OpenCores
URL https://opencores.org/ocsvn/openrisc_me/openrisc_me/trunk

Subversion Repositories openrisc_me

[/] [openrisc/] [trunk/] [gnu-src/] [gdb-7.2/] [gdb/] [ada-lang.c] - Blame information for rev 474

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 330 jeremybenn
/* Ada language support routines for GDB, the GNU debugger.  Copyright (C)
2
 
3
   1992, 1993, 1994, 1997, 1998, 1999, 2000, 2003, 2004, 2005, 2007, 2008,
4
   2009 Free Software Foundation, Inc.
5
 
6
   This file is part of GDB.
7
 
8
   This program is free software; you can redistribute it and/or modify
9
   it under the terms of the GNU General Public License as published by
10
   the Free Software Foundation; either version 3 of the License, or
11
   (at your option) any later version.
12
 
13
   This program is distributed in the hope that it will be useful,
14
   but WITHOUT ANY WARRANTY; without even the implied warranty of
15
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16
   GNU General Public License for more details.
17
 
18
   You should have received a copy of the GNU General Public License
19
   along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
20
 
21
 
22
#include "defs.h"
23
#include <stdio.h>
24
#include "gdb_string.h"
25
#include <ctype.h>
26
#include <stdarg.h>
27
#include "demangle.h"
28
#include "gdb_regex.h"
29
#include "frame.h"
30
#include "symtab.h"
31
#include "gdbtypes.h"
32
#include "gdbcmd.h"
33
#include "expression.h"
34
#include "parser-defs.h"
35
#include "language.h"
36
#include "c-lang.h"
37
#include "inferior.h"
38
#include "symfile.h"
39
#include "objfiles.h"
40
#include "breakpoint.h"
41
#include "gdbcore.h"
42
#include "hashtab.h"
43
#include "gdb_obstack.h"
44
#include "ada-lang.h"
45
#include "completer.h"
46
#include "gdb_stat.h"
47
#ifdef UI_OUT
48
#include "ui-out.h"
49
#endif
50
#include "block.h"
51
#include "infcall.h"
52
#include "dictionary.h"
53
#include "exceptions.h"
54
#include "annotate.h"
55
#include "valprint.h"
56
#include "source.h"
57
#include "observer.h"
58
#include "vec.h"
59
#include "stack.h"
60
 
61
#include "psymtab.h"
62
 
63
/* Define whether or not the C operator '/' truncates towards zero for
64
   differently signed operands (truncation direction is undefined in C).
65
   Copied from valarith.c.  */
66
 
67
#ifndef TRUNCATION_TOWARDS_ZERO
68
#define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
69
#endif
70
 
71
static void modify_general_field (struct type *, char *, LONGEST, int, int);
72
 
73
static struct type *desc_base_type (struct type *);
74
 
75
static struct type *desc_bounds_type (struct type *);
76
 
77
static struct value *desc_bounds (struct value *);
78
 
79
static int fat_pntr_bounds_bitpos (struct type *);
80
 
81
static int fat_pntr_bounds_bitsize (struct type *);
82
 
83
static struct type *desc_data_target_type (struct type *);
84
 
85
static struct value *desc_data (struct value *);
86
 
87
static int fat_pntr_data_bitpos (struct type *);
88
 
89
static int fat_pntr_data_bitsize (struct type *);
90
 
91
static struct value *desc_one_bound (struct value *, int, int);
92
 
93
static int desc_bound_bitpos (struct type *, int, int);
94
 
95
static int desc_bound_bitsize (struct type *, int, int);
96
 
97
static struct type *desc_index_type (struct type *, int);
98
 
99
static int desc_arity (struct type *);
100
 
101
static int ada_type_match (struct type *, struct type *, int);
102
 
103
static int ada_args_match (struct symbol *, struct value **, int);
104
 
105
static struct value *ensure_lval (struct value *,
106
                                  struct gdbarch *, CORE_ADDR *);
107
 
108
static struct value *make_array_descriptor (struct type *, struct value *,
109
                                            struct gdbarch *, CORE_ADDR *);
110
 
111
static void ada_add_block_symbols (struct obstack *,
112
                                   struct block *, const char *,
113
                                   domain_enum, struct objfile *, int);
114
 
115
static int is_nonfunction (struct ada_symbol_info *, int);
116
 
117
static void add_defn_to_vec (struct obstack *, struct symbol *,
118
                             struct block *);
119
 
120
static int num_defns_collected (struct obstack *);
121
 
122
static struct ada_symbol_info *defns_collected (struct obstack *, int);
123
 
124
static struct value *resolve_subexp (struct expression **, int *, int,
125
                                     struct type *);
126
 
127
static void replace_operator_with_call (struct expression **, int, int, int,
128
                                        struct symbol *, struct block *);
129
 
130
static int possible_user_operator_p (enum exp_opcode, struct value **);
131
 
132
static char *ada_op_name (enum exp_opcode);
133
 
134
static const char *ada_decoded_op_name (enum exp_opcode);
135
 
136
static int numeric_type_p (struct type *);
137
 
138
static int integer_type_p (struct type *);
139
 
140
static int scalar_type_p (struct type *);
141
 
142
static int discrete_type_p (struct type *);
143
 
144
static enum ada_renaming_category parse_old_style_renaming (struct type *,
145
                                                            const char **,
146
                                                            int *,
147
                                                            const char **);
148
 
149
static struct symbol *find_old_style_renaming_symbol (const char *,
150
                                                      struct block *);
151
 
152
static struct type *ada_lookup_struct_elt_type (struct type *, char *,
153
                                                int, int, int *);
154
 
155
static struct value *evaluate_subexp_type (struct expression *, int *);
156
 
157
static struct type *ada_find_parallel_type_with_name (struct type *,
158
                                                      const char *);
159
 
160
static int is_dynamic_field (struct type *, int);
161
 
162
static struct type *to_fixed_variant_branch_type (struct type *,
163
                                                  const gdb_byte *,
164
                                                  CORE_ADDR, struct value *);
165
 
166
static struct type *to_fixed_array_type (struct type *, struct value *, int);
167
 
168
static struct type *to_fixed_range_type (struct type *, struct value *);
169
 
170
static struct type *to_static_fixed_type (struct type *);
171
static struct type *static_unwrap_type (struct type *type);
172
 
173
static struct value *unwrap_value (struct value *);
174
 
175
static struct type *constrained_packed_array_type (struct type *, long *);
176
 
177
static struct type *decode_constrained_packed_array_type (struct type *);
178
 
179
static long decode_packed_array_bitsize (struct type *);
180
 
181
static struct value *decode_constrained_packed_array (struct value *);
182
 
183
static int ada_is_packed_array_type  (struct type *);
184
 
185
static int ada_is_unconstrained_packed_array_type (struct type *);
186
 
187
static struct value *value_subscript_packed (struct value *, int,
188
                                             struct value **);
189
 
190
static void move_bits (gdb_byte *, int, const gdb_byte *, int, int, int);
191
 
192
static struct value *coerce_unspec_val_to_type (struct value *,
193
                                                struct type *);
194
 
195
static struct value *get_var_value (char *, char *);
196
 
197
static int lesseq_defined_than (struct symbol *, struct symbol *);
198
 
199
static int equiv_types (struct type *, struct type *);
200
 
201
static int is_name_suffix (const char *);
202
 
203
static int wild_match (const char *, int, const char *);
204
 
205
static struct value *ada_coerce_ref (struct value *);
206
 
207
static LONGEST pos_atr (struct value *);
208
 
209
static struct value *value_pos_atr (struct type *, struct value *);
210
 
211
static struct value *value_val_atr (struct type *, struct value *);
212
 
213
static struct symbol *standard_lookup (const char *, const struct block *,
214
                                       domain_enum);
215
 
216
static struct value *ada_search_struct_field (char *, struct value *, int,
217
                                              struct type *);
218
 
219
static struct value *ada_value_primitive_field (struct value *, int, int,
220
                                                struct type *);
221
 
222
static int find_struct_field (char *, struct type *, int,
223
                              struct type **, int *, int *, int *, int *);
224
 
225
static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
226
                                                struct value *);
227
 
228
static int ada_resolve_function (struct ada_symbol_info *, int,
229
                                 struct value **, int, const char *,
230
                                 struct type *);
231
 
232
static struct value *ada_coerce_to_simple_array (struct value *);
233
 
234
static int ada_is_direct_array_type (struct type *);
235
 
236
static void ada_language_arch_info (struct gdbarch *,
237
                                    struct language_arch_info *);
238
 
239
static void check_size (const struct type *);
240
 
241
static struct value *ada_index_struct_field (int, struct value *, int,
242
                                             struct type *);
243
 
244
static struct value *assign_aggregate (struct value *, struct value *,
245
                                       struct expression *, int *, enum noside);
246
 
247
static void aggregate_assign_from_choices (struct value *, struct value *,
248
                                           struct expression *,
249
                                           int *, LONGEST *, int *,
250
                                           int, LONGEST, LONGEST);
251
 
252
static void aggregate_assign_positional (struct value *, struct value *,
253
                                         struct expression *,
254
                                         int *, LONGEST *, int *, int,
255
                                         LONGEST, LONGEST);
256
 
257
 
258
static void aggregate_assign_others (struct value *, struct value *,
259
                                     struct expression *,
260
                                     int *, LONGEST *, int, LONGEST, LONGEST);
261
 
262
 
263
static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
264
 
265
 
266
static struct value *ada_evaluate_subexp (struct type *, struct expression *,
267
                                          int *, enum noside);
268
 
269
static void ada_forward_operator_length (struct expression *, int, int *,
270
                                         int *);
271
 
272
 
273
 
274
/* Maximum-sized dynamic type.  */
275
static unsigned int varsize_limit;
276
 
277
/* FIXME: brobecker/2003-09-17: No longer a const because it is
278
   returned by a function that does not return a const char *.  */
279
static char *ada_completer_word_break_characters =
280
#ifdef VMS
281
  " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
282
#else
283
  " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
284
#endif
285
 
286
/* The name of the symbol to use to get the name of the main subprogram.  */
287
static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
288
  = "__gnat_ada_main_program_name";
289
 
290
/* Limit on the number of warnings to raise per expression evaluation.  */
291
static int warning_limit = 2;
292
 
293
/* Number of warning messages issued; reset to 0 by cleanups after
294
   expression evaluation.  */
295
static int warnings_issued = 0;
296
 
297
static const char *known_runtime_file_name_patterns[] = {
298
  ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
299
};
300
 
301
static const char *known_auxiliary_function_name_patterns[] = {
302
  ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
303
};
304
 
305
/* Space for allocating results of ada_lookup_symbol_list.  */
306
static struct obstack symbol_list_obstack;
307
 
308
                        /* Inferior-specific data.  */
309
 
310
/* Per-inferior data for this module.  */
311
 
312
struct ada_inferior_data
313
{
314
  /* The ada__tags__type_specific_data type, which is used when decoding
315
     tagged types.  With older versions of GNAT, this type was directly
316
     accessible through a component ("tsd") in the object tag.  But this
317
     is no longer the case, so we cache it for each inferior.  */
318
  struct type *tsd_type;
319
};
320
 
321
/* Our key to this module's inferior data.  */
322
static const struct inferior_data *ada_inferior_data;
323
 
324
/* A cleanup routine for our inferior data.  */
325
static void
326
ada_inferior_data_cleanup (struct inferior *inf, void *arg)
327
{
328
  struct ada_inferior_data *data;
329
 
330
  data = inferior_data (inf, ada_inferior_data);
331
  if (data != NULL)
332
    xfree (data);
333
}
334
 
335
/* Return our inferior data for the given inferior (INF).
336
 
337
   This function always returns a valid pointer to an allocated
338
   ada_inferior_data structure.  If INF's inferior data has not
339
   been previously set, this functions creates a new one with all
340
   fields set to zero, sets INF's inferior to it, and then returns
341
   a pointer to that newly allocated ada_inferior_data.  */
342
 
343
static struct ada_inferior_data *
344
get_ada_inferior_data (struct inferior *inf)
345
{
346
  struct ada_inferior_data *data;
347
 
348
  data = inferior_data (inf, ada_inferior_data);
349
  if (data == NULL)
350
    {
351
      data = XZALLOC (struct ada_inferior_data);
352
      set_inferior_data (inf, ada_inferior_data, data);
353
    }
354
 
355
  return data;
356
}
357
 
358
/* Perform all necessary cleanups regarding our module's inferior data
359
   that is required after the inferior INF just exited.  */
360
 
361
static void
362
ada_inferior_exit (struct inferior *inf)
363
{
364
  ada_inferior_data_cleanup (inf, NULL);
365
  set_inferior_data (inf, ada_inferior_data, NULL);
366
}
367
 
368
                        /* Utilities */
369
 
370
/* Given DECODED_NAME a string holding a symbol name in its
371
   decoded form (ie using the Ada dotted notation), returns
372
   its unqualified name.  */
373
 
374
static const char *
375
ada_unqualified_name (const char *decoded_name)
376
{
377
  const char *result = strrchr (decoded_name, '.');
378
 
379
  if (result != NULL)
380
    result++;                   /* Skip the dot...  */
381
  else
382
    result = decoded_name;
383
 
384
  return result;
385
}
386
 
387
/* Return a string starting with '<', followed by STR, and '>'.
388
   The result is good until the next call.  */
389
 
390
static char *
391
add_angle_brackets (const char *str)
392
{
393
  static char *result = NULL;
394
 
395
  xfree (result);
396
  result = xstrprintf ("<%s>", str);
397
  return result;
398
}
399
 
400
static char *
401
ada_get_gdb_completer_word_break_characters (void)
402
{
403
  return ada_completer_word_break_characters;
404
}
405
 
406
/* Print an array element index using the Ada syntax.  */
407
 
408
static void
409
ada_print_array_index (struct value *index_value, struct ui_file *stream,
410
                       const struct value_print_options *options)
411
{
412
  LA_VALUE_PRINT (index_value, stream, options);
413
  fprintf_filtered (stream, " => ");
414
}
415
 
416
/* Assuming VECT points to an array of *SIZE objects of size
417
   ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
418
   updating *SIZE as necessary and returning the (new) array.  */
419
 
420
void *
421
grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
422
{
423
  if (*size < min_size)
424
    {
425
      *size *= 2;
426
      if (*size < min_size)
427
        *size = min_size;
428
      vect = xrealloc (vect, *size * element_size);
429
    }
430
  return vect;
431
}
432
 
433
/* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
434
   suffix of FIELD_NAME beginning "___".  */
435
 
436
static int
437
field_name_match (const char *field_name, const char *target)
438
{
439
  int len = strlen (target);
440
 
441
  return
442
    (strncmp (field_name, target, len) == 0
443
     && (field_name[len] == '\0'
444
         || (strncmp (field_name + len, "___", 3) == 0
445
             && strcmp (field_name + strlen (field_name) - 6,
446
                        "___XVN") != 0)));
447
}
448
 
449
 
450
/* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
451
   a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
452
   and return its index.  This function also handles fields whose name
453
   have ___ suffixes because the compiler sometimes alters their name
454
   by adding such a suffix to represent fields with certain constraints.
455
   If the field could not be found, return a negative number if
456
   MAYBE_MISSING is set.  Otherwise raise an error.  */
457
 
458
int
459
ada_get_field_index (const struct type *type, const char *field_name,
460
                     int maybe_missing)
461
{
462
  int fieldno;
463
  struct type *struct_type = check_typedef ((struct type *) type);
464
 
465
  for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
466
    if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
467
      return fieldno;
468
 
469
  if (!maybe_missing)
470
    error (_("Unable to find field %s in struct %s.  Aborting"),
471
           field_name, TYPE_NAME (struct_type));
472
 
473
  return -1;
474
}
475
 
476
/* The length of the prefix of NAME prior to any "___" suffix.  */
477
 
478
int
479
ada_name_prefix_len (const char *name)
480
{
481
  if (name == NULL)
482
    return 0;
483
  else
484
    {
485
      const char *p = strstr (name, "___");
486
 
487
      if (p == NULL)
488
        return strlen (name);
489
      else
490
        return p - name;
491
    }
492
}
493
 
494
/* Return non-zero if SUFFIX is a suffix of STR.
495
   Return zero if STR is null.  */
496
 
497
static int
498
is_suffix (const char *str, const char *suffix)
499
{
500
  int len1, len2;
501
 
502
  if (str == NULL)
503
    return 0;
504
  len1 = strlen (str);
505
  len2 = strlen (suffix);
506
  return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
507
}
508
 
509
/* The contents of value VAL, treated as a value of type TYPE.  The
510
   result is an lval in memory if VAL is.  */
511
 
512
static struct value *
513
coerce_unspec_val_to_type (struct value *val, struct type *type)
514
{
515
  type = ada_check_typedef (type);
516
  if (value_type (val) == type)
517
    return val;
518
  else
519
    {
520
      struct value *result;
521
 
522
      /* Make sure that the object size is not unreasonable before
523
         trying to allocate some memory for it.  */
524
      check_size (type);
525
 
526
      result = allocate_value (type);
527
      set_value_component_location (result, val);
528
      set_value_bitsize (result, value_bitsize (val));
529
      set_value_bitpos (result, value_bitpos (val));
530
      set_value_address (result, value_address (val));
531
      if (value_lazy (val)
532
          || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
533
        set_value_lazy (result, 1);
534
      else
535
        memcpy (value_contents_raw (result), value_contents (val),
536
                TYPE_LENGTH (type));
537
      return result;
538
    }
539
}
540
 
541
static const gdb_byte *
542
cond_offset_host (const gdb_byte *valaddr, long offset)
543
{
544
  if (valaddr == NULL)
545
    return NULL;
546
  else
547
    return valaddr + offset;
548
}
549
 
550
static CORE_ADDR
551
cond_offset_target (CORE_ADDR address, long offset)
552
{
553
  if (address == 0)
554
    return 0;
555
  else
556
    return address + offset;
557
}
558
 
559
/* Issue a warning (as for the definition of warning in utils.c, but
560
   with exactly one argument rather than ...), unless the limit on the
561
   number of warnings has passed during the evaluation of the current
562
   expression.  */
563
 
564
/* FIXME: cagney/2004-10-10: This function is mimicking the behavior
565
   provided by "complaint".  */
566
static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
567
 
568
static void
569
lim_warning (const char *format, ...)
570
{
571
  va_list args;
572
 
573
  va_start (args, format);
574
  warnings_issued += 1;
575
  if (warnings_issued <= warning_limit)
576
    vwarning (format, args);
577
 
578
  va_end (args);
579
}
580
 
581
/* Issue an error if the size of an object of type T is unreasonable,
582
   i.e. if it would be a bad idea to allocate a value of this type in
583
   GDB.  */
584
 
585
static void
586
check_size (const struct type *type)
587
{
588
  if (TYPE_LENGTH (type) > varsize_limit)
589
    error (_("object size is larger than varsize-limit"));
590
}
591
 
592
/* Maximum value of a SIZE-byte signed integer type. */
593
static LONGEST
594
max_of_size (int size)
595
{
596
  LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
597
 
598
  return top_bit | (top_bit - 1);
599
}
600
 
601
/* Minimum value of a SIZE-byte signed integer type. */
602
static LONGEST
603
min_of_size (int size)
604
{
605
  return -max_of_size (size) - 1;
606
}
607
 
608
/* Maximum value of a SIZE-byte unsigned integer type. */
609
static ULONGEST
610
umax_of_size (int size)
611
{
612
  ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
613
 
614
  return top_bit | (top_bit - 1);
615
}
616
 
617
/* Maximum value of integral type T, as a signed quantity. */
618
static LONGEST
619
max_of_type (struct type *t)
620
{
621
  if (TYPE_UNSIGNED (t))
622
    return (LONGEST) umax_of_size (TYPE_LENGTH (t));
623
  else
624
    return max_of_size (TYPE_LENGTH (t));
625
}
626
 
627
/* Minimum value of integral type T, as a signed quantity. */
628
static LONGEST
629
min_of_type (struct type *t)
630
{
631
  if (TYPE_UNSIGNED (t))
632
    return 0;
633
  else
634
    return min_of_size (TYPE_LENGTH (t));
635
}
636
 
637
/* The largest value in the domain of TYPE, a discrete type, as an integer.  */
638
LONGEST
639
ada_discrete_type_high_bound (struct type *type)
640
{
641
  switch (TYPE_CODE (type))
642
    {
643
    case TYPE_CODE_RANGE:
644
      return TYPE_HIGH_BOUND (type);
645
    case TYPE_CODE_ENUM:
646
      return TYPE_FIELD_BITPOS (type, TYPE_NFIELDS (type) - 1);
647
    case TYPE_CODE_BOOL:
648
      return 1;
649
    case TYPE_CODE_CHAR:
650
    case TYPE_CODE_INT:
651
      return max_of_type (type);
652
    default:
653
      error (_("Unexpected type in ada_discrete_type_high_bound."));
654
    }
655
}
656
 
657
/* The largest value in the domain of TYPE, a discrete type, as an integer.  */
658
LONGEST
659
ada_discrete_type_low_bound (struct type *type)
660
{
661
  switch (TYPE_CODE (type))
662
    {
663
    case TYPE_CODE_RANGE:
664
      return TYPE_LOW_BOUND (type);
665
    case TYPE_CODE_ENUM:
666
      return TYPE_FIELD_BITPOS (type, 0);
667
    case TYPE_CODE_BOOL:
668
      return 0;
669
    case TYPE_CODE_CHAR:
670
    case TYPE_CODE_INT:
671
      return min_of_type (type);
672
    default:
673
      error (_("Unexpected type in ada_discrete_type_low_bound."));
674
    }
675
}
676
 
677
/* The identity on non-range types.  For range types, the underlying
678
   non-range scalar type.  */
679
 
680
static struct type *
681
base_type (struct type *type)
682
{
683
  while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
684
    {
685
      if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
686
        return type;
687
      type = TYPE_TARGET_TYPE (type);
688
    }
689
  return type;
690
}
691
 
692
 
693
                                /* Language Selection */
694
 
695
/* If the main program is in Ada, return language_ada, otherwise return LANG
696
   (the main program is in Ada iif the adainit symbol is found).  */
697
 
698
enum language
699
ada_update_initial_language (enum language lang)
700
{
701
  if (lookup_minimal_symbol ("adainit", (const char *) NULL,
702
                             (struct objfile *) NULL) != NULL)
703
    return language_ada;
704
 
705
  return lang;
706
}
707
 
708
/* If the main procedure is written in Ada, then return its name.
709
   The result is good until the next call.  Return NULL if the main
710
   procedure doesn't appear to be in Ada.  */
711
 
712
char *
713
ada_main_name (void)
714
{
715
  struct minimal_symbol *msym;
716
  static char *main_program_name = NULL;
717
 
718
  /* For Ada, the name of the main procedure is stored in a specific
719
     string constant, generated by the binder.  Look for that symbol,
720
     extract its address, and then read that string.  If we didn't find
721
     that string, then most probably the main procedure is not written
722
     in Ada.  */
723
  msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
724
 
725
  if (msym != NULL)
726
    {
727
      CORE_ADDR main_program_name_addr;
728
      int err_code;
729
 
730
      main_program_name_addr = SYMBOL_VALUE_ADDRESS (msym);
731
      if (main_program_name_addr == 0)
732
        error (_("Invalid address for Ada main program name."));
733
 
734
      xfree (main_program_name);
735
      target_read_string (main_program_name_addr, &main_program_name,
736
                          1024, &err_code);
737
 
738
      if (err_code != 0)
739
        return NULL;
740
      return main_program_name;
741
    }
742
 
743
  /* The main procedure doesn't seem to be in Ada.  */
744
  return NULL;
745
}
746
 
747
                                /* Symbols */
748
 
749
/* Table of Ada operators and their GNAT-encoded names.  Last entry is pair
750
   of NULLs.  */
751
 
752
const struct ada_opname_map ada_opname_table[] = {
753
  {"Oadd", "\"+\"", BINOP_ADD},
754
  {"Osubtract", "\"-\"", BINOP_SUB},
755
  {"Omultiply", "\"*\"", BINOP_MUL},
756
  {"Odivide", "\"/\"", BINOP_DIV},
757
  {"Omod", "\"mod\"", BINOP_MOD},
758
  {"Orem", "\"rem\"", BINOP_REM},
759
  {"Oexpon", "\"**\"", BINOP_EXP},
760
  {"Olt", "\"<\"", BINOP_LESS},
761
  {"Ole", "\"<=\"", BINOP_LEQ},
762
  {"Ogt", "\">\"", BINOP_GTR},
763
  {"Oge", "\">=\"", BINOP_GEQ},
764
  {"Oeq", "\"=\"", BINOP_EQUAL},
765
  {"One", "\"/=\"", BINOP_NOTEQUAL},
766
  {"Oand", "\"and\"", BINOP_BITWISE_AND},
767
  {"Oor", "\"or\"", BINOP_BITWISE_IOR},
768
  {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
769
  {"Oconcat", "\"&\"", BINOP_CONCAT},
770
  {"Oabs", "\"abs\"", UNOP_ABS},
771
  {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
772
  {"Oadd", "\"+\"", UNOP_PLUS},
773
  {"Osubtract", "\"-\"", UNOP_NEG},
774
  {NULL, NULL}
775
};
776
 
777
/* The "encoded" form of DECODED, according to GNAT conventions.
778
   The result is valid until the next call to ada_encode.  */
779
 
780
char *
781
ada_encode (const char *decoded)
782
{
783
  static char *encoding_buffer = NULL;
784
  static size_t encoding_buffer_size = 0;
785
  const char *p;
786
  int k;
787
 
788
  if (decoded == NULL)
789
    return NULL;
790
 
791
  GROW_VECT (encoding_buffer, encoding_buffer_size,
792
             2 * strlen (decoded) + 10);
793
 
794
  k = 0;
795
  for (p = decoded; *p != '\0'; p += 1)
796
    {
797
      if (*p == '.')
798
        {
799
          encoding_buffer[k] = encoding_buffer[k + 1] = '_';
800
          k += 2;
801
        }
802
      else if (*p == '"')
803
        {
804
          const struct ada_opname_map *mapping;
805
 
806
          for (mapping = ada_opname_table;
807
               mapping->encoded != NULL
808
               && strncmp (mapping->decoded, p,
809
                           strlen (mapping->decoded)) != 0; mapping += 1)
810
            ;
811
          if (mapping->encoded == NULL)
812
            error (_("invalid Ada operator name: %s"), p);
813
          strcpy (encoding_buffer + k, mapping->encoded);
814
          k += strlen (mapping->encoded);
815
          break;
816
        }
817
      else
818
        {
819
          encoding_buffer[k] = *p;
820
          k += 1;
821
        }
822
    }
823
 
824
  encoding_buffer[k] = '\0';
825
  return encoding_buffer;
826
}
827
 
828
/* Return NAME folded to lower case, or, if surrounded by single
829
   quotes, unfolded, but with the quotes stripped away.  Result good
830
   to next call.  */
831
 
832
char *
833
ada_fold_name (const char *name)
834
{
835
  static char *fold_buffer = NULL;
836
  static size_t fold_buffer_size = 0;
837
 
838
  int len = strlen (name);
839
  GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
840
 
841
  if (name[0] == '\'')
842
    {
843
      strncpy (fold_buffer, name + 1, len - 2);
844
      fold_buffer[len - 2] = '\000';
845
    }
846
  else
847
    {
848
      int i;
849
 
850
      for (i = 0; i <= len; i += 1)
851
        fold_buffer[i] = tolower (name[i]);
852
    }
853
 
854
  return fold_buffer;
855
}
856
 
857
/* Return nonzero if C is either a digit or a lowercase alphabet character.  */
858
 
859
static int
860
is_lower_alphanum (const char c)
861
{
862
  return (isdigit (c) || (isalpha (c) && islower (c)));
863
}
864
 
865
/* Remove either of these suffixes:
866
     . .{DIGIT}+
867
     . ${DIGIT}+
868
     . ___{DIGIT}+
869
     . __{DIGIT}+.
870
   These are suffixes introduced by the compiler for entities such as
871
   nested subprogram for instance, in order to avoid name clashes.
872
   They do not serve any purpose for the debugger.  */
873
 
874
static void
875
ada_remove_trailing_digits (const char *encoded, int *len)
876
{
877
  if (*len > 1 && isdigit (encoded[*len - 1]))
878
    {
879
      int i = *len - 2;
880
 
881
      while (i > 0 && isdigit (encoded[i]))
882
        i--;
883
      if (i >= 0 && encoded[i] == '.')
884
        *len = i;
885
      else if (i >= 0 && encoded[i] == '$')
886
        *len = i;
887
      else if (i >= 2 && strncmp (encoded + i - 2, "___", 3) == 0)
888
        *len = i - 2;
889
      else if (i >= 1 && strncmp (encoded + i - 1, "__", 2) == 0)
890
        *len = i - 1;
891
    }
892
}
893
 
894
/* Remove the suffix introduced by the compiler for protected object
895
   subprograms.  */
896
 
897
static void
898
ada_remove_po_subprogram_suffix (const char *encoded, int *len)
899
{
900
  /* Remove trailing N.  */
901
 
902
  /* Protected entry subprograms are broken into two
903
     separate subprograms: The first one is unprotected, and has
904
     a 'N' suffix; the second is the protected version, and has
905
     the 'P' suffix. The second calls the first one after handling
906
     the protection.  Since the P subprograms are internally generated,
907
     we leave these names undecoded, giving the user a clue that this
908
     entity is internal.  */
909
 
910
  if (*len > 1
911
      && encoded[*len - 1] == 'N'
912
      && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
913
    *len = *len - 1;
914
}
915
 
916
/* Remove trailing X[bn]* suffixes (indicating names in package bodies).  */
917
 
918
static void
919
ada_remove_Xbn_suffix (const char *encoded, int *len)
920
{
921
  int i = *len - 1;
922
 
923
  while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n'))
924
    i--;
925
 
926
  if (encoded[i] != 'X')
927
    return;
928
 
929
  if (i == 0)
930
    return;
931
 
932
  if (isalnum (encoded[i-1]))
933
    *len = i;
934
}
935
 
936
/* If ENCODED follows the GNAT entity encoding conventions, then return
937
   the decoded form of ENCODED.  Otherwise, return "<%s>" where "%s" is
938
   replaced by ENCODED.
939
 
940
   The resulting string is valid until the next call of ada_decode.
941
   If the string is unchanged by decoding, the original string pointer
942
   is returned.  */
943
 
944
const char *
945
ada_decode (const char *encoded)
946
{
947
  int i, j;
948
  int len0;
949
  const char *p;
950
  char *decoded;
951
  int at_start_name;
952
  static char *decoding_buffer = NULL;
953
  static size_t decoding_buffer_size = 0;
954
 
955
  /* The name of the Ada main procedure starts with "_ada_".
956
     This prefix is not part of the decoded name, so skip this part
957
     if we see this prefix.  */
958
  if (strncmp (encoded, "_ada_", 5) == 0)
959
    encoded += 5;
960
 
961
  /* If the name starts with '_', then it is not a properly encoded
962
     name, so do not attempt to decode it.  Similarly, if the name
963
     starts with '<', the name should not be decoded.  */
964
  if (encoded[0] == '_' || encoded[0] == '<')
965
    goto Suppress;
966
 
967
  len0 = strlen (encoded);
968
 
969
  ada_remove_trailing_digits (encoded, &len0);
970
  ada_remove_po_subprogram_suffix (encoded, &len0);
971
 
972
  /* Remove the ___X.* suffix if present.  Do not forget to verify that
973
     the suffix is located before the current "end" of ENCODED.  We want
974
     to avoid re-matching parts of ENCODED that have previously been
975
     marked as discarded (by decrementing LEN0).  */
976
  p = strstr (encoded, "___");
977
  if (p != NULL && p - encoded < len0 - 3)
978
    {
979
      if (p[3] == 'X')
980
        len0 = p - encoded;
981
      else
982
        goto Suppress;
983
    }
984
 
985
  /* Remove any trailing TKB suffix.  It tells us that this symbol
986
     is for the body of a task, but that information does not actually
987
     appear in the decoded name.  */
988
 
989
  if (len0 > 3 && strncmp (encoded + len0 - 3, "TKB", 3) == 0)
990
    len0 -= 3;
991
 
992
  /* Remove any trailing TB suffix.  The TB suffix is slightly different
993
     from the TKB suffix because it is used for non-anonymous task
994
     bodies.  */
995
 
996
  if (len0 > 2 && strncmp (encoded + len0 - 2, "TB", 2) == 0)
997
    len0 -= 2;
998
 
999
  /* Remove trailing "B" suffixes.  */
1000
  /* FIXME: brobecker/2006-04-19: Not sure what this are used for...  */
1001
 
1002
  if (len0 > 1 && strncmp (encoded + len0 - 1, "B", 1) == 0)
1003
    len0 -= 1;
1004
 
1005
  /* Make decoded big enough for possible expansion by operator name.  */
1006
 
1007
  GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
1008
  decoded = decoding_buffer;
1009
 
1010
  /* Remove trailing __{digit}+ or trailing ${digit}+.  */
1011
 
1012
  if (len0 > 1 && isdigit (encoded[len0 - 1]))
1013
    {
1014
      i = len0 - 2;
1015
      while ((i >= 0 && isdigit (encoded[i]))
1016
             || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1017
        i -= 1;
1018
      if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1019
        len0 = i - 1;
1020
      else if (encoded[i] == '$')
1021
        len0 = i;
1022
    }
1023
 
1024
  /* The first few characters that are not alphabetic are not part
1025
     of any encoding we use, so we can copy them over verbatim.  */
1026
 
1027
  for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1028
    decoded[j] = encoded[i];
1029
 
1030
  at_start_name = 1;
1031
  while (i < len0)
1032
    {
1033
      /* Is this a symbol function?  */
1034
      if (at_start_name && encoded[i] == 'O')
1035
        {
1036
          int k;
1037
 
1038
          for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1039
            {
1040
              int op_len = strlen (ada_opname_table[k].encoded);
1041
              if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1042
                            op_len - 1) == 0)
1043
                  && !isalnum (encoded[i + op_len]))
1044
                {
1045
                  strcpy (decoded + j, ada_opname_table[k].decoded);
1046
                  at_start_name = 0;
1047
                  i += op_len;
1048
                  j += strlen (ada_opname_table[k].decoded);
1049
                  break;
1050
                }
1051
            }
1052
          if (ada_opname_table[k].encoded != NULL)
1053
            continue;
1054
        }
1055
      at_start_name = 0;
1056
 
1057
      /* Replace "TK__" with "__", which will eventually be translated
1058
         into "." (just below).  */
1059
 
1060
      if (i < len0 - 4 && strncmp (encoded + i, "TK__", 4) == 0)
1061
        i += 2;
1062
 
1063
      /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1064
         be translated into "." (just below).  These are internal names
1065
         generated for anonymous blocks inside which our symbol is nested.  */
1066
 
1067
      if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1068
          && encoded [i+2] == 'B' && encoded [i+3] == '_'
1069
          && isdigit (encoded [i+4]))
1070
        {
1071
          int k = i + 5;
1072
 
1073
          while (k < len0 && isdigit (encoded[k]))
1074
            k++;  /* Skip any extra digit.  */
1075
 
1076
          /* Double-check that the "__B_{DIGITS}+" sequence we found
1077
             is indeed followed by "__".  */
1078
          if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1079
            i = k;
1080
        }
1081
 
1082
      /* Remove _E{DIGITS}+[sb] */
1083
 
1084
      /* Just as for protected object subprograms, there are 2 categories
1085
         of subprograms created by the compiler for each entry. The first
1086
         one implements the actual entry code, and has a suffix following
1087
         the convention above; the second one implements the barrier and
1088
         uses the same convention as above, except that the 'E' is replaced
1089
         by a 'B'.
1090
 
1091
         Just as above, we do not decode the name of barrier functions
1092
         to give the user a clue that the code he is debugging has been
1093
         internally generated.  */
1094
 
1095
      if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1096
          && isdigit (encoded[i+2]))
1097
        {
1098
          int k = i + 3;
1099
 
1100
          while (k < len0 && isdigit (encoded[k]))
1101
            k++;
1102
 
1103
          if (k < len0
1104
              && (encoded[k] == 'b' || encoded[k] == 's'))
1105
            {
1106
              k++;
1107
              /* Just as an extra precaution, make sure that if this
1108
                 suffix is followed by anything else, it is a '_'.
1109
                 Otherwise, we matched this sequence by accident.  */
1110
              if (k == len0
1111
                  || (k < len0 && encoded[k] == '_'))
1112
                i = k;
1113
            }
1114
        }
1115
 
1116
      /* Remove trailing "N" in [a-z0-9]+N__.  The N is added by
1117
         the GNAT front-end in protected object subprograms.  */
1118
 
1119
      if (i < len0 + 3
1120
          && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1121
        {
1122
          /* Backtrack a bit up until we reach either the begining of
1123
             the encoded name, or "__".  Make sure that we only find
1124
             digits or lowercase characters.  */
1125
          const char *ptr = encoded + i - 1;
1126
 
1127
          while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1128
            ptr--;
1129
          if (ptr < encoded
1130
              || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1131
            i++;
1132
        }
1133
 
1134
      if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1135
        {
1136
          /* This is a X[bn]* sequence not separated from the previous
1137
             part of the name with a non-alpha-numeric character (in other
1138
             words, immediately following an alpha-numeric character), then
1139
             verify that it is placed at the end of the encoded name.  If
1140
             not, then the encoding is not valid and we should abort the
1141
             decoding.  Otherwise, just skip it, it is used in body-nested
1142
             package names.  */
1143
          do
1144
            i += 1;
1145
          while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1146
          if (i < len0)
1147
            goto Suppress;
1148
        }
1149
      else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1150
        {
1151
         /* Replace '__' by '.'.  */
1152
          decoded[j] = '.';
1153
          at_start_name = 1;
1154
          i += 2;
1155
          j += 1;
1156
        }
1157
      else
1158
        {
1159
          /* It's a character part of the decoded name, so just copy it
1160
             over.  */
1161
          decoded[j] = encoded[i];
1162
          i += 1;
1163
          j += 1;
1164
        }
1165
    }
1166
  decoded[j] = '\000';
1167
 
1168
  /* Decoded names should never contain any uppercase character.
1169
     Double-check this, and abort the decoding if we find one.  */
1170
 
1171
  for (i = 0; decoded[i] != '\0'; i += 1)
1172
    if (isupper (decoded[i]) || decoded[i] == ' ')
1173
      goto Suppress;
1174
 
1175
  if (strcmp (decoded, encoded) == 0)
1176
    return encoded;
1177
  else
1178
    return decoded;
1179
 
1180
Suppress:
1181
  GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1182
  decoded = decoding_buffer;
1183
  if (encoded[0] == '<')
1184
    strcpy (decoded, encoded);
1185
  else
1186
    xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
1187
  return decoded;
1188
 
1189
}
1190
 
1191
/* Table for keeping permanent unique copies of decoded names.  Once
1192
   allocated, names in this table are never released.  While this is a
1193
   storage leak, it should not be significant unless there are massive
1194
   changes in the set of decoded names in successive versions of a
1195
   symbol table loaded during a single session.  */
1196
static struct htab *decoded_names_store;
1197
 
1198
/* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1199
   in the language-specific part of GSYMBOL, if it has not been
1200
   previously computed.  Tries to save the decoded name in the same
1201
   obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1202
   in any case, the decoded symbol has a lifetime at least that of
1203
   GSYMBOL).
1204
   The GSYMBOL parameter is "mutable" in the C++ sense: logically
1205
   const, but nevertheless modified to a semantically equivalent form
1206
   when a decoded name is cached in it.
1207
*/
1208
 
1209
char *
1210
ada_decode_symbol (const struct general_symbol_info *gsymbol)
1211
{
1212
  char **resultp =
1213
    (char **) &gsymbol->language_specific.cplus_specific.demangled_name;
1214
 
1215
  if (*resultp == NULL)
1216
    {
1217
      const char *decoded = ada_decode (gsymbol->name);
1218
 
1219
      if (gsymbol->obj_section != NULL)
1220
        {
1221
          struct objfile *objf = gsymbol->obj_section->objfile;
1222
 
1223
          *resultp = obsavestring (decoded, strlen (decoded),
1224
                                   &objf->objfile_obstack);
1225
        }
1226
      /* Sometimes, we can't find a corresponding objfile, in which
1227
         case, we put the result on the heap.  Since we only decode
1228
         when needed, we hope this usually does not cause a
1229
         significant memory leak (FIXME).  */
1230
      if (*resultp == NULL)
1231
        {
1232
          char **slot = (char **) htab_find_slot (decoded_names_store,
1233
                                                  decoded, INSERT);
1234
 
1235
          if (*slot == NULL)
1236
            *slot = xstrdup (decoded);
1237
          *resultp = *slot;
1238
        }
1239
    }
1240
 
1241
  return *resultp;
1242
}
1243
 
1244
static char *
1245
ada_la_decode (const char *encoded, int options)
1246
{
1247
  return xstrdup (ada_decode (encoded));
1248
}
1249
 
1250
/* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
1251
   suffixes that encode debugging information or leading _ada_ on
1252
   SYM_NAME (see is_name_suffix commentary for the debugging
1253
   information that is ignored).  If WILD, then NAME need only match a
1254
   suffix of SYM_NAME minus the same suffixes.  Also returns 0 if
1255
   either argument is NULL.  */
1256
 
1257
static int
1258
ada_match_name (const char *sym_name, const char *name, int wild)
1259
{
1260
  if (sym_name == NULL || name == NULL)
1261
    return 0;
1262
  else if (wild)
1263
    return wild_match (name, strlen (name), sym_name);
1264
  else
1265
    {
1266
      int len_name = strlen (name);
1267
 
1268
      return (strncmp (sym_name, name, len_name) == 0
1269
              && is_name_suffix (sym_name + len_name))
1270
        || (strncmp (sym_name, "_ada_", 5) == 0
1271
            && strncmp (sym_name + 5, name, len_name) == 0
1272
            && is_name_suffix (sym_name + len_name + 5));
1273
    }
1274
}
1275
 
1276
 
1277
                                /* Arrays */
1278
 
1279
/* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1280
   generated by the GNAT compiler to describe the index type used
1281
   for each dimension of an array, check whether it follows the latest
1282
   known encoding.  If not, fix it up to conform to the latest encoding.
1283
   Otherwise, do nothing.  This function also does nothing if
1284
   INDEX_DESC_TYPE is NULL.
1285
 
1286
   The GNAT encoding used to describle the array index type evolved a bit.
1287
   Initially, the information would be provided through the name of each
1288
   field of the structure type only, while the type of these fields was
1289
   described as unspecified and irrelevant.  The debugger was then expected
1290
   to perform a global type lookup using the name of that field in order
1291
   to get access to the full index type description.  Because these global
1292
   lookups can be very expensive, the encoding was later enhanced to make
1293
   the global lookup unnecessary by defining the field type as being
1294
   the full index type description.
1295
 
1296
   The purpose of this routine is to allow us to support older versions
1297
   of the compiler by detecting the use of the older encoding, and by
1298
   fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1299
   we essentially replace each field's meaningless type by the associated
1300
   index subtype).  */
1301
 
1302
void
1303
ada_fixup_array_indexes_type (struct type *index_desc_type)
1304
{
1305
  int i;
1306
 
1307
  if (index_desc_type == NULL)
1308
    return;
1309
  gdb_assert (TYPE_NFIELDS (index_desc_type) > 0);
1310
 
1311
  /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1312
     to check one field only, no need to check them all).  If not, return
1313
     now.
1314
 
1315
     If our INDEX_DESC_TYPE was generated using the older encoding,
1316
     the field type should be a meaningless integer type whose name
1317
     is not equal to the field name.  */
1318
  if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL
1319
      && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)),
1320
                 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1321
    return;
1322
 
1323
  /* Fixup each field of INDEX_DESC_TYPE.  */
1324
  for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++)
1325
   {
1326
     char *name = TYPE_FIELD_NAME (index_desc_type, i);
1327
     struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1328
 
1329
     if (raw_type)
1330
       TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
1331
   }
1332
}
1333
 
1334
/* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors.  */
1335
 
1336
static char *bound_name[] = {
1337
  "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
1338
  "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1339
};
1340
 
1341
/* Maximum number of array dimensions we are prepared to handle.  */
1342
 
1343
#define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
1344
 
1345
/* Like modify_field, but allows bitpos > wordlength.  */
1346
 
1347
static void
1348
modify_general_field (struct type *type, char *addr,
1349
                      LONGEST fieldval, int bitpos, int bitsize)
1350
{
1351
  modify_field (type, addr + bitpos / 8, fieldval, bitpos % 8, bitsize);
1352
}
1353
 
1354
 
1355
/* The desc_* routines return primitive portions of array descriptors
1356
   (fat pointers).  */
1357
 
1358
/* The descriptor or array type, if any, indicated by TYPE; removes
1359
   level of indirection, if needed.  */
1360
 
1361
static struct type *
1362
desc_base_type (struct type *type)
1363
{
1364
  if (type == NULL)
1365
    return NULL;
1366
  type = ada_check_typedef (type);
1367
  if (type != NULL
1368
      && (TYPE_CODE (type) == TYPE_CODE_PTR
1369
          || TYPE_CODE (type) == TYPE_CODE_REF))
1370
    return ada_check_typedef (TYPE_TARGET_TYPE (type));
1371
  else
1372
    return type;
1373
}
1374
 
1375
/* True iff TYPE indicates a "thin" array pointer type.  */
1376
 
1377
static int
1378
is_thin_pntr (struct type *type)
1379
{
1380
  return
1381
    is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1382
    || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1383
}
1384
 
1385
/* The descriptor type for thin pointer type TYPE.  */
1386
 
1387
static struct type *
1388
thin_descriptor_type (struct type *type)
1389
{
1390
  struct type *base_type = desc_base_type (type);
1391
 
1392
  if (base_type == NULL)
1393
    return NULL;
1394
  if (is_suffix (ada_type_name (base_type), "___XVE"))
1395
    return base_type;
1396
  else
1397
    {
1398
      struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1399
 
1400
      if (alt_type == NULL)
1401
        return base_type;
1402
      else
1403
        return alt_type;
1404
    }
1405
}
1406
 
1407
/* A pointer to the array data for thin-pointer value VAL.  */
1408
 
1409
static struct value *
1410
thin_data_pntr (struct value *val)
1411
{
1412
  struct type *type = value_type (val);
1413
  struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
1414
 
1415
  data_type = lookup_pointer_type (data_type);
1416
 
1417
  if (TYPE_CODE (type) == TYPE_CODE_PTR)
1418
    return value_cast (data_type, value_copy (val));
1419
  else
1420
    return value_from_longest (data_type, value_address (val));
1421
}
1422
 
1423
/* True iff TYPE indicates a "thick" array pointer type.  */
1424
 
1425
static int
1426
is_thick_pntr (struct type *type)
1427
{
1428
  type = desc_base_type (type);
1429
  return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
1430
          && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1431
}
1432
 
1433
/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1434
   pointer to one, the type of its bounds data; otherwise, NULL.  */
1435
 
1436
static struct type *
1437
desc_bounds_type (struct type *type)
1438
{
1439
  struct type *r;
1440
 
1441
  type = desc_base_type (type);
1442
 
1443
  if (type == NULL)
1444
    return NULL;
1445
  else if (is_thin_pntr (type))
1446
    {
1447
      type = thin_descriptor_type (type);
1448
      if (type == NULL)
1449
        return NULL;
1450
      r = lookup_struct_elt_type (type, "BOUNDS", 1);
1451
      if (r != NULL)
1452
        return ada_check_typedef (r);
1453
    }
1454
  else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1455
    {
1456
      r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1457
      if (r != NULL)
1458
        return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1459
    }
1460
  return NULL;
1461
}
1462
 
1463
/* If ARR is an array descriptor (fat or thin pointer), or pointer to
1464
   one, a pointer to its bounds data.   Otherwise NULL.  */
1465
 
