |
|
|
#endif
|
236 |
|
|
} *dyn_relocs;
|
237 |
|
|
|
238 |
|
|
enum
|
239 |
|
|
{
|
240 |
|
|
GOT_UNKNOWN = 0, GOT_NORMAL = 1, GOT_TLS_GD = 2, GOT_TLS_LDM = 4, GOT_TLS_IE = 8
|
241 |
|
|
} tls_type;
|
242 |
|
|
|
243 |
|
|
/* Set if this symbol is used by a plabel reloc. */
|
244 |
|
|
unsigned int plabel:1;
|
245 |
|
|
};
|
246 |
|
|
|
247 |
|
|
struct elf32_hppa_link_hash_table
|
248 |
|
|
{
|
249 |
|
|
/* The main hash table. */
|
250 |
|
|
struct elf_link_hash_table etab;
|
251 |
|
|
|
252 |
|
|
/* The stub hash table. */
|
253 |
|
|
struct bfd_hash_table bstab;
|
254 |
|
|
|
255 |
|
|
/* Linker stub bfd. */
|
256 |
|
|
bfd *stub_bfd;
|
257 |
|
|
|
258 |
|
|
/* Linker call-backs. */
|
259 |
|
|
asection * (*add_stub_section) (const char *, asection *);
|
260 |
|
|
void (*layout_sections_again) (void);
|
261 |
|
|
|
262 |
|
|
/* Array to keep track of which stub sections have been created, and
|
263 |
|
|
information on stub grouping. */
|
264 |
|
|
struct map_stub
|
265 |
|
|
{
|
266 |
|
|
/* This is the section to which stubs in the group will be
|
267 |
|
|
attached. */
|
268 |
|
|
asection *link_sec;
|
269 |
|
|
/* The stub section. */
|
270 |
|
|
asection *stub_sec;
|
271 |
|
|
} *stub_group;
|
272 |
|
|
|
273 |
|
|
/* Assorted information used by elf32_hppa_size_stubs. */
|
274 |
|
|
unsigned int bfd_count;
|
275 |
|
|
int top_index;
|
276 |
|
|
asection **input_list;
|
277 |
|
|
Elf_Internal_Sym **all_local_syms;
|
278 |
|
|
|
279 |
|
|
/* Short-cuts to get to dynamic linker sections. */
|
280 |
|
|
asection *sgot;
|
281 |
|
|
asection *srelgot;
|
282 |
|
|
asection *splt;
|
283 |
|
|
asection *srelplt;
|
284 |
|
|
asection *sdynbss;
|
285 |
|
|
asection *srelbss;
|
286 |
|
|
|
287 |
|
|
/* Used during a final link to store the base of the text and data
|
288 |
|
|
segments so that we can perform SEGREL relocations. */
|
289 |
|
|
bfd_vma text_segment_base;
|
290 |
|
|
bfd_vma data_segment_base;
|
291 |
|
|
|
292 |
|
|
/* Whether we support multiple sub-spaces for shared libs. */
|
293 |
|
|
unsigned int multi_subspace:1;
|
294 |
|
|
|
295 |
|
|
/* Flags set when various size branches are detected. Used to
|
296 |
|
|
select suitable defaults for the stub group size. */
|
297 |
|
|
unsigned int has_12bit_branch:1;
|
298 |
|
|
unsigned int has_17bit_branch:1;
|
299 |
|
|
unsigned int has_22bit_branch:1;
|
300 |
|
|
|
301 |
|
|
/* Set if we need a .plt stub to support lazy dynamic linking. */
|
302 |
|
|
unsigned int need_plt_stub:1;
|
303 |
|
|
|
304 |
|
|
/* Small local sym cache. */
|
305 |
|
|
struct sym_cache sym_cache;
|
306 |
|
|
|
307 |
|
|
/* Data for LDM relocations. */
|
308 |
|
|
union
|
309 |
|
|
{
|
310 |
|
|
bfd_signed_vma refcount;
|
311 |
|
|
bfd_vma offset;
|
312 |
|
|
} tls_ldm_got;
|
313 |
|
|
};
|
314 |
|
|
|
315 |
|
|
/* Various hash macros and functions. */
|
316 |
|
|
#define hppa_link_hash_table(p) \
|
317 |
|
|
(elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
|
318 |
|
|
== HPPA32_ELF_DATA ? ((struct elf32_hppa_link_hash_table *) ((p)->hash)) : NULL)
|
319 |
|
|
|
320 |
|
|
#define hppa_elf_hash_entry(ent) \
|
321 |
|
|
((struct elf32_hppa_link_hash_entry *)(ent))
|
322 |
|
|
|
323 |
|
|
#define hppa_stub_hash_entry(ent) \
|
324 |
|
|
((struct elf32_hppa_stub_hash_entry *)(ent))
|
325 |
|
|
|
326 |
|
|
#define hppa_stub_hash_lookup(table, string, create, copy) \
|
327 |
|
|
((struct elf32_hppa_stub_hash_entry *) \
|
328 |
|
|
bfd_hash_lookup ((table), (string), (create), (copy)))
|
329 |
|
|
|
330 |
|
|
#define hppa_elf_local_got_tls_type(abfd) \
|
331 |
|
|
((char *)(elf_local_got_offsets (abfd) + (elf_tdata (abfd)->symtab_hdr.sh_info * 2)))
|
332 |
|
|
|
333 |
|
|
#define hh_name(hh) \
|
334 |
|
|
(hh ? hh->eh.root.root.string : "<undef>")
|
335 |
|
|
|
336 |
|
|
#define eh_name(eh) \
|
337 |
|
|
(eh ? eh->root.root.string : "<undef>")
|
338 |
|
|
|
339 |
|
|
/* Override the generic function because we want to mark our BFDs. */
|
340 |
|
|
|
341 |
|
|
static bfd_boolean
|
342 |
|
|
elf32_hppa_mkobject (bfd *abfd)
|
343 |
|
|
{
|
344 |
|
|
return bfd_elf_allocate_object (abfd, sizeof (struct elf_obj_tdata),
|
345 |
|
|
HPPA32_ELF_DATA);
|
346 |
|
|
}
|
347 |
|
|
|
348 |
|
|
/* Assorted hash table functions. */
|
349 |
|
|
|
350 |
|
|
/* Initialize an entry in the stub hash table. */
|
351 |
|
|
|
352 |
|
|
static struct bfd_hash_entry *
|
353 |
|
|
stub_hash_newfunc (struct bfd_hash_entry *entry,
|
354 |
|
|
struct bfd_hash_table *table,
|
355 |
|
|
const char *string)
|
356 |
|
|
{
|
357 |
|
|
/* Allocate the structure if it has not already been allocated by a
|
358 |
|
|
subclass. */
|
359 |
|
|
if (entry == NULL)
|
360 |
|
|
{
|
361 |
|
|
entry = bfd_hash_allocate (table,
|
362 |
|
|
sizeof (struct elf32_hppa_stub_hash_entry));
|
363 |
|
|
if (entry == NULL)
|
364 |
|
|
return entry;
|
365 |
|
|
}
|
366 |
|
|
|
367 |
|
|
/* Call the allocation method of the superclass. */
|
368 |
|
|
entry = bfd_hash_newfunc (entry, table, string);
|
369 |
|
|
if (entry != NULL)
|
370 |
|
|
{
|
371 |
|
|
struct elf32_hppa_stub_hash_entry *hsh;
|
372 |
|
|
|
373 |
|
|
/* Initialize the local fields. */
|
374 |
|
|
hsh = hppa_stub_hash_entry (entry);
|
375 |
|
|
hsh->stub_sec = NULL;
|
376 |
|
|
hsh->stub_offset = 0;
|
377 |
|
|
hsh->target_value = 0;
|
378 |
|
|
hsh->target_section = NULL;
|
379 |
|
|
hsh->stub_type = hppa_stub_long_branch;
|
380 |
|
|
hsh->hh = NULL;
|
381 |
|
|
hsh->id_sec = NULL;
|
382 |
|
|
}
|
383 |
|
|
|
384 |
|
|
return entry;
|
385 |
|
|
}
|
386 |
|
|
|
387 |
|
|
/* Initialize an entry in the link hash table. */
|
388 |
|
|
|
389 |
|
|
static struct bfd_hash_entry *
|
390 |
|
|
hppa_link_hash_newfunc (struct bfd_hash_entry *entry,
|
391 |
|
|
struct bfd_hash_table *table,
|
392 |
|
|
const char *string)
|
393 |
|
|
{
|
394 |
|
|
/* Allocate the structure if it has not already been allocated by a
|
395 |
|
|
subclass. */
|
396 |
|
|
if (entry == NULL)
|
397 |
|
|
{
|
398 |
|
|
entry = bfd_hash_allocate (table,
|
399 |
|
|
sizeof (struct elf32_hppa_link_hash_entry));
|
400 |
|
|
if (entry == NULL)
|
401 |
|
|
return entry;
|
402 |
|
|
}
|
403 |
|
|
|
404 |
|
|
/* Call the allocation method of the superclass. */
|
405 |
|
|
entry = _bfd_elf_link_hash_newfunc (entry, table, string);
|
406 |
|
|
if (entry != NULL)
|
407 |
|
|
{
|
408 |
|
|
struct elf32_hppa_link_hash_entry *hh;
|
409 |
|
|
|
410 |
|
|
/* Initialize the local fields. */
|
411 |
|
|
hh = hppa_elf_hash_entry (entry);
|
412 |
|
|
hh->hsh_cache = NULL;
|
413 |
|
|
hh->dyn_relocs = NULL;
|
414 |
|
|
hh->plabel = 0;
|
415 |
|
|
hh->tls_type = GOT_UNKNOWN;
|
416 |
|
|
}
|
417 |
|
|
|
418 |
|
|
return entry;
|
419 |
|
|
}
|
420 |
|
|
|
421 |
|
|
/* Create the derived linker hash table. The PA ELF port uses the derived
|
422 |
|
|
hash table to keep information specific to the PA ELF linker (without
|
423 |
|
|
using static variables). */
|
424 |
|
|
|
425 |
|
|
static struct bfd_link_hash_table *
|
426 |
|
|
elf32_hppa_link_hash_table_create (bfd *abfd)
|
427 |
|
|
{
|
428 |
|
|
struct elf32_hppa_link_hash_table *htab;
|
429 |
|
|
bfd_size_type amt = sizeof (*htab);
|
430 |
|
|
|
431 |
|
|
htab = bfd_malloc (amt);
|
432 |
|
|
if (htab == NULL)
|
433 |
|
|
return NULL;
|
434 |
|
|
|
435 |
|
|
if (!_bfd_elf_link_hash_table_init (&htab->etab, abfd, hppa_link_hash_newfunc,
|
436 |
|
|
sizeof (struct elf32_hppa_link_hash_entry),
|
437 |
|
|
HPPA32_ELF_DATA))
|
438 |
|
|
{
|
439 |
|
|
free (htab);
|
440 |
|
|
return NULL;
|
441 |
|
|
}
|
442 |
|
|
|
443 |
|
|
/* Init the stub hash table too. */
|
444 |
|
|
if (!bfd_hash_table_init (&htab->bstab, stub_hash_newfunc,
|
445 |
|
|
sizeof (struct elf32_hppa_stub_hash_entry)))
|
446 |
|
|
return NULL;
|
447 |
|
|
|
448 |
|
|
htab->stub_bfd = NULL;
|
449 |
|
|
htab->add_stub_section = NULL;
|
450 |
|
|
htab->layout_sections_again = NULL;
|
451 |
|
|
htab->stub_group = NULL;
|
452 |
|
|
htab->sgot = NULL;
|
453 |
|
|
htab->srelgot = NULL;
|
454 |
|
|
htab->splt = NULL;
|
455 |
|
|
htab->srelplt = NULL;
|
456 |
|
|
htab->sdynbss = NULL;
|
457 |
|
|
htab->srelbss = NULL;
|
458 |
|
|
htab->text_segment_base = (bfd_vma) -1;
|
459 |
|
|
htab->data_segment_base = (bfd_vma) -1;
|
460 |
|
|
htab->multi_subspace = 0;
|
461 |
|
|
htab->has_12bit_branch = 0;
|
462 |
|
|
htab->has_17bit_branch = 0;
|
463 |
|
|
htab->has_22bit_branch = 0;
|
464 |
|
|
htab->need_plt_stub = 0;
|
465 |
|
|
htab->sym_cache.abfd = NULL;
|
466 |
|
|
htab->tls_ldm_got.refcount = 0;
|
467 |
|
|
|
468 |
|
|
return &htab->etab.root;
|
469 |
|
|
}
|
470 |
|
|
|
471 |
|
|
/* Free the derived linker hash table. */
|
472 |
|
|
|
473 |
|
|
static void
|
474 |
|
|
elf32_hppa_link_hash_table_free (struct bfd_link_hash_table *btab)
|
475 |
|
|
{
|
476 |
|
|
struct elf32_hppa_link_hash_table *htab
|
477 |
|
|
= (struct elf32_hppa_link_hash_table *) btab;
|
478 |
|
|
|
479 |
|
|
bfd_hash_table_free (&htab->bstab);
|
480 |
|
|
_bfd_generic_link_hash_table_free (btab);
|
481 |
|
|
}
|
482 |
|
|
|
483 |
|
|
/* Build a name for an entry in the stub hash table. */
|
484 |
|
|
|
485 |
|
|
static char *
|
486 |
|
|
hppa_stub_name (const asection *input_section,
|
487 |
|
|
const asection *sym_sec,
|
488 |
|
|
const struct elf32_hppa_link_hash_entry *hh,
|
489 |
|
|
const Elf_Internal_Rela *rela)
|
490 |
|
|
{
|
491 |
|
|
char *stub_name;
|
492 |
|
|
bfd_size_type len;
|
493 |
|
|
|
494 |
|
|
if (hh)
|
495 |
|
|
{
|
496 |
|
|
len = 8 + 1 + strlen (hh_name (hh)) + 1 + 8 + 1;
|
497 |
|
|
stub_name = bfd_malloc (len);
|
498 |
|
|
if (stub_name != NULL)
|
499 |
|
|
sprintf (stub_name, "%08x_%s+%x",
|
500 |
|
|
input_section->id & 0xffffffff,
|
501 |
|
|
hh_name (hh),
|
502 |
|
|
(int) rela->r_addend & 0xffffffff);
|
503 |
|
|
}
|
504 |
|
|
else
|
505 |
|
|
{
|
506 |
|
|
len = 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1;
|
507 |
|
|
stub_name = bfd_malloc (len);
|
508 |
|
|
if (stub_name != NULL)
|
509 |
|
|
sprintf (stub_name, "%08x_%x:%x+%x",
|
510 |
|
|
input_section->id & 0xffffffff,
|
511 |
|
|
sym_sec->id & 0xffffffff,
|
512 |
|
|
(int) ELF32_R_SYM (rela->r_info) & 0xffffffff,
|
513 |
|
|
(int) rela->r_addend & 0xffffffff);
|
514 |
|
|
}
|
515 |
|
|
return stub_name;
|
516 |
|
|
}
|
517 |
|
|
|
518 |
|
|
/* Look up an entry in the stub hash. Stub entries are cached because
|
519 |
|
|
creating the stub name takes a bit of time. */
|
520 |
|
|
|
521 |
|
|
static struct elf32_hppa_stub_hash_entry *
|
522 |
|
|
hppa_get_stub_entry (const asection *input_section,
|
523 |
|
|
const asection *sym_sec,
|
524 |
|
|
struct elf32_hppa_link_hash_entry *hh,
|
525 |
|
|
const Elf_Internal_Rela *rela,
|
526 |
|
|
struct elf32_hppa_link_hash_table *htab)
|
527 |
|
|
{
|
528 |
|
|
struct elf32_hppa_stub_hash_entry *hsh_entry;
|
529 |
|
|
const asection *id_sec;
|
530 |
|
|
|
531 |
|
|
/* If this input section is part of a group of sections sharing one
|
532 |
|
|
stub section, then use the id of the first section in the group.
|
533 |
|
|
Stub names need to include a section id, as there may well be
|
534 |
|
|
more than one stub used to reach say, printf, and we need to
|
535 |
|
|
distinguish between them. */
|
536 |
|
|
id_sec = htab->stub_group[input_section->id].link_sec;
|
537 |
|
|
|
538 |
|
|
if (hh != NULL && hh->hsh_cache != NULL
|
539 |
|
|
&& hh->hsh_cache->hh == hh
|
540 |
|
|
&& hh->hsh_cache->id_sec == id_sec)
|
541 |
|
|
{
|
542 |
|
|
hsh_entry = hh->hsh_cache;
|
543 |
|
|
}
|
544 |
|
|
else
|
545 |
|
|
{
|
546 |
|
|
char *stub_name;
|
547 |
|
|
|
548 |
|
|
stub_name = hppa_stub_name (id_sec, sym_sec, hh, rela);
|
549 |
|
|
if (stub_name == NULL)
|
550 |
|
|
return NULL;
|
551 |
|
|
|
552 |
|
|
hsh_entry = hppa_stub_hash_lookup (&htab->bstab,
|
553 |
|
|
stub_name, FALSE, FALSE);
|
554 |
|
|
if (hh != NULL)
|
555 |
|
|
hh->hsh_cache = hsh_entry;
|
556 |
|
|
|
557 |
|
|
free (stub_name);
|
558 |
|
|
}
|
559 |
|
|
|
560 |
|
|
return hsh_entry;
|
561 |
|
|
}
|
562 |
|
|
|
563 |
|
|
/* Add a new stub entry to the stub hash. Not all fields of the new
|
564 |
|
|
stub entry are initialised. */
|
565 |
|
|
|
566 |
|
|
static struct elf32_hppa_stub_hash_entry *
|
567 |
|
|
hppa_add_stub (const char *stub_name,
|
568 |
|
|
asection *section,
|
569 |
|
|
struct elf32_hppa_link_hash_table *htab)
|
570 |
|
|
{
|
571 |
|
|
asection *link_sec;
|
572 |
|
|
asection *stub_sec;
|
573 |
|
|
struct elf32_hppa_stub_hash_entry *hsh;
|
574 |
|
|
|
575 |
|
|
link_sec = htab->stub_group[section->id].link_sec;
|
576 |
|
|
stub_sec = htab->stub_group[section->id].stub_sec;
|
577 |
|
|
if (stub_sec == NULL)
|
578 |
|
|
{
|
579 |
|
|
stub_sec = htab->stub_group[link_sec->id].stub_sec;
|
580 |
|
|
if (stub_sec == NULL)
|
581 |
|
|
{
|
582 |
|
|
size_t namelen;
|
583 |
|
|
bfd_size_type len;
|
584 |
|
|
char *s_name;
|
585 |
|
|
|
586 |
|
|
namelen = strlen (link_sec->name);
|
587 |
|
|
len = namelen + sizeof (STUB_SUFFIX);
|
588 |
|
|
s_name = bfd_alloc (htab->stub_bfd, len);
|
589 |
|
|
if (s_name == NULL)
|
590 |
|
|
return NULL;
|
591 |
|
|
|
592 |
|
|
memcpy (s_name, link_sec->name, namelen);
|
593 |
|
|
memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
|
594 |
|
|
stub_sec = (*htab->add_stub_section) (s_name, link_sec);
|
595 |
|
|
if (stub_sec == NULL)
|
596 |
|
|
return NULL;
|
597 |
|
|
htab->stub_group[link_sec->id].stub_sec = stub_sec;
|
598 |
|
|
}
|
599 |
|
|
htab->stub_group[section->id].stub_sec = stub_sec;
|
600 |
|
|
}
|
601 |
|
|
|
602 |
|
|
/* Enter this entry into the linker stub hash table. */
|
603 |
|
|
hsh = hppa_stub_hash_lookup (&htab->bstab, stub_name,
|
604 |
|
|
TRUE, FALSE);
|
605 |
|
|
if (hsh == NULL)
|
606 |
|
|
{
|
607 |
|
|
(*_bfd_error_handler) (_("%B: cannot create stub entry %s"),
|
608 |
|
|
section->owner,
|
609 |
|
|
stub_name);
|
610 |
|
|
return NULL;
|
611 |
|
|
}
|
612 |
|
|
|
613 |
|
|
hsh->stub_sec = stub_sec;
|
614 |
|
|
hsh->stub_offset = 0;
|
615 |
|
|
hsh->id_sec = link_sec;
|
616 |
|
|
return hsh;
|
617 |
|
|
}
|
618 |
|
|
|
619 |
|
|
/* Determine the type of stub needed, if any, for a call. */
|
620 |
|
|
|
621 |
|
|
static enum elf32_hppa_stub_type
|
622 |
|
|
hppa_type_of_stub (asection *input_sec,
|
623 |
|
|
const Elf_Internal_Rela *rela,
|
624 |
|
|
struct elf32_hppa_link_hash_entry *hh,
|
625 |
|
|
bfd_vma destination,
|
626 |
|
|
struct bfd_link_info *info)
|
627 |
|
|
{
|
628 |
|
|
bfd_vma location;
|
629 |
|
|
bfd_vma branch_offset;
|
630 |
|
|
bfd_vma max_branch_offset;
|
631 |
|
|
unsigned int r_type;
|
632 |
|
|
|
633 |
|
|
if (hh != NULL
|
634 |
|
|
&& hh->eh.plt.offset != (bfd_vma) -1
|
635 |
|
|
&& hh->eh.dynindx != -1
|
636 |
|
|
&& !hh->plabel
|
637 |
|
|
&& (info->shared
|
638 |
|
|
|| !hh->eh.def_regular
|
639 |
|
|
|| hh->eh.root.type == bfd_link_hash_defweak))
|
640 |
|
|
{
|
641 |
|
|
/* We need an import stub. Decide between hppa_stub_import
|
642 |
|
|
and hppa_stub_import_shared later. */
|
643 |
|
|
return hppa_stub_import;
|
644 |
|
|
}
|
645 |
|
|
|
646 |
|
|
/* Determine where the call point is. */
|
647 |
|
|
location = (input_sec->output_offset
|
648 |
|
|
+ input_sec->output_section->vma
|
649 |
|
|
+ rela->r_offset);
|
650 |
|
|
|
651 |
|
|
branch_offset = destination - location - 8;
|
652 |
|
|
r_type = ELF32_R_TYPE (rela->r_info);
|
653 |
|
|
|
654 |
|
|
/* Determine if a long branch stub is needed. parisc branch offsets
|
655 |
|
|
are relative to the second instruction past the branch, ie. +8
|
656 |
|
|
bytes on from the branch instruction location. The offset is
|
657 |
|
|
signed and counts in units of 4 bytes. */
|
658 |
|
|
if (r_type == (unsigned int) R_PARISC_PCREL17F)
|
659 |
|
|
max_branch_offset = (1 << (17 - 1)) << 2;
|
660 |
|
|
|
661 |
|
|
else if (r_type == (unsigned int) R_PARISC_PCREL12F)
|
662 |
|
|
max_branch_offset = (1 << (12 - 1)) << 2;
|
663 |
|
|
|
664 |
|
|
else /* R_PARISC_PCREL22F. */
|
665 |
|
|
max_branch_offset = (1 << (22 - 1)) << 2;
|
666 |
|
|
|
667 |
|
|
if (branch_offset + max_branch_offset >= 2*max_branch_offset)
|
668 |
|
|
return hppa_stub_long_branch;
|
669 |
|
|
|
670 |
|
|
return hppa_stub_none;
|
671 |
|
|
}
|
672 |
|
|
|
673 |
|
|
/* Build one linker stub as defined by the stub hash table entry GEN_ENTRY.
|
674 |
|
|
IN_ARG contains the link info pointer. */
|
675 |
|
|
|
676 |
|
|
#define LDIL_R1 0x20200000 /* ldil LR'XXX,%r1 */
|
677 |
|
|
#define BE_SR4_R1 0xe0202002 /* be,n RR'XXX(%sr4,%r1) */
|
678 |
|
|
|
679 |
|
|
#define BL_R1 0xe8200000 /* b,l .+8,%r1 */
|
680 |
|
|
#define ADDIL_R1 0x28200000 /* addil LR'XXX,%r1,%r1 */
|
681 |
|
|
#define DEPI_R1 0xd4201c1e /* depi 0,31,2,%r1 */
|
682 |
|
|
|
683 |
|
|
#define ADDIL_DP 0x2b600000 /* addil LR'XXX,%dp,%r1 */
|
684 |
|
|
#define LDW_R1_R21 0x48350000 /* ldw RR'XXX(%sr0,%r1),%r21 */
|
685 |
|
|
#define BV_R0_R21 0xeaa0c000 /* bv %r0(%r21) */
|
686 |
|
|
#define LDW_R1_R19 0x48330000 /* ldw RR'XXX(%sr0,%r1),%r19 */
|
687 |
|
|
|
688 |
|
|
#define ADDIL_R19 0x2a600000 /* addil LR'XXX,%r19,%r1 */
|
689 |
|
|
#define LDW_R1_DP 0x483b0000 /* ldw RR'XXX(%sr0,%r1),%dp */
|
690 |
|
|
|
691 |
|
|
#define LDSID_R21_R1 0x02a010a1 /* ldsid (%sr0,%r21),%r1 */
|
692 |
|
|
#define MTSP_R1 0x00011820 /* mtsp %r1,%sr0 */
|
693 |
|
|
#define BE_SR0_R21 0xe2a00000 /* be 0(%sr0,%r21) */
|
694 |
|
|
#define STW_RP 0x6bc23fd1 /* stw %rp,-24(%sr0,%sp) */
|
695 |
|
|
|
696 |
|
|
#define BL22_RP 0xe800a002 /* b,l,n XXX,%rp */
|
697 |
|
|
#define BL_RP 0xe8400002 /* b,l,n XXX,%rp */
|
698 |
|
|
#define NOP 0x08000240 /* nop */
|
699 |
|
|
#define LDW_RP 0x4bc23fd1 /* ldw -24(%sr0,%sp),%rp */
|
700 |
|
|
#define LDSID_RP_R1 0x004010a1 /* ldsid (%sr0,%rp),%r1 */
|
701 |
|
|
#define BE_SR0_RP 0xe0400002 /* be,n 0(%sr0,%rp) */
|
702 |
|
|
|
703 |
|
|
#ifndef R19_STUBS
|
704 |
|
|
#define R19_STUBS 1
|
705 |
|
|
#endif
|
706 |
|
|
|
707 |
|
|
#if R19_STUBS
|
708 |
|
|
#define LDW_R1_DLT LDW_R1_R19
|
709 |
|
|
#else
|
710 |
|
|
#define LDW_R1_DLT LDW_R1_DP
|
711 |
|
|
#endif
|
712 |
|
|
|
713 |
|
|
static bfd_boolean
|
714 |
|
|
hppa_build_one_stub (struct bfd_hash_entry *bh, void *in_arg)
|
715 |
|
|
{
|
716 |
|
|
struct elf32_hppa_stub_hash_entry *hsh;
|
717 |
|
|
struct bfd_link_info *info;
|
718 |
|
|
struct elf32_hppa_link_hash_table *htab;
|
719 |
|
|
asection *stub_sec;
|
720 |
|
|
bfd *stub_bfd;
|
721 |
|
|
bfd_byte *loc;
|
722 |
|
|
bfd_vma sym_value;
|
723 |
|
|
bfd_vma insn;
|
724 |
|
|
bfd_vma off;
|
725 |
|
|
int val;
|
726 |
|
|
int size;
|
727 |
|
|
|
728 |
|
|
/* Massage our args to the form they really have. */
|
729 |
|
|
hsh = hppa_stub_hash_entry (bh);
|
730 |
|
|
info = (struct bfd_link_info *)in_arg;
|
731 |
|
|
|
732 |
|
|
htab = hppa_link_hash_table (info);
|
733 |
|
|
if (htab == NULL)
|
734 |
|
|
return FALSE;
|
735 |
|
|
|
736 |
|
|
stub_sec = hsh->stub_sec;
|
737 |
|
|
|
738 |
|
|
/* Make a note of the offset within the stubs for this entry. */
|
739 |
|
|
hsh->stub_offset = stub_sec->size;
|
740 |
|
|
loc = stub_sec->contents + hsh->stub_offset;
|
741 |
|
|
|
742 |
|
|
stub_bfd = stub_sec->owner;
|
743 |
|
|
|
744 |
|
|
switch (hsh->stub_type)
|
745 |
|
|
{
|
746 |
|
|
case hppa_stub_long_branch:
|
747 |
|
|
/* Create the long branch. A long branch is formed with "ldil"
|
748 |
|
|
loading the upper bits of the target address into a register,
|
749 |
|
|
then branching with "be" which adds in the lower bits.