1466
static struct value *
1467
desc_bounds (struct value *arr)
1468
{
1469
  struct type *type = ada_check_typedef (value_type (arr));
1470
 
1471
  if (is_thin_pntr (type))
1472
    {
1473
      struct type *bounds_type =
1474
        desc_bounds_type (thin_descriptor_type (type));
1475
      LONGEST addr;
1476
 
1477
      if (bounds_type == NULL)
1478
        error (_("Bad GNAT array descriptor"));
1479
 
1480
      /* NOTE: The following calculation is not really kosher, but
1481
         since desc_type is an XVE-encoded type (and shouldn't be),
1482
         the correct calculation is a real pain.  FIXME (and fix GCC).  */
1483
      if (TYPE_CODE (type) == TYPE_CODE_PTR)
1484
        addr = value_as_long (arr);
1485
      else
1486
        addr = value_address (arr);
1487
 
1488
      return
1489
        value_from_longest (lookup_pointer_type (bounds_type),
1490
                            addr - TYPE_LENGTH (bounds_type));
1491
    }
1492
 
1493
  else if (is_thick_pntr (type))
1494
    return value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1495
                             _("Bad GNAT array descriptor"));
1496
  else
1497
    return NULL;
1498
}
1499
 
1500
/* If TYPE is the type of an array-descriptor (fat pointer),  the bit
1501
   position of the field containing the address of the bounds data.  */
1502
 
1503
static int
1504
fat_pntr_bounds_bitpos (struct type *type)
1505
{
1506
  return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1507
}
1508
 
1509
/* If TYPE is the type of an array-descriptor (fat pointer), the bit
1510
   size of the field containing the address of the bounds data.  */
1511
 
1512
static int
1513
fat_pntr_bounds_bitsize (struct type *type)
1514
{
1515
  type = desc_base_type (type);
1516
 
1517
  if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1518
    return TYPE_FIELD_BITSIZE (type, 1);
1519
  else
1520
    return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
1521
}
1522
 
1523
/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1524
   pointer to one, the type of its array data (a array-with-no-bounds type);
1525
   otherwise, NULL.  Use ada_type_of_array to get an array type with bounds
1526
   data.  */
1527
 
1528
static struct type *
1529
desc_data_target_type (struct type *type)
1530
{
1531
  type = desc_base_type (type);
1532
 
1533
  /* NOTE: The following is bogus; see comment in desc_bounds.  */
1534
  if (is_thin_pntr (type))
1535
    return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
1536
  else if (is_thick_pntr (type))
1537
    {
1538
      struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1539
 
1540
      if (data_type
1541
          && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
1542
        return TYPE_TARGET_TYPE (data_type);
1543
    }
1544
 
1545
  return NULL;
1546
}
1547
 
1548
/* If ARR is an array descriptor (fat or thin pointer), a pointer to
1549
   its array data.  */
1550
 
1551
static struct value *
1552
desc_data (struct value *arr)
1553
{
1554
  struct type *type = value_type (arr);
1555
 
1556
  if (is_thin_pntr (type))
1557
    return thin_data_pntr (arr);
1558
  else if (is_thick_pntr (type))
1559
    return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
1560
                             _("Bad GNAT array descriptor"));
1561
  else
1562
    return NULL;
1563
}
1564
 
1565
 
1566
/* If TYPE is the type of an array-descriptor (fat pointer), the bit
1567
   position of the field containing the address of the data.  */
1568
 
1569
static int
1570
fat_pntr_data_bitpos (struct type *type)
1571
{
1572
  return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1573
}
1574
 
1575
/* If TYPE is the type of an array-descriptor (fat pointer), the bit
1576
   size of the field containing the address of the data.  */
1577
 
1578
static int
1579
fat_pntr_data_bitsize (struct type *type)
1580
{
1581
  type = desc_base_type (type);
1582
 
1583
  if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1584
    return TYPE_FIELD_BITSIZE (type, 0);
1585
  else
1586
    return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1587
}
1588
 
1589
/* If BOUNDS is an array-bounds structure (or pointer to one), return
1590
   the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1591
   bound, if WHICH is 1.  The first bound is I=1.  */
1592
 
1593
static struct value *
1594
desc_one_bound (struct value *bounds, int i, int which)
1595
{
1596
  return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
1597
                           _("Bad GNAT array descriptor bounds"));
1598
}
1599
 
1600
/* If BOUNDS is an array-bounds structure type, return the bit position
1601
   of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1602
   bound, if WHICH is 1.  The first bound is I=1.  */
1603
 
1604
static int
1605
desc_bound_bitpos (struct type *type, int i, int which)
1606
{
1607
  return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1608
}
1609
 
1610
/* If BOUNDS is an array-bounds structure type, return the bit field size
1611
   of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1612
   bound, if WHICH is 1.  The first bound is I=1.  */
1613
 
1614
static int
1615
desc_bound_bitsize (struct type *type, int i, int which)
1616
{
1617
  type = desc_base_type (type);
1618
 
1619
  if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1620
    return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1621
  else
1622
    return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
1623
}
1624
 
1625
/* If TYPE is the type of an array-bounds structure, the type of its
1626
   Ith bound (numbering from 1).  Otherwise, NULL.  */
1627
 
1628
static struct type *
1629
desc_index_type (struct type *type, int i)
1630
{
1631
  type = desc_base_type (type);
1632
 
1633
  if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1634
    return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1635
  else
1636
    return NULL;
1637
}
1638
 
1639
/* The number of index positions in the array-bounds type TYPE.
1640
   Return 0 if TYPE is NULL.  */
1641
 
1642
static int
1643
desc_arity (struct type *type)
1644
{
1645
  type = desc_base_type (type);
1646
 
1647
  if (type != NULL)
1648
    return TYPE_NFIELDS (type) / 2;
1649
  return 0;
1650
}
1651
 
1652
/* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1653
   an array descriptor type (representing an unconstrained array
1654
   type).  */
1655
 
1656
static int
1657
ada_is_direct_array_type (struct type *type)
1658
{
1659
  if (type == NULL)
1660
    return 0;
1661
  type = ada_check_typedef (type);
1662
  return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1663
          || ada_is_array_descriptor_type (type));
1664
}
1665
 
1666
/* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1667
 * to one. */
1668
 
1669
static int
1670
ada_is_array_type (struct type *type)
1671
{
1672
  while (type != NULL
1673
         && (TYPE_CODE (type) == TYPE_CODE_PTR
1674
             || TYPE_CODE (type) == TYPE_CODE_REF))
1675
    type = TYPE_TARGET_TYPE (type);
1676
  return ada_is_direct_array_type (type);
1677
}
1678
 
1679
/* Non-zero iff TYPE is a simple array type or pointer to one.  */
1680
 
1681
int
1682
ada_is_simple_array_type (struct type *type)
1683
{
1684
  if (type == NULL)
1685
    return 0;
1686
  type = ada_check_typedef (type);
1687
  return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1688
          || (TYPE_CODE (type) == TYPE_CODE_PTR
1689
              && TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_ARRAY));
1690
}
1691
 
1692
/* Non-zero iff TYPE belongs to a GNAT array descriptor.  */
1693
 
1694
int
1695
ada_is_array_descriptor_type (struct type *type)
1696
{
1697
  struct type *data_type = desc_data_target_type (type);
1698
 
1699
  if (type == NULL)
1700
    return 0;
1701
  type = ada_check_typedef (type);
1702
  return (data_type != NULL
1703
          && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1704
          && desc_arity (desc_bounds_type (type)) > 0);
1705
}
1706
 
1707
/* Non-zero iff type is a partially mal-formed GNAT array
1708
   descriptor.  FIXME: This is to compensate for some problems with
1709
   debugging output from GNAT.  Re-examine periodically to see if it
1710
   is still needed.  */
1711
 
1712
int
1713
ada_is_bogus_array_descriptor (struct type *type)
1714
{
1715
  return
1716
    type != NULL
1717
    && TYPE_CODE (type) == TYPE_CODE_STRUCT
1718
    && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1719
        || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1720
    && !ada_is_array_descriptor_type (type);
1721
}
1722
 
1723
 
1724
/* If ARR has a record type in the form of a standard GNAT array descriptor,
1725
   (fat pointer) returns the type of the array data described---specifically,
1726
   a pointer-to-array type.  If BOUNDS is non-zero, the bounds data are filled
1727
   in from the descriptor; otherwise, they are left unspecified.  If
1728
   the ARR denotes a null array descriptor and BOUNDS is non-zero,
1729
   returns NULL.  The result is simply the type of ARR if ARR is not
1730
   a descriptor.  */
1731
struct type *
1732
ada_type_of_array (struct value *arr, int bounds)
1733
{
1734
  if (ada_is_constrained_packed_array_type (value_type (arr)))
1735
    return decode_constrained_packed_array_type (value_type (arr));
1736
 
1737
  if (!ada_is_array_descriptor_type (value_type (arr)))
1738
    return value_type (arr);
1739
 
1740
  if (!bounds)
1741
    {
1742
      struct type *array_type =
1743
        ada_check_typedef (desc_data_target_type (value_type (arr)));
1744
 
1745
      if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1746
        TYPE_FIELD_BITSIZE (array_type, 0) =
1747
          decode_packed_array_bitsize (value_type (arr));
1748
 
1749
      return array_type;
1750
    }
1751
  else
1752
    {
1753
      struct type *elt_type;
1754
      int arity;
1755
      struct value *descriptor;
1756
 
1757
      elt_type = ada_array_element_type (value_type (arr), -1);
1758
      arity = ada_array_arity (value_type (arr));
1759
 
1760
      if (elt_type == NULL || arity == 0)
1761
        return ada_check_typedef (value_type (arr));
1762
 
1763
      descriptor = desc_bounds (arr);
1764
      if (value_as_long (descriptor) == 0)
1765
        return NULL;
1766
      while (arity > 0)
1767
        {
1768
          struct type *range_type = alloc_type_copy (value_type (arr));
1769
          struct type *array_type = alloc_type_copy (value_type (arr));
1770
          struct value *low = desc_one_bound (descriptor, arity, 0);
1771
          struct value *high = desc_one_bound (descriptor, arity, 1);
1772
 
1773
          arity -= 1;
1774
          create_range_type (range_type, value_type (low),
1775
                             longest_to_int (value_as_long (low)),
1776
                             longest_to_int (value_as_long (high)));
1777
          elt_type = create_array_type (array_type, elt_type, range_type);
1778
 
1779
          if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1780
            TYPE_FIELD_BITSIZE (elt_type, 0) =
1781
              decode_packed_array_bitsize (value_type (arr));
1782
        }
1783
 
1784
      return lookup_pointer_type (elt_type);
1785
    }
1786
}
1787
 
1788
/* If ARR does not represent an array, returns ARR unchanged.
1789
   Otherwise, returns either a standard GDB array with bounds set
1790
   appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
1791
   GDB array.  Returns NULL if ARR is a null fat pointer.  */
1792
 
1793
struct value *
1794
ada_coerce_to_simple_array_ptr (struct value *arr)
1795
{
1796
  if (ada_is_array_descriptor_type (value_type (arr)))
1797
    {
1798
      struct type *arrType = ada_type_of_array (arr, 1);
1799
 
1800
      if (arrType == NULL)
1801
        return NULL;
1802
      return value_cast (arrType, value_copy (desc_data (arr)));
1803
    }
1804
  else if (ada_is_constrained_packed_array_type (value_type (arr)))
1805
    return decode_constrained_packed_array (arr);
1806
  else
1807
    return arr;
1808
}
1809
 
1810
/* If ARR does not represent an array, returns ARR unchanged.
1811
   Otherwise, returns a standard GDB array describing ARR (which may
1812
   be ARR itself if it already is in the proper form).  */
1813
 
1814
static struct value *
1815
ada_coerce_to_simple_array (struct value *arr)
1816
{
1817
  if (ada_is_array_descriptor_type (value_type (arr)))
1818
    {
1819
      struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
1820
 
1821
      if (arrVal == NULL)
1822
        error (_("Bounds unavailable for null array pointer."));
1823
      check_size (TYPE_TARGET_TYPE (value_type (arrVal)));
1824
      return value_ind (arrVal);
1825
    }
1826
  else if (ada_is_constrained_packed_array_type (value_type (arr)))
1827
    return decode_constrained_packed_array (arr);
1828
  else
1829
    return arr;
1830
}
1831
 
1832
/* If TYPE represents a GNAT array type, return it translated to an
1833
   ordinary GDB array type (possibly with BITSIZE fields indicating
1834
   packing).  For other types, is the identity.  */
1835
 
1836
struct type *
1837
ada_coerce_to_simple_array_type (struct type *type)
1838
{
1839
  if (ada_is_constrained_packed_array_type (type))
1840
    return decode_constrained_packed_array_type (type);
1841
 
1842
  if (ada_is_array_descriptor_type (type))
1843
    return ada_check_typedef (desc_data_target_type (type));
1844
 
1845
  return type;
1846
}
1847
 
1848
/* Non-zero iff TYPE represents a standard GNAT packed-array type.  */
1849
 
1850
static int
1851
ada_is_packed_array_type  (struct type *type)
1852
{
1853
  if (type == NULL)
1854
    return 0;
1855
  type = desc_base_type (type);
1856
  type = ada_check_typedef (type);
1857
  return
1858
    ada_type_name (type) != NULL
1859
    && strstr (ada_type_name (type), "___XP") != NULL;
1860
}
1861
 
1862
/* Non-zero iff TYPE represents a standard GNAT constrained
1863
   packed-array type.  */
1864
 
1865
int
1866
ada_is_constrained_packed_array_type (struct type *type)
1867
{
1868
  return ada_is_packed_array_type (type)
1869
    && !ada_is_array_descriptor_type (type);
1870
}
1871
 
1872
/* Non-zero iff TYPE represents an array descriptor for a
1873
   unconstrained packed-array type.  */
1874
 
1875
static int
1876
ada_is_unconstrained_packed_array_type (struct type *type)
1877
{
1878
  return ada_is_packed_array_type (type)
1879
    && ada_is_array_descriptor_type (type);
1880
}
1881
 
1882
/* Given that TYPE encodes a packed array type (constrained or unconstrained),
1883
   return the size of its elements in bits.  */
1884
 
1885
static long
1886
decode_packed_array_bitsize (struct type *type)
1887
{
1888
  char *raw_name = ada_type_name (ada_check_typedef (type));
1889
  char *tail;
1890
  long bits;
1891
 
1892
  if (!raw_name)
1893
    raw_name = ada_type_name (desc_base_type (type));
1894
 
1895
  if (!raw_name)
1896
    return 0;
1897
 
1898
  tail = strstr (raw_name, "___XP");
1899
 
1900
  if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
1901
    {
1902
      lim_warning
1903
        (_("could not understand bit size information on packed array"));
1904
      return 0;
1905
    }
1906
 
1907
  return bits;
1908
}
1909
 
1910
/* Given that TYPE is a standard GDB array type with all bounds filled
1911
   in, and that the element size of its ultimate scalar constituents
1912
   (that is, either its elements, or, if it is an array of arrays, its
1913
   elements' elements, etc.) is *ELT_BITS, return an identical type,
1914
   but with the bit sizes of its elements (and those of any
1915
   constituent arrays) recorded in the BITSIZE components of its
1916
   TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
1917
   in bits.  */
1918
 
1919
static struct type *
1920
constrained_packed_array_type (struct type *type, long *elt_bits)
1921
{
1922
  struct type *new_elt_type;
1923
  struct type *new_type;
1924
  LONGEST low_bound, high_bound;
1925
 
1926
  type = ada_check_typedef (type);
1927
  if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
1928
    return type;
1929
 
1930
  new_type = alloc_type_copy (type);
1931
  new_elt_type =
1932
    constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
1933
                                   elt_bits);
1934
  create_array_type (new_type, new_elt_type, TYPE_INDEX_TYPE (type));
1935
  TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
1936
  TYPE_NAME (new_type) = ada_type_name (type);
1937
 
1938
  if (get_discrete_bounds (TYPE_INDEX_TYPE (type),
1939
                           &low_bound, &high_bound) < 0)
1940
    low_bound = high_bound = 0;
1941
  if (high_bound < low_bound)
1942
    *elt_bits = TYPE_LENGTH (new_type) = 0;
1943
  else
1944
    {
1945
      *elt_bits *= (high_bound - low_bound + 1);
1946
      TYPE_LENGTH (new_type) =
1947
        (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
1948
    }
1949
 
1950
  TYPE_FIXED_INSTANCE (new_type) = 1;
1951
  return new_type;
1952
}
1953
 
1954
/* The array type encoded by TYPE, where
1955
   ada_is_constrained_packed_array_type (TYPE).  */
1956
 
1957
static struct type *
1958
decode_constrained_packed_array_type (struct type *type)
1959
{
1960
  char *raw_name = ada_type_name (ada_check_typedef (type));
1961
  char *name;
1962
  char *tail;
1963
  struct type *shadow_type;
1964
  long bits;
1965
 
1966
  if (!raw_name)
1967
    raw_name = ada_type_name (desc_base_type (type));
1968
 
1969
  if (!raw_name)
1970
    return NULL;
1971
 
1972
  name = (char *) alloca (strlen (raw_name) + 1);
1973
  tail = strstr (raw_name, "___XP");
1974
  type = desc_base_type (type);
1975
 
1976
  memcpy (name, raw_name, tail - raw_name);
1977
  name[tail - raw_name] = '\000';
1978
 
1979
  shadow_type = ada_find_parallel_type_with_name (type, name);
1980
 
1981
  if (shadow_type == NULL)
1982
    {
1983
      lim_warning (_("could not find bounds information on packed array"));
1984
      return NULL;
1985
    }
1986
  CHECK_TYPEDEF (shadow_type);
1987
 
1988
  if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
1989
    {
1990
      lim_warning (_("could not understand bounds information on packed array"));
1991
      return NULL;
1992
    }
1993
 
1994
  bits = decode_packed_array_bitsize (type);
1995
  return constrained_packed_array_type (shadow_type, &bits);
1996
}
1997
 
1998
/* Given that ARR is a struct value *indicating a GNAT constrained packed
1999
   array, returns a simple array that denotes that array.  Its type is a
2000
   standard GDB array type except that the BITSIZEs of the array
2001
   target types are set to the number of bits in each element, and the
2002
   type length is set appropriately.  */
2003
 
2004
static struct value *
2005
decode_constrained_packed_array (struct value *arr)
2006
{
2007
  struct type *type;
2008
 
2009
  arr = ada_coerce_ref (arr);
2010
 
2011
  /* If our value is a pointer, then dererence it.  Make sure that
2012
     this operation does not cause the target type to be fixed, as
2013
     this would indirectly cause this array to be decoded.  The rest
2014
     of the routine assumes that the array hasn't been decoded yet,
2015
     so we use the basic "value_ind" routine to perform the dereferencing,
2016
     as opposed to using "ada_value_ind".  */
2017
  if (TYPE_CODE (value_type (arr)) == TYPE_CODE_PTR)
2018
    arr = value_ind (arr);
2019
 
2020
  type = decode_constrained_packed_array_type (value_type (arr));
2021
  if (type == NULL)
2022
    {
2023
      error (_("can't unpack array"));
2024
      return NULL;
2025
    }
2026
 
2027
  if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
2028
      && ada_is_modular_type (value_type (arr)))
2029
    {
2030
       /* This is a (right-justified) modular type representing a packed
2031
         array with no wrapper.  In order to interpret the value through
2032
         the (left-justified) packed array type we just built, we must
2033
         first left-justify it.  */
2034
      int bit_size, bit_pos;
2035
      ULONGEST mod;
2036
 
2037
      mod = ada_modulus (value_type (arr)) - 1;
2038
      bit_size = 0;
2039
      while (mod > 0)
2040
        {
2041
          bit_size += 1;
2042
          mod >>= 1;
2043
        }
2044
      bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
2045
      arr = ada_value_primitive_packed_val (arr, NULL,
2046
                                            bit_pos / HOST_CHAR_BIT,
2047
                                            bit_pos % HOST_CHAR_BIT,
2048
                                            bit_size,
2049
                                            type);
2050
    }
2051
 
2052
  return coerce_unspec_val_to_type (arr, type);
2053
}
2054
 
2055
 
2056
/* The value of the element of packed array ARR at the ARITY indices
2057
   given in IND.   ARR must be a simple array.  */
2058
 
2059
static struct value *
2060
value_subscript_packed (struct value *arr, int arity, struct value **ind)
2061
{
2062
  int i;
2063
  int bits, elt_off, bit_off;
2064
  long elt_total_bit_offset;
2065
  struct type *elt_type;
2066
  struct value *v;
2067
 
2068
  bits = 0;
2069
  elt_total_bit_offset = 0;
2070
  elt_type = ada_check_typedef (value_type (arr));
2071
  for (i = 0; i < arity; i += 1)
2072
    {
2073
      if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
2074
          || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2075
        error
2076
          (_("attempt to do packed indexing of something other than a packed array"));
2077
      else
2078
        {
2079
          struct type *range_type = TYPE_INDEX_TYPE (elt_type);
2080
          LONGEST lowerbound, upperbound;
2081
          LONGEST idx;
2082
 
2083
          if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2084
            {
2085
              lim_warning (_("don't know bounds of array"));
2086
              lowerbound = upperbound = 0;
2087
            }
2088
 
2089
          idx = pos_atr (ind[i]);
2090
          if (idx < lowerbound || idx > upperbound)
2091
            lim_warning (_("packed array index %ld out of bounds"), (long) idx);
2092
          bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2093
          elt_total_bit_offset += (idx - lowerbound) * bits;
2094
          elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
2095
        }
2096
    }
2097
  elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2098
  bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
2099
 
2100
  v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
2101
                                      bits, elt_type);
2102
  return v;
2103
}
2104
 
2105
/* Non-zero iff TYPE includes negative integer values.  */
2106
 
2107
static int
2108
has_negatives (struct type *type)
2109
{
2110
  switch (TYPE_CODE (type))
2111
    {
2112
    default:
2113
      return 0;
2114
    case TYPE_CODE_INT:
2115
      return !TYPE_UNSIGNED (type);
2116
    case TYPE_CODE_RANGE:
2117
      return TYPE_LOW_BOUND (type) < 0;
2118
    }
2119
}
2120
 
2121
 
2122
/* Create a new value of type TYPE from the contents of OBJ starting
2123
   at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2124
   proceeding for BIT_SIZE bits.  If OBJ is an lval in memory, then
2125
   assigning through the result will set the field fetched from.
2126
   VALADDR is ignored unless OBJ is NULL, in which case,
2127
   VALADDR+OFFSET must address the start of storage containing the
2128
   packed value.  The value returned  in this case is never an lval.
2129
   Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT.  */
2130
 
2131
struct value *
2132
ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2133
                                long offset, int bit_offset, int bit_size,
2134
                                struct type *type)
2135
{
2136
  struct value *v;
2137
  int src,                      /* Index into the source area */
2138
    targ,                       /* Index into the target area */
2139
    srcBitsLeft,                /* Number of source bits left to move */
2140
    nsrc, ntarg,                /* Number of source and target bytes */
2141
    unusedLS,                   /* Number of bits in next significant
2142
                                   byte of source that are unused */
2143
    accumSize;                  /* Number of meaningful bits in accum */
2144
  unsigned char *bytes;         /* First byte containing data to unpack */
2145
  unsigned char *unpacked;
2146
  unsigned long accum;          /* Staging area for bits being transferred */
2147
  unsigned char sign;
2148
  int len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2149
  /* Transmit bytes from least to most significant; delta is the direction
2150
     the indices move.  */
2151
  int delta = gdbarch_bits_big_endian (get_type_arch (type)) ? -1 : 1;
2152
 
2153
  type = ada_check_typedef (type);
2154
 
2155
  if (obj == NULL)
2156
    {
2157
      v = allocate_value (type);
2158
      bytes = (unsigned char *) (valaddr + offset);
2159
    }
2160
  else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2161
    {
2162
      v = value_at (type,
2163
                    value_address (obj) + offset);
2164
      bytes = (unsigned char *) alloca (len);
2165
      read_memory (value_address (v), bytes, len);
2166
    }
2167
  else
2168
    {
2169
      v = allocate_value (type);
2170
      bytes = (unsigned char *) value_contents (obj) + offset;
2171
    }
2172
 
2173
  if (obj != NULL)
2174
    {
2175
      CORE_ADDR new_addr;
2176
 
2177
      set_value_component_location (v, obj);
2178
      new_addr = value_address (obj) + offset;
2179
      set_value_bitpos (v, bit_offset + value_bitpos (obj));
2180
      set_value_bitsize (v, bit_size);
2181
      if (value_bitpos (v) >= HOST_CHAR_BIT)
2182
        {
2183
          ++new_addr;
2184
          set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2185
        }
2186
      set_value_address (v, new_addr);
2187
    }
2188
  else
2189
    set_value_bitsize (v, bit_size);
2190
  unpacked = (unsigned char *) value_contents (v);
2191
 
2192
  srcBitsLeft = bit_size;
2193
  nsrc = len;
2194
  ntarg = TYPE_LENGTH (type);
2195
  sign = 0;
2196
  if (bit_size == 0)
2197
    {
2198
      memset (unpacked, 0, TYPE_LENGTH (type));
2199
      return v;
2200
    }
2201
  else if (gdbarch_bits_big_endian (get_type_arch (type)))
2202
    {
2203
      src = len - 1;
2204
      if (has_negatives (type)
2205
          && ((bytes[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
2206
        sign = ~0;
2207
 
2208
      unusedLS =
2209
        (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2210
        % HOST_CHAR_BIT;
2211
 
2212
      switch (TYPE_CODE (type))
2213
        {
2214
        case TYPE_CODE_ARRAY:
2215
        case TYPE_CODE_UNION:
2216
        case TYPE_CODE_STRUCT:
2217
          /* Non-scalar values must be aligned at a byte boundary...  */
2218
          accumSize =
2219
            (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2220
          /* ... And are placed at the beginning (most-significant) bytes
2221
             of the target.  */
2222
          targ = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2223
          ntarg = targ + 1;
2224
          break;
2225
        default:
2226
          accumSize = 0;
2227
          targ = TYPE_LENGTH (type) - 1;
2228
          break;
2229
        }
2230
    }
2231
  else
2232
    {
2233
      int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2234
 
2235
      src = targ = 0;
2236
      unusedLS = bit_offset;
2237
      accumSize = 0;
2238
 
2239
      if (has_negatives (type) && (bytes[len - 1] & (1 << sign_bit_offset)))
2240
        sign = ~0;
2241
    }
2242
 
2243
  accum = 0;
2244
  while (nsrc > 0)
2245
    {
2246
      /* Mask for removing bits of the next source byte that are not
2247
         part of the value.  */
2248
      unsigned int unusedMSMask =
2249
        (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2250
        1;
2251
      /* Sign-extend bits for this byte.  */
2252
      unsigned int signMask = sign & ~unusedMSMask;
2253
 
2254
      accum |=
2255
        (((bytes[src] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2256
      accumSize += HOST_CHAR_BIT - unusedLS;
2257
      if (accumSize >= HOST_CHAR_BIT)
2258
        {
2259
          unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2260
          accumSize -= HOST_CHAR_BIT;
2261
          accum >>= HOST_CHAR_BIT;
2262
          ntarg -= 1;
2263
          targ += delta;
2264
        }
2265
      srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2266
      unusedLS = 0;
2267
      nsrc -= 1;
2268
      src += delta;
2269
    }
2270
  while (ntarg > 0)
2271
    {
2272
      accum |= sign << accumSize;
2273
      unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2274
      accumSize -= HOST_CHAR_BIT;
2275
      accum >>= HOST_CHAR_BIT;
2276
      ntarg -= 1;
2277
      targ += delta;
2278
    }
2279
 
2280
  return v;
2281
}
2282
 
2283
/* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2284
   TARGET, starting at bit offset TARG_OFFSET.  SOURCE and TARGET must
2285
   not overlap.  */
2286
static void
2287
move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
2288
           int src_offset, int n, int bits_big_endian_p)
2289
{
2290
  unsigned int accum, mask;
2291
  int accum_bits, chunk_size;
2292
 
2293
  target += targ_offset / HOST_CHAR_BIT;
2294
  targ_offset %= HOST_CHAR_BIT;
2295
  source += src_offset / HOST_CHAR_BIT;
2296
  src_offset %= HOST_CHAR_BIT;
2297
  if (bits_big_endian_p)
2298
    {
2299
      accum = (unsigned char) *source;
2300
      source += 1;
2301
      accum_bits = HOST_CHAR_BIT - src_offset;
2302
 
2303
      while (n > 0)
2304
        {
2305
          int unused_right;
2306
 
2307
          accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2308
          accum_bits += HOST_CHAR_BIT;
2309
          source += 1;
2310
          chunk_size = HOST_CHAR_BIT - targ_offset;
2311
          if (chunk_size > n)
2312
            chunk_size = n;
2313
          unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2314
          mask = ((1 << chunk_size) - 1) << unused_right;
2315
          *target =
2316
            (*target & ~mask)
2317
            | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2318
          n -= chunk_size;
2319
          accum_bits -= chunk_size;
2320
          target += 1;
2321
          targ_offset = 0;
2322
        }
2323
    }
2324
  else
2325
    {
2326
      accum = (unsigned char) *source >> src_offset;
2327
      source += 1;
2328
      accum_bits = HOST_CHAR_BIT - src_offset;
2329
 
2330
      while (n > 0)
2331
        {
2332
          accum = accum + ((unsigned char) *source << accum_bits);
2333
          accum_bits += HOST_CHAR_BIT;
2334
          source += 1;
2335
          chunk_size = HOST_CHAR_BIT - targ_offset;
2336
          if (chunk_size > n)
2337
            chunk_size = n;
2338
          mask = ((1 << chunk_size) - 1) << targ_offset;
2339
          *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2340
          n -= chunk_size;
2341
          accum_bits -= chunk_size;
2342
          accum >>= chunk_size;
2343
          target += 1;
2344
          targ_offset = 0;
2345
        }
2346
    }
2347
}
2348
 
2349
/* Store the contents of FROMVAL into the location of TOVAL.
2350
   Return a new value with the location of TOVAL and contents of
2351
   FROMVAL.   Handles assignment into packed fields that have
2352
   floating-point or non-scalar types.  */
2353
 
2354
static struct value *
2355
ada_value_assign (struct value *toval, struct value *fromval)
2356
{
2357
  struct type *type = value_type (toval);
2358
  int bits = value_bitsize (toval);
2359
 
2360
  toval = ada_coerce_ref (toval);
2361
  fromval = ada_coerce_ref (fromval);
2362
 
2363
  if (ada_is_direct_array_type (value_type (toval)))
2364
    toval = ada_coerce_to_simple_array (toval);
2365
  if (ada_is_direct_array_type (value_type (fromval)))
2366
    fromval = ada_coerce_to_simple_array (fromval);
2367
 
2368
  if (!deprecated_value_modifiable (toval))
2369
    error (_("Left operand of assignment is not a modifiable lvalue."));
2370
 
2371
  if (VALUE_LVAL (toval) == lval_memory
2372
      && bits > 0
2373
      && (TYPE_CODE (type) == TYPE_CODE_FLT
2374
          || TYPE_CODE (type) == TYPE_CODE_STRUCT))
2375
    {
2376
      int len = (value_bitpos (toval)
2377
                 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2378
      int from_size;
2379
      char *buffer = (char *) alloca (len);
2380
      struct value *val;
2381
      CORE_ADDR to_addr = value_address (toval);
2382
 
2383
      if (TYPE_CODE (type) == TYPE_CODE_FLT)
2384
        fromval = value_cast (type, fromval);
2385
 
2386
      read_memory (to_addr, buffer, len);
2387
      from_size = value_bitsize (fromval);
2388
      if (from_size == 0)
2389
        from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
2390
      if (gdbarch_bits_big_endian (get_type_arch (type)))
2391
        move_bits (buffer, value_bitpos (toval),
2392
                   value_contents (fromval), from_size - bits, bits, 1);
2393
      else
2394
        move_bits (buffer, value_bitpos (toval),
2395
                   value_contents (fromval), 0, bits, 0);
2396
      write_memory (to_addr, buffer, len);
2397
      observer_notify_memory_changed (to_addr, len, buffer);
2398
 
2399
      val = value_copy (toval);
2400
      memcpy (value_contents_raw (val), value_contents (fromval),
2401
              TYPE_LENGTH (type));
2402
      deprecated_set_value_type (val, type);
2403
 
2404
      return val;
2405
    }
2406
 
2407
  return value_assign (toval, fromval);
2408
}
2409
 
2410
 
2411
/* Given that COMPONENT is a memory lvalue that is part of the lvalue
2412
 * CONTAINER, assign the contents of VAL to COMPONENTS's place in
2413
 * CONTAINER.  Modifies the VALUE_CONTENTS of CONTAINER only, not
2414
 * COMPONENT, and not the inferior's memory.  The current contents
2415
 * of COMPONENT are ignored.  */
2416
static void
2417
value_assign_to_component (struct value *container, struct value *component,
2418
                           struct value *val)
2419
{
2420
  LONGEST offset_in_container =
2421
    (LONGEST)  (value_address (component) - value_address (container));
2422
  int bit_offset_in_container =
2423
    value_bitpos (component) - value_bitpos (container);
2424
  int bits;
2425
 
2426
  val = value_cast (value_type (component), val);
2427
 
2428
  if (value_bitsize (component) == 0)
2429
    bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2430
  else
2431
    bits = value_bitsize (component);
2432
 
2433
  if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
2434
    move_bits (value_contents_writeable (container) + offset_in_container,
2435
               value_bitpos (container) + bit_offset_in_container,
2436
               value_contents (val),
2437
               TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
2438
               bits, 1);
2439
  else
2440
    move_bits (value_contents_writeable (container) + offset_in_container,
2441
               value_bitpos (container) + bit_offset_in_container,
2442
               value_contents (val), 0, bits, 0);
2443
}
2444
 
2445
/* The value of the element of array ARR at the ARITY indices given in IND.
2446
   ARR may be either a simple array, GNAT array descriptor, or pointer
2447
   thereto.  */
2448
 
2449
struct value *
2450
ada_value_subscript (struct value *arr, int arity, struct value **ind)
2451
{
2452
  int k;
2453
  struct value *elt;
2454
  struct type *elt_type;
2455
 
2456
  elt = ada_coerce_to_simple_array (arr);
2457
 
2458
  elt_type = ada_check_typedef (value_type (elt));
2459
  if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
2460
      && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2461
    return value_subscript_packed (elt, arity, ind);
2462
 
2463
  for (k = 0; k < arity; k += 1)
2464
    {
2465
      if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
2466
        error (_("too many subscripts (%d expected)"), k);
2467
      elt = value_subscript (elt, pos_atr (ind[k]));
2468
    }
2469
  return elt;
2470
}
2471
 
2472
/* Assuming ARR is a pointer to a standard GDB array of type TYPE, the
2473
   value of the element of *ARR at the ARITY indices given in
2474
   IND.  Does not read the entire array into memory.  */
2475
 
2476
static struct value *
2477
ada_value_ptr_subscript (struct value *arr, struct type *type, int arity,
2478
                         struct value **ind)
2479
{
2480
  int k;
2481
 
2482
  for (k = 0; k < arity; k += 1)
2483
    {
2484
      LONGEST lwb, upb;
2485
 
2486
      if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2487
        error (_("too many subscripts (%d expected)"), k);
2488
      arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2489
                        value_copy (arr));
2490
      get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2491
      arr = value_ptradd (arr, pos_atr (ind[k]) - lwb);
2492
      type = TYPE_TARGET_TYPE (type);
2493
    }
2494
 
2495
  return value_ind (arr);
2496
}
2497
 
2498
/* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2499
   actual type of ARRAY_PTR is ignored), returns the Ada slice of HIGH-LOW+1
2500
   elements starting at index LOW.  The lower bound of this array is LOW, as
2501
   per Ada rules. */
2502
static struct value *
2503
ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2504
                          int low, int high)
2505
{
2506
  CORE_ADDR base = value_as_address (array_ptr)
2507
    + ((low - ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type)))
2508
       * TYPE_LENGTH (TYPE_TARGET_TYPE (type)));
2509
  struct type *index_type =
2510
    create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type)),
2511
                       low, high);
2512
  struct type *slice_type =
2513
    create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2514
 
2515
  return value_at_lazy (slice_type, base);
2516
}
2517
 
2518
 
2519
static struct value *
2520
ada_value_slice (struct value *array, int low, int high)
2521
{
2522
  struct type *type = value_type (array);
2523
  struct type *index_type =
2524
    create_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
2525
  struct type *slice_type =
2526
    create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2527
 
2528
  return value_cast (slice_type, value_slice (array, low, high - low + 1));
2529
}
2530
 
2531
/* If type is a record type in the form of a standard GNAT array
2532
   descriptor, returns the number of dimensions for type.  If arr is a
2533
   simple array, returns the number of "array of"s that prefix its
2534
   type designation.  Otherwise, returns 0.  */
2535
 
2536
int
2537
ada_array_arity (struct type *type)
2538
{
2539
  int arity;
2540
 
2541
  if (type == NULL)
2542
    return 0;
2543
 
2544
  type = desc_base_type (type);
2545
 
2546
  arity = 0;
2547
  if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2548
    return desc_arity (desc_bounds_type (type));
2549
  else
2550
    while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2551
      {
2552
        arity += 1;
2553
        type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2554
      }
2555
 
2556
  return arity;
2557
}
2558
 
2559
/* If TYPE is a record type in the form of a standard GNAT array
2560
   descriptor or a simple array type, returns the element type for
2561
   TYPE after indexing by NINDICES indices, or by all indices if
2562
   NINDICES is -1.  Otherwise, returns NULL.  */
2563
 
2564
struct type *
2565
ada_array_element_type (struct type *type, int nindices)
2566
{
2567
  type = desc_base_type (type);
2568
 
2569
  if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2570
    {
2571
      int k;
2572
      struct type *p_array_type;
2573
 
2574
      p_array_type = desc_data_target_type (type);
2575
 
2576
      k = ada_array_arity (type);
2577
      if (k == 0)
2578
        return NULL;
2579
 
2580
      /* Initially p_array_type = elt_type(*)[]...(k times)...[].  */
2581
      if (nindices >= 0 && k > nindices)
2582
        k = nindices;
2583
      while (k > 0 && p_array_type != NULL)
2584
        {
2585
          p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
2586
          k -= 1;
2587
        }
2588
      return p_array_type;
2589
    }
2590
  else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2591
    {
2592
      while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
2593
        {
2594
          type = TYPE_TARGET_TYPE (type);
2595
          nindices -= 1;
2596
        }
2597
      return type;
2598
    }
2599
 
2600
  return NULL;
2601
}
2602
 
2603
/* The type of nth index in arrays of given type (n numbering from 1).
2604
   Does not examine memory.  Throws an error if N is invalid or TYPE
2605
   is not an array type.  NAME is the name of the Ada attribute being
2606
   evaluated ('range, 'first, 'last, or 'length); it is used in building
2607
   the error message.  */
2608
 
2609
static struct type *
2610
ada_index_type (struct type *type, int n, const char *name)
2611
{
2612
  struct type *result_type;
2613
 
2614
  type = desc_base_type (type);
2615
 
2616
  if (n < 0 || n > ada_array_arity (type))
2617
    error (_("invalid dimension number to '%s"), name);
2618
 
2619
  if (ada_is_simple_array_type (type))
2620
    {
2621
      int i;
2622
 
2623
      for (i = 1; i < n; i += 1)
2624
        type = TYPE_TARGET_TYPE (type);
2625
      result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
2626
      /* FIXME: The stabs type r(0,0);bound;bound in an array type
2627
         has a target type of TYPE_CODE_UNDEF.  We compensate here, but
2628
         perhaps stabsread.c would make more sense.  */
2629
      if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
2630
        result_type = NULL;
2631
    }
2632
  else
2633
    {
2634
      result_type = desc_index_type (desc_bounds_type (type), n);
2635
      if (result_type == NULL)
2636
        error (_("attempt to take bound of something that is not an array"));
2637
    }
2638
 
2639
  return result_type;
2640
}
2641
 
2642
/* Given that arr is an array type, returns the lower bound of the
2643
   Nth index (numbering from 1) if WHICH is 0, and the upper bound if
2644
   WHICH is 1.  This returns bounds 0 .. -1 if ARR_TYPE is an
2645
   array-descriptor type.  It works for other arrays with bounds supplied
2646
   by run-time quantities other than discriminants.  */
2647
 
2648
static LONGEST
2649
ada_array_bound_from_type (struct type * arr_type, int n, int which)
2650
{
2651
  struct type *type, *elt_type, *index_type_desc, *index_type;
2652
  int i;
2653
 
2654
  gdb_assert (which == 0 || which == 1);
2655
 
2656
  if (ada_is_constrained_packed_array_type (arr_type))
2657
    arr_type = decode_constrained_packed_array_type (arr_type);
2658
 
2659
  if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
2660
    return (LONGEST) - which;
2661
 
2662
  if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
2663
    type = TYPE_TARGET_TYPE (arr_type);
2664
  else
2665
    type = arr_type;
2666
 
2667
  elt_type = type;
2668
  for (i = n; i > 1; i--)
2669
    elt_type = TYPE_TARGET_TYPE (type);
2670
 
2671
  index_type_desc = ada_find_parallel_type (type, "___XA");
2672
  ada_fixup_array_indexes_type (index_type_desc);
2673
  if (index_type_desc != NULL)
2674
    index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
2675
                                      NULL);
2676
  else
2677
    index_type = TYPE_INDEX_TYPE (elt_type);
2678
 
2679
  return
2680
    (LONGEST) (which == 0
2681
               ? ada_discrete_type_low_bound (index_type)
2682
               : ada_discrete_type_high_bound (index_type));
2683
}
2684
 
2685
/* Given that arr is an array value, returns the lower bound of the
2686
   nth index (numbering from 1) if WHICH is 0, and the upper bound if
2687
   WHICH is 1.  This routine will also work for arrays with bounds
2688
   supplied by run-time quantities other than discriminants.  */
2689
 
2690
static LONGEST
2691
ada_array_bound (struct value *arr, int n, int which)
2692
{
2693
  struct type *arr_type = value_type (arr);
2694
 
2695
  if (ada_is_constrained_packed_array_type (arr_type))
2696
    return ada_array_bound (decode_constrained_packed_array (arr), n, which);
2697
  else if (ada_is_simple_array_type (arr_type))
2698
    return ada_array_bound_from_type (arr_type, n, which);
2699
  else
2700
    return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
2701
}
2702
 
2703
/* Given that arr is an array value, returns the length of the
2704
   nth index.  This routine will also work for arrays with bounds
2705
   supplied by run-time quantities other than discriminants.
2706
   Does not work for arrays indexed by enumeration types with representation
2707
   clauses at the moment.  */
2708
 
2709
static LONGEST
2710
ada_array_length (struct value *arr, int n)
2711
{
2712
  struct type *arr_type = ada_check_typedef (value_type (arr));
2713
 
2714
  if (ada_is_constrained_packed_array_type (arr_type))
2715
    return ada_array_length (decode_constrained_packed_array (arr), n);
2716
 
2717
  if (ada_is_simple_array_type (arr_type))
2718
    return (ada_array_bound_from_type (arr_type, n, 1)
2719
            - ada_array_bound_from_type (arr_type, n, 0) + 1);
2720
  else
2721
    return (value_as_long (desc_one_bound (desc_bounds (arr), n, 1))
2722
            - value_as_long (desc_one_bound (desc_bounds (arr), n, 0)) + 1);
2723
}
2724
 
2725
/* An empty array whose type is that of ARR_TYPE (an array type),
2726
   with bounds LOW to LOW-1.  */
2727
 
2728
static struct value *
2729
empty_array (struct type *arr_type, int low)
2730
{
2731
  struct type *index_type =
2732
    create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type)),
2733
                       low, low - 1);
2734
  struct type *elt_type = ada_array_element_type (arr_type, 1);
2735
 
2736
  return allocate_value (create_array_type (NULL, elt_type, index_type));
2737
}
2738
 
2739
 
2740
                                /* Name resolution */
2741
 
2742
/* The "decoded" name for the user-definable Ada operator corresponding
2743
   to OP.  */
2744
 
2745
static const char *
2746
ada_decoded_op_name (enum exp_opcode op)
2747
{
2748
  int i;
2749
 
2750
  for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
2751
    {
2752
      if (ada_opname_table[i].op == op)
2753
        return ada_opname_table[i].decoded;
2754
    }
2755
  error (_("Could not find operator name for opcode"));
2756
}
2757
 
2758
 
2759
/* Same as evaluate_type (*EXP), but resolves ambiguous symbol
2760
   references (marked by OP_VAR_VALUE nodes in which the symbol has an
2761
   undefined namespace) and converts operators that are
2762
   user-defined into appropriate function calls.  If CONTEXT_TYPE is
2763
   non-null, it provides a preferred result type [at the moment, only
2764
   type void has any effect---causing procedures to be preferred over
2765
   functions in calls].  A null CONTEXT_TYPE indicates that a non-void
2766
   return type is preferred.  May change (expand) *EXP.  */
2767
 
2768
static void
2769
resolve (struct expression **expp, int void_context_p)
2770
{
2771
  struct type *context_type = NULL;
2772
  int pc = 0;
2773
 
2774
  if (void_context_p)
2775
    context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
2776
 
2777
  resolve_subexp (expp, &pc, 1, context_type);
2778
}
2779
 
2780
/* Resolve the operator of the subexpression beginning at
2781
   position *POS of *EXPP.  "Resolving" consists of replacing
2782
   the symbols that have undefined namespaces in OP_VAR_VALUE nodes
2783
   with their resolutions, replacing built-in operators with
2784
   function calls to user-defined operators, where appropriate, and,
2785
   when DEPROCEDURE_P is non-zero, converting function-valued variables
2786
   into parameterless calls.  May expand *EXPP.  The CONTEXT_TYPE functions
2787
   are as in ada_resolve, above.  */
2788
 
2789
static struct value *
2790
resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
2791
                struct type *context_type)
2792
{
2793
  int pc = *pos;
2794
  int i;
2795
  struct expression *exp;       /* Convenience: == *expp.  */
2796
  enum exp_opcode op = (*expp)->elts[pc].opcode;
2797
  struct value **argvec;        /* Vector of operand types (alloca'ed).  */
2798
  int nargs;                    /* Number of operands.  */
2799
  int oplen;
2800
 
2801
  argvec = NULL;
2802
  nargs = 0;
2803
  exp = *expp;
2804
 
2805
  /* Pass one: resolve operands, saving their types and updating *pos,
2806
     if needed.  */
2807
  switch (op)
2808
    {
2809
    case OP_FUNCALL:
2810
      if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
2811
          && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
2812
        *pos += 7;
2813
      else
2814
        {
2815
          *pos += 3;
2816
          resolve_subexp (expp, pos, 0, NULL);
2817
        }
2818
      nargs = longest_to_int (exp->elts[pc + 1].longconst);
2819
      break;
2820
 
2821
    case UNOP_ADDR:
2822
      *pos += 1;
2823
      resolve_subexp (expp, pos, 0, NULL);
2824
      break;
2825
 
2826
    case UNOP_QUAL:
2827
      *pos += 3;
2828
      resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type));
2829
      break;
2830
 
2831
    case OP_ATR_MODULUS:
2832
    case OP_ATR_SIZE:
2833
    case OP_ATR_TAG:
2834
    case OP_ATR_FIRST:
2835
    case OP_ATR_LAST:
2836
    case OP_ATR_LENGTH:
2837
    case OP_ATR_POS:
2838
    case OP_ATR_VAL:
2839
    case OP_ATR_MIN:
2840
    case OP_ATR_MAX:
2841
    case TERNOP_IN_RANGE:
2842
    case BINOP_IN_BOUNDS:
2843
    case UNOP_IN_RANGE:
2844
    case OP_AGGREGATE:
2845
    case OP_OTHERS:
2846
    case OP_CHOICES:
2847
    case OP_POSITIONAL:
2848
    case OP_DISCRETE_RANGE:
2849
    case OP_NAME:
2850
      ada_forward_operator_length (exp, pc, &oplen, &nargs);
2851
      *pos += oplen;
2852
      break;
2853
 