|
750 |
|
|
The "be" has its delay slot nullified. */
|
751 |
|
|
sym_value = (hsh->target_value
|
752 |
|
|
+ hsh->target_section->output_offset
|
753 |
|
|
+ hsh->target_section->output_section->vma);
|
754 |
|
|
|
755 |
|
|
val = hppa_field_adjust (sym_value, 0, e_lrsel);
|
756 |
|
|
insn = hppa_rebuild_insn ((int) LDIL_R1, val, 21);
|
757 |
|
|
bfd_put_32 (stub_bfd, insn, loc);
|
758 |
|
|
|
759 |
|
|
val = hppa_field_adjust (sym_value, 0, e_rrsel) >> 2;
|
760 |
|
|
insn = hppa_rebuild_insn ((int) BE_SR4_R1, val, 17);
|
761 |
|
|
bfd_put_32 (stub_bfd, insn, loc + 4);
|
762 |
|
|
|
763 |
|
|
size = 8;
|
764 |
|
|
break;
|
765 |
|
|
|
766 |
|
|
case hppa_stub_long_branch_shared:
|
767 |
|
|
/* Branches are relative. This is where we are going to. */
|
768 |
|
|
sym_value = (hsh->target_value
|
769 |
|
|
+ hsh->target_section->output_offset
|
770 |
|
|
+ hsh->target_section->output_section->vma);
|
771 |
|
|
|
772 |
|
|
/* And this is where we are coming from, more or less. */
|
773 |
|
|
sym_value -= (hsh->stub_offset
|
774 |
|
|
+ stub_sec->output_offset
|
775 |
|
|
+ stub_sec->output_section->vma);
|
776 |
|
|
|
777 |
|
|
bfd_put_32 (stub_bfd, (bfd_vma) BL_R1, loc);
|
778 |
|
|
val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_lrsel);
|
779 |
|
|
insn = hppa_rebuild_insn ((int) ADDIL_R1, val, 21);
|
780 |
|
|
bfd_put_32 (stub_bfd, insn, loc + 4);
|
781 |
|
|
|
782 |
|
|
val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_rrsel) >> 2;
|
783 |
|
|
insn = hppa_rebuild_insn ((int) BE_SR4_R1, val, 17);
|
784 |
|
|
bfd_put_32 (stub_bfd, insn, loc + 8);
|
785 |
|
|
size = 12;
|
786 |
|
|
break;
|
787 |
|
|
|
788 |
|
|
case hppa_stub_import:
|
789 |
|
|
case hppa_stub_import_shared:
|
790 |
|
|
off = hsh->hh->eh.plt.offset;
|
791 |
|
|
if (off >= (bfd_vma) -2)
|
792 |
|
|
abort ();
|
793 |
|
|
|
794 |
|
|
off &= ~ (bfd_vma) 1;
|
795 |
|
|
sym_value = (off
|
796 |
|
|
+ htab->splt->output_offset
|
797 |
|
|
+ htab->splt->output_section->vma
|
798 |
|
|
- elf_gp (htab->splt->output_section->owner));
|
799 |
|
|
|
800 |
|
|
insn = ADDIL_DP;
|
801 |
|
|
#if R19_STUBS
|
802 |
|
|
if (hsh->stub_type == hppa_stub_import_shared)
|
803 |
|
|
insn = ADDIL_R19;
|
804 |
|
|
#endif
|
805 |
|
|
val = hppa_field_adjust (sym_value, 0, e_lrsel),
|
806 |
|
|
insn = hppa_rebuild_insn ((int) insn, val, 21);
|
807 |
|
|
bfd_put_32 (stub_bfd, insn, loc);
|
808 |
|
|
|
809 |
|
|
/* It is critical to use lrsel/rrsel here because we are using
|
810 |
|
|
two different offsets (+0 and +4) from sym_value. If we use
|
811 |
|
|
lsel/rsel then with unfortunate sym_values we will round
|
812 |
|
|
sym_value+4 up to the next 2k block leading to a mis-match
|
813 |
|
|
between the lsel and rsel value. */
|
814 |
|
|
val = hppa_field_adjust (sym_value, 0, e_rrsel);
|
815 |
|
|
insn = hppa_rebuild_insn ((int) LDW_R1_R21, val, 14);
|
816 |
|
|
bfd_put_32 (stub_bfd, insn, loc + 4);
|
817 |
|
|
|
818 |
|
|
if (htab->multi_subspace)
|
819 |
|
|
{
|
820 |
|
|
val = hppa_field_adjust (sym_value, (bfd_signed_vma) 4, e_rrsel);
|
821 |
|
|
insn = hppa_rebuild_insn ((int) LDW_R1_DLT, val, 14);
|
822 |
|
|
bfd_put_32 (stub_bfd, insn, loc + 8);
|
823 |
|
|
|
824 |
|
|
bfd_put_32 (stub_bfd, (bfd_vma) LDSID_R21_R1, loc + 12);
|
825 |
|
|
bfd_put_32 (stub_bfd, (bfd_vma) MTSP_R1, loc + 16);
|
826 |
|
|
bfd_put_32 (stub_bfd, (bfd_vma) BE_SR0_R21, loc + 20);
|
827 |
|
|
bfd_put_32 (stub_bfd, (bfd_vma) STW_RP, loc + 24);
|
828 |
|
|
|
829 |
|
|
size = 28;
|
830 |
|
|
}
|
831 |
|
|
else
|
832 |
|
|
{
|
833 |
|
|
bfd_put_32 (stub_bfd, (bfd_vma) BV_R0_R21, loc + 8);
|
834 |
|
|
val = hppa_field_adjust (sym_value, (bfd_signed_vma) 4, e_rrsel);
|
835 |
|
|
insn = hppa_rebuild_insn ((int) LDW_R1_DLT, val, 14);
|
836 |
|
|
bfd_put_32 (stub_bfd, insn, loc + 12);
|
837 |
|
|
|
838 |
|
|
size = 16;
|
839 |
|
|
}
|
840 |
|
|
|
841 |
|
|
break;
|
842 |
|
|
|
843 |
|
|
case hppa_stub_export:
|
844 |
|
|
/* Branches are relative. This is where we are going to. */
|
845 |
|
|
sym_value = (hsh->target_value
|
846 |
|
|
+ hsh->target_section->output_offset
|
847 |
|
|
+ hsh->target_section->output_section->vma);
|
848 |
|
|
|
849 |
|
|
/* And this is where we are coming from. */
|
850 |
|
|
sym_value -= (hsh->stub_offset
|
851 |
|
|
+ stub_sec->output_offset
|
852 |
|
|
+ stub_sec->output_section->vma);
|
853 |
|
|
|
854 |
|
|
if (sym_value - 8 + (1 << (17 + 1)) >= (1 << (17 + 2))
|
855 |
|
|
&& (!htab->has_22bit_branch
|
856 |
|
|
|| sym_value - 8 + (1 << (22 + 1)) >= (1 << (22 + 2))))
|
857 |
|
|
{
|
858 |
|
|
(*_bfd_error_handler)
|
859 |
|
|
(_("%B(%A+0x%lx): cannot reach %s, recompile with -ffunction-sections"),
|
860 |
|
|
hsh->target_section->owner,
|
861 |
|
|
stub_sec,
|
862 |
|
|
(long) hsh->stub_offset,
|
863 |
|
|
hsh->bh_root.string);
|
864 |
|
|
bfd_set_error (bfd_error_bad_value);
|
865 |
|
|
return FALSE;
|
866 |
|
|
}
|
867 |
|
|
|
868 |
|
|
val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_fsel) >> 2;
|
869 |
|
|
if (!htab->has_22bit_branch)
|
870 |
|
|
insn = hppa_rebuild_insn ((int) BL_RP, val, 17);
|
871 |
|
|
else
|
872 |
|
|
insn = hppa_rebuild_insn ((int) BL22_RP, val, 22);
|
873 |
|
|
bfd_put_32 (stub_bfd, insn, loc);
|
874 |
|
|
|
875 |
|
|
bfd_put_32 (stub_bfd, (bfd_vma) NOP, loc + 4);
|
876 |
|
|
bfd_put_32 (stub_bfd, (bfd_vma) LDW_RP, loc + 8);
|
877 |
|
|
bfd_put_32 (stub_bfd, (bfd_vma) LDSID_RP_R1, loc + 12);
|
878 |
|
|
bfd_put_32 (stub_bfd, (bfd_vma) MTSP_R1, loc + 16);
|
879 |
|
|
bfd_put_32 (stub_bfd, (bfd_vma) BE_SR0_RP, loc + 20);
|
880 |
|
|
|
881 |
|
|
/* Point the function symbol at the stub. */
|
882 |
|
|
hsh->hh->eh.root.u.def.section = stub_sec;
|
883 |
|
|
hsh->hh->eh.root.u.def.value = stub_sec->size;
|
884 |
|
|
|
885 |
|
|
size = 24;
|
886 |
|
|
break;
|
887 |
|
|
|
888 |
|
|
default:
|
889 |
|
|
BFD_FAIL ();
|
890 |
|
|
return FALSE;
|
891 |
|
|
}
|
892 |
|
|
|
893 |
|
|
stub_sec->size += size;
|
894 |
|
|
return TRUE;
|
895 |
|
|
}
|
896 |
|
|
|
897 |
|
|
#undef LDIL_R1
|
898 |
|
|
#undef BE_SR4_R1
|
899 |
|
|
#undef BL_R1
|
900 |
|
|
#undef ADDIL_R1
|
901 |
|
|
#undef DEPI_R1
|
902 |
|
|
#undef LDW_R1_R21
|
903 |
|
|
#undef LDW_R1_DLT
|
904 |
|
|
#undef LDW_R1_R19
|
905 |
|
|
#undef ADDIL_R19
|
906 |
|
|
#undef LDW_R1_DP
|
907 |
|
|
#undef LDSID_R21_R1
|
908 |
|
|
#undef MTSP_R1
|
909 |
|
|
#undef BE_SR0_R21
|
910 |
|
|
#undef STW_RP
|
911 |
|
|
#undef BV_R0_R21
|
912 |
|
|
#undef BL_RP
|
913 |
|
|
#undef NOP
|
914 |
|
|
#undef LDW_RP
|
915 |
|
|
#undef LDSID_RP_R1
|
916 |
|
|
#undef BE_SR0_RP
|
917 |
|
|
|
918 |
|
|
/* As above, but don't actually build the stub. Just bump offset so
|
919 |
|
|
we know stub section sizes. */
|
920 |
|
|
|
921 |
|
|
static bfd_boolean
|
922 |
|
|
hppa_size_one_stub (struct bfd_hash_entry *bh, void *in_arg)
|
923 |
|
|
{
|
924 |
|
|
struct elf32_hppa_stub_hash_entry *hsh;
|
925 |
|
|
struct elf32_hppa_link_hash_table *htab;
|
926 |
|
|
int size;
|
927 |
|
|
|
928 |
|
|
/* Massage our args to the form they really have. */
|
929 |
|
|
hsh = hppa_stub_hash_entry (bh);
|
930 |
|
|
htab = in_arg;
|
931 |
|
|
|
932 |
|
|
if (hsh->stub_type == hppa_stub_long_branch)
|
933 |
|
|
size = 8;
|
934 |
|
|
else if (hsh->stub_type == hppa_stub_long_branch_shared)
|
935 |
|
|
size = 12;
|
936 |
|
|
else if (hsh->stub_type == hppa_stub_export)
|
937 |
|
|
size = 24;
|
938 |
|
|
else /* hppa_stub_import or hppa_stub_import_shared. */
|
939 |
|
|
{
|
940 |
|
|
if (htab->multi_subspace)
|
941 |
|
|
size = 28;
|
942 |
|
|
else
|
943 |
|
|
size = 16;
|
944 |
|
|
}
|
945 |
|
|
|
946 |
|
|
hsh->stub_sec->size += size;
|
947 |
|
|
return TRUE;
|
948 |
|
|
}
|
949 |
|
|
|
950 |
|
|
/* Return nonzero if ABFD represents an HPPA ELF32 file.
|
951 |
|
|
Additionally we set the default architecture and machine. */
|
952 |
|
|
|
953 |
|
|
static bfd_boolean
|
954 |
|
|
elf32_hppa_object_p (bfd *abfd)
|
955 |
|
|
{
|
956 |
|
|
Elf_Internal_Ehdr * i_ehdrp;
|
957 |
|
|
unsigned int flags;
|
958 |
|
|
|
959 |
|
|
i_ehdrp = elf_elfheader (abfd);
|
960 |
|
|
if (strcmp (bfd_get_target (abfd), "elf32-hppa-linux") == 0)
|
961 |
|
|
{
|
962 |
|
|
/* GCC on hppa-linux produces binaries with OSABI=Linux,
|
963 |
|
|
but the kernel produces corefiles with OSABI=SysV. */
|
964 |
|
|
if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_LINUX &&
|
965 |
|
|
i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE) /* aka SYSV */
|
966 |
|
|
return FALSE;
|
967 |
|
|
}
|
968 |
|
|
else if (strcmp (bfd_get_target (abfd), "elf32-hppa-netbsd") == 0)
|
969 |
|
|
{
|
970 |
|
|
/* GCC on hppa-netbsd produces binaries with OSABI=NetBSD,
|
971 |
|
|
but the kernel produces corefiles with OSABI=SysV. */
|
972 |
|
|
if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NETBSD &&
|
973 |
|
|
i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE) /* aka SYSV */
|
974 |
|
|
return FALSE;
|
975 |
|
|
}
|
976 |
|
|
else
|
977 |
|
|
{
|
978 |
|
|
if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_HPUX)
|
979 |
|
|
return FALSE;
|
980 |
|
|
}
|
981 |
|
|
|
982 |
|
|
flags = i_ehdrp->e_flags;
|
983 |
|
|
switch (flags & (EF_PARISC_ARCH | EF_PARISC_WIDE))
|
984 |
|
|
{
|
985 |
|
|
case EFA_PARISC_1_0:
|
986 |
|
|
return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 10);
|
987 |
|
|
case EFA_PARISC_1_1:
|
988 |
|
|
return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 11);
|
989 |
|
|
case EFA_PARISC_2_0:
|
990 |
|
|
return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 20);
|
991 |
|
|
case EFA_PARISC_2_0 | EF_PARISC_WIDE:
|
992 |
|
|
return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 25);
|
993 |
|
|
}
|
994 |
|
|
return TRUE;
|
995 |
|
|
}
|
996 |
|
|
|
997 |
|
|
/* Create the .plt and .got sections, and set up our hash table
|
998 |
|
|
short-cuts to various dynamic sections. */
|
999 |
|
|
|
1000 |
|
|
static bfd_boolean
|
1001 |
|
|
elf32_hppa_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
|
1002 |
|
|
{
|
1003 |
|
|
struct elf32_hppa_link_hash_table *htab;
|
1004 |
|
|
struct elf_link_hash_entry *eh;
|
1005 |
|
|
|
1006 |
|
|
/* Don't try to create the .plt and .got twice. */
|
1007 |
|
|
htab = hppa_link_hash_table (info);
|
1008 |
|
|
if (htab == NULL)
|
1009 |
|
|
return FALSE;
|
1010 |
|
|
if (htab->splt != NULL)
|
1011 |
|
|
return TRUE;
|
1012 |
|
|
|
1013 |
|
|
/* Call the generic code to do most of the work. */
|
1014 |
|
|
if (! _bfd_elf_create_dynamic_sections (abfd, info))
|
1015 |
|
|
return FALSE;
|
1016 |
|
|
|
1017 |
|
|
htab->splt = bfd_get_section_by_name (abfd, ".plt");
|
1018 |
|
|
htab->srelplt = bfd_get_section_by_name (abfd, ".rela.plt");
|
1019 |
|
|
|
1020 |
|
|
htab->sgot = bfd_get_section_by_name (abfd, ".got");
|
1021 |
|
|
htab->srelgot = bfd_get_section_by_name (abfd, ".rela.got");
|
1022 |
|
|
|
1023 |
|
|
htab->sdynbss = bfd_get_section_by_name (abfd, ".dynbss");
|
1024 |
|
|
htab->srelbss = bfd_get_section_by_name (abfd, ".rela.bss");
|
1025 |
|
|
|
1026 |
|
|
/* hppa-linux needs _GLOBAL_OFFSET_TABLE_ to be visible from the main
|
1027 |
|
|
application, because __canonicalize_funcptr_for_compare needs it. */
|
1028 |
|
|
eh = elf_hash_table (info)->hgot;
|
1029 |
|
|
eh->forced_local = 0;
|
1030 |
|
|
eh->other = STV_DEFAULT;
|
1031 |
|
|
return bfd_elf_link_record_dynamic_symbol (info, eh);
|
1032 |
|
|
}
|
1033 |
|
|
|
1034 |
|
|
/* Copy the extra info we tack onto an elf_link_hash_entry. */
|
1035 |
|
|
|
1036 |
|
|
static void
|
1037 |
|
|
elf32_hppa_copy_indirect_symbol (struct bfd_link_info *info,
|
1038 |
|
|
struct elf_link_hash_entry *eh_dir,
|
1039 |
|
|
struct elf_link_hash_entry *eh_ind)
|
1040 |
|
|
{
|
1041 |
|
|
struct elf32_hppa_link_hash_entry *hh_dir, *hh_ind;
|
1042 |
|
|
|
1043 |
|
|
hh_dir = hppa_elf_hash_entry (eh_dir);
|
1044 |
|
|
hh_ind = hppa_elf_hash_entry (eh_ind);
|
1045 |
|
|
|
1046 |
|
|
if (hh_ind->dyn_relocs != NULL)
|
1047 |
|
|
{
|
1048 |
|
|
if (hh_dir->dyn_relocs != NULL)
|
1049 |
|
|
{
|
1050 |
|
|
struct elf32_hppa_dyn_reloc_entry **hdh_pp;
|
1051 |
|
|
struct elf32_hppa_dyn_reloc_entry *hdh_p;
|
1052 |
|
|
|
1053 |
|
|
/* Add reloc counts against the indirect sym to the direct sym
|
1054 |
|
|
list. Merge any entries against the same section. */
|
1055 |
|
|
for (hdh_pp = &hh_ind->dyn_relocs; (hdh_p = *hdh_pp) != NULL; )
|
1056 |
|
|
{
|
1057 |
|
|
struct elf32_hppa_dyn_reloc_entry *hdh_q;
|
1058 |
|
|
|
1059 |
|
|
for (hdh_q = hh_dir->dyn_relocs;
|
1060 |
|
|
hdh_q != NULL;
|
1061 |
|
|
hdh_q = hdh_q->hdh_next)
|
1062 |
|
|
if (hdh_q->sec == hdh_p->sec)
|
1063 |
|
|
{
|
1064 |
|
|
#if RELATIVE_DYNRELOCS
|
1065 |
|
|
hdh_q->relative_count += hdh_p->relative_count;
|
1066 |
|
|
#endif
|
1067 |
|
|
hdh_q->count += hdh_p->count;
|
1068 |
|
|
*hdh_pp = hdh_p->hdh_next;
|
1069 |
|
|
break;
|
1070 |
|
|
}
|
1071 |
|
|
if (hdh_q == NULL)
|
1072 |
|
|
hdh_pp = &hdh_p->hdh_next;
|
1073 |
|
|
}
|
1074 |
|
|
*hdh_pp = hh_dir->dyn_relocs;
|
1075 |
|
|
}
|
1076 |
|
|
|
1077 |
|
|
hh_dir->dyn_relocs = hh_ind->dyn_relocs;
|
1078 |
|
|
hh_ind->dyn_relocs = NULL;
|
1079 |
|
|
}
|
1080 |
|
|
|
1081 |
|
|
if (ELIMINATE_COPY_RELOCS
|
1082 |
|
|
&& eh_ind->root.type != bfd_link_hash_indirect
|
1083 |
|
|
&& eh_dir->dynamic_adjusted)
|
1084 |
|
|
{
|
1085 |
|
|
/* If called to transfer flags for a weakdef during processing
|
1086 |
|
|
of elf_adjust_dynamic_symbol, don't copy non_got_ref.
|
1087 |
|
|
We clear it ourselves for ELIMINATE_COPY_RELOCS. */
|
1088 |
|
|
eh_dir->ref_dynamic |= eh_ind->ref_dynamic;
|
1089 |
|
|
eh_dir->ref_regular |= eh_ind->ref_regular;
|
1090 |
|
|
eh_dir->ref_regular_nonweak |= eh_ind->ref_regular_nonweak;
|
1091 |
|
|
eh_dir->needs_plt |= eh_ind->needs_plt;
|
1092 |
|
|
}
|
1093 |
|
|
else
|
1094 |
|
|
{
|
1095 |
|
|
if (eh_ind->root.type == bfd_link_hash_indirect
|
1096 |
|
|
&& eh_dir->got.refcount <= 0)
|
1097 |
|
|
{
|
1098 |
|
|
hh_dir->tls_type = hh_ind->tls_type;
|
1099 |
|
|
hh_ind->tls_type = GOT_UNKNOWN;
|
1100 |
|
|
}
|
1101 |
|
|
|
1102 |
|
|
_bfd_elf_link_hash_copy_indirect (info, eh_dir, eh_ind);
|
1103 |
|
|
}
|
1104 |
|
|
}
|
1105 |
|
|
|
1106 |
|
|
static int
|
1107 |
|
|
elf32_hppa_optimized_tls_reloc (struct bfd_link_info *info ATTRIBUTE_UNUSED,
|
1108 |
|
|
int r_type, int is_local ATTRIBUTE_UNUSED)
|
1109 |
|
|
{
|
1110 |
|
|
/* For now we don't support linker optimizations. */
|
1111 |
|
|
return r_type;
|
1112 |
|
|
}
|
1113 |
|
|
|
1114 |
|
|
/* Return a pointer to the local GOT, PLT and TLS reference counts
|
1115 |
|
|
for ABFD. Returns NULL if the storage allocation fails. */
|
1116 |
|
|
|
1117 |
|
|
static bfd_signed_vma *
|
1118 |
|
|
hppa32_elf_local_refcounts (bfd *abfd)
|
1119 |
|
|
{
|
1120 |
|
|
Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
|
1121 |
|
|
bfd_signed_vma *local_refcounts;
|
1122 |
|
|
|
1123 |
|
|
local_refcounts = elf_local_got_refcounts (abfd);
|
1124 |
|
|
if (local_refcounts == NULL)
|
1125 |
|
|
{
|
1126 |
|
|
bfd_size_type size;
|
1127 |
|
|
|
1128 |
|
|
/* Allocate space for local GOT and PLT reference
|
1129 |
|
|
counts. Done this way to save polluting elf_obj_tdata
|
1130 |
|
|
with another target specific pointer. */
|
1131 |
|
|
size = symtab_hdr->sh_info;
|
1132 |
|
|
size *= 2 * sizeof (bfd_signed_vma);
|
1133 |
|
|
/* Add in space to store the local GOT TLS types. */
|
1134 |
|
|
size += symtab_hdr->sh_info;
|
1135 |
|
|
local_refcounts = bfd_zalloc (abfd, size);
|
1136 |
|
|
if (local_refcounts == NULL)
|
1137 |
|
|
return NULL;
|
1138 |
|
|
elf_local_got_refcounts (abfd) = local_refcounts;
|
1139 |
|
|
memset (hppa_elf_local_got_tls_type (abfd), GOT_UNKNOWN,
|
1140 |
|
|
symtab_hdr->sh_info);
|
1141 |
|
|
}
|
1142 |
|
|
return local_refcounts;
|
1143 |
|
|
}
|
1144 |
|
|
|
1145 |
|
|
|
1146 |
|
|
/* Look through the relocs for a section during the first phase, and
|
1147 |
|
|
calculate needed space in the global offset table, procedure linkage
|
1148 |
|
|
table, and dynamic reloc sections. At this point we haven't
|
1149 |
|
|
necessarily read all the input files. */
|
1150 |
|
|
|
1151 |
|
|
static bfd_boolean
|
1152 |
|
|
elf32_hppa_check_relocs (bfd *abfd,
|
1153 |
|
|
struct bfd_link_info *info,
|
1154 |
|
|
asection *sec,
|
1155 |
|
|
const Elf_Internal_Rela *relocs)
|
1156 |
|
|
{
|
1157 |
|
|
Elf_Internal_Shdr *symtab_hdr;
|
1158 |
|
|
struct elf_link_hash_entry **eh_syms;
|
1159 |
|
|
const Elf_Internal_Rela *rela;
|
1160 |
|
|
const Elf_Internal_Rela *rela_end;
|
1161 |
|
|
struct elf32_hppa_link_hash_table *htab;
|
1162 |
|
|
asection *sreloc;
|
1163 |
|
|
int tls_type = GOT_UNKNOWN, old_tls_type = GOT_UNKNOWN;
|
1164 |
|
|
|
1165 |
|
|
if (info->relocatable)
|
1166 |
|
|
return TRUE;
|
1167 |
|
|
|
1168 |
|
|
htab = hppa_link_hash_table (info);
|
1169 |
|
|
if (htab == NULL)
|
1170 |
|
|
return FALSE;
|
1171 |
|
|
symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
|
1172 |
|
|
eh_syms = elf_sym_hashes (abfd);
|
1173 |
|
|
sreloc = NULL;
|
1174 |
|
|
|
1175 |
|
|
rela_end = relocs + sec->reloc_count;
|
1176 |
|
|
for (rela = relocs; rela < rela_end; rela++)
|
1177 |
|
|
{
|
1178 |
|
|
enum {
|
1179 |
|
|
NEED_GOT = 1,
|
1180 |
|
|
NEED_PLT = 2,
|
1181 |
|
|
NEED_DYNREL = 4,
|
1182 |
|
|
PLT_PLABEL = 8
|
1183 |
|
|
};
|
1184 |
|
|
|
1185 |
|
|
unsigned int r_symndx, r_type;
|
1186 |
|
|
struct elf32_hppa_link_hash_entry *hh;
|
1187 |
|
|
int need_entry = 0;
|
1188 |
|
|
|
1189 |
|
|
r_symndx = ELF32_R_SYM (rela->r_info);
|
1190 |
|
|
|
1191 |
|
|
if (r_symndx < symtab_hdr->sh_info)
|
1192 |
|
|
hh = NULL;
|
1193 |
|
|
else
|
1194 |
|
|
{
|
1195 |
|
|
hh = hppa_elf_hash_entry (eh_syms[r_symndx - symtab_hdr->sh_info]);
|
1196 |
|
|
while (hh->eh.root.type == bfd_link_hash_indirect
|
1197 |
|
|
|| hh->eh.root.type == bfd_link_hash_warning)
|
1198 |
|
|
hh = hppa_elf_hash_entry (hh->eh.root.u.i.link);
|
1199 |
|
|
}
|
1200 |
|
|
|
1201 |
|
|
r_type = ELF32_R_TYPE (rela->r_info);
|
1202 |
|
|
r_type = elf32_hppa_optimized_tls_reloc (info, r_type, hh == NULL);
|
1203 |
|
|
|
1204 |
|
|
switch (r_type)
|
1205 |
|
|
{
|
1206 |
|
|
case R_PARISC_DLTIND14F:
|
1207 |
|
|
case R_PARISC_DLTIND14R:
|
1208 |
|
|
case R_PARISC_DLTIND21L:
|
1209 |
|
|
/* This symbol requires a global offset table entry. */
|
1210 |
|
|
need_entry = NEED_GOT;
|
1211 |
|
|
break;
|
1212 |
|
|
|
1213 |
|
|
case R_PARISC_PLABEL14R: /* "Official" procedure labels. */
|
1214 |
|
|
case R_PARISC_PLABEL21L:
|
1215 |
|
|
case R_PARISC_PLABEL32:
|
1216 |
|
|
/* If the addend is non-zero, we break badly. */
|
1217 |
|
|
if (rela->r_addend != 0)
|
1218 |
|
|
abort ();
|
1219 |
|
|
|
1220 |
|
|
/* If we are creating a shared library, then we need to
|
1221 |
|
|
create a PLT entry for all PLABELs, because PLABELs with
|
1222 |
|
|
local symbols may be passed via a pointer to another
|
1223 |
|
|
object. Additionally, output a dynamic relocation
|
1224 |
|
|
pointing to the PLT entry.
|
1225 |
|
|
|
1226 |
|
|
For executables, the original 32-bit ABI allowed two
|
1227 |
|
|
different styles of PLABELs (function pointers): For
|
1228 |
|
|
global functions, the PLABEL word points into the .plt
|
1229 |
|
|
two bytes past a (function address, gp) pair, and for
|
1230 |
|
|
local functions the PLABEL points directly at the
|
1231 |
|
|
function. The magic +2 for the first type allows us to
|
1232 |
|
|
differentiate between the two. As you can imagine, this
|
1233 |
|
|
is a real pain when it comes to generating code to call
|
1234 |
|
|
functions indirectly or to compare function pointers.
|
1235 |
|
|
We avoid the mess by always pointing a PLABEL into the
|
1236 |
|
|
.plt, even for local functions. */
|
1237 |
|
|
need_entry = PLT_PLABEL | NEED_PLT | NEED_DYNREL;
|
1238 |
|
|
break;
|
1239 |
|
|
|
1240 |
|
|
case R_PARISC_PCREL12F:
|
1241 |
|
|
htab->has_12bit_branch = 1;
|
1242 |
|
|
goto branch_common;
|
1243 |
|
|
|
1244 |
|
|
case R_PARISC_PCREL17C:
|
1245 |
|
|
case R_PARISC_PCREL17F:
|
1246 |
|
|
htab->has_17bit_branch = 1;
|
1247 |
|
|
goto branch_common;
|
1248 |
|
|
|
1249 |
|
|
case R_PARISC_PCREL22F:
|
1250 |
|
|
htab->has_22bit_branch = 1;
|
1251 |
|
|
branch_common:
|
1252 |
|
|
/* Function calls might need to go through the .plt, and
|
1253 |
|
|
might require long branch stubs. */
|
1254 |
|
|
if (hh == NULL)
|
1255 |
|
|
{
|
1256 |
|
|
/* We know local syms won't need a .plt entry, and if
|
1257 |
|
|
they need a long branch stub we can't guarantee that
|
1258 |
|
|
we can reach the stub. So just flag an error later
|
1259 |
|
|
if we're doing a shared link and find we need a long
|
1260 |
|
|
branch stub. */
|
1261 |
|
|
continue;
|
1262 |
|
|
}
|
1263 |
|
|
else
|
1264 |
|
|
{
|
1265 |
|
|
/* Global symbols will need a .plt entry if they remain
|
1266 |
|
|
global, and in most cases won't need a long branch
|
1267 |
|
|
stub. Unfortunately, we have to cater for the case
|
1268 |
|
|
where a symbol is forced local by versioning, or due
|
1269 |
|
|
to symbolic linking, and we lose the .plt entry. */
|
1270 |
|
|
need_entry = NEED_PLT;
|
1271 |
|
|
if (hh->eh.type == STT_PARISC_MILLI)
|
1272 |
|
|
need_entry = 0;
|
1273 |
|
|
}
|
1274 |
|
|
break;
|
1275 |
|
|
|
1276 |
|
|
case R_PARISC_SEGBASE: /* Used to set segment base. */
|
1277 |
|
|
case R_PARISC_SEGREL32: /* Relative reloc, used for unwind. */
|
1278 |
|
|
case R_PARISC_PCREL14F: /* PC relative load/store. */
|
1279 |
|
|
case R_PARISC_PCREL14R:
|
1280 |
|
|
case R_PARISC_PCREL17R: /* External branches. */
|
1281 |
|
|
case R_PARISC_PCREL21L: /* As above, and for load/store too. */
|
1282 |
|
|
case R_PARISC_PCREL32:
|
1283 |
|
|
/* We don't need to propagate the relocation if linking a
|
1284 |
|
|
shared object since these are section relative. */
|
1285 |
|
|
continue;
|
1286 |
|
|
|
1287 |
|
|
case R_PARISC_DPREL14F: /* Used for gp rel data load/store. */
|
1288 |
|
|
case R_PARISC_DPREL14R:
|
1289 |
|
|
case R_PARISC_DPREL21L:
|
1290 |
|
|
if (info->shared)
|
1291 |
|
|
{
|
1292 |
|
|
(*_bfd_error_handler)
|
1293 |
|
|
(_("%B: relocation %s can not be used when making a shared object; recompile with -fPIC"),
|
1294 |
|
|
abfd,
|
1295 |
|
|
elf_hppa_howto_table[r_type].name);
|
1296 |
|
|
bfd_set_error (bfd_error_bad_value);
|
1297 |
|
|
return FALSE;
|
1298 |
|
|
}
|
1299 |
|
|
/* Fall through. */
|
1300 |
|
|
|
1301 |
|
|
case R_PARISC_DIR17F: /* Used for external branches. */
|
1302 |
|
|
case R_PARISC_DIR17R:
|
1303 |
|
|
case R_PARISC_DIR14F: /* Used for load/store from absolute locn. */
|
1304 |
|
|
case R_PARISC_DIR14R:
|
1305 |
|
|
case R_PARISC_DIR21L: /* As above, and for ext branches too. */
|
1306 |
|
|
case R_PARISC_DIR32: /* .word relocs. */
|
1307 |
|
|
/* We may want to output a dynamic relocation later. */
|
1308 |
|
|
need_entry = NEED_DYNREL;
|
1309 |
|
|
break;
|
1310 |
|
|
|
1311 |
|
|
/* This relocation describes the C++ object vtable hierarchy.
|
1312 |
|
|
Reconstruct it for later use during GC. */
|
1313 |
|
|
case R_PARISC_GNU_VTINHERIT:
|
1314 |
|
|
if (!bfd_elf_gc_record_vtinherit (abfd, sec, &hh->eh, rela->r_offset))
|
1315 |
|
|
return FALSE;
|
1316 |
|
|
continue;
|
1317 |
|
|
|
1318 |
|
|
/* This relocation describes which C++ vtable entries are actually
|
1319 |
|
|
used. Record for later use during GC. */
|
1320 |
|
|
case R_PARISC_GNU_VTENTRY:
|
1321 |
|
|
BFD_ASSERT (hh != NULL);
|
1322 |
|
|
if (hh != NULL
|
1323 |
|
|
&& !bfd_elf_gc_record_vtentry (abfd, sec, &hh->eh, rela->r_addend))
|
1324 |
|
|
return FALSE;
|
1325 |
|
|
continue;
|
1326 |
|
|
|
1327 |
|
|
case R_PARISC_TLS_GD21L:
|
1328 |
|
|
case R_PARISC_TLS_GD14R:
|
1329 |
|
|
case R_PARISC_TLS_LDM21L:
|
1330 |
|
|
case R_PARISC_TLS_LDM14R:
|
1331 |
|
|
need_entry = NEED_GOT;
|
1332 |
|
|
break;
|
1333 |
|
|
|
1334 |
|
|
case R_PARISC_TLS_IE21L:
|
1335 |
|
|
case R_PARISC_TLS_IE14R:
|
1336 |
|
|
if (info->shared)
|
1337 |
|
|
info->flags |= DF_STATIC_TLS;
|
1338 |
|
|
need_entry = NEED_GOT;
|
1339 |
|
|
break;
|
1340 |
|
|
|
1341 |
|
|
default:
|
1342 |
|
|
continue;
|
1343 |
|
|
}
|
1344 |
|
|
|
1345 |
|
|
/* Now carry out our orders. */
|
1346 |
|
|
if (need_entry & NEED_GOT)
|
1347 |
|
|
{
|
1348 |
|
|
switch (r_type)
|
1349 |
|
|
{
|
1350 |
|
|
default:
|
1351 |
|
|
tls_type = GOT_NORMAL;
|
1352 |
|
|
break;
|
1353 |
|
|
case R_PARISC_TLS_GD21L:
|
1354 |
|
|
case R_PARISC_TLS_GD14R:
|
1355 |
|
|
tls_type |= GOT_TLS_GD;
|
1356 |
|
|
break;
|
1357 |
|
|
case R_PARISC_TLS_LDM21L:
|
1358 |
|
|
case R_PARISC_TLS_LDM14R:
|
1359 |
|
|
tls_type |= GOT_TLS_LDM;
|
1360 |
|
|
break;
|
1361 |
|
|
case R_PARISC_TLS_IE21L:
|
1362 |
|
|
case R_PARISC_TLS_IE14R:
|
1363 |
|
|
tls_type |= GOT_TLS_IE;
|
1364 |
|
|
break;
|
1365 |
|
|
}
|
1366 |
|
|
|
1367 |
|
|
/* Allocate space for a GOT entry, as well as a dynamic
|
1368 |
|
|
relocation for this entry. */
|
1369 |
|
|
if (htab->sgot == NULL)
|
1370 |
|
|
{
|
1371 |
|
|
if (htab->etab.dynobj == NULL)
|
1372 |
|
|
htab->etab.dynobj = abfd;
|
1373 |
|
|
if (!elf32_hppa_create_dynamic_sections (htab->etab.dynobj, info))
|
1374 |
|
|
return FALSE;
|
1375 |
|
|
}
|
1376 |
|
|
|
1377 |
|
|
if (r_type == R_PARISC_TLS_LDM21L
|
1378 |
|
|
|| r_type == R_PARISC_TLS_LDM14R)
|
1379 |
|
|
htab->tls_ldm_got.refcount += 1;
|
1380 |
|
|
else
|
1381 |
|
|
{
|
1382 |
|
|
if (hh != NULL)
|
1383 |
|
|
{
|
1384 |
|
|
hh->eh.got.refcount += 1;
|
1385 |
|
|
old_tls_type = hh->tls_type;
|
1386 |
|
|
}
|
1387 |
|
|
else
|
1388 |
|
|
{
|
1389 |
|
|
bfd_signed_vma *local_got_refcounts;
|
1390 |
|
|
|
1391 |
|
|
/* This is a global offset table entry for a local symbol. */
|
1392 |
|
|
local_got_refcounts = hppa32_elf_local_refcounts (abfd);
|
1393 |
|
|
if (local_got_refcounts == NULL)
|
1394 |
|
|
return FALSE;
|
1395 |
|
|
local_got_refcounts[r_symndx] += 1;
|
1396 |
|
|
|
1397 |
|
|
old_tls_type = hppa_elf_local_got_tls_type (abfd) [r_symndx];
|
1398 |
|
|
}
|
1399 |
|
|
|
1400 |
|
|
tls_type |= old_tls_type;
|
1401 |
|
|
|
1402 |
|
|
if (old_tls_type != tls_type)
|
1403 |
|
|
{
|
1404 |
|
|
if (hh != NULL)
|
1405 |
|
|
hh->tls_type = tls_type;
|
1406 |
|
|
else
|
1407 |
|
|
hppa_elf_local_got_tls_type (abfd) [r_symndx] = tls_type;
|
1408 |
|
|
}
|
1409 |
|
|
|
1410 |
|
|
}
|
1411 |
|
|
}
|
1412 |
|
|
|
1413 |
|
|
if (need_entry & NEED_PLT)
|
1414 |
|
|
{
|
1415 |
|
|
/* If we are creating a shared library, and this is a reloc
|
1416 |
|
|
against a weak symbol or a global symbol in a dynamic
|
1417 |
|
|
object, then we will be creating an import stub and a
|
1418 |
|
|
.plt entry for the symbol. Similarly, on a normal link
|
1419 |
|
|
to symbols defined in a dynamic object we'll need the
|
1420 |
|
|
import stub and a .plt entry. We don't know yet whether
|
1421 |
|
|
the symbol is defined or not, so make an entry anyway and
|
1422 |
|
|
clean up later in adjust_dynamic_symbol. */
|
1423 |
|
|
if ((sec->flags & SEC_ALLOC) != 0)
|
1424 |
|
|
{
|
1425 |
|
|
if (hh != NULL)
|
1426 |
|
|
{
|
1427 |
|
|
hh->eh.needs_plt = 1;
|
1428 |
|
|
hh->eh.plt.refcount += 1;
|
1429 |
|
|
|
1430 |
|
|
/* If this .plt entry is for a plabel, mark it so
|
1431 |
|
|
that adjust_dynamic_symbol will keep the entry
|
1432 |
|
|
even if it appears to be local. */
|
1433 |
|
|
if (need_entry & PLT_PLABEL)
|
1434 |
|
|
hh->plabel = 1;
|
1435 |
|
|
}
|
1436 |
|
|
else if (need_entry & PLT_PLABEL)
|
1437 |
|
|
{
|
1438 |
|
|
bfd_signed_vma *local_got_refcounts;
|
1439 |
|
|
bfd_signed_vma *local_plt_refcounts;
|
1440 |
|
|
|
1441 |
|
|
local_got_refcounts = hppa32_elf_local_refcounts (abfd);
|
1442 |
|
|
if (local_got_refcounts == NULL)
|
1443 |
|
|
return FALSE;
|
1444 |
|
|
local_plt_refcounts = (local_got_refcounts
|
1445 |
|
|
+ symtab_hdr->sh_info);
|
1446 |
|
|
local_plt_refcounts[r_symndx] += 1;
|
1447 |
|
|
}
|
1448 |
|
|
}
|
1449 |
|
|
}
|
1450 |
|
|
|
1451 |
|
|
if (need_entry & NEED_DYNREL)
|
1452 |
|
|
{
|
1453 |
|
|
/* Flag this symbol as having a non-got, non-plt reference
|
1454 |
|
|
so that we generate copy relocs if it turns out to be
|
1455 |
|
|
dynamic. */
|
1456 |
|
|
if (hh != NULL && !info->shared)
|
1457 |
|
|
hh->eh.non_got_ref = 1;
|
1458 |
|
|
|
1459 |
|
|
/* If we are creating a shared library then we need to copy
|
1460 |
|
|
the reloc into the shared library. However, if we are
|
1461 |
|
|
linking with -Bsymbolic, we need only copy absolute
|
1462 |
|
|
relocs or relocs against symbols that are not defined in
|
1463 |
|
|
an object we are including in the link. PC- or DP- or
|
1464 |
|
|
DLT-relative relocs against any local sym or global sym
|
1465 |
|
|
with DEF_REGULAR set, can be discarded. At this point we
|
1466 |
|
|
have not seen all the input files, so it is possible that
|
1467 |
|
|
DEF_REGULAR is not set now but will be set later (it is
|
1468 |
|
|
never cleared). We account for that possibility below by
|
1469 |
|
|
storing information in the dyn_relocs field of the
|
1470 |
|
|
hash table entry.
|
1471 |
|
|
|
1472 |
|
|
A similar situation to the -Bsymbolic case occurs when
|
1473 |
|
|
creating shared libraries and symbol visibility changes
|
1474 |
|
|
render the symbol local.
|
1475 |
|
|
|
1476 |
|
|
As it turns out, all the relocs we will be creating here
|
1477 |
|
|
are absolute, so we cannot remove them on -Bsymbolic
|
1478 |
|
|
links or visibility changes anyway. A STUB_REL reloc
|
1479 |
|
|
is absolute too, as in that case it is the reloc in the
|
1480 |
|
|
stub we will be creating, rather than copying the PCREL
|
1481 |
|
|
reloc in the branch.
|
1482 |
|
|
|
1483 |
|
|
If on the other hand, we are creating an executable, we
|
1484 |
|
|
may need to keep relocations for symbols satisfied by a
|
1485 |
|
|
dynamic library if we manage to avoid copy relocs for the
|
1486 |
|
|
symbol. */
|
1487 |
|
|
if ((info->shared
|
1488 |
|
|
&& (sec->flags & SEC_ALLOC) != 0
|
1489 |
|
|
&& (IS_ABSOLUTE_RELOC (r_type)
|
1490 |
|
|
|| (hh != NULL
|
1491 |
|
|
&& (!info->symbolic
|
1492 |
|
|
|| hh->eh.root.type == bfd_link_hash_defweak
|
1493 |
|
|
|| !hh->eh.def_regular))))
|
1494 |
|
|
|| (ELIMINATE_COPY_RELOCS
|
1495 |
|
|
&& !info->shared
|
1496 |
|
|
&& (sec->flags & SEC_ALLOC) != 0
|
1497 |
|
|
&& hh != NULL
|
1498 |
|
|
&& (hh->eh.root.type == bfd_link_hash_defweak
|
1499 |
|
|
|| !hh->eh.def_regular)))
|
1500 |
|
|
{
|
1501 |
|
|
struct elf32_hppa_dyn_reloc_entry *hdh_p;
|
1502 |
|
|
struct elf32_hppa_dyn_reloc_entry **hdh_head;
|
1503 |
|
|
|
1504 |
|
|
/* Create a reloc section in dynobj and make room for
|
1505 |
|
|
this reloc. */
|
1506 |
|
|
if (sreloc == NULL)
|
1507 |
|
|
{
|
1508 |
|
|
if (htab->etab.dynobj == NULL)
|
1509 |
|
|
htab->etab.dynobj = abfd;
|
1510 |
|
|
|
1511 |
|
|
sreloc = _bfd_elf_make_dynamic_reloc_section
|
1512 |
|
|
(sec, htab->etab.dynobj, 2, abfd, /*rela?*/ TRUE);
|
1513 |
|
|
|
1514 |
|
|
if (sreloc == NULL)
|
1515 |
|
|
{
|
1516 |
|
|
bfd_set_error (bfd_error_bad_value);
|
1517 |
|
|
return FALSE;
|
1518 |
|
|
}
|
1519 |
|
|
}
|
1520 |
|
|
|
1521 |
|
|
/* If this is a global symbol, we count the number of
|
1522 |
|
|
relocations we need for this symbol. */
|
1523 |
|
|
if (hh != NULL)
|
1524 |
|
|
{
|
1525 |
|
|
hdh_head = &hh->dyn_relocs;
|
1526 |
|
|
}
|
1527 |
|
|
else
|
1528 |
|
|
{
|
1529 |
|
|
/* Track dynamic relocs needed for local syms too.
|
1530 |
|
|
We really need local syms available to do this
|
1531 |
|
|
easily. Oh well. */
|
1532 |
|
|
asection *sr;
|
1533 |
|
|
void *vpp;
|
1534 |
|
|
Elf_Internal_Sym *isym;
|
1535 |
|
|
|
1536 |
|
|
isym = bfd_sym_from_r_symndx (&htab->sym_cache,
|
1537 |
|
|
abfd, r_symndx);
|
1538 |
|
|
if (isym == NULL)
|
1539 |
|
|
return FALSE;
|
1540 |
|
|
|
1541 |
|
|
sr = bfd_section_from_elf_index (abfd, isym->st_shndx);
|
1542 |
|
|
if (sr == NULL)
|
1543 |
|
|
sr = sec;
|
1544 |
|
|
|
1545 |
|
|
vpp = &elf_section_data (sr)->local_dynrel;
|
1546 |
|
|
hdh_head = (struct elf32_hppa_dyn_reloc_entry **) vpp;
|
1547 |
|
|
}
|
1548 |
|
|
|
1549 |
|
|
hdh_p = *hdh_head;
|
1550 |
|
|
if (hdh_p == NULL || hdh_p->sec != sec)
|
1551 |
|
|
{
|
1552 |
|
|
hdh_p = bfd_alloc (htab->etab.dynobj, sizeof *hdh_p);
|
1553 |
|
|
if (hdh_p == NULL)
|
1554 |
|
|
return FALSE;
|
1555 |
|
|
hdh_p->hdh_next = *hdh_head;
|
1556 |
|
|
*hdh_head = hdh_p;
|
1557 |
|
|
hdh_p->sec = sec;
|
1558 |
|
|
hdh_p->count = 0;
|
1559 |
|
|
#if RELATIVE_DYNRELOCS
|
1560 |
|
|
hdh_p->relative_count = 0;
|
1561 |
|
|
#endif
|
1562 |
|
|
}
|
1563 |
|
|
|
1564 |
|
|
hdh_p->count += 1;
|
1565 |
|
|
#if RELATIVE_DYNRELOCS
|
1566 |
|
|
if (!IS_ABSOLUTE_RELOC (rtype))
|
1567 |
|
|
hdh_p->relative_count += 1;
|
1568 |
|
|
#endif
|
1569 |
|
|
}
|
1570 |
|
|
}
|
1571 |
|
|
}
|
1572 |
|
|
|
1573 |
|
|
return TRUE;
|
1574 |
|
|
}
|
1575 |
|
|
|
1576 |
|
|
/* Return the section that should be marked against garbage collection
|
1577 |
|
|
for a given relocation. */
|
1578 |
|
|
|
1579 |
|
|
static asection *
|
1580 |
|
|
elf32_hppa_gc_mark_hook (asection *sec,
|
1581 |
|
|
struct bfd_link_info *info,
|
1582 |
|
|
Elf_Internal_Rela *rela,
|
1583 |
|
|
struct elf_link_hash_entry *hh,
|
1584 |
|
|
Elf_Internal_Sym *sym)
|
1585 |
|
|
{
|
1586 |
|
|
if (hh != NULL)
|
1587 |
|
|
switch ((unsigned int) ELF32_R_TYPE (rela->r_info))
|
1588 |
|
|
{
|
1589 |
|
|
case R_PARISC_GNU_VTINHERIT:
|
1590 |
|
|
case R_PARISC_GNU_VTENTRY:
|
1591 |
|
|
return NULL;
|
1592 |
|
|
}
|
1593 |
|
|
|
1594 |
|
|
return _bfd_elf_gc_mark_hook (sec, info, rela, hh, sym);
|
1595 |
|
|
}
|
1596 |
|
|
|
1597 |
|
|
/* Update the got and plt entry reference counts for the section being
|
1598 |
|
|
removed. */
|
1599 |
|
|
|
1600 |
|
|
static bfd_boolean
|
1601 |
|
|
elf32_hppa_gc_sweep_hook (bfd *abfd,
|
1602 |
|
|
struct bfd_link_info *info ATTRIBUTE_UNUSED,
|
1603 |
|
|
asection *sec,
|
1604 |
|
|
const Elf_Internal_Rela *relocs)
|
1605 |
|
|
{
|
1606 |
|
|
Elf_Internal_Shdr *symtab_hdr;
|
1607 |
|
|
struct elf_link_hash_entry **eh_syms;
|
1608 |
|
|
bfd_signed_vma *local_got_refcounts;
|
1609 |
|
|
bfd_signed_vma *local_plt_refcounts;
|
1610 |
|
|
const Elf_Internal_Rela *rela, *relend;
|
1611 |
|
|
struct elf32_hppa_link_hash_table *htab;
|
1612 |
|
|
|
1613 |
|
|
if (info->relocatable)
|
1614 |
|
|
return TRUE;
|
1615 |
|
|
|
1616 |
|
|
htab = hppa_link_hash_table (info);
|
1617 |
|
|
if (htab == NULL)
|
1618 |
|
|
return FALSE;
|
1619 |
|
|
|
1620 |
|
|
elf_section_data (sec)->local_dynrel = NULL;
|
1621 |
|
|
|
1622 |
|
|
symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
|
1623 |
|
|
eh_syms = elf_sym_hashes (abfd);
|
1624 |
|
|
local_got_refcounts = elf_local_got_refcounts (abfd);
|
1625 |
|
|
local_plt_refcounts = local_got_refcounts;
|
1626 |
|
|
if (local_plt_refcounts != NULL)
|
1627 |
|
|
local_plt_refcounts += symtab_hdr->sh_info;
|
1628 |
|
|
|
1629 |
|
|
relend = relocs + sec->reloc_count;
|
1630 |
|
|
for (rela = relocs; rela < relend; rela++)
|
1631 |
|
|
{
|
1632 |
|
|
unsigned long r_symndx;
|
1633 |
|
|
unsigned int r_type;
|
1634 |
|
|
struct elf_link_hash_entry *eh = NULL;
|
1635 |
|
|
|
1636 |
|
|
r_symndx = ELF32_R_SYM (rela->r_info);
|
1637 |
|
|
if (r_symndx >= symtab_hdr->sh_info)
|
1638 |
|
|
{
|
1639 |
|
|
struct elf32_hppa_link_hash_entry *hh;
|
1640 |
|
|
struct elf32_hppa_dyn_reloc_entry **hdh_pp;
|
1641 |
|
|
struct elf32_hppa_dyn_reloc_entry *hdh_p;
|
1642 |
|
|
|
1643 |
|
|
eh = eh_syms[r_symndx - symtab_hdr->sh_info];
|
1644 |
|
|
while (eh->root.type == bfd_link_hash_indirect
|
1645 |
|
|
|| eh->root.type == bfd_link_hash_warning)
|
1646 |
|
|
eh = (struct elf_link_hash_entry *) eh->root.u.i.link;
|
1647 |
|
|
hh = hppa_elf_hash_entry (eh);
|
1648 |
|
|
|
1649 |
|
|
for (hdh_pp = &hh->dyn_relocs; (hdh_p = *hdh_pp) != NULL; hdh_pp = &hdh_p->hdh_next)
|
1650 |
|
|
if (hdh_p->sec == sec)
|
1651 |
|
|
{
|
1652 |
|
|
/* Everything must go for SEC. */
|
1653 |
|
|
*hdh_pp = hdh_p->hdh_next;
|
1654 |
|
|
break;
|
1655 |
|
|
}
|
1656 |
|
|
}
|
1657 |
|
|
|
1658 |
|
|
r_type = ELF32_R_TYPE (rela->r_info);
|
1659 |
|
|
r_type = elf32_hppa_optimized_tls_reloc (info, r_type, eh != NULL);
|
1660 |
|
|
|
1661 |
|
|
switch (r_type)
|
1662 |
|
|
{
|
1663 |
|
|
case R_PARISC_DLTIND14F:
|
1664 |
|
|
case R_PARISC_DLTIND14R:
|
1665 |
|
|
case R_PARISC_DLTIND21L:
|
1666 |
|
|
case R_PARISC_TLS_GD21L:
|
1667 |
|
|
case R_PARISC_TLS_GD14R:
|
1668 |
|
|
case R_PARISC_TLS_IE21L:
|
1669 |
|
|
case R_PARISC_TLS_IE14R:
|
1670 |
|
|
if (eh != NULL)
|
1671 |
|
|
{
|
1672 |
|
|
if (eh->got.refcount > 0)
|
1673 |
|
|
eh->got.refcount -= 1;
|
1674 |
|
|
}
|
1675 |
|
|
else if (local_got_refcounts != NULL)
|
1676 |
|
|
{
|
1677 |
|
|
if (local_got_refcounts[r_symndx] > 0)
|
1678 |
|
|
local_got_refcounts[r_symndx] -= 1;
|
1679 |
|
|
}
|
1680 |
|
|
break;
|
1681 |
|
|
|
1682 |
|
|
case R_PARISC_TLS_LDM21L:
|
1683 |
|
|
case R_PARISC_TLS_LDM14R:
|
1684 |
|
|
htab->tls_ldm_got.refcount -= 1;
|
1685 |
|
|
break;
|
1686 |
|
|
|
1687 |
|
|
case R_PARISC_PCREL12F:
|
1688 |
|
|
case R_PARISC_PCREL17C:
|
1689 |
|
|
case R_PARISC_PCREL17F:
|
1690 |
|
|
case R_PARISC_PCREL22F:
|
1691 |
|
|
if (eh != NULL)
|
1692 |
|
|
{
|
1693 |
|
|
if (eh->plt.refcount > 0)
|
1694 |
|
|
eh->plt.refcount -= 1;
|
1695 |
|
|
}
|
1696 |
|
|
break;
|
1697 |
|
|
|
1698 |
|
|
case R_PARISC_PLABEL14R:
|
1699 |
|
|
case R_PARISC_PLABEL21L:
|
1700 |
|
|
case R_PARISC_PLABEL32:
|
1701 |
|
|
if (eh != NULL)
|
1702 |
|
|
{
|
1703 |
|
|
if (eh->plt.refcount > 0)
|
1704 |
|
|
eh->plt.refcount -= 1;
|
1705 |
|
|
}
|
1706 |
|
|
else if (local_plt_refcounts != NULL)
|
1707 |
|
|
{
|
1708 |
|
|
if (local_plt_refcounts[r_symndx] > 0)
|
1709 |
|
|
local_plt_refcounts[r_symndx] -= 1;
|
1710 |
|
|
}
|
1711 |
|
|
break;
|
1712 |
|
|
|
1713 |
|
|
default:
|
1714 |
|
|
break;
|
1715 |
|
|
}
|
1716 |
|
|
}
|
1717 |
|
|
|
1718 |
|
|
return TRUE;
|
1719 |
|
|
}
|
1720 |
|
|
|
1721 |
|
|
/* Support for core dump NOTE sections. */
|
1722 |
|
|
|
1723 |
|
|
static bfd_boolean
|
1724 |
|
|
elf32_hppa_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
|
1725 |
|
|
{
|
1726 |
|
|
int offset;
|
1727 |
|
|
size_t size;
|
1728 |
|
|
|
1729 |
|
|
switch (note->descsz)
|
1730 |
|
|
{
|
1731 |
|
|
default:
|
1732 |
|
|
return FALSE;
|
1733 |
|
|
|
1734 |
|
|
case 396: /* Linux/hppa */
|
1735 |
|
|
/* pr_cursig */
|
1736 |
|
|
elf_tdata (abfd)->core_signal = bfd_get_16 (abfd, note->descdata + 12);
|
1737 |
|
|
|
1738 |
|
|
/* pr_pid */
|
1739 |
|
|
elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, note->descdata + 24);
|
1740 |
|
|
|
1741 |
|
|
/* pr_reg */
|
1742 |
|
|
offset = 72;
|
1743 |
|
|
size = 320;
|
1744 |
|
|
|
1745 |
|
|
break;
|
1746 |
|
|
}
|
1747 |
|
|
|
1748 |
|
|
/* Make a ".reg/999" section. */
|
1749 |
|
|
return _bfd_elfcore_make_pseudosection (abfd, ".reg",
|
1750 |
|
|
size, note->descpos + offset);
|
1751 |
|
|
}
|
1752 |
|
|
|
1753 |
|
|
static bfd_boolean
|
1754 |
|
|
elf32_hppa_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
|
1755 |
|
|
{
|
1756 |
|
|
switch (note->descsz)
|
1757 |
|
|
{
|
1758 |
|
|
default:
|
1759 |
|
|
return FALSE;
|
1760 |
|
|
|
1761 |
|
|
case 124: /* Linux/hppa elf_prpsinfo. */
|
1762 |
|
|
elf_tdata (abfd)->core_program
|
1763 |
|
|
= _bfd_elfcore_strndup (abfd, note->descdata + 28, 16);
|
1764 |
|
|
elf_tdata (abfd)->core_command
|
1765 |
|
|
= _bfd_elfcore_strndup (abfd, note->descdata + 44, 80);
|
1766 |
|
|
}
|
1767 |
|
|
|
1768 |
|
|
/* Note that for some reason, a spurious space is tacked
|
1769 |
|
|
onto the end of the args in some (at least one anyway)
|
1770 |
|
|
implementations, so strip it off if it exists. */
|
1771 |
|
|
{
|
1772 |
|
|
char *command = elf_tdata (abfd)->core_command;
|
1773 |
|
|
int n = strlen (command);
|
1774 |
|
|
|
1775 |
|
|
if (0 < n && command[n - 1] == ' ')
|
1776 |
|
|
command[n - 1] = '\0';
|
1777 |
|
|
}
|
1778 |
|
|
|
1779 |
|
|
return TRUE;
|
1780 |
|
|
}
|
1781 |
|
|
|
1782 |
|
|
/* Our own version of hide_symbol, so that we can keep plt entries for
|
1783 |
|
|
plabels. */
|
1784 |
|
|
|
1785 |
|
|
static void
|
1786 |
|
|
elf32_hppa_hide_symbol (struct bfd_link_info *info,
|
1787 |
|
|
struct elf_link_hash_entry *eh,
|
1788 |
|
|
bfd_boolean force_local)
|
1789 |
|
|
{
|
1790 |
|
|
if (force_local)
|
1791 |
|
|
{
|
1792 |
|
|
eh->forced_local = 1;
|
1793 |
|
|
if (eh->dynindx != -1)
|
1794 |
|
|
{
|
1795 |
|
|
eh->dynindx = -1;
|
1796 |
|
|
_bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
|
1797 |
|
|
eh->dynstr_index);
|
1798 |
|
|
}
|
1799 |
|
|
}
|
1800 |
|
|
|
1801 |
|
|
if (! hppa_elf_hash_entry (eh)->plabel)
|
1802 |
|
|
{
|
1803 |
|
|
eh->needs_plt = 0;
|
1804 |
|
|
eh->plt = elf_hash_table (info)->init_plt_refcount;
|
1805 |
|
|
}
|
1806 |
|
|
}
|
1807 |
|
|
|
1808 |
|
|
/* Adjust a symbol defined by a dynamic object and referenced by a
|
1809 |
|
|
regular object. The current definition is in some section of the
|
1810 |
|
|
dynamic object, but we're not including those sections. We have to
|
1811 |
|
|
change the definition to something the rest of the link can
|
1812 |
|
|
understand. */
|
1813 |
|
|
|
1814 |
|
|
static bfd_boolean
|
1815 |
|
|
elf32_hppa_adjust_dynamic_symbol (struct bfd_link_info *info,
|
1816 |
|
|
struct elf_link_hash_entry *eh)
|
1817 |
|
|
{
|
1818 |
|
|
struct elf32_hppa_link_hash_table *htab;
|
1819 |
|
|
asection *sec;
|
1820 |
|
|
|
1821 |
|
|
/* If this is a function, put it in the procedure linkage table. We
|
1822 |
|
|
will fill in the contents of the procedure linkage table later. */
|
1823 |
|
|
if (eh->type == STT_FUNC
|
1824 |
|
|
|| eh->needs_plt)
|
1825 |
|
|
{
|
1826 |
|
|
if (eh->plt.refcount <= 0
|
1827 |
|
|
|| (eh->def_regular
|
1828 |
|
|
&& eh->root.type != bfd_link_hash_defweak
|
1829 |
|
|
&& ! hppa_elf_hash_entry (eh)->plabel
|
1830 |
|
|
&& (!info->shared || info->symbolic)))
|
1831 |
|
|
{
|
1832 |
|
|
/* The .plt entry is not needed when:
|
1833 |
|
|
a) Garbage collection has removed all references to the
|
1834 |
|
|
symbol, or
|
1835 |
|
|
b) We know for certain the symbol is defined in this
|
1836 |
|
|
object, and it's not a weak definition, nor is the symbol
|
1837 |
|
|
used by a plabel relocation. Either this object is the
|
1838 |
|
|
application or we are doing a shared symbolic link. */
|
1839 |
|
|
|
1840 |
|
|
eh->plt.offset = (bfd_vma) -1;
|
1841 |
|
|
eh->needs_plt = 0;
|
1842 |
|
|
}
|
1843 |
|
|
|
1844 |
|
|
return TRUE;
|
1845 |
|
|
}
|
1846 |
|
|
else
|
1847 |
|
|
eh->plt.offset = (bfd_vma) -1;
|
1848 |
|
|
|
1849 |
|
|
/* If this is a weak symbol, and there is a real definition, the
|
1850 |
|
|
processor independent code will have arranged for us to see the
|
1851 |
|
|
real definition first, and we can just use the same value. */
|
1852 |
|
|
if (eh->u.weakdef != NULL)
|
1853 |
|
|
{
|
1854 |
|
|
if (eh->u.weakdef->root.type != bfd_link_hash_defined
|
1855 |
|
|
&& eh->u.weakdef->root.type != bfd_link_hash_defweak)
|
1856 |
|
|
abort ();
|
1857 |
|
|
eh->root.u.def.section = eh->u.weakdef->root.u.def.section;
|
1858 |
|
|
eh->root.u.def.value = eh->u.weakdef->root.u.def.value;
|
1859 |
|
|
if (ELIMINATE_COPY_RELOCS)
|
1860 |
|
|
eh->non_got_ref = eh->u.weakdef->non_got_ref;
|
1861 |
|
|
return TRUE;
|
1862 |
|
|
}
|
1863 |
|
|
|
1864 |
|
|
/* This is a reference to a symbol defined by a dynamic object which
|
1865 |
|
|
is not a function. */
|
1866 |
|
|
|
1867 |
|
|
/* If we are creating a shared library, we must presume that the
|
1868 |
|
|
only references to the symbol are via the global offset table.