2854
    case BINOP_ASSIGN:
2855
      {
2856
        struct value *arg1;
2857
 
2858
        *pos += 1;
2859
        arg1 = resolve_subexp (expp, pos, 0, NULL);
2860
        if (arg1 == NULL)
2861
          resolve_subexp (expp, pos, 1, NULL);
2862
        else
2863
          resolve_subexp (expp, pos, 1, value_type (arg1));
2864
        break;
2865
      }
2866
 
2867
    case UNOP_CAST:
2868
      *pos += 3;
2869
      nargs = 1;
2870
      break;
2871
 
2872
    case BINOP_ADD:
2873
    case BINOP_SUB:
2874
    case BINOP_MUL:
2875
    case BINOP_DIV:
2876
    case BINOP_REM:
2877
    case BINOP_MOD:
2878
    case BINOP_EXP:
2879
    case BINOP_CONCAT:
2880
    case BINOP_LOGICAL_AND:
2881
    case BINOP_LOGICAL_OR:
2882
    case BINOP_BITWISE_AND:
2883
    case BINOP_BITWISE_IOR:
2884
    case BINOP_BITWISE_XOR:
2885
 
2886
    case BINOP_EQUAL:
2887
    case BINOP_NOTEQUAL:
2888
    case BINOP_LESS:
2889
    case BINOP_GTR:
2890
    case BINOP_LEQ:
2891
    case BINOP_GEQ:
2892
 
2893
    case BINOP_REPEAT:
2894
    case BINOP_SUBSCRIPT:
2895
    case BINOP_COMMA:
2896
      *pos += 1;
2897
      nargs = 2;
2898
      break;
2899
 
2900
    case UNOP_NEG:
2901
    case UNOP_PLUS:
2902
    case UNOP_LOGICAL_NOT:
2903
    case UNOP_ABS:
2904
    case UNOP_IND:
2905
      *pos += 1;
2906
      nargs = 1;
2907
      break;
2908
 
2909
    case OP_LONG:
2910
    case OP_DOUBLE:
2911
    case OP_VAR_VALUE:
2912
      *pos += 4;
2913
      break;
2914
 
2915
    case OP_TYPE:
2916
    case OP_BOOL:
2917
    case OP_LAST:
2918
    case OP_INTERNALVAR:
2919
      *pos += 3;
2920
      break;
2921
 
2922
    case UNOP_MEMVAL:
2923
      *pos += 3;
2924
      nargs = 1;
2925
      break;
2926
 
2927
    case OP_REGISTER:
2928
      *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
2929
      break;
2930
 
2931
    case STRUCTOP_STRUCT:
2932
      *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
2933
      nargs = 1;
2934
      break;
2935
 
2936
    case TERNOP_SLICE:
2937
      *pos += 1;
2938
      nargs = 3;
2939
      break;
2940
 
2941
    case OP_STRING:
2942
      break;
2943
 
2944
    default:
2945
      error (_("Unexpected operator during name resolution"));
2946
    }
2947
 
2948
  argvec = (struct value * *) alloca (sizeof (struct value *) * (nargs + 1));
2949
  for (i = 0; i < nargs; i += 1)
2950
    argvec[i] = resolve_subexp (expp, pos, 1, NULL);
2951
  argvec[i] = NULL;
2952
  exp = *expp;
2953
 
2954
  /* Pass two: perform any resolution on principal operator.  */
2955
  switch (op)
2956
    {
2957
    default:
2958
      break;
2959
 
2960
    case OP_VAR_VALUE:
2961
      if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
2962
        {
2963
          struct ada_symbol_info *candidates;
2964
          int n_candidates;
2965
 
2966
          n_candidates =
2967
            ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
2968
                                    (exp->elts[pc + 2].symbol),
2969
                                    exp->elts[pc + 1].block, VAR_DOMAIN,
2970
                                    &candidates);
2971
 
2972
          if (n_candidates > 1)
2973
            {
2974
              /* Types tend to get re-introduced locally, so if there
2975
                 are any local symbols that are not types, first filter
2976
                 out all types.  */
2977
              int j;
2978
              for (j = 0; j < n_candidates; j += 1)
2979
                switch (SYMBOL_CLASS (candidates[j].sym))
2980
                  {
2981
                  case LOC_REGISTER:
2982
                  case LOC_ARG:
2983
                  case LOC_REF_ARG:
2984
                  case LOC_REGPARM_ADDR:
2985
                  case LOC_LOCAL:
2986
                  case LOC_COMPUTED:
2987
                    goto FoundNonType;
2988
                  default:
2989
                    break;
2990
                  }
2991
            FoundNonType:
2992
              if (j < n_candidates)
2993
                {
2994
                  j = 0;
2995
                  while (j < n_candidates)
2996
                    {
2997
                      if (SYMBOL_CLASS (candidates[j].sym) == LOC_TYPEDEF)
2998
                        {
2999
                          candidates[j] = candidates[n_candidates - 1];
3000
                          n_candidates -= 1;
3001
                        }
3002
                      else
3003
                        j += 1;
3004
                    }
3005
                }
3006
            }
3007
 
3008
          if (n_candidates == 0)
3009
            error (_("No definition found for %s"),
3010
                   SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3011
          else if (n_candidates == 1)
3012
            i = 0;
3013
          else if (deprocedure_p
3014
                   && !is_nonfunction (candidates, n_candidates))
3015
            {
3016
              i = ada_resolve_function
3017
                (candidates, n_candidates, NULL, 0,
3018
                 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
3019
                 context_type);
3020
              if (i < 0)
3021
                error (_("Could not find a match for %s"),
3022
                       SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3023
            }
3024
          else
3025
            {
3026
              printf_filtered (_("Multiple matches for %s\n"),
3027
                               SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3028
              user_select_syms (candidates, n_candidates, 1);
3029
              i = 0;
3030
            }
3031
 
3032
          exp->elts[pc + 1].block = candidates[i].block;
3033
          exp->elts[pc + 2].symbol = candidates[i].sym;
3034
          if (innermost_block == NULL
3035
              || contained_in (candidates[i].block, innermost_block))
3036
            innermost_block = candidates[i].block;
3037
        }
3038
 
3039
      if (deprocedure_p
3040
          && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
3041
              == TYPE_CODE_FUNC))
3042
        {
3043
          replace_operator_with_call (expp, pc, 0, 0,
3044
                                      exp->elts[pc + 2].symbol,
3045
                                      exp->elts[pc + 1].block);
3046
          exp = *expp;
3047
        }
3048
      break;
3049
 
3050
    case OP_FUNCALL:
3051
      {
3052
        if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3053
            && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3054
          {
3055
            struct ada_symbol_info *candidates;
3056
            int n_candidates;
3057
 
3058
            n_candidates =
3059
              ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3060
                                      (exp->elts[pc + 5].symbol),
3061
                                      exp->elts[pc + 4].block, VAR_DOMAIN,
3062
                                      &candidates);
3063
            if (n_candidates == 1)
3064
              i = 0;
3065
            else
3066
              {
3067
                i = ada_resolve_function
3068
                  (candidates, n_candidates,
3069
                   argvec, nargs,
3070
                   SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
3071
                   context_type);
3072
                if (i < 0)
3073
                  error (_("Could not find a match for %s"),
3074
                         SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
3075
              }
3076
 
3077
            exp->elts[pc + 4].block = candidates[i].block;
3078
            exp->elts[pc + 5].symbol = candidates[i].sym;
3079
            if (innermost_block == NULL
3080
                || contained_in (candidates[i].block, innermost_block))
3081
              innermost_block = candidates[i].block;
3082
          }
3083
      }
3084
      break;
3085
    case BINOP_ADD:
3086
    case BINOP_SUB:
3087
    case BINOP_MUL:
3088
    case BINOP_DIV:
3089
    case BINOP_REM:
3090
    case BINOP_MOD:
3091
    case BINOP_CONCAT:
3092
    case BINOP_BITWISE_AND:
3093
    case BINOP_BITWISE_IOR:
3094
    case BINOP_BITWISE_XOR:
3095
    case BINOP_EQUAL:
3096
    case BINOP_NOTEQUAL:
3097
    case BINOP_LESS:
3098
    case BINOP_GTR:
3099
    case BINOP_LEQ:
3100
    case BINOP_GEQ:
3101
    case BINOP_EXP:
3102
    case UNOP_NEG:
3103
    case UNOP_PLUS:
3104
    case UNOP_LOGICAL_NOT:
3105
    case UNOP_ABS:
3106
      if (possible_user_operator_p (op, argvec))
3107
        {
3108
          struct ada_symbol_info *candidates;
3109
          int n_candidates;
3110
 
3111
          n_candidates =
3112
            ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)),
3113
                                    (struct block *) NULL, VAR_DOMAIN,
3114
                                    &candidates);
3115
          i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
3116
                                    ada_decoded_op_name (op), NULL);
3117
          if (i < 0)
3118
            break;
3119
 
3120
          replace_operator_with_call (expp, pc, nargs, 1,
3121
                                      candidates[i].sym, candidates[i].block);
3122
          exp = *expp;
3123
        }
3124
      break;
3125
 
3126
    case OP_TYPE:
3127
    case OP_REGISTER:
3128
      return NULL;
3129
    }
3130
 
3131
  *pos = pc;
3132
  return evaluate_subexp_type (exp, pos);
3133
}
3134
 
3135
/* Return non-zero if formal type FTYPE matches actual type ATYPE.  If
3136
   MAY_DEREF is non-zero, the formal may be a pointer and the actual
3137
   a non-pointer.  */
3138
/* The term "match" here is rather loose.  The match is heuristic and
3139
   liberal.  */
3140
 
3141
static int
3142
ada_type_match (struct type *ftype, struct type *atype, int may_deref)
3143
{
3144
  ftype = ada_check_typedef (ftype);
3145
  atype = ada_check_typedef (atype);
3146
 
3147
  if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3148
    ftype = TYPE_TARGET_TYPE (ftype);
3149
  if (TYPE_CODE (atype) == TYPE_CODE_REF)
3150
    atype = TYPE_TARGET_TYPE (atype);
3151
 
3152
  switch (TYPE_CODE (ftype))
3153
    {
3154
    default:
3155
      return TYPE_CODE (ftype) == TYPE_CODE (atype);
3156
    case TYPE_CODE_PTR:
3157
      if (TYPE_CODE (atype) == TYPE_CODE_PTR)
3158
        return ada_type_match (TYPE_TARGET_TYPE (ftype),
3159
                               TYPE_TARGET_TYPE (atype), 0);
3160
      else
3161
        return (may_deref
3162
                && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
3163
    case TYPE_CODE_INT:
3164
    case TYPE_CODE_ENUM:
3165
    case TYPE_CODE_RANGE:
3166
      switch (TYPE_CODE (atype))
3167
        {
3168
        case TYPE_CODE_INT:
3169
        case TYPE_CODE_ENUM:
3170
        case TYPE_CODE_RANGE:
3171
          return 1;
3172
        default:
3173
          return 0;
3174
        }
3175
 
3176
    case TYPE_CODE_ARRAY:
3177
      return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3178
              || ada_is_array_descriptor_type (atype));
3179
 
3180
    case TYPE_CODE_STRUCT:
3181
      if (ada_is_array_descriptor_type (ftype))
3182
        return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3183
                || ada_is_array_descriptor_type (atype));
3184
      else
3185
        return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3186
                && !ada_is_array_descriptor_type (atype));
3187
 
3188
    case TYPE_CODE_UNION:
3189
    case TYPE_CODE_FLT:
3190
      return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3191
    }
3192
}
3193
 
3194
/* Return non-zero if the formals of FUNC "sufficiently match" the
3195
   vector of actual argument types ACTUALS of size N_ACTUALS.  FUNC
3196
   may also be an enumeral, in which case it is treated as a 0-
3197
   argument function.  */
3198
 
3199
static int
3200
ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3201
{
3202
  int i;
3203
  struct type *func_type = SYMBOL_TYPE (func);
3204
 
3205
  if (SYMBOL_CLASS (func) == LOC_CONST
3206
      && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
3207
    return (n_actuals == 0);
3208
  else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3209
    return 0;
3210
 
3211
  if (TYPE_NFIELDS (func_type) != n_actuals)
3212
    return 0;
3213
 
3214
  for (i = 0; i < n_actuals; i += 1)
3215
    {
3216
      if (actuals[i] == NULL)
3217
        return 0;
3218
      else
3219
        {
3220
          struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
3221
                                                                   i));
3222
          struct type *atype = ada_check_typedef (value_type (actuals[i]));
3223
 
3224
          if (!ada_type_match (ftype, atype, 1))
3225
            return 0;
3226
        }
3227
    }
3228
  return 1;
3229
}
3230
 
3231
/* False iff function type FUNC_TYPE definitely does not produce a value
3232
   compatible with type CONTEXT_TYPE.  Conservatively returns 1 if
3233
   FUNC_TYPE is not a valid function type with a non-null return type
3234
   or an enumerated type.  A null CONTEXT_TYPE indicates any non-void type.  */
3235
 
3236
static int
3237
return_match (struct type *func_type, struct type *context_type)
3238
{
3239
  struct type *return_type;
3240
 
3241
  if (func_type == NULL)
3242
    return 1;
3243
 
3244
  if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
3245
    return_type = base_type (TYPE_TARGET_TYPE (func_type));
3246
  else
3247
    return_type = base_type (func_type);
3248
  if (return_type == NULL)
3249
    return 1;
3250
 
3251
  context_type = base_type (context_type);
3252
 
3253
  if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3254
    return context_type == NULL || return_type == context_type;
3255
  else if (context_type == NULL)
3256
    return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3257
  else
3258
    return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3259
}
3260
 
3261
 
3262
/* Returns the index in SYMS[0..NSYMS-1] that contains  the symbol for the
3263
   function (if any) that matches the types of the NARGS arguments in
3264
   ARGS.  If CONTEXT_TYPE is non-null and there is at least one match
3265
   that returns that type, then eliminate matches that don't.  If
3266
   CONTEXT_TYPE is void and there is at least one match that does not
3267
   return void, eliminate all matches that do.
3268
 
3269
   Asks the user if there is more than one match remaining.  Returns -1
3270
   if there is no such symbol or none is selected.  NAME is used
3271
   solely for messages.  May re-arrange and modify SYMS in
3272
   the process; the index returned is for the modified vector.  */
3273
 
3274
static int
3275
ada_resolve_function (struct ada_symbol_info syms[],
3276
                      int nsyms, struct value **args, int nargs,
3277
                      const char *name, struct type *context_type)
3278
{
3279
  int fallback;
3280
  int k;
3281
  int m;                        /* Number of hits */
3282
 
3283
  m = 0;
3284
  /* In the first pass of the loop, we only accept functions matching
3285
     context_type.  If none are found, we add a second pass of the loop
3286
     where every function is accepted.  */
3287
  for (fallback = 0; m == 0 && fallback < 2; fallback++)
3288
    {
3289
      for (k = 0; k < nsyms; k += 1)
3290
        {
3291
          struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].sym));
3292
 
3293
          if (ada_args_match (syms[k].sym, args, nargs)
3294
              && (fallback || return_match (type, context_type)))
3295
            {
3296
              syms[m] = syms[k];
3297
              m += 1;
3298
            }
3299
        }
3300
    }
3301
 
3302
  if (m == 0)
3303
    return -1;
3304
  else if (m > 1)
3305
    {
3306
      printf_filtered (_("Multiple matches for %s\n"), name);
3307
      user_select_syms (syms, m, 1);
3308
      return 0;
3309
    }
3310
  return 0;
3311
}
3312
 
3313
/* Returns true (non-zero) iff decoded name N0 should appear before N1
3314
   in a listing of choices during disambiguation (see sort_choices, below).
3315
   The idea is that overloadings of a subprogram name from the
3316
   same package should sort in their source order.  We settle for ordering
3317
   such symbols by their trailing number (__N  or $N).  */
3318
 
3319
static int
3320
encoded_ordered_before (char *N0, char *N1)
3321
{
3322
  if (N1 == NULL)
3323
    return 0;
3324
  else if (N0 == NULL)
3325
    return 1;
3326
  else
3327
    {
3328
      int k0, k1;
3329
 
3330
      for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3331
        ;
3332
      for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3333
        ;
3334
      if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3335
          && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3336
        {
3337
          int n0, n1;
3338
 
3339
          n0 = k0;
3340
          while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3341
            n0 -= 1;
3342
          n1 = k1;
3343
          while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3344
            n1 -= 1;
3345
          if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3346
            return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3347
        }
3348
      return (strcmp (N0, N1) < 0);
3349
    }
3350
}
3351
 
3352
/* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3353
   encoded names.  */
3354
 
3355
static void
3356
sort_choices (struct ada_symbol_info syms[], int nsyms)
3357
{
3358
  int i;
3359
 
3360
  for (i = 1; i < nsyms; i += 1)
3361
    {
3362
      struct ada_symbol_info sym = syms[i];
3363
      int j;
3364
 
3365
      for (j = i - 1; j >= 0; j -= 1)
3366
        {
3367
          if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].sym),
3368
                                      SYMBOL_LINKAGE_NAME (sym.sym)))
3369
            break;
3370
          syms[j + 1] = syms[j];
3371
        }
3372
      syms[j + 1] = sym;
3373
    }
3374
}
3375
 
3376
/* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3377
   by asking the user (if necessary), returning the number selected,
3378
   and setting the first elements of SYMS items.  Error if no symbols
3379
   selected.  */
3380
 
3381
/* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3382
   to be re-integrated one of these days.  */
3383
 
3384
int
3385
user_select_syms (struct ada_symbol_info *syms, int nsyms, int max_results)
3386
{
3387
  int i;
3388
  int *chosen = (int *) alloca (sizeof (int) * nsyms);
3389
  int n_chosen;
3390
  int first_choice = (max_results == 1) ? 1 : 2;
3391
  const char *select_mode = multiple_symbols_select_mode ();
3392
 
3393
  if (max_results < 1)
3394
    error (_("Request to select 0 symbols!"));
3395
  if (nsyms <= 1)
3396
    return nsyms;
3397
 
3398
  if (select_mode == multiple_symbols_cancel)
3399
    error (_("\
3400
canceled because the command is ambiguous\n\
3401
See set/show multiple-symbol."));
3402
 
3403
  /* If select_mode is "all", then return all possible symbols.
3404
     Only do that if more than one symbol can be selected, of course.
3405
     Otherwise, display the menu as usual.  */
3406
  if (select_mode == multiple_symbols_all && max_results > 1)
3407
    return nsyms;
3408
 
3409
  printf_unfiltered (_("[0] cancel\n"));
3410
  if (max_results > 1)
3411
    printf_unfiltered (_("[1] all\n"));
3412
 
3413
  sort_choices (syms, nsyms);
3414
 
3415
  for (i = 0; i < nsyms; i += 1)
3416
    {
3417
      if (syms[i].sym == NULL)
3418
        continue;
3419
 
3420
      if (SYMBOL_CLASS (syms[i].sym) == LOC_BLOCK)
3421
        {
3422
          struct symtab_and_line sal =
3423
            find_function_start_sal (syms[i].sym, 1);
3424
 
3425
          if (sal.symtab == NULL)
3426
            printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"),
3427
                               i + first_choice,
3428
                               SYMBOL_PRINT_NAME (syms[i].sym),
3429
                               sal.line);
3430
          else
3431
            printf_unfiltered (_("[%d] %s at %s:%d\n"), i + first_choice,
3432
                               SYMBOL_PRINT_NAME (syms[i].sym),
3433
                               sal.symtab->filename, sal.line);
3434
          continue;
3435
        }
3436
      else
3437
        {
3438
          int is_enumeral =
3439
            (SYMBOL_CLASS (syms[i].sym) == LOC_CONST
3440
             && SYMBOL_TYPE (syms[i].sym) != NULL
3441
             && TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) == TYPE_CODE_ENUM);
3442
          struct symtab *symtab = syms[i].sym->symtab;
3443
 
3444
          if (SYMBOL_LINE (syms[i].sym) != 0 && symtab != NULL)
3445
            printf_unfiltered (_("[%d] %s at %s:%d\n"),
3446
                               i + first_choice,
3447
                               SYMBOL_PRINT_NAME (syms[i].sym),
3448
                               symtab->filename, SYMBOL_LINE (syms[i].sym));
3449
          else if (is_enumeral
3450
                   && TYPE_NAME (SYMBOL_TYPE (syms[i].sym)) != NULL)
3451
            {
3452
              printf_unfiltered (("[%d] "), i + first_choice);
3453
              ada_print_type (SYMBOL_TYPE (syms[i].sym), NULL,
3454
                              gdb_stdout, -1, 0);
3455
              printf_unfiltered (_("'(%s) (enumeral)\n"),
3456
                                 SYMBOL_PRINT_NAME (syms[i].sym));
3457
            }
3458
          else if (symtab != NULL)
3459
            printf_unfiltered (is_enumeral
3460
                               ? _("[%d] %s in %s (enumeral)\n")
3461
                               : _("[%d] %s at %s:?\n"),
3462
                               i + first_choice,
3463
                               SYMBOL_PRINT_NAME (syms[i].sym),
3464
                               symtab->filename);
3465
          else
3466
            printf_unfiltered (is_enumeral
3467
                               ? _("[%d] %s (enumeral)\n")
3468
                               : _("[%d] %s at ?\n"),
3469
                               i + first_choice,
3470
                               SYMBOL_PRINT_NAME (syms[i].sym));
3471
        }
3472
    }
3473
 
3474
  n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
3475
                             "overload-choice");
3476
 
3477
  for (i = 0; i < n_chosen; i += 1)
3478
    syms[i] = syms[chosen[i]];
3479
 
3480
  return n_chosen;
3481
}
3482
 
3483
/* Read and validate a set of numeric choices from the user in the
3484
   range 0 .. N_CHOICES-1.  Place the results in increasing
3485
   order in CHOICES[0 .. N-1], and return N.
3486
 
3487
   The user types choices as a sequence of numbers on one line
3488
   separated by blanks, encoding them as follows:
3489
 
3490
     + A choice of 0 means to cancel the selection, throwing an error.
3491
     + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3492
     + The user chooses k by typing k+IS_ALL_CHOICE+1.
3493
 
3494
   The user is not allowed to choose more than MAX_RESULTS values.
3495
 
3496
   ANNOTATION_SUFFIX, if present, is used to annotate the input
3497
   prompts (for use with the -f switch).  */
3498
 
3499
int
3500
get_selections (int *choices, int n_choices, int max_results,
3501
                int is_all_choice, char *annotation_suffix)
3502
{
3503
  char *args;
3504
  char *prompt;
3505
  int n_chosen;
3506
  int first_choice = is_all_choice ? 2 : 1;
3507
 
3508
  prompt = getenv ("PS2");
3509
  if (prompt == NULL)
3510
    prompt = "> ";
3511
 
3512
  args = command_line_input (prompt, 0, annotation_suffix);
3513
 
3514
  if (args == NULL)
3515
    error_no_arg (_("one or more choice numbers"));
3516
 
3517
  n_chosen = 0;
3518
 
3519
  /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3520
     order, as given in args.  Choices are validated.  */
3521
  while (1)
3522
    {
3523
      char *args2;
3524
      int choice, j;
3525
 
3526
      while (isspace (*args))
3527
        args += 1;
3528
      if (*args == '\0' && n_chosen == 0)
3529
        error_no_arg (_("one or more choice numbers"));
3530
      else if (*args == '\0')
3531
        break;
3532
 
3533
      choice = strtol (args, &args2, 10);
3534
      if (args == args2 || choice < 0
3535
          || choice > n_choices + first_choice - 1)
3536
        error (_("Argument must be choice number"));
3537
      args = args2;
3538
 
3539
      if (choice == 0)
3540
        error (_("cancelled"));
3541
 
3542
      if (choice < first_choice)
3543
        {
3544
          n_chosen = n_choices;
3545
          for (j = 0; j < n_choices; j += 1)
3546
            choices[j] = j;
3547
          break;
3548
        }
3549
      choice -= first_choice;
3550
 
3551
      for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
3552
        {
3553
        }
3554
 
3555
      if (j < 0 || choice != choices[j])
3556
        {
3557
          int k;
3558
 
3559
          for (k = n_chosen - 1; k > j; k -= 1)
3560
            choices[k + 1] = choices[k];
3561
          choices[j + 1] = choice;
3562
          n_chosen += 1;
3563
        }
3564
    }
3565
 
3566
  if (n_chosen > max_results)
3567
    error (_("Select no more than %d of the above"), max_results);
3568
 
3569
  return n_chosen;
3570
}
3571
 
3572
/* Replace the operator of length OPLEN at position PC in *EXPP with a call
3573
   on the function identified by SYM and BLOCK, and taking NARGS
3574
   arguments.  Update *EXPP as needed to hold more space.  */
3575
 
3576
static void
3577
replace_operator_with_call (struct expression **expp, int pc, int nargs,
3578
                            int oplen, struct symbol *sym,
3579
                            struct block *block)
3580
{
3581
  /* A new expression, with 6 more elements (3 for funcall, 4 for function
3582
     symbol, -oplen for operator being replaced).  */
3583
  struct expression *newexp = (struct expression *)
3584
    xmalloc (sizeof (struct expression)
3585
             + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
3586
  struct expression *exp = *expp;
3587
 
3588
  newexp->nelts = exp->nelts + 7 - oplen;
3589
  newexp->language_defn = exp->language_defn;
3590
  memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
3591
  memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
3592
          EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
3593
 
3594
  newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
3595
  newexp->elts[pc + 1].longconst = (LONGEST) nargs;
3596
 
3597
  newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
3598
  newexp->elts[pc + 4].block = block;
3599
  newexp->elts[pc + 5].symbol = sym;
3600
 
3601
  *expp = newexp;
3602
  xfree (exp);
3603
}
3604
 
3605
/* Type-class predicates */
3606
 
3607
/* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3608
   or FLOAT).  */
3609
 
3610
static int
3611
numeric_type_p (struct type *type)
3612
{
3613
  if (type == NULL)
3614
    return 0;
3615
  else
3616
    {
3617
      switch (TYPE_CODE (type))
3618
        {
3619
        case TYPE_CODE_INT:
3620
        case TYPE_CODE_FLT:
3621
          return 1;
3622
        case TYPE_CODE_RANGE:
3623
          return (type == TYPE_TARGET_TYPE (type)
3624
                  || numeric_type_p (TYPE_TARGET_TYPE (type)));
3625
        default:
3626
          return 0;
3627
        }
3628
    }
3629
}
3630
 
3631
/* True iff TYPE is integral (an INT or RANGE of INTs).  */
3632
 
3633
static int
3634
integer_type_p (struct type *type)
3635
{
3636
  if (type == NULL)
3637
    return 0;
3638
  else
3639
    {
3640
      switch (TYPE_CODE (type))
3641
        {
3642
        case TYPE_CODE_INT:
3643
          return 1;
3644
        case TYPE_CODE_RANGE:
3645
          return (type == TYPE_TARGET_TYPE (type)
3646
                  || integer_type_p (TYPE_TARGET_TYPE (type)));
3647
        default:
3648
          return 0;
3649
        }
3650
    }
3651
}
3652
 
3653
/* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM).  */
3654
 
3655
static int
3656
scalar_type_p (struct type *type)
3657
{
3658
  if (type == NULL)
3659
    return 0;
3660
  else
3661
    {
3662
      switch (TYPE_CODE (type))
3663
        {
3664
        case TYPE_CODE_INT:
3665
        case TYPE_CODE_RANGE:
3666
        case TYPE_CODE_ENUM:
3667
        case TYPE_CODE_FLT:
3668
          return 1;
3669
        default:
3670
          return 0;
3671
        }
3672
    }
3673
}
3674
 
3675
/* True iff TYPE is discrete (INT, RANGE, ENUM).  */
3676
 
3677
static int
3678
discrete_type_p (struct type *type)
3679
{
3680
  if (type == NULL)
3681
    return 0;
3682
  else
3683
    {
3684
      switch (TYPE_CODE (type))
3685
        {
3686
        case TYPE_CODE_INT:
3687
        case TYPE_CODE_RANGE:
3688
        case TYPE_CODE_ENUM:
3689
        case TYPE_CODE_BOOL:
3690
          return 1;
3691
        default:
3692
          return 0;
3693
        }
3694
    }
3695
}
3696
 
3697
/* Returns non-zero if OP with operands in the vector ARGS could be
3698
   a user-defined function.  Errs on the side of pre-defined operators
3699
   (i.e., result 0).  */
3700
 
3701
static int
3702
possible_user_operator_p (enum exp_opcode op, struct value *args[])
3703
{
3704
  struct type *type0 =
3705
    (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
3706
  struct type *type1 =
3707
    (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
3708
 
3709
  if (type0 == NULL)
3710
    return 0;
3711
 
3712
  switch (op)
3713
    {
3714
    default:
3715
      return 0;
3716
 
3717
    case BINOP_ADD:
3718
    case BINOP_SUB:
3719
    case BINOP_MUL:
3720
    case BINOP_DIV:
3721
      return (!(numeric_type_p (type0) && numeric_type_p (type1)));
3722
 
3723
    case BINOP_REM:
3724
    case BINOP_MOD:
3725
    case BINOP_BITWISE_AND:
3726
    case BINOP_BITWISE_IOR:
3727
    case BINOP_BITWISE_XOR:
3728
      return (!(integer_type_p (type0) && integer_type_p (type1)));
3729
 
3730
    case BINOP_EQUAL:
3731
    case BINOP_NOTEQUAL:
3732
    case BINOP_LESS:
3733
    case BINOP_GTR:
3734
    case BINOP_LEQ:
3735
    case BINOP_GEQ:
3736
      return (!(scalar_type_p (type0) && scalar_type_p (type1)));
3737
 
3738
    case BINOP_CONCAT:
3739
      return !ada_is_array_type (type0) || !ada_is_array_type (type1);
3740
 
3741
    case BINOP_EXP:
3742
      return (!(numeric_type_p (type0) && integer_type_p (type1)));
3743
 
3744
    case UNOP_NEG:
3745
    case UNOP_PLUS:
3746
    case UNOP_LOGICAL_NOT:
3747
    case UNOP_ABS:
3748
      return (!numeric_type_p (type0));
3749
 
3750
    }
3751
}
3752
 
3753
                                /* Renaming */
3754
 
3755
/* NOTES:
3756
 
3757
   1. In the following, we assume that a renaming type's name may
3758
      have an ___XD suffix.  It would be nice if this went away at some
3759
      point.
3760
   2. We handle both the (old) purely type-based representation of
3761
      renamings and the (new) variable-based encoding.  At some point,
3762
      it is devoutly to be hoped that the former goes away
3763
      (FIXME: hilfinger-2007-07-09).
3764
   3. Subprogram renamings are not implemented, although the XRS
3765
      suffix is recognized (FIXME: hilfinger-2007-07-09).  */
3766
 
3767
/* If SYM encodes a renaming,
3768
 
3769
       <renaming> renames <renamed entity>,
3770
 
3771
   sets *LEN to the length of the renamed entity's name,
3772
   *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
3773
   the string describing the subcomponent selected from the renamed
3774
   entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
3775
   (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
3776
   are undefined).  Otherwise, returns a value indicating the category
3777
   of entity renamed: an object (ADA_OBJECT_RENAMING), exception
3778
   (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
3779
   subprogram (ADA_SUBPROGRAM_RENAMING).  Does no allocation; the
3780
   strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
3781
   deallocated.  The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
3782
   may be NULL, in which case they are not assigned.
3783
 
3784
   [Currently, however, GCC does not generate subprogram renamings.]  */
3785
 
3786
enum ada_renaming_category
3787
ada_parse_renaming (struct symbol *sym,
3788
                    const char **renamed_entity, int *len,
3789
                    const char **renaming_expr)
3790
{
3791
  enum ada_renaming_category kind;
3792
  const char *info;
3793
  const char *suffix;
3794
 
3795
  if (sym == NULL)
3796
    return ADA_NOT_RENAMING;
3797
  switch (SYMBOL_CLASS (sym))
3798
    {
3799
    default:
3800
      return ADA_NOT_RENAMING;
3801
    case LOC_TYPEDEF:
3802
      return parse_old_style_renaming (SYMBOL_TYPE (sym),
3803
                                       renamed_entity, len, renaming_expr);
3804
    case LOC_LOCAL:
3805
    case LOC_STATIC:
3806
    case LOC_COMPUTED:
3807
    case LOC_OPTIMIZED_OUT:
3808
      info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
3809
      if (info == NULL)
3810
        return ADA_NOT_RENAMING;
3811
      switch (info[5])
3812
        {
3813
        case '_':
3814
          kind = ADA_OBJECT_RENAMING;
3815
          info += 6;
3816
          break;
3817
        case 'E':
3818
          kind = ADA_EXCEPTION_RENAMING;
3819
          info += 7;
3820
          break;
3821
        case 'P':
3822
          kind = ADA_PACKAGE_RENAMING;
3823
          info += 7;
3824
          break;
3825
        case 'S':
3826
          kind = ADA_SUBPROGRAM_RENAMING;
3827
          info += 7;
3828
          break;
3829
        default:
3830
          return ADA_NOT_RENAMING;
3831
        }
3832
    }
3833
 
3834
  if (renamed_entity != NULL)
3835
    *renamed_entity = info;
3836
  suffix = strstr (info, "___XE");
3837
  if (suffix == NULL || suffix == info)
3838
    return ADA_NOT_RENAMING;
3839
  if (len != NULL)
3840
    *len = strlen (info) - strlen (suffix);
3841
  suffix += 5;
3842
  if (renaming_expr != NULL)
3843
    *renaming_expr = suffix;
3844
  return kind;
3845
}
3846
 
3847
/* Assuming TYPE encodes a renaming according to the old encoding in
3848
   exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
3849
   *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above.  Returns
3850
   ADA_NOT_RENAMING otherwise.  */
3851
static enum ada_renaming_category
3852
parse_old_style_renaming (struct type *type,
3853
                          const char **renamed_entity, int *len,
3854
                          const char **renaming_expr)
3855
{
3856
  enum ada_renaming_category kind;
3857
  const char *name;
3858
  const char *info;
3859
  const char *suffix;
3860
 
3861
  if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
3862
      || TYPE_NFIELDS (type) != 1)
3863
    return ADA_NOT_RENAMING;
3864
 
3865
  name = type_name_no_tag (type);
3866
  if (name == NULL)
3867
    return ADA_NOT_RENAMING;
3868
 
3869
  name = strstr (name, "___XR");
3870
  if (name == NULL)
3871
    return ADA_NOT_RENAMING;
3872
  switch (name[5])
3873
    {
3874
    case '\0':
3875
    case '_':
3876
      kind = ADA_OBJECT_RENAMING;
3877
      break;
3878
    case 'E':
3879
      kind = ADA_EXCEPTION_RENAMING;
3880
      break;
3881
    case 'P':
3882
      kind = ADA_PACKAGE_RENAMING;
3883
      break;
3884
    case 'S':
3885
      kind = ADA_SUBPROGRAM_RENAMING;
3886
      break;
3887
    default:
3888
      return ADA_NOT_RENAMING;
3889
    }
3890
 
3891
  info = TYPE_FIELD_NAME (type, 0);
3892
  if (info == NULL)
3893
    return ADA_NOT_RENAMING;
3894
  if (renamed_entity != NULL)
3895
    *renamed_entity = info;
3896
  suffix = strstr (info, "___XE");
3897
  if (renaming_expr != NULL)
3898
    *renaming_expr = suffix + 5;
3899
  if (suffix == NULL || suffix == info)
3900
    return ADA_NOT_RENAMING;
3901
  if (len != NULL)
3902
    *len = suffix - info;
3903
  return kind;
3904
}
3905
 
3906
 
3907
 
3908
                                /* Evaluation: Function Calls */
3909
 
3910
/* Return an lvalue containing the value VAL.  This is the identity on
3911
   lvalues, and otherwise has the side-effect of pushing a copy of VAL
3912
   on the stack, using and updating *SP as the stack pointer, and
3913
   returning an lvalue whose value_address points to the copy.  */
3914
 
3915
static struct value *
3916
ensure_lval (struct value *val, struct gdbarch *gdbarch, CORE_ADDR *sp)
3917
{
3918
  if (! VALUE_LVAL (val))
3919
    {
3920
      int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
3921
 
3922
      /* The following is taken from the structure-return code in
3923
         call_function_by_hand. FIXME: Therefore, some refactoring seems
3924
         indicated. */
3925
      if (gdbarch_inner_than (gdbarch, 1, 2))
3926
        {
3927
          /* Stack grows downward.  Align SP and value_address (val) after
3928
             reserving sufficient space. */
3929
          *sp -= len;
3930
          if (gdbarch_frame_align_p (gdbarch))
3931
            *sp = gdbarch_frame_align (gdbarch, *sp);
3932
          set_value_address (val, *sp);
3933
        }
3934
      else
3935
        {
3936
          /* Stack grows upward.  Align the frame, allocate space, and
3937
             then again, re-align the frame. */
3938
          if (gdbarch_frame_align_p (gdbarch))
3939
            *sp = gdbarch_frame_align (gdbarch, *sp);
3940
          set_value_address (val, *sp);
3941
          *sp += len;
3942
          if (gdbarch_frame_align_p (gdbarch))
3943
            *sp = gdbarch_frame_align (gdbarch, *sp);
3944
        }
3945
      VALUE_LVAL (val) = lval_memory;
3946
 
3947
      write_memory (value_address (val), value_contents (val), len);
3948
    }
3949
 
3950
  return val;
3951
}
3952
 
3953
/* Return the value ACTUAL, converted to be an appropriate value for a
3954
   formal of type FORMAL_TYPE.  Use *SP as a stack pointer for
3955
   allocating any necessary descriptors (fat pointers), or copies of
3956
   values not residing in memory, updating it as needed.  */
3957
 
3958
struct value *
3959
ada_convert_actual (struct value *actual, struct type *formal_type0,
3960
                    struct gdbarch *gdbarch, CORE_ADDR *sp)
3961
{
3962
  struct type *actual_type = ada_check_typedef (value_type (actual));
3963
  struct type *formal_type = ada_check_typedef (formal_type0);
3964
  struct type *formal_target =
3965
    TYPE_CODE (formal_type) == TYPE_CODE_PTR
3966
    ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
3967
  struct type *actual_target =
3968
    TYPE_CODE (actual_type) == TYPE_CODE_PTR
3969
    ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
3970
 
3971
  if (ada_is_array_descriptor_type (formal_target)
3972
      && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
3973
    return make_array_descriptor (formal_type, actual, gdbarch, sp);
3974
  else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
3975
           || TYPE_CODE (formal_type) == TYPE_CODE_REF)
3976
    {
3977
      struct value *result;
3978
 
3979
      if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
3980
          && ada_is_array_descriptor_type (actual_target))
3981
        result = desc_data (actual);
3982
      else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
3983
        {
3984
          if (VALUE_LVAL (actual) != lval_memory)
3985
            {
3986
              struct value *val;
3987
 
3988
              actual_type = ada_check_typedef (value_type (actual));
3989
              val = allocate_value (actual_type);
3990
              memcpy ((char *) value_contents_raw (val),
3991
                      (char *) value_contents (actual),
3992
                      TYPE_LENGTH (actual_type));
3993
              actual = ensure_lval (val, gdbarch, sp);
3994
            }
3995
          result = value_addr (actual);
3996
        }
3997
      else
3998
        return actual;
3999
      return value_cast_pointers (formal_type, result);
4000
    }
4001
  else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
4002
    return ada_value_ind (actual);
4003
 
4004
  return actual;
4005
}
4006
 
4007
/* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4008
   type TYPE.  This is usually an inefficient no-op except on some targets
4009
   (such as AVR) where the representation of a pointer and an address
4010
   differs.  */
4011
 
4012
static CORE_ADDR
4013
value_pointer (struct value *value, struct type *type)
4014
{
4015
  struct gdbarch *gdbarch = get_type_arch (type);
4016
  unsigned len = TYPE_LENGTH (type);
4017
  gdb_byte *buf = alloca (len);
4018
  CORE_ADDR addr;
4019
 
4020
  addr = value_address (value);
4021
  gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4022
  addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch));
4023
  return addr;
4024
}
4025
 
4026
 
4027
/* Push a descriptor of type TYPE for array value ARR on the stack at
4028
   *SP, updating *SP to reflect the new descriptor.  Return either
4029
   an lvalue representing the new descriptor, or (if TYPE is a pointer-
4030
   to-descriptor type rather than a descriptor type), a struct value *
4031
   representing a pointer to this descriptor.  */
4032
 
4033
static struct value *
4034
make_array_descriptor (struct type *type, struct value *arr,
4035
                       struct gdbarch *gdbarch, CORE_ADDR *sp)
4036
{
4037
  struct type *bounds_type = desc_bounds_type (type);
4038
  struct type *desc_type = desc_base_type (type);
4039
  struct value *descriptor = allocate_value (desc_type);
4040
  struct value *bounds = allocate_value (bounds_type);
4041
  int i;
4042
 
4043
  for (i = ada_array_arity (ada_check_typedef (value_type (arr))); i > 0; i -= 1)
4044
    {
4045
      modify_general_field (value_type (bounds),
4046
                            value_contents_writeable (bounds),
4047
                            ada_array_bound (arr, i, 0),
4048
                            desc_bound_bitpos (bounds_type, i, 0),
4049
                            desc_bound_bitsize (bounds_type, i, 0));
4050
      modify_general_field (value_type (bounds),
4051
                            value_contents_writeable (bounds),
4052
                            ada_array_bound (arr, i, 1),
4053
                            desc_bound_bitpos (bounds_type, i, 1),
4054
                            desc_bound_bitsize (bounds_type, i, 1));
4055
    }
4056
 
4057
  bounds = ensure_lval (bounds, gdbarch, sp);
4058
 
4059
  modify_general_field (value_type (descriptor),
4060
                        value_contents_writeable (descriptor),
4061
                        value_pointer (ensure_lval (arr, gdbarch, sp),
4062
                                       TYPE_FIELD_TYPE (desc_type, 0)),
4063
                        fat_pntr_data_bitpos (desc_type),
4064
                        fat_pntr_data_bitsize (desc_type));
4065
 
4066
  modify_general_field (value_type (descriptor),
4067
                        value_contents_writeable (descriptor),
4068
                        value_pointer (bounds,
4069
                                       TYPE_FIELD_TYPE (desc_type, 1)),
4070
                        fat_pntr_bounds_bitpos (desc_type),
4071
                        fat_pntr_bounds_bitsize (desc_type));
4072
 
4073
  descriptor = ensure_lval (descriptor, gdbarch, sp);
4074
 
4075
  if (TYPE_CODE (type) == TYPE_CODE_PTR)
4076
    return value_addr (descriptor);
4077
  else
4078
    return descriptor;
4079
}
4080
 
4081
/* Dummy definitions for an experimental caching module that is not
4082
 * used in the public sources. */
4083
 
4084
static int
4085
lookup_cached_symbol (const char *name, domain_enum namespace,
4086
                      struct symbol **sym, struct block **block)
4087
{
4088
  return 0;
4089
}
4090
 
4091
static void
4092
cache_symbol (const char *name, domain_enum namespace, struct symbol *sym,
4093
              struct block *block)
4094
{
4095
}
4096
 
4097
                                /* Symbol Lookup */
4098
 
4099
/* Return the result of a standard (literal, C-like) lookup of NAME in
4100
   given DOMAIN, visible from lexical block BLOCK.  */
4101
 
4102
static struct symbol *
4103
standard_lookup (const char *name, const struct block *block,
4104
                 domain_enum domain)
4105
{
4106
  struct symbol *sym;
4107
 
4108
  if (lookup_cached_symbol (name, domain, &sym, NULL))
4109
    return sym;
4110
  sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
4111
  cache_symbol (name, domain, sym, block_found);
4112
  return sym;
4113
}
4114
 
4115
 
4116
/* Non-zero iff there is at least one non-function/non-enumeral symbol
4117
   in the symbol fields of SYMS[0..N-1].  We treat enumerals as functions,
4118
   since they contend in overloading in the same way.  */
4119
static int
4120
is_nonfunction (struct ada_symbol_info syms[], int n)
4121
{
4122
  int i;
4123
 
4124
  for (i = 0; i < n; i += 1)
4125
    if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_FUNC
4126
        && (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM
4127
            || SYMBOL_CLASS (syms[i].sym) != LOC_CONST))
4128
      return 1;
4129
 
4130
  return 0;
4131
}
4132
 
4133
/* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4134
   struct types.  Otherwise, they may not.  */
4135
 
4136
static int
4137
equiv_types (struct type *type0, struct type *type1)
4138
{
4139
  if (type0 == type1)
4140
    return 1;
4141
  if (type0 == NULL || type1 == NULL
4142
      || TYPE_CODE (type0) != TYPE_CODE (type1))
4143
    return 0;
4144
  if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
4145
       || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4146
      && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4147
      && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
4148
    return 1;
4149
 
4150
  return 0;
4151
}
4152
 
4153
/* True iff SYM0 represents the same entity as SYM1, or one that is
4154
   no more defined than that of SYM1.  */
4155
 
4156
static int
4157
lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
4158
{
4159
  if (sym0 == sym1)
4160
    return 1;
4161
  if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
4162
      || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4163
    return 0;
4164
 
4165
  switch (SYMBOL_CLASS (sym0))
4166
    {
4167
    case LOC_UNDEF:
4168
      return 1;
4169
    case LOC_TYPEDEF:
4170
      {
4171
        struct type *type0 = SYMBOL_TYPE (sym0);
4172
        struct type *type1 = SYMBOL_TYPE (sym1);
4173
        char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4174
        char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4175
        int len0 = strlen (name0);
4176
 
4177
        return
4178
          TYPE_CODE (type0) == TYPE_CODE (type1)
4179
          && (equiv_types (type0, type1)
4180
              || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4181
                  && strncmp (name1 + len0, "___XV", 5) == 0));
4182
      }
4183
    case LOC_CONST:
4184
      return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4185
        && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
4186
    default:
4187
      return 0;
4188
    }
4189
}
4190
 
4191
/* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct ada_symbol_info
4192
   records in OBSTACKP.  Do nothing if SYM is a duplicate.  */
4193
 
4194
static void
4195
add_defn_to_vec (struct obstack *obstackp,
4196
                 struct symbol *sym,
4197
                 struct block *block)
4198
{
4199
  int i;
4200
  struct ada_symbol_info *prevDefns = defns_collected (obstackp, 0);
4201
 
4202
  /* Do not try to complete stub types, as the debugger is probably
4203
     already scanning all symbols matching a certain name at the
4204
     time when this function is called.  Trying to replace the stub
4205
     type by its associated full type will cause us to restart a scan
4206
     which may lead to an infinite recursion.  Instead, the client
4207
     collecting the matching symbols will end up collecting several
4208
     matches, with at least one of them complete.  It can then filter
4209
     out the stub ones if needed.  */
4210
 
4211
  for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4212
    {
4213
      if (lesseq_defined_than (sym, prevDefns[i].sym))
4214
        return;
4215
      else if (lesseq_defined_than (prevDefns[i].sym, sym))
4216
        {
4217
          prevDefns[i].sym = sym;
4218
          prevDefns[i].block = block;
4219
          return;
4220
        }
4221
    }
4222
 
4223
  {
4224
    struct ada_symbol_info info;
4225
 
4226
    info.sym = sym;
4227
    info.block = block;
4228
    obstack_grow (obstackp, &info, sizeof (struct ada_symbol_info));
4229
  }
4230
}
4231
 