|
1869 |
|
|
For such cases we need not do anything here; the relocations will
|
1870 |
|
|
be handled correctly by relocate_section. */
|
1871 |
|
|
if (info->shared)
|
1872 |
|
|
return TRUE;
|
1873 |
|
|
|
1874 |
|
|
/* If there are no references to this symbol that do not use the
|
1875 |
|
|
GOT, we don't need to generate a copy reloc. */
|
1876 |
|
|
if (!eh->non_got_ref)
|
1877 |
|
|
return TRUE;
|
1878 |
|
|
|
1879 |
|
|
if (ELIMINATE_COPY_RELOCS)
|
1880 |
|
|
{
|
1881 |
|
|
struct elf32_hppa_link_hash_entry *hh;
|
1882 |
|
|
struct elf32_hppa_dyn_reloc_entry *hdh_p;
|
1883 |
|
|
|
1884 |
|
|
hh = hppa_elf_hash_entry (eh);
|
1885 |
|
|
for (hdh_p = hh->dyn_relocs; hdh_p != NULL; hdh_p = hdh_p->hdh_next)
|
1886 |
|
|
{
|
1887 |
|
|
sec = hdh_p->sec->output_section;
|
1888 |
|
|
if (sec != NULL && (sec->flags & SEC_READONLY) != 0)
|
1889 |
|
|
break;
|
1890 |
|
|
}
|
1891 |
|
|
|
1892 |
|
|
/* If we didn't find any dynamic relocs in read-only sections, then
|
1893 |
|
|
we'll be keeping the dynamic relocs and avoiding the copy reloc. */
|
1894 |
|
|
if (hdh_p == NULL)
|
1895 |
|
|
{
|
1896 |
|
|
eh->non_got_ref = 0;
|
1897 |
|
|
return TRUE;
|
1898 |
|
|
}
|
1899 |
|
|
}
|
1900 |
|
|
|
1901 |
|
|
if (eh->size == 0)
|
1902 |
|
|
{
|
1903 |
|
|
(*_bfd_error_handler) (_("dynamic variable `%s' is zero size"),
|
1904 |
|
|
eh->root.root.string);
|
1905 |
|
|
return TRUE;
|
1906 |
|
|
}
|
1907 |
|
|
|
1908 |
|
|
/* We must allocate the symbol in our .dynbss section, which will
|
1909 |
|
|
become part of the .bss section of the executable. There will be
|
1910 |
|
|
an entry for this symbol in the .dynsym section. The dynamic
|
1911 |
|
|
object will contain position independent code, so all references
|
1912 |
|
|
from the dynamic object to this symbol will go through the global
|
1913 |
|
|
offset table. The dynamic linker will use the .dynsym entry to
|
1914 |
|
|
determine the address it must put in the global offset table, so
|
1915 |
|
|
both the dynamic object and the regular object will refer to the
|
1916 |
|
|
same memory location for the variable. */
|
1917 |
|
|
|
1918 |
|
|
htab = hppa_link_hash_table (info);
|
1919 |
|
|
if (htab == NULL)
|
1920 |
|
|
return FALSE;
|
1921 |
|
|
|
1922 |
|
|
/* We must generate a COPY reloc to tell the dynamic linker to
|
1923 |
|
|
copy the initial value out of the dynamic object and into the
|
1924 |
|
|
runtime process image. */
|
1925 |
|
|
if ((eh->root.u.def.section->flags & SEC_ALLOC) != 0)
|
1926 |
|
|
{
|
1927 |
|
|
htab->srelbss->size += sizeof (Elf32_External_Rela);
|
1928 |
|
|
eh->needs_copy = 1;
|
1929 |
|
|
}
|
1930 |
|
|
|
1931 |
|
|
sec = htab->sdynbss;
|
1932 |
|
|
|
1933 |
|
|
return _bfd_elf_adjust_dynamic_copy (eh, sec);
|
1934 |
|
|
}
|
1935 |
|
|
|
1936 |
|
|
/* Allocate space in the .plt for entries that won't have relocations.
|
1937 |
|
|
ie. plabel entries. */
|
1938 |
|
|
|
1939 |
|
|
static bfd_boolean
|
1940 |
|
|
allocate_plt_static (struct elf_link_hash_entry *eh, void *inf)
|
1941 |
|
|
{
|
1942 |
|
|
struct bfd_link_info *info;
|
1943 |
|
|
struct elf32_hppa_link_hash_table *htab;
|
1944 |
|
|
struct elf32_hppa_link_hash_entry *hh;
|
1945 |
|
|
asection *sec;
|
1946 |
|
|
|
1947 |
|
|
if (eh->root.type == bfd_link_hash_indirect)
|
1948 |
|
|
return TRUE;
|
1949 |
|
|
|
1950 |
|
|
if (eh->root.type == bfd_link_hash_warning)
|
1951 |
|
|
eh = (struct elf_link_hash_entry *) eh->root.u.i.link;
|
1952 |
|
|
|
1953 |
|
|
info = (struct bfd_link_info *) inf;
|
1954 |
|
|
hh = hppa_elf_hash_entry (eh);
|
1955 |
|
|
htab = hppa_link_hash_table (info);
|
1956 |
|
|
if (htab == NULL)
|
1957 |
|
|
return FALSE;
|
1958 |
|
|
|
1959 |
|
|
if (htab->etab.dynamic_sections_created
|
1960 |
|
|
&& eh->plt.refcount > 0)
|
1961 |
|
|
{
|
1962 |
|
|
/* Make sure this symbol is output as a dynamic symbol.
|
1963 |
|
|
Undefined weak syms won't yet be marked as dynamic. */
|
1964 |
|
|
if (eh->dynindx == -1
|
1965 |
|
|
&& !eh->forced_local
|
1966 |
|
|
&& eh->type != STT_PARISC_MILLI)
|
1967 |
|
|
{
|
1968 |
|
|
if (! bfd_elf_link_record_dynamic_symbol (info, eh))
|
1969 |
|
|
return FALSE;
|
1970 |
|
|
}
|
1971 |
|
|
|
1972 |
|
|
if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, info->shared, eh))
|
1973 |
|
|
{
|
1974 |
|
|
/* Allocate these later. From this point on, h->plabel
|
1975 |
|
|
means that the plt entry is only used by a plabel.
|
1976 |
|
|
We'll be using a normal plt entry for this symbol, so
|
1977 |
|
|
clear the plabel indicator. */
|
1978 |
|
|
|
1979 |
|
|
hh->plabel = 0;
|
1980 |
|
|
}
|
1981 |
|
|
else if (hh->plabel)
|
1982 |
|
|
{
|
1983 |
|
|
/* Make an entry in the .plt section for plabel references
|
1984 |
|
|
that won't have a .plt entry for other reasons. */
|
1985 |
|
|
sec = htab->splt;
|
1986 |
|
|
eh->plt.offset = sec->size;
|
1987 |
|
|
sec->size += PLT_ENTRY_SIZE;
|
1988 |
|
|
}
|
1989 |
|
|
else
|
1990 |
|
|
{
|
1991 |
|
|
/* No .plt entry needed. */
|
1992 |
|
|
eh->plt.offset = (bfd_vma) -1;
|
1993 |
|
|
eh->needs_plt = 0;
|
1994 |
|
|
}
|
1995 |
|
|
}
|
1996 |
|
|
else
|
1997 |
|
|
{
|
1998 |
|
|
eh->plt.offset = (bfd_vma) -1;
|
1999 |
|
|
eh->needs_plt = 0;
|
2000 |
|
|
}
|
2001 |
|
|
|
2002 |
|
|
return TRUE;
|
2003 |
|
|
}
|
2004 |
|
|
|
2005 |
|
|
/* Allocate space in .plt, .got and associated reloc sections for
|
2006 |
|
|
global syms. */
|
2007 |
|
|
|
2008 |
|
|
static bfd_boolean
|
2009 |
|
|
allocate_dynrelocs (struct elf_link_hash_entry *eh, void *inf)
|
2010 |
|
|
{
|
2011 |
|
|
struct bfd_link_info *info;
|
2012 |
|
|
struct elf32_hppa_link_hash_table *htab;
|
2013 |
|
|
asection *sec;
|
2014 |
|
|
struct elf32_hppa_link_hash_entry *hh;
|
2015 |
|
|
struct elf32_hppa_dyn_reloc_entry *hdh_p;
|
2016 |
|
|
|
2017 |
|
|
if (eh->root.type == bfd_link_hash_indirect)
|
2018 |
|
|
return TRUE;
|
2019 |
|
|
|
2020 |
|
|
if (eh->root.type == bfd_link_hash_warning)
|
2021 |
|
|
eh = (struct elf_link_hash_entry *) eh->root.u.i.link;
|
2022 |
|
|
|
2023 |
|
|
info = inf;
|
2024 |
|
|
htab = hppa_link_hash_table (info);
|
2025 |
|
|
if (htab == NULL)
|
2026 |
|
|
return FALSE;
|
2027 |
|
|
|
2028 |
|
|
hh = hppa_elf_hash_entry (eh);
|
2029 |
|
|
|
2030 |
|
|
if (htab->etab.dynamic_sections_created
|
2031 |
|
|
&& eh->plt.offset != (bfd_vma) -1
|
2032 |
|
|
&& !hh->plabel
|
2033 |
|
|
&& eh->plt.refcount > 0)
|
2034 |
|
|
{
|
2035 |
|
|
/* Make an entry in the .plt section. */
|
2036 |
|
|
sec = htab->splt;
|
2037 |
|
|
eh->plt.offset = sec->size;
|
2038 |
|
|
sec->size += PLT_ENTRY_SIZE;
|
2039 |
|
|
|
2040 |
|
|
/* We also need to make an entry in the .rela.plt section. */
|
2041 |
|
|
htab->srelplt->size += sizeof (Elf32_External_Rela);
|
2042 |
|
|
htab->need_plt_stub = 1;
|
2043 |
|
|
}
|
2044 |
|
|
|
2045 |
|
|
if (eh->got.refcount > 0)
|
2046 |
|
|
{
|
2047 |
|
|
/* Make sure this symbol is output as a dynamic symbol.
|
2048 |
|
|
Undefined weak syms won't yet be marked as dynamic. */
|
2049 |
|
|
if (eh->dynindx == -1
|
2050 |
|
|
&& !eh->forced_local
|
2051 |
|
|
&& eh->type != STT_PARISC_MILLI)
|
2052 |
|
|
{
|
2053 |
|
|
if (! bfd_elf_link_record_dynamic_symbol (info, eh))
|
2054 |
|
|
return FALSE;
|
2055 |
|
|
}
|
2056 |
|
|
|
2057 |
|
|
sec = htab->sgot;
|
2058 |
|
|
eh->got.offset = sec->size;
|
2059 |
|
|
sec->size += GOT_ENTRY_SIZE;
|
2060 |
|
|
/* R_PARISC_TLS_GD* needs two GOT entries */
|
2061 |
|
|
if ((hh->tls_type & (GOT_TLS_GD | GOT_TLS_IE)) == (GOT_TLS_GD | GOT_TLS_IE))
|
2062 |
|
|
sec->size += GOT_ENTRY_SIZE * 2;
|
2063 |
|
|
else if ((hh->tls_type & GOT_TLS_GD) == GOT_TLS_GD)
|
2064 |
|
|
sec->size += GOT_ENTRY_SIZE;
|
2065 |
|
|
if (htab->etab.dynamic_sections_created
|
2066 |
|
|
&& (info->shared
|
2067 |
|
|
|| (eh->dynindx != -1
|
2068 |
|
|
&& !eh->forced_local)))
|
2069 |
|
|
{
|
2070 |
|
|
htab->srelgot->size += sizeof (Elf32_External_Rela);
|
2071 |
|
|
if ((hh->tls_type & (GOT_TLS_GD | GOT_TLS_IE)) == (GOT_TLS_GD | GOT_TLS_IE))
|
2072 |
|
|
htab->srelgot->size += 2 * sizeof (Elf32_External_Rela);
|
2073 |
|
|
else if ((hh->tls_type & GOT_TLS_GD) == GOT_TLS_GD)
|
2074 |
|
|
htab->srelgot->size += sizeof (Elf32_External_Rela);
|
2075 |
|
|
}
|
2076 |
|
|
}
|
2077 |
|
|
else
|
2078 |
|
|
eh->got.offset = (bfd_vma) -1;
|
2079 |
|
|
|
2080 |
|
|
if (hh->dyn_relocs == NULL)
|
2081 |
|
|
return TRUE;
|
2082 |
|
|
|
2083 |
|
|
/* If this is a -Bsymbolic shared link, then we need to discard all
|
2084 |
|
|
space allocated for dynamic pc-relative relocs against symbols
|
2085 |
|
|
defined in a regular object. For the normal shared case, discard
|
2086 |
|
|
space for relocs that have become local due to symbol visibility
|
2087 |
|
|
changes. */
|
2088 |
|
|
if (info->shared)
|
2089 |
|
|
{
|
2090 |
|
|
#if RELATIVE_DYNRELOCS
|
2091 |
|
|
if (SYMBOL_CALLS_LOCAL (info, eh))
|
2092 |
|
|
{
|
2093 |
|
|
struct elf32_hppa_dyn_reloc_entry **hdh_pp;
|
2094 |
|
|
|
2095 |
|
|
for (hdh_pp = &hh->dyn_relocs; (hdh_p = *hdh_pp) != NULL; )
|
2096 |
|
|
{
|
2097 |
|
|
hdh_p->count -= hdh_p->relative_count;
|
2098 |
|
|
hdh_p->relative_count = 0;
|
2099 |
|
|
if (hdh_p->count == 0)
|
2100 |
|
|
*hdh_pp = hdh_p->hdh_next;
|
2101 |
|
|
else
|
2102 |
|
|
hdh_pp = &hdh_p->hdh_next;
|
2103 |
|
|
}
|
2104 |
|
|
}
|
2105 |
|
|
#endif
|
2106 |
|
|
|
2107 |
|
|
/* Also discard relocs on undefined weak syms with non-default
|
2108 |
|
|
visibility. */
|
2109 |
|
|
if (hh->dyn_relocs != NULL
|
2110 |
|
|
&& eh->root.type == bfd_link_hash_undefweak)
|
2111 |
|
|
{
|
2112 |
|
|
if (ELF_ST_VISIBILITY (eh->other) != STV_DEFAULT)
|
2113 |
|
|
hh->dyn_relocs = NULL;
|
2114 |
|
|
|
2115 |
|
|
/* Make sure undefined weak symbols are output as a dynamic
|
2116 |
|
|
symbol in PIEs. */
|
2117 |
|
|
else if (eh->dynindx == -1
|
2118 |
|
|
&& !eh->forced_local)
|
2119 |
|
|
{
|
2120 |
|
|
if (! bfd_elf_link_record_dynamic_symbol (info, eh))
|
2121 |
|
|
return FALSE;
|
2122 |
|
|
}
|
2123 |
|
|
}
|
2124 |
|
|
}
|
2125 |
|
|
else
|
2126 |
|
|
{
|
2127 |
|
|
/* For the non-shared case, discard space for relocs against
|
2128 |
|
|
symbols which turn out to need copy relocs or are not
|
2129 |
|
|
dynamic. */
|
2130 |
|
|
|
2131 |
|
|
if (!eh->non_got_ref
|
2132 |
|
|
&& ((ELIMINATE_COPY_RELOCS
|
2133 |
|
|
&& eh->def_dynamic
|
2134 |
|
|
&& !eh->def_regular)
|
2135 |
|
|
|| (htab->etab.dynamic_sections_created
|
2136 |
|
|
&& (eh->root.type == bfd_link_hash_undefweak
|
2137 |
|
|
|| eh->root.type == bfd_link_hash_undefined))))
|
2138 |
|
|
{
|
2139 |
|
|
/* Make sure this symbol is output as a dynamic symbol.
|
2140 |
|
|
Undefined weak syms won't yet be marked as dynamic. */
|
2141 |
|
|
if (eh->dynindx == -1
|
2142 |
|
|
&& !eh->forced_local
|
2143 |
|
|
&& eh->type != STT_PARISC_MILLI)
|
2144 |
|
|
{
|
2145 |
|
|
if (! bfd_elf_link_record_dynamic_symbol (info, eh))
|
2146 |
|
|
return FALSE;
|
2147 |
|
|
}
|
2148 |
|
|
|
2149 |
|
|
/* If that succeeded, we know we'll be keeping all the
|
2150 |
|
|
relocs. */
|
2151 |
|
|
if (eh->dynindx != -1)
|
2152 |
|
|
goto keep;
|
2153 |
|
|
}
|
2154 |
|
|
|
2155 |
|
|
hh->dyn_relocs = NULL;
|
2156 |
|
|
return TRUE;
|
2157 |
|
|
|
2158 |
|
|
keep: ;
|
2159 |
|
|
}
|
2160 |
|
|
|
2161 |
|
|
/* Finally, allocate space. */
|
2162 |
|
|
for (hdh_p = hh->dyn_relocs; hdh_p != NULL; hdh_p = hdh_p->hdh_next)
|
2163 |
|
|
{
|
2164 |
|
|
asection *sreloc = elf_section_data (hdh_p->sec)->sreloc;
|
2165 |
|
|
sreloc->size += hdh_p->count * sizeof (Elf32_External_Rela);
|
2166 |
|
|
}
|
2167 |
|
|
|
2168 |
|
|
return TRUE;
|
2169 |
|
|
}
|
2170 |
|
|
|
2171 |
|
|
/* This function is called via elf_link_hash_traverse to force
|
2172 |
|
|
millicode symbols local so they do not end up as globals in the
|
2173 |
|
|
dynamic symbol table. We ought to be able to do this in
|
2174 |
|
|
adjust_dynamic_symbol, but our adjust_dynamic_symbol is not called
|
2175 |
|
|
for all dynamic symbols. Arguably, this is a bug in
|
2176 |
|
|
elf_adjust_dynamic_symbol. */
|
2177 |
|
|
|
2178 |
|
|
static bfd_boolean
|
2179 |
|
|
clobber_millicode_symbols (struct elf_link_hash_entry *eh,
|
2180 |
|
|
struct bfd_link_info *info)
|
2181 |
|
|
{
|
2182 |
|
|
if (eh->root.type == bfd_link_hash_warning)
|
2183 |
|
|
eh = (struct elf_link_hash_entry *) eh->root.u.i.link;
|
2184 |
|
|
|
2185 |
|
|
if (eh->type == STT_PARISC_MILLI
|
2186 |
|
|
&& !eh->forced_local)
|
2187 |
|
|
{
|
2188 |
|
|
elf32_hppa_hide_symbol (info, eh, TRUE);
|
2189 |
|
|
}
|
2190 |
|
|
return TRUE;
|
2191 |
|
|
}
|
2192 |
|
|
|
2193 |
|
|
/* Find any dynamic relocs that apply to read-only sections. */
|
2194 |
|
|
|
2195 |
|
|
static bfd_boolean
|
2196 |
|
|
readonly_dynrelocs (struct elf_link_hash_entry *eh, void *inf)
|
2197 |
|
|
{
|
2198 |
|
|
struct elf32_hppa_link_hash_entry *hh;
|
2199 |
|
|
struct elf32_hppa_dyn_reloc_entry *hdh_p;
|
2200 |
|
|
|
2201 |
|
|
if (eh->root.type == bfd_link_hash_warning)
|
2202 |
|
|
eh = (struct elf_link_hash_entry *) eh->root.u.i.link;
|
2203 |
|
|
|
2204 |
|
|
hh = hppa_elf_hash_entry (eh);
|
2205 |
|
|
for (hdh_p = hh->dyn_relocs; hdh_p != NULL; hdh_p = hdh_p->hdh_next)
|
2206 |
|
|
{
|
2207 |
|
|
asection *sec = hdh_p->sec->output_section;
|
2208 |
|
|
|
2209 |
|
|
if (sec != NULL && (sec->flags & SEC_READONLY) != 0)
|
2210 |
|
|
{
|
2211 |
|
|
struct bfd_link_info *info = inf;
|
2212 |
|
|
|
2213 |
|
|
info->flags |= DF_TEXTREL;
|
2214 |
|
|
|
2215 |
|
|
/* Not an error, just cut short the traversal. */
|
2216 |
|
|
return FALSE;
|
2217 |
|
|
}
|
2218 |
|
|
}
|
2219 |
|
|
return TRUE;
|
2220 |
|
|
}
|
2221 |
|
|
|
2222 |
|
|
/* Set the sizes of the dynamic sections. */
|
2223 |
|
|
|
2224 |
|
|
static bfd_boolean
|
2225 |
|
|
elf32_hppa_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
|
2226 |
|
|
struct bfd_link_info *info)
|
2227 |
|
|
{
|
2228 |
|
|
struct elf32_hppa_link_hash_table *htab;
|
2229 |
|
|
bfd *dynobj;
|
2230 |
|
|
bfd *ibfd;
|
2231 |
|
|
asection *sec;
|
2232 |
|
|
bfd_boolean relocs;
|
2233 |
|
|
|
2234 |
|
|
htab = hppa_link_hash_table (info);
|
2235 |
|
|
if (htab == NULL)
|
2236 |
|
|
return FALSE;
|
2237 |
|
|
|
2238 |
|
|
dynobj = htab->etab.dynobj;
|
2239 |
|
|
if (dynobj == NULL)
|
2240 |
|
|
abort ();
|
2241 |
|
|
|
2242 |
|
|
if (htab->etab.dynamic_sections_created)
|
2243 |
|
|
{
|
2244 |
|
|
/* Set the contents of the .interp section to the interpreter. */
|
2245 |
|
|
if (info->executable)
|
2246 |
|
|
{
|
2247 |
|
|
sec = bfd_get_section_by_name (dynobj, ".interp");
|
2248 |
|
|
if (sec == NULL)
|
2249 |
|
|
abort ();
|
2250 |
|
|
sec->size = sizeof ELF_DYNAMIC_INTERPRETER;
|
2251 |
|
|
sec->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
|
2252 |
|
|
}
|
2253 |
|
|
|
2254 |
|
|
/* Force millicode symbols local. */
|
2255 |
|
|
elf_link_hash_traverse (&htab->etab,
|
2256 |
|
|
clobber_millicode_symbols,
|
2257 |
|
|
info);
|
2258 |
|
|
}
|
2259 |
|
|
|
2260 |
|
|
/* Set up .got and .plt offsets for local syms, and space for local
|
2261 |
|
|
dynamic relocs. */
|
2262 |
|
|
for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
|
2263 |
|
|
{
|
2264 |
|
|
bfd_signed_vma *local_got;
|
2265 |
|
|
bfd_signed_vma *end_local_got;
|
2266 |
|
|
bfd_signed_vma *local_plt;
|
2267 |
|
|
bfd_signed_vma *end_local_plt;
|
2268 |
|
|
bfd_size_type locsymcount;
|
2269 |
|
|
Elf_Internal_Shdr *symtab_hdr;
|
2270 |
|
|
asection *srel;
|
2271 |
|
|
char *local_tls_type;
|
2272 |
|
|
|
2273 |
|
|
if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
|
2274 |
|
|
continue;
|
2275 |
|
|
|
2276 |
|
|
for (sec = ibfd->sections; sec != NULL; sec = sec->next)
|
2277 |
|
|
{
|
2278 |
|
|
struct elf32_hppa_dyn_reloc_entry *hdh_p;
|
2279 |
|
|
|
2280 |
|
|
for (hdh_p = ((struct elf32_hppa_dyn_reloc_entry *)
|
2281 |
|
|
elf_section_data (sec)->local_dynrel);
|
2282 |
|
|
hdh_p != NULL;
|
2283 |
|
|
hdh_p = hdh_p->hdh_next)
|
2284 |
|
|
{
|
2285 |
|
|
if (!bfd_is_abs_section (hdh_p->sec)
|
2286 |
|
|
&& bfd_is_abs_section (hdh_p->sec->output_section))
|
2287 |
|
|
{
|
2288 |
|
|
/* Input section has been discarded, either because
|
2289 |
|
|
it is a copy of a linkonce section or due to
|
2290 |
|
|
linker script /DISCARD/, so we'll be discarding
|
2291 |
|
|
the relocs too. */
|
2292 |
|
|
}
|
2293 |
|
|
else if (hdh_p->count != 0)
|
2294 |
|
|
{
|
2295 |
|
|
srel = elf_section_data (hdh_p->sec)->sreloc;
|
2296 |
|
|
srel->size += hdh_p->count * sizeof (Elf32_External_Rela);
|
2297 |
|
|
if ((hdh_p->sec->output_section->flags & SEC_READONLY) != 0)
|
2298 |
|
|
info->flags |= DF_TEXTREL;
|
2299 |
|
|
}
|
2300 |
|
|
}
|
2301 |
|
|
}
|
2302 |
|
|
|
2303 |
|
|
local_got = elf_local_got_refcounts (ibfd);
|
2304 |
|
|
if (!local_got)
|
2305 |
|
|
continue;
|
2306 |
|
|
|
2307 |
|
|
symtab_hdr = &elf_tdata (ibfd)->symtab_hdr;
|
2308 |
|
|
locsymcount = symtab_hdr->sh_info;
|
2309 |
|
|
end_local_got = local_got + locsymcount;
|
2310 |
|
|
local_tls_type = hppa_elf_local_got_tls_type (ibfd);
|
2311 |
|
|
sec = htab->sgot;
|
2312 |
|
|
srel = htab->srelgot;
|
2313 |
|
|
for (; local_got < end_local_got; ++local_got)
|
2314 |
|
|
{
|
2315 |
|
|
if (*local_got > 0)
|
2316 |
|
|
{
|
2317 |
|
|
*local_got = sec->size;
|
2318 |
|
|
sec->size += GOT_ENTRY_SIZE;
|
2319 |
|
|
if ((*local_tls_type & (GOT_TLS_GD | GOT_TLS_IE)) == (GOT_TLS_GD | GOT_TLS_IE))
|
2320 |
|
|
sec->size += 2 * GOT_ENTRY_SIZE;
|
2321 |
|
|
else if ((*local_tls_type & GOT_TLS_GD) == GOT_TLS_GD)
|
2322 |
|
|
sec->size += GOT_ENTRY_SIZE;
|
2323 |
|
|
if (info->shared)
|
2324 |
|
|
{
|
2325 |
|
|
srel->size += sizeof (Elf32_External_Rela);
|
2326 |
|
|
if ((*local_tls_type & (GOT_TLS_GD | GOT_TLS_IE)) == (GOT_TLS_GD | GOT_TLS_IE))
|
2327 |
|
|
srel->size += 2 * sizeof (Elf32_External_Rela);
|
2328 |
|
|
else if ((*local_tls_type & GOT_TLS_GD) == GOT_TLS_GD)
|
2329 |
|
|
srel->size += sizeof (Elf32_External_Rela);
|
2330 |
|
|
}
|
2331 |
|
|
}
|
2332 |
|
|
else
|
2333 |
|
|
*local_got = (bfd_vma) -1;
|
2334 |
|
|
|
2335 |
|
|
++local_tls_type;
|
2336 |
|
|
}
|
2337 |
|
|
|
2338 |
|
|
local_plt = end_local_got;
|
2339 |
|
|
end_local_plt = local_plt + locsymcount;
|
2340 |
|
|
if (! htab->etab.dynamic_sections_created)
|
2341 |
|
|
{
|
2342 |
|
|
/* Won't be used, but be safe. */
|
2343 |
|
|
for (; local_plt < end_local_plt; ++local_plt)
|
2344 |
|
|
*local_plt = (bfd_vma) -1;
|
2345 |
|
|
}
|
2346 |
|
|
else
|
2347 |
|
|
{
|
2348 |
|
|
sec = htab->splt;
|
2349 |
|
|
srel = htab->srelplt;
|
2350 |
|
|
for (; local_plt < end_local_plt; ++local_plt)
|
2351 |
|
|
{
|
2352 |
|
|
if (*local_plt > 0)
|
2353 |
|
|
{
|
2354 |
|
|
*local_plt = sec->size;
|
2355 |
|
|
sec->size += PLT_ENTRY_SIZE;
|
2356 |
|
|
if (info->shared)
|
2357 |
|
|
srel->size += sizeof (Elf32_External_Rela);
|
2358 |
|
|
}
|
2359 |
|
|
else
|
2360 |
|
|
*local_plt = (bfd_vma) -1;
|
2361 |
|
|
}
|
2362 |
|
|
}
|
2363 |
|
|
}
|
2364 |
|
|
|
2365 |
|
|
if (htab->tls_ldm_got.refcount > 0)
|
2366 |
|
|
{
|
2367 |
|
|
/* Allocate 2 got entries and 1 dynamic reloc for
|
2368 |
|
|
R_PARISC_TLS_DTPMOD32 relocs. */
|
2369 |
|
|
htab->tls_ldm_got.offset = htab->sgot->size;
|
2370 |
|
|
htab->sgot->size += (GOT_ENTRY_SIZE * 2);
|
2371 |
|
|
htab->srelgot->size += sizeof (Elf32_External_Rela);
|
2372 |
|
|
}
|
2373 |
|
|
else
|
2374 |
|
|
htab->tls_ldm_got.offset = -1;
|
2375 |
|
|
|
2376 |
|
|
/* Do all the .plt entries without relocs first. The dynamic linker
|
2377 |
|
|
uses the last .plt reloc to find the end of the .plt (and hence
|
2378 |
|
|
the start of the .got) for lazy linking. */
|
2379 |
|
|
elf_link_hash_traverse (&htab->etab, allocate_plt_static, info);
|
2380 |
|
|
|
2381 |
|
|
/* Allocate global sym .plt and .got entries, and space for global
|
2382 |
|
|
sym dynamic relocs. */
|
2383 |
|
|
elf_link_hash_traverse (&htab->etab, allocate_dynrelocs, info);
|
2384 |
|
|
|
2385 |
|
|
/* The check_relocs and adjust_dynamic_symbol entry points have
|
2386 |
|
|
determined the sizes of the various dynamic sections. Allocate
|
2387 |
|
|
memory for them. */
|
2388 |
|
|
relocs = FALSE;
|
2389 |
|
|
for (sec = dynobj->sections; sec != NULL; sec = sec->next)
|
2390 |
|
|
{
|
2391 |
|
|
if ((sec->flags & SEC_LINKER_CREATED) == 0)
|
2392 |
|
|
continue;
|
2393 |
|
|
|
2394 |
|
|
if (sec == htab->splt)
|
2395 |
|
|
{
|
2396 |
|
|
if (htab->need_plt_stub)
|
2397 |
|
|
{
|
2398 |
|
|
/* Make space for the plt stub at the end of the .plt
|
2399 |
|
|
section. We want this stub right at the end, up
|
2400 |
|
|
against the .got section. */
|
2401 |
|
|
int gotalign = bfd_section_alignment (dynobj, htab->sgot);
|
2402 |
|
|
int pltalign = bfd_section_alignment (dynobj, sec);
|
2403 |
|
|
bfd_size_type mask;
|
2404 |
|
|
|
2405 |
|
|
if (gotalign > pltalign)
|
2406 |
|
|
bfd_set_section_alignment (dynobj, sec, gotalign);
|
2407 |
|
|
mask = ((bfd_size_type) 1 << gotalign) - 1;
|
2408 |
|
|
sec->size = (sec->size + sizeof (plt_stub) + mask) & ~mask;
|
2409 |
|
|
}
|
2410 |
|
|
}
|
2411 |
|
|
else if (sec == htab->sgot
|
2412 |
|
|
|| sec == htab->sdynbss)
|
2413 |
|
|
;
|
2414 |
|
|
else if (CONST_STRNEQ (bfd_get_section_name (dynobj, sec), ".rela"))
|
2415 |
|
|
{
|
2416 |
|
|
if (sec->size != 0)
|
2417 |
|
|
{
|
2418 |
|
|
/* Remember whether there are any reloc sections other
|
2419 |
|
|
than .rela.plt. */
|
2420 |
|
|
if (sec != htab->srelplt)
|
2421 |
|
|
relocs = TRUE;
|
2422 |
|
|
|
2423 |
|
|
/* We use the reloc_count field as a counter if we need
|
2424 |
|
|
to copy relocs into the output file. */
|
2425 |
|
|
sec->reloc_count = 0;
|
2426 |
|
|
}
|
2427 |
|
|
}
|
2428 |
|
|
else
|
2429 |
|
|
{
|
2430 |
|
|
/* It's not one of our sections, so don't allocate space. */
|
2431 |
|
|
continue;
|
2432 |
|
|
}
|
2433 |
|
|
|
2434 |
|
|
if (sec->size == 0)
|
2435 |
|
|
{
|
2436 |
|
|
/* If we don't need this section, strip it from the
|
2437 |
|
|
output file. This is mostly to handle .rela.bss and
|
2438 |
|
|
.rela.plt. We must create both sections in
|
2439 |
|
|
create_dynamic_sections, because they must be created
|
2440 |
|
|
before the linker maps input sections to output
|
2441 |
|
|
sections. The linker does that before
|
2442 |
|
|
adjust_dynamic_symbol is called, and it is that
|
2443 |
|
|
function which decides whether anything needs to go
|
2444 |
|
|
into these sections. */
|
2445 |
|
|
sec->flags |= SEC_EXCLUDE;
|
2446 |
|
|
continue;
|
2447 |
|
|
}
|
2448 |
|
|
|
2449 |
|
|
if ((sec->flags & SEC_HAS_CONTENTS) == 0)
|
2450 |
|
|
continue;
|
2451 |
|
|
|
2452 |
|
|
/* Allocate memory for the section contents. Zero it, because
|
2453 |
|
|
we may not fill in all the reloc sections. */
|
2454 |
|
|
sec->contents = bfd_zalloc (dynobj, sec->size);
|
2455 |
|
|
if (sec->contents == NULL)
|
2456 |
|
|
return FALSE;
|
2457 |
|
|
}
|
2458 |
|
|
|
2459 |
|
|
if (htab->etab.dynamic_sections_created)
|
2460 |
|
|
{
|
2461 |
|
|
/* Like IA-64 and HPPA64, always create a DT_PLTGOT. It
|
2462 |
|
|
actually has nothing to do with the PLT, it is how we
|
2463 |
|
|
communicate the LTP value of a load module to the dynamic
|
2464 |
|
|
linker. */
|
2465 |
|
|
#define add_dynamic_entry(TAG, VAL) \
|
2466 |
|
|
_bfd_elf_add_dynamic_entry (info, TAG, VAL)
|
2467 |
|
|
|
2468 |
|
|
if (!add_dynamic_entry (DT_PLTGOT, 0))
|
2469 |
|
|
return FALSE;
|
2470 |
|
|
|
2471 |
|
|
/* Add some entries to the .dynamic section. We fill in the
|
2472 |
|
|
values later, in elf32_hppa_finish_dynamic_sections, but we
|
2473 |
|
|
must add the entries now so that we get the correct size for
|
2474 |
|
|
the .dynamic section. The DT_DEBUG entry is filled in by the
|
2475 |
|
|
dynamic linker and used by the debugger. */
|
2476 |
|
|
if (info->executable)
|
2477 |
|
|
{
|
2478 |
|
|
if (!add_dynamic_entry (DT_DEBUG, 0))
|
2479 |
|
|
return FALSE;
|
2480 |
|
|
}
|
2481 |
|
|
|
2482 |
|
|
if (htab->srelplt->size != 0)
|
2483 |
|
|
{
|
2484 |
|
|
if (!add_dynamic_entry (DT_PLTRELSZ, 0)
|
2485 |
|
|
|| !add_dynamic_entry (DT_PLTREL, DT_RELA)
|
2486 |
|
|
|| !add_dynamic_entry (DT_JMPREL, 0))
|
2487 |
|
|
return FALSE;
|
2488 |
|
|
}
|
2489 |
|
|
|
2490 |
|
|
if (relocs)
|
2491 |
|
|
{
|
2492 |
|
|
if (!add_dynamic_entry (DT_RELA, 0)
|
2493 |
|
|
|| !add_dynamic_entry (DT_RELASZ, 0)
|
2494 |
|
|
|| !add_dynamic_entry (DT_RELAENT, sizeof (Elf32_External_Rela)))
|
2495 |
|
|
return FALSE;
|
2496 |
|
|
|
2497 |
|
|
/* If any dynamic relocs apply to a read-only section,
|
2498 |
|
|
then we need a DT_TEXTREL entry. */
|
2499 |
|
|
if ((info->flags & DF_TEXTREL) == 0)
|
2500 |
|
|
elf_link_hash_traverse (&htab->etab, readonly_dynrelocs, info);
|
2501 |
|
|
|
2502 |
|
|
if ((info->flags & DF_TEXTREL) != 0)
|
2503 |
|
|
{
|
2504 |
|
|
if (!add_dynamic_entry (DT_TEXTREL, 0))
|
2505 |
|
|
return FALSE;
|
2506 |
|
|
}
|
2507 |
|
|
}
|
2508 |
|
|
}
|
2509 |
|
|
#undef add_dynamic_entry
|
2510 |
|
|
|
2511 |
|
|
return TRUE;
|
2512 |
|
|
}
|
2513 |
|
|
|
2514 |
|
|
/* External entry points for sizing and building linker stubs. */
|
2515 |
|
|
|
2516 |
|
|
/* Set up various things so that we can make a list of input sections
|
2517 |
|
|
for each output section included in the link. Returns -1 on error,
|
2518 |
|
|
|
2519 |
|
|
|
2520 |
|
|
int
|
2521 |
|
|
elf32_hppa_setup_section_lists (bfd *output_bfd, struct bfd_link_info *info)
|
2522 |
|
|
{
|
2523 |
|
|
bfd *input_bfd;
|
2524 |
|
|
unsigned int bfd_count;
|
2525 |
|
|
int top_id, top_index;
|
2526 |
|
|
asection *section;
|
2527 |
|
|
asection **input_list, **list;
|
2528 |
|
|
bfd_size_type amt;
|
2529 |
|
|
struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
|
2530 |
|
|
|
2531 |
|
|
if (htab == NULL)
|
2532 |
|
|
return -1;
|
2533 |
|
|
|
2534 |
|
|
/* Count the number of input BFDs and find the top input section id. */
|
2535 |
|
|
for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
|
2536 |
|
|
input_bfd != NULL;
|
2537 |
|
|
input_bfd = input_bfd->link_next)
|
2538 |
|
|
{
|
2539 |
|
|
bfd_count += 1;
|
2540 |
|
|
for (section = input_bfd->sections;
|
2541 |
|
|
section != NULL;
|
2542 |
|
|
section = section->next)
|
2543 |
|
|
{
|
2544 |
|
|
if (top_id < section->id)
|
2545 |
|
|
top_id = section->id;
|
2546 |
|
|
}
|
2547 |
|
|
}
|
2548 |
|
|
htab->bfd_count = bfd_count;
|
2549 |
|
|
|
2550 |
|
|
amt = sizeof (struct map_stub) * (top_id + 1);
|
2551 |
|
|
htab->stub_group = bfd_zmalloc (amt);
|
2552 |
|
|
if (htab->stub_group == NULL)
|
2553 |
|
|
return -1;
|
2554 |
|
|
|
2555 |
|
|
/* We can't use output_bfd->section_count here to find the top output
|
2556 |
|
|
section index as some sections may have been removed, and
|
2557 |
|
|
strip_excluded_output_sections doesn't renumber the indices. */
|
2558 |
|
|
for (section = output_bfd->sections, top_index = 0;
|
2559 |
|
|
section != NULL;
|
2560 |
|
|
section = section->next)
|
2561 |
|
|
{
|
2562 |
|
|
if (top_index < section->index)
|
2563 |
|
|
top_index = section->index;
|
2564 |
|
|
}
|
2565 |
|
|
|
2566 |
|
|
htab->top_index = top_index;
|
2567 |
|
|
amt = sizeof (asection *) * (top_index + 1);
|
2568 |
|
|
input_list = bfd_malloc (amt);
|
2569 |
|
|
htab->input_list = input_list;
|
2570 |
|
|
if (input_list == NULL)
|
2571 |
|
|
return -1;
|
2572 |
|
|
|
2573 |
|
|
/* For sections we aren't interested in, mark their entries with a
|
2574 |
|
|
value we can check later. */
|
2575 |
|
|
list = input_list + top_index;
|
2576 |
|
|
do
|
2577 |
|
|
*list = bfd_abs_section_ptr;
|
2578 |
|
|
while (list-- != input_list);
|
2579 |
|
|
|
2580 |
|
|
for (section = output_bfd->sections;
|
2581 |
|
|
section != NULL;
|
2582 |
|
|
section = section->next)
|
2583 |
|
|
{
|
2584 |
|
|
if ((section->flags & SEC_CODE) != 0)
|
2585 |
|
|
input_list[section->index] = NULL;
|
2586 |
|
|
}
|
2587 |
|
|
|
2588 |
|
|
return 1;
|
2589 |
|
|
}
|
2590 |
|
|
|
2591 |
|
|
/* The linker repeatedly calls this function for each input section,
|
2592 |
|
|
in the order that input sections are linked into output sections.
|
2593 |
|
|
Build lists of input sections to determine groupings between which
|
2594 |
|
|
we may insert linker stubs. */
|
2595 |
|
|
|
2596 |
|
|
void
|
2597 |
|
|
elf32_hppa_next_input_section (struct bfd_link_info *info, asection *isec)
|
2598 |
|
|
{
|
2599 |
|
|
struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
|
2600 |
|
|
|
2601 |
|
|
if (htab == NULL)
|
2602 |
|
|
return;
|
2603 |
|
|
|
2604 |
|
|
if (isec->output_section->index <= htab->top_index)
|
2605 |
|
|
{
|
2606 |
|
|
asection **list = htab->input_list + isec->output_section->index;
|
2607 |
|
|
if (*list != bfd_abs_section_ptr)
|
2608 |
|
|
{
|
2609 |
|
|
/* Steal the link_sec pointer for our list. */
|
2610 |
|
|
#define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
|
2611 |
|
|
/* This happens to make the list in reverse order,
|
2612 |
|
|
which is what we want. */
|
2613 |
|
|
PREV_SEC (isec) = *list;
|
2614 |
|
|
*list = isec;
|
2615 |
|
|
}
|
2616 |
|
|
}
|
2617 |
|
|
}
|
2618 |
|
|
|
2619 |
|
|
/* See whether we can group stub sections together. Grouping stub
|
2620 |
|
|
sections may result in fewer stubs. More importantly, we need to
|
2621 |
|
|
put all .init* and .fini* stubs at the beginning of the .init or
|
2622 |
|
|
.fini output sections respectively, because glibc splits the
|
2623 |
|
|
_init and _fini functions into multiple parts. Putting a stub in
|
2624 |
|
|
the middle of a function is not a good idea. */
|
2625 |
|
|
|
2626 |
|
|
static void
|
2627 |
|
|
group_sections (struct elf32_hppa_link_hash_table *htab,
|
2628 |
|
|
bfd_size_type stub_group_size,
|
2629 |
|
|
bfd_boolean stubs_always_before_branch)
|
2630 |
|
|
{
|
2631 |
|
|
asection **list = htab->input_list + htab->top_index;
|
2632 |
|
|
do
|
2633 |
|
|
{
|
2634 |
|
|
asection *tail = *list;
|
2635 |
|
|
if (tail == bfd_abs_section_ptr)
|
2636 |
|
|
continue;
|
2637 |
|
|
while (tail != NULL)
|
2638 |
|
|
{
|
2639 |
|
|
asection *curr;
|
2640 |
|
|
asection *prev;
|
2641 |
|
|
bfd_size_type total;
|
2642 |
|
|
bfd_boolean big_sec;
|
2643 |
|
|
|
2644 |
|
|
curr = tail;
|
2645 |
|
|
total = tail->size;
|
2646 |
|
|
big_sec = total >= stub_group_size;
|
2647 |
|
|
|
2648 |
|
|
while ((prev = PREV_SEC (curr)) != NULL
|
2649 |
|
|
&& ((total += curr->output_offset - prev->output_offset)
|
2650 |
|
|
< stub_group_size))
|
2651 |
|
|
curr = prev;
|
2652 |
|
|
|
2653 |
|
|
/* OK, the size from the start of CURR to the end is less
|
2654 |
|
|
than 240000 bytes and thus can be handled by one stub
|
2655 |
|
|
section. (or the tail section is itself larger than
|
2656 |
|
|
240000 bytes, in which case we may be toast.)
|
2657 |
|
|
We should really be keeping track of the total size of
|
2658 |
|
|
stubs added here, as stubs contribute to the final output
|
2659 |
|
|
section size. That's a little tricky, and this way will
|
2660 |
|
|
only break if stubs added total more than 22144 bytes, or
|
2661 |
|
|
2768 long branch stubs. It seems unlikely for more than
|
2662 |
|
|
2768 different functions to be called, especially from
|
2663 |
|
|
code only 240000 bytes long. This limit used to be
|
2664 |
|
|
250000, but c++ code tends to generate lots of little
|
2665 |
|
|
functions, and sometimes violated the assumption. */
|
2666 |
|
|
do
|
2667 |
|
|
{
|
2668 |
|
|
prev = PREV_SEC (tail);
|
2669 |
|
|
/* Set up this stub group. */
|
2670 |
|
|
htab->stub_group[tail->id].link_sec = curr;
|
2671 |
|
|
}
|
2672 |
|
|
while (tail != curr && (tail = prev) != NULL);
|
2673 |
|
|
|
2674 |
|
|
/* But wait, there's more! Input sections up to 240000
|
2675 |
|
|
bytes before the stub section can be handled by it too.
|
2676 |
|
|
Don't do this if we have a really large section after the
|
2677 |
|
|
stubs, as adding more stubs increases the chance that
|
2678 |
|
|
branches may not reach into the stub section. */
|
2679 |
|
|
if (!stubs_always_before_branch && !big_sec)
|
2680 |
|
|
{
|
2681 |
|
|
total = 0;
|
2682 |
|
|
while (prev != NULL
|
2683 |
|
|
&& ((total += tail->output_offset - prev->output_offset)
|
2684 |
|
|
< stub_group_size))
|
2685 |
|
|
{
|
2686 |
|
|
tail = prev;
|
2687 |
|
|
prev = PREV_SEC (tail);
|
2688 |
|
|
htab->stub_group[tail->id].link_sec = curr;
|
2689 |
|
|
}
|
2690 |
|
|
}
|
2691 |
|
|
tail = prev;
|
2692 |
|
|
}
|
2693 |
|
|
}
|
2694 |
|
|
while (list-- != htab->input_list);
|
2695 |
|
|
free (htab->input_list);
|
2696 |
|
|
#undef PREV_SEC
|
2697 |
|
|
}
|
2698 |
|
|
|
2699 |
|
|
/* Read in all local syms for all input bfds, and create hash entries
|
2700 |
|
|
for export stubs if we are building a multi-subspace shared lib.
|
2701 |
|
|
Returns -1 on error, 1 if export stubs created, 0 otherwise. */
|
2702 |
|
|
|
2703 |
|
|
static int
|
2704 |
|
|
get_local_syms (bfd *output_bfd, bfd *input_bfd, struct bfd_link_info *info)
|
2705 |
|
|
{
|
2706 |
|
|
unsigned int bfd_indx;
|
2707 |
|
|
Elf_Internal_Sym *local_syms, **all_local_syms;
|
2708 |
|
|
int stub_changed = 0;
|
2709 |
|
|
struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
|
2710 |
|
|
|
2711 |
|
|
if (htab == NULL)
|
2712 |
|
|
return -1;
|
2713 |
|
|
|
2714 |
|
|
/* We want to read in symbol extension records only once. To do this
|
2715 |
|
|
we need to read in the local symbols in parallel and save them for
|
2716 |
|
|
later use; so hold pointers to the local symbols in an array. */
|
2717 |
|
|
bfd_size_type amt = sizeof (Elf_Internal_Sym *) * htab->bfd_count;
|
2718 |
|
|
all_local_syms = bfd_zmalloc (amt);
|
2719 |
|
|
htab->all_local_syms = all_local_syms;
|
2720 |
|
|
if (all_local_syms == NULL)
|
2721 |
|
|
return -1;
|
2722 |
|
|
|
2723 |
|
|
/* Walk over all the input BFDs, swapping in local symbols.
|
2724 |
|
|
If we are creating a shared library, create hash entries for the
|
2725 |
|
|
export stubs. */
|
2726 |
|
|
for (bfd_indx = 0;
|
2727 |
|
|
input_bfd != NULL;
|
2728 |
|
|
input_bfd = input_bfd->link_next, bfd_indx++)
|
2729 |
|
|
{
|
2730 |
|
|
Elf_Internal_Shdr *symtab_hdr;
|
2731 |
|
|
|
2732 |
|
|
/* We'll need the symbol table in a second. */
|
2733 |
|
|
symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
|
2734 |
|
|
if (symtab_hdr->sh_info == 0)
|
2735 |
|
|
continue;
|
2736 |
|
|
|
2737 |
|
|
/* We need an array of the local symbols attached to the input bfd. */
|
2738 |
|
|
local_syms = (Elf_Internal_Sym *) symtab_hdr->contents;
|
2739 |
|
|
if (local_syms == NULL)
|
2740 |
|
|
{
|
2741 |
|
|
local_syms = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
|
2742 |
|
|
symtab_hdr->sh_info, 0,
|
2743 |
|
|
NULL, NULL, NULL);
|
2744 |
|
|
/* Cache them for elf_link_input_bfd. */
|
2745 |
|
|
symtab_hdr->contents = (unsigned char *) local_syms;
|
2746 |
|
|
}
|
2747 |
|
|
if (local_syms == NULL)
|
2748 |
|
|
return -1;
|
2749 |
|
|
|
2750 |
|
|
all_local_syms[bfd_indx] = local_syms;
|
2751 |
|
|
|
2752 |
|
|
if (info->shared && htab->multi_subspace)
|
2753 |
|
|
{
|
2754 |
|
|
struct elf_link_hash_entry **eh_syms;
|
2755 |
|
|
struct elf_link_hash_entry **eh_symend;
|
2756 |
|
|
unsigned int symcount;
|
2757 |
|
|
|
2758 |
|
|
symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
|
2759 |
|
|
- symtab_hdr->sh_info);
|
2760 |
|
|
eh_syms = (struct elf_link_hash_entry **) elf_sym_hashes (input_bfd);
|
2761 |
|
|
eh_symend = (struct elf_link_hash_entry **) (eh_syms + symcount);
|
2762 |
|
|
|
2763 |
|
|
/* Look through the global syms for functions; We need to
|
2764 |
|
|
build export stubs for all globally visible functions. */
|
2765 |
|
|
for (; eh_syms < eh_symend; eh_syms++)
|
2766 |
|
|
{
|
2767 |
|
|
struct elf32_hppa_link_hash_entry *hh;
|
2768 |
|
|
|
2769 |
|
|
hh = hppa_elf_hash_entry (*eh_syms);
|
2770 |
|
|
|
2771 |
|
|
while (hh->eh.root.type == bfd_link_hash_indirect
|
2772 |
|
|
|| hh->eh.root.type == bfd_link_hash_warning)
|
2773 |
|
|
hh = hppa_elf_hash_entry (hh->eh.root.u.i.link);
|
2774 |
|
|
|
2775 |
|
|
/* At this point in the link, undefined syms have been
|
2776 |
|
|
resolved, so we need to check that the symbol was
|
2777 |
|
|
defined in this BFD. */
|
2778 |
|
|
if ((hh->eh.root.type == bfd_link_hash_defined
|
2779 |
|
|
|| hh->eh.root.type == bfd_link_hash_defweak)
|
2780 |
|
|
&& hh->eh.type == STT_FUNC
|
2781 |
|
|
&& hh->eh.root.u.def.section->output_section != NULL
|
2782 |
|
|
&& (hh->eh.root.u.def.section->output_section->owner
|
2783 |
|
|
== output_bfd)
|
2784 |
|
|
&& hh->eh.root.u.def.section->owner == input_bfd
|
2785 |
|
|
&& hh->eh.def_regular
|
2786 |
|
|
&& !hh->eh.forced_local
|
2787 |
|
|
&& ELF_ST_VISIBILITY (hh->eh.other) == STV_DEFAULT)
|
2788 |
|
|
{
|
2789 |
|
|
asection *sec;
|
2790 |
|
|
const char *stub_name;
|
2791 |
|
|
struct elf32_hppa_stub_hash_entry *hsh;
|
2792 |
|
|
|
2793 |
|
|
sec = hh->eh.root.u.def.section;
|
2794 |
|
|
stub_name = hh_name (hh);
|
2795 |
|
|
hsh = hppa_stub_hash_lookup (&htab->bstab,
|
2796 |
|
|
stub_name,
|
2797 |
|
|
FALSE, FALSE);
|
2798 |
|
|
if (hsh == NULL)
|
2799 |
|
|
{
|
2800 |
|
|
hsh = hppa_add_stub (stub_name, sec, htab);
|
2801 |
|
|
if (!hsh)
|
2802 |
|
|
return -1;
|
2803 |
|
|
|
2804 |
|
|
hsh->target_value = hh->eh.root.u.def.value;
|
2805 |
|
|
hsh->target_section = hh->eh.root.u.def.section;
|
2806 |
|
|
hsh->stub_type = hppa_stub_export;
|
2807 |
|
|
hsh->hh = hh;
|
2808 |
|
|
stub_changed = 1;
|
2809 |
|
|
}
|
2810 |
|
|
else
|
2811 |
|
|
{
|
2812 |
|
|
(*_bfd_error_handler) (_("%B: duplicate export stub %s"),
|
2813 |
|
|
input_bfd,
|
2814 |
|
|
stub_name);
|
2815 |
|
|
}
|
2816 |
|
|
}
|
2817 |
|
|
}
|
2818 |
|
|
}
|
2819 |
|
|
}
|
2820 |
|
|
|
2821 |
|
|
return stub_changed;
|
2822 |
|
|
}
|
2823 |
|
|
|
2824 |
|
|
/* Determine and set the size of the stub section for a final link.
|
2825 |
|
|
|
2826 |
|
|
The basic idea here is to examine all the relocations looking for
|
2827 |
|
|
PC-relative calls to a target that is unreachable with a "bl"
|
2828 |
|
|
instruction. */
|
2829 |
|
|
|
2830 |
|
|
bfd_boolean
|
2831 |
|
|
elf32_hppa_size_stubs
|
2832 |
|
|
(bfd *output_bfd, bfd *stub_bfd, struct bfd_link_info *info,
|
2833 |
|
|
bfd_boolean multi_subspace, bfd_signed_vma group_size,
|
2834 |
|
|
asection * (*add_stub_section) (const char *, asection *),
|
2835 |
|
|
void (*layout_sections_again) (void))
|
2836 |
|
|
{
|
2837 |
|
|
bfd_size_type stub_group_size;
|
2838 |
|
|
bfd_boolean stubs_always_before_branch;
|
2839 |
|
|
bfd_boolean stub_changed;
|
2840 |
|
|
struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
|
2841 |
|
|
|
2842 |
|
|
if (htab == NULL)
|
2843 |
|
|
return FALSE;
|
2844 |
|
|
|
2845 |
|
|
/* Stash our params away. */
|
2846 |
|
|
htab->stub_bfd = stub_bfd;
|
2847 |
|
|
htab->multi_subspace = multi_subspace;
|
2848 |
|
|
htab->add_stub_section = add_stub_section;
|
2849 |
|
|
htab->layout_sections_again = layout_sections_again;
|
2850 |
|
|
stubs_always_before_branch = group_size < 0;
|
2851 |
|
|
if (group_size < 0)
|
2852 |
|
|
stub_group_size = -group_size;
|
2853 |
|
|
else
|
2854 |
|
|
stub_group_size = group_size;
|
2855 |
|
|
if (stub_group_size == 1)
|
2856 |
|
|
{
|
2857 |
|
|
/* Default values. */
|
2858 |
|
|
if (stubs_always_before_branch)
|
2859 |
|
|
{
|
2860 |
|
|
stub_group_size = 7680000;
|
2861 |
|
|
if (htab->has_17bit_branch || htab->multi_subspace)
|
2862 |
|
|
stub_group_size = 240000;
|
2863 |
|
|
if (htab->has_12bit_branch)
|
2864 |
|
|
stub_group_size = 7500;
|
2865 |
|
|
}
|
2866 |
|
|
else
|
2867 |
|
|
{
|
2868 |
|
|
stub_group_size = 6971392;
|
2869 |
|
|
if (htab->has_17bit_branch || htab->multi_subspace)
|
2870 |
|
|
stub_group_size = 217856;
|
2871 |
|
|
if (htab->has_12bit_branch)
|
2872 |
|
|
stub_group_size = 6808;
|
2873 |
|
|
}
|
2874 |
|
|
}
|
2875 |
|
|
|
2876 |
|
|
group_sections (htab, stub_group_size, stubs_always_before_branch);
|
2877 |
|
|
|
2878 |
|
|
switch (get_local_syms (output_bfd, info->input_bfds, info))
|
2879 |
|
|
{
|
2880 |
|
|
default:
|
2881 |
|
|
if (htab->all_local_syms)
|
2882 |
|
|
goto error_ret_free_local;
|
2883 |
|
|
return FALSE;
|
2884 |
|
|
|
2885 |
|
|
case 0:
|
2886 |
|
|
stub_changed = FALSE;
|
2887 |
|
|
break;
|
2888 |
|
|
|
2889 |
|
|
case 1:
|
2890 |
|
|
stub_changed = TRUE;
|
2891 |
|
|
break;
|
2892 |
|
|
}
|
2893 |
|
|
|
2894 |
|
|
while (1)
|
2895 |
|
|
{
|
2896 |
|
|
bfd *input_bfd;
|
2897 |
|
|
unsigned int bfd_indx;
|
2898 |
|
|
asection *stub_sec;
|
2899 |
|
|
|
2900 |
|
|
for (input_bfd = info->input_bfds, bfd_indx = 0;
|
2901 |
|
|
input_bfd != NULL;
|
2902 |
|
|
input_bfd = input_bfd->link_next, bfd_indx++)
|
2903 |
|
|
{
|
2904 |
|
|
Elf_Internal_Shdr *symtab_hdr;
|
2905 |
|
|
asection *section;
|
2906 |
|
|
Elf_Internal_Sym *local_syms;
|
2907 |
|
|
|
2908 |
|
|
/* We'll need the symbol table in a second. */
|
2909 |
|
|
symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
|
2910 |
|
|
if (symtab_hdr->sh_info == 0)
|
2911 |
|
|
continue;
|
2912 |
|
|
|
2913 |
|
|
local_syms = htab->all_local_syms[bfd_indx];
|
2914 |
|
|
|
2915 |
|
|
/* Walk over each section attached to the input bfd. */
|
2916 |
|
|
for (section = input_bfd->sections;
|
2917 |
|
|
section != NULL;
|
2918 |
|
|
section = section->next)
|
2919 |
|
|
{
|
2920 |
|
|
Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
|
2921 |
|
|
|
2922 |
|
|
/* If there aren't any relocs, then there's nothing more
|
2923 |
|
|
to do. */
|
2924 |
|
|
if ((section->flags & SEC_RELOC) == 0
|
2925 |
|
|
|| section->reloc_count == 0)
|
2926 |
|
|
continue;
|
2927 |
|
|
|
2928 |
|
|
/* If this section is a link-once section that will be
|
2929 |
|
|
discarded, then don't create any stubs. */
|
2930 |
|
|
if (section->output_section == NULL
|
2931 |
|
|
|| section->output_section->owner != output_bfd)
|
2932 |
|
|
continue;
|
2933 |
|
|
|
2934 |
|
|
/* Get the relocs. */
|
2935 |
|
|
internal_relocs
|
2936 |
|
|
= _bfd_elf_link_read_relocs (input_bfd, section, NULL, NULL,
|
2937 |
|
|
info->keep_memory);
|
2938 |
|
|
if (internal_relocs == NULL)
|
2939 |
|
|
goto error_ret_free_local;
|
2940 |
|
|
|
2941 |
|
|
/* Now examine each relocation. */
|
2942 |
|
|
irela = internal_relocs;
|
2943 |
|
|
irelaend = irela + section->reloc_count;
|
2944 |
|
|
for (; irela < irelaend; irela++)
|
2945 |
|
|
{
|
2946 |
|
|
unsigned int r_type, r_indx;
|
2947 |
|
|
enum elf32_hppa_stub_type stub_type;
|
2948 |
|
|
struct elf32_hppa_stub_hash_entry *hsh;
|
2949 |
|
|
asection *sym_sec;
|
2950 |
|
|
bfd_vma sym_value;
|
2951 |
|
|
bfd_vma destination;
|
2952 |
|
|
struct elf32_hppa_link_hash_entry *hh;
|
2953 |
|
|
char *stub_name;
|
2954 |
|
|
const asection *id_sec;
|
2955 |
|
|
|
2956 |
|
|
r_type = ELF32_R_TYPE (irela->r_info);
|
2957 |
|
|
r_indx = ELF32_R_SYM (irela->r_info);
|
2958 |
|
|
|
2959 |
|
|
if (r_type >= (unsigned int) R_PARISC_UNIMPLEMENTED)
|
2960 |
|
|
{
|
2961 |
|
|
bfd_set_error (bfd_error_bad_value);
|
2962 |
|
|
error_ret_free_internal:
|
2963 |
|
|
if (elf_section_data (section)->relocs == NULL)
|
2964 |
|
|
free (internal_relocs);
|
2965 |
|
|
goto error_ret_free_local;
|
2966 |
|
|
}
|
2967 |
|
|
|
2968 |
|
|
/* Only look for stubs on call instructions. */
|
2969 |
|
|
if (r_type != (unsigned int) R_PARISC_PCREL12F
|
2970 |
|
|
&& r_type != (unsigned int) R_PARISC_PCREL17F
|
2971 |
|
|
&& r_type != (unsigned int) R_PARISC_PCREL22F)
|
2972 |
|
|
continue;
|
2973 |
|
|
|
2974 |
|
|
/* Now determine the call target, its name, value,
|
2975 |
|
|
section. */
|
2976 |
|
|
sym_sec = NULL;
|
2977 |
|
|
sym_value = 0;
|
2978 |
|
|
destination = 0;
|
2979 |
|
|
hh = NULL;
|
2980 |
|
|
if (r_indx < symtab_hdr->sh_info)
|
2981 |
|
|
{
|
2982 |
|
|
/* It's a local symbol. */
|
2983 |
|
|
Elf_Internal_Sym *sym;
|
2984 |
|
|
Elf_Internal_Shdr *hdr;
|
2985 |
|
|
unsigned int shndx;
|
2986 |
|
|
|
2987 |
|
|
sym = local_syms + r_indx;
|
2988 |
|
|
if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
|
2989 |
|
|
sym_value = sym->st_value;
|
2990 |
|
|
shndx = sym->st_shndx;
|
2991 |
|
|
if (shndx < elf_numsections (input_bfd))
|
2992 |
|
|
{
|
2993 |
|
|
hdr = elf_elfsections (input_bfd)[shndx];
|
2994 |
|
|
sym_sec = hdr->bfd_section;
|
2995 |
|
|
destination = (sym_value + irela->r_addend
|
2996 |
|
|
+ sym_sec->output_offset
|
2997 |
|
|
+ sym_sec->output_section->vma);
|
2998 |
|
|
}
|
2999 |
|
|
}
|
3000 |
|
|
else
|
3001 |
|
|
{
|
3002 |
|
|
/* It's an external symbol. */
|
3003 |
|
|
int e_indx;
|
3004 |
|
|
|
3005 |
|
|
e_indx = r_indx - symtab_hdr->sh_info;
|
3006 |
|
|
hh = hppa_elf_hash_entry (elf_sym_hashes (input_bfd)[e_indx]);
|
3007 |
|
|
|
3008 |
|
|
while (hh->eh.root.type == bfd_link_hash_indirect
|
3009 |
|
|
|| hh->eh.root.type == bfd_link_hash_warning)
|
3010 |
|
|
hh = hppa_elf_hash_entry (hh->eh.root.u.i.link);
|
3011 |
|
|
|
3012 |
|
|
if (hh->eh.root.type == bfd_link_hash_defined
|
3013 |
|
|
|| hh->eh.root.type == bfd_link_hash_defweak)
|
3014 |
|
|
{
|
3015 |
|
|
sym_sec = hh->eh.root.u.def.section;
|
3016 |
|
|
sym_value = hh->eh.root.u.def.value;
|
3017 |
|
|
if (sym_sec->output_section != NULL)
|
3018 |
|
|
destination = (sym_value + irela->r_addend
|
3019 |
|
|
+ sym_sec->output_offset
|
3020 |
|
|
+ sym_sec->output_section->vma);
|
3021 |
|
|
}
|
3022 |
|
|
else if (hh->eh.root.type == bfd_link_hash_undefweak)
|
3023 |
|
|
{
|
3024 |
|
|
if (! info->shared)
|
3025 |
|
|
continue;
|
3026 |
|
|
}
|
3027 |
|
|
else if (hh->eh.root.type == bfd_link_hash_undefined)
|
3028 |
|
|
{
|
3029 |
|
|
if (! (info->unresolved_syms_in_objects == RM_IGNORE
|
3030 |
|
|
&& (ELF_ST_VISIBILITY (hh->eh.other)
|
3031 |
|
|
== STV_DEFAULT)
|
3032 |
|
|
&& hh->eh.type != STT_PARISC_MILLI))
|
3033 |
|
|
continue;
|
3034 |
|
|
}
|
3035 |
|
|
else
|
3036 |
|
|
{
|
3037 |
|
|
bfd_set_error (bfd_error_bad_value);
|
3038 |
|
|
goto error_ret_free_internal;
|
3039 |
|
|
}
|
3040 |
|
|
}
|
3041 |
|
|
|
3042 |
|
|
/* Determine what (if any) linker stub is needed. */
|
3043 |
|
|
stub_type = hppa_type_of_stub (section, irela, hh,
|
3044 |
|
|
destination, info);
|
3045 |
|
|
if (stub_type == hppa_stub_none)
|
3046 |
|
|
continue;
|
3047 |
|
|
|
3048 |
|
|
/* Support for grouping stub sections. */
|
3049 |
|
|
id_sec = htab->stub_group[section->id].link_sec;
|
3050 |
|
|
|
3051 |
|
|
/* Get the name of this stub. */
|
3052 |
|
|
stub_name = hppa_stub_name (id_sec, sym_sec, hh, irela);
|
3053 |
|
|
if (!stub_name)
|
3054 |
|
|
goto error_ret_free_internal;
|
3055 |
|
|
|
3056 |
|
|
hsh = hppa_stub_hash_lookup (&htab->bstab,
|
3057 |
|
|
stub_name,
|
3058 |
|
|
FALSE, FALSE);
|
3059 |
|
|
if (hsh != NULL)
|
3060 |
|
|
{
|
3061 |
|
|
/* The proper stub has already been created. */
|
3062 |
|
|
free (stub_name);
|
3063 |
|
|
continue;
|
3064 |
|
|
}
|
3065 |
|
|
|
3066 |
|
|
hsh = hppa_add_stub (stub_name, section, htab);
|
3067 |
|
|
if (hsh == NULL)
|
3068 |
|
|
{
|
3069 |
|
|
free (stub_name);
|
3070 |
|
|
goto error_ret_free_internal;
|
3071 |
|
|
}
|
3072 |
|
|
|
3073 |
|
|
hsh->target_value = sym_value;
|
3074 |
|
|
hsh->target_section = sym_sec;
|
3075 |
|
|
hsh->stub_type = stub_type;
|
3076 |
|
|
if (info->shared)
|
3077 |
|
|
{
|
3078 |
|
|
if (stub_type == hppa_stub_import)
|
3079 |
|
|
hsh->stub_type = hppa_stub_import_shared;
|
3080 |
|
|
else if (stub_type == hppa_stub_long_branch)
|
3081 |
|
|
hsh->stub_type = hppa_stub_long_branch_shared;
|
3082 |
|
|
}
|
3083 |
|
|
hsh->hh = hh;
|
3084 |
|
|
stub_changed = TRUE;
|
3085 |
|
|
}
|
3086 |
|
|
|
3087 |
|
|
/* We're done with the internal relocs, free them. */
|
3088 |
|
|
if (elf_section_data (section)->relocs == NULL)
|
3089 |
|
|
free (internal_relocs);
|
3090 |
|
|
}
|
3091 |
|
|
}
|
3092 |
|
|
|
3093 |
|
|
if (!stub_changed)
|
3094 |
|
|
break;
|
3095 |
|
|
|
3096 |
|
|
/* OK, we've added some stubs. Find out the new size of the
|
3097 |
|
|
stub sections. */
|
3098 |
|
|
for (stub_sec = htab->stub_bfd->sections;
|
3099 |
|
|
stub_sec != NULL;
|
3100 |
|
|
stub_sec = stub_sec->next)
|
3101 |
|
|
stub_sec->size = 0;
|
3102 |
|
|
|
3103 |
|
|
bfd_hash_traverse (&htab->bstab, hppa_size_one_stub, htab);