4232
/* Number of ada_symbol_info structures currently collected in
4233
   current vector in *OBSTACKP.  */
4234
 
4235
static int
4236
num_defns_collected (struct obstack *obstackp)
4237
{
4238
  return obstack_object_size (obstackp) / sizeof (struct ada_symbol_info);
4239
}
4240
 
4241
/* Vector of ada_symbol_info structures currently collected in current
4242
   vector in *OBSTACKP.  If FINISH, close off the vector and return
4243
   its final address.  */
4244
 
4245
static struct ada_symbol_info *
4246
defns_collected (struct obstack *obstackp, int finish)
4247
{
4248
  if (finish)
4249
    return obstack_finish (obstackp);
4250
  else
4251
    return (struct ada_symbol_info *) obstack_base (obstackp);
4252
}
4253
 
4254
/* Return a minimal symbol matching NAME according to Ada decoding
4255
   rules.  Returns NULL if there is no such minimal symbol.  Names
4256
   prefixed with "standard__" are handled specially: "standard__" is
4257
   first stripped off, and only static and global symbols are searched.  */
4258
 
4259
struct minimal_symbol *
4260
ada_lookup_simple_minsym (const char *name)
4261
{
4262
  struct objfile *objfile;
4263
  struct minimal_symbol *msymbol;
4264
  int wild_match;
4265
 
4266
  if (strncmp (name, "standard__", sizeof ("standard__") - 1) == 0)
4267
    {
4268
      name += sizeof ("standard__") - 1;
4269
      wild_match = 0;
4270
    }
4271
  else
4272
    wild_match = (strstr (name, "__") == NULL);
4273
 
4274
  ALL_MSYMBOLS (objfile, msymbol)
4275
  {
4276
    if (ada_match_name (SYMBOL_LINKAGE_NAME (msymbol), name, wild_match)
4277
        && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4278
      return msymbol;
4279
  }
4280
 
4281
  return NULL;
4282
}
4283
 
4284
/* For all subprograms that statically enclose the subprogram of the
4285
   selected frame, add symbols matching identifier NAME in DOMAIN
4286
   and their blocks to the list of data in OBSTACKP, as for
4287
   ada_add_block_symbols (q.v.).   If WILD, treat as NAME with a
4288
   wildcard prefix.  */
4289
 
4290
static void
4291
add_symbols_from_enclosing_procs (struct obstack *obstackp,
4292
                                  const char *name, domain_enum namespace,
4293
                                  int wild_match)
4294
{
4295
}
4296
 
4297
/* True if TYPE is definitely an artificial type supplied to a symbol
4298
   for which no debugging information was given in the symbol file.  */
4299
 
4300
static int
4301
is_nondebugging_type (struct type *type)
4302
{
4303
  char *name = ada_type_name (type);
4304
 
4305
  return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4306
}
4307
 
4308
/* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
4309
   duplicate other symbols in the list (The only case I know of where
4310
   this happens is when object files containing stabs-in-ecoff are
4311
   linked with files containing ordinary ecoff debugging symbols (or no
4312
   debugging symbols)).  Modifies SYMS to squeeze out deleted entries.
4313
   Returns the number of items in the modified list.  */
4314
 
4315
static int
4316
remove_extra_symbols (struct ada_symbol_info *syms, int nsyms)
4317
{
4318
  int i, j;
4319
 
4320
  i = 0;
4321
  while (i < nsyms)
4322
    {
4323
      int remove = 0;
4324
 
4325
      /* If two symbols have the same name and one of them is a stub type,
4326
         the get rid of the stub.  */
4327
 
4328
      if (TYPE_STUB (SYMBOL_TYPE (syms[i].sym))
4329
          && SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL)
4330
        {
4331
          for (j = 0; j < nsyms; j++)
4332
            {
4333
              if (j != i
4334
                  && !TYPE_STUB (SYMBOL_TYPE (syms[j].sym))
4335
                  && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4336
                  && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4337
                             SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0)
4338
                remove = 1;
4339
            }
4340
        }
4341
 
4342
      /* Two symbols with the same name, same class and same address
4343
         should be identical.  */
4344
 
4345
      else if (SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL
4346
          && SYMBOL_CLASS (syms[i].sym) == LOC_STATIC
4347
          && is_nondebugging_type (SYMBOL_TYPE (syms[i].sym)))
4348
        {
4349
          for (j = 0; j < nsyms; j += 1)
4350
            {
4351
              if (i != j
4352
                  && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4353
                  && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4354
                             SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0
4355
                  && SYMBOL_CLASS (syms[i].sym) == SYMBOL_CLASS (syms[j].sym)
4356
                  && SYMBOL_VALUE_ADDRESS (syms[i].sym)
4357
                  == SYMBOL_VALUE_ADDRESS (syms[j].sym))
4358
                remove = 1;
4359
            }
4360
        }
4361
 
4362
      if (remove)
4363
        {
4364
          for (j = i + 1; j < nsyms; j += 1)
4365
            syms[j - 1] = syms[j];
4366
          nsyms -= 1;
4367
        }
4368
 
4369
      i += 1;
4370
    }
4371
  return nsyms;
4372
}
4373
 
4374
/* Given a type that corresponds to a renaming entity, use the type name
4375
   to extract the scope (package name or function name, fully qualified,
4376
   and following the GNAT encoding convention) where this renaming has been
4377
   defined.  The string returned needs to be deallocated after use.  */
4378
 
4379
static char *
4380
xget_renaming_scope (struct type *renaming_type)
4381
{
4382
  /* The renaming types adhere to the following convention:
4383
     <scope>__<rename>___<XR extension>.
4384
     So, to extract the scope, we search for the "___XR" extension,
4385
     and then backtrack until we find the first "__".  */
4386
 
4387
  const char *name = type_name_no_tag (renaming_type);
4388
  char *suffix = strstr (name, "___XR");
4389
  char *last;
4390
  int scope_len;
4391
  char *scope;
4392
 
4393
  /* Now, backtrack a bit until we find the first "__".  Start looking
4394
     at suffix - 3, as the <rename> part is at least one character long.  */
4395
 
4396
  for (last = suffix - 3; last > name; last--)
4397
    if (last[0] == '_' && last[1] == '_')
4398
      break;
4399
 
4400
  /* Make a copy of scope and return it.  */
4401
 
4402
  scope_len = last - name;
4403
  scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
4404
 
4405
  strncpy (scope, name, scope_len);
4406
  scope[scope_len] = '\0';
4407
 
4408
  return scope;
4409
}
4410
 
4411
/* Return nonzero if NAME corresponds to a package name.  */
4412
 
4413
static int
4414
is_package_name (const char *name)
4415
{
4416
  /* Here, We take advantage of the fact that no symbols are generated
4417
     for packages, while symbols are generated for each function.
4418
     So the condition for NAME represent a package becomes equivalent
4419
     to NAME not existing in our list of symbols.  There is only one
4420
     small complication with library-level functions (see below).  */
4421
 
4422
  char *fun_name;
4423
 
4424
  /* If it is a function that has not been defined at library level,
4425
     then we should be able to look it up in the symbols.  */
4426
  if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
4427
    return 0;
4428
 
4429
  /* Library-level function names start with "_ada_".  See if function
4430
     "_ada_" followed by NAME can be found.  */
4431
 
4432
  /* Do a quick check that NAME does not contain "__", since library-level
4433
     functions names cannot contain "__" in them.  */
4434
  if (strstr (name, "__") != NULL)
4435
    return 0;
4436
 
4437
  fun_name = xstrprintf ("_ada_%s", name);
4438
 
4439
  return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
4440
}
4441
 
4442
/* Return nonzero if SYM corresponds to a renaming entity that is
4443
   not visible from FUNCTION_NAME.  */
4444
 
4445
static int
4446
old_renaming_is_invisible (const struct symbol *sym, char *function_name)
4447
{
4448
  char *scope;
4449
 
4450
  if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
4451
    return 0;
4452
 
4453
  scope = xget_renaming_scope (SYMBOL_TYPE (sym));
4454
 
4455
  make_cleanup (xfree, scope);
4456
 
4457
  /* If the rename has been defined in a package, then it is visible.  */
4458
  if (is_package_name (scope))
4459
    return 0;
4460
 
4461
  /* Check that the rename is in the current function scope by checking
4462
     that its name starts with SCOPE.  */
4463
 
4464
  /* If the function name starts with "_ada_", it means that it is
4465
     a library-level function.  Strip this prefix before doing the
4466
     comparison, as the encoding for the renaming does not contain
4467
     this prefix.  */
4468
  if (strncmp (function_name, "_ada_", 5) == 0)
4469
    function_name += 5;
4470
 
4471
  return (strncmp (function_name, scope, strlen (scope)) != 0);
4472
}
4473
 
4474
/* Remove entries from SYMS that corresponds to a renaming entity that
4475
   is not visible from the function associated with CURRENT_BLOCK or
4476
   that is superfluous due to the presence of more specific renaming
4477
   information.  Places surviving symbols in the initial entries of
4478
   SYMS and returns the number of surviving symbols.
4479
 
4480
   Rationale:
4481
   First, in cases where an object renaming is implemented as a
4482
   reference variable, GNAT may produce both the actual reference
4483
   variable and the renaming encoding.  In this case, we discard the
4484
   latter.
4485
 
4486
   Second, GNAT emits a type following a specified encoding for each renaming
4487
   entity.  Unfortunately, STABS currently does not support the definition
4488
   of types that are local to a given lexical block, so all renamings types
4489
   are emitted at library level.  As a consequence, if an application
4490
   contains two renaming entities using the same name, and a user tries to
4491
   print the value of one of these entities, the result of the ada symbol
4492
   lookup will also contain the wrong renaming type.
4493
 
4494
   This function partially covers for this limitation by attempting to
4495
   remove from the SYMS list renaming symbols that should be visible
4496
   from CURRENT_BLOCK.  However, there does not seem be a 100% reliable
4497
   method with the current information available.  The implementation
4498
   below has a couple of limitations (FIXME: brobecker-2003-05-12):
4499
 
4500
      - When the user tries to print a rename in a function while there
4501
        is another rename entity defined in a package:  Normally, the
4502
        rename in the function has precedence over the rename in the
4503
        package, so the latter should be removed from the list.  This is
4504
        currently not the case.
4505
 
4506
      - This function will incorrectly remove valid renames if
4507
        the CURRENT_BLOCK corresponds to a function which symbol name
4508
        has been changed by an "Export" pragma.  As a consequence,
4509
        the user will be unable to print such rename entities.  */
4510
 
4511
static int
4512
remove_irrelevant_renamings (struct ada_symbol_info *syms,
4513
                             int nsyms, const struct block *current_block)
4514
{
4515
  struct symbol *current_function;
4516
  char *current_function_name;
4517
  int i;
4518
  int is_new_style_renaming;
4519
 
4520
  /* If there is both a renaming foo___XR... encoded as a variable and
4521
     a simple variable foo in the same block, discard the latter.
4522
     First, zero out such symbols, then compress. */
4523
  is_new_style_renaming = 0;
4524
  for (i = 0; i < nsyms; i += 1)
4525
    {
4526
      struct symbol *sym = syms[i].sym;
4527
      struct block *block = syms[i].block;
4528
      const char *name;
4529
      const char *suffix;
4530
 
4531
      if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4532
        continue;
4533
      name = SYMBOL_LINKAGE_NAME (sym);
4534
      suffix = strstr (name, "___XR");
4535
 
4536
      if (suffix != NULL)
4537
        {
4538
          int name_len = suffix - name;
4539
          int j;
4540
 
4541
          is_new_style_renaming = 1;
4542
          for (j = 0; j < nsyms; j += 1)
4543
            if (i != j && syms[j].sym != NULL
4544
                && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].sym),
4545
                            name_len) == 0
4546
                && block == syms[j].block)
4547
              syms[j].sym = NULL;
4548
        }
4549
    }
4550
  if (is_new_style_renaming)
4551
    {
4552
      int j, k;
4553
 
4554
      for (j = k = 0; j < nsyms; j += 1)
4555
        if (syms[j].sym != NULL)
4556
            {
4557
              syms[k] = syms[j];
4558
              k += 1;
4559
            }
4560
      return k;
4561
    }
4562
 
4563
  /* Extract the function name associated to CURRENT_BLOCK.
4564
     Abort if unable to do so.  */
4565
 
4566
  if (current_block == NULL)
4567
    return nsyms;
4568
 
4569
  current_function = block_linkage_function (current_block);
4570
  if (current_function == NULL)
4571
    return nsyms;
4572
 
4573
  current_function_name = SYMBOL_LINKAGE_NAME (current_function);
4574
  if (current_function_name == NULL)
4575
    return nsyms;
4576
 
4577
  /* Check each of the symbols, and remove it from the list if it is
4578
     a type corresponding to a renaming that is out of the scope of
4579
     the current block.  */
4580
 
4581
  i = 0;
4582
  while (i < nsyms)
4583
    {
4584
      if (ada_parse_renaming (syms[i].sym, NULL, NULL, NULL)
4585
          == ADA_OBJECT_RENAMING
4586
          && old_renaming_is_invisible (syms[i].sym, current_function_name))
4587
        {
4588
          int j;
4589
 
4590
          for (j = i + 1; j < nsyms; j += 1)
4591
            syms[j - 1] = syms[j];
4592
          nsyms -= 1;
4593
        }
4594
      else
4595
        i += 1;
4596
    }
4597
 
4598
  return nsyms;
4599
}
4600
 
4601
/* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
4602
   whose name and domain match NAME and DOMAIN respectively.
4603
   If no match was found, then extend the search to "enclosing"
4604
   routines (in other words, if we're inside a nested function,
4605
   search the symbols defined inside the enclosing functions).
4606
 
4607
   Note: This function assumes that OBSTACKP has 0 (zero) element in it.  */
4608
 
4609
static void
4610
ada_add_local_symbols (struct obstack *obstackp, const char *name,
4611
                       struct block *block, domain_enum domain,
4612
                       int wild_match)
4613
{
4614
  int block_depth = 0;
4615
 
4616
  while (block != NULL)
4617
    {
4618
      block_depth += 1;
4619
      ada_add_block_symbols (obstackp, block, name, domain, NULL, wild_match);
4620
 
4621
      /* If we found a non-function match, assume that's the one.  */
4622
      if (is_nonfunction (defns_collected (obstackp, 0),
4623
                          num_defns_collected (obstackp)))
4624
        return;
4625
 
4626
      block = BLOCK_SUPERBLOCK (block);
4627
    }
4628
 
4629
  /* If no luck so far, try to find NAME as a local symbol in some lexically
4630
     enclosing subprogram.  */
4631
  if (num_defns_collected (obstackp) == 0 && block_depth > 2)
4632
    add_symbols_from_enclosing_procs (obstackp, name, domain, wild_match);
4633
}
4634
 
4635
/* An object of this type is used as the user_data argument when
4636
   calling the map_ada_symtabs method.  */
4637
 
4638
struct ada_psym_data
4639
{
4640
  struct obstack *obstackp;
4641
  const char *name;
4642
  domain_enum domain;
4643
  int global;
4644
  int wild_match;
4645
};
4646
 
4647
/* Callback function for map_ada_symtabs.  */
4648
 
4649
static void
4650
ada_add_psyms (struct objfile *objfile, struct symtab *s, void *user_data)
4651
{
4652
  struct ada_psym_data *data = user_data;
4653
  const int block_kind = data->global ? GLOBAL_BLOCK : STATIC_BLOCK;
4654
 
4655
  ada_add_block_symbols (data->obstackp,
4656
                         BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), block_kind),
4657
                         data->name, data->domain, objfile, data->wild_match);
4658
}
4659
 
4660
/* Add to OBSTACKP all non-local symbols whose name and domain match
4661
   NAME and DOMAIN respectively.  The search is performed on GLOBAL_BLOCK
4662
   symbols if GLOBAL is non-zero, or on STATIC_BLOCK symbols otherwise.  */
4663
 
4664
static void
4665
ada_add_non_local_symbols (struct obstack *obstackp, const char *name,
4666
                           domain_enum domain, int global,
4667
                           int is_wild_match)
4668
{
4669
  struct objfile *objfile;
4670
  struct ada_psym_data data;
4671
 
4672
  data.obstackp = obstackp;
4673
  data.name = name;
4674
  data.domain = domain;
4675
  data.global = global;
4676
  data.wild_match = is_wild_match;
4677
 
4678
  ALL_OBJFILES (objfile)
4679
  {
4680
    if (objfile->sf)
4681
      objfile->sf->qf->map_ada_symtabs (objfile, wild_match, is_name_suffix,
4682
                                        ada_add_psyms, name,
4683
                                        global, domain,
4684
                                        is_wild_match, &data);
4685
  }
4686
}
4687
 
4688
/* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing
4689
   scope and in global scopes, returning the number of matches.  Sets
4690
   *RESULTS to point to a vector of (SYM,BLOCK) tuples,
4691
   indicating the symbols found and the blocks and symbol tables (if
4692
   any) in which they were found.  This vector are transient---good only to
4693
   the next call of ada_lookup_symbol_list.  Any non-function/non-enumeral
4694
   symbol match within the nest of blocks whose innermost member is BLOCK0,
4695
   is the one match returned (no other matches in that or
4696
     enclosing blocks is returned).  If there are any matches in or
4697
   surrounding BLOCK0, then these alone are returned.  Otherwise, the
4698
   search extends to global and file-scope (static) symbol tables.
4699
   Names prefixed with "standard__" are handled specially: "standard__"
4700
   is first stripped off, and only static and global symbols are searched.  */
4701
 
4702
int
4703
ada_lookup_symbol_list (const char *name0, const struct block *block0,
4704
                        domain_enum namespace,
4705
                        struct ada_symbol_info **results)
4706
{
4707
  struct symbol *sym;
4708
  struct block *block;
4709
  const char *name;
4710
  int wild_match;
4711
  int cacheIfUnique;
4712
  int ndefns;
4713
 
4714
  obstack_free (&symbol_list_obstack, NULL);
4715
  obstack_init (&symbol_list_obstack);
4716
 
4717
  cacheIfUnique = 0;
4718
 
4719
  /* Search specified block and its superiors.  */
4720
 
4721
  wild_match = (strstr (name0, "__") == NULL);
4722
  name = name0;
4723
  block = (struct block *) block0;      /* FIXME: No cast ought to be
4724
                                           needed, but adding const will
4725
                                           have a cascade effect.  */
4726
 
4727
  /* Special case: If the user specifies a symbol name inside package
4728
     Standard, do a non-wild matching of the symbol name without
4729
     the "standard__" prefix.  This was primarily introduced in order
4730
     to allow the user to specifically access the standard exceptions
4731
     using, for instance, Standard.Constraint_Error when Constraint_Error
4732
     is ambiguous (due to the user defining its own Constraint_Error
4733
     entity inside its program).  */
4734
  if (strncmp (name0, "standard__", sizeof ("standard__") - 1) == 0)
4735
    {
4736
      wild_match = 0;
4737
      block = NULL;
4738
      name = name0 + sizeof ("standard__") - 1;
4739
    }
4740
 
4741
  /* Check the non-global symbols.  If we have ANY match, then we're done.  */
4742
 
4743
  ada_add_local_symbols (&symbol_list_obstack, name, block, namespace,
4744
                         wild_match);
4745
  if (num_defns_collected (&symbol_list_obstack) > 0)
4746
    goto done;
4747
 
4748
  /* No non-global symbols found.  Check our cache to see if we have
4749
     already performed this search before.  If we have, then return
4750
     the same result.  */
4751
 
4752
  cacheIfUnique = 1;
4753
  if (lookup_cached_symbol (name0, namespace, &sym, &block))
4754
    {
4755
      if (sym != NULL)
4756
        add_defn_to_vec (&symbol_list_obstack, sym, block);
4757
      goto done;
4758
    }
4759
 
4760
  /* Search symbols from all global blocks.  */
4761
 
4762
  ada_add_non_local_symbols (&symbol_list_obstack, name, namespace, 1,
4763
                             wild_match);
4764
 
4765
  /* Now add symbols from all per-file blocks if we've gotten no hits
4766
     (not strictly correct, but perhaps better than an error).  */
4767
 
4768
  if (num_defns_collected (&symbol_list_obstack) == 0)
4769
    ada_add_non_local_symbols (&symbol_list_obstack, name, namespace, 0,
4770
                               wild_match);
4771
 
4772
done:
4773
  ndefns = num_defns_collected (&symbol_list_obstack);
4774
  *results = defns_collected (&symbol_list_obstack, 1);
4775
 
4776
  ndefns = remove_extra_symbols (*results, ndefns);
4777
 
4778
  if (ndefns == 0)
4779
    cache_symbol (name0, namespace, NULL, NULL);
4780
 
4781
  if (ndefns == 1 && cacheIfUnique)
4782
    cache_symbol (name0, namespace, (*results)[0].sym, (*results)[0].block);
4783
 
4784
  ndefns = remove_irrelevant_renamings (*results, ndefns, block0);
4785
 
4786
  return ndefns;
4787
}
4788
 
4789
struct symbol *
4790
ada_lookup_encoded_symbol (const char *name, const struct block *block0,
4791
                           domain_enum namespace, struct block **block_found)
4792
{
4793
  struct ada_symbol_info *candidates;
4794
  int n_candidates;
4795
 
4796
  n_candidates = ada_lookup_symbol_list (name, block0, namespace, &candidates);
4797
 
4798
  if (n_candidates == 0)
4799
    return NULL;
4800
 
4801
  if (block_found != NULL)
4802
    *block_found = candidates[0].block;
4803
 
4804
  return fixup_symbol_section (candidates[0].sym, NULL);
4805
}
4806
 
4807
/* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
4808
   scope and in global scopes, or NULL if none.  NAME is folded and
4809
   encoded first.  Otherwise, the result is as for ada_lookup_symbol_list,
4810
   choosing the first symbol if there are multiple choices.
4811
   *IS_A_FIELD_OF_THIS is set to 0 and *SYMTAB is set to the symbol
4812
   table in which the symbol was found (in both cases, these
4813
   assignments occur only if the pointers are non-null).  */
4814
struct symbol *
4815
ada_lookup_symbol (const char *name, const struct block *block0,
4816
                   domain_enum namespace, int *is_a_field_of_this)
4817
{
4818
  if (is_a_field_of_this != NULL)
4819
    *is_a_field_of_this = 0;
4820
 
4821
  return
4822
    ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)),
4823
                               block0, namespace, NULL);
4824
}
4825
 
4826
static struct symbol *
4827
ada_lookup_symbol_nonlocal (const char *name,
4828
                            const struct block *block,
4829
                            const domain_enum domain)
4830
{
4831
  return ada_lookup_symbol (name, block_static_block (block), domain, NULL);
4832
}
4833
 
4834
 
4835
/* True iff STR is a possible encoded suffix of a normal Ada name
4836
   that is to be ignored for matching purposes.  Suffixes of parallel
4837
   names (e.g., XVE) are not included here.  Currently, the possible suffixes
4838
   are given by any of the regular expressions:
4839
 
4840
   [.$][0-9]+       [nested subprogram suffix, on platforms such as GNU/Linux]
4841
   ___[0-9]+        [nested subprogram suffix, on platforms such as HP/UX]
4842
   _E[0-9]+[bs]$    [protected object entry suffixes]
4843
   (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
4844
 
4845
   Also, any leading "__[0-9]+" sequence is skipped before the suffix
4846
   match is performed.  This sequence is used to differentiate homonyms,
4847
   is an optional part of a valid name suffix.  */
4848
 
4849
static int
4850
is_name_suffix (const char *str)
4851
{
4852
  int k;
4853
  const char *matching;
4854
  const int len = strlen (str);
4855
 
4856
  /* Skip optional leading __[0-9]+.  */
4857
 
4858
  if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
4859
    {
4860
      str += 3;
4861
      while (isdigit (str[0]))
4862
        str += 1;
4863
    }
4864
 
4865
  /* [.$][0-9]+ */
4866
 
4867
  if (str[0] == '.' || str[0] == '$')
4868
    {
4869
      matching = str + 1;
4870
      while (isdigit (matching[0]))
4871
        matching += 1;
4872
      if (matching[0] == '\0')
4873
        return 1;
4874
    }
4875
 
4876
  /* ___[0-9]+ */
4877
 
4878
  if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
4879
    {
4880
      matching = str + 3;
4881
      while (isdigit (matching[0]))
4882
        matching += 1;
4883
      if (matching[0] == '\0')
4884
        return 1;
4885
    }
4886
 
4887
#if 0
4888
  /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
4889
     with a N at the end. Unfortunately, the compiler uses the same
4890
     convention for other internal types it creates. So treating
4891
     all entity names that end with an "N" as a name suffix causes
4892
     some regressions. For instance, consider the case of an enumerated
4893
     type. To support the 'Image attribute, it creates an array whose
4894
     name ends with N.
4895
     Having a single character like this as a suffix carrying some
4896
     information is a bit risky. Perhaps we should change the encoding
4897
     to be something like "_N" instead.  In the meantime, do not do
4898
     the following check.  */
4899
  /* Protected Object Subprograms */
4900
  if (len == 1 && str [0] == 'N')
4901
    return 1;
4902
#endif
4903
 
4904
  /* _E[0-9]+[bs]$ */
4905
  if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
4906
    {
4907
      matching = str + 3;
4908
      while (isdigit (matching[0]))
4909
        matching += 1;
4910
      if ((matching[0] == 'b' || matching[0] == 's')
4911
          && matching [1] == '\0')
4912
        return 1;
4913
    }
4914
 
4915
  /* ??? We should not modify STR directly, as we are doing below.  This
4916
     is fine in this case, but may become problematic later if we find
4917
     that this alternative did not work, and want to try matching
4918
     another one from the begining of STR.  Since we modified it, we
4919
     won't be able to find the begining of the string anymore!  */
4920
  if (str[0] == 'X')
4921
    {
4922
      str += 1;
4923
      while (str[0] != '_' && str[0] != '\0')
4924
        {
4925
          if (str[0] != 'n' && str[0] != 'b')
4926
            return 0;
4927
          str += 1;
4928
        }
4929
    }
4930
 
4931
  if (str[0] == '\000')
4932
    return 1;
4933
 
4934
  if (str[0] == '_')
4935
    {
4936
      if (str[1] != '_' || str[2] == '\000')
4937
        return 0;
4938
      if (str[2] == '_')
4939
        {
4940
          if (strcmp (str + 3, "JM") == 0)
4941
            return 1;
4942
          /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
4943
             the LJM suffix in favor of the JM one.  But we will
4944
             still accept LJM as a valid suffix for a reasonable
4945
             amount of time, just to allow ourselves to debug programs
4946
             compiled using an older version of GNAT.  */
4947
          if (strcmp (str + 3, "LJM") == 0)
4948
            return 1;
4949
          if (str[3] != 'X')
4950
            return 0;
4951
          if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
4952
              || str[4] == 'U' || str[4] == 'P')
4953
            return 1;
4954
          if (str[4] == 'R' && str[5] != 'T')
4955
            return 1;
4956
          return 0;
4957
        }
4958
      if (!isdigit (str[2]))
4959
        return 0;
4960
      for (k = 3; str[k] != '\0'; k += 1)
4961
        if (!isdigit (str[k]) && str[k] != '_')
4962
          return 0;
4963
      return 1;
4964
    }
4965
  if (str[0] == '$' && isdigit (str[1]))
4966
    {
4967
      for (k = 2; str[k] != '\0'; k += 1)
4968
        if (!isdigit (str[k]) && str[k] != '_')
4969
          return 0;
4970
      return 1;
4971
    }
4972
  return 0;
4973
}
4974
 
4975
/* Return non-zero if the string starting at NAME and ending before
4976
   NAME_END contains no capital letters.  */
4977
 
4978
static int
4979
is_valid_name_for_wild_match (const char *name0)
4980
{
4981
  const char *decoded_name = ada_decode (name0);
4982
  int i;
4983
 
4984
  /* If the decoded name starts with an angle bracket, it means that
4985
     NAME0 does not follow the GNAT encoding format.  It should then
4986
     not be allowed as a possible wild match.  */
4987
  if (decoded_name[0] == '<')
4988
    return 0;
4989
 
4990
  for (i=0; decoded_name[i] != '\0'; i++)
4991
    if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
4992
      return 0;
4993
 
4994
  return 1;
4995
}
4996
 
4997
/* True if NAME represents a name of the form A1.A2....An, n>=1 and
4998
   PATN[0..PATN_LEN-1] = Ak.Ak+1.....An for some k >= 1.  Ignores
4999
   informational suffixes of NAME (i.e., for which is_name_suffix is
5000
   true).  */
5001
 
5002
static int
5003
wild_match (const char *patn0, int patn_len, const char *name0)
5004
{
5005
  char* match;
5006
  const char* start;
5007
 
5008
  start = name0;
5009
  while (1)
5010
    {
5011
      match = strstr (start, patn0);
5012
      if (match == NULL)
5013
        return 0;
5014
      if ((match == name0
5015
           || match[-1] == '.'
5016
           || (match > name0 + 1 && match[-1] == '_' && match[-2] == '_')
5017
           || (match == name0 + 5 && strncmp ("_ada_", name0, 5) == 0))
5018
          && is_name_suffix (match + patn_len))
5019
        return (match == name0 || is_valid_name_for_wild_match (name0));
5020
      start = match + 1;
5021
    }
5022
}
5023
 
5024
/* Add symbols from BLOCK matching identifier NAME in DOMAIN to
5025
   vector *defn_symbols, updating the list of symbols in OBSTACKP
5026
   (if necessary).  If WILD, treat as NAME with a wildcard prefix.
5027
   OBJFILE is the section containing BLOCK.
5028
   SYMTAB is recorded with each symbol added.  */
5029
 
5030
static void
5031
ada_add_block_symbols (struct obstack *obstackp,
5032
                       struct block *block, const char *name,
5033
                       domain_enum domain, struct objfile *objfile,
5034
                       int wild)
5035
{
5036
  struct dict_iterator iter;
5037
  int name_len = strlen (name);
5038
  /* A matching argument symbol, if any.  */
5039
  struct symbol *arg_sym;
5040
  /* Set true when we find a matching non-argument symbol.  */
5041
  int found_sym;
5042
  struct symbol *sym;
5043
 
5044
  arg_sym = NULL;
5045
  found_sym = 0;
5046
  if (wild)
5047
    {
5048
      struct symbol *sym;
5049
 
5050
      ALL_BLOCK_SYMBOLS (block, iter, sym)
5051
      {
5052
        if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5053
                                   SYMBOL_DOMAIN (sym), domain)
5054
            && wild_match (name, name_len, SYMBOL_LINKAGE_NAME (sym)))
5055
          {
5056
            if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5057
              continue;
5058
            else if (SYMBOL_IS_ARGUMENT (sym))
5059
              arg_sym = sym;
5060
            else
5061
              {
5062
                found_sym = 1;
5063
                add_defn_to_vec (obstackp,
5064
                                 fixup_symbol_section (sym, objfile),
5065
                                 block);
5066
              }
5067
          }
5068
      }
5069
    }
5070
  else
5071
    {
5072
      ALL_BLOCK_SYMBOLS (block, iter, sym)
5073
      {
5074
        if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5075
                                   SYMBOL_DOMAIN (sym), domain))
5076
          {
5077
            int cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym), name_len);
5078
 
5079
            if (cmp == 0
5080
                && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len))
5081
              {
5082
                if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5083
                  {
5084
                    if (SYMBOL_IS_ARGUMENT (sym))
5085
                      arg_sym = sym;
5086
                    else
5087
                      {
5088
                        found_sym = 1;
5089
                        add_defn_to_vec (obstackp,
5090
                                         fixup_symbol_section (sym, objfile),
5091
                                         block);
5092
                      }
5093
                  }
5094
              }
5095
          }
5096
      }
5097
    }
5098
 
5099
  if (!found_sym && arg_sym != NULL)
5100
    {
5101
      add_defn_to_vec (obstackp,
5102
                       fixup_symbol_section (arg_sym, objfile),
5103
                       block);
5104
    }
5105
 
5106
  if (!wild)
5107
    {
5108
      arg_sym = NULL;
5109
      found_sym = 0;
5110
 
5111
      ALL_BLOCK_SYMBOLS (block, iter, sym)
5112
      {
5113
        if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5114
                                   SYMBOL_DOMAIN (sym), domain))
5115
          {
5116
            int cmp;
5117
 
5118
            cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
5119
            if (cmp == 0)
5120
              {
5121
                cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (sym), 5);
5122
                if (cmp == 0)
5123
                  cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
5124
                                 name_len);
5125
              }
5126
 
5127
            if (cmp == 0
5128
                && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
5129
              {
5130
                if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5131
                  {
5132
                    if (SYMBOL_IS_ARGUMENT (sym))
5133
                      arg_sym = sym;
5134
                    else
5135
                      {
5136
                        found_sym = 1;
5137
                        add_defn_to_vec (obstackp,
5138
                                         fixup_symbol_section (sym, objfile),
5139
                                         block);
5140
                      }
5141
                  }
5142
              }
5143
          }
5144
      }
5145
 
5146
      /* NOTE: This really shouldn't be needed for _ada_ symbols.
5147
         They aren't parameters, right?  */
5148
      if (!found_sym && arg_sym != NULL)
5149
        {
5150
          add_defn_to_vec (obstackp,
5151
                           fixup_symbol_section (arg_sym, objfile),
5152
                           block);
5153
        }
5154
    }
5155
}
5156
 
5157
 
5158
                                /* Symbol Completion */
5159
 
5160
/* If SYM_NAME is a completion candidate for TEXT, return this symbol
5161
   name in a form that's appropriate for the completion.  The result
5162
   does not need to be deallocated, but is only good until the next call.
5163
 
5164
   TEXT_LEN is equal to the length of TEXT.
5165
   Perform a wild match if WILD_MATCH is set.
5166
   ENCODED should be set if TEXT represents the start of a symbol name
5167
   in its encoded form.  */
5168
 
5169
static const char *
5170
symbol_completion_match (const char *sym_name,
5171
                         const char *text, int text_len,
5172
                         int wild_match, int encoded)
5173
{
5174
  const int verbatim_match = (text[0] == '<');
5175
  int match = 0;
5176
 
5177
  if (verbatim_match)
5178
    {
5179
      /* Strip the leading angle bracket.  */
5180
      text = text + 1;
5181
      text_len--;
5182
    }
5183
 
5184
  /* First, test against the fully qualified name of the symbol.  */
5185
 
5186
  if (strncmp (sym_name, text, text_len) == 0)
5187
    match = 1;
5188
 
5189
  if (match && !encoded)
5190
    {
5191
      /* One needed check before declaring a positive match is to verify
5192
         that iff we are doing a verbatim match, the decoded version
5193
         of the symbol name starts with '<'.  Otherwise, this symbol name
5194
         is not a suitable completion.  */
5195
      const char *sym_name_copy = sym_name;
5196
      int has_angle_bracket;
5197
 
5198
      sym_name = ada_decode (sym_name);
5199
      has_angle_bracket = (sym_name[0] == '<');
5200
      match = (has_angle_bracket == verbatim_match);
5201
      sym_name = sym_name_copy;
5202
    }
5203
 
5204
  if (match && !verbatim_match)
5205
    {
5206
      /* When doing non-verbatim match, another check that needs to
5207
         be done is to verify that the potentially matching symbol name
5208
         does not include capital letters, because the ada-mode would
5209
         not be able to understand these symbol names without the
5210
         angle bracket notation.  */
5211
      const char *tmp;
5212
 
5213
      for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
5214
      if (*tmp != '\0')
5215
        match = 0;
5216
    }
5217
 
5218
  /* Second: Try wild matching...  */
5219
 
5220
  if (!match && wild_match)
5221
    {
5222
      /* Since we are doing wild matching, this means that TEXT
5223
         may represent an unqualified symbol name.  We therefore must
5224
         also compare TEXT against the unqualified name of the symbol.  */
5225
      sym_name = ada_unqualified_name (ada_decode (sym_name));
5226
 
5227
      if (strncmp (sym_name, text, text_len) == 0)
5228
        match = 1;
5229
    }
5230
 
5231
  /* Finally: If we found a mach, prepare the result to return.  */
5232
 
5233
  if (!match)
5234
    return NULL;
5235
 
5236
  if (verbatim_match)
5237
    sym_name = add_angle_brackets (sym_name);
5238
 
5239
  if (!encoded)
5240
    sym_name = ada_decode (sym_name);
5241
 
5242
  return sym_name;
5243
}
5244
 
5245
DEF_VEC_P (char_ptr);
5246
 
5247
/* A companion function to ada_make_symbol_completion_list().
5248
   Check if SYM_NAME represents a symbol which name would be suitable
5249
   to complete TEXT (TEXT_LEN is the length of TEXT), in which case
5250
   it is appended at the end of the given string vector SV.
5251
 
5252
   ORIG_TEXT is the string original string from the user command
5253
   that needs to be completed.  WORD is the entire command on which
5254
   completion should be performed.  These two parameters are used to
5255
   determine which part of the symbol name should be added to the
5256
   completion vector.
5257
   if WILD_MATCH is set, then wild matching is performed.
5258
   ENCODED should be set if TEXT represents a symbol name in its
5259
   encoded formed (in which case the completion should also be
5260
   encoded).  */
5261
 
5262
static void
5263
symbol_completion_add (VEC(char_ptr) **sv,
5264
                       const char *sym_name,
5265
                       const char *text, int text_len,
5266
                       const char *orig_text, const char *word,
5267
                       int wild_match, int encoded)
5268
{
5269
  const char *match = symbol_completion_match (sym_name, text, text_len,
5270
                                               wild_match, encoded);
5271
  char *completion;
5272
 
5273
  if (match == NULL)
5274
    return;
5275
 
5276
  /* We found a match, so add the appropriate completion to the given
5277
     string vector.  */
5278
 
5279
  if (word == orig_text)
5280
    {
5281
      completion = xmalloc (strlen (match) + 5);
5282
      strcpy (completion, match);
5283
    }
5284
  else if (word > orig_text)
5285
    {
5286
      /* Return some portion of sym_name.  */
5287
      completion = xmalloc (strlen (match) + 5);
5288
      strcpy (completion, match + (word - orig_text));
5289
    }
5290
  else
5291
    {
5292
      /* Return some of ORIG_TEXT plus sym_name.  */
5293
      completion = xmalloc (strlen (match) + (orig_text - word) + 5);
5294
      strncpy (completion, word, orig_text - word);
5295
      completion[orig_text - word] = '\0';
5296
      strcat (completion, match);
5297
    }
5298
 
5299
  VEC_safe_push (char_ptr, *sv, completion);
5300
}
5301
 
5302
/* An object of this type is passed as the user_data argument to the
5303
   map_partial_symbol_names method.  */
5304
struct add_partial_datum
5305
{
5306
  VEC(char_ptr) **completions;
5307
  char *text;
5308
  int text_len;
5309
  char *text0;
5310
  char *word;
5311
  int wild_match;
5312
  int encoded;
5313
};
5314
 
5315
/* A callback for map_partial_symbol_names.  */
5316
static void
5317
ada_add_partial_symbol_completions (const char *name, void *user_data)
5318
{
5319
  struct add_partial_datum *data = user_data;
5320
 
5321
  symbol_completion_add (data->completions, name,
5322
                         data->text, data->text_len, data->text0, data->word,
5323
                         data->wild_match, data->encoded);
5324
}
5325
 
5326
/* Return a list of possible symbol names completing TEXT0.  The list
5327
   is NULL terminated.  WORD is the entire command on which completion
5328
   is made.  */
5329
 
5330
static char **
5331
ada_make_symbol_completion_list (char *text0, char *word)
5332
{
5333
  char *text;
5334
  int text_len;
5335
  int wild_match;
5336
  int encoded;
5337
  VEC(char_ptr) *completions = VEC_alloc (char_ptr, 128);
5338
  struct symbol *sym;
5339
  struct symtab *s;
5340
  struct minimal_symbol *msymbol;
5341
  struct objfile *objfile;
5342
  struct block *b, *surrounding_static_block = 0;
5343
  int i;
5344
  struct dict_iterator iter;
5345
 
5346
  if (text0[0] == '<')
5347
    {
5348
      text = xstrdup (text0);
5349
      make_cleanup (xfree, text);
5350
      text_len = strlen (text);
5351
      wild_match = 0;
5352
      encoded = 1;
5353
    }
5354
  else
5355
    {
5356
      text = xstrdup (ada_encode (text0));
5357
      make_cleanup (xfree, text);
5358
      text_len = strlen (text);
5359
      for (i = 0; i < text_len; i++)
5360
        text[i] = tolower (text[i]);
5361
 
5362
      encoded = (strstr (text0, "__") != NULL);
5363
      /* If the name contains a ".", then the user is entering a fully
5364
         qualified entity name, and the match must not be done in wild
5365
         mode.  Similarly, if the user wants to complete what looks like
5366
         an encoded name, the match must not be done in wild mode.  */
5367
      wild_match = (strchr (text0, '.') == NULL && !encoded);
5368
    }
5369
 
5370
  /* First, look at the partial symtab symbols.  */
5371
  {
5372
    struct add_partial_datum data;
5373
 
5374
    data.completions = &completions;
5375
    data.text = text;
5376
    data.text_len = text_len;
5377
    data.text0 = text0;
5378
    data.word = word;
5379
    data.wild_match = wild_match;
5380
    data.encoded = encoded;
5381
    map_partial_symbol_names (ada_add_partial_symbol_completions, &data);
5382
  }
5383
 
5384
  /* At this point scan through the misc symbol vectors and add each
5385
     symbol you find to the list.  Eventually we want to ignore
5386
     anything that isn't a text symbol (everything else will be
5387
     handled by the psymtab code above).  */
5388
 
5389
  ALL_MSYMBOLS (objfile, msymbol)
5390
  {
5391
    QUIT;
5392
    symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (msymbol),
5393
                           text, text_len, text0, word, wild_match, encoded);
5394
  }
5395
 
5396
  /* Search upwards from currently selected frame (so that we can
5397
     complete on local vars.  */
5398
 
5399
  for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
5400
    {
5401
      if (!BLOCK_SUPERBLOCK (b))
5402
        surrounding_static_block = b;   /* For elmin of dups */
5403
 
5404
      ALL_BLOCK_SYMBOLS (b, iter, sym)
5405
      {
5406
        symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5407
                               text, text_len, text0, word,
5408
                               wild_match, encoded);
5409
      }
5410
    }
5411
 
5412
  /* Go through the symtabs and check the externs and statics for
5413
     symbols which match.  */
5414
 
5415
  ALL_SYMTABS (objfile, s)
5416
  {
5417
    QUIT;
5418
    b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
5419
    ALL_BLOCK_SYMBOLS (b, iter, sym)
5420
    {
5421
      symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5422
                             text, text_len, text0, word,
5423
                             wild_match, encoded);
5424
    }
5425
  }
5426
 
5427
  ALL_SYMTABS (objfile, s)
5428
  {
5429
    QUIT;
5430
    b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
5431
    /* Don't do this block twice.  */
5432
    if (b == surrounding_static_block)
5433
      continue;
5434
    ALL_BLOCK_SYMBOLS (b, iter, sym)
5435
    {
5436
      symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5437
                             text, text_len, text0, word,
5438
                             wild_match, encoded);
5439
    }
5440
  }
5441
 
5442
  /* Append the closing NULL entry.  */
5443
  VEC_safe_push (char_ptr, completions, NULL);
5444
 
5445
  /* Make a copy of the COMPLETIONS VEC before we free it, and then
5446
     return the copy.  It's unfortunate that we have to make a copy
5447
     of an array that we're about to destroy, but there is nothing much
5448
     we can do about it.  Fortunately, it's typically not a very large
5449
     array.  */
5450
  {
5451
    const size_t completions_size =
5452
      VEC_length (char_ptr, completions) * sizeof (char *);
5453
    char **result = malloc (completions_size);
5454
 
5455
    memcpy (result, VEC_address (char_ptr, completions), completions_size);
5456
 
5457
    VEC_free (char_ptr, completions);
5458
    return result;
5459
  }
5460
}
5461
 
5462
                                /* Field Access */
5463
 
5464
/* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
5465
   for tagged types.  */
5466
 
5467
static int
5468
ada_is_dispatch_table_ptr_type (struct type *type)
5469
{
5470
  char *name;
5471
 
5472
  if (TYPE_CODE (type) != TYPE_CODE_PTR)
5473
    return 0;
5474
 
5475
  name = TYPE_NAME (TYPE_TARGET_TYPE (type));
5476
  if (name == NULL)
5477
    return 0;
5478
 
5479
  return (strcmp (name, "ada__tags__dispatch_table") == 0);
5480
}
5481
 
5482
/* True if field number FIELD_NUM in struct or union type TYPE is supposed
5483
   to be invisible to users.  */
5484
 
5485
int
5486
ada_is_ignored_field (struct type *type, int field_num)
5487
{
5488
  if (field_num < 0 || field_num > TYPE_NFIELDS (type))
5489
    return 1;
5490
 
5491
  /* Check the name of that field.  */
5492
  {
5493
    const char *name = TYPE_FIELD_NAME (type, field_num);
5494
 
5495
    /* Anonymous field names should not be printed.
5496
       brobecker/2007-02-20: I don't think this can actually happen
5497
       but we don't want to print the value of annonymous fields anyway.  */
5498
    if (name == NULL)
5499
      return 1;
5500
 
5501
    /* A field named "_parent" is internally generated by GNAT for
5502
       tagged types, and should not be printed either.  */
5503
    if (name[0] == '_' && strncmp (name, "_parent", 7) != 0)
5504
      return 1;
5505
  }
5506
 
5507
  /* If this is the dispatch table of a tagged type, then ignore.  */
5508
  if (ada_is_tagged_type (type, 1)
5509
      && ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num)))
5510
    return 1;
5511
 
5512
  /* Not a special field, so it should not be ignored.  */
5513
  return 0;
5514
}
5515
 
5516
/* True iff TYPE has a tag field.  If REFOK, then TYPE may also be a
5517
   pointer or reference type whose ultimate target has a tag field. */
5518
 
5519
int
5520
ada_is_tagged_type (struct type *type, int refok)
5521
{
5522
  return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL);
5523
}
5524
 
5525
/* True iff TYPE represents the type of X'Tag */
5526
 
5527
int
5528
ada_is_tag_type (struct type *type)
5529
{
5530
  if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
5531
    return 0;
5532
  else
5533
    {
5534
      const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
5535
 
5536
      return (name != NULL
5537
              && strcmp (name, "ada__tags__dispatch_table") == 0);
5538
    }
5539
}
5540
 
5541
/* The type of the tag on VAL.  */
5542
 
5543
struct type *
5544
ada_tag_type (struct value *val)
5545
{
5546
  return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL);
5547
}
5548
 
5549
/* The value of the tag on VAL.  */
5550
 
5551
struct value *
5552
ada_value_tag (struct value *val)
5553
{
5554
  return ada_value_struct_elt (val, "_tag", 0);
5555
}
5556
 
5557
/* The value of the tag on the object of type TYPE whose contents are
5558
   saved at VALADDR, if it is non-null, or is at memory address
5559
   ADDRESS. */
5560
 
5561
static struct value *
5562
value_tag_from_contents_and_address (struct type *type,
5563
                                     const gdb_byte *valaddr,
5564
                                     CORE_ADDR address)
5565
{
5566
  int tag_byte_offset;
5567
  struct type *tag_type;
5568
 
5569
  if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
5570
                         NULL, NULL, NULL))
5571
    {
5572
      const gdb_byte *valaddr1 = ((valaddr == NULL)
5573
                                  ? NULL
5574
                                  : valaddr + tag_byte_offset);
5575
      CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
5576
 
5577
      return value_from_contents_and_address (tag_type, valaddr1, address1);
5578
    }
5579
  return NULL;
5580
}
5581
 
5582
static struct type *
5583
type_from_tag (struct value *tag)
5584
{
5585
  const char *type_name = ada_tag_name (tag);
5586
 