|
3104 |
|
|
|
3105 |
|
|
/* Ask the linker to do its stuff. */
|
3106 |
|
|
(*htab->layout_sections_again) ();
|
3107 |
|
|
stub_changed = FALSE;
|
3108 |
|
|
}
|
3109 |
|
|
|
3110 |
|
|
free (htab->all_local_syms);
|
3111 |
|
|
return TRUE;
|
3112 |
|
|
|
3113 |
|
|
error_ret_free_local:
|
3114 |
|
|
free (htab->all_local_syms);
|
3115 |
|
|
return FALSE;
|
3116 |
|
|
}
|
3117 |
|
|
|
3118 |
|
|
/* For a final link, this function is called after we have sized the
|
3119 |
|
|
stubs to provide a value for __gp. */
|
3120 |
|
|
|
3121 |
|
|
bfd_boolean
|
3122 |
|
|
elf32_hppa_set_gp (bfd *abfd, struct bfd_link_info *info)
|
3123 |
|
|
{
|
3124 |
|
|
struct bfd_link_hash_entry *h;
|
3125 |
|
|
asection *sec = NULL;
|
3126 |
|
|
bfd_vma gp_val = 0;
|
3127 |
|
|
struct elf32_hppa_link_hash_table *htab;
|
3128 |
|
|
|
3129 |
|
|
htab = hppa_link_hash_table (info);
|
3130 |
|
|
if (htab == NULL)
|
3131 |
|
|
return FALSE;
|
3132 |
|
|
|
3133 |
|
|
h = bfd_link_hash_lookup (&htab->etab.root, "$global$", FALSE, FALSE, FALSE);
|
3134 |
|
|
|
3135 |
|
|
if (h != NULL
|
3136 |
|
|
&& (h->type == bfd_link_hash_defined
|
3137 |
|
|
|| h->type == bfd_link_hash_defweak))
|
3138 |
|
|
{
|
3139 |
|
|
gp_val = h->u.def.value;
|
3140 |
|
|
sec = h->u.def.section;
|
3141 |
|
|
}
|
3142 |
|
|
else
|
3143 |
|
|
{
|
3144 |
|
|
asection *splt = bfd_get_section_by_name (abfd, ".plt");
|
3145 |
|
|
asection *sgot = bfd_get_section_by_name (abfd, ".got");
|
3146 |
|
|
|
3147 |
|
|
/* Choose to point our LTP at, in this order, one of .plt, .got,
|
3148 |
|
|
or .data, if these sections exist. In the case of choosing
|
3149 |
|
|
.plt try to make the LTP ideal for addressing anywhere in the
|
3150 |
|
|
.plt or .got with a 14 bit signed offset. Typically, the end
|
3151 |
|
|
of the .plt is the start of the .got, so choose .plt + 0x2000
|
3152 |
|
|
if either the .plt or .got is larger than 0x2000. If both
|
3153 |
|
|
the .plt and .got are smaller than 0x2000, choose the end of
|
3154 |
|
|
the .plt section. */
|
3155 |
|
|
sec = strcmp (bfd_get_target (abfd), "elf32-hppa-netbsd") == 0
|
3156 |
|
|
? NULL : splt;
|
3157 |
|
|
if (sec != NULL)
|
3158 |
|
|
{
|
3159 |
|
|
gp_val = sec->size;
|
3160 |
|
|
if (gp_val > 0x2000 || (sgot && sgot->size > 0x2000))
|
3161 |
|
|
{
|
3162 |
|
|
gp_val = 0x2000;
|
3163 |
|
|
}
|
3164 |
|
|
}
|
3165 |
|
|
else
|
3166 |
|
|
{
|
3167 |
|
|
sec = sgot;
|
3168 |
|
|
if (sec != NULL)
|
3169 |
|
|
{
|
3170 |
|
|
if (strcmp (bfd_get_target (abfd), "elf32-hppa-netbsd") != 0)
|
3171 |
|
|
{
|
3172 |
|
|
/* We know we don't have a .plt. If .got is large,
|
3173 |
|
|
offset our LTP. */
|
3174 |
|
|
if (sec->size > 0x2000)
|
3175 |
|
|
gp_val = 0x2000;
|
3176 |
|
|
}
|
3177 |
|
|
}
|
3178 |
|
|
else
|
3179 |
|
|
{
|
3180 |
|
|
/* No .plt or .got. Who cares what the LTP is? */
|
3181 |
|
|
sec = bfd_get_section_by_name (abfd, ".data");
|
3182 |
|
|
}
|
3183 |
|
|
}
|
3184 |
|
|
|
3185 |
|
|
if (h != NULL)
|
3186 |
|
|
{
|
3187 |
|
|
h->type = bfd_link_hash_defined;
|
3188 |
|
|
h->u.def.value = gp_val;
|
3189 |
|
|
if (sec != NULL)
|
3190 |
|
|
h->u.def.section = sec;
|
3191 |
|
|
else
|
3192 |
|
|
h->u.def.section = bfd_abs_section_ptr;
|
3193 |
|
|
}
|
3194 |
|
|
}
|
3195 |
|
|
|
3196 |
|
|
if (sec != NULL && sec->output_section != NULL)
|
3197 |
|
|
gp_val += sec->output_section->vma + sec->output_offset;
|
3198 |
|
|
|
3199 |
|
|
elf_gp (abfd) = gp_val;
|
3200 |
|
|
return TRUE;
|
3201 |
|
|
}
|
3202 |
|
|
|
3203 |
|
|
/* Build all the stubs associated with the current output file. The
|
3204 |
|
|
stubs are kept in a hash table attached to the main linker hash
|
3205 |
|
|
table. We also set up the .plt entries for statically linked PIC
|
3206 |
|
|
functions here. This function is called via hppaelf_finish in the
|
3207 |
|
|
linker. */
|
3208 |
|
|
|
3209 |
|
|
bfd_boolean
|
3210 |
|
|
elf32_hppa_build_stubs (struct bfd_link_info *info)
|
3211 |
|
|
{
|
3212 |
|
|
asection *stub_sec;
|
3213 |
|
|
struct bfd_hash_table *table;
|
3214 |
|
|
struct elf32_hppa_link_hash_table *htab;
|
3215 |
|
|
|
3216 |
|
|
htab = hppa_link_hash_table (info);
|
3217 |
|
|
if (htab == NULL)
|
3218 |
|
|
return FALSE;
|
3219 |
|
|
|
3220 |
|
|
for (stub_sec = htab->stub_bfd->sections;
|
3221 |
|
|
stub_sec != NULL;
|
3222 |
|
|
stub_sec = stub_sec->next)
|
3223 |
|
|
{
|
3224 |
|
|
bfd_size_type size;
|
3225 |
|
|
|
3226 |
|
|
/* Allocate memory to hold the linker stubs. */
|
3227 |
|
|
size = stub_sec->size;
|
3228 |
|
|
stub_sec->contents = bfd_zalloc (htab->stub_bfd, size);
|
3229 |
|
|
if (stub_sec->contents == NULL && size != 0)
|
3230 |
|
|
return FALSE;
|
3231 |
|
|
stub_sec->size = 0;
|
3232 |
|
|
}
|
3233 |
|
|
|
3234 |
|
|
/* Build the stubs as directed by the stub hash table. */
|
3235 |
|
|
table = &htab->bstab;
|
3236 |
|
|
bfd_hash_traverse (table, hppa_build_one_stub, info);
|
3237 |
|
|
|
3238 |
|
|
return TRUE;
|
3239 |
|
|
}
|
3240 |
|
|
|
3241 |
|
|
/* Return the base vma address which should be subtracted from the real
|
3242 |
|
|
address when resolving a dtpoff relocation.
|
3243 |
|
|
This is PT_TLS segment p_vaddr. */
|
3244 |
|
|
|
3245 |
|
|
static bfd_vma
|
3246 |
|
|
dtpoff_base (struct bfd_link_info *info)
|
3247 |
|
|
{
|
3248 |
|
|
/* If tls_sec is NULL, we should have signalled an error already. */
|
3249 |
|
|
if (elf_hash_table (info)->tls_sec == NULL)
|
3250 |
|
|
return 0;
|
3251 |
|
|
return elf_hash_table (info)->tls_sec->vma;
|
3252 |
|
|
}
|
3253 |
|
|
|
3254 |
|
|
/* Return the relocation value for R_PARISC_TLS_TPOFF*.. */
|
3255 |
|
|
|
3256 |
|
|
static bfd_vma
|
3257 |
|
|
tpoff (struct bfd_link_info *info, bfd_vma address)
|
3258 |
|
|
{
|
3259 |
|
|
struct elf_link_hash_table *htab = elf_hash_table (info);
|
3260 |
|
|
|
3261 |
|
|
/* If tls_sec is NULL, we should have signalled an error already. */
|
3262 |
|
|
if (htab->tls_sec == NULL)
|
3263 |
|
|
return 0;
|
3264 |
|
|
/* hppa TLS ABI is variant I and static TLS block start just after
|
3265 |
|
|
tcbhead structure which has 2 pointer fields. */
|
3266 |
|
|
return (address - htab->tls_sec->vma
|
3267 |
|
|
+ align_power ((bfd_vma) 8, htab->tls_sec->alignment_power));
|
3268 |
|
|
}
|
3269 |
|
|
|
3270 |
|
|
/* Perform a final link. */
|
3271 |
|
|
|
3272 |
|
|
static bfd_boolean
|
3273 |
|
|
elf32_hppa_final_link (bfd *abfd, struct bfd_link_info *info)
|
3274 |
|
|
{
|
3275 |
|
|
/* Invoke the regular ELF linker to do all the work. */
|
3276 |
|
|
if (!bfd_elf_final_link (abfd, info))
|
3277 |
|
|
return FALSE;
|
3278 |
|
|
|
3279 |
|
|
/* If we're producing a final executable, sort the contents of the
|
3280 |
|
|
unwind section. */
|
3281 |
|
|
if (info->relocatable)
|
3282 |
|
|
return TRUE;
|
3283 |
|
|
|
3284 |
|
|
return elf_hppa_sort_unwind (abfd);
|
3285 |
|
|
}
|
3286 |
|
|
|
3287 |
|
|
/* Record the lowest address for the data and text segments. */
|
3288 |
|
|
|
3289 |
|
|
static void
|
3290 |
|
|
hppa_record_segment_addr (bfd *abfd, asection *section, void *data)
|
3291 |
|
|
{
|
3292 |
|
|
struct elf32_hppa_link_hash_table *htab;
|
3293 |
|
|
|
3294 |
|
|
htab = (struct elf32_hppa_link_hash_table*) data;
|
3295 |
|
|
if (htab == NULL)
|
3296 |
|
|
return;
|
3297 |
|
|
|
3298 |
|
|
if ((section->flags & (SEC_ALLOC | SEC_LOAD)) == (SEC_ALLOC | SEC_LOAD))
|
3299 |
|
|
{
|
3300 |
|
|
bfd_vma value;
|
3301 |
|
|
Elf_Internal_Phdr *p;
|
3302 |
|
|
|
3303 |
|
|
p = _bfd_elf_find_segment_containing_section (abfd, section->output_section);
|
3304 |
|
|
BFD_ASSERT (p != NULL);
|
3305 |
|
|
value = p->p_vaddr;
|
3306 |
|
|
|
3307 |
|
|
if ((section->flags & SEC_READONLY) != 0)
|
3308 |
|
|
{
|
3309 |
|
|
if (value < htab->text_segment_base)
|
3310 |
|
|
htab->text_segment_base = value;
|
3311 |
|
|
}
|
3312 |
|
|
else
|
3313 |
|
|
{
|
3314 |
|
|
if (value < htab->data_segment_base)
|
3315 |
|
|
htab->data_segment_base = value;
|
3316 |
|
|
}
|
3317 |
|
|
}
|
3318 |
|
|
}
|
3319 |
|
|
|
3320 |
|
|
/* Perform a relocation as part of a final link. */
|
3321 |
|
|
|
3322 |
|
|
static bfd_reloc_status_type
|
3323 |
|
|
final_link_relocate (asection *input_section,
|
3324 |
|
|
bfd_byte *contents,
|
3325 |
|
|
const Elf_Internal_Rela *rela,
|
3326 |
|
|
bfd_vma value,
|
3327 |
|
|
struct elf32_hppa_link_hash_table *htab,
|
3328 |
|
|
asection *sym_sec,
|
3329 |
|
|
struct elf32_hppa_link_hash_entry *hh,
|
3330 |
|
|
struct bfd_link_info *info)
|
3331 |
|
|
{
|
3332 |
|
|
int insn;
|
3333 |
|
|
unsigned int r_type = ELF32_R_TYPE (rela->r_info);
|
3334 |
|
|
unsigned int orig_r_type = r_type;
|
3335 |
|
|
reloc_howto_type *howto = elf_hppa_howto_table + r_type;
|
3336 |
|
|
int r_format = howto->bitsize;
|
3337 |
|
|
enum hppa_reloc_field_selector_type_alt r_field;
|
3338 |
|
|
bfd *input_bfd = input_section->owner;
|
3339 |
|
|
bfd_vma offset = rela->r_offset;
|
3340 |
|
|
bfd_vma max_branch_offset = 0;
|
3341 |
|
|
bfd_byte *hit_data = contents + offset;
|
3342 |
|
|
bfd_signed_vma addend = rela->r_addend;
|
3343 |
|
|
bfd_vma location;
|
3344 |
|
|
struct elf32_hppa_stub_hash_entry *hsh = NULL;
|
3345 |
|
|
int val;
|
3346 |
|
|
|
3347 |
|
|
if (r_type == R_PARISC_NONE)
|
3348 |
|
|
return bfd_reloc_ok;
|
3349 |
|
|
|
3350 |
|
|
insn = bfd_get_32 (input_bfd, hit_data);
|
3351 |
|
|
|
3352 |
|
|
/* Find out where we are and where we're going. */
|
3353 |
|
|
location = (offset +
|
3354 |
|
|
input_section->output_offset +
|
3355 |
|
|
input_section->output_section->vma);
|
3356 |
|
|
|
3357 |
|
|
/* If we are not building a shared library, convert DLTIND relocs to
|
3358 |
|
|
DPREL relocs. */
|
3359 |
|
|
if (!info->shared)
|
3360 |
|
|
{
|
3361 |
|
|
switch (r_type)
|
3362 |
|
|
{
|
3363 |
|
|
case R_PARISC_DLTIND21L:
|
3364 |
|
|
r_type = R_PARISC_DPREL21L;
|
3365 |
|
|
break;
|
3366 |
|
|
|
3367 |
|
|
case R_PARISC_DLTIND14R:
|
3368 |
|
|
r_type = R_PARISC_DPREL14R;
|
3369 |
|
|
break;
|
3370 |
|
|
|
3371 |
|
|
case R_PARISC_DLTIND14F:
|
3372 |
|
|
r_type = R_PARISC_DPREL14F;
|
3373 |
|
|
break;
|
3374 |
|
|
}
|
3375 |
|
|
}
|
3376 |
|
|
|
3377 |
|
|
switch (r_type)
|
3378 |
|
|
{
|
3379 |
|
|
case R_PARISC_PCREL12F:
|
3380 |
|
|
case R_PARISC_PCREL17F:
|
3381 |
|
|
case R_PARISC_PCREL22F:
|
3382 |
|
|
/* If this call should go via the plt, find the import stub in
|
3383 |
|
|
the stub hash. */
|
3384 |
|
|
if (sym_sec == NULL
|
3385 |
|
|
|| sym_sec->output_section == NULL
|
3386 |
|
|
|| (hh != NULL
|
3387 |
|
|
&& hh->eh.plt.offset != (bfd_vma) -1
|
3388 |
|
|
&& hh->eh.dynindx != -1
|
3389 |
|
|
&& !hh->plabel
|
3390 |
|
|
&& (info->shared
|
3391 |
|
|
|| !hh->eh.def_regular
|
3392 |
|
|
|| hh->eh.root.type == bfd_link_hash_defweak)))
|
3393 |
|
|
{
|
3394 |
|
|
hsh = hppa_get_stub_entry (input_section, sym_sec,
|
3395 |
|
|
hh, rela, htab);
|
3396 |
|
|
if (hsh != NULL)
|
3397 |
|
|
{
|
3398 |
|
|
value = (hsh->stub_offset
|
3399 |
|
|
+ hsh->stub_sec->output_offset
|
3400 |
|
|
+ hsh->stub_sec->output_section->vma);
|
3401 |
|
|
addend = 0;
|
3402 |
|
|
}
|
3403 |
|
|
else if (sym_sec == NULL && hh != NULL
|
3404 |
|
|
&& hh->eh.root.type == bfd_link_hash_undefweak)
|
3405 |
|
|
{
|
3406 |
|
|
/* It's OK if undefined weak. Calls to undefined weak
|
3407 |
|
|
symbols behave as if the "called" function
|
3408 |
|
|
immediately returns. We can thus call to a weak
|
3409 |
|
|
function without first checking whether the function
|
3410 |
|
|
is defined. */
|
3411 |
|
|
value = location;
|
3412 |
|
|
addend = 8;
|
3413 |
|
|
}
|
3414 |
|
|
else
|
3415 |
|
|
return bfd_reloc_undefined;
|
3416 |
|
|
}
|
3417 |
|
|
/* Fall thru. */
|
3418 |
|
|
|
3419 |
|
|
case R_PARISC_PCREL21L:
|
3420 |
|
|
case R_PARISC_PCREL17C:
|
3421 |
|
|
case R_PARISC_PCREL17R:
|
3422 |
|
|
case R_PARISC_PCREL14R:
|
3423 |
|
|
case R_PARISC_PCREL14F:
|
3424 |
|
|
case R_PARISC_PCREL32:
|
3425 |
|
|
/* Make it a pc relative offset. */
|
3426 |
|
|
value -= location;
|
3427 |
|
|
addend -= 8;
|
3428 |
|
|
break;
|
3429 |
|
|
|
3430 |
|
|
case R_PARISC_DPREL21L:
|
3431 |
|
|
case R_PARISC_DPREL14R:
|
3432 |
|
|
case R_PARISC_DPREL14F:
|
3433 |
|
|
case R_PARISC_TLS_GD21L:
|
3434 |
|
|
case R_PARISC_TLS_LDM21L:
|
3435 |
|
|
case R_PARISC_TLS_IE21L:
|
3436 |
|
|
/* Convert instructions that use the linkage table pointer (r19) to
|
3437 |
|
|
instructions that use the global data pointer (dp). This is the
|
3438 |
|
|
most efficient way of using PIC code in an incomplete executable,
|
3439 |
|
|
but the user must follow the standard runtime conventions for
|
3440 |
|
|
accessing data for this to work. */
|
3441 |
|
|
if (orig_r_type == R_PARISC_DLTIND21L
|
3442 |
|
|
|| (!info->shared
|
3443 |
|
|
&& (r_type == R_PARISC_TLS_GD21L
|
3444 |
|
|
|| r_type == R_PARISC_TLS_LDM21L
|
3445 |
|
|
|| r_type == R_PARISC_TLS_IE21L)))
|
3446 |
|
|
{
|
3447 |
|
|
/* Convert addil instructions if the original reloc was a
|
3448 |
|
|
DLTIND21L. GCC sometimes uses a register other than r19 for
|
3449 |
|
|
the operation, so we must convert any addil instruction
|
3450 |
|
|
that uses this relocation. */
|
3451 |
|
|
if ((insn & 0xfc000000) == ((int) OP_ADDIL << 26))
|
3452 |
|
|
insn = ADDIL_DP;
|
3453 |
|
|
else
|
3454 |
|
|
/* We must have a ldil instruction. It's too hard to find
|
3455 |
|
|
and convert the associated add instruction, so issue an
|
3456 |
|
|
error. */
|
3457 |
|
|
(*_bfd_error_handler)
|
3458 |
|
|
(_("%B(%A+0x%lx): %s fixup for insn 0x%x is not supported in a non-shared link"),
|
3459 |
|
|
input_bfd,
|
3460 |
|
|
input_section,
|
3461 |
|
|
(long) offset,
|
3462 |
|
|
howto->name,
|
3463 |
|
|
insn);
|
3464 |
|
|
}
|
3465 |
|
|
else if (orig_r_type == R_PARISC_DLTIND14F)
|
3466 |
|
|
{
|
3467 |
|
|
/* This must be a format 1 load/store. Change the base
|
3468 |
|
|
register to dp. */
|
3469 |
|
|
insn = (insn & 0xfc1ffff) | (27 << 21);
|
3470 |
|
|
}
|
3471 |
|
|
|
3472 |
|
|
/* For all the DP relative relocations, we need to examine the symbol's
|
3473 |
|
|
section. If it has no section or if it's a code section, then
|
3474 |
|
|
"data pointer relative" makes no sense. In that case we don't
|
3475 |
|
|
adjust the "value", and for 21 bit addil instructions, we change the
|
3476 |
|
|
source addend register from %dp to %r0. This situation commonly
|
3477 |
|
|
arises for undefined weak symbols and when a variable's "constness"
|
3478 |
|
|
is declared differently from the way the variable is defined. For
|
3479 |
|
|
instance: "extern int foo" with foo defined as "const int foo". */
|
3480 |
|
|
if (sym_sec == NULL || (sym_sec->flags & SEC_CODE) != 0)
|
3481 |
|
|
{
|
3482 |
|
|
if ((insn & ((0x3f << 26) | (0x1f << 21)))
|
3483 |
|
|
== (((int) OP_ADDIL << 26) | (27 << 21)))
|
3484 |
|
|
{
|
3485 |
|
|
insn &= ~ (0x1f << 21);
|
3486 |
|
|
}
|
3487 |
|
|
/* Now try to make things easy for the dynamic linker. */
|
3488 |
|
|
|
3489 |
|
|
break;
|
3490 |
|
|
}
|
3491 |
|
|
/* Fall thru. */
|
3492 |
|
|
|
3493 |
|
|
case R_PARISC_DLTIND21L:
|
3494 |
|
|
case R_PARISC_DLTIND14R:
|
3495 |
|
|
case R_PARISC_DLTIND14F:
|
3496 |
|
|
case R_PARISC_TLS_GD14R:
|
3497 |
|
|
case R_PARISC_TLS_LDM14R:
|
3498 |
|
|
case R_PARISC_TLS_IE14R:
|
3499 |
|
|
value -= elf_gp (input_section->output_section->owner);
|
3500 |
|
|
break;
|
3501 |
|
|
|
3502 |
|
|
case R_PARISC_SEGREL32:
|
3503 |
|
|
if ((sym_sec->flags & SEC_CODE) != 0)
|
3504 |
|
|
value -= htab->text_segment_base;
|
3505 |
|
|
else
|
3506 |
|
|
value -= htab->data_segment_base;
|
3507 |
|
|
break;
|
3508 |
|
|
|
3509 |
|
|
default:
|
3510 |
|
|
break;
|
3511 |
|
|
}
|
3512 |
|
|
|
3513 |
|
|
switch (r_type)
|
3514 |
|
|
{
|
3515 |
|
|
case R_PARISC_DIR32:
|
3516 |
|
|
case R_PARISC_DIR14F:
|
3517 |
|
|
case R_PARISC_DIR17F:
|
3518 |
|
|
case R_PARISC_PCREL17C:
|
3519 |
|
|
case R_PARISC_PCREL14F:
|
3520 |
|
|
case R_PARISC_PCREL32:
|
3521 |
|
|
case R_PARISC_DPREL14F:
|
3522 |
|
|
case R_PARISC_PLABEL32:
|
3523 |
|
|
case R_PARISC_DLTIND14F:
|
3524 |
|
|
case R_PARISC_SEGBASE:
|
3525 |
|
|
case R_PARISC_SEGREL32:
|
3526 |
|
|
case R_PARISC_TLS_DTPMOD32:
|
3527 |
|
|
case R_PARISC_TLS_DTPOFF32:
|
3528 |
|
|
case R_PARISC_TLS_TPREL32:
|
3529 |
|
|
r_field = e_fsel;
|
3530 |
|
|
break;
|
3531 |
|
|
|
3532 |
|
|
case R_PARISC_DLTIND21L:
|
3533 |
|
|
case R_PARISC_PCREL21L:
|
3534 |
|
|
case R_PARISC_PLABEL21L:
|
3535 |
|
|
r_field = e_lsel;
|
3536 |
|
|
break;
|
3537 |
|
|
|
3538 |
|
|
case R_PARISC_DIR21L:
|
3539 |
|
|
case R_PARISC_DPREL21L:
|
3540 |
|
|
case R_PARISC_TLS_GD21L:
|
3541 |
|
|
case R_PARISC_TLS_LDM21L:
|
3542 |
|
|
case R_PARISC_TLS_LDO21L:
|
3543 |
|
|
case R_PARISC_TLS_IE21L:
|
3544 |
|
|
case R_PARISC_TLS_LE21L:
|
3545 |
|
|
r_field = e_lrsel;
|
3546 |
|
|
break;
|
3547 |
|
|
|
3548 |
|
|
case R_PARISC_PCREL17R:
|
3549 |
|
|
case R_PARISC_PCREL14R:
|
3550 |
|
|
case R_PARISC_PLABEL14R:
|
3551 |
|
|
case R_PARISC_DLTIND14R:
|
3552 |
|
|
r_field = e_rsel;
|
3553 |
|
|
break;
|
3554 |
|
|
|
3555 |
|
|
case R_PARISC_DIR17R:
|
3556 |
|
|
case R_PARISC_DIR14R:
|
3557 |
|
|
case R_PARISC_DPREL14R:
|
3558 |
|
|
case R_PARISC_TLS_GD14R:
|
3559 |
|
|
case R_PARISC_TLS_LDM14R:
|
3560 |
|
|
case R_PARISC_TLS_LDO14R:
|
3561 |
|
|
case R_PARISC_TLS_IE14R:
|
3562 |
|
|
case R_PARISC_TLS_LE14R:
|
3563 |
|
|
r_field = e_rrsel;
|
3564 |
|
|
break;
|
3565 |
|
|
|
3566 |
|
|
case R_PARISC_PCREL12F:
|
3567 |
|
|
case R_PARISC_PCREL17F:
|
3568 |
|
|
case R_PARISC_PCREL22F:
|
3569 |
|
|
r_field = e_fsel;
|
3570 |
|
|
|
3571 |
|
|
if (r_type == (unsigned int) R_PARISC_PCREL17F)
|
3572 |
|
|
{
|
3573 |
|
|
max_branch_offset = (1 << (17-1)) << 2;
|
3574 |
|
|
}
|
3575 |
|
|
else if (r_type == (unsigned int) R_PARISC_PCREL12F)
|
3576 |
|
|
{
|
3577 |
|
|
max_branch_offset = (1 << (12-1)) << 2;
|
3578 |
|
|
}
|
3579 |
|
|
else
|
3580 |
|
|
{
|
3581 |
|
|
max_branch_offset = (1 << (22-1)) << 2;
|
3582 |
|
|
}
|
3583 |
|
|
|
3584 |
|
|
/* sym_sec is NULL on undefined weak syms or when shared on
|
3585 |
|
|
undefined syms. We've already checked for a stub for the
|
3586 |
|
|
shared undefined case. */
|
3587 |
|
|
if (sym_sec == NULL)
|
3588 |
|
|
break;
|
3589 |
|
|
|
3590 |
|
|
/* If the branch is out of reach, then redirect the
|
3591 |
|
|
call to the local stub for this function. */
|
3592 |
|
|
if (value + addend + max_branch_offset >= 2*max_branch_offset)
|
3593 |
|
|
{
|
3594 |
|
|
hsh = hppa_get_stub_entry (input_section, sym_sec,
|
3595 |
|
|
hh, rela, htab);
|
3596 |
|
|
if (hsh == NULL)
|
3597 |
|
|
return bfd_reloc_undefined;
|
3598 |
|
|
|
3599 |
|
|
/* Munge up the value and addend so that we call the stub
|
3600 |
|
|
rather than the procedure directly. */
|
3601 |
|
|
value = (hsh->stub_offset
|
3602 |
|
|
+ hsh->stub_sec->output_offset
|
3603 |
|
|
+ hsh->stub_sec->output_section->vma
|
3604 |
|
|
- location);
|
3605 |
|
|
addend = -8;
|
3606 |
|
|
}
|
3607 |
|
|
break;
|
3608 |
|
|
|
3609 |
|
|
/* Something we don't know how to handle. */
|
3610 |
|
|
default:
|
3611 |
|
|
return bfd_reloc_notsupported;
|
3612 |
|
|
}
|
3613 |
|
|
|
3614 |
|
|
/* Make sure we can reach the stub. */
|
3615 |
|
|
if (max_branch_offset != 0
|
3616 |
|
|
&& value + addend + max_branch_offset >= 2*max_branch_offset)
|
3617 |
|
|
{
|
3618 |
|
|
(*_bfd_error_handler)
|
3619 |
|
|
(_("%B(%A+0x%lx): cannot reach %s, recompile with -ffunction-sections"),
|
3620 |
|
|
input_bfd,
|
3621 |
|
|
input_section,
|
3622 |
|
|
(long) offset,
|
3623 |
|
|
hsh->bh_root.string);
|
3624 |
|
|
bfd_set_error (bfd_error_bad_value);
|
3625 |
|
|
return bfd_reloc_notsupported;
|
3626 |
|
|
}
|
3627 |
|
|
|
3628 |
|
|
val = hppa_field_adjust (value, addend, r_field);
|
3629 |
|
|
|
3630 |
|
|
switch (r_type)
|
3631 |
|
|
{
|
3632 |
|
|
case R_PARISC_PCREL12F:
|
3633 |
|
|
case R_PARISC_PCREL17C:
|
3634 |
|
|
case R_PARISC_PCREL17F:
|
3635 |
|
|
case R_PARISC_PCREL17R:
|
3636 |
|
|
case R_PARISC_PCREL22F:
|
3637 |
|
|
case R_PARISC_DIR17F:
|
3638 |
|
|
case R_PARISC_DIR17R:
|
3639 |
|
|
/* This is a branch. Divide the offset by four.