5587
  if (type_name != NULL)
5588
    return ada_find_any_type (ada_encode (type_name));
5589
  return NULL;
5590
}
5591
 
5592
struct tag_args
5593
{
5594
  struct value *tag;
5595
  char *name;
5596
};
5597
 
5598
 
5599
static int ada_tag_name_1 (void *);
5600
static int ada_tag_name_2 (struct tag_args *);
5601
 
5602
/* Wrapper function used by ada_tag_name.  Given a struct tag_args*
5603
   value ARGS, sets ARGS->name to the tag name of ARGS->tag.
5604
   The value stored in ARGS->name is valid until the next call to
5605
   ada_tag_name_1.  */
5606
 
5607
static int
5608
ada_tag_name_1 (void *args0)
5609
{
5610
  struct tag_args *args = (struct tag_args *) args0;
5611
  static char name[1024];
5612
  char *p;
5613
  struct value *val;
5614
 
5615
  args->name = NULL;
5616
  val = ada_value_struct_elt (args->tag, "tsd", 1);
5617
  if (val == NULL)
5618
    return ada_tag_name_2 (args);
5619
  val = ada_value_struct_elt (val, "expanded_name", 1);
5620
  if (val == NULL)
5621
    return 0;
5622
  read_memory_string (value_as_address (val), name, sizeof (name) - 1);
5623
  for (p = name; *p != '\0'; p += 1)
5624
    if (isalpha (*p))
5625
      *p = tolower (*p);
5626
  args->name = name;
5627
  return 0;
5628
}
5629
 
5630
/* Return the "ada__tags__type_specific_data" type.  */
5631
 
5632
static struct type *
5633
ada_get_tsd_type (struct inferior *inf)
5634
{
5635
  struct ada_inferior_data *data = get_ada_inferior_data (inf);
5636
 
5637
  if (data->tsd_type == 0)
5638
    data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
5639
  return data->tsd_type;
5640
}
5641
 
5642
/* Utility function for ada_tag_name_1 that tries the second
5643
   representation for the dispatch table (in which there is no
5644
   explicit 'tsd' field in the referent of the tag pointer, and instead
5645
   the tsd pointer is stored just before the dispatch table. */
5646
 
5647
static int
5648
ada_tag_name_2 (struct tag_args *args)
5649
{
5650
  struct type *info_type;
5651
  static char name[1024];
5652
  char *p;
5653
  struct value *val, *valp;
5654
 
5655
  args->name = NULL;
5656
  info_type = ada_get_tsd_type (current_inferior());
5657
  if (info_type == NULL)
5658
    return 0;
5659
  info_type = lookup_pointer_type (lookup_pointer_type (info_type));
5660
  valp = value_cast (info_type, args->tag);
5661
  if (valp == NULL)
5662
    return 0;
5663
  val = value_ind (value_ptradd (valp, -1));
5664
  if (val == NULL)
5665
    return 0;
5666
  val = ada_value_struct_elt (val, "expanded_name", 1);
5667
  if (val == NULL)
5668
    return 0;
5669
  read_memory_string (value_as_address (val), name, sizeof (name) - 1);
5670
  for (p = name; *p != '\0'; p += 1)
5671
    if (isalpha (*p))
5672
      *p = tolower (*p);
5673
  args->name = name;
5674
  return 0;
5675
}
5676
 
5677
/* The type name of the dynamic type denoted by the 'tag value TAG, as
5678
   a C string.  */
5679
 
5680
const char *
5681
ada_tag_name (struct value *tag)
5682
{
5683
  struct tag_args args;
5684
 
5685
  if (!ada_is_tag_type (value_type (tag)))
5686
    return NULL;
5687
  args.tag = tag;
5688
  args.name = NULL;
5689
  catch_errors (ada_tag_name_1, &args, NULL, RETURN_MASK_ALL);
5690
  return args.name;
5691
}
5692
 
5693
/* The parent type of TYPE, or NULL if none.  */
5694
 
5695
struct type *
5696
ada_parent_type (struct type *type)
5697
{
5698
  int i;
5699
 
5700
  type = ada_check_typedef (type);
5701
 
5702
  if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
5703
    return NULL;
5704
 
5705
  for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5706
    if (ada_is_parent_field (type, i))
5707
      {
5708
        struct type *parent_type = TYPE_FIELD_TYPE (type, i);
5709
 
5710
        /* If the _parent field is a pointer, then dereference it.  */
5711
        if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
5712
          parent_type = TYPE_TARGET_TYPE (parent_type);
5713
        /* If there is a parallel XVS type, get the actual base type.  */
5714
        parent_type = ada_get_base_type (parent_type);
5715
 
5716
        return ada_check_typedef (parent_type);
5717
      }
5718
 
5719
  return NULL;
5720
}
5721
 
5722
/* True iff field number FIELD_NUM of structure type TYPE contains the
5723
   parent-type (inherited) fields of a derived type.  Assumes TYPE is
5724
   a structure type with at least FIELD_NUM+1 fields.  */
5725
 
5726
int
5727
ada_is_parent_field (struct type *type, int field_num)
5728
{
5729
  const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
5730
 
5731
  return (name != NULL
5732
          && (strncmp (name, "PARENT", 6) == 0
5733
              || strncmp (name, "_parent", 7) == 0));
5734
}
5735
 
5736
/* True iff field number FIELD_NUM of structure type TYPE is a
5737
   transparent wrapper field (which should be silently traversed when doing
5738
   field selection and flattened when printing).  Assumes TYPE is a
5739
   structure type with at least FIELD_NUM+1 fields.  Such fields are always
5740
   structures.  */
5741
 
5742
int
5743
ada_is_wrapper_field (struct type *type, int field_num)
5744
{
5745
  const char *name = TYPE_FIELD_NAME (type, field_num);
5746
 
5747
  return (name != NULL
5748
          && (strncmp (name, "PARENT", 6) == 0
5749
              || strcmp (name, "REP") == 0
5750
              || strncmp (name, "_parent", 7) == 0
5751
              || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
5752
}
5753
 
5754
/* True iff field number FIELD_NUM of structure or union type TYPE
5755
   is a variant wrapper.  Assumes TYPE is a structure type with at least
5756
   FIELD_NUM+1 fields.  */
5757
 
5758
int
5759
ada_is_variant_part (struct type *type, int field_num)
5760
{
5761
  struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
5762
 
5763
  return (TYPE_CODE (field_type) == TYPE_CODE_UNION
5764
          || (is_dynamic_field (type, field_num)
5765
              && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
5766
                  == TYPE_CODE_UNION)));
5767
}
5768
 
5769
/* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
5770
   whose discriminants are contained in the record type OUTER_TYPE,
5771
   returns the type of the controlling discriminant for the variant.
5772
   May return NULL if the type could not be found.  */
5773
 
5774
struct type *
5775
ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
5776
{
5777
  char *name = ada_variant_discrim_name (var_type);
5778
 
5779
  return ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL);
5780
}
5781
 
5782
/* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
5783
   valid field number within it, returns 1 iff field FIELD_NUM of TYPE
5784
   represents a 'when others' clause; otherwise 0.  */
5785
 
5786
int
5787
ada_is_others_clause (struct type *type, int field_num)
5788
{
5789
  const char *name = TYPE_FIELD_NAME (type, field_num);
5790
 
5791
  return (name != NULL && name[0] == 'O');
5792
}
5793
 
5794
/* Assuming that TYPE0 is the type of the variant part of a record,
5795
   returns the name of the discriminant controlling the variant.
5796
   The value is valid until the next call to ada_variant_discrim_name.  */
5797
 
5798
char *
5799
ada_variant_discrim_name (struct type *type0)
5800
{
5801
  static char *result = NULL;
5802
  static size_t result_len = 0;
5803
  struct type *type;
5804
  const char *name;
5805
  const char *discrim_end;
5806
  const char *discrim_start;
5807
 
5808
  if (TYPE_CODE (type0) == TYPE_CODE_PTR)
5809
    type = TYPE_TARGET_TYPE (type0);
5810
  else
5811
    type = type0;
5812
 
5813
  name = ada_type_name (type);
5814
 
5815
  if (name == NULL || name[0] == '\000')
5816
    return "";
5817
 
5818
  for (discrim_end = name + strlen (name) - 6; discrim_end != name;
5819
       discrim_end -= 1)
5820
    {
5821
      if (strncmp (discrim_end, "___XVN", 6) == 0)
5822
        break;
5823
    }
5824
  if (discrim_end == name)
5825
    return "";
5826
 
5827
  for (discrim_start = discrim_end; discrim_start != name + 3;
5828
       discrim_start -= 1)
5829
    {
5830
      if (discrim_start == name + 1)
5831
        return "";
5832
      if ((discrim_start > name + 3
5833
           && strncmp (discrim_start - 3, "___", 3) == 0)
5834
          || discrim_start[-1] == '.')
5835
        break;
5836
    }
5837
 
5838
  GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
5839
  strncpy (result, discrim_start, discrim_end - discrim_start);
5840
  result[discrim_end - discrim_start] = '\0';
5841
  return result;
5842
}
5843
 
5844
/* Scan STR for a subtype-encoded number, beginning at position K.
5845
   Put the position of the character just past the number scanned in
5846
   *NEW_K, if NEW_K!=NULL.  Put the scanned number in *R, if R!=NULL.
5847
   Return 1 if there was a valid number at the given position, and 0
5848
   otherwise.  A "subtype-encoded" number consists of the absolute value
5849
   in decimal, followed by the letter 'm' to indicate a negative number.
5850
   Assumes 0m does not occur.  */
5851
 
5852
int
5853
ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
5854
{
5855
  ULONGEST RU;
5856
 
5857
  if (!isdigit (str[k]))
5858
    return 0;
5859
 
5860
  /* Do it the hard way so as not to make any assumption about
5861
     the relationship of unsigned long (%lu scan format code) and
5862
     LONGEST.  */
5863
  RU = 0;
5864
  while (isdigit (str[k]))
5865
    {
5866
      RU = RU * 10 + (str[k] - '0');
5867
      k += 1;
5868
    }
5869
 
5870
  if (str[k] == 'm')
5871
    {
5872
      if (R != NULL)
5873
        *R = (-(LONGEST) (RU - 1)) - 1;
5874
      k += 1;
5875
    }
5876
  else if (R != NULL)
5877
    *R = (LONGEST) RU;
5878
 
5879
  /* NOTE on the above: Technically, C does not say what the results of
5880
     - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
5881
     number representable as a LONGEST (although either would probably work
5882
     in most implementations).  When RU>0, the locution in the then branch
5883
     above is always equivalent to the negative of RU.  */
5884
 
5885
  if (new_k != NULL)
5886
    *new_k = k;
5887
  return 1;
5888
}
5889
 
5890
/* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
5891
   and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
5892
   in the range encoded by field FIELD_NUM of TYPE; otherwise 0.  */
5893
 
5894
int
5895
ada_in_variant (LONGEST val, struct type *type, int field_num)
5896
{
5897
  const char *name = TYPE_FIELD_NAME (type, field_num);
5898
  int p;
5899
 
5900
  p = 0;
5901
  while (1)
5902
    {
5903
      switch (name[p])
5904
        {
5905
        case '\0':
5906
          return 0;
5907
        case 'S':
5908
          {
5909
            LONGEST W;
5910
 
5911
            if (!ada_scan_number (name, p + 1, &W, &p))
5912
              return 0;
5913
            if (val == W)
5914
              return 1;
5915
            break;
5916
          }
5917
        case 'R':
5918
          {
5919
            LONGEST L, U;
5920
 
5921
            if (!ada_scan_number (name, p + 1, &L, &p)
5922
                || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
5923
              return 0;
5924
            if (val >= L && val <= U)
5925
              return 1;
5926
            break;
5927
          }
5928
        case 'O':
5929
          return 1;
5930
        default:
5931
          return 0;
5932
        }
5933
    }
5934
}
5935
 
5936
/* FIXME: Lots of redundancy below.  Try to consolidate. */
5937
 
5938
/* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
5939
   ARG_TYPE, extract and return the value of one of its (non-static)
5940
   fields.  FIELDNO says which field.   Differs from value_primitive_field
5941
   only in that it can handle packed values of arbitrary type.  */
5942
 
5943
static struct value *
5944
ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
5945
                           struct type *arg_type)
5946
{
5947
  struct type *type;
5948
 
5949
  arg_type = ada_check_typedef (arg_type);
5950
  type = TYPE_FIELD_TYPE (arg_type, fieldno);
5951
 
5952
  /* Handle packed fields.  */
5953
 
5954
  if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
5955
    {
5956
      int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
5957
      int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
5958
 
5959
      return ada_value_primitive_packed_val (arg1, value_contents (arg1),
5960
                                             offset + bit_pos / 8,
5961
                                             bit_pos % 8, bit_size, type);
5962
    }
5963
  else
5964
    return value_primitive_field (arg1, offset, fieldno, arg_type);
5965
}
5966
 
5967
/* Find field with name NAME in object of type TYPE.  If found,
5968
   set the following for each argument that is non-null:
5969
    - *FIELD_TYPE_P to the field's type;
5970
    - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
5971
      an object of that type;
5972
    - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
5973
    - *BIT_SIZE_P to its size in bits if the field is packed, and
5974
 
5975
   If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
5976
   fields up to but not including the desired field, or by the total
5977
   number of fields if not found.   A NULL value of NAME never
5978
   matches; the function just counts visible fields in this case.
5979
 
5980
   Returns 1 if found, 0 otherwise. */
5981
 
5982
static int
5983
find_struct_field (char *name, struct type *type, int offset,
5984
                   struct type **field_type_p,
5985
                   int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
5986
                   int *index_p)
5987
{
5988
  int i;
5989
 
5990
  type = ada_check_typedef (type);
5991
 
5992
  if (field_type_p != NULL)
5993
    *field_type_p = NULL;
5994
  if (byte_offset_p != NULL)
5995
    *byte_offset_p = 0;
5996
  if (bit_offset_p != NULL)
5997
    *bit_offset_p = 0;
5998
  if (bit_size_p != NULL)
5999
    *bit_size_p = 0;
6000
 
6001
  for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6002
    {
6003
      int bit_pos = TYPE_FIELD_BITPOS (type, i);
6004
      int fld_offset = offset + bit_pos / 8;
6005
      char *t_field_name = TYPE_FIELD_NAME (type, i);
6006
 
6007
      if (t_field_name == NULL)
6008
        continue;
6009
 
6010
      else if (name != NULL && field_name_match (t_field_name, name))
6011
        {
6012
          int bit_size = TYPE_FIELD_BITSIZE (type, i);
6013
 
6014
          if (field_type_p != NULL)
6015
            *field_type_p = TYPE_FIELD_TYPE (type, i);
6016
          if (byte_offset_p != NULL)
6017
            *byte_offset_p = fld_offset;
6018
          if (bit_offset_p != NULL)
6019
            *bit_offset_p = bit_pos % 8;
6020
          if (bit_size_p != NULL)
6021
            *bit_size_p = bit_size;
6022
          return 1;
6023
        }
6024
      else if (ada_is_wrapper_field (type, i))
6025
        {
6026
          if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
6027
                                 field_type_p, byte_offset_p, bit_offset_p,
6028
                                 bit_size_p, index_p))
6029
            return 1;
6030
        }
6031
      else if (ada_is_variant_part (type, i))
6032
        {
6033
          /* PNH: Wait.  Do we ever execute this section, or is ARG always of
6034
             fixed type?? */
6035
          int j;
6036
          struct type *field_type
6037
            = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6038
 
6039
          for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
6040
            {
6041
              if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
6042
                                     fld_offset
6043
                                     + TYPE_FIELD_BITPOS (field_type, j) / 8,
6044
                                     field_type_p, byte_offset_p,
6045
                                     bit_offset_p, bit_size_p, index_p))
6046
                return 1;
6047
            }
6048
        }
6049
      else if (index_p != NULL)
6050
        *index_p += 1;
6051
    }
6052
  return 0;
6053
}
6054
 
6055
/* Number of user-visible fields in record type TYPE. */
6056
 
6057
static int
6058
num_visible_fields (struct type *type)
6059
{
6060
  int n;
6061
 
6062
  n = 0;
6063
  find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
6064
  return n;
6065
}
6066
 
6067
/* Look for a field NAME in ARG.  Adjust the address of ARG by OFFSET bytes,
6068
   and search in it assuming it has (class) type TYPE.
6069
   If found, return value, else return NULL.
6070
 
6071
   Searches recursively through wrapper fields (e.g., '_parent').  */
6072
 
6073
static struct value *
6074
ada_search_struct_field (char *name, struct value *arg, int offset,
6075
                         struct type *type)
6076
{
6077
  int i;
6078
 
6079
  type = ada_check_typedef (type);
6080
  for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6081
    {
6082
      char *t_field_name = TYPE_FIELD_NAME (type, i);
6083
 
6084
      if (t_field_name == NULL)
6085
        continue;
6086
 
6087
      else if (field_name_match (t_field_name, name))
6088
        return ada_value_primitive_field (arg, offset, i, type);
6089
 
6090
      else if (ada_is_wrapper_field (type, i))
6091
        {
6092
          struct value *v =     /* Do not let indent join lines here. */
6093
            ada_search_struct_field (name, arg,
6094
                                     offset + TYPE_FIELD_BITPOS (type, i) / 8,
6095
                                     TYPE_FIELD_TYPE (type, i));
6096
 
6097
          if (v != NULL)
6098
            return v;
6099
        }
6100
 
6101
      else if (ada_is_variant_part (type, i))
6102
        {
6103
          /* PNH: Do we ever get here?  See find_struct_field. */
6104
          int j;
6105
          struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
6106
                                                                        i));
6107
          int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
6108
 
6109
          for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
6110
            {
6111
              struct value *v = ada_search_struct_field /* Force line break.  */
6112
                (name, arg,
6113
                 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
6114
                 TYPE_FIELD_TYPE (field_type, j));
6115
 
6116
              if (v != NULL)
6117
                return v;
6118
            }
6119
        }
6120
    }
6121
  return NULL;
6122
}
6123
 
6124
static struct value *ada_index_struct_field_1 (int *, struct value *,
6125
                                               int, struct type *);
6126
 
6127
 
6128
/* Return field #INDEX in ARG, where the index is that returned by
6129
 * find_struct_field through its INDEX_P argument.  Adjust the address
6130
 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
6131
 * If found, return value, else return NULL. */
6132
 
6133
static struct value *
6134
ada_index_struct_field (int index, struct value *arg, int offset,
6135
                        struct type *type)
6136
{
6137
  return ada_index_struct_field_1 (&index, arg, offset, type);
6138
}
6139
 
6140
 
6141
/* Auxiliary function for ada_index_struct_field.  Like
6142
 * ada_index_struct_field, but takes index from *INDEX_P and modifies
6143
 * *INDEX_P. */
6144
 
6145
static struct value *
6146
ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
6147
                          struct type *type)
6148
{
6149
  int i;
6150
  type = ada_check_typedef (type);
6151
 
6152
  for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6153
    {
6154
      if (TYPE_FIELD_NAME (type, i) == NULL)
6155
        continue;
6156
      else if (ada_is_wrapper_field (type, i))
6157
        {
6158
          struct value *v =     /* Do not let indent join lines here. */
6159
            ada_index_struct_field_1 (index_p, arg,
6160
                                      offset + TYPE_FIELD_BITPOS (type, i) / 8,
6161
                                      TYPE_FIELD_TYPE (type, i));
6162
 
6163
          if (v != NULL)
6164
            return v;
6165
        }
6166
 
6167
      else if (ada_is_variant_part (type, i))
6168
        {
6169
          /* PNH: Do we ever get here?  See ada_search_struct_field,
6170
             find_struct_field. */
6171
          error (_("Cannot assign this kind of variant record"));
6172
        }
6173
      else if (*index_p == 0)
6174
        return ada_value_primitive_field (arg, offset, i, type);
6175
      else
6176
        *index_p -= 1;
6177
    }
6178
  return NULL;
6179
}
6180
 
6181
/* Given ARG, a value of type (pointer or reference to a)*
6182
   structure/union, extract the component named NAME from the ultimate
6183
   target structure/union and return it as a value with its
6184
   appropriate type.
6185
 
6186
   The routine searches for NAME among all members of the structure itself
6187
   and (recursively) among all members of any wrapper members
6188
   (e.g., '_parent').
6189
 
6190
   If NO_ERR, then simply return NULL in case of error, rather than
6191
   calling error.  */
6192
 
6193
struct value *
6194
ada_value_struct_elt (struct value *arg, char *name, int no_err)
6195
{
6196
  struct type *t, *t1;
6197
  struct value *v;
6198
 
6199
  v = NULL;
6200
  t1 = t = ada_check_typedef (value_type (arg));
6201
  if (TYPE_CODE (t) == TYPE_CODE_REF)
6202
    {
6203
      t1 = TYPE_TARGET_TYPE (t);
6204
      if (t1 == NULL)
6205
        goto BadValue;
6206
      t1 = ada_check_typedef (t1);
6207
      if (TYPE_CODE (t1) == TYPE_CODE_PTR)
6208
        {
6209
          arg = coerce_ref (arg);
6210
          t = t1;
6211
        }
6212
    }
6213
 
6214
  while (TYPE_CODE (t) == TYPE_CODE_PTR)
6215
    {
6216
      t1 = TYPE_TARGET_TYPE (t);
6217
      if (t1 == NULL)
6218
        goto BadValue;
6219
      t1 = ada_check_typedef (t1);
6220
      if (TYPE_CODE (t1) == TYPE_CODE_PTR)
6221
        {
6222
          arg = value_ind (arg);
6223
          t = t1;
6224
        }
6225
      else
6226
        break;
6227
    }
6228
 
6229
  if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
6230
    goto BadValue;
6231
 
6232
  if (t1 == t)
6233
    v = ada_search_struct_field (name, arg, 0, t);
6234
  else
6235
    {
6236
      int bit_offset, bit_size, byte_offset;
6237
      struct type *field_type;
6238
      CORE_ADDR address;
6239
 
6240
      if (TYPE_CODE (t) == TYPE_CODE_PTR)
6241
        address = value_as_address (arg);
6242
      else
6243
        address = unpack_pointer (t, value_contents (arg));
6244
 
6245
      t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1);
6246
      if (find_struct_field (name, t1, 0,
6247
                             &field_type, &byte_offset, &bit_offset,
6248
                             &bit_size, NULL))
6249
        {
6250
          if (bit_size != 0)
6251
            {
6252
              if (TYPE_CODE (t) == TYPE_CODE_REF)
6253
                arg = ada_coerce_ref (arg);
6254
              else
6255
                arg = ada_value_ind (arg);
6256
              v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
6257
                                                  bit_offset, bit_size,
6258
                                                  field_type);
6259
            }
6260
          else
6261
            v = value_at_lazy (field_type, address + byte_offset);
6262
        }
6263
    }
6264
 
6265
  if (v != NULL || no_err)
6266
    return v;
6267
  else
6268
    error (_("There is no member named %s."), name);
6269
 
6270
 BadValue:
6271
  if (no_err)
6272
    return NULL;
6273
  else
6274
    error (_("Attempt to extract a component of a value that is not a record."));
6275
}
6276
 
6277
/* Given a type TYPE, look up the type of the component of type named NAME.
6278
   If DISPP is non-null, add its byte displacement from the beginning of a
6279
   structure (pointed to by a value) of type TYPE to *DISPP (does not
6280
   work for packed fields).
6281
 
6282
   Matches any field whose name has NAME as a prefix, possibly
6283
   followed by "___".
6284
 
6285
   TYPE can be either a struct or union. If REFOK, TYPE may also
6286
   be a (pointer or reference)+ to a struct or union, and the
6287
   ultimate target type will be searched.
6288
 
6289
   Looks recursively into variant clauses and parent types.
6290
 
6291
   If NOERR is nonzero, return NULL if NAME is not suitably defined or
6292
   TYPE is not a type of the right kind.  */
6293
 
6294
static struct type *
6295
ada_lookup_struct_elt_type (struct type *type, char *name, int refok,
6296
                            int noerr, int *dispp)
6297
{
6298
  int i;
6299
 
6300
  if (name == NULL)
6301
    goto BadName;
6302
 
6303
  if (refok && type != NULL)
6304
    while (1)
6305
      {
6306
        type = ada_check_typedef (type);
6307
        if (TYPE_CODE (type) != TYPE_CODE_PTR
6308
            && TYPE_CODE (type) != TYPE_CODE_REF)
6309
          break;
6310
        type = TYPE_TARGET_TYPE (type);
6311
      }
6312
 
6313
  if (type == NULL
6314
      || (TYPE_CODE (type) != TYPE_CODE_STRUCT
6315
          && TYPE_CODE (type) != TYPE_CODE_UNION))
6316
    {
6317
      if (noerr)
6318
        return NULL;
6319
      else
6320
        {
6321
          target_terminal_ours ();
6322
          gdb_flush (gdb_stdout);
6323
          if (type == NULL)
6324
            error (_("Type (null) is not a structure or union type"));
6325
          else
6326
            {
6327
              /* XXX: type_sprint */
6328
              fprintf_unfiltered (gdb_stderr, _("Type "));
6329
              type_print (type, "", gdb_stderr, -1);
6330
              error (_(" is not a structure or union type"));
6331
            }
6332
        }
6333
    }
6334
 
6335
  type = to_static_fixed_type (type);
6336
 
6337
  for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6338
    {
6339
      char *t_field_name = TYPE_FIELD_NAME (type, i);
6340
      struct type *t;
6341
      int disp;
6342
 
6343
      if (t_field_name == NULL)
6344
        continue;
6345
 
6346
      else if (field_name_match (t_field_name, name))
6347
        {
6348
          if (dispp != NULL)
6349
            *dispp += TYPE_FIELD_BITPOS (type, i) / 8;
6350
          return ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6351
        }
6352
 
6353
      else if (ada_is_wrapper_field (type, i))
6354
        {
6355
          disp = 0;
6356
          t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
6357
                                          0, 1, &disp);
6358
          if (t != NULL)
6359
            {
6360
              if (dispp != NULL)
6361
                *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6362
              return t;
6363
            }
6364
        }
6365
 
6366
      else if (ada_is_variant_part (type, i))
6367
        {
6368
          int j;
6369
          struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
6370
                                                                        i));
6371
 
6372
          for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
6373
            {
6374
              /* FIXME pnh 2008/01/26: We check for a field that is
6375
                 NOT wrapped in a struct, since the compiler sometimes
6376
                 generates these for unchecked variant types.  Revisit
6377
                 if the compiler changes this practice. */
6378
              char *v_field_name = TYPE_FIELD_NAME (field_type, j);
6379
              disp = 0;
6380
              if (v_field_name != NULL
6381
                  && field_name_match (v_field_name, name))
6382
                t = ada_check_typedef (TYPE_FIELD_TYPE (field_type, j));
6383
              else
6384
                t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type, j),
6385
                                                name, 0, 1, &disp);
6386
 
6387
              if (t != NULL)
6388
                {
6389
                  if (dispp != NULL)
6390
                    *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6391
                  return t;
6392
                }
6393
            }
6394
        }
6395
 
6396
    }
6397
 
6398
BadName:
6399
  if (!noerr)
6400
    {
6401
      target_terminal_ours ();
6402
      gdb_flush (gdb_stdout);
6403
      if (name == NULL)
6404
        {
6405
          /* XXX: type_sprint */
6406
          fprintf_unfiltered (gdb_stderr, _("Type "));
6407
          type_print (type, "", gdb_stderr, -1);
6408
          error (_(" has no component named <null>"));
6409
        }
6410
      else
6411
        {
6412
          /* XXX: type_sprint */
6413
          fprintf_unfiltered (gdb_stderr, _("Type "));
6414
          type_print (type, "", gdb_stderr, -1);
6415
          error (_(" has no component named %s"), name);
6416
        }
6417
    }
6418
 
6419
  return NULL;
6420
}
6421
 
6422
/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
6423
   within a value of type OUTER_TYPE, return true iff VAR_TYPE
6424
   represents an unchecked union (that is, the variant part of a
6425
   record that is named in an Unchecked_Union pragma). */
6426
 
6427
static int
6428
is_unchecked_variant (struct type *var_type, struct type *outer_type)
6429
{
6430
  char *discrim_name = ada_variant_discrim_name (var_type);
6431
 
6432
  return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1, NULL)
6433
          == NULL);
6434
}
6435
 
6436
 
6437
/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
6438
   within a value of type OUTER_TYPE that is stored in GDB at
6439
   OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
6440
   numbering from 0) is applicable.  Returns -1 if none are.  */
6441
 
6442
int
6443
ada_which_variant_applies (struct type *var_type, struct type *outer_type,
6444
                           const gdb_byte *outer_valaddr)
6445
{
6446
  int others_clause;
6447
  int i;
6448
  char *discrim_name = ada_variant_discrim_name (var_type);
6449
  struct value *outer;
6450
  struct value *discrim;
6451
  LONGEST discrim_val;
6452
 
6453
  outer = value_from_contents_and_address (outer_type, outer_valaddr, 0);
6454
  discrim = ada_value_struct_elt (outer, discrim_name, 1);
6455
  if (discrim == NULL)
6456
    return -1;
6457
  discrim_val = value_as_long (discrim);
6458
 
6459
  others_clause = -1;
6460
  for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
6461
    {
6462
      if (ada_is_others_clause (var_type, i))
6463
        others_clause = i;
6464
      else if (ada_in_variant (discrim_val, var_type, i))
6465
        return i;
6466
    }
6467
 
6468
  return others_clause;
6469
}
6470
 
6471
 
6472
 
6473
                                /* Dynamic-Sized Records */
6474
 
6475
/* Strategy: The type ostensibly attached to a value with dynamic size
6476
   (i.e., a size that is not statically recorded in the debugging
6477
   data) does not accurately reflect the size or layout of the value.
6478
   Our strategy is to convert these values to values with accurate,
6479
   conventional types that are constructed on the fly.  */
6480
 
6481
/* There is a subtle and tricky problem here.  In general, we cannot
6482
   determine the size of dynamic records without its data.  However,
6483
   the 'struct value' data structure, which GDB uses to represent
6484
   quantities in the inferior process (the target), requires the size
6485
   of the type at the time of its allocation in order to reserve space
6486
   for GDB's internal copy of the data.  That's why the
6487
   'to_fixed_xxx_type' routines take (target) addresses as parameters,
6488
   rather than struct value*s.
6489
 
6490
   However, GDB's internal history variables ($1, $2, etc.) are
6491
   struct value*s containing internal copies of the data that are not, in
6492
   general, the same as the data at their corresponding addresses in
6493
   the target.  Fortunately, the types we give to these values are all
6494
   conventional, fixed-size types (as per the strategy described
6495
   above), so that we don't usually have to perform the
6496
   'to_fixed_xxx_type' conversions to look at their values.
6497
   Unfortunately, there is one exception: if one of the internal
6498
   history variables is an array whose elements are unconstrained
6499
   records, then we will need to create distinct fixed types for each
6500
   element selected.  */
6501
 
6502
/* The upshot of all of this is that many routines take a (type, host
6503
   address, target address) triple as arguments to represent a value.
6504
   The host address, if non-null, is supposed to contain an internal
6505
   copy of the relevant data; otherwise, the program is to consult the
6506
   target at the target address.  */
6507
 
6508
/* Assuming that VAL0 represents a pointer value, the result of
6509
   dereferencing it.  Differs from value_ind in its treatment of
6510
   dynamic-sized types.  */
6511
 
6512
struct value *
6513
ada_value_ind (struct value *val0)
6514
{
6515
  struct value *val = unwrap_value (value_ind (val0));
6516
 
6517
  return ada_to_fixed_value (val);
6518
}
6519
 
6520
/* The value resulting from dereferencing any "reference to"
6521
   qualifiers on VAL0.  */
6522
 
6523
static struct value *
6524
ada_coerce_ref (struct value *val0)
6525
{
6526
  if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
6527
    {
6528
      struct value *val = val0;
6529
 
6530
      val = coerce_ref (val);
6531
      val = unwrap_value (val);
6532
      return ada_to_fixed_value (val);
6533
    }
6534
  else
6535
    return val0;
6536
}
6537
 
6538
/* Return OFF rounded upward if necessary to a multiple of
6539
   ALIGNMENT (a power of 2).  */
6540
 
6541
static unsigned int
6542
align_value (unsigned int off, unsigned int alignment)
6543
{
6544
  return (off + alignment - 1) & ~(alignment - 1);
6545
}
6546
 
6547
/* Return the bit alignment required for field #F of template type TYPE.  */
6548
 
6549
static unsigned int
6550
field_alignment (struct type *type, int f)
6551
{
6552
  const char *name = TYPE_FIELD_NAME (type, f);
6553
  int len;
6554
  int align_offset;
6555
 
6556
  /* The field name should never be null, unless the debugging information
6557
     is somehow malformed.  In this case, we assume the field does not
6558
     require any alignment.  */
6559
  if (name == NULL)
6560
    return 1;
6561
 
6562
  len = strlen (name);
6563
 
6564
  if (!isdigit (name[len - 1]))
6565
    return 1;
6566
 
6567
  if (isdigit (name[len - 2]))
6568
    align_offset = len - 2;
6569
  else
6570
    align_offset = len - 1;
6571
 
6572
  if (align_offset < 7 || strncmp ("___XV", name + align_offset - 6, 5) != 0)
6573
    return TARGET_CHAR_BIT;
6574
 
6575
  return atoi (name + align_offset) * TARGET_CHAR_BIT;
6576
}
6577
 
6578
/* Find a symbol named NAME.  Ignores ambiguity.  */
6579
 
6580
struct symbol *
6581
ada_find_any_symbol (const char *name)
6582
{
6583
  struct symbol *sym;
6584
 
6585
  sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
6586
  if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
6587
    return sym;
6588
 
6589
  sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
6590
  return sym;
6591
}
6592
 
6593
/* Find a type named NAME.  Ignores ambiguity.  This routine will look
6594
   solely for types defined by debug info, it will not search the GDB
6595
   primitive types.  */
6596
 
6597
struct type *
6598
ada_find_any_type (const char *name)
6599
{
6600
  struct symbol *sym = ada_find_any_symbol (name);
6601
 
6602
  if (sym != NULL)
6603
    return SYMBOL_TYPE (sym);
6604
 
6605
  return NULL;
6606
}
6607
 
6608
/* Given NAME and an associated BLOCK, search all symbols for
6609
   NAME suffixed with  "___XR", which is the ``renaming'' symbol
6610
   associated to NAME.  Return this symbol if found, return
6611
   NULL otherwise.  */
6612
 
6613
struct symbol *
6614
ada_find_renaming_symbol (const char *name, struct block *block)
6615
{
6616
  struct symbol *sym;
6617
 
6618
  sym = find_old_style_renaming_symbol (name, block);
6619
 
6620
  if (sym != NULL)
6621
    return sym;
6622
 
6623
  /* Not right yet.  FIXME pnh 7/20/2007. */
6624
  sym = ada_find_any_symbol (name);
6625
  if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
6626
    return sym;
6627
  else
6628
    return NULL;
6629
}
6630
 
6631
static struct symbol *
6632
find_old_style_renaming_symbol (const char *name, struct block *block)
6633
{
6634
  const struct symbol *function_sym = block_linkage_function (block);
6635
  char *rename;
6636
 
6637
  if (function_sym != NULL)
6638
    {
6639
      /* If the symbol is defined inside a function, NAME is not fully
6640
         qualified.  This means we need to prepend the function name
6641
         as well as adding the ``___XR'' suffix to build the name of
6642
         the associated renaming symbol.  */
6643
      char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
6644
      /* Function names sometimes contain suffixes used
6645
         for instance to qualify nested subprograms.  When building
6646
         the XR type name, we need to make sure that this suffix is
6647
         not included.  So do not include any suffix in the function
6648
         name length below.  */
6649
      int function_name_len = ada_name_prefix_len (function_name);
6650
      const int rename_len = function_name_len + 2      /*  "__" */
6651
        + strlen (name) + 6 /* "___XR\0" */ ;
6652
 
6653
      /* Strip the suffix if necessary.  */
6654
      ada_remove_trailing_digits (function_name, &function_name_len);
6655
      ada_remove_po_subprogram_suffix (function_name, &function_name_len);
6656
      ada_remove_Xbn_suffix (function_name, &function_name_len);
6657
 
6658
      /* Library-level functions are a special case, as GNAT adds
6659
         a ``_ada_'' prefix to the function name to avoid namespace
6660
         pollution.  However, the renaming symbols themselves do not
6661
         have this prefix, so we need to skip this prefix if present.  */
6662
      if (function_name_len > 5 /* "_ada_" */
6663
          && strstr (function_name, "_ada_") == function_name)
6664
        {
6665
          function_name += 5;
6666
          function_name_len -= 5;
6667
        }
6668
 
6669
      rename = (char *) alloca (rename_len * sizeof (char));
6670
      strncpy (rename, function_name, function_name_len);
6671
      xsnprintf (rename + function_name_len, rename_len - function_name_len,
6672
                 "__%s___XR", name);
6673
    }
6674
  else
6675
    {
6676
      const int rename_len = strlen (name) + 6;
6677
 
6678
      rename = (char *) alloca (rename_len * sizeof (char));
6679
      xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
6680
    }
6681
 
6682
  return ada_find_any_symbol (rename);
6683
}
6684
 
6685
/* Because of GNAT encoding conventions, several GDB symbols may match a
6686
   given type name.  If the type denoted by TYPE0 is to be preferred to
6687
   that of TYPE1 for purposes of type printing, return non-zero;
6688
   otherwise return 0.  */
6689
 
6690
int
6691
ada_prefer_type (struct type *type0, struct type *type1)
6692
{
6693
  if (type1 == NULL)
6694
    return 1;
6695
  else if (type0 == NULL)
6696
    return 0;
6697
  else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
6698
    return 1;
6699
  else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
6700
    return 0;
6701
  else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
6702
    return 1;
6703
  else if (ada_is_constrained_packed_array_type (type0))
6704
    return 1;
6705
  else if (ada_is_array_descriptor_type (type0)
6706
           && !ada_is_array_descriptor_type (type1))
6707
    return 1;
6708
  else
6709
    {
6710
      const char *type0_name = type_name_no_tag (type0);
6711
      const char *type1_name = type_name_no_tag (type1);
6712
 
6713
      if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
6714
          && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
6715
        return 1;
6716
    }
6717
  return 0;
6718
}
6719
 
6720
/* The name of TYPE, which is either its TYPE_NAME, or, if that is
6721
   null, its TYPE_TAG_NAME.  Null if TYPE is null.  */
6722
 
6723
char *
6724
ada_type_name (struct type *type)
6725
{
6726
  if (type == NULL)
6727
    return NULL;
6728
  else if (TYPE_NAME (type) != NULL)
6729
    return TYPE_NAME (type);
6730
  else
6731
    return TYPE_TAG_NAME (type);
6732
}
6733
 
6734
/* Search the list of "descriptive" types associated to TYPE for a type
6735
   whose name is NAME.  */
6736
 
6737
static struct type *
6738
find_parallel_type_by_descriptive_type (struct type *type, const char *name)
6739
{
6740
  struct type *result;
6741
 
6742
  /* If there no descriptive-type info, then there is no parallel type
6743
     to be found.  */
6744
  if (!HAVE_GNAT_AUX_INFO (type))
6745
    return NULL;
6746
 
6747
  result = TYPE_DESCRIPTIVE_TYPE (type);
6748
  while (result != NULL)
6749
    {
6750
      char *result_name = ada_type_name (result);
6751
 
6752
      if (result_name == NULL)
6753
        {
6754
          warning (_("unexpected null name on descriptive type"));
6755
          return NULL;
6756
        }
6757
 
6758
      /* If the names match, stop.  */
6759
      if (strcmp (result_name, name) == 0)
6760
        break;
6761
 
6762
      /* Otherwise, look at the next item on the list, if any.  */
6763
      if (HAVE_GNAT_AUX_INFO (result))
6764
        result = TYPE_DESCRIPTIVE_TYPE (result);
6765
      else
6766
        result = NULL;
6767
    }
6768
 
6769
  /* If we didn't find a match, see whether this is a packed array.  With
6770
     older compilers, the descriptive type information is either absent or
6771
     irrelevant when it comes to packed arrays so the above lookup fails.
6772
     Fall back to using a parallel lookup by name in this case.  */
6773
  if (result == NULL && ada_is_constrained_packed_array_type (type))
6774
    return ada_find_any_type (name);
6775
 
6776
  return result;
6777
}
6778
 
6779
/* Find a parallel type to TYPE with the specified NAME, using the
6780
   descriptive type taken from the debugging information, if available,
6781
   and otherwise using the (slower) name-based method.  */
6782
 
6783
static struct type *
6784
ada_find_parallel_type_with_name (struct type *type, const char *name)
6785
{
6786
  struct type *result = NULL;
6787
 
6788
  if (HAVE_GNAT_AUX_INFO (type))
6789
    result = find_parallel_type_by_descriptive_type (type, name);
6790
  else
6791
    result = ada_find_any_type (name);
6792
 
6793
  return result;
6794
}
6795
 
6796
/* Same as above, but specify the name of the parallel type by appending
6797
   SUFFIX to the name of TYPE.  */
6798
 
6799
struct type *
6800
ada_find_parallel_type (struct type *type, const char *suffix)
6801
{
6802
  char *name, *typename = ada_type_name (type);
6803
  int len;
6804
 
6805
  if (typename == NULL)
6806
    return NULL;
6807
 
6808
  len = strlen (typename);
6809
 
6810
  name = (char *) alloca (len + strlen (suffix) + 1);
6811
 
6812
  strcpy (name, typename);
6813
  strcpy (name + len, suffix);
6814
 
6815
  return ada_find_parallel_type_with_name (type, name);
6816
}
6817
 
6818
/* If TYPE is a variable-size record type, return the corresponding template
6819
   type describing its fields.  Otherwise, return NULL.  */
6820
 
6821
static struct type *
6822
dynamic_template_type (struct type *type)
6823
{
6824
  type = ada_check_typedef (type);
6825
 
6826
  if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
6827
      || ada_type_name (type) == NULL)
6828
    return NULL;
6829
  else
6830
    {
6831
      int len = strlen (ada_type_name (type));
6832
 
6833
      if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
6834
        return type;
6835
      else
6836
        return ada_find_parallel_type (type, "___XVE");
6837
    }
6838
}
6839
 
6840
/* Assuming that TEMPL_TYPE is a union or struct type, returns
6841
   non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size.  */
6842
 
6843
static int
6844
is_dynamic_field (struct type *templ_type, int field_num)
6845
{
6846
  const char *name = TYPE_FIELD_NAME (templ_type, field_num);
6847
 
6848
  return name != NULL
6849
    && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
6850
    && strstr (name, "___XVL") != NULL;
6851
}
6852
 
6853
/* The index of the variant field of TYPE, or -1 if TYPE does not
6854
   represent a variant record type.  */
6855
 
6856
static int
6857
variant_field_index (struct type *type)
6858
{
6859
  int f;
6860
 
6861
  if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6862
    return -1;
6863
 
6864
  for (f = 0; f < TYPE_NFIELDS (type); f += 1)
6865
    {
6866
      if (ada_is_variant_part (type, f))
6867
        return f;
6868
    }
6869
  return -1;
6870
}
6871
 
6872
/* A record type with no fields.  */
6873
 
6874
static struct type *
6875
empty_record (struct type *template)
6876
{
6877
  struct type *type = alloc_type_copy (template);
6878
 
6879
  TYPE_CODE (type) = TYPE_CODE_STRUCT;
6880
  TYPE_NFIELDS (type) = 0;
6881
  TYPE_FIELDS (type) = NULL;
6882
  INIT_CPLUS_SPECIFIC (type);
6883
  TYPE_NAME (type) = "<empty>";
6884
  TYPE_TAG_NAME (type) = NULL;
6885
  TYPE_LENGTH (type) = 0;
6886
  return type;
6887
}
6888
 
6889
/* An ordinary record type (with fixed-length fields) that describes
6890
   the value of type TYPE at VALADDR or ADDRESS (see comments at
6891
   the beginning of this section) VAL according to GNAT conventions.
6892
   DVAL0 should describe the (portion of a) record that contains any
6893
   necessary discriminants.  It should be NULL if value_type (VAL) is
6894
   an outer-level type (i.e., as opposed to a branch of a variant.)  A
6895
   variant field (unless unchecked) is replaced by a particular branch
6896
   of the variant.
6897
 
6898
   If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
6899
   length are not statically known are discarded.  As a consequence,
6900
   VALADDR, ADDRESS and DVAL0 are ignored.
6901
 
6902
   NOTE: Limitations: For now, we assume that dynamic fields and
6903
   variants occupy whole numbers of bytes.  However, they need not be
6904
   byte-aligned.  */
6905
 
6906
struct type *
6907
ada_template_to_fixed_record_type_1 (struct type *type,
6908
                                     const gdb_byte *valaddr,
6909
                                     CORE_ADDR address, struct value *dval0,
6910
                                     int keep_dynamic_fields)
6911
{
6912
  struct value *mark = value_mark ();
6913
  struct value *dval;
6914
  struct type *rtype;
6915
  int nfields, bit_len;
6916
  int variant_field;
6917
  long off;
6918
  int fld_bit_len, bit_incr;
6919
  int f;
6920
 
6921
  /* Compute the number of fields in this record type that are going
6922
     to be processed: unless keep_dynamic_fields, this includes only
6923
     fields whose position and length are static will be processed.  */
6924
  if (keep_dynamic_fields)
6925
    nfields = TYPE_NFIELDS (type);
6926
  else
6927
    {
6928
      nfields = 0;
6929
      while (nfields < TYPE_NFIELDS (type)
6930
             && !ada_is_variant_part (type, nfields)
6931
             && !is_dynamic_field (type, nfields))
6932
        nfields++;
6933
    }
6934
 
6935
  rtype = alloc_type_copy (type);
6936
  TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
6937
  INIT_CPLUS_SPECIFIC (rtype);
6938
  TYPE_NFIELDS (rtype) = nfields;
6939
  TYPE_FIELDS (rtype) = (struct field *)
6940
    TYPE_ALLOC (rtype, nfields * sizeof (struct field));
6941
  memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
6942
  TYPE_NAME (rtype) = ada_type_name (type);
6943
  TYPE_TAG_NAME (rtype) = NULL;
6944
  TYPE_FIXED_INSTANCE (rtype) = 1;
6945
 
6946
  off = 0;
6947
  bit_len = 0;
6948
  variant_field = -1;
6949
 
6950
  for (f = 0; f < nfields; f += 1)
6951
    {
6952
      off = align_value (off, field_alignment (type, f))
6953
        + TYPE_FIELD_BITPOS (type, f);
6954
      TYPE_FIELD_BITPOS (rtype, f) = off;
6955
      TYPE_FIELD_BITSIZE (rtype, f) = 0;
6956
 
6957
      if (ada_is_variant_part (type, f))
6958
        {
6959
          variant_field = f;
6960
          fld_bit_len = bit_incr = 0;
6961
        }
6962
      else if (is_dynamic_field (type, f))
6963
        {
6964
          const gdb_byte *field_valaddr = valaddr;
6965
          CORE_ADDR field_address = address;
6966
          struct type *field_type =
6967
            TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
6968
 
6969
          if (dval0 == NULL)
6970
            {
6971
              /* rtype's length is computed based on the run-time
6972
                 value of discriminants.  If the discriminants are not
6973
                 initialized, the type size may be completely bogus and
6974
                 GDB may fail to allocate a value for it. So check the
6975
                 size first before creating the value.  */
6976
              check_size (rtype);
6977
              dval = value_from_contents_and_address (rtype, valaddr, address);
6978
            }
6979
          else
6980
            dval = dval0;
6981
 