|
3640 |
|
|
Note that we need to decide whether it's a branch or
|
3641 |
|
|
otherwise by inspecting the reloc. Inspecting insn won't
|
3642 |
|
|
work as insn might be from a .word directive. */
|
3643 |
|
|
val >>= 2;
|
3644 |
|
|
break;
|
3645 |
|
|
|
3646 |
|
|
default:
|
3647 |
|
|
break;
|
3648 |
|
|
}
|
3649 |
|
|
|
3650 |
|
|
insn = hppa_rebuild_insn (insn, val, r_format);
|
3651 |
|
|
|
3652 |
|
|
/* Update the instruction word. */
|
3653 |
|
|
bfd_put_32 (input_bfd, (bfd_vma) insn, hit_data);
|
3654 |
|
|
return bfd_reloc_ok;
|
3655 |
|
|
}
|
3656 |
|
|
|
3657 |
|
|
/* Relocate an HPPA ELF section. */
|
3658 |
|
|
|
3659 |
|
|
static bfd_boolean
|
3660 |
|
|
elf32_hppa_relocate_section (bfd *output_bfd,
|
3661 |
|
|
struct bfd_link_info *info,
|
3662 |
|
|
bfd *input_bfd,
|
3663 |
|
|
asection *input_section,
|
3664 |
|
|
bfd_byte *contents,
|
3665 |
|
|
Elf_Internal_Rela *relocs,
|
3666 |
|
|
Elf_Internal_Sym *local_syms,
|
3667 |
|
|
asection **local_sections)
|
3668 |
|
|
{
|
3669 |
|
|
bfd_vma *local_got_offsets;
|
3670 |
|
|
struct elf32_hppa_link_hash_table *htab;
|
3671 |
|
|
Elf_Internal_Shdr *symtab_hdr;
|
3672 |
|
|
Elf_Internal_Rela *rela;
|
3673 |
|
|
Elf_Internal_Rela *relend;
|
3674 |
|
|
|
3675 |
|
|
symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
|
3676 |
|
|
|
3677 |
|
|
htab = hppa_link_hash_table (info);
|
3678 |
|
|
if (htab == NULL)
|
3679 |
|
|
return FALSE;
|
3680 |
|
|
|
3681 |
|
|
local_got_offsets = elf_local_got_offsets (input_bfd);
|
3682 |
|
|
|
3683 |
|
|
rela = relocs;
|
3684 |
|
|
relend = relocs + input_section->reloc_count;
|
3685 |
|
|
for (; rela < relend; rela++)
|
3686 |
|
|
{
|
3687 |
|
|
unsigned int r_type;
|
3688 |
|
|
reloc_howto_type *howto;
|
3689 |
|
|
unsigned int r_symndx;
|
3690 |
|
|
struct elf32_hppa_link_hash_entry *hh;
|
3691 |
|
|
Elf_Internal_Sym *sym;
|
3692 |
|
|
asection *sym_sec;
|
3693 |
|
|
bfd_vma relocation;
|
3694 |
|
|
bfd_reloc_status_type rstatus;
|
3695 |
|
|
const char *sym_name;
|
3696 |
|
|
bfd_boolean plabel;
|
3697 |
|
|
bfd_boolean warned_undef;
|
3698 |
|
|
|
3699 |
|
|
r_type = ELF32_R_TYPE (rela->r_info);
|
3700 |
|
|
if (r_type >= (unsigned int) R_PARISC_UNIMPLEMENTED)
|
3701 |
|
|
{
|
3702 |
|
|
bfd_set_error (bfd_error_bad_value);
|
3703 |
|
|
return FALSE;
|
3704 |
|
|
}
|
3705 |
|
|
if (r_type == (unsigned int) R_PARISC_GNU_VTENTRY
|
3706 |
|
|
|| r_type == (unsigned int) R_PARISC_GNU_VTINHERIT)
|
3707 |
|
|
continue;
|
3708 |
|
|
|
3709 |
|
|
r_symndx = ELF32_R_SYM (rela->r_info);
|
3710 |
|
|
hh = NULL;
|
3711 |
|
|
sym = NULL;
|
3712 |
|
|
sym_sec = NULL;
|
3713 |
|
|
warned_undef = FALSE;
|
3714 |
|
|
if (r_symndx < symtab_hdr->sh_info)
|
3715 |
|
|
{
|
3716 |
|
|
/* This is a local symbol, h defaults to NULL. */
|
3717 |
|
|
sym = local_syms + r_symndx;
|
3718 |
|
|
sym_sec = local_sections[r_symndx];
|
3719 |
|
|
relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sym_sec, rela);
|
3720 |
|
|
}
|
3721 |
|
|
else
|
3722 |
|
|
{
|
3723 |
|
|
struct elf_link_hash_entry *eh;
|
3724 |
|
|
bfd_boolean unresolved_reloc;
|
3725 |
|
|
struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (input_bfd);
|
3726 |
|
|
|
3727 |
|
|
RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rela,
|
3728 |
|
|
r_symndx, symtab_hdr, sym_hashes,
|
3729 |
|
|
eh, sym_sec, relocation,
|
3730 |
|
|
unresolved_reloc, warned_undef);
|
3731 |
|
|
|
3732 |
|
|
if (!info->relocatable
|
3733 |
|
|
&& relocation == 0
|
3734 |
|
|
&& eh->root.type != bfd_link_hash_defined
|
3735 |
|
|
&& eh->root.type != bfd_link_hash_defweak
|
3736 |
|
|
&& eh->root.type != bfd_link_hash_undefweak)
|
3737 |
|
|
{
|
3738 |
|
|
if (info->unresolved_syms_in_objects == RM_IGNORE
|
3739 |
|
|
&& ELF_ST_VISIBILITY (eh->other) == STV_DEFAULT
|
3740 |
|
|
&& eh->type == STT_PARISC_MILLI)
|
3741 |
|
|
{
|
3742 |
|
|
if (! info->callbacks->undefined_symbol
|
3743 |
|
|
(info, eh_name (eh), input_bfd,
|
3744 |
|
|
input_section, rela->r_offset, FALSE))
|
3745 |
|
|
return FALSE;
|
3746 |
|
|
warned_undef = TRUE;
|
3747 |
|
|
}
|
3748 |
|
|
}
|
3749 |
|
|
hh = hppa_elf_hash_entry (eh);
|
3750 |
|
|
}
|
3751 |
|
|
|
3752 |
|
|
if (sym_sec != NULL && elf_discarded_section (sym_sec))
|
3753 |
|
|
{
|
3754 |
|
|
/* For relocs against symbols from removed linkonce
|
3755 |
|
|
sections, or sections discarded by a linker script,
|
3756 |
|
|
we just want the section contents zeroed. Avoid any
|
3757 |
|
|
special processing. */
|
3758 |
|
|
_bfd_clear_contents (elf_hppa_howto_table + r_type, input_bfd,
|
3759 |
|
|
contents + rela->r_offset);
|
3760 |
|
|
rela->r_info = 0;
|
3761 |
|
|
rela->r_addend = 0;
|
3762 |
|
|
continue;
|
3763 |
|
|
}
|
3764 |
|
|
|
3765 |
|
|
if (info->relocatable)
|
3766 |
|
|
continue;
|
3767 |
|
|
|
3768 |
|
|
/* Do any required modifications to the relocation value, and
|
3769 |
|
|
determine what types of dynamic info we need to output, if
|
3770 |
|
|
any. */
|
3771 |
|
|
plabel = 0;
|
3772 |
|
|
switch (r_type)
|
3773 |
|
|
{
|
3774 |
|
|
case R_PARISC_DLTIND14F:
|
3775 |
|
|
case R_PARISC_DLTIND14R:
|
3776 |
|
|
case R_PARISC_DLTIND21L:
|
3777 |
|
|
{
|
3778 |
|
|
bfd_vma off;
|
3779 |
|
|
bfd_boolean do_got = 0;
|
3780 |
|
|
|
3781 |
|
|
/* Relocation is to the entry for this symbol in the
|
3782 |
|
|
global offset table. */
|
3783 |
|
|
if (hh != NULL)
|
3784 |
|
|
{
|
3785 |
|
|
bfd_boolean dyn;
|
3786 |
|
|
|
3787 |
|
|
off = hh->eh.got.offset;
|
3788 |
|
|
dyn = htab->etab.dynamic_sections_created;
|
3789 |
|
|
if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared,
|
3790 |
|
|
&hh->eh))
|
3791 |
|
|
{
|
3792 |
|
|
/* If we aren't going to call finish_dynamic_symbol,
|
3793 |
|
|
then we need to handle initialisation of the .got
|
3794 |
|
|
entry and create needed relocs here. Since the
|
3795 |
|
|
offset must always be a multiple of 4, we use the
|
3796 |
|
|
least significant bit to record whether we have
|
3797 |
|
|
initialised it already. */
|
3798 |
|
|
if ((off & 1) != 0)
|
3799 |
|
|
off &= ~1;
|
3800 |
|
|
else
|
3801 |
|
|
{
|
3802 |
|
|
hh->eh.got.offset |= 1;
|
3803 |
|
|
do_got = 1;
|
3804 |
|
|
}
|
3805 |
|
|
}
|
3806 |
|
|
}
|
3807 |
|
|
else
|
3808 |
|
|
{
|
3809 |
|
|
/* Local symbol case. */
|
3810 |
|
|
if (local_got_offsets == NULL)
|
3811 |
|
|
abort ();
|
3812 |
|
|
|
3813 |
|
|
off = local_got_offsets[r_symndx];
|
3814 |
|
|
|
3815 |
|
|
/* The offset must always be a multiple of 4. We use
|
3816 |
|
|
the least significant bit to record whether we have
|
3817 |
|
|
already generated the necessary reloc. */
|
3818 |
|
|
if ((off & 1) != 0)
|
3819 |
|
|
off &= ~1;
|
3820 |
|
|
else
|
3821 |
|
|
{
|
3822 |
|
|
local_got_offsets[r_symndx] |= 1;
|
3823 |
|
|
do_got = 1;
|
3824 |
|
|
}
|
3825 |
|
|
}
|
3826 |
|
|
|
3827 |
|
|
if (do_got)
|
3828 |
|
|
{
|
3829 |
|
|
if (info->shared)
|
3830 |
|
|
{
|
3831 |
|
|
/* Output a dynamic relocation for this GOT entry.
|
3832 |
|
|
In this case it is relative to the base of the
|
3833 |
|
|
object because the symbol index is zero. */
|
3834 |
|
|
Elf_Internal_Rela outrel;
|
3835 |
|
|
bfd_byte *loc;
|
3836 |
|
|
asection *sec = htab->srelgot;
|
3837 |
|
|
|
3838 |
|
|
outrel.r_offset = (off
|
3839 |
|
|
+ htab->sgot->output_offset
|
3840 |
|
|
+ htab->sgot->output_section->vma);
|
3841 |
|
|
outrel.r_info = ELF32_R_INFO (0, R_PARISC_DIR32);
|
3842 |
|
|
outrel.r_addend = relocation;
|
3843 |
|
|
loc = sec->contents;
|
3844 |
|
|
loc += sec->reloc_count++ * sizeof (Elf32_External_Rela);
|
3845 |
|
|
bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
|
3846 |
|
|
}
|
3847 |
|
|
else
|
3848 |
|
|
bfd_put_32 (output_bfd, relocation,
|
3849 |
|
|
htab->sgot->contents + off);
|
3850 |
|
|
}
|
3851 |
|
|
|
3852 |
|
|
if (off >= (bfd_vma) -2)
|
3853 |
|
|
abort ();
|
3854 |
|
|
|
3855 |
|
|
/* Add the base of the GOT to the relocation value. */
|
3856 |
|
|
relocation = (off
|
3857 |
|
|
+ htab->sgot->output_offset
|
3858 |
|
|
+ htab->sgot->output_section->vma);
|
3859 |
|
|
}
|
3860 |
|
|
break;
|
3861 |
|
|
|
3862 |
|
|
case R_PARISC_SEGREL32:
|
3863 |
|
|
/* If this is the first SEGREL relocation, then initialize
|
3864 |
|
|
the segment base values. */
|
3865 |
|
|
if (htab->text_segment_base == (bfd_vma) -1)
|
3866 |
|
|
bfd_map_over_sections (output_bfd, hppa_record_segment_addr, htab);
|
3867 |
|
|
break;
|
3868 |
|
|
|
3869 |
|
|
case R_PARISC_PLABEL14R:
|
3870 |
|
|
case R_PARISC_PLABEL21L:
|
3871 |
|
|
case R_PARISC_PLABEL32:
|
3872 |
|
|
if (htab->etab.dynamic_sections_created)
|
3873 |
|
|
{
|
3874 |
|
|
bfd_vma off;
|
3875 |
|
|
bfd_boolean do_plt = 0;
|
3876 |
|
|
/* If we have a global symbol with a PLT slot, then
|
3877 |
|
|
redirect this relocation to it. */
|
3878 |
|
|
if (hh != NULL)
|
3879 |
|
|
{
|
3880 |
|
|
off = hh->eh.plt.offset;
|
3881 |
|
|
if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, info->shared,
|
3882 |
|
|
&hh->eh))
|
3883 |
|
|
{
|
3884 |
|
|
/* In a non-shared link, adjust_dynamic_symbols
|
3885 |
|
|
isn't called for symbols forced local. We
|
3886 |
|
|
need to write out the plt entry here. */
|
3887 |
|
|
if ((off & 1) != 0)
|
3888 |
|
|
off &= ~1;
|
3889 |
|
|
else
|
3890 |
|
|
{
|
3891 |
|
|
hh->eh.plt.offset |= 1;
|
3892 |
|
|
do_plt = 1;
|
3893 |
|
|
}
|
3894 |
|
|
}
|
3895 |
|
|
}
|
3896 |
|
|
else
|
3897 |
|
|
{
|
3898 |
|
|
bfd_vma *local_plt_offsets;
|
3899 |
|
|
|
3900 |
|
|
if (local_got_offsets == NULL)
|
3901 |
|
|
abort ();
|
3902 |
|
|
|
3903 |
|
|
local_plt_offsets = local_got_offsets + symtab_hdr->sh_info;
|
3904 |
|
|
off = local_plt_offsets[r_symndx];
|
3905 |
|
|
|
3906 |
|
|
/* As for the local .got entry case, we use the last
|
3907 |
|
|
bit to record whether we've already initialised
|
3908 |
|
|
this local .plt entry. */
|
3909 |
|
|
if ((off & 1) != 0)
|
3910 |
|
|
off &= ~1;
|
3911 |
|
|
else
|
3912 |
|
|
{
|
3913 |
|
|
local_plt_offsets[r_symndx] |= 1;
|
3914 |
|
|
do_plt = 1;
|
3915 |
|
|
}
|
3916 |
|
|
}
|
3917 |
|
|
|
3918 |
|
|
if (do_plt)
|
3919 |
|
|
{
|
3920 |
|
|
if (info->shared)
|
3921 |
|
|
{
|
3922 |
|
|
/* Output a dynamic IPLT relocation for this
|
3923 |
|
|
PLT entry. */
|
3924 |
|
|
Elf_Internal_Rela outrel;
|
3925 |
|
|
bfd_byte *loc;
|
3926 |
|
|
asection *s = htab->srelplt;
|
3927 |
|
|
|
3928 |
|
|
outrel.r_offset = (off
|
3929 |
|
|
+ htab->splt->output_offset
|
3930 |
|
|
+ htab->splt->output_section->vma);
|
3931 |
|
|
outrel.r_info = ELF32_R_INFO (0, R_PARISC_IPLT);
|
3932 |
|
|
outrel.r_addend = relocation;
|
3933 |
|
|
loc = s->contents;
|
3934 |
|
|
loc += s->reloc_count++ * sizeof (Elf32_External_Rela);
|
3935 |
|
|
bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
|
3936 |
|
|
}
|
3937 |
|
|
else
|
3938 |
|
|
{
|
3939 |
|
|
bfd_put_32 (output_bfd,
|
3940 |
|
|
relocation,
|
3941 |
|
|
htab->splt->contents + off);
|
3942 |
|
|
bfd_put_32 (output_bfd,
|
3943 |
|
|
elf_gp (htab->splt->output_section->owner),
|
3944 |
|
|
htab->splt->contents + off + 4);
|
3945 |
|
|
}
|
3946 |
|
|
}
|
3947 |
|
|
|
3948 |
|
|
if (off >= (bfd_vma) -2)
|
3949 |
|
|
abort ();
|
3950 |
|
|
|
3951 |
|
|
/* PLABELs contain function pointers. Relocation is to
|
3952 |
|
|
the entry for the function in the .plt. The magic +2
|
3953 |
|
|
offset signals to $$dyncall that the function pointer
|
3954 |
|
|
is in the .plt and thus has a gp pointer too.
|
3955 |
|
|
Exception: Undefined PLABELs should have a value of
|
3956 |
|
|
zero. */
|
3957 |
|
|
if (hh == NULL
|
3958 |
|
|
|| (hh->eh.root.type != bfd_link_hash_undefweak
|
3959 |
|
|
&& hh->eh.root.type != bfd_link_hash_undefined))
|
3960 |
|
|
{
|
3961 |
|
|
relocation = (off
|
3962 |
|
|
+ htab->splt->output_offset
|
3963 |
|
|
+ htab->splt->output_section->vma
|
3964 |
|
|
+ 2);
|
3965 |
|
|
}
|
3966 |
|
|
plabel = 1;
|
3967 |
|
|
}
|
3968 |
|
|
/* Fall through and possibly emit a dynamic relocation. */
|
3969 |
|
|
|
3970 |
|
|
case R_PARISC_DIR17F:
|
3971 |
|
|
case R_PARISC_DIR17R:
|
3972 |
|
|
case R_PARISC_DIR14F:
|
3973 |
|
|
case R_PARISC_DIR14R:
|
3974 |
|
|
case R_PARISC_DIR21L:
|
3975 |
|
|
case R_PARISC_DPREL14F:
|
3976 |
|
|
case R_PARISC_DPREL14R:
|
3977 |
|
|
case R_PARISC_DPREL21L:
|
3978 |
|
|
case R_PARISC_DIR32:
|
3979 |
|
|
if ((input_section->flags & SEC_ALLOC) == 0)
|
3980 |
|
|
break;
|
3981 |
|
|
|
3982 |
|
|
/* The reloc types handled here and this conditional
|
3983 |
|
|
expression must match the code in ..check_relocs and
|
3984 |
|
|
allocate_dynrelocs. ie. We need exactly the same condition
|
3985 |
|
|
as in ..check_relocs, with some extra conditions (dynindx
|
3986 |
|
|
test in this case) to cater for relocs removed by
|
3987 |
|
|
allocate_dynrelocs. If you squint, the non-shared test
|
3988 |
|
|
here does indeed match the one in ..check_relocs, the
|
3989 |
|
|
difference being that here we test DEF_DYNAMIC as well as
|
3990 |
|
|
!DEF_REGULAR. All common syms end up with !DEF_REGULAR,
|
3991 |
|
|
which is why we can't use just that test here.
|
3992 |
|
|
Conversely, DEF_DYNAMIC can't be used in check_relocs as
|
3993 |
|
|
there all files have not been loaded. */
|
3994 |
|
|
if ((info->shared
|
3995 |
|
|
&& (hh == NULL
|
3996 |
|
|
|| ELF_ST_VISIBILITY (hh->eh.other) == STV_DEFAULT
|
3997 |
|
|
|| hh->eh.root.type != bfd_link_hash_undefweak)
|
3998 |
|
|
&& (IS_ABSOLUTE_RELOC (r_type)
|
3999 |
|
|
|| !SYMBOL_CALLS_LOCAL (info, &hh->eh)))
|
4000 |
|
|
|| (!info->shared
|
4001 |
|
|
&& hh != NULL
|
4002 |
|
|
&& hh->eh.dynindx != -1
|
4003 |
|
|
&& !hh->eh.non_got_ref
|
4004 |
|
|
&& ((ELIMINATE_COPY_RELOCS
|
4005 |
|
|
&& hh->eh.def_dynamic
|
4006 |
|
|
&& !hh->eh.def_regular)
|
4007 |
|
|
|| hh->eh.root.type == bfd_link_hash_undefweak
|
4008 |
|
|
|| hh->eh.root.type == bfd_link_hash_undefined)))
|
4009 |
|
|
{
|
4010 |
|
|
Elf_Internal_Rela outrel;
|
4011 |
|
|
bfd_boolean skip;
|
4012 |
|
|
asection *sreloc;
|
4013 |
|
|
bfd_byte *loc;
|
4014 |
|
|
|
4015 |
|
|
/* When generating a shared object, these relocations
|
4016 |
|
|
are copied into the output file to be resolved at run
|
4017 |
|
|
time. */
|
4018 |
|
|
|
4019 |
|
|
outrel.r_addend = rela->r_addend;
|
4020 |
|
|
outrel.r_offset =
|
4021 |
|
|
_bfd_elf_section_offset (output_bfd, info, input_section,
|
4022 |
|
|
rela->r_offset);
|
4023 |
|
|
skip = (outrel.r_offset == (bfd_vma) -1
|
4024 |
|
|
|| outrel.r_offset == (bfd_vma) -2);
|
4025 |
|
|
outrel.r_offset += (input_section->output_offset
|
4026 |
|
|
+ input_section->output_section->vma);
|
4027 |
|
|
|
4028 |
|
|
if (skip)
|
4029 |
|
|
{
|
4030 |
|
|
memset (&outrel, 0, sizeof (outrel));
|
4031 |
|
|
}
|
4032 |
|
|
else if (hh != NULL
|
4033 |
|
|
&& hh->eh.dynindx != -1
|
4034 |
|
|
&& (plabel
|
4035 |
|
|
|| !IS_ABSOLUTE_RELOC (r_type)
|
4036 |
|
|
|| !info->shared
|
4037 |
|
|
|| !info->symbolic
|
4038 |
|
|
|| !hh->eh.def_regular))
|
4039 |
|
|
{
|
4040 |
|
|
outrel.r_info = ELF32_R_INFO (hh->eh.dynindx, r_type);
|
4041 |
|
|
}
|
4042 |
|
|
else /* It's a local symbol, or one marked to become local. */
|
4043 |
|
|
{
|
4044 |
|
|
int indx = 0;
|
4045 |
|
|
|
4046 |
|
|
/* Add the absolute offset of the symbol. */
|
4047 |
|
|
outrel.r_addend += relocation;
|
4048 |
|
|
|
4049 |
|
|
/* Global plabels need to be processed by the
|
4050 |
|
|
dynamic linker so that functions have at most one
|
4051 |
|
|
fptr. For this reason, we need to differentiate
|
4052 |
|
|
between global and local plabels, which we do by
|
4053 |
|
|
providing the function symbol for a global plabel
|
4054 |
|
|
reloc, and no symbol for local plabels. */
|
4055 |
|
|
if (! plabel
|
4056 |
|
|
&& sym_sec != NULL
|
4057 |
|
|
&& sym_sec->output_section != NULL
|
4058 |
|
|
&& ! bfd_is_abs_section (sym_sec))
|
4059 |
|
|
{
|
4060 |
|
|
asection *osec;
|
4061 |
|
|
|
4062 |
|
|
osec = sym_sec->output_section;
|
4063 |
|
|
indx = elf_section_data (osec)->dynindx;
|
4064 |
|
|
if (indx == 0)
|
4065 |
|
|
{
|
4066 |
|
|
osec = htab->etab.text_index_section;
|
4067 |
|
|
indx = elf_section_data (osec)->dynindx;
|
4068 |
|
|
}
|
4069 |
|
|
BFD_ASSERT (indx != 0);
|
4070 |
|
|
|
4071 |
|
|
/* We are turning this relocation into one
|
4072 |
|
|
against a section symbol, so subtract out the
|
4073 |
|
|
output section's address but not the offset
|
4074 |
|
|
of the input section in the output section. */
|
4075 |
|
|
outrel.r_addend -= osec->vma;
|
4076 |
|
|
}
|
4077 |
|
|
|
4078 |
|
|
outrel.r_info = ELF32_R_INFO (indx, r_type);
|
4079 |
|
|
}
|
4080 |
|
|
sreloc = elf_section_data (input_section)->sreloc;
|
4081 |
|
|
if (sreloc == NULL)
|
4082 |
|
|
abort ();
|
4083 |
|
|
|
4084 |
|
|
loc = sreloc->contents;
|
4085 |
|
|
loc += sreloc->reloc_count++ * sizeof (Elf32_External_Rela);
|
4086 |
|
|
bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
|
4087 |
|
|
}
|
4088 |
|
|
break;
|
4089 |
|
|
|
4090 |
|
|
case R_PARISC_TLS_LDM21L:
|
4091 |
|
|
case R_PARISC_TLS_LDM14R:
|
4092 |
|
|
{
|
4093 |
|
|
bfd_vma off;
|
4094 |
|
|
|
4095 |
|
|
off = htab->tls_ldm_got.offset;
|
4096 |
|
|
if (off & 1)
|
4097 |
|
|
off &= ~1;
|
4098 |
|
|
else
|
4099 |
|
|
{
|
4100 |
|
|
Elf_Internal_Rela outrel;
|
4101 |
|
|
bfd_byte *loc;
|
4102 |
|
|
|
4103 |
|
|
outrel.r_offset = (off
|
4104 |
|
|
+ htab->sgot->output_section->vma
|
4105 |
|
|
+ htab->sgot->output_offset);
|
4106 |
|
|
outrel.r_addend = 0;
|
4107 |
|
|
outrel.r_info = ELF32_R_INFO (0, R_PARISC_TLS_DTPMOD32);
|
4108 |
|
|
loc = htab->srelgot->contents;
|
4109 |
|
|
loc += htab->srelgot->reloc_count++ * sizeof (Elf32_External_Rela);
|
4110 |
|
|
|
4111 |
|
|
bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
|
4112 |
|
|
htab->tls_ldm_got.offset |= 1;
|
4113 |
|
|
}
|
4114 |
|
|
|
4115 |
|
|
/* Add the base of the GOT to the relocation value. */
|
4116 |
|
|
relocation = (off
|
4117 |
|
|
+ htab->sgot->output_offset
|
4118 |
|
|
+ htab->sgot->output_section->vma);
|
4119 |
|
|
|
4120 |
|
|
break;
|
4121 |
|
|
}
|
4122 |
|
|
|
4123 |
|
|
case R_PARISC_TLS_LDO21L:
|
4124 |
|
|
case R_PARISC_TLS_LDO14R:
|
4125 |
|
|
relocation -= dtpoff_base (info);
|
4126 |
|
|
break;
|
4127 |
|
|
|
4128 |
|
|
case R_PARISC_TLS_GD21L:
|
4129 |
|
|
case R_PARISC_TLS_GD14R:
|
4130 |
|
|
case R_PARISC_TLS_IE21L:
|
4131 |
|
|
case R_PARISC_TLS_IE14R:
|
4132 |
|
|
{
|
4133 |
|
|
bfd_vma off;
|
4134 |
|
|
int indx;
|
4135 |
|
|
char tls_type;
|
4136 |
|
|
|
4137 |
|
|
indx = 0;
|
4138 |
|
|
if (hh != NULL)
|
4139 |
|
|
{
|
4140 |
|
|
bfd_boolean dyn;
|
4141 |
|
|
dyn = htab->etab.dynamic_sections_created;
|
4142 |
|
|
|
4143 |
|
|
if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, &hh->eh)
|
4144 |
|
|
&& (!info->shared
|
4145 |
|
|
|| !SYMBOL_REFERENCES_LOCAL (info, &hh->eh)))
|
4146 |
|
|
{
|
4147 |
|
|
indx = hh->eh.dynindx;
|
4148 |
|
|
}
|
4149 |
|
|
off = hh->eh.got.offset;
|
4150 |
|
|
tls_type = hh->tls_type;
|
4151 |
|
|
}
|
4152 |
|
|
else
|
4153 |
|
|
{
|
4154 |
|
|
off = local_got_offsets[r_symndx];
|
4155 |
|
|
tls_type = hppa_elf_local_got_tls_type (input_bfd)[r_symndx];
|
4156 |
|
|
}
|
4157 |
|
|
|
4158 |
|
|
if (tls_type == GOT_UNKNOWN)
|
4159 |
|
|
abort ();
|
4160 |
|
|
|
4161 |
|
|
if ((off & 1) != 0)
|
4162 |
|
|
off &= ~1;
|
4163 |
|
|
else
|
4164 |
|
|
{
|
4165 |
|
|
bfd_boolean need_relocs = FALSE;
|
4166 |
|
|
Elf_Internal_Rela outrel;
|
4167 |
|
|
bfd_byte *loc = NULL;
|
4168 |
|
|
int cur_off = off;
|
4169 |
|
|
|
4170 |
|
|
/* The GOT entries have not been initialized yet. Do it
|
4171 |
|
|
now, and emit any relocations. If both an IE GOT and a
|
4172 |
|
|
GD GOT are necessary, we emit the GD first. */
|
4173 |
|
|
|
4174 |
|
|
if ((info->shared || indx != 0)
|
4175 |
|
|
&& (hh == NULL
|
4176 |
|
|
|| ELF_ST_VISIBILITY (hh->eh.other) == STV_DEFAULT
|
4177 |
|
|
|| hh->eh.root.type != bfd_link_hash_undefweak))
|
4178 |
|
|
{
|
4179 |
|
|
need_relocs = TRUE;
|
4180 |
|
|
loc = htab->srelgot->contents;
|
4181 |
|
|
/* FIXME (CAO): Should this be reloc_count++ ? */
|
4182 |
|
|
loc += htab->srelgot->reloc_count * sizeof (Elf32_External_Rela);
|
4183 |
|
|
}
|
4184 |
|
|
|
4185 |
|
|
if (tls_type & GOT_TLS_GD)
|
4186 |
|
|
{
|
4187 |
|
|
if (need_relocs)
|
4188 |
|
|
{
|
4189 |
|
|
outrel.r_offset = (cur_off
|
4190 |
|
|
+ htab->sgot->output_section->vma
|
4191 |
|
|
+ htab->sgot->output_offset);
|
4192 |
|
|