6982
          /* If the type referenced by this field is an aligner type, we need
6983
             to unwrap that aligner type, because its size might not be set.
6984
             Keeping the aligner type would cause us to compute the wrong
6985
             size for this field, impacting the offset of the all the fields
6986
             that follow this one.  */
6987
          if (ada_is_aligner_type (field_type))
6988
            {
6989
              long field_offset = TYPE_FIELD_BITPOS (field_type, f);
6990
 
6991
              field_valaddr = cond_offset_host (field_valaddr, field_offset);
6992
              field_address = cond_offset_target (field_address, field_offset);
6993
              field_type = ada_aligned_type (field_type);
6994
            }
6995
 
6996
          field_valaddr = cond_offset_host (field_valaddr,
6997
                                            off / TARGET_CHAR_BIT);
6998
          field_address = cond_offset_target (field_address,
6999
                                              off / TARGET_CHAR_BIT);
7000
 
7001
          /* Get the fixed type of the field.  Note that, in this case,
7002
             we do not want to get the real type out of the tag: if
7003
             the current field is the parent part of a tagged record,
7004
             we will get the tag of the object.  Clearly wrong: the real
7005
             type of the parent is not the real type of the child.  We
7006
             would end up in an infinite loop.  */
7007
          field_type = ada_get_base_type (field_type);
7008
          field_type = ada_to_fixed_type (field_type, field_valaddr,
7009
                                          field_address, dval, 0);
7010
 
7011
          TYPE_FIELD_TYPE (rtype, f) = field_type;
7012
          TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
7013
          bit_incr = fld_bit_len =
7014
            TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
7015
        }
7016
      else
7017
        {
7018
          struct type *field_type = TYPE_FIELD_TYPE (type, f);
7019
 
7020
          TYPE_FIELD_TYPE (rtype, f) = field_type;
7021
          TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
7022
          if (TYPE_FIELD_BITSIZE (type, f) > 0)
7023
            bit_incr = fld_bit_len =
7024
              TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
7025
          else
7026
            bit_incr = fld_bit_len =
7027
              TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
7028
        }
7029
      if (off + fld_bit_len > bit_len)
7030
        bit_len = off + fld_bit_len;
7031
      off += bit_incr;
7032
      TYPE_LENGTH (rtype) =
7033
        align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
7034
    }
7035
 
7036
  /* We handle the variant part, if any, at the end because of certain
7037
     odd cases in which it is re-ordered so as NOT to be the last field of
7038
     the record.  This can happen in the presence of representation
7039
     clauses.  */
7040
  if (variant_field >= 0)
7041
    {
7042
      struct type *branch_type;
7043
 
7044
      off = TYPE_FIELD_BITPOS (rtype, variant_field);
7045
 
7046
      if (dval0 == NULL)
7047
        dval = value_from_contents_and_address (rtype, valaddr, address);
7048
      else
7049
        dval = dval0;
7050
 
7051
      branch_type =
7052
        to_fixed_variant_branch_type
7053
        (TYPE_FIELD_TYPE (type, variant_field),
7054
         cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
7055
         cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
7056
      if (branch_type == NULL)
7057
        {
7058
          for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
7059
            TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
7060
          TYPE_NFIELDS (rtype) -= 1;
7061
        }
7062
      else
7063
        {
7064
          TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
7065
          TYPE_FIELD_NAME (rtype, variant_field) = "S";
7066
          fld_bit_len =
7067
            TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
7068
            TARGET_CHAR_BIT;
7069
          if (off + fld_bit_len > bit_len)
7070
            bit_len = off + fld_bit_len;
7071
          TYPE_LENGTH (rtype) =
7072
            align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
7073
        }
7074
    }
7075
 
7076
  /* According to exp_dbug.ads, the size of TYPE for variable-size records
7077
     should contain the alignment of that record, which should be a strictly
7078
     positive value.  If null or negative, then something is wrong, most
7079
     probably in the debug info.  In that case, we don't round up the size
7080
     of the resulting type. If this record is not part of another structure,
7081
     the current RTYPE length might be good enough for our purposes.  */
7082
  if (TYPE_LENGTH (type) <= 0)
7083
    {
7084
      if (TYPE_NAME (rtype))
7085
        warning (_("Invalid type size for `%s' detected: %d."),
7086
                 TYPE_NAME (rtype), TYPE_LENGTH (type));
7087
      else
7088
        warning (_("Invalid type size for <unnamed> detected: %d."),
7089
                 TYPE_LENGTH (type));
7090
    }
7091
  else
7092
    {
7093
      TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
7094
                                         TYPE_LENGTH (type));
7095
    }
7096
 
7097
  value_free_to_mark (mark);
7098
  if (TYPE_LENGTH (rtype) > varsize_limit)
7099
    error (_("record type with dynamic size is larger than varsize-limit"));
7100
  return rtype;
7101
}
7102
 
7103
/* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
7104
   of 1.  */
7105
 
7106
static struct type *
7107
template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
7108
                               CORE_ADDR address, struct value *dval0)
7109
{
7110
  return ada_template_to_fixed_record_type_1 (type, valaddr,
7111
                                              address, dval0, 1);
7112
}
7113
 
7114
/* An ordinary record type in which ___XVL-convention fields and
7115
   ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
7116
   static approximations, containing all possible fields.  Uses
7117
   no runtime values.  Useless for use in values, but that's OK,
7118
   since the results are used only for type determinations.   Works on both
7119
   structs and unions.  Representation note: to save space, we memorize
7120
   the result of this function in the TYPE_TARGET_TYPE of the
7121
   template type.  */
7122
 
7123
static struct type *
7124
template_to_static_fixed_type (struct type *type0)
7125
{
7126
  struct type *type;
7127
  int nfields;
7128
  int f;
7129
 
7130
  if (TYPE_TARGET_TYPE (type0) != NULL)
7131
    return TYPE_TARGET_TYPE (type0);
7132
 
7133
  nfields = TYPE_NFIELDS (type0);
7134
  type = type0;
7135
 
7136
  for (f = 0; f < nfields; f += 1)
7137
    {
7138
      struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type0, f));
7139
      struct type *new_type;
7140
 
7141
      if (is_dynamic_field (type0, f))
7142
        new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
7143
      else
7144
        new_type = static_unwrap_type (field_type);
7145
      if (type == type0 && new_type != field_type)
7146
        {
7147
          TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
7148
          TYPE_CODE (type) = TYPE_CODE (type0);
7149
          INIT_CPLUS_SPECIFIC (type);
7150
          TYPE_NFIELDS (type) = nfields;
7151
          TYPE_FIELDS (type) = (struct field *)
7152
            TYPE_ALLOC (type, nfields * sizeof (struct field));
7153
          memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
7154
                  sizeof (struct field) * nfields);
7155
          TYPE_NAME (type) = ada_type_name (type0);
7156
          TYPE_TAG_NAME (type) = NULL;
7157
          TYPE_FIXED_INSTANCE (type) = 1;
7158
          TYPE_LENGTH (type) = 0;
7159
        }
7160
      TYPE_FIELD_TYPE (type, f) = new_type;
7161
      TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
7162
    }
7163
  return type;
7164
}
7165
 
7166
/* Given an object of type TYPE whose contents are at VALADDR and
7167
   whose address in memory is ADDRESS, returns a revision of TYPE,
7168
   which should be a non-dynamic-sized record, in which the variant
7169
   part, if any, is replaced with the appropriate branch.  Looks
7170
   for discriminant values in DVAL0, which can be NULL if the record
7171
   contains the necessary discriminant values.  */
7172
 
7173
static struct type *
7174
to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
7175
                                   CORE_ADDR address, struct value *dval0)
7176
{
7177
  struct value *mark = value_mark ();
7178
  struct value *dval;
7179
  struct type *rtype;
7180
  struct type *branch_type;
7181
  int nfields = TYPE_NFIELDS (type);
7182
  int variant_field = variant_field_index (type);
7183
 
7184
  if (variant_field == -1)
7185
    return type;
7186
 
7187
  if (dval0 == NULL)
7188
    dval = value_from_contents_and_address (type, valaddr, address);
7189
  else
7190
    dval = dval0;
7191
 
7192
  rtype = alloc_type_copy (type);
7193
  TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
7194
  INIT_CPLUS_SPECIFIC (rtype);
7195
  TYPE_NFIELDS (rtype) = nfields;
7196
  TYPE_FIELDS (rtype) =
7197
    (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7198
  memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
7199
          sizeof (struct field) * nfields);
7200
  TYPE_NAME (rtype) = ada_type_name (type);
7201
  TYPE_TAG_NAME (rtype) = NULL;
7202
  TYPE_FIXED_INSTANCE (rtype) = 1;
7203
  TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
7204
 
7205
  branch_type = to_fixed_variant_branch_type
7206
    (TYPE_FIELD_TYPE (type, variant_field),
7207
     cond_offset_host (valaddr,
7208
                       TYPE_FIELD_BITPOS (type, variant_field)
7209
                       / TARGET_CHAR_BIT),
7210
     cond_offset_target (address,
7211
                         TYPE_FIELD_BITPOS (type, variant_field)
7212
                         / TARGET_CHAR_BIT), dval);
7213
  if (branch_type == NULL)
7214
    {
7215
      int f;
7216
 
7217
      for (f = variant_field + 1; f < nfields; f += 1)
7218
        TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
7219
      TYPE_NFIELDS (rtype) -= 1;
7220
    }
7221
  else
7222
    {
7223
      TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
7224
      TYPE_FIELD_NAME (rtype, variant_field) = "S";
7225
      TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
7226
      TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
7227
    }
7228
  TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
7229
 
7230
  value_free_to_mark (mark);
7231
  return rtype;
7232
}
7233
 
7234
/* An ordinary record type (with fixed-length fields) that describes
7235
   the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
7236
   beginning of this section].   Any necessary discriminants' values
7237
   should be in DVAL, a record value; it may be NULL if the object
7238
   at ADDR itself contains any necessary discriminant values.
7239
   Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
7240
   values from the record are needed.  Except in the case that DVAL,
7241
   VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
7242
   unchecked) is replaced by a particular branch of the variant.
7243
 
7244
   NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
7245
   is questionable and may be removed.  It can arise during the
7246
   processing of an unconstrained-array-of-record type where all the
7247
   variant branches have exactly the same size.  This is because in
7248
   such cases, the compiler does not bother to use the XVS convention
7249
   when encoding the record.  I am currently dubious of this
7250
   shortcut and suspect the compiler should be altered.  FIXME.  */
7251
 
7252
static struct type *
7253
to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
7254
                      CORE_ADDR address, struct value *dval)
7255
{
7256
  struct type *templ_type;
7257
 
7258
  if (TYPE_FIXED_INSTANCE (type0))
7259
    return type0;
7260
 
7261
  templ_type = dynamic_template_type (type0);
7262
 
7263
  if (templ_type != NULL)
7264
    return template_to_fixed_record_type (templ_type, valaddr, address, dval);
7265
  else if (variant_field_index (type0) >= 0)
7266
    {
7267
      if (dval == NULL && valaddr == NULL && address == 0)
7268
        return type0;
7269
      return to_record_with_fixed_variant_part (type0, valaddr, address,
7270
                                                dval);
7271
    }
7272
  else
7273
    {
7274
      TYPE_FIXED_INSTANCE (type0) = 1;
7275
      return type0;
7276
    }
7277
 
7278
}
7279
 
7280
/* An ordinary record type (with fixed-length fields) that describes
7281
   the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
7282
   union type.  Any necessary discriminants' values should be in DVAL,
7283
   a record value.  That is, this routine selects the appropriate
7284
   branch of the union at ADDR according to the discriminant value
7285
   indicated in the union's type name.  Returns VAR_TYPE0 itself if
7286
   it represents a variant subject to a pragma Unchecked_Union. */
7287
 
7288
static struct type *
7289
to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
7290
                              CORE_ADDR address, struct value *dval)
7291
{
7292
  int which;
7293
  struct type *templ_type;
7294
  struct type *var_type;
7295
 
7296
  if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
7297
    var_type = TYPE_TARGET_TYPE (var_type0);
7298
  else
7299
    var_type = var_type0;
7300
 
7301
  templ_type = ada_find_parallel_type (var_type, "___XVU");
7302
 
7303
  if (templ_type != NULL)
7304
    var_type = templ_type;
7305
 
7306
  if (is_unchecked_variant (var_type, value_type (dval)))
7307
      return var_type0;
7308
  which =
7309
    ada_which_variant_applies (var_type,
7310
                               value_type (dval), value_contents (dval));
7311
 
7312
  if (which < 0)
7313
    return empty_record (var_type);
7314
  else if (is_dynamic_field (var_type, which))
7315
    return to_fixed_record_type
7316
      (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
7317
       valaddr, address, dval);
7318
  else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
7319
    return
7320
      to_fixed_record_type
7321
      (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
7322
  else
7323
    return TYPE_FIELD_TYPE (var_type, which);
7324
}
7325
 
7326
/* Assuming that TYPE0 is an array type describing the type of a value
7327
   at ADDR, and that DVAL describes a record containing any
7328
   discriminants used in TYPE0, returns a type for the value that
7329
   contains no dynamic components (that is, no components whose sizes
7330
   are determined by run-time quantities).  Unless IGNORE_TOO_BIG is
7331
   true, gives an error message if the resulting type's size is over
7332
   varsize_limit.  */
7333
 
7334
static struct type *
7335
to_fixed_array_type (struct type *type0, struct value *dval,
7336
                     int ignore_too_big)
7337
{
7338
  struct type *index_type_desc;
7339
  struct type *result;
7340
  int constrained_packed_array_p;
7341
 
7342
  if (TYPE_FIXED_INSTANCE (type0))
7343
    return type0;
7344
 
7345
  constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
7346
  if (constrained_packed_array_p)
7347
    type0 = decode_constrained_packed_array_type (type0);
7348
 
7349
  index_type_desc = ada_find_parallel_type (type0, "___XA");
7350
  ada_fixup_array_indexes_type (index_type_desc);
7351
  if (index_type_desc == NULL)
7352
    {
7353
      struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
7354
 
7355
      /* NOTE: elt_type---the fixed version of elt_type0---should never
7356
         depend on the contents of the array in properly constructed
7357
         debugging data.  */
7358
      /* Create a fixed version of the array element type.
7359
         We're not providing the address of an element here,
7360
         and thus the actual object value cannot be inspected to do
7361
         the conversion.  This should not be a problem, since arrays of
7362
         unconstrained objects are not allowed.  In particular, all
7363
         the elements of an array of a tagged type should all be of
7364
         the same type specified in the debugging info.  No need to
7365
         consult the object tag.  */
7366
      struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
7367
 
7368
      /* Make sure we always create a new array type when dealing with
7369
         packed array types, since we're going to fix-up the array
7370
         type length and element bitsize a little further down.  */
7371
      if (elt_type0 == elt_type && !constrained_packed_array_p)
7372
        result = type0;
7373
      else
7374
        result = create_array_type (alloc_type_copy (type0),
7375
                                    elt_type, TYPE_INDEX_TYPE (type0));
7376
    }
7377
  else
7378
    {
7379
      int i;
7380
      struct type *elt_type0;
7381
 
7382
      elt_type0 = type0;
7383
      for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
7384
        elt_type0 = TYPE_TARGET_TYPE (elt_type0);
7385
 
7386
      /* NOTE: result---the fixed version of elt_type0---should never
7387
         depend on the contents of the array in properly constructed
7388
         debugging data.  */
7389
      /* Create a fixed version of the array element type.
7390
         We're not providing the address of an element here,
7391
         and thus the actual object value cannot be inspected to do
7392
         the conversion.  This should not be a problem, since arrays of
7393
         unconstrained objects are not allowed.  In particular, all
7394
         the elements of an array of a tagged type should all be of
7395
         the same type specified in the debugging info.  No need to
7396
         consult the object tag.  */
7397
      result =
7398
        ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
7399
 
7400
      elt_type0 = type0;
7401
      for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
7402
        {
7403
          struct type *range_type =
7404
            to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
7405
 
7406
          result = create_array_type (alloc_type_copy (elt_type0),
7407
                                      result, range_type);
7408
          elt_type0 = TYPE_TARGET_TYPE (elt_type0);
7409
        }
7410
      if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
7411
        error (_("array type with dynamic size is larger than varsize-limit"));
7412
    }
7413
 
7414
  if (constrained_packed_array_p)
7415
    {
7416
      /* So far, the resulting type has been created as if the original
7417
         type was a regular (non-packed) array type.  As a result, the
7418
         bitsize of the array elements needs to be set again, and the array
7419
         length needs to be recomputed based on that bitsize.  */
7420
      int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
7421
      int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
7422
 
7423
      TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
7424
      TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
7425
      if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
7426
        TYPE_LENGTH (result)++;
7427
    }
7428
 
7429
  TYPE_FIXED_INSTANCE (result) = 1;
7430
  return result;
7431
}
7432
 
7433
 
7434
/* A standard type (containing no dynamically sized components)
7435
   corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
7436
   DVAL describes a record containing any discriminants used in TYPE0,
7437
   and may be NULL if there are none, or if the object of type TYPE at
7438
   ADDRESS or in VALADDR contains these discriminants.
7439
 
7440
   If CHECK_TAG is not null, in the case of tagged types, this function
7441
   attempts to locate the object's tag and use it to compute the actual
7442
   type.  However, when ADDRESS is null, we cannot use it to determine the
7443
   location of the tag, and therefore compute the tagged type's actual type.
7444
   So we return the tagged type without consulting the tag.  */
7445
 
7446
static struct type *
7447
ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
7448
                   CORE_ADDR address, struct value *dval, int check_tag)
7449
{
7450
  type = ada_check_typedef (type);
7451
  switch (TYPE_CODE (type))
7452
    {
7453
    default:
7454
      return type;
7455
    case TYPE_CODE_STRUCT:
7456
      {
7457
        struct type *static_type = to_static_fixed_type (type);
7458
        struct type *fixed_record_type =
7459
          to_fixed_record_type (type, valaddr, address, NULL);
7460
 
7461
        /* If STATIC_TYPE is a tagged type and we know the object's address,
7462
           then we can determine its tag, and compute the object's actual
7463
           type from there. Note that we have to use the fixed record
7464
           type (the parent part of the record may have dynamic fields
7465
           and the way the location of _tag is expressed may depend on
7466
           them).  */
7467
 
7468
        if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
7469
          {
7470
            struct type *real_type =
7471
              type_from_tag (value_tag_from_contents_and_address
7472
                             (fixed_record_type,
7473
                              valaddr,
7474
                              address));
7475
 
7476
            if (real_type != NULL)
7477
              return to_fixed_record_type (real_type, valaddr, address, NULL);
7478
          }
7479
 
7480
        /* Check to see if there is a parallel ___XVZ variable.
7481
           If there is, then it provides the actual size of our type.  */
7482
        else if (ada_type_name (fixed_record_type) != NULL)
7483
          {
7484
            char *name = ada_type_name (fixed_record_type);
7485
            char *xvz_name = alloca (strlen (name) + 7 /* "___XVZ\0" */);
7486
            int xvz_found = 0;
7487
            LONGEST size;
7488
 
7489
            xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
7490
            size = get_int_var_value (xvz_name, &xvz_found);
7491
            if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
7492
              {
7493
                fixed_record_type = copy_type (fixed_record_type);
7494
                TYPE_LENGTH (fixed_record_type) = size;
7495
 
7496
                /* The FIXED_RECORD_TYPE may have be a stub.  We have
7497
                   observed this when the debugging info is STABS, and
7498
                   apparently it is something that is hard to fix.
7499
 
7500
                   In practice, we don't need the actual type definition
7501
                   at all, because the presence of the XVZ variable allows us
7502
                   to assume that there must be a XVS type as well, which we
7503
                   should be able to use later, when we need the actual type
7504
                   definition.
7505
 
7506
                   In the meantime, pretend that the "fixed" type we are
7507
                   returning is NOT a stub, because this can cause trouble
7508
                   when using this type to create new types targeting it.
7509
                   Indeed, the associated creation routines often check
7510
                   whether the target type is a stub and will try to replace
7511
                   it, thus using a type with the wrong size. This, in turn,
7512
                   might cause the new type to have the wrong size too.
7513
                   Consider the case of an array, for instance, where the size
7514
                   of the array is computed from the number of elements in
7515
                   our array multiplied by the size of its element.  */
7516
                TYPE_STUB (fixed_record_type) = 0;
7517
              }
7518
          }
7519
        return fixed_record_type;
7520
      }
7521
    case TYPE_CODE_ARRAY:
7522
      return to_fixed_array_type (type, dval, 1);
7523
    case TYPE_CODE_UNION:
7524
      if (dval == NULL)
7525
        return type;
7526
      else
7527
        return to_fixed_variant_branch_type (type, valaddr, address, dval);
7528
    }
7529
}
7530
 
7531
/* The same as ada_to_fixed_type_1, except that it preserves the type
7532
   if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
7533
   ada_to_fixed_type_1 would return the type referenced by TYPE.  */
7534
 
7535
struct type *
7536
ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
7537
                   CORE_ADDR address, struct value *dval, int check_tag)
7538
 
7539
{
7540
  struct type *fixed_type =
7541
    ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
7542
 
7543
  if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
7544
      && TYPE_TARGET_TYPE (type) == fixed_type)
7545
    return type;
7546
 
7547
  return fixed_type;
7548
}
7549
 
7550
/* A standard (static-sized) type corresponding as well as possible to
7551
   TYPE0, but based on no runtime data.  */
7552
 
7553
static struct type *
7554
to_static_fixed_type (struct type *type0)
7555
{
7556
  struct type *type;
7557
 
7558
  if (type0 == NULL)
7559
    return NULL;
7560
 
7561
  if (TYPE_FIXED_INSTANCE (type0))
7562
    return type0;
7563
 
7564
  type0 = ada_check_typedef (type0);
7565
 
7566
  switch (TYPE_CODE (type0))
7567
    {
7568
    default:
7569
      return type0;
7570
    case TYPE_CODE_STRUCT:
7571
      type = dynamic_template_type (type0);
7572
      if (type != NULL)
7573
        return template_to_static_fixed_type (type);
7574
      else
7575
        return template_to_static_fixed_type (type0);
7576
    case TYPE_CODE_UNION:
7577
      type = ada_find_parallel_type (type0, "___XVU");
7578
      if (type != NULL)
7579
        return template_to_static_fixed_type (type);
7580
      else
7581
        return template_to_static_fixed_type (type0);
7582
    }
7583
}
7584
 
7585
/* A static approximation of TYPE with all type wrappers removed.  */
7586
 
7587
static struct type *
7588
static_unwrap_type (struct type *type)
7589
{
7590
  if (ada_is_aligner_type (type))
7591
    {
7592
      struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
7593
      if (ada_type_name (type1) == NULL)
7594
        TYPE_NAME (type1) = ada_type_name (type);
7595
 
7596
      return static_unwrap_type (type1);
7597
    }
7598
  else
7599
    {
7600
      struct type *raw_real_type = ada_get_base_type (type);
7601
 
7602
      if (raw_real_type == type)
7603
        return type;
7604
      else
7605
        return to_static_fixed_type (raw_real_type);
7606
    }
7607
}
7608
 
7609
/* In some cases, incomplete and private types require
7610
   cross-references that are not resolved as records (for example,
7611
      type Foo;
7612
      type FooP is access Foo;
7613
      V: FooP;
7614
      type Foo is array ...;
7615
   ).  In these cases, since there is no mechanism for producing
7616
   cross-references to such types, we instead substitute for FooP a
7617
   stub enumeration type that is nowhere resolved, and whose tag is
7618
   the name of the actual type.  Call these types "non-record stubs".  */
7619
 
7620
/* A type equivalent to TYPE that is not a non-record stub, if one
7621
   exists, otherwise TYPE.  */
7622
 
7623
struct type *
7624
ada_check_typedef (struct type *type)
7625
{
7626
  if (type == NULL)
7627
    return NULL;
7628
 
7629
  CHECK_TYPEDEF (type);
7630
  if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
7631
      || !TYPE_STUB (type)
7632
      || TYPE_TAG_NAME (type) == NULL)
7633
    return type;
7634
  else
7635
    {
7636
      char *name = TYPE_TAG_NAME (type);
7637
      struct type *type1 = ada_find_any_type (name);
7638
 
7639
      return (type1 == NULL) ? type : type1;
7640
    }
7641
}
7642
 
7643
/* A value representing the data at VALADDR/ADDRESS as described by
7644
   type TYPE0, but with a standard (static-sized) type that correctly
7645
   describes it.  If VAL0 is not NULL and TYPE0 already is a standard
7646
   type, then return VAL0 [this feature is simply to avoid redundant
7647
   creation of struct values].  */
7648
 
7649
static struct value *
7650
ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
7651
                           struct value *val0)
7652
{
7653
  struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
7654
 
7655
  if (type == type0 && val0 != NULL)
7656
    return val0;
7657
  else
7658
    return value_from_contents_and_address (type, 0, address);
7659
}
7660
 
7661
/* A value representing VAL, but with a standard (static-sized) type
7662
   that correctly describes it.  Does not necessarily create a new
7663
   value.  */
7664
 
7665
struct value *
7666
ada_to_fixed_value (struct value *val)
7667
{
7668
  return ada_to_fixed_value_create (value_type (val),
7669
                                    value_address (val),
7670
                                    val);
7671
}
7672
 
7673
 
7674
/* Attributes */
7675
 
7676
/* Table mapping attribute numbers to names.
7677
   NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h.  */
7678
 
7679
static const char *attribute_names[] = {
7680
  "<?>",
7681
 
7682
  "first",
7683
  "last",
7684
  "length",
7685
  "image",
7686
  "max",
7687
  "min",
7688
  "modulus",
7689
  "pos",
7690
  "size",
7691
  "tag",
7692
  "val",
7693
 
7694
};
7695
 
7696
const char *
7697
ada_attribute_name (enum exp_opcode n)
7698
{
7699
  if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
7700
    return attribute_names[n - OP_ATR_FIRST + 1];
7701
  else
7702
    return attribute_names[0];
7703
}
7704
 
7705
/* Evaluate the 'POS attribute applied to ARG.  */
7706
 
7707
static LONGEST
7708
pos_atr (struct value *arg)
7709
{
7710
  struct value *val = coerce_ref (arg);
7711
  struct type *type = value_type (val);
7712
 
7713
  if (!discrete_type_p (type))
7714
    error (_("'POS only defined on discrete types"));
7715
 
7716
  if (TYPE_CODE (type) == TYPE_CODE_ENUM)
7717
    {
7718
      int i;
7719
      LONGEST v = value_as_long (val);
7720
 
7721
      for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7722
        {
7723
          if (v == TYPE_FIELD_BITPOS (type, i))
7724
            return i;
7725
        }
7726
      error (_("enumeration value is invalid: can't find 'POS"));
7727
    }
7728
  else
7729
    return value_as_long (val);
7730
}
7731
 
7732
static struct value *
7733
value_pos_atr (struct type *type, struct value *arg)
7734
{
7735
  return value_from_longest (type, pos_atr (arg));
7736
}
7737
 
7738
/* Evaluate the TYPE'VAL attribute applied to ARG.  */
7739
 
7740
static struct value *
7741
value_val_atr (struct type *type, struct value *arg)
7742
{
7743
  if (!discrete_type_p (type))
7744
    error (_("'VAL only defined on discrete types"));
7745
  if (!integer_type_p (value_type (arg)))
7746
    error (_("'VAL requires integral argument"));
7747
 
7748
  if (TYPE_CODE (type) == TYPE_CODE_ENUM)
7749
    {
7750
      long pos = value_as_long (arg);
7751
 
7752
      if (pos < 0 || pos >= TYPE_NFIELDS (type))
7753
        error (_("argument to 'VAL out of range"));
7754
      return value_from_longest (type, TYPE_FIELD_BITPOS (type, pos));
7755
    }
7756
  else
7757
    return value_from_longest (type, value_as_long (arg));
7758
}
7759
 
7760
 
7761
                                /* Evaluation */
7762
 
7763
/* True if TYPE appears to be an Ada character type.
7764
   [At the moment, this is true only for Character and Wide_Character;
7765
   It is a heuristic test that could stand improvement].  */
7766
 
7767
int
7768
ada_is_character_type (struct type *type)
7769
{
7770
  const char *name;
7771
 
7772
  /* If the type code says it's a character, then assume it really is,
7773
     and don't check any further.  */
7774
  if (TYPE_CODE (type) == TYPE_CODE_CHAR)
7775
    return 1;
7776
 
7777
  /* Otherwise, assume it's a character type iff it is a discrete type
7778
     with a known character type name.  */
7779
  name = ada_type_name (type);
7780
  return (name != NULL
7781
          && (TYPE_CODE (type) == TYPE_CODE_INT
7782
              || TYPE_CODE (type) == TYPE_CODE_RANGE)
7783
          && (strcmp (name, "character") == 0
7784
              || strcmp (name, "wide_character") == 0
7785
              || strcmp (name, "wide_wide_character") == 0
7786
              || strcmp (name, "unsigned char") == 0));
7787
}
7788
 
7789
/* True if TYPE appears to be an Ada string type.  */
7790
 
7791
int
7792
ada_is_string_type (struct type *type)
7793
{
7794
  type = ada_check_typedef (type);
7795
  if (type != NULL
7796
      && TYPE_CODE (type) != TYPE_CODE_PTR
7797
      && (ada_is_simple_array_type (type)
7798
          || ada_is_array_descriptor_type (type))
7799
      && ada_array_arity (type) == 1)
7800
    {
7801
      struct type *elttype = ada_array_element_type (type, 1);
7802
 
7803
      return ada_is_character_type (elttype);
7804
    }
7805
  else
7806
    return 0;
7807
}
7808
 
7809
/* The compiler sometimes provides a parallel XVS type for a given
7810
   PAD type.  Normally, it is safe to follow the PAD type directly,
7811
   but older versions of the compiler have a bug that causes the offset
7812
   of its "F" field to be wrong.  Following that field in that case
7813
   would lead to incorrect results, but this can be worked around
7814
   by ignoring the PAD type and using the associated XVS type instead.
7815
 
7816
   Set to True if the debugger should trust the contents of PAD types.
7817
   Otherwise, ignore the PAD type if there is a parallel XVS type.  */
7818
static int trust_pad_over_xvs = 1;
7819
 
7820
/* True if TYPE is a struct type introduced by the compiler to force the
7821
   alignment of a value.  Such types have a single field with a
7822
   distinctive name.  */
7823
 
7824
int
7825
ada_is_aligner_type (struct type *type)
7826
{
7827
  type = ada_check_typedef (type);
7828
 
7829
  if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
7830
    return 0;
7831
 
7832
  return (TYPE_CODE (type) == TYPE_CODE_STRUCT
7833
          && TYPE_NFIELDS (type) == 1
7834
          && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
7835
}
7836
 
7837
/* If there is an ___XVS-convention type parallel to SUBTYPE, return
7838
   the parallel type.  */
7839
 
7840
struct type *
7841
ada_get_base_type (struct type *raw_type)
7842
{
7843
  struct type *real_type_namer;
7844
  struct type *raw_real_type;
7845
 
7846
  if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
7847
    return raw_type;
7848
 
7849
  if (ada_is_aligner_type (raw_type))
7850
    /* The encoding specifies that we should always use the aligner type.
7851
       So, even if this aligner type has an associated XVS type, we should
7852
       simply ignore it.
7853
 
7854
       According to the compiler gurus, an XVS type parallel to an aligner
7855
       type may exist because of a stabs limitation.  In stabs, aligner
7856
       types are empty because the field has a variable-sized type, and
7857
       thus cannot actually be used as an aligner type.  As a result,
7858
       we need the associated parallel XVS type to decode the type.
7859
       Since the policy in the compiler is to not change the internal
7860
       representation based on the debugging info format, we sometimes
7861
       end up having a redundant XVS type parallel to the aligner type.  */
7862
    return raw_type;
7863
 
7864
  real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
7865
  if (real_type_namer == NULL
7866
      || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
7867
      || TYPE_NFIELDS (real_type_namer) != 1)
7868
    return raw_type;
7869
 
7870
  if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
7871
    {
7872
      /* This is an older encoding form where the base type needs to be
7873
         looked up by name.  We prefer the newer enconding because it is
7874
         more efficient.  */
7875
      raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
7876
      if (raw_real_type == NULL)
7877
        return raw_type;
7878
      else
7879
        return raw_real_type;
7880
    }
7881
 
7882
  /* The field in our XVS type is a reference to the base type.  */
7883
  return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
7884
}
7885
 
7886
/* The type of value designated by TYPE, with all aligners removed.  */
7887
 
7888
struct type *
7889
ada_aligned_type (struct type *type)
7890
{
7891
  if (ada_is_aligner_type (type))
7892
    return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
7893
  else
7894
    return ada_get_base_type (type);
7895
}
7896
 
7897
 
7898
/* The address of the aligned value in an object at address VALADDR
7899
   having type TYPE.  Assumes ada_is_aligner_type (TYPE).  */
7900
 
7901
const gdb_byte *
7902
ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
7903
{
7904
  if (ada_is_aligner_type (type))
7905
    return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
7906
                                   valaddr +
7907
                                   TYPE_FIELD_BITPOS (type,
7908
                                                      0) / TARGET_CHAR_BIT);
7909
  else
7910
    return valaddr;
7911
}
7912
 
7913
 
7914
 
7915
/* The printed representation of an enumeration literal with encoded
7916
   name NAME.  The value is good to the next call of ada_enum_name.  */
7917
const char *
7918
ada_enum_name (const char *name)
7919
{
7920
  static char *result;
7921
  static size_t result_len = 0;
7922
  char *tmp;
7923
 
7924
  /* First, unqualify the enumeration name:
7925
     1. Search for the last '.' character.  If we find one, then skip
7926
     all the preceeding characters, the unqualified name starts
7927
     right after that dot.
7928
     2. Otherwise, we may be debugging on a target where the compiler
7929
     translates dots into "__".  Search forward for double underscores,
7930
     but stop searching when we hit an overloading suffix, which is
7931
     of the form "__" followed by digits.  */
7932
 
7933
  tmp = strrchr (name, '.');
7934
  if (tmp != NULL)
7935
    name = tmp + 1;
7936
  else
7937
    {
7938
      while ((tmp = strstr (name, "__")) != NULL)
7939
        {
7940
          if (isdigit (tmp[2]))
7941
            break;
7942
          else
7943
            name = tmp + 2;
7944
        }
7945
    }
7946
 
7947
  if (name[0] == 'Q')
7948
    {
7949
      int v;
7950
 
7951
      if (name[1] == 'U' || name[1] == 'W')
7952
        {
7953
          if (sscanf (name + 2, "%x", &v) != 1)
7954
            return name;
7955
        }
7956
      else
7957
        return name;
7958
 
7959
      GROW_VECT (result, result_len, 16);
7960
      if (isascii (v) && isprint (v))
7961
        xsnprintf (result, result_len, "'%c'", v);
7962
      else if (name[1] == 'U')
7963
        xsnprintf (result, result_len, "[\"%02x\"]", v);
7964
      else
7965
        xsnprintf (result, result_len, "[\"%04x\"]", v);
7966
 
7967
      return result;
7968
    }
7969
  else
7970
    {
7971
      tmp = strstr (name, "__");
7972
      if (tmp == NULL)
7973
        tmp = strstr (name, "$");
7974
      if (tmp != NULL)
7975
        {
7976
          GROW_VECT (result, result_len, tmp - name + 1);
7977
          strncpy (result, name, tmp - name);
7978
          result[tmp - name] = '\0';
7979
          return result;
7980
        }
7981
 
7982
      return name;
7983
    }
7984
}
7985
 
7986
/* Evaluate the subexpression of EXP starting at *POS as for
7987
   evaluate_type, updating *POS to point just past the evaluated
7988
   expression.  */
7989
 
7990
static struct value *
7991
evaluate_subexp_type (struct expression *exp, int *pos)
7992
{
7993
  return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
7994
}
7995
 
7996
/* If VAL is wrapped in an aligner or subtype wrapper, return the
7997
   value it wraps.  */
7998
 
7999
static struct value *
8000
unwrap_value (struct value *val)
8001
{
8002
  struct type *type = ada_check_typedef (value_type (val));
8003
 
8004
  if (ada_is_aligner_type (type))
8005
    {
8006
      struct value *v = ada_value_struct_elt (val, "F", 0);
8007
      struct type *val_type = ada_check_typedef (value_type (v));
8008
 
8009
      if (ada_type_name (val_type) == NULL)
8010
        TYPE_NAME (val_type) = ada_type_name (type);
8011
 
8012
      return unwrap_value (v);
8013
    }
8014
  else
8015
    {
8016
      struct type *raw_real_type =
8017
        ada_check_typedef (ada_get_base_type (type));
8018
 
8019
      /* If there is no parallel XVS or XVE type, then the value is
8020
         already unwrapped.  Return it without further modification.  */
8021
      if ((type == raw_real_type)
8022
          && ada_find_parallel_type (type, "___XVE") == NULL)
8023
        return val;
8024
 
8025
      return
8026
        coerce_unspec_val_to_type
8027
        (val, ada_to_fixed_type (raw_real_type, 0,
8028
                                 value_address (val),
8029
                                 NULL, 1));
8030
    }
8031
}
8032
 
8033
static struct value *
8034
cast_to_fixed (struct type *type, struct value *arg)
8035
{
8036
  LONGEST val;
8037
 
8038
  if (type == value_type (arg))
8039
    return arg;
8040
  else if (ada_is_fixed_point_type (value_type (arg)))
8041
    val = ada_float_to_fixed (type,
8042
                              ada_fixed_to_float (value_type (arg),
8043
                                                  value_as_long (arg)));
8044
  else
8045
    {
8046
      DOUBLEST argd = value_as_double (arg);
8047
 
8048
      val = ada_float_to_fixed (type, argd);
8049
    }
8050
 
8051
  return value_from_longest (type, val);
8052
}
8053
 
8054
static struct value *
8055
cast_from_fixed (struct type *type, struct value *arg)
8056
{
8057
  DOUBLEST val = ada_fixed_to_float (value_type (arg),
8058
                                     value_as_long (arg));
8059
 
8060
  return value_from_double (type, val);
8061
}
8062
 
8063
/* Coerce VAL as necessary for assignment to an lval of type TYPE, and
8064
   return the converted value.  */
8065
 
8066
static struct value *
8067
coerce_for_assign (struct type *type, struct value *val)
8068
{
8069
  struct type *type2 = value_type (val);
8070
 
8071
  if (type == type2)
8072
    return val;
8073
 
8074
  type2 = ada_check_typedef (type2);
8075
  type = ada_check_typedef (type);
8076
 
8077
  if (TYPE_CODE (type2) == TYPE_CODE_PTR
8078
      && TYPE_CODE (type) == TYPE_CODE_ARRAY)
8079
    {
8080
      val = ada_value_ind (val);
8081
      type2 = value_type (val);
8082
    }
8083
 
8084
  if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
8085
      && TYPE_CODE (type) == TYPE_CODE_ARRAY)
8086
    {
8087
      if (TYPE_LENGTH (type2) != TYPE_LENGTH (type)
8088
          || TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
8089
          != TYPE_LENGTH (TYPE_TARGET_TYPE (type2)))
8090
        error (_("Incompatible types in assignment"));
8091
      deprecated_set_value_type (val, type);
8092
    }
8093
  return val;
8094
}
8095
 
8096
static struct value *
8097
ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
8098
{
8099
  struct value *val;
8100
  struct type *type1, *type2;
8101
  LONGEST v, v1, v2;
8102
 
8103
  arg1 = coerce_ref (arg1);
8104
  arg2 = coerce_ref (arg2);
8105
  type1 = base_type (ada_check_typedef (value_type (arg1)));
8106
  type2 = base_type (ada_check_typedef (value_type (arg2)));
8107
 
8108
  if (TYPE_CODE (type1) != TYPE_CODE_INT
8109
      || TYPE_CODE (type2) != TYPE_CODE_INT)
8110
    return value_binop (arg1, arg2, op);
8111
 
8112
  switch (op)
8113
    {
8114
    case BINOP_MOD:
8115
    case BINOP_DIV:
8116
    case BINOP_REM:
8117
      break;
8118
    default:
8119
      return value_binop (arg1, arg2, op);
8120
    }
8121
 
8122
  v2 = value_as_long (arg2);
8123
  if (v2 == 0)
8124
    error (_("second operand of %s must not be zero."), op_string (op));
8125
 
8126
  if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
8127
    return value_binop (arg1, arg2, op);
8128
 
8129
  v1 = value_as_long (arg1);
8130
  switch (op)
8131
    {
8132
    case BINOP_DIV:
8133
      v = v1 / v2;
8134
      if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
8135
        v += v > 0 ? -1 : 1;
8136
      break;
8137
    case BINOP_REM:
8138
      v = v1 % v2;
8139
      if (v * v1 < 0)
8140
        v -= v2;
8141
      break;
8142
    default:
8143
      /* Should not reach this point.  */
8144
      v = 0;
8145
    }
8146
 
8147
  val = allocate_value (type1);
8148
  store_unsigned_integer (value_contents_raw (val),
8149
                          TYPE_LENGTH (value_type (val)),
8150
                          gdbarch_byte_order (get_type_arch (type1)), v);
8151
  return val;
8152
}
8153
 
8154
static int
8155
ada_value_equal (struct value *arg1, struct value *arg2)
8156
{
8157
  if (ada_is_direct_array_type (value_type (arg1))
8158
      || ada_is_direct_array_type (value_type (arg2)))
8159
    {
8160
      /* Automatically dereference any array reference before
8161
         we attempt to perform the comparison.  */
8162
      arg1 = ada_coerce_ref (arg1);
8163
      arg2 = ada_coerce_ref (arg2);
8164
 
8165
      arg1 = ada_coerce_to_simple_array (arg1);
8166
      arg2 = ada_coerce_to_simple_array (arg2);
8167
      if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
8168
          || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
8169
        error (_("Attempt to compare array with non-array"));
8170
      /* FIXME: The following works only for types whose
8171
         representations use all bits (no padding or undefined bits)
8172
         and do not have user-defined equality.  */
8173
      return
8174
        TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
8175
        && memcmp (value_contents (arg1), value_contents (arg2),
8176
                   TYPE_LENGTH (value_type (arg1))) == 0;
8177
    }
8178
  return value_equal (arg1, arg2);
8179
}
8180
 
8181
/* Total number of component associations in the aggregate starting at
8182
   index PC in EXP.  Assumes that index PC is the start of an
8183
   OP_AGGREGATE. */
8184
 
8185
static int
8186
num_component_specs (struct expression *exp, int pc)
8187
{
8188
  int n, m, i;
8189
 
8190
  m = exp->elts[pc + 1].longconst;
8191
  pc += 3;
8192
  n = 0;
8193
  for (i = 0; i < m; i += 1)
8194
    {
8195
      switch (exp->elts[pc].opcode)
8196
        {
8197
        default:
8198
          n += 1;
8199
          break;
8200
        case OP_CHOICES:
8201
          n += exp->elts[pc + 1].longconst;
8202
          break;
8203
        }
8204
      ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
8205
    }
8206
  return n;
8207
}
8208
 
8209
/* Assign the result of evaluating EXP starting at *POS to the INDEXth
8210
   component of LHS (a simple array or a record), updating *POS past
8211
   the expression, assuming that LHS is contained in CONTAINER.  Does
8212
   not modify the inferior's memory, nor does it modify LHS (unless
8213
   LHS == CONTAINER).  */
8214
 
8215
static void
8216
assign_component (struct value *container, struct value *lhs, LONGEST index,
8217
                  struct expression *exp, int *pos)
8218
{
8219
  struct value *mark = value_mark ();
8220
  struct value *elt;
8221
 
8222
  if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
8223
    {
8224
      struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
8225
      struct value *index_val = value_from_longest (index_type, index);
8226
 
8227
      elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
8228
    }
8229
  else
8230
    {
8231
      elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
8232
      elt = ada_to_fixed_value (unwrap_value (elt));
8233
    }
8234
 
8235
  if (exp->elts[*pos].opcode == OP_AGGREGATE)
8236
    assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
8237
  else
8238
    value_assign_to_component (container, elt,
8239
                               ada_evaluate_subexp (NULL, exp, pos,
8240
                                                    EVAL_NORMAL));
8241
 
8242
  value_free_to_mark (mark);
8243
}
8244
 
8245
/* Assuming that LHS represents an lvalue having a record or array
8246
   type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
8247
   of that aggregate's value to LHS, advancing *POS past the
8248
   aggregate.  NOSIDE is as for evaluate_subexp.  CONTAINER is an
8249
   lvalue containing LHS (possibly LHS itself).  Does not modify
8250
   the inferior's memory, nor does it modify the contents of
8251
   LHS (unless == CONTAINER).  Returns the modified CONTAINER. */
8252
 
8253
static struct value *
8254
assign_aggregate (struct value *container,
8255
                  struct value *lhs, struct expression *exp,
8256
                  int *pos, enum noside noside)
8257
{
8258
  struct type *lhs_type;
8259
  int n = exp->elts[*pos+1].longconst;
8260
  LONGEST low_index, high_index;
8261
  int num_specs;
8262
  LONGEST *indices;
8263
  int max_indices, num_indices;
8264
  int is_array_aggregate;
8265
  int i;
8266
 
8267
  *pos += 3;
8268
  if (noside != EVAL_NORMAL)
8269
    {
8270
      int i;
8271
 
8272
      for (i = 0; i < n; i += 1)
8273
        ada_evaluate_subexp (NULL, exp, pos, noside);
8274
      return container;
8275
    }
8276
 
8277
  container = ada_coerce_ref (container);
8278
  if (ada_is_direct_array_type (value_type (container)))
8279
    container = ada_coerce_to_simple_array (container);
8280
  lhs = ada_coerce_ref (lhs);
8281
  if (!deprecated_value_modifiable (lhs))
8282
    error (_("Left operand of assignment is not a modifiable lvalue."));
8283
 
8284
  lhs_type = value_type (lhs);
8285
  if (ada_is_direct_array_type (lhs_type))
8286
    {
8287
      lhs = ada_coerce_to_simple_array (lhs);
8288
      lhs_type = value_type (lhs);
8289
      low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
8290
      high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
8291
      is_array_aggregate = 1;
8292
    }
8293
  else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
8294
    {
8295
      low_index = 0;
8296
      high_index = num_visible_fields (lhs_type) - 1;
8297
      is_array_aggregate = 0;
8298
    }
8299
  else
8300
    error (_("Left-hand side must be array or record."));
8301
 
8302
  num_specs = num_component_specs (exp, *pos - 3);
8303
  max_indices = 4 * num_specs + 4;
8304
  indices = alloca (max_indices * sizeof (indices[0]));
8305
  indices[0] = indices[1] = low_index - 1;
8306
  indices[2] = indices[3] = high_index + 1;
8307
  num_indices = 4;
8308
 
8309
  for (i = 0; i < n; i += 1)
8310
    {
8311
      switch (exp->elts[*pos].opcode)
8312
        {
8313
        case OP_CHOICES:
8314
          aggregate_assign_from_choices (container, lhs, exp, pos, indices,
8315
                                         &num_indices, max_indices,
8316
                                         low_index, high_index);
8317
          break;
8318
        case OP_POSITIONAL:
8319
          aggregate_assign_positional (container, lhs, exp, pos, indices,
8320
                                       &num_indices, max_indices,
8321
                                       low_index, high_index);
8322
          break;
8323
        case OP_OTHERS:
8324
          if (i != n-1)
8325
            error (_("Misplaced 'others' clause"));
8326
          aggregate_assign_others (container, lhs, exp, pos, indices,
8327
                                   num_indices, low_index, high_index);
8328
          break;
8329
        default:
8330
          error (_("Internal error: bad aggregate clause"));
8331
        }
8332
    }
8333
 