outrel.r_info = ELF32_R_INFO (indx,R_PARISC_TLS_DTPMOD32);
|
4193 |
|
|
outrel.r_addend = 0;
|
4194 |
|
|
bfd_put_32 (output_bfd, 0, htab->sgot->contents + cur_off);
|
4195 |
|
|
bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
|
4196 |
|
|
htab->srelgot->reloc_count++;
|
4197 |
|
|
loc += sizeof (Elf32_External_Rela);
|
4198 |
|
|
|
4199 |
|
|
if (indx == 0)
|
4200 |
|
|
bfd_put_32 (output_bfd, relocation - dtpoff_base (info),
|
4201 |
|
|
htab->sgot->contents + cur_off + 4);
|
4202 |
|
|
else
|
4203 |
|
|
{
|
4204 |
|
|
bfd_put_32 (output_bfd, 0,
|
4205 |
|
|
htab->sgot->contents + cur_off + 4);
|
4206 |
|
|
outrel.r_info = ELF32_R_INFO (indx, R_PARISC_TLS_DTPOFF32);
|
4207 |
|
|
outrel.r_offset += 4;
|
4208 |
|
|
bfd_elf32_swap_reloca_out (output_bfd, &outrel,loc);
|
4209 |
|
|
htab->srelgot->reloc_count++;
|
4210 |
|
|
loc += sizeof (Elf32_External_Rela);
|
4211 |
|
|
}
|
4212 |
|
|
}
|
4213 |
|
|
else
|
4214 |
|
|
{
|
4215 |
|
|
/* If we are not emitting relocations for a
|
4216 |
|
|
general dynamic reference, then we must be in a
|
4217 |
|
|
static link or an executable link with the
|
4218 |
|
|
symbol binding locally. Mark it as belonging
|
4219 |
|
|
to module 1, the executable. */
|
4220 |
|
|
bfd_put_32 (output_bfd, 1,
|
4221 |
|
|
htab->sgot->contents + cur_off);
|
4222 |
|
|
bfd_put_32 (output_bfd, relocation - dtpoff_base (info),
|
4223 |
|
|
htab->sgot->contents + cur_off + 4);
|
4224 |
|
|
}
|
4225 |
|
|
|
4226 |
|
|
|
4227 |
|
|
cur_off += 8;
|
4228 |
|
|
}
|
4229 |
|
|
|
4230 |
|
|
if (tls_type & GOT_TLS_IE)
|
4231 |
|
|
{
|
4232 |
|
|
if (need_relocs)
|
4233 |
|
|
{
|
4234 |
|
|
outrel.r_offset = (cur_off
|
4235 |
|
|
+ htab->sgot->output_section->vma
|
4236 |
|
|
+ htab->sgot->output_offset);
|
4237 |
|
|
outrel.r_info = ELF32_R_INFO (indx, R_PARISC_TLS_TPREL32);
|
4238 |
|
|
|
4239 |
|
|
if (indx == 0)
|
4240 |
|
|
outrel.r_addend = relocation - dtpoff_base (info);
|
4241 |
|
|
else
|
4242 |
|
|
outrel.r_addend = 0;
|
4243 |
|
|
|
4244 |
|
|
bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
|
4245 |
|
|
htab->srelgot->reloc_count++;
|
4246 |
|
|
loc += sizeof (Elf32_External_Rela);
|
4247 |
|
|
}
|
4248 |
|
|
else
|
4249 |
|
|
bfd_put_32 (output_bfd, tpoff (info, relocation),
|
4250 |
|
|
htab->sgot->contents + cur_off);
|
4251 |
|
|
|
4252 |
|
|
cur_off += 4;
|
4253 |
|
|
}
|
4254 |
|
|
|
4255 |
|
|
if (hh != NULL)
|
4256 |
|
|
hh->eh.got.offset |= 1;
|
4257 |
|
|
else
|
4258 |
|
|
local_got_offsets[r_symndx] |= 1;
|
4259 |
|
|
}
|
4260 |
|
|
|
4261 |
|
|
if ((tls_type & GOT_TLS_GD)
|
4262 |
|
|
&& r_type != R_PARISC_TLS_GD21L
|
4263 |
|
|
&& r_type != R_PARISC_TLS_GD14R)
|
4264 |
|
|
off += 2 * GOT_ENTRY_SIZE;
|
4265 |
|
|
|
4266 |
|
|
/* Add the base of the GOT to the relocation value. */
|
4267 |
|
|
relocation = (off
|
4268 |
|
|
+ htab->sgot->output_offset
|
4269 |
|
|
+ htab->sgot->output_section->vma);
|
4270 |
|
|
|
4271 |
|
|
break;
|
4272 |
|
|
}
|
4273 |
|
|
|
4274 |
|
|
case R_PARISC_TLS_LE21L:
|
4275 |
|
|
case R_PARISC_TLS_LE14R:
|
4276 |
|
|
{
|
4277 |
|
|
relocation = tpoff (info, relocation);
|
4278 |
|
|
break;
|
4279 |
|
|
}
|
4280 |
|
|
break;
|
4281 |
|
|
|
4282 |
|
|
default:
|
4283 |
|
|
break;
|
4284 |
|
|
}
|
4285 |
|
|
|
4286 |
|
|
rstatus = final_link_relocate (input_section, contents, rela, relocation,
|
4287 |
|
|
htab, sym_sec, hh, info);
|
4288 |
|
|
|
4289 |
|
|
if (rstatus == bfd_reloc_ok)
|
4290 |
|
|
continue;
|
4291 |
|
|
|
4292 |
|
|
if (hh != NULL)
|
4293 |
|
|
sym_name = hh_name (hh);
|
4294 |
|
|
else
|
4295 |
|
|
{
|
4296 |
|
|
sym_name = bfd_elf_string_from_elf_section (input_bfd,
|
4297 |
|
|
symtab_hdr->sh_link,
|
4298 |
|
|
sym->st_name);
|
4299 |
|
|
if (sym_name == NULL)
|
4300 |
|
|
return FALSE;
|
4301 |
|
|
if (*sym_name == '\0')
|
4302 |
|
|
sym_name = bfd_section_name (input_bfd, sym_sec);
|
4303 |
|
|
}
|
4304 |
|
|
|
4305 |
|
|
howto = elf_hppa_howto_table + r_type;
|
4306 |
|
|
|
4307 |
|
|
if (rstatus == bfd_reloc_undefined || rstatus == bfd_reloc_notsupported)
|
4308 |
|
|
{
|
4309 |
|
|
if (rstatus == bfd_reloc_notsupported || !warned_undef)
|
4310 |
|
|
{
|
4311 |
|
|
(*_bfd_error_handler)
|
4312 |
|
|
(_("%B(%A+0x%lx): cannot handle %s for %s"),
|
4313 |
|
|
input_bfd,
|
4314 |
|
|
input_section,
|
4315 |
|
|
(long) rela->r_offset,
|
4316 |
|
|
howto->name,
|
4317 |
|
|
sym_name);
|
4318 |
|
|
bfd_set_error (bfd_error_bad_value);
|
4319 |
|
|
return FALSE;
|
4320 |
|
|
}
|
4321 |
|
|
}
|
4322 |
|
|
else
|
4323 |
|
|
{
|
4324 |
|
|
if (!((*info->callbacks->reloc_overflow)
|
4325 |
|
|
(info, (hh ? &hh->eh.root : NULL), sym_name, howto->name,
|
4326 |
|
|
(bfd_vma) 0, input_bfd, input_section, rela->r_offset)))
|
4327 |
|
|
return FALSE;
|
4328 |
|
|
}
|
4329 |
|
|
}
|
4330 |
|
|
|
4331 |
|
|
return TRUE;
|
4332 |
|
|
}
|
4333 |
|
|
|
4334 |
|
|
/* Finish up dynamic symbol handling. We set the contents of various
|
4335 |
|
|
dynamic sections here. */
|
4336 |
|
|
|
4337 |
|
|
static bfd_boolean
|
4338 |
|
|
elf32_hppa_finish_dynamic_symbol (bfd *output_bfd,
|
4339 |
|
|
struct bfd_link_info *info,
|
4340 |
|
|
struct elf_link_hash_entry *eh,
|
4341 |
|
|
Elf_Internal_Sym *sym)
|
4342 |
|
|
{
|
4343 |
|
|
struct elf32_hppa_link_hash_table *htab;
|
4344 |
|
|
Elf_Internal_Rela rela;
|
4345 |
|
|
bfd_byte *loc;
|
4346 |
|
|
|
4347 |
|
|
htab = hppa_link_hash_table (info);
|
4348 |
|
|
if (htab == NULL)
|
4349 |
|
|
return FALSE;
|
4350 |
|
|
|
4351 |
|
|
if (eh->plt.offset != (bfd_vma) -1)
|
4352 |
|
|
{
|
4353 |
|
|
bfd_vma value;
|
4354 |
|
|
|
4355 |
|
|
if (eh->plt.offset & 1)
|
4356 |
|
|
abort ();
|
4357 |
|
|
|
4358 |
|
|
/* This symbol has an entry in the procedure linkage table. Set
|
4359 |
|
|
it up.
|
4360 |
|
|
|
4361 |
|
|
The format of a plt entry is
|
4362 |
|
|
<funcaddr>
|
4363 |
|
|
<__gp>
|
4364 |
|
|
*/
|
4365 |
|
|
value = 0;
|
4366 |
|
|
if (eh->root.type == bfd_link_hash_defined
|
4367 |
|
|
|| eh->root.type == bfd_link_hash_defweak)
|
4368 |
|
|
{
|
4369 |
|
|
value = eh->root.u.def.value;
|
4370 |
|
|
if (eh->root.u.def.section->output_section != NULL)
|
4371 |
|
|
value += (eh->root.u.def.section->output_offset
|
4372 |
|
|
+ eh->root.u.def.section->output_section->vma);
|
4373 |
|
|
}
|
4374 |
|
|
|
4375 |
|
|
/* Create a dynamic IPLT relocation for this entry. */
|
4376 |
|
|
rela.r_offset = (eh->plt.offset
|
4377 |
|
|
+ htab->splt->output_offset
|
4378 |
|
|
+ htab->splt->output_section->vma);
|
4379 |
|
|
if (eh->dynindx != -1)
|
4380 |
|
|
{
|
4381 |
|
|
rela.r_info = ELF32_R_INFO (eh->dynindx, R_PARISC_IPLT);
|
4382 |
|
|
rela.r_addend = 0;
|
4383 |
|
|
}
|
4384 |
|
|
else
|
4385 |
|
|
{
|
4386 |
|
|
/* This symbol has been marked to become local, and is
|
4387 |
|
|
used by a plabel so must be kept in the .plt. */
|
4388 |
|
|
rela.r_info = ELF32_R_INFO (0, R_PARISC_IPLT);
|
4389 |
|
|
rela.r_addend = value;
|
4390 |
|
|
}
|
4391 |
|
|
|
4392 |
|
|
loc = htab->srelplt->contents;
|
4393 |
|
|
loc += htab->srelplt->reloc_count++ * sizeof (Elf32_External_Rela);
|
4394 |
|
|
bfd_elf32_swap_reloca_out (htab->splt->output_section->owner, &rela, loc);
|
4395 |
|
|
|
4396 |
|
|
if (!eh->def_regular)
|
4397 |
|
|
{
|
4398 |
|
|
/* Mark the symbol as undefined, rather than as defined in
|
4399 |
|
|
the .plt section. Leave the value alone. */
|
4400 |
|
|
sym->st_shndx = SHN_UNDEF;
|
4401 |
|
|
}
|
4402 |
|
|
}
|
4403 |
|
|
|
4404 |
|
|
if (eh->got.offset != (bfd_vma) -1
|
4405 |
|
|
&& (hppa_elf_hash_entry (eh)->tls_type & GOT_TLS_GD) == 0
|
4406 |
|
|
&& (hppa_elf_hash_entry (eh)->tls_type & GOT_TLS_IE) == 0)
|
4407 |
|
|
{
|
4408 |
|
|
/* This symbol has an entry in the global offset table. Set it
|
4409 |
|
|
up. */
|
4410 |
|
|
|
4411 |
|
|
rela.r_offset = ((eh->got.offset &~ (bfd_vma) 1)
|
4412 |
|
|
+ htab->sgot->output_offset
|
4413 |
|
|
+ htab->sgot->output_section->vma);
|
4414 |
|
|
|
4415 |
|
|
/* If this is a -Bsymbolic link and the symbol is defined
|
4416 |
|
|
locally or was forced to be local because of a version file,
|
4417 |
|
|
we just want to emit a RELATIVE reloc. The entry in the
|
4418 |
|
|
global offset table will already have been initialized in the
|
4419 |
|
|
relocate_section function. */
|
4420 |
|
|
if (info->shared
|
4421 |
|
|
&& (info->symbolic || eh->dynindx == -1)
|
4422 |
|
|
&& eh->def_regular)
|
4423 |
|
|
{
|
4424 |
|
|
rela.r_info = ELF32_R_INFO (0, R_PARISC_DIR32);
|
4425 |
|
|
rela.r_addend = (eh->root.u.def.value
|
4426 |
|
|
+ eh->root.u.def.section->output_offset
|
4427 |
|
|
+ eh->root.u.def.section->output_section->vma);
|
4428 |
|
|
}
|
4429 |
|
|
else
|
4430 |
|
|
{
|
4431 |
|
|
if ((eh->got.offset & 1) != 0)
|
4432 |
|
|
abort ();
|
4433 |
|
|
|
4434 |
|
|
bfd_put_32 (output_bfd, 0, htab->sgot->contents + (eh->got.offset & ~1));
|
4435 |
|
|
rela.r_info = ELF32_R_INFO (eh->dynindx, R_PARISC_DIR32);
|
4436 |
|
|
rela.r_addend = 0;
|
4437 |
|
|
}
|
4438 |
|
|
|
4439 |
|
|
loc = htab->srelgot->contents;
|
4440 |
|
|
loc += htab->srelgot->reloc_count++ * sizeof (Elf32_External_Rela);
|
4441 |
|
|
bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
|
4442 |
|
|
}
|
4443 |
|
|
|
4444 |
|
|
if (eh->needs_copy)
|
4445 |
|
|
{
|
4446 |
|
|
asection *sec;
|
4447 |
|
|
|
4448 |
|
|
/* This symbol needs a copy reloc. Set it up. */
|
4449 |
|
|
|
4450 |
|
|
if (! (eh->dynindx != -1
|
4451 |
|
|
&& (eh->root.type == bfd_link_hash_defined
|
4452 |
|
|
|| eh->root.type == bfd_link_hash_defweak)))
|
4453 |
|
|
abort ();
|
4454 |
|
|
|
4455 |
|
|
sec = htab->srelbss;
|
4456 |
|
|
|
4457 |
|
|
rela.r_offset = (eh->root.u.def.value
|
4458 |
|
|
+ eh->root.u.def.section->output_offset
|
4459 |
|
|
+ eh->root.u.def.section->output_section->vma);
|
4460 |
|
|
rela.r_addend = 0;
|
4461 |
|
|
rela.r_info = ELF32_R_INFO (eh->dynindx, R_PARISC_COPY);
|
4462 |
|
|
loc = sec->contents + sec->reloc_count++ * sizeof (Elf32_External_Rela);
|
4463 |
|
|
bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
|
4464 |
|
|
}
|
4465 |
|
|
|
4466 |
|
|
/* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
|
4467 |
|
|
if (eh_name (eh)[0] == '_'
|
4468 |
|
|
&& (strcmp (eh_name (eh), "_DYNAMIC") == 0
|
4469 |
|
|
|| eh == htab->etab.hgot))
|
4470 |
|
|
{
|
4471 |
|
|
sym->st_shndx = SHN_ABS;
|
4472 |
|
|
}
|
4473 |
|
|
|
4474 |
|
|
return TRUE;
|
4475 |
|
|
}
|
4476 |
|
|
|
4477 |
|
|
/* Used to decide how to sort relocs in an optimal manner for the
|
4478 |
|
|
dynamic linker, before writing them out. */
|
4479 |
|
|
|
4480 |
|
|
static enum elf_reloc_type_class
|
4481 |
|
|
elf32_hppa_reloc_type_class (const Elf_Internal_Rela *rela)
|
4482 |
|
|
{
|
4483 |
|
|
/* Handle TLS relocs first; we don't want them to be marked
|
4484 |
|
|
relative by the "if (ELF32_R_SYM (rela->r_info) == 0)"
|
4485 |
|
|
check below. */
|
4486 |
|
|
switch ((int) ELF32_R_TYPE (rela->r_info))
|
4487 |
|
|
{
|
4488 |
|
|
case R_PARISC_TLS_DTPMOD32:
|
4489 |
|
|
case R_PARISC_TLS_DTPOFF32:
|
4490 |
|
|
case R_PARISC_TLS_TPREL32:
|
4491 |
|
|
return reloc_class_normal;
|
4492 |
|
|
}
|
4493 |
|
|
|
4494 |
|
|
if (ELF32_R_SYM (rela->r_info) == 0)
|
4495 |
|
|
return reloc_class_relative;
|
4496 |
|
|
|
4497 |
|
|
switch ((int) ELF32_R_TYPE (rela->r_info))
|
4498 |
|
|
{
|
4499 |
|
|
case R_PARISC_IPLT:
|
4500 |
|
|
return reloc_class_plt;
|
4501 |
|
|
case R_PARISC_COPY:
|
4502 |
|
|
return reloc_class_copy;
|
4503 |
|
|
default:
|
4504 |
|
|
return reloc_class_normal;
|
4505 |
|
|
}
|
4506 |
|
|
}
|
4507 |
|
|
|
4508 |
|
|
/* Finish up the dynamic sections. */
|
4509 |
|
|
|
4510 |
|
|
static bfd_boolean
|
4511 |
|
|
elf32_hppa_finish_dynamic_sections (bfd *output_bfd,
|
4512 |
|
|
struct bfd_link_info *info)
|
4513 |
|
|
{
|
4514 |
|
|
bfd *dynobj;
|
4515 |
|
|
struct elf32_hppa_link_hash_table *htab;
|
4516 |
|
|
asection *sdyn;
|
4517 |
|
|
|
4518 |
|
|
htab = hppa_link_hash_table (info);
|
4519 |
|
|
if (htab == NULL)
|
4520 |
|
|
return FALSE;
|
4521 |
|
|
|
4522 |
|
|
dynobj = htab->etab.dynobj;
|
4523 |
|
|
|
4524 |
|
|
sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
|
4525 |
|
|
|
4526 |
|
|
if (htab->etab.dynamic_sections_created)
|
4527 |
|
|
{
|
4528 |
|
|
Elf32_External_Dyn *dyncon, *dynconend;
|
4529 |
|
|
|
4530 |
|
|
if (sdyn == NULL)
|
4531 |
|
|
abort ();
|
4532 |
|
|
|
4533 |
|
|
dyncon = (Elf32_External_Dyn *) sdyn->contents;
|
4534 |
|
|
dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
|
4535 |
|
|
for (; dyncon < dynconend; dyncon++)
|
4536 |
|
|
{
|
4537 |
|
|
Elf_Internal_Dyn dyn;
|
4538 |
|
|
asection *s;
|
4539 |
|
|
|
4540 |
|
|
bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
|
4541 |
|
|
|
4542 |
|
|
switch (dyn.d_tag)
|
4543 |
|
|
{
|
4544 |
|
|
default:
|
4545 |
|
|
continue;
|
4546 |
|
|
|
4547 |
|
|
case DT_PLTGOT:
|
4548 |
|
|
/* Use PLTGOT to set the GOT register. */
|
4549 |
|
|
dyn.d_un.d_ptr = elf_gp (output_bfd);
|
4550 |
|
|
break;
|
4551 |
|
|
|
4552 |
|
|
case DT_JMPREL:
|
4553 |
|
|
s = htab->srelplt;
|
4554 |
|
|
dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
|
4555 |
|
|
break;
|
4556 |
|
|
|
4557 |
|
|
case DT_PLTRELSZ:
|
4558 |
|
|
s = htab->srelplt;
|
4559 |
|
|
dyn.d_un.d_val = s->size;
|
4560 |
|
|
break;
|
4561 |
|
|
|
4562 |
|
|
case DT_RELASZ:
|
4563 |
|
|
/* Don't count procedure linkage table relocs in the
|
4564 |
|
|
overall reloc count. */
|
4565 |
|
|
s = htab->srelplt;
|
4566 |
|
|
if (s == NULL)
|
4567 |
|
|
continue;
|
4568 |
|
|
dyn.d_un.d_val -= s->size;
|
4569 |
|
|
break;
|
4570 |
|
|
|
4571 |
|
|
case DT_RELA:
|
4572 |
|
|
/* We may not be using the standard ELF linker script.
|
4573 |
|
|
If .rela.plt is the first .rela section, we adjust
|
4574 |
|
|
DT_RELA to not include it. */
|
4575 |
|
|
s = htab->srelplt;
|
4576 |
|
|
if (s == NULL)
|
4577 |
|
|
continue;
|
4578 |
|
|
if (dyn.d_un.d_ptr != s->output_section->vma + s->output_offset)
|
4579 |
|
|
continue;
|
4580 |
|
|
dyn.d_un.d_ptr += s->size;
|
4581 |
|
|
break;
|
4582 |
|
|
}
|
4583 |
|
|
|
4584 |
|
|
bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
|
4585 |
|
|
}
|
4586 |
|
|
}
|
4587 |
|
|
|
4588 |
|
|
if (htab->sgot != NULL && htab->sgot->size != 0)
|
4589 |
|
|
{
|
4590 |
|
|
/* Fill in the first entry in the global offset table.
|
4591 |
|
|
We use it to point to our dynamic section, if we have one. */
|
4592 |
|
|
bfd_put_32 (output_bfd,
|
4593 |
|
|
sdyn ? sdyn->output_section->vma + sdyn->output_offset : 0,
|
4594 |
|
|
htab->sgot->contents);
|
4595 |
|
|
|
4596 |
|
|
/* The second entry is reserved for use by the dynamic linker. */
|
4597 |
|
|
memset (htab->sgot->contents + GOT_ENTRY_SIZE, 0, GOT_ENTRY_SIZE);
|
4598 |
|
|
|
4599 |
|
|
/* Set .got entry size. */
|
4600 |
|
|
elf_section_data (htab->sgot->output_section)
|
4601 |
|
|
->this_hdr.sh_entsize = GOT_ENTRY_SIZE;
|
4602 |
|
|
}
|
4603 |
|
|
|
4604 |
|
|
if (htab->splt != NULL && htab->splt->size != 0)
|
4605 |
|
|
{
|
4606 |
|
|
/* Set plt entry size. */
|
4607 |
|
|
elf_section_data (htab->splt->output_section)
|
4608 |
|
|
->this_hdr.sh_entsize = PLT_ENTRY_SIZE;
|
4609 |
|
|
|
4610 |
|
|
if (htab->need_plt_stub)
|
4611 |
|
|
{
|
4612 |
|
|
/* Set up the .plt stub. */
|
4613 |
|
|
memcpy (htab->splt->contents
|
4614 |
|
|
+ htab->splt->size - sizeof (plt_stub),
|
4615 |
|
|
plt_stub, sizeof (plt_stub));
|
4616 |
|
|
|
4617 |
|
|
if ((htab->splt->output_offset
|
4618 |
|
|
+ htab->splt->output_section->vma
|
4619 |
|
|
+ htab->splt->size)
|
4620 |
|
|
!= (htab->sgot->output_offset
|
4621 |
|
|
+ htab->sgot->output_section->vma))
|
4622 |
|
|
{
|
4623 |
|
|
(*_bfd_error_handler)
|
4624 |
|
|
(_(".got section not immediately after .plt section"));
|
4625 |
|
|
return FALSE;
|
4626 |
|
|
}
|
4627 |
|
|
}
|
4628 |
|
|
}
|
4629 |
|
|
|
4630 |
|
|
return TRUE;
|
4631 |
|
|
}
|
4632 |
|
|
|
4633 |
|
|
/* Called when writing out an object file to decide the type of a
|
4634 |
|
|
symbol. */
|
4635 |
|
|
static int
|
4636 |
|
|
elf32_hppa_elf_get_symbol_type (Elf_Internal_Sym *elf_sym, int type)
|
4637 |
|
|
{
|
4638 |
|
|
if (ELF_ST_TYPE (elf_sym->st_info) == STT_PARISC_MILLI)
|
4639 |
|
|
return STT_PARISC_MILLI;
|
4640 |
|
|
else
|
4641 |
|
|
return type;
|
4642 |
|
|
}
|
4643 |
|
|
|
4644 |
|
|
/* Misc BFD support code. */
|
4645 |
|
|
#define bfd_elf32_bfd_is_local_label_name elf_hppa_is_local_label_name
|
4646 |
|
|
#define bfd_elf32_bfd_reloc_type_lookup elf_hppa_reloc_type_lookup
|
4647 |
|
|
#define bfd_elf32_bfd_reloc_name_lookup elf_hppa_reloc_name_lookup
|
4648 |
|
|
#define elf_info_to_howto elf_hppa_info_to_howto
|
4649 |
|
|
#define elf_info_to_howto_rel elf_hppa_info_to_howto_rel
|
4650 |
|
|
|
4651 |
|
|
/* Stuff for the BFD linker. */
|
4652 |
|
|
#define bfd_elf32_mkobject elf32_hppa_mkobject
|
4653 |
|
|
#define bfd_elf32_bfd_final_link elf32_hppa_final_link
|
4654 |
|
|
#define bfd_elf32_bfd_link_hash_table_create elf32_hppa_link_hash_table_create
|
4655 |
|
|
#define bfd_elf32_bfd_link_hash_table_free elf32_hppa_link_hash_table_free
|
4656 |
|
|
#define elf_backend_adjust_dynamic_symbol elf32_hppa_adjust_dynamic_symbol
|
4657 |
|
|
#define elf_backend_copy_indirect_symbol elf32_hppa_copy_indirect_symbol
|
4658 |
|
|
#define elf_backend_check_relocs elf32_hppa_check_relocs
|
4659 |
|
|
#define elf_backend_create_dynamic_sections elf32_hppa_create_dynamic_sections
|
4660 |
|
|
#define elf_backend_fake_sections elf_hppa_fake_sections
|
4661 |
|
|
#define elf_backend_relocate_section elf32_hppa_relocate_section
|
4662 |
|
|
#define elf_backend_hide_symbol elf32_hppa_hide_symbol
|
4663 |
|
|
#define elf_backend_finish_dynamic_symbol elf32_hppa_finish_dynamic_symbol
|
4664 |
|
|
#define elf_backend_finish_dynamic_sections elf32_hppa_finish_dynamic_sections
|
4665 |
|
|
#define elf_backend_size_dynamic_sections elf32_hppa_size_dynamic_sections
|
4666 |
|
|
#define elf_backend_init_index_section _bfd_elf_init_1_index_section
|
4667 |
|
|
#define elf_backend_gc_mark_hook elf32_hppa_gc_mark_hook
|
4668 |
|
|
#define elf_backend_gc_sweep_hook elf32_hppa_gc_sweep_hook
|
4669 |
|
|
#define elf_backend_grok_prstatus elf32_hppa_grok_prstatus
|
4670 |
|
|
#define elf_backend_grok_psinfo elf32_hppa_grok_psinfo
|
4671 |
|
|
#define elf_backend_object_p elf32_hppa_object_p
|
4672 |
|
|
#define elf_backend_final_write_processing elf_hppa_final_write_processing
|
4673 |
|
|
#define elf_backend_post_process_headers _bfd_elf_set_osabi
|
4674 |
|
|
#define elf_backend_get_symbol_type elf32_hppa_elf_get_symbol_type
|
4675 |
|
|
#define elf_backend_reloc_type_class elf32_hppa_reloc_type_class
|
4676 |
|
|
#define elf_backend_action_discarded elf_hppa_action_discarded
|
4677 |
|
|
|
4678 |
|
|
#define elf_backend_can_gc_sections 1
|
4679 |
|
|
#define elf_backend_can_refcount 1
|
4680 |
|
|
#define elf_backend_plt_alignment 2
|
4681 |
|
|
#define elf_backend_want_got_plt 0
|
4682 |
|
|
#define elf_backend_plt_readonly 0
|
4683 |
|
|
#define elf_backend_want_plt_sym 0
|
4684 |
|
|
#define elf_backend_got_header_size 8
|
4685 |
|
|
#define elf_backend_rela_normal 1
|
4686 |
|
|
|
4687 |
|
|
#define TARGET_BIG_SYM bfd_elf32_hppa_vec
|
4688 |
|
|
#define TARGET_BIG_NAME "elf32-hppa"
|
4689 |
|
|
#define ELF_ARCH bfd_arch_hppa
|
4690 |
|
|
#define ELF_MACHINE_CODE EM_PARISC
|
4691 |
|
|
#define ELF_MAXPAGESIZE 0x1000
|
4692 |
|
|
#define ELF_OSABI ELFOSABI_HPUX
|
4693 |
|
|
#define elf32_bed elf32_hppa_hpux_bed
|
4694 |
|
|
|
4695 |
|
|
#include "elf32-target.h"
|
4696 |
|
|
|
4697 |
|
|
#undef TARGET_BIG_SYM
|
4698 |
|
|
#define TARGET_BIG_SYM bfd_elf32_hppa_linux_vec
|
4699 |
|
|
#undef TARGET_BIG_NAME
|
4700 |
|
|
#define TARGET_BIG_NAME "elf32-hppa-linux"
|
4701 |
|
|
#undef ELF_OSABI
|
4702 |
|
|
#define ELF_OSABI ELFOSABI_LINUX
|
4703 |
|
|
#undef elf32_bed
|
4704 |
|
|
#define elf32_bed elf32_hppa_linux_bed
|
4705 |
|
|
|
4706 |
|
|
#include "elf32-target.h"
|
4707 |
|
|
|
4708 |
|
|
#undef TARGET_BIG_SYM
|
4709 |
|
|
#define TARGET_BIG_SYM bfd_elf32_hppa_nbsd_vec
|
4710 |
|
|
#undef TARGET_BIG_NAME
|
4711 |
|
|
#define TARGET_BIG_NAME "elf32-hppa-netbsd"
|
4712 |
|
|
#undef ELF_OSABI
|
4713 |
|
|
#define ELF_OSABI ELFOSABI_NETBSD
|
4714 |
|
|
#undef elf32_bed
|
4715 |
|
|
#define elf32_bed elf32_hppa_netbsd_bed
|
4716 |
|
|
|
4717 |
|
|
#include "elf32-target.h"
|