8334
  return container;
8335
}
8336
 
8337
/* Assign into the component of LHS indexed by the OP_POSITIONAL
8338
   construct at *POS, updating *POS past the construct, given that
8339
   the positions are relative to lower bound LOW, where HIGH is the
8340
   upper bound.  Record the position in INDICES[0 .. MAX_INDICES-1]
8341
   updating *NUM_INDICES as needed.  CONTAINER is as for
8342
   assign_aggregate. */
8343
static void
8344
aggregate_assign_positional (struct value *container,
8345
                             struct value *lhs, struct expression *exp,
8346
                             int *pos, LONGEST *indices, int *num_indices,
8347
                             int max_indices, LONGEST low, LONGEST high)
8348
{
8349
  LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
8350
 
8351
  if (ind - 1 == high)
8352
    warning (_("Extra components in aggregate ignored."));
8353
  if (ind <= high)
8354
    {
8355
      add_component_interval (ind, ind, indices, num_indices, max_indices);
8356
      *pos += 3;
8357
      assign_component (container, lhs, ind, exp, pos);
8358
    }
8359
  else
8360
    ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8361
}
8362
 
8363
/* Assign into the components of LHS indexed by the OP_CHOICES
8364
   construct at *POS, updating *POS past the construct, given that
8365
   the allowable indices are LOW..HIGH.  Record the indices assigned
8366
   to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
8367
   needed.  CONTAINER is as for assign_aggregate. */
8368
static void
8369
aggregate_assign_from_choices (struct value *container,
8370
                               struct value *lhs, struct expression *exp,
8371
                               int *pos, LONGEST *indices, int *num_indices,
8372
                               int max_indices, LONGEST low, LONGEST high)
8373
{
8374
  int j;
8375
  int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
8376
  int choice_pos, expr_pc;
8377
  int is_array = ada_is_direct_array_type (value_type (lhs));
8378
 
8379
  choice_pos = *pos += 3;
8380
 
8381
  for (j = 0; j < n_choices; j += 1)
8382
    ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8383
  expr_pc = *pos;
8384
  ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8385
 
8386
  for (j = 0; j < n_choices; j += 1)
8387
    {
8388
      LONGEST lower, upper;
8389
      enum exp_opcode op = exp->elts[choice_pos].opcode;
8390
 
8391
      if (op == OP_DISCRETE_RANGE)
8392
        {
8393
          choice_pos += 1;
8394
          lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
8395
                                                      EVAL_NORMAL));
8396
          upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
8397
                                                      EVAL_NORMAL));
8398
        }
8399
      else if (is_array)
8400
        {
8401
          lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
8402
                                                      EVAL_NORMAL));
8403
          upper = lower;
8404
        }
8405
      else
8406
        {
8407
          int ind;
8408
          char *name;
8409
 
8410
          switch (op)
8411
            {
8412
            case OP_NAME:
8413
              name = &exp->elts[choice_pos + 2].string;
8414
              break;
8415
            case OP_VAR_VALUE:
8416
              name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
8417
              break;
8418
            default:
8419
              error (_("Invalid record component association."));
8420
            }
8421
          ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
8422
          ind = 0;
8423
          if (! find_struct_field (name, value_type (lhs), 0,
8424
                                   NULL, NULL, NULL, NULL, &ind))
8425
            error (_("Unknown component name: %s."), name);
8426
          lower = upper = ind;
8427
        }
8428
 
8429
      if (lower <= upper && (lower < low || upper > high))
8430
        error (_("Index in component association out of bounds."));
8431
 
8432
      add_component_interval (lower, upper, indices, num_indices,
8433
                              max_indices);
8434
      while (lower <= upper)
8435
        {
8436
          int pos1;
8437
 
8438
          pos1 = expr_pc;
8439
          assign_component (container, lhs, lower, exp, &pos1);
8440
          lower += 1;
8441
        }
8442
    }
8443
}
8444
 
8445
/* Assign the value of the expression in the OP_OTHERS construct in
8446
   EXP at *POS into the components of LHS indexed from LOW .. HIGH that
8447
   have not been previously assigned.  The index intervals already assigned
8448
   are in INDICES[0 .. NUM_INDICES-1].  Updates *POS to after the
8449
   OP_OTHERS clause.  CONTAINER is as for assign_aggregate*/
8450
static void
8451
aggregate_assign_others (struct value *container,
8452
                         struct value *lhs, struct expression *exp,
8453
                         int *pos, LONGEST *indices, int num_indices,
8454
                         LONGEST low, LONGEST high)
8455
{
8456
  int i;
8457
  int expr_pc = *pos+1;
8458
 
8459
  for (i = 0; i < num_indices - 2; i += 2)
8460
    {
8461
      LONGEST ind;
8462
 
8463
      for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
8464
        {
8465
          int pos;
8466
 
8467
          pos = expr_pc;
8468
          assign_component (container, lhs, ind, exp, &pos);
8469
        }
8470
    }
8471
  ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8472
}
8473
 
8474
/* Add the interval [LOW .. HIGH] to the sorted set of intervals
8475
   [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
8476
   modifying *SIZE as needed.  It is an error if *SIZE exceeds
8477
   MAX_SIZE.  The resulting intervals do not overlap.  */
8478
static void
8479
add_component_interval (LONGEST low, LONGEST high,
8480
                        LONGEST* indices, int *size, int max_size)
8481
{
8482
  int i, j;
8483
 
8484
  for (i = 0; i < *size; i += 2) {
8485
    if (high >= indices[i] && low <= indices[i + 1])
8486
      {
8487
        int kh;
8488
 
8489
        for (kh = i + 2; kh < *size; kh += 2)
8490
          if (high < indices[kh])
8491
            break;
8492
        if (low < indices[i])
8493
          indices[i] = low;
8494
        indices[i + 1] = indices[kh - 1];
8495
        if (high > indices[i + 1])
8496
          indices[i + 1] = high;
8497
        memcpy (indices + i + 2, indices + kh, *size - kh);
8498
        *size -= kh - i - 2;
8499
        return;
8500
      }
8501
    else if (high < indices[i])
8502
      break;
8503
  }
8504
 
8505
  if (*size == max_size)
8506
    error (_("Internal error: miscounted aggregate components."));
8507
  *size += 2;
8508
  for (j = *size-1; j >= i+2; j -= 1)
8509
    indices[j] = indices[j - 2];
8510
  indices[i] = low;
8511
  indices[i + 1] = high;
8512
}
8513
 
8514
/* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
8515
   is different.  */
8516
 
8517
static struct value *
8518
ada_value_cast (struct type *type, struct value *arg2, enum noside noside)
8519
{
8520
  if (type == ada_check_typedef (value_type (arg2)))
8521
    return arg2;
8522
 
8523
  if (ada_is_fixed_point_type (type))
8524
    return (cast_to_fixed (type, arg2));
8525
 
8526
  if (ada_is_fixed_point_type (value_type (arg2)))
8527
    return cast_from_fixed (type, arg2);
8528
 
8529
  return value_cast (type, arg2);
8530
}
8531
 
8532
/*  Evaluating Ada expressions, and printing their result.
8533
    ------------------------------------------------------
8534
 
8535
    1. Introduction:
8536
    ----------------
8537
 
8538
    We usually evaluate an Ada expression in order to print its value.
8539
    We also evaluate an expression in order to print its type, which
8540
    happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
8541
    but we'll focus mostly on the EVAL_NORMAL phase.  In practice, the
8542
    EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
8543
    the evaluation compared to the EVAL_NORMAL, but is otherwise very
8544
    similar.
8545
 
8546
    Evaluating expressions is a little more complicated for Ada entities
8547
    than it is for entities in languages such as C.  The main reason for
8548
    this is that Ada provides types whose definition might be dynamic.
8549
    One example of such types is variant records.  Or another example
8550
    would be an array whose bounds can only be known at run time.
8551
 
8552
    The following description is a general guide as to what should be
8553
    done (and what should NOT be done) in order to evaluate an expression
8554
    involving such types, and when.  This does not cover how the semantic
8555
    information is encoded by GNAT as this is covered separatly.  For the
8556
    document used as the reference for the GNAT encoding, see exp_dbug.ads
8557
    in the GNAT sources.
8558
 
8559
    Ideally, we should embed each part of this description next to its
8560
    associated code.  Unfortunately, the amount of code is so vast right
8561
    now that it's hard to see whether the code handling a particular
8562
    situation might be duplicated or not.  One day, when the code is
8563
    cleaned up, this guide might become redundant with the comments
8564
    inserted in the code, and we might want to remove it.
8565
 
8566
    2. ``Fixing'' an Entity, the Simple Case:
8567
    -----------------------------------------
8568
 
8569
    When evaluating Ada expressions, the tricky issue is that they may
8570
    reference entities whose type contents and size are not statically
8571
    known.  Consider for instance a variant record:
8572
 
8573
       type Rec (Empty : Boolean := True) is record
8574
          case Empty is
8575
             when True => null;
8576
             when False => Value : Integer;
8577
          end case;
8578
       end record;
8579
       Yes : Rec := (Empty => False, Value => 1);
8580
       No  : Rec := (empty => True);
8581
 
8582
    The size and contents of that record depends on the value of the
8583
    descriminant (Rec.Empty).  At this point, neither the debugging
8584
    information nor the associated type structure in GDB are able to
8585
    express such dynamic types.  So what the debugger does is to create
8586
    "fixed" versions of the type that applies to the specific object.
8587
    We also informally refer to this opperation as "fixing" an object,
8588
    which means creating its associated fixed type.
8589
 
8590
    Example: when printing the value of variable "Yes" above, its fixed
8591
    type would look like this:
8592
 
8593
       type Rec is record
8594
          Empty : Boolean;
8595
          Value : Integer;
8596
       end record;
8597
 
8598
    On the other hand, if we printed the value of "No", its fixed type
8599
    would become:
8600
 
8601
       type Rec is record
8602
          Empty : Boolean;
8603
       end record;
8604
 
8605
    Things become a little more complicated when trying to fix an entity
8606
    with a dynamic type that directly contains another dynamic type,
8607
    such as an array of variant records, for instance.  There are
8608
    two possible cases: Arrays, and records.
8609
 
8610
    3. ``Fixing'' Arrays:
8611
    ---------------------
8612
 
8613
    The type structure in GDB describes an array in terms of its bounds,
8614
    and the type of its elements.  By design, all elements in the array
8615
    have the same type and we cannot represent an array of variant elements
8616
    using the current type structure in GDB.  When fixing an array,
8617
    we cannot fix the array element, as we would potentially need one
8618
    fixed type per element of the array.  As a result, the best we can do
8619
    when fixing an array is to produce an array whose bounds and size
8620
    are correct (allowing us to read it from memory), but without having
8621
    touched its element type.  Fixing each element will be done later,
8622
    when (if) necessary.
8623
 
8624
    Arrays are a little simpler to handle than records, because the same
8625
    amount of memory is allocated for each element of the array, even if
8626
    the amount of space actually used by each element differs from element
8627
    to element.  Consider for instance the following array of type Rec:
8628
 
8629
       type Rec_Array is array (1 .. 2) of Rec;
8630
 
8631
    The actual amount of memory occupied by each element might be different
8632
    from element to element, depending on the value of their discriminant.
8633
    But the amount of space reserved for each element in the array remains
8634
    fixed regardless.  So we simply need to compute that size using
8635
    the debugging information available, from which we can then determine
8636
    the array size (we multiply the number of elements of the array by
8637
    the size of each element).
8638
 
8639
    The simplest case is when we have an array of a constrained element
8640
    type. For instance, consider the following type declarations:
8641
 
8642
        type Bounded_String (Max_Size : Integer) is
8643
           Length : Integer;
8644
           Buffer : String (1 .. Max_Size);
8645
        end record;
8646
        type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
8647
 
8648
    In this case, the compiler describes the array as an array of
8649
    variable-size elements (identified by its XVS suffix) for which
8650
    the size can be read in the parallel XVZ variable.
8651
 
8652
    In the case of an array of an unconstrained element type, the compiler
8653
    wraps the array element inside a private PAD type.  This type should not
8654
    be shown to the user, and must be "unwrap"'ed before printing.  Note
8655
    that we also use the adjective "aligner" in our code to designate
8656
    these wrapper types.
8657
 
8658
    In some cases, the size allocated for each element is statically
8659
    known.  In that case, the PAD type already has the correct size,
8660
    and the array element should remain unfixed.
8661
 
8662
    But there are cases when this size is not statically known.
8663
    For instance, assuming that "Five" is an integer variable:
8664
 
8665
        type Dynamic is array (1 .. Five) of Integer;
8666
        type Wrapper (Has_Length : Boolean := False) is record
8667
           Data : Dynamic;
8668
           case Has_Length is
8669
              when True => Length : Integer;
8670
              when False => null;
8671
           end case;
8672
        end record;
8673
        type Wrapper_Array is array (1 .. 2) of Wrapper;
8674
 
8675
        Hello : Wrapper_Array := (others => (Has_Length => True,
8676
                                             Data => (others => 17),
8677
                                             Length => 1));
8678
 
8679
 
8680
    The debugging info would describe variable Hello as being an
8681
    array of a PAD type.  The size of that PAD type is not statically
8682
    known, but can be determined using a parallel XVZ variable.
8683
    In that case, a copy of the PAD type with the correct size should
8684
    be used for the fixed array.
8685
 
8686
    3. ``Fixing'' record type objects:
8687
    ----------------------------------
8688
 
8689
    Things are slightly different from arrays in the case of dynamic
8690
    record types.  In this case, in order to compute the associated
8691
    fixed type, we need to determine the size and offset of each of
8692
    its components.  This, in turn, requires us to compute the fixed
8693
    type of each of these components.
8694
 
8695
    Consider for instance the example:
8696
 
8697
        type Bounded_String (Max_Size : Natural) is record
8698
           Str : String (1 .. Max_Size);
8699
           Length : Natural;
8700
        end record;
8701
        My_String : Bounded_String (Max_Size => 10);
8702
 
8703
    In that case, the position of field "Length" depends on the size
8704
    of field Str, which itself depends on the value of the Max_Size
8705
    discriminant.  In order to fix the type of variable My_String,
8706
    we need to fix the type of field Str.  Therefore, fixing a variant
8707
    record requires us to fix each of its components.
8708
 
8709
    However, if a component does not have a dynamic size, the component
8710
    should not be fixed.  In particular, fields that use a PAD type
8711
    should not fixed.  Here is an example where this might happen
8712
    (assuming type Rec above):
8713
 
8714
       type Container (Big : Boolean) is record
8715
          First : Rec;
8716
          After : Integer;
8717
          case Big is
8718
             when True => Another : Integer;
8719
             when False => null;
8720
          end case;
8721
       end record;
8722
       My_Container : Container := (Big => False,
8723
                                    First => (Empty => True),
8724
                                    After => 42);
8725
 
8726
    In that example, the compiler creates a PAD type for component First,
8727
    whose size is constant, and then positions the component After just
8728
    right after it.  The offset of component After is therefore constant
8729
    in this case.
8730
 
8731
    The debugger computes the position of each field based on an algorithm
8732
    that uses, among other things, the actual position and size of the field
8733
    preceding it.  Let's now imagine that the user is trying to print
8734
    the value of My_Container.  If the type fixing was recursive, we would
8735
    end up computing the offset of field After based on the size of the
8736
    fixed version of field First.  And since in our example First has
8737
    only one actual field, the size of the fixed type is actually smaller
8738
    than the amount of space allocated to that field, and thus we would
8739
    compute the wrong offset of field After.
8740
 
8741
    To make things more complicated, we need to watch out for dynamic
8742
    components of variant records (identified by the ___XVL suffix in
8743
    the component name).  Even if the target type is a PAD type, the size
8744
    of that type might not be statically known.  So the PAD type needs
8745
    to be unwrapped and the resulting type needs to be fixed.  Otherwise,
8746
    we might end up with the wrong size for our component.  This can be
8747
    observed with the following type declarations:
8748
 
8749
        type Octal is new Integer range 0 .. 7;
8750
        type Octal_Array is array (Positive range <>) of Octal;
8751
        pragma Pack (Octal_Array);
8752
 
8753
        type Octal_Buffer (Size : Positive) is record
8754
           Buffer : Octal_Array (1 .. Size);
8755
           Length : Integer;
8756
        end record;
8757
 
8758
    In that case, Buffer is a PAD type whose size is unset and needs
8759
    to be computed by fixing the unwrapped type.
8760
 
8761
    4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
8762
    ----------------------------------------------------------
8763
 
8764
    Lastly, when should the sub-elements of an entity that remained unfixed
8765
    thus far, be actually fixed?
8766
 
8767
    The answer is: Only when referencing that element.  For instance
8768
    when selecting one component of a record, this specific component
8769
    should be fixed at that point in time.  Or when printing the value
8770
    of a record, each component should be fixed before its value gets
8771
    printed.  Similarly for arrays, the element of the array should be
8772
    fixed when printing each element of the array, or when extracting
8773
    one element out of that array.  On the other hand, fixing should
8774
    not be performed on the elements when taking a slice of an array!
8775
 
8776
    Note that one of the side-effects of miscomputing the offset and
8777
    size of each field is that we end up also miscomputing the size
8778
    of the containing type.  This can have adverse results when computing
8779
    the value of an entity.  GDB fetches the value of an entity based
8780
    on the size of its type, and thus a wrong size causes GDB to fetch
8781
    the wrong amount of memory.  In the case where the computed size is
8782
    too small, GDB fetches too little data to print the value of our
8783
    entiry.  Results in this case as unpredicatble, as we usually read
8784
    past the buffer containing the data =:-o.  */
8785
 
8786
/* Implement the evaluate_exp routine in the exp_descriptor structure
8787
   for the Ada language.  */
8788
 
8789
static struct value *
8790
ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
8791
                     int *pos, enum noside noside)
8792
{
8793
  enum exp_opcode op;
8794
  int tem;
8795
  int pc;
8796
  struct value *arg1 = NULL, *arg2 = NULL, *arg3;
8797
  struct type *type;
8798
  int nargs, oplen;
8799
  struct value **argvec;
8800
 
8801
  pc = *pos;
8802
  *pos += 1;
8803
  op = exp->elts[pc].opcode;
8804
 
8805
  switch (op)
8806
    {
8807
    default:
8808
      *pos -= 1;
8809
      arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
8810
      arg1 = unwrap_value (arg1);
8811
 
8812
      /* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided,
8813
         then we need to perform the conversion manually, because
8814
         evaluate_subexp_standard doesn't do it.  This conversion is
8815
         necessary in Ada because the different kinds of float/fixed
8816
         types in Ada have different representations.
8817
 
8818
         Similarly, we need to perform the conversion from OP_LONG
8819
         ourselves.  */
8820
      if ((op == OP_DOUBLE || op == OP_LONG) && expect_type != NULL)
8821
        arg1 = ada_value_cast (expect_type, arg1, noside);
8822
 
8823
      return arg1;
8824
 
8825
    case OP_STRING:
8826
      {
8827
        struct value *result;
8828
 
8829
        *pos -= 1;
8830
        result = evaluate_subexp_standard (expect_type, exp, pos, noside);
8831
        /* The result type will have code OP_STRING, bashed there from
8832
           OP_ARRAY.  Bash it back.  */
8833
        if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
8834
          TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
8835
        return result;
8836
      }
8837
 
8838
    case UNOP_CAST:
8839
      (*pos) += 2;
8840
      type = exp->elts[pc + 1].type;
8841
      arg1 = evaluate_subexp (type, exp, pos, noside);
8842
      if (noside == EVAL_SKIP)
8843
        goto nosideret;
8844
      arg1 = ada_value_cast (type, arg1, noside);
8845
      return arg1;
8846
 
8847
    case UNOP_QUAL:
8848
      (*pos) += 2;
8849
      type = exp->elts[pc + 1].type;
8850
      return ada_evaluate_subexp (type, exp, pos, noside);
8851
 
8852
    case BINOP_ASSIGN:
8853
      arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8854
      if (exp->elts[*pos].opcode == OP_AGGREGATE)
8855
        {
8856
          arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
8857
          if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
8858
            return arg1;
8859
          return ada_value_assign (arg1, arg1);
8860
        }
8861
      /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
8862
         except if the lhs of our assignment is a convenience variable.
8863
         In the case of assigning to a convenience variable, the lhs
8864
         should be exactly the result of the evaluation of the rhs.  */
8865
      type = value_type (arg1);
8866
      if (VALUE_LVAL (arg1) == lval_internalvar)
8867
         type = NULL;
8868
      arg2 = evaluate_subexp (type, exp, pos, noside);
8869
      if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
8870
        return arg1;
8871
      if (ada_is_fixed_point_type (value_type (arg1)))
8872
        arg2 = cast_to_fixed (value_type (arg1), arg2);
8873
      else if (ada_is_fixed_point_type (value_type (arg2)))
8874
        error
8875
          (_("Fixed-point values must be assigned to fixed-point variables"));
8876
      else
8877
        arg2 = coerce_for_assign (value_type (arg1), arg2);
8878
      return ada_value_assign (arg1, arg2);
8879
 
8880
    case BINOP_ADD:
8881
      arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
8882
      arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
8883
      if (noside == EVAL_SKIP)
8884
        goto nosideret;
8885
      if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
8886
        return (value_from_longest
8887
                 (value_type (arg1),
8888
                  value_as_long (arg1) + value_as_long (arg2)));
8889
      if ((ada_is_fixed_point_type (value_type (arg1))
8890
           || ada_is_fixed_point_type (value_type (arg2)))
8891
          && value_type (arg1) != value_type (arg2))
8892
        error (_("Operands of fixed-point addition must have the same type"));
8893
      /* Do the addition, and cast the result to the type of the first
8894
         argument.  We cannot cast the result to a reference type, so if
8895
         ARG1 is a reference type, find its underlying type.  */
8896
      type = value_type (arg1);
8897
      while (TYPE_CODE (type) == TYPE_CODE_REF)
8898
        type = TYPE_TARGET_TYPE (type);
8899
      binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
8900
      return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
8901
 
8902
    case BINOP_SUB:
8903
      arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
8904
      arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
8905
      if (noside == EVAL_SKIP)
8906
        goto nosideret;
8907
      if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
8908
        return (value_from_longest
8909
                 (value_type (arg1),
8910
                  value_as_long (arg1) - value_as_long (arg2)));
8911
      if ((ada_is_fixed_point_type (value_type (arg1))
8912
           || ada_is_fixed_point_type (value_type (arg2)))
8913
          && value_type (arg1) != value_type (arg2))
8914
        error (_("Operands of fixed-point subtraction must have the same type"));
8915
      /* Do the substraction, and cast the result to the type of the first
8916
         argument.  We cannot cast the result to a reference type, so if
8917
         ARG1 is a reference type, find its underlying type.  */
8918
      type = value_type (arg1);
8919
      while (TYPE_CODE (type) == TYPE_CODE_REF)
8920
        type = TYPE_TARGET_TYPE (type);
8921
      binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
8922
      return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
8923
 
8924
    case BINOP_MUL:
8925
    case BINOP_DIV:
8926
    case BINOP_REM:
8927
    case BINOP_MOD:
8928
      arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8929
      arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8930
      if (noside == EVAL_SKIP)
8931
        goto nosideret;
8932
      else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8933
        {
8934
          binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
8935
          return value_zero (value_type (arg1), not_lval);
8936
        }
8937
      else
8938
        {
8939
          type = builtin_type (exp->gdbarch)->builtin_double;
8940
          if (ada_is_fixed_point_type (value_type (arg1)))
8941
            arg1 = cast_from_fixed (type, arg1);
8942
          if (ada_is_fixed_point_type (value_type (arg2)))
8943
            arg2 = cast_from_fixed (type, arg2);
8944
          binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
8945
          return ada_value_binop (arg1, arg2, op);
8946
        }
8947
 
8948
    case BINOP_EQUAL:
8949
    case BINOP_NOTEQUAL:
8950
      arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8951
      arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
8952
      if (noside == EVAL_SKIP)
8953
        goto nosideret;
8954
      if (noside == EVAL_AVOID_SIDE_EFFECTS)
8955
        tem = 0;
8956
      else
8957
        {
8958
          binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
8959
          tem = ada_value_equal (arg1, arg2);
8960
        }
8961
      if (op == BINOP_NOTEQUAL)
8962
        tem = !tem;
8963
      type = language_bool_type (exp->language_defn, exp->gdbarch);
8964
      return value_from_longest (type, (LONGEST) tem);
8965
 
8966
    case UNOP_NEG:
8967
      arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8968
      if (noside == EVAL_SKIP)
8969
        goto nosideret;
8970
      else if (ada_is_fixed_point_type (value_type (arg1)))
8971
        return value_cast (value_type (arg1), value_neg (arg1));
8972
      else
8973
        {
8974
          unop_promote (exp->language_defn, exp->gdbarch, &arg1);
8975
          return value_neg (arg1);
8976
        }
8977
 
8978
    case BINOP_LOGICAL_AND:
8979
    case BINOP_LOGICAL_OR:
8980
    case UNOP_LOGICAL_NOT:
8981
      {
8982
        struct value *val;
8983
 
8984
        *pos -= 1;
8985
        val = evaluate_subexp_standard (expect_type, exp, pos, noside);
8986
        type = language_bool_type (exp->language_defn, exp->gdbarch);
8987
        return value_cast (type, val);
8988
      }
8989
 
8990
    case BINOP_BITWISE_AND:
8991
    case BINOP_BITWISE_IOR:
8992
    case BINOP_BITWISE_XOR:
8993
      {
8994
        struct value *val;
8995
 
8996
        arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
8997
        *pos = pc;
8998
        val = evaluate_subexp_standard (expect_type, exp, pos, noside);
8999
 
9000
        return value_cast (value_type (arg1), val);
9001
      }
9002
 
9003
    case OP_VAR_VALUE:
9004
      *pos -= 1;
9005
 
9006
      if (noside == EVAL_SKIP)
9007
        {
9008
          *pos += 4;
9009
          goto nosideret;
9010
        }
9011
      else if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
9012
        /* Only encountered when an unresolved symbol occurs in a
9013
           context other than a function call, in which case, it is
9014
           invalid.  */
9015
        error (_("Unexpected unresolved symbol, %s, during evaluation"),
9016
               SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
9017
      else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9018
        {
9019
          type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
9020
          /* Check to see if this is a tagged type.  We also need to handle
9021
             the case where the type is a reference to a tagged type, but
9022
             we have to be careful to exclude pointers to tagged types.
9023
             The latter should be shown as usual (as a pointer), whereas
9024
             a reference should mostly be transparent to the user.  */
9025
          if (ada_is_tagged_type (type, 0)
9026
              || (TYPE_CODE(type) == TYPE_CODE_REF
9027
                  && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
9028
          {
9029
            /* Tagged types are a little special in the fact that the real
9030
               type is dynamic and can only be determined by inspecting the
9031
               object's tag.  This means that we need to get the object's
9032
               value first (EVAL_NORMAL) and then extract the actual object
9033
               type from its tag.
9034
 
9035
               Note that we cannot skip the final step where we extract
9036
               the object type from its tag, because the EVAL_NORMAL phase
9037
               results in dynamic components being resolved into fixed ones.
9038
               This can cause problems when trying to print the type
9039
               description of tagged types whose parent has a dynamic size:
9040
               We use the type name of the "_parent" component in order
9041
               to print the name of the ancestor type in the type description.
9042
               If that component had a dynamic size, the resolution into
9043
               a fixed type would result in the loss of that type name,
9044
               thus preventing us from printing the name of the ancestor
9045
               type in the type description.  */
9046
            struct type *actual_type;
9047
 
9048
            arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
9049
            actual_type = type_from_tag (ada_value_tag (arg1));
9050
            if (actual_type == NULL)
9051
              /* If, for some reason, we were unable to determine
9052
                 the actual type from the tag, then use the static
9053
                 approximation that we just computed as a fallback.
9054
                 This can happen if the debugging information is
9055
                 incomplete, for instance.  */
9056
              actual_type = type;
9057
 
9058
            return value_zero (actual_type, not_lval);
9059
          }
9060
 
9061
          *pos += 4;
9062
          return value_zero
9063
            (to_static_fixed_type
9064
             (static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol))),
9065
             not_lval);
9066
        }
9067
      else
9068
        {
9069
          arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
9070
          arg1 = unwrap_value (arg1);
9071
          return ada_to_fixed_value (arg1);
9072
        }
9073
 
9074
    case OP_FUNCALL:
9075
      (*pos) += 2;
9076
 
9077
      /* Allocate arg vector, including space for the function to be
9078
         called in argvec[0] and a terminating NULL.  */
9079
      nargs = longest_to_int (exp->elts[pc + 1].longconst);
9080
      argvec =
9081
        (struct value **) alloca (sizeof (struct value *) * (nargs + 2));
9082
 
9083
      if (exp->elts[*pos].opcode == OP_VAR_VALUE
9084
          && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
9085
        error (_("Unexpected unresolved symbol, %s, during evaluation"),
9086
               SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
9087
      else
9088
        {
9089
          for (tem = 0; tem <= nargs; tem += 1)
9090
            argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9091
          argvec[tem] = 0;
9092
 
9093
          if (noside == EVAL_SKIP)
9094
            goto nosideret;
9095
        }
9096
 
9097
      if (ada_is_constrained_packed_array_type
9098
          (desc_base_type (value_type (argvec[0]))))
9099
        argvec[0] = ada_coerce_to_simple_array (argvec[0]);
9100
      else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
9101
               && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
9102
        /* This is a packed array that has already been fixed, and
9103
           therefore already coerced to a simple array.  Nothing further
9104
           to do.  */
9105
        ;
9106
      else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF
9107
               || (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
9108
                   && VALUE_LVAL (argvec[0]) == lval_memory))
9109
        argvec[0] = value_addr (argvec[0]);
9110
 
9111
      type = ada_check_typedef (value_type (argvec[0]));
9112
      if (TYPE_CODE (type) == TYPE_CODE_PTR)
9113
        {
9114
          switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
9115
            {
9116
            case TYPE_CODE_FUNC:
9117
              type = ada_check_typedef (TYPE_TARGET_TYPE (type));
9118
              break;
9119
            case TYPE_CODE_ARRAY:
9120
              break;
9121
            case TYPE_CODE_STRUCT:
9122
              if (noside != EVAL_AVOID_SIDE_EFFECTS)
9123
                argvec[0] = ada_value_ind (argvec[0]);
9124
              type = ada_check_typedef (TYPE_TARGET_TYPE (type));
9125
              break;
9126
            default:
9127
              error (_("cannot subscript or call something of type `%s'"),
9128
                     ada_type_name (value_type (argvec[0])));
9129
              break;
9130
            }
9131
        }
9132
 
9133
      switch (TYPE_CODE (type))
9134
        {
9135
        case TYPE_CODE_FUNC:
9136
          if (noside == EVAL_AVOID_SIDE_EFFECTS)
9137
            return allocate_value (TYPE_TARGET_TYPE (type));
9138
          return call_function_by_hand (argvec[0], nargs, argvec + 1);
9139
        case TYPE_CODE_STRUCT:
9140
          {
9141
            int arity;
9142
 
9143
            arity = ada_array_arity (type);
9144
            type = ada_array_element_type (type, nargs);
9145
            if (type == NULL)
9146
              error (_("cannot subscript or call a record"));
9147
            if (arity != nargs)
9148
              error (_("wrong number of subscripts; expecting %d"), arity);
9149
            if (noside == EVAL_AVOID_SIDE_EFFECTS)
9150
              return value_zero (ada_aligned_type (type), lval_memory);
9151
            return
9152
              unwrap_value (ada_value_subscript
9153
                            (argvec[0], nargs, argvec + 1));
9154
          }
9155
        case TYPE_CODE_ARRAY:
9156
          if (noside == EVAL_AVOID_SIDE_EFFECTS)
9157
            {
9158
              type = ada_array_element_type (type, nargs);
9159
              if (type == NULL)
9160
                error (_("element type of array unknown"));
9161
              else
9162
                return value_zero (ada_aligned_type (type), lval_memory);
9163
            }
9164
          return
9165
            unwrap_value (ada_value_subscript
9166
                          (ada_coerce_to_simple_array (argvec[0]),
9167
                           nargs, argvec + 1));
9168
        case TYPE_CODE_PTR:     /* Pointer to array */
9169
          type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
9170
          if (noside == EVAL_AVOID_SIDE_EFFECTS)
9171
            {
9172
              type = ada_array_element_type (type, nargs);
9173
              if (type == NULL)
9174
                error (_("element type of array unknown"));
9175
              else
9176
                return value_zero (ada_aligned_type (type), lval_memory);
9177
            }
9178
          return
9179
            unwrap_value (ada_value_ptr_subscript (argvec[0], type,
9180
                                                   nargs, argvec + 1));
9181
 
9182
        default:
9183
          error (_("Attempt to index or call something other than an "
9184
                   "array or function"));
9185
        }
9186
 
9187
    case TERNOP_SLICE:
9188
      {
9189
        struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9190
        struct value *low_bound_val =
9191
          evaluate_subexp (NULL_TYPE, exp, pos, noside);
9192
        struct value *high_bound_val =
9193
          evaluate_subexp (NULL_TYPE, exp, pos, noside);
9194
        LONGEST low_bound;
9195
        LONGEST high_bound;
9196
 
9197
        low_bound_val = coerce_ref (low_bound_val);
9198
        high_bound_val = coerce_ref (high_bound_val);
9199
        low_bound = pos_atr (low_bound_val);
9200
        high_bound = pos_atr (high_bound_val);
9201
 
9202
        if (noside == EVAL_SKIP)
9203
          goto nosideret;
9204
 
9205
        /* If this is a reference to an aligner type, then remove all
9206
           the aligners.  */
9207
        if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
9208
            && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
9209
          TYPE_TARGET_TYPE (value_type (array)) =
9210
            ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
9211
 
9212
        if (ada_is_constrained_packed_array_type (value_type (array)))
9213
          error (_("cannot slice a packed array"));
9214
 
9215
        /* If this is a reference to an array or an array lvalue,
9216
           convert to a pointer.  */
9217
        if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
9218
            || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
9219
                && VALUE_LVAL (array) == lval_memory))
9220
          array = value_addr (array);
9221
 
9222
        if (noside == EVAL_AVOID_SIDE_EFFECTS
9223
            && ada_is_array_descriptor_type (ada_check_typedef
9224
                                             (value_type (array))))
9225
          return empty_array (ada_type_of_array (array, 0), low_bound);
9226
 
9227
        array = ada_coerce_to_simple_array_ptr (array);
9228
 
9229
        /* If we have more than one level of pointer indirection,
9230
           dereference the value until we get only one level.  */
9231
        while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
9232
               && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
9233
                     == TYPE_CODE_PTR))
9234
          array = value_ind (array);
9235
 
9236
        /* Make sure we really do have an array type before going further,
9237
           to avoid a SEGV when trying to get the index type or the target
9238
           type later down the road if the debug info generated by
9239
           the compiler is incorrect or incomplete.  */
9240
        if (!ada_is_simple_array_type (value_type (array)))
9241
          error (_("cannot take slice of non-array"));
9242
 
9243
        if (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR)
9244
          {
9245
            if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
9246
              return empty_array (TYPE_TARGET_TYPE (value_type (array)),
9247
                                  low_bound);
9248
            else
9249
              {
9250
                struct type *arr_type0 =
9251
                  to_fixed_array_type (TYPE_TARGET_TYPE (value_type (array)),
9252
                                       NULL, 1);
9253
 
9254
                return ada_value_slice_from_ptr (array, arr_type0,
9255
                                                 longest_to_int (low_bound),
9256
                                                 longest_to_int (high_bound));
9257
              }
9258
          }
9259
        else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9260
          return array;
9261
        else if (high_bound < low_bound)
9262
          return empty_array (value_type (array), low_bound);
9263
        else
9264
          return ada_value_slice (array, longest_to_int (low_bound),
9265
                                  longest_to_int (high_bound));
9266
      }
9267
 
9268
    case UNOP_IN_RANGE:
9269
      (*pos) += 2;
9270
      arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9271
      type = check_typedef (exp->elts[pc + 1].type);
9272
 
9273
      if (noside == EVAL_SKIP)
9274
        goto nosideret;
9275
 
9276
      switch (TYPE_CODE (type))
9277
        {
9278
        default:
9279
          lim_warning (_("Membership test incompletely implemented; "
9280
                         "always returns true"));
9281
          type = language_bool_type (exp->language_defn, exp->gdbarch);
9282
          return value_from_longest (type, (LONGEST) 1);
9283
 
9284
        case TYPE_CODE_RANGE:
9285
          arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
9286
          arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
9287
          binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9288
          binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
9289
          type = language_bool_type (exp->language_defn, exp->gdbarch);
9290
          return
9291
            value_from_longest (type,
9292
                                (value_less (arg1, arg3)
9293
                                 || value_equal (arg1, arg3))
9294
                                && (value_less (arg2, arg1)
9295
                                    || value_equal (arg2, arg1)));
9296
        }
9297
 
9298
    case BINOP_IN_BOUNDS:
9299
      (*pos) += 2;
9300
      arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9301
      arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9302
 
9303
      if (noside == EVAL_SKIP)
9304
        goto nosideret;
9305
 
9306
      if (noside == EVAL_AVOID_SIDE_EFFECTS)
9307
        {
9308
          type = language_bool_type (exp->language_defn, exp->gdbarch);
9309
          return value_zero (type, not_lval);
9310
        }
9311
 
9312
      tem = longest_to_int (exp->elts[pc + 1].longconst);
9313
 
9314
      type = ada_index_type (value_type (arg2), tem, "range");
9315
      if (!type)
9316
        type = value_type (arg1);
9317
 
9318
      arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
9319
      arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
9320
 
9321
      binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9322
      binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
9323
      type = language_bool_type (exp->language_defn, exp->gdbarch);
9324
      return
9325
        value_from_longest (type,
9326
                            (value_less (arg1, arg3)
9327
                             || value_equal (arg1, arg3))
9328
                            && (value_less (arg2, arg1)
9329
                                || value_equal (arg2, arg1)));
9330
 
9331
    case TERNOP_IN_RANGE:
9332
      arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9333
      arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9334
      arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9335
 
9336
      if (noside == EVAL_SKIP)
9337
        goto nosideret;
9338
 
9339
      binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9340
      binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
9341
      type = language_bool_type (exp->language_defn, exp->gdbarch);
9342
      return
9343
        value_from_longest (type,
9344
                            (value_less (arg1, arg3)
9345
                             || value_equal (arg1, arg3))
9346
                            && (value_less (arg2, arg1)
9347
                                || value_equal (arg2, arg1)));
9348
 
9349
    case OP_ATR_FIRST:
9350
    case OP_ATR_LAST:
9351
    case OP_ATR_LENGTH:
9352
      {
9353
        struct type *type_arg;
9354
 
9355
        if (exp->elts[*pos].opcode == OP_TYPE)
9356
          {
9357
            evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9358
            arg1 = NULL;
9359
            type_arg = check_typedef (exp->elts[pc + 2].type);
9360
          }
9361
        else
9362
          {
9363
            arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9364
            type_arg = NULL;
9365
          }
9366
 
9367
        if (exp->elts[*pos].opcode != OP_LONG)
9368
          error (_("Invalid operand to '%s"), ada_attribute_name (op));
9369
        tem = longest_to_int (exp->elts[*pos + 2].longconst);
9370
        *pos += 4;
9371
 
9372
        if (noside == EVAL_SKIP)
9373
          goto nosideret;
9374
 
9375
        if (type_arg == NULL)
9376
          {
9377
            arg1 = ada_coerce_ref (arg1);
9378
 
9379
            if (ada_is_constrained_packed_array_type (value_type (arg1)))
9380
              arg1 = ada_coerce_to_simple_array (arg1);
9381
 
9382
            type = ada_index_type (value_type (arg1), tem,
9383
                                   ada_attribute_name (op));
9384
            if (type == NULL)
9385
              type = builtin_type (exp->gdbarch)->builtin_int;
9386
 
9387
            if (noside == EVAL_AVOID_SIDE_EFFECTS)
9388
              return allocate_value (type);
9389
 
9390
            switch (op)
9391
              {
9392
              default:          /* Should never happen.  */
9393
                error (_("unexpected attribute encountered"));
9394
              case OP_ATR_FIRST:
9395
                return value_from_longest
9396
                        (type, ada_array_bound (arg1, tem, 0));
9397
              case OP_ATR_LAST:
9398
                return value_from_longest
9399
                        (type, ada_array_bound (arg1, tem, 1));
9400
              case OP_ATR_LENGTH:
9401
                return value_from_longest
9402
                        (type, ada_array_length (arg1, tem));
9403
              }
9404
          }
9405
        else if (discrete_type_p (type_arg))
9406
          {
9407
            struct type *range_type;
9408
            char *name = ada_type_name (type_arg);
9409
 
9410
            range_type = NULL;
9411
            if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
9412
              range_type = to_fixed_range_type (type_arg, NULL);
9413
            if (range_type == NULL)
9414
              range_type = type_arg;
9415
            switch (op)
9416
              {
9417
              default:
9418
                error (_("unexpected attribute encountered"));
9419
              case OP_ATR_FIRST:
9420
                return value_from_longest
9421
                  (range_type, ada_discrete_type_low_bound (range_type));
9422
              case OP_ATR_LAST:
9423
                return value_from_longest
9424
                  (range_type, ada_discrete_type_high_bound (range_type));
9425
              case OP_ATR_LENGTH:
9426
                error (_("the 'length attribute applies only to array types"));
9427
              }
9428
          }
9429
        else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
9430
          error (_("unimplemented type attribute"));
9431
        else
9432
          {
9433
            LONGEST low, high;
9434
 
9435
            if (ada_is_constrained_packed_array_type (type_arg))
9436
              type_arg = decode_constrained_packed_array_type (type_arg);
9437
 
9438
            type = ada_index_type (type_arg, tem, ada_attribute_name (op));
9439
            if (type == NULL)
9440
              type = builtin_type (exp->gdbarch)->builtin_int;
9441
 
9442
            if (noside == EVAL_AVOID_SIDE_EFFECTS)
9443
              return allocate_value (type);
9444
 
9445
            switch (op)
9446
              {
9447
              default:
9448
                error (_("unexpected attribute encountered"));
9449
              case OP_ATR_FIRST:
9450
                low = ada_array_bound_from_type (type_arg, tem, 0);
9451
                return value_from_longest (type, low);
9452
              case OP_ATR_LAST:
9453
                high = ada_array_bound_from_type (type_arg, tem, 1);
9454
                return value_from_longest (type, high);
9455
              case OP_ATR_LENGTH:
9456
                low = ada_array_bound_from_type (type_arg, tem, 0);
9457
                high = ada_array_bound_from_type (type_arg, tem, 1);
9458
                return value_from_longest (type, high - low + 1);
9459
              }
9460
          }
9461
      }
9462
 
9463
    case OP_ATR_TAG:
9464
      arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9465
      if (noside == EVAL_SKIP)
9466
        goto nosideret;
9467
 
9468
      if (noside == EVAL_AVOID_SIDE_EFFECTS)
9469
        return value_zero (ada_tag_type (arg1), not_lval);
9470
 
9471
      return ada_value_tag (arg1);
9472
 
9473
    case OP_ATR_MIN:
9474
    case OP_ATR_MAX:
9475
      evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9476
      arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9477
      arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9478
      if (noside == EVAL_SKIP)
9479
        goto nosideret;
9480
      else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9481
        return value_zero (value_type (arg1), not_lval);
9482
      else
9483
        {
9484
          binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9485
          return value_binop (arg1, arg2,
9486
                              op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
9487
        }
9488
 
9489
    case OP_ATR_MODULUS:
9490
      {
9491
        struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
9492
 
9493
        evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9494
        if (noside == EVAL_SKIP)
9495
          goto nosideret;
9496
 
9497
        if (!ada_is_modular_type (type_arg))
9498
          error (_("'modulus must be applied to modular type"));
9499
 
9500
        return value_from_longest (TYPE_TARGET_TYPE (type_arg),
9501
                                   ada_modulus (type_arg));
9502
      }
9503
 
9504
 
9505
    case OP_ATR_POS:
9506
      evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9507
      arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9508
      if (noside == EVAL_SKIP)
9509
        goto nosideret;
9510
      type = builtin_type (exp->gdbarch)->builtin_int;
9511
      if (noside == EVAL_AVOID_SIDE_EFFECTS)
9512
        return value_zero (type, not_lval);
9513
      else
9514
        return value_pos_atr (type, arg1);
9515
 
9516
    case OP_ATR_SIZE:
9517
      arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9518
      type = value_type (arg1);
9519
 
9520
      /* If the argument is a reference, then dereference its type, since
9521
         the user is really asking for the size of the actual object,
9522
         not the size of the pointer.  */
9523
      if (TYPE_CODE (type) == TYPE_CODE_REF)
9524
        type = TYPE_TARGET_TYPE (type);
9525
 
9526
      if (noside == EVAL_SKIP)
9527
        goto nosideret;
9528
      else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9529
        return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
9530
      else
9531
        return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
9532
                                   TARGET_CHAR_BIT * TYPE_LENGTH (type));
9533
 
9534
    case OP_ATR_VAL:
9535
      evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9536
      arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9537
      type = exp->elts[pc + 2].type;
9538
      if (noside == EVAL_SKIP)
9539
        goto nosideret;
9540
      else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9541
        return value_zero (type, not_lval);
9542
      else
9543
        return value_val_atr (type, arg1);
9544
 
9545
    case BINOP_EXP:
9546
      arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9547
      arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9548
      if (noside == EVAL_SKIP)
9549
        goto nosideret;
9550
      else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9551
        return value_zero (value_type (arg1), not_lval);
9552
      else
9553
        {
9554
          /* For integer exponentiation operations,
9555
             only promote the first argument.  */
9556
          if (is_integral_type (value_type (arg2)))
9557
            unop_promote (exp->language_defn, exp->gdbarch, &arg1);
9558
          else
9559
            binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9560
 
9561
          return value_binop (arg1, arg2, op);
9562
        }
9563
 
9564
    case UNOP_PLUS:
9565
      arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9566
      if (noside == EVAL_SKIP)
9567
        goto nosideret;
9568
      else
9569
        return arg1;
9570
 
9571
    case UNOP_ABS:
9572
      arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9573
      if (noside == EVAL_SKIP)
9574
        goto nosideret;
9575
      unop_promote (exp->language_defn, exp->gdbarch, &arg1);
9576
      if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
9577
        return value_neg (arg1);
9578
      else
9579
        return arg1;
9580
 
9581
    case UNOP_IND:
9582
      arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9583
      if (noside == EVAL_SKIP)
9584
        goto nosideret;
9585
      type = ada_check_typedef (value_type (arg1));
9586
      if (noside == EVAL_AVOID_SIDE_EFFECTS)
9587
        {
9588
          if (ada_is_array_descriptor_type (type))
9589
            /* GDB allows dereferencing GNAT array descriptors.  */
9590
            {
9591
              struct type *arrType = ada_type_of_array (arg1, 0);
9592
 
9593
              if (arrType == NULL)
9594
                error (_("Attempt to dereference null array pointer."));
9595
              return value_at_lazy (arrType, 0);
9596
            }
9597
          else if (TYPE_CODE (type) == TYPE_CODE_PTR
9598
                   || TYPE_CODE (type) == TYPE_CODE_REF
9599
                   /* In C you can dereference an array to get the 1st elt.  */
9600
                   || TYPE_CODE (type) == TYPE_CODE_ARRAY)
9601
            {
9602
              type = to_static_fixed_type
9603
                (ada_aligned_type
9604
                 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
9605
              check_size (type);
9606
              return value_zero (type, lval_memory);
9607
            }
9608
          else if (TYPE_CODE (type) == TYPE_CODE_INT)
9609
            {
9610
              /* GDB allows dereferencing an int.  */
9611
              if (expect_type == NULL)
9612
                return value_zero (builtin_type (exp->gdbarch)->builtin_int,
9613
                                   lval_memory);
9614
              else
9615
                {
9616
                  expect_type =
9617
                    to_static_fixed_type (ada_aligned_type (expect_type));
9618
                  return value_zero (expect_type, lval_memory);
9619
                }
9620
            }
9621
          else
9622
            error (_("Attempt to take contents of a non-pointer value."));
9623
        }
9624
      arg1 = ada_coerce_ref (arg1);     /* FIXME: What is this for?? */
9625
      type = ada_check_typedef (value_type (arg1));
9626
 
9627
      if (TYPE_CODE (type) == TYPE_CODE_INT)
9628
          /* GDB allows dereferencing an int.  If we were given
9629
             the expect_type, then use that as the target type.
9630
             Otherwise, assume that the target type is an int.  */
9631
        {
9632
          if (expect_type != NULL)
9633
            return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
9634
                                              arg1));
9635
          else
9636
            return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
9637
                                  (CORE_ADDR) value_as_address (arg1));
9638
        }
9639
 
9640
      if (ada_is_array_descriptor_type (type))
9641
        /* GDB allows dereferencing GNAT array descriptors.  */
9642
        return ada_coerce_to_simple_array (arg1);
9643
      else
9644
        return ada_value_ind (arg1);
9645
 
9646
    case STRUCTOP_STRUCT:
9647
      tem = longest_to_int (exp->elts[pc + 1].longconst);
9648
      (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
9649
      arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9650
      if (noside == EVAL_SKIP)
9651
        goto nosideret;
9652
      if (noside == EVAL_AVOID_SIDE_EFFECTS)
9653
        {
9654
          struct type *type1 = value_type (arg1);
9655
 
9656
          if (ada_is_tagged_type (type1, 1))
9657
            {
9658
              type = ada_lookup_struct_elt_type (type1,
9659
                                                 &exp->elts[pc + 2].string,
9660
                                                 1, 1, NULL);
9661
              if (type == NULL)
9662
                /* In this case, we assume that the field COULD exist
9663
                   in some extension of the type.  Return an object of
9664
                   "type" void, which will match any formal
9665
                   (see ada_type_match). */
9666
                return value_zero (builtin_type (exp->gdbarch)->builtin_void,
9667
                                   lval_memory);
9668
            }
9669
          else
9670
            type =
9671
              ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
9672
                                          0, NULL);
9673
 
9674
          return value_zero (ada_aligned_type (type), lval_memory);
9675
        }
9676
      else
9677
        arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
9678
        arg1 = unwrap_value (arg1);
9679
        return ada_to_fixed_value (arg1);
9680
 
9681
    case OP_TYPE:
9682
      /* The value is not supposed to be used.  This is here to make it
9683
         easier to accommodate expressions that contain types.  */
9684
      (*pos) += 2;
9685
      if (noside == EVAL_SKIP)
9686
        goto nosideret;
9687
      else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9688
        return allocate_value (exp->elts[pc + 1].type);
9689
      else
9690
        error (_("Attempt to use a type name as an expression"));
9691
 
9692
    case OP_AGGREGATE:
9693
    case OP_CHOICES:
9694
    case OP_OTHERS:
9695
    case OP_DISCRETE_RANGE:
9696
    case OP_POSITIONAL:
9697
    case OP_NAME:
9698
      if (noside == EVAL_NORMAL)
9699
        switch (op)
9700
          {
9701
          case OP_NAME:
9702
            error (_("Undefined name, ambiguous name, or renaming used in "
9703
                     "component association: %s."), &exp->elts[pc+2].string);
9704
          case OP_AGGREGATE:
9705
            error (_("Aggregates only allowed on the right of an assignment"));
9706
          default:
9707
            internal_error (__FILE__, __LINE__, _("aggregate apparently mangled"));
9708
          }
9709
 
9710
      ada_forward_operator_length (exp, pc, &oplen, &nargs);
9711
      *pos += oplen - 1;
9712
      for (tem = 0; tem < nargs; tem += 1)
9713
        ada_evaluate_subexp (NULL, exp, pos, noside);
9714
      goto nosideret;
9715
    }
9716
 
9717
nosideret:
9718
  return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, 1);
9719
}
9720
 
9721
 
9722
                                /* Fixed point */
9723
 
9724
/* If TYPE encodes an Ada fixed-point type, return the suffix of the
9725
   type name that encodes the 'small and 'delta information.
9726
   Otherwise, return NULL.  */
9727
 
9728
static const char *
9729
fixed_type_info (struct type *type)
9730
{
9731
  const char *name = ada_type_name (type);
9732
  enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
9733
 
9734
  if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
9735
    {
9736
      const char *tail = strstr (name, "___XF_");
9737
 
9738
      if (tail == NULL)
9739
        return NULL;
9740
      else
9741
        return tail + 5;
9742
    }
9743
  else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
9744
    return fixed_type_info (TYPE_TARGET_TYPE (type));
9745
  else
9746
    return NULL;
9747
}
9748
 
9749
/* Returns non-zero iff TYPE represents an Ada fixed-point type.  */
9750
 
9751
int
9752
ada_is_fixed_point_type (struct type *type)
9753
{
9754
  return fixed_type_info (type) != NULL;
9755
}
9756
 
9757
/* Return non-zero iff TYPE represents a System.Address type.  */
9758
 
9759
int
9760
ada_is_system_address_type (struct type *type)
9761
{
9762
  return (TYPE_NAME (type)
9763
          && strcmp (TYPE_NAME (type), "system__address") == 0);
9764
}
9765
 
9766
/* Assuming that TYPE is the representation of an Ada fixed-point
9767
   type, return its delta, or -1 if the type is malformed and the
9768
   delta cannot be determined.  */
9769
 
9770
DOUBLEST
9771
ada_delta (struct type *type)
9772
{
9773
  const char *encoding = fixed_type_info (type);
9774
  DOUBLEST num, den;
9775
 
9776
  /* Strictly speaking, num and den are encoded as integer.  However,
9777
     they may not fit into a long, and they will have to be converted
9778
     to DOUBLEST anyway.  So scan them as DOUBLEST.  */
9779
  if (sscanf (encoding, "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
9780
              &num, &den) < 2)
9781
    return -1.0;
9782
  else
9783
    return num / den;
9784
}
9785
 
9786
/* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
9787
   factor ('SMALL value) associated with the type.  */
9788
 
9789
static DOUBLEST
9790
scaling_factor (struct type *type)
9791
{
9792
  const char *encoding = fixed_type_info (type);
9793
  DOUBLEST num0, den0, num1, den1;
9794
  int n;
9795
 
9796
  /* Strictly speaking, num's and den's are encoded as integer.  However,
9797
     they may not fit into a long, and they will have to be converted
9798
     to DOUBLEST anyway.  So scan them as DOUBLEST.  */
9799
  n = sscanf (encoding,
9800
              "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT
9801
              "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
9802
              &num0, &den0, &num1, &den1);
9803
 
9804
  if (n < 2)
9805
    return 1.0;
9806
  else if (n == 4)
9807
    return num1 / den1;
9808
  else
9809
    return num0 / den0;
9810
}
9811
 
9812
 
9813
/* Assuming that X is the representation of a value of fixed-point
9814
   type TYPE, return its floating-point equivalent.  */
9815
 
9816
DOUBLEST
9817
ada_fixed_to_float (struct type *type, LONGEST x)
9818
{
9819
  return (DOUBLEST) x *scaling_factor (type);
9820
}
9821
 
9822
/* The representation of a fixed-point value of type TYPE
9823
   corresponding to the value X.  */
9824
 
9825
LONGEST
9826
ada_float_to_fixed (struct type *type, DOUBLEST x)
9827
{
9828
  return (LONGEST) (x / scaling_factor (type) + 0.5);
9829
}
9830
 
9831
 
9832
 
9833
                                /* Range types */
9834
 
9835
/* Scan STR beginning at position K for a discriminant name, and
9836
   return the value of that discriminant field of DVAL in *PX.  If
9837
   PNEW_K is not null, put the position of the character beyond the
9838
   name scanned in *PNEW_K.  Return 1 if successful; return 0 and do
9839
   not alter *PX and *PNEW_K if unsuccessful.  */
9840
 
9841
static int
9842
scan_discrim_bound (char *str, int k, struct value *dval, LONGEST * px,
9843
                    int *pnew_k)
9844
{
9845
  static char *bound_buffer = NULL;
9846
  static size_t bound_buffer_len = 0;
9847
  char *bound;
9848
  char *pend;
9849
  struct value *bound_val;
9850
 
9851
  if (dval == NULL || str == NULL || str[k] == '\0')
9852
    return 0;
9853
 
9854
  pend = strstr (str + k, "__");
9855
  if (pend == NULL)
9856
    {
9857
      bound = str + k;
9858
      k += strlen (bound);
9859
    }
9860
  else
9861
    {
9862
      GROW_VECT (bound_buffer, bound_buffer_len, pend - (str + k) + 1);
9863
      bound = bound_buffer;
9864
      strncpy (bound_buffer, str + k, pend - (str + k));
9865
      bound[pend - (str + k)] = '\0';
9866
      k = pend - str;
9867
    }
9868
 
9869
  bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
9870
  if (bound_val == NULL)
9871
    return 0;
9872
 
9873
  *px = value_as_long (bound_val);
9874
  if (pnew_k != NULL)
9875
    *pnew_k = k;
9876
  return 1;
9877
}
9878
 
9879
/* Value of variable named NAME in the current environment.  If
9880
   no such variable found, then if ERR_MSG is null, returns 0, and
9881
   otherwise causes an error with message ERR_MSG.  */
9882
 
9883
static struct value *
9884
get_var_value (char *name, char *err_msg)
9885
{
9886
  struct ada_symbol_info *syms;
9887
  int nsyms;
9888
 
9889
  nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN,
9890
                                  &syms);
9891
 
9892
  if (nsyms != 1)
9893
    {
9894
      if (err_msg == NULL)
9895
        return 0;
9896
      else
9897
        error (("%s"), err_msg);
9898
    }
9899
 
9900
  return value_of_variable (syms[0].sym, syms[0].block);
9901
}
9902
 
9903
/* Value of integer variable named NAME in the current environment.  If
9904
   no such variable found, returns 0, and sets *FLAG to 0.  If
9905
   successful, sets *FLAG to 1.  */
9906
 
9907
LONGEST
9908
get_int_var_value (char *name, int *flag)
9909
{
9910
  struct value *var_val = get_var_value (name, 0);
9911
 
9912
  if (var_val == 0)
9913
    {
9914
      if (flag != NULL)
9915
        *flag = 0;
9916
      return 0;
9917
    }
9918
  else
9919
    {
9920
      if (flag != NULL)
9921
        *flag = 1;
9922
      return value_as_long (var_val);
9923
    }
9924
}
9925
 
9926
 
9927
/* Return a range type whose base type is that of the range type named
9928
   NAME in the current environment, and whose bounds are calculated
9929
   from NAME according to the GNAT range encoding conventions.
9930
   Extract discriminant values, if needed, from DVAL.  ORIG_TYPE is the
9931
   corresponding range type from debug information; fall back to using it
9932
   if symbol lookup fails.  If a new type must be created, allocate it
9933
   like ORIG_TYPE was.  The bounds information, in general, is encoded
9934
   in NAME, the base type given in the named range type.  */
9935
 
9936
static struct type *
9937
to_fixed_range_type (struct type *raw_type, struct value *dval)
9938
{
9939
  char *name;
9940
  struct type *base_type;
9941
  char *subtype_info;
9942
 
9943
  gdb_assert (raw_type != NULL);
9944
  gdb_assert (TYPE_NAME (raw_type) != NULL);
9945
 
9946
  if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
9947
    base_type = TYPE_TARGET_TYPE (raw_type);
9948
  else
9949
    base_type = raw_type;
9950
 
9951
  name = TYPE_NAME (raw_type);
9952
  subtype_info = strstr (name, "___XD");
9953
  if (subtype_info == NULL)
9954
    {
9955
      LONGEST L = ada_discrete_type_low_bound (raw_type);
9956
      LONGEST U = ada_discrete_type_high_bound (raw_type);
9957
 
9958
      if (L < INT_MIN || U > INT_MAX)
9959
        return raw_type;
9960
      else
9961
        return create_range_type (alloc_type_copy (raw_type), raw_type,
9962
                                  ada_discrete_type_low_bound (raw_type),
9963
                                  ada_discrete_type_high_bound (raw_type));
9964
    }
9965
  else
9966
    {
9967
      static char *name_buf = NULL;
9968
      static size_t name_len = 0;
9969
      int prefix_len = subtype_info - name;
9970
      LONGEST L, U;
9971
      struct type *type;
9972
      char *bounds_str;
9973
      int n;
9974
 
9975
      GROW_VECT (name_buf, name_len, prefix_len + 5);
9976
      strncpy (name_buf, name, prefix_len);
9977
      name_buf[prefix_len] = '\0';
9978
 
9979
      subtype_info += 5;
9980
      bounds_str = strchr (subtype_info, '_');
9981
      n = 1;
9982
 
9983
      if (*subtype_info == 'L')
9984
        {
9985
          if (!ada_scan_number (bounds_str, n, &L, &n)
9986
              && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
9987
            return raw_type;
9988
          if (bounds_str[n] == '_')
9989
            n += 2;
9990
          else if (bounds_str[n] == '.')        /* FIXME? SGI Workshop kludge.  */
9991
            n += 1;
9992
          subtype_info += 1;
9993
        }
9994
      else
9995
        {
9996
          int ok;
9997
 
9998
          strcpy (name_buf + prefix_len, "___L");
9999
          L = get_int_var_value (name_buf, &ok);
10000
          if (!ok)
10001
            {
10002
              lim_warning (_("Unknown lower bound, using 1."));
10003
              L = 1;
10004
            }
10005
        }
10006
 
10007
      if (*subtype_info == 'U')
10008
        {
10009
          if (!ada_scan_number (bounds_str, n, &U, &n)
10010
              && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
10011
            return raw_type;
10012
        }
10013
      else
10014
        {
10015
          int ok;
10016
 
10017
          strcpy (name_buf + prefix_len, "___U");
10018
          U = get_int_var_value (name_buf, &ok);
10019
          if (!ok)
10020
            {
10021
              lim_warning (_("Unknown upper bound, using %ld."), (long) L);
10022
              U = L;
10023
            }
10024
        }
10025
 
10026
      type = create_range_type (alloc_type_copy (raw_type), base_type, L, U);
10027
      TYPE_NAME (type) = name;
10028
      return type;
10029
    }
10030
}
10031
 
10032
/* True iff NAME is the name of a range type.  */
10033
 
10034
int
10035
ada_is_range_type_name (const char *name)
10036
{
10037
  return (name != NULL && strstr (name, "___XD"));
10038
}
10039
 
10040
 
10041
                                /* Modular types */
10042
 
10043
/* True iff TYPE is an Ada modular type.  */
10044
 
10045
int
10046
ada_is_modular_type (struct type *type)
10047
{
10048
  struct type *subranged_type = base_type (type);
10049
 
10050
  return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
10051
          && TYPE_CODE (subranged_type) == TYPE_CODE_INT
10052
          && TYPE_UNSIGNED (subranged_type));
10053
}
10054
 
10055
/* Try to determine the lower and upper bounds of the given modular type
10056
   using the type name only.  Return non-zero and set L and U as the lower
10057
   and upper bounds (respectively) if successful.  */
10058
 
10059
int
10060
ada_modulus_from_name (struct type *type, ULONGEST *modulus)
10061
{
10062
  char *name = ada_type_name (type);
10063
  char *suffix;
10064
  int k;
10065
  LONGEST U;
10066
 
10067
  if (name == NULL)
10068
    return 0;
10069
 
10070
  /* Discrete type bounds are encoded using an __XD suffix.  In our case,
10071
     we are looking for static bounds, which means an __XDLU suffix.
10072
     Moreover, we know that the lower bound of modular types is always
10073
     zero, so the actual suffix should start with "__XDLU_0__", and
10074
     then be followed by the upper bound value.  */
10075
  suffix = strstr (name, "__XDLU_0__");
10076
  if (suffix == NULL)
10077
    return 0;
10078
  k = 10;
10079
  if (!ada_scan_number (suffix, k, &U, NULL))
10080
    return 0;
10081
 
10082
  *modulus = (ULONGEST) U + 1;
10083
  return 1;
10084
}
10085
 
10086
/* Assuming ada_is_modular_type (TYPE), the modulus of TYPE.  */
10087
 
10088
ULONGEST
10089
ada_modulus (struct type *type)
10090
{
10091
  return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
10092
}
10093
 
10094
 
10095
/* Ada exception catchpoint support:
10096
   ---------------------------------
10097
 
10098
   We support 3 kinds of exception catchpoints:
10099
     . catchpoints on Ada exceptions
10100
     . catchpoints on unhandled Ada exceptions
10101
     . catchpoints on failed assertions
10102
 
10103
   Exceptions raised during failed assertions, or unhandled exceptions
10104
   could perfectly be caught with the general catchpoint on Ada exceptions.
10105
   However, we can easily differentiate these two special cases, and having
10106
   the option to distinguish these two cases from the rest can be useful
10107
   to zero-in on certain situations.
10108
 
10109
   Exception catchpoints are a specialized form of breakpoint,
10110
   since they rely on inserting breakpoints inside known routines
10111
   of the GNAT runtime.  The implementation therefore uses a standard
10112
   breakpoint structure of the BP_BREAKPOINT type, but with its own set
10113
   of breakpoint_ops.
10114
 
10115
   Support in the runtime for exception catchpoints have been changed
10116
   a few times already, and these changes affect the implementation
10117
   of these catchpoints.  In order to be able to support several
10118
   variants of the runtime, we use a sniffer that will determine
10119
   the runtime variant used by the program being debugged.
10120
 
10121
   At this time, we do not support the use of conditions on Ada exception
10122
   catchpoints.  The COND and COND_STRING fields are therefore set
10123
   to NULL (most of the time, see below).
10124
 
10125
   Conditions where EXP_STRING, COND, and COND_STRING are used:
10126
 
10127
     When a user specifies the name of a specific exception in the case
10128
     of catchpoints on Ada exceptions, we store the name of that exception
10129
     in the EXP_STRING.  We then translate this request into an actual
10130
     condition stored in COND_STRING, and then parse it into an expression
10131
     stored in COND.  */
10132
 
10133
/* The different types of catchpoints that we introduced for catching
10134
   Ada exceptions.  */
10135
 
10136
enum exception_catchpoint_kind
10137
{
10138
  ex_catch_exception,
10139
  ex_catch_exception_unhandled,
10140
  ex_catch_assert
10141
};
10142
 
10143
/* Ada's standard exceptions.  */
10144
 
10145
static char *standard_exc[] = {
10146
  "constraint_error",
10147
  "program_error",
10148
  "storage_error",
10149
  "tasking_error"
10150
};
10151
 
10152
typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
10153
 
10154
/* A structure that describes how to support exception catchpoints
10155
   for a given executable.  */
10156
 
10157
struct exception_support_info
10158
{
10159
   /* The name of the symbol to break on in order to insert
10160
      a catchpoint on exceptions.  */
10161
   const char *catch_exception_sym;
10162
 
10163
   /* The name of the symbol to break on in order to insert
10164
      a catchpoint on unhandled exceptions.  */
10165
   const char *catch_exception_unhandled_sym;
10166
 
10167
   /* The name of the symbol to break on in order to insert
10168
      a catchpoint on failed assertions.  */
10169
   const char *catch_assert_sym;
10170
 
10171
   /* Assuming that the inferior just triggered an unhandled exception
10172
      catchpoint, this function is responsible for returning the address
10173
      in inferior memory where the name of that exception is stored.
10174
      Return zero if the address could not be computed.  */
10175
   ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
10176
};
10177
 
10178
static CORE_ADDR ada_unhandled_exception_name_addr (void);
10179
static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
10180
 
10181
/* The following exception support info structure describes how to
10182
   implement exception catchpoints with the latest version of the
10183
   Ada runtime (as of 2007-03-06).  */
10184
 
10185
static const struct exception_support_info default_exception_support_info =
10186
{
10187
  "__gnat_debug_raise_exception", /* catch_exception_sym */
10188
  "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
10189
  "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
10190
  ada_unhandled_exception_name_addr
10191
};
10192
 
10193
/* The following exception support info structure describes how to
10194
   implement exception catchpoints with a slightly older version
10195
   of the Ada runtime.  */
10196
 
10197
static const struct exception_support_info exception_support_info_fallback =
10198
{
10199
  "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
10200
  "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
10201
  "system__assertions__raise_assert_failure",  /* catch_assert_sym */
10202
  ada_unhandled_exception_name_addr_from_raise
10203
};
10204
 
10205
/* For each executable, we sniff which exception info structure to use
10206
   and cache it in the following global variable.  */
10207
 
10208
static const struct exception_support_info *exception_info = NULL;
10209
 
10210
/* Inspect the Ada runtime and determine which exception info structure
10211
   should be used to provide support for exception catchpoints.
10212
 
10213
   This function will always set exception_info, or raise an error.  */
10214
 
10215
static void
10216
ada_exception_support_info_sniffer (void)
10217
{
10218
  struct symbol *sym;
10219
 
10220
  /* If the exception info is already known, then no need to recompute it.  */
10221
  if (exception_info != NULL)
10222
    return;
10223
 
10224
  /* Check the latest (default) exception support info.  */
10225
  sym = standard_lookup (default_exception_support_info.catch_exception_sym,
10226
                         NULL, VAR_DOMAIN);
10227
  if (sym != NULL)
10228
    {
10229
      exception_info = &default_exception_support_info;
10230
      return;
10231
    }
10232
 
10233
  /* Try our fallback exception suport info.  */
10234
  sym = standard_lookup (exception_support_info_fallback.catch_exception_sym,
10235
                         NULL, VAR_DOMAIN);
10236
  if (sym != NULL)
10237
    {
10238
      exception_info = &exception_support_info_fallback;
10239
      return;
10240
    }
10241
 
10242
  /* Sometimes, it is normal for us to not be able to find the routine
10243
     we are looking for.  This happens when the program is linked with
10244
     the shared version of the GNAT runtime, and the program has not been
10245
     started yet.  Inform the user of these two possible causes if
10246
     applicable.  */
10247
 
10248
  if (ada_update_initial_language (language_unknown) != language_ada)
10249
    error (_("Unable to insert catchpoint.  Is this an Ada main program?"));
10250
 
10251
  /* If the symbol does not exist, then check that the program is
10252
     already started, to make sure that shared libraries have been
10253
     loaded.  If it is not started, this may mean that the symbol is
10254
     in a shared library.  */
10255
 
10256
  if (ptid_get_pid (inferior_ptid) == 0)
10257
    error (_("Unable to insert catchpoint. Try to start the program first."));
10258
 
10259
  /* At this point, we know that we are debugging an Ada program and
10260
     that the inferior has been started, but we still are not able to
10261
     find the run-time symbols. That can mean that we are in
10262
     configurable run time mode, or that a-except as been optimized
10263
     out by the linker...  In any case, at this point it is not worth
10264
     supporting this feature.  */
10265
 
10266
  error (_("Cannot insert catchpoints in this configuration."));
10267
}
10268
 
10269
/* An observer of "executable_changed" events.
10270
   Its role is to clear certain cached values that need to be recomputed
10271
   each time a new executable is loaded by GDB.  */
10272
 
10273
static void
10274
ada_executable_changed_observer (void)
10275
{
10276
  /* If the executable changed, then it is possible that the Ada runtime
10277
     is different.  So we need to invalidate the exception support info
10278
     cache.  */
10279
  exception_info = NULL;
10280
}
10281
 
10282
/* True iff FRAME is very likely to be that of a function that is
10283
   part of the runtime system.  This is all very heuristic, but is
10284
   intended to be used as advice as to what frames are uninteresting
10285
   to most users.  */
10286
 
10287
static int
10288
is_known_support_routine (struct frame_info *frame)
10289
{
10290
  struct symtab_and_line sal;
10291
  char *func_name;
10292
  enum language func_lang;
10293
  int i;
10294
 
10295
  /* If this code does not have any debugging information (no symtab),
10296
     This cannot be any user code.  */
10297
 
10298
  find_frame_sal (frame, &sal);
10299
  if (sal.symtab == NULL)
10300
    return 1;
10301
 
10302
  /* If there is a symtab, but the associated source file cannot be
10303
     located, then assume this is not user code:  Selecting a frame
10304
     for which we cannot display the code would not be very helpful
10305
     for the user.  This should also take care of case such as VxWorks
10306
     where the kernel has some debugging info provided for a few units.  */
10307
 
10308
  if (symtab_to_fullname (sal.symtab) == NULL)
10309
    return 1;
10310
 
10311
  /* Check the unit filename againt the Ada runtime file naming.
10312
     We also check the name of the objfile against the name of some
10313
     known system libraries that sometimes come with debugging info
10314
     too.  */
10315
 
10316
  for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
10317
    {
10318
      re_comp (known_runtime_file_name_patterns[i]);
10319
      if (re_exec (sal.symtab->filename))
10320
        return 1;
10321
      if (sal.symtab->objfile != NULL
10322
          && re_exec (sal.symtab->objfile->name))
10323
        return 1;
10324
    }
10325
 
10326
  /* Check whether the function is a GNAT-generated entity.  */
10327
 
10328
  find_frame_funname (frame, &func_name, &func_lang);
10329
  if (func_name == NULL)
10330
    return 1;
10331
 
10332
  for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
10333
    {
10334
      re_comp (known_auxiliary_function_name_patterns[i]);
10335
      if (re_exec (func_name))
10336
        return 1;
10337
    }
10338
 
10339
  return 0;
10340
}
10341
 
10342
/* Find the first frame that contains debugging information and that is not
10343
   part of the Ada run-time, starting from FI and moving upward.  */
10344
 
10345
void
10346
ada_find_printable_frame (struct frame_info *fi)
10347
{
10348
  for (; fi != NULL; fi = get_prev_frame (fi))
10349
    {
10350
      if (!is_known_support_routine (fi))
10351
        {
10352
          select_frame (fi);
10353
          break;
10354
        }
10355
    }
10356
 
10357
}
10358
 
10359
/* Assuming that the inferior just triggered an unhandled exception
10360
   catchpoint, return the address in inferior memory where the name
10361
   of the exception is stored.
10362
 
10363
   Return zero if the address could not be computed.  */
10364
 
10365
static CORE_ADDR
10366
ada_unhandled_exception_name_addr (void)
10367
{
10368
  return parse_and_eval_address ("e.full_name");
10369
}
10370
 
10371
/* Same as ada_unhandled_exception_name_addr, except that this function
10372
   should be used when the inferior uses an older version of the runtime,
10373
   where the exception name needs to be extracted from a specific frame
10374
   several frames up in the callstack.  */
10375
 
10376
static CORE_ADDR
10377
ada_unhandled_exception_name_addr_from_raise (void)
10378
{
10379
  int frame_level;
10380
  struct frame_info *fi;
10381
 
10382
  /* To determine the name of this exception, we need to select
10383
     the frame corresponding to RAISE_SYM_NAME.  This frame is
10384
     at least 3 levels up, so we simply skip the first 3 frames
10385
     without checking the name of their associated function.  */
10386
  fi = get_current_frame ();
10387
  for (frame_level = 0; frame_level < 3; frame_level += 1)
10388
    if (fi != NULL)
10389
      fi = get_prev_frame (fi);
10390
 
10391
  while (fi != NULL)
10392
    {
10393
      char *func_name;
10394
      enum language func_lang;
10395
 
10396
      find_frame_funname (fi, &func_name, &func_lang);
10397
      if (func_name != NULL
10398
          && strcmp (func_name, exception_info->catch_exception_sym) == 0)
10399
        break; /* We found the frame we were looking for...  */
10400
      fi = get_prev_frame (fi);
10401
    }
10402
 
10403
  if (fi == NULL)
10404
    return 0;
10405
 
10406
  select_frame (fi);
10407
  return parse_and_eval_address ("id.full_name");
10408
}
10409
 
10410
/* Assuming the inferior just triggered an Ada exception catchpoint
10411
   (of any type), return the address in inferior memory where the name
10412
   of the exception is stored, if applicable.
10413
 
10414
   Return zero if the address could not be computed, or if not relevant.  */
10415
 
10416
static CORE_ADDR
10417
ada_exception_name_addr_1 (enum exception_catchpoint_kind ex,
10418
                           struct breakpoint *b)
10419
{
10420
  switch (ex)
10421
    {
10422
      case ex_catch_exception:
10423
        return (parse_and_eval_address ("e.full_name"));
10424
        break;
10425
 
10426
      case ex_catch_exception_unhandled:
10427
        return exception_info->unhandled_exception_name_addr ();
10428
        break;
10429
 
10430
      case ex_catch_assert:
10431
        return 0;  /* Exception name is not relevant in this case.  */
10432
        break;
10433
 
10434
      default:
10435
        internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10436
        break;
10437
    }
10438
 
10439
  return 0; /* Should never be reached.  */
10440
}
10441
 
10442
/* Same as ada_exception_name_addr_1, except that it intercepts and contains
10443
   any error that ada_exception_name_addr_1 might cause to be thrown.
10444
   When an error is intercepted, a warning with the error message is printed,
10445
   and zero is returned.  */
10446
 
10447
static CORE_ADDR
10448
ada_exception_name_addr (enum exception_catchpoint_kind ex,
10449
                         struct breakpoint *b)
10450
{
10451
  struct gdb_exception e;
10452
  CORE_ADDR result = 0;
10453
 
10454
  TRY_CATCH (e, RETURN_MASK_ERROR)
10455
    {
10456
      result = ada_exception_name_addr_1 (ex, b);
10457
    }
10458
 
10459
  if (e.reason < 0)
10460
    {
10461
      warning (_("failed to get exception name: %s"), e.message);
10462
      return 0;
10463
    }
10464
 
10465
  return result;
10466
}
10467
 
10468
/* Implement the PRINT_IT method in the breakpoint_ops structure
10469
   for all exception catchpoint kinds.  */
10470
 
10471
static enum print_stop_action
10472
print_it_exception (enum exception_catchpoint_kind ex, struct breakpoint *b)
10473
{
10474
  const CORE_ADDR addr = ada_exception_name_addr (ex, b);
10475
  char exception_name[256];
10476
 
10477
  if (addr != 0)
10478
    {
10479
      read_memory (addr, exception_name, sizeof (exception_name) - 1);
10480
      exception_name [sizeof (exception_name) - 1] = '\0';
10481
    }
10482
 
10483
  ada_find_printable_frame (get_current_frame ());
10484
 
10485
  annotate_catchpoint (b->number);
10486
  switch (ex)
10487
    {
10488
      case ex_catch_exception:
10489
        if (addr != 0)
10490
          printf_filtered (_("\nCatchpoint %d, %s at "),
10491
                           b->number, exception_name);
10492
        else
10493
          printf_filtered (_("\nCatchpoint %d, exception at "), b->number);
10494
        break;
10495
      case ex_catch_exception_unhandled:
10496
        if (addr != 0)
10497
          printf_filtered (_("\nCatchpoint %d, unhandled %s at "),
10498
                           b->number, exception_name);
10499
        else
10500
          printf_filtered (_("\nCatchpoint %d, unhandled exception at "),
10501
                           b->number);
10502
        break;
10503
      case ex_catch_assert:
10504
        printf_filtered (_("\nCatchpoint %d, failed assertion at "),
10505
                         b->number);
10506
        break;
10507
    }
10508
 
10509
  return PRINT_SRC_AND_LOC;
10510
}
10511
 
10512
/* Implement the PRINT_ONE method in the breakpoint_ops structure
10513
   for all exception catchpoint kinds.  */
10514
 
10515
static void
10516
print_one_exception (enum exception_catchpoint_kind ex,
10517
                     struct breakpoint *b, struct bp_location **last_loc)
10518
{
10519
  struct value_print_options opts;
10520
 
10521
  get_user_print_options (&opts);
10522
  if (opts.addressprint)
10523
    {
10524
      annotate_field (4);
10525
      ui_out_field_core_addr (uiout, "addr", b->loc->gdbarch, b->loc->address);
10526
    }
10527
 
10528
  annotate_field (5);
10529
  *last_loc = b->loc;
10530
  switch (ex)
10531
    {
10532
      case ex_catch_exception:
10533
        if (b->exp_string != NULL)
10534
          {
10535
            char *msg = xstrprintf (_("`%s' Ada exception"), b->exp_string);
10536
 
10537
            ui_out_field_string (uiout, "what", msg);
10538
            xfree (msg);
10539
          }
10540
        else
10541
          ui_out_field_string (uiout, "what", "all Ada exceptions");
10542
 
10543
        break;
10544
 
10545
      case ex_catch_exception_unhandled:
10546
        ui_out_field_string (uiout, "what", "unhandled Ada exceptions");
10547
        break;
10548
 
10549
      case ex_catch_assert:
10550
        ui_out_field_string (uiout, "what", "failed Ada assertions");
10551
        break;
10552
 
10553
      default:
10554
        internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10555
        break;
10556
    }
10557
}
10558
 
10559
/* Implement the PRINT_MENTION method in the breakpoint_ops structure
10560
   for all exception catchpoint kinds.  */
10561
 
10562
static void
10563
print_mention_exception (enum exception_catchpoint_kind ex,
10564
                         struct breakpoint *b)
10565
{
10566
  switch (ex)
10567
    {
10568
      case ex_catch_exception:
10569
        if (b->exp_string != NULL)
10570
          printf_filtered (_("Catchpoint %d: `%s' Ada exception"),
10571
                           b->number, b->exp_string);
10572
        else
10573
          printf_filtered (_("Catchpoint %d: all Ada exceptions"), b->number);
10574
 
10575
        break;
10576
 
10577
      case ex_catch_exception_unhandled:
10578
        printf_filtered (_("Catchpoint %d: unhandled Ada exceptions"),
10579
                         b->number);
10580
        break;
10581
 
10582
      case ex_catch_assert:
10583
        printf_filtered (_("Catchpoint %d: failed Ada assertions"), b->number);
10584
        break;
10585
 
10586
      default:
10587
        internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10588
        break;
10589
    }
10590
}
10591
 
10592
/* Implement the PRINT_RECREATE method in the breakpoint_ops structure
10593
   for all exception catchpoint kinds.  */
10594
 
10595
static void
10596
print_recreate_exception (enum exception_catchpoint_kind ex,
10597
                          struct breakpoint *b, struct ui_file *fp)
10598
{
10599
  switch (ex)
10600
    {
10601
      case ex_catch_exception:
10602
        fprintf_filtered (fp, "catch exception");
10603
        if (b->exp_string != NULL)
10604
          fprintf_filtered (fp, " %s", b->exp_string);
10605
        break;
10606
 
10607
      case ex_catch_exception_unhandled:
10608
        fprintf_filtered (fp, "catch exception unhandled");
10609
        break;
10610
 
10611
      case ex_catch_assert:
10612
        fprintf_filtered (fp, "catch assert");
10613
        break;
10614
 
10615
      default:
10616
        internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10617
    }
10618
}
10619
 
10620
/* Virtual table for "catch exception" breakpoints.  */
10621
 
10622
static enum print_stop_action
10623
print_it_catch_exception (struct breakpoint *b)
10624
{
10625
  return print_it_exception (ex_catch_exception, b);
10626
}
10627
 
10628
static void
10629
print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
10630
{
10631
  print_one_exception (ex_catch_exception, b, last_loc);
10632
}
10633
 
10634
static void
10635
print_mention_catch_exception (struct breakpoint *b)
10636
{
10637
  print_mention_exception (ex_catch_exception, b);
10638
}
10639
 
10640
static void
10641
print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp)
10642
{
10643
  print_recreate_exception (ex_catch_exception, b, fp);
10644
}
10645
 
10646
static struct breakpoint_ops catch_exception_breakpoint_ops =
10647
{
10648
  NULL, /* insert */
10649
  NULL, /* remove */
10650
  NULL, /* breakpoint_hit */
10651
  print_it_catch_exception,
10652
  print_one_catch_exception,
10653
  print_mention_catch_exception,
10654
  print_recreate_catch_exception
10655
};
10656
 
10657
/* Virtual table for "catch exception unhandled" breakpoints.  */
10658
 
10659
static enum print_stop_action
10660
print_it_catch_exception_unhandled (struct breakpoint *b)
10661
{
10662
  return print_it_exception (ex_catch_exception_unhandled, b);
10663
}
10664
 
10665
static void
10666
print_one_catch_exception_unhandled (struct breakpoint *b,
10667
                                     struct bp_location **last_loc)
10668
{
10669
  print_one_exception (ex_catch_exception_unhandled, b, last_loc);
10670
}
10671
 
10672
static void
10673
print_mention_catch_exception_unhandled (struct breakpoint *b)
10674
{
10675
  print_mention_exception (ex_catch_exception_unhandled, b);
10676
}
10677
 
10678
static void
10679
print_recreate_catch_exception_unhandled (struct breakpoint *b,
10680
                                          struct ui_file *fp)
10681
{
10682
  print_recreate_exception (ex_catch_exception_unhandled, b, fp);
10683
}
10684
 
10685
static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops = {
10686
  NULL, /* insert */
10687
  NULL, /* remove */
10688
  NULL, /* breakpoint_hit */
10689
  print_it_catch_exception_unhandled,
10690
  print_one_catch_exception_unhandled,
10691
  print_mention_catch_exception_unhandled,
10692
  print_recreate_catch_exception_unhandled
10693
};
10694
 
10695
/* Virtual table for "catch assert" breakpoints.  */
10696
 
10697
static enum print_stop_action
10698
print_it_catch_assert (struct breakpoint *b)
10699
{
10700
  return print_it_exception (ex_catch_assert, b);
10701
}
10702
 
10703
static void
10704
print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
10705
{
10706
  print_one_exception (ex_catch_assert, b, last_loc);
10707
}
10708
 
10709
static void
10710
print_mention_catch_assert (struct breakpoint *b)
10711
{
10712
  print_mention_exception (ex_catch_assert, b);
10713
}
10714
 
10715
static void
10716
print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp)
10717
{
10718
  print_recreate_exception (ex_catch_assert, b, fp);
10719
}
10720
 
10721
static struct breakpoint_ops catch_assert_breakpoint_ops = {
10722
  NULL, /* insert */
10723
  NULL, /* remove */
10724
  NULL, /* breakpoint_hit */
10725
  print_it_catch_assert,
10726
  print_one_catch_assert,
10727
  print_mention_catch_assert,
10728
  print_recreate_catch_assert
10729
};
10730
 
10731
/* Return non-zero if B is an Ada exception catchpoint.  */
10732
 
10733
int
10734
ada_exception_catchpoint_p (struct breakpoint *b)
10735
{
10736
  return (b->ops == &catch_exception_breakpoint_ops
10737
          || b->ops == &catch_exception_unhandled_breakpoint_ops
10738
          || b->ops == &catch_assert_breakpoint_ops);
10739
}
10740
 
10741
/* Return a newly allocated copy of the first space-separated token
10742
   in ARGSP, and then adjust ARGSP to point immediately after that
10743
   token.
10744
 
10745
   Return NULL if ARGPS does not contain any more tokens.  */
10746
 
10747
static char *
10748
ada_get_next_arg (char **argsp)
10749
{
10750
  char *args = *argsp;
10751
  char *end;
10752
  char *result;
10753
 
10754
  /* Skip any leading white space.  */
10755
 
10756
  while (isspace (*args))
10757
    args++;
10758
 
10759
  if (args[0] == '\0')
10760
    return NULL; /* No more arguments.  */
10761
 
10762
  /* Find the end of the current argument.  */
10763
 
10764
  end = args;
10765
  while (*end != '\0' && !isspace (*end))
10766
    end++;
10767
 
10768
  /* Adjust ARGSP to point to the start of the next argument.  */
10769
 
10770
  *argsp = end;
10771
 
10772
  /* Make a copy of the current argument and return it.  */
10773
 
10774
  result = xmalloc (end - args + 1);
10775
  strncpy (result, args, end - args);
10776
  result[end - args] = '\0';
10777
 
10778
  return result;
10779
}
10780
 
10781
/* Split the arguments specified in a "catch exception" command.
10782
   Set EX to the appropriate catchpoint type.
10783
   Set EXP_STRING to the name of the specific exception if
10784
   specified by the user.  */
10785
 
10786
static void
10787
catch_ada_exception_command_split (char *args,
10788
                                   enum exception_catchpoint_kind *ex,
10789
                                   char **exp_string)
10790
{
10791
  struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
10792
  char *exception_name;
10793
 
10794
  exception_name = ada_get_next_arg (&args);
10795
  make_cleanup (xfree, exception_name);
10796
 
10797
  /* Check that we do not have any more arguments.  Anything else
10798
     is unexpected.  */
10799
 
10800
  while (isspace (*args))
10801
    args++;
10802
 
10803
  if (args[0] != '\0')
10804
    error (_("Junk at end of expression"));
10805
 
10806
  discard_cleanups (old_chain);
10807
 
10808
  if (exception_name == NULL)
10809
    {
10810
      /* Catch all exceptions.  */
10811
      *ex = ex_catch_exception;
10812
      *exp_string = NULL;
10813
    }
10814
  else if (strcmp (exception_name, "unhandled") == 0)
10815
    {
10816
      /* Catch unhandled exceptions.  */
10817
      *ex = ex_catch_exception_unhandled;
10818
      *exp_string = NULL;
10819
    }
10820
  else
10821
    {
10822
      /* Catch a specific exception.  */
10823
      *ex = ex_catch_exception;
10824
      *exp_string = exception_name;
10825
    }
10826
}
10827
 
10828
/* Return the name of the symbol on which we should break in order to
10829
   implement a catchpoint of the EX kind.  */
10830
 
10831
static const char *
10832
ada_exception_sym_name (enum exception_catchpoint_kind ex)
10833
{
10834
  gdb_assert (exception_info != NULL);
10835
 
10836
  switch (ex)
10837
    {
10838
      case ex_catch_exception:
10839
        return (exception_info->catch_exception_sym);
10840
        break;
10841
      case ex_catch_exception_unhandled:
10842
        return (exception_info->catch_exception_unhandled_sym);
10843
        break;
10844
      case ex_catch_assert:
10845
        return (exception_info->catch_assert_sym);
10846
        break;
10847
      default:
10848
        internal_error (__FILE__, __LINE__,
10849
                        _("unexpected catchpoint kind (%d)"), ex);
10850
    }
10851
}
10852
 
10853
/* Return the breakpoint ops "virtual table" used for catchpoints
10854
   of the EX kind.  */
10855
 
10856
static struct breakpoint_ops *
10857
ada_exception_breakpoint_ops (enum exception_catchpoint_kind ex)
10858
{
10859
  switch (ex)
10860
    {
10861
      case ex_catch_exception:
10862
        return (&catch_exception_breakpoint_ops);
10863
        break;
10864
      case ex_catch_exception_unhandled:
10865
        return (&catch_exception_unhandled_breakpoint_ops);
10866
        break;
10867
      case ex_catch_assert:
10868
        return (&catch_assert_breakpoint_ops);
10869
        break;
10870
      default:
10871
        internal_error (__FILE__, __LINE__,
10872
                        _("unexpected catchpoint kind (%d)"), ex);
10873
    }
10874
}
10875
 
10876
/* Return the condition that will be used to match the current exception
10877
   being raised with the exception that the user wants to catch.  This
10878
   assumes that this condition is used when the inferior just triggered
10879
   an exception catchpoint.
10880
 
10881
   The string returned is a newly allocated string that needs to be
10882
   deallocated later.  */
10883
 
10884
static char *
10885
ada_exception_catchpoint_cond_string (const char *exp_string)
10886
{
10887
  int i;
10888
 
10889
  /* The standard exceptions are a special case. They are defined in
10890
     runtime units that have been compiled without debugging info; if
10891
     EXP_STRING is the not-fully-qualified name of a standard
10892
     exception (e.g. "constraint_error") then, during the evaluation
10893
     of the condition expression, the symbol lookup on this name would
10894
     *not* return this standard exception. The catchpoint condition
10895
     may then be set only on user-defined exceptions which have the
10896
     same not-fully-qualified name (e.g. my_package.constraint_error).
10897
 
10898
     To avoid this unexcepted behavior, these standard exceptions are
10899
     systematically prefixed by "standard". This means that "catch
10900
     exception constraint_error" is rewritten into "catch exception
10901
     standard.constraint_error".
10902
 
10903
     If an exception named contraint_error is defined in another package of
10904
     the inferior program, then the only way to specify this exception as a
10905
     breakpoint condition is to use its fully-qualified named:
10906
     e.g. my_package.constraint_error.  */
10907
 
10908
  for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
10909
    {
10910
      if (strcmp (standard_exc [i], exp_string) == 0)
10911
        {
10912
          return xstrprintf ("long_integer (e) = long_integer (&standard.%s)",
10913
                             exp_string);
10914
        }
10915
    }
10916
  return xstrprintf ("long_integer (e) = long_integer (&%s)", exp_string);
10917
}
10918
 
10919
/* Return the expression corresponding to COND_STRING evaluated at SAL.  */
10920
 
10921
static struct expression *
10922
ada_parse_catchpoint_condition (char *cond_string,
10923
                                struct symtab_and_line sal)
10924
{
10925
  return (parse_exp_1 (&cond_string, block_for_pc (sal.pc), 0));
10926
}
10927
 
10928
/* Return the symtab_and_line that should be used to insert an exception
10929
   catchpoint of the TYPE kind.
10930
 
10931
   EX_STRING should contain the name of a specific exception
10932
   that the catchpoint should catch, or NULL otherwise.
10933
 
10934
   The idea behind all the remaining parameters is that their names match
10935
   the name of certain fields in the breakpoint structure that are used to
10936
   handle exception catchpoints.  This function returns the value to which
10937
   these fields should be set, depending on the type of catchpoint we need
10938
   to create.
10939
 
10940
   If COND and COND_STRING are both non-NULL, any value they might
10941
   hold will be free'ed, and then replaced by newly allocated ones.
10942
   These parameters are left untouched otherwise.  */
10943
 
10944
static struct symtab_and_line
10945
ada_exception_sal (enum exception_catchpoint_kind ex, char *exp_string,
10946
                   char **addr_string, char **cond_string,
10947
                   struct expression **cond, struct breakpoint_ops **ops)
10948
{
10949
  const char *sym_name;
10950
  struct symbol *sym;
10951
  struct symtab_and_line sal;
10952
 
10953
  /* First, find out which exception support info to use.  */
10954
  ada_exception_support_info_sniffer ();
10955
 
10956
  /* Then lookup the function on which we will break in order to catch
10957
     the Ada exceptions requested by the user.  */
10958
 
10959
  sym_name = ada_exception_sym_name (ex);
10960
  sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
10961
 
10962
  /* The symbol we're looking up is provided by a unit in the GNAT runtime
10963
     that should be compiled with debugging information.  As a result, we
10964
     expect to find that symbol in the symtabs.  If we don't find it, then
10965
     the target most likely does not support Ada exceptions, or we cannot
10966
     insert exception breakpoints yet, because the GNAT runtime hasn't been
10967
     loaded yet.  */
10968
 
10969
  /* brobecker/2006-12-26: It is conceivable that the runtime was compiled
10970
     in such a way that no debugging information is produced for the symbol
10971
     we are looking for.  In this case, we could search the minimal symbols
10972
     as a fall-back mechanism.  This would still be operating in degraded
10973
     mode, however, as we would still be missing the debugging information
10974
     that is needed in order to extract the name of the exception being
10975
     raised (this name is printed in the catchpoint message, and is also
10976
     used when trying to catch a specific exception).  We do not handle
10977
     this case for now.  */
10978
 
10979
  if (sym == NULL)
10980
    error (_("Unable to break on '%s' in this configuration."), sym_name);
10981
 
10982
  /* Make sure that the symbol we found corresponds to a function.  */
10983
  if (SYMBOL_CLASS (sym) != LOC_BLOCK)
10984
    error (_("Symbol \"%s\" is not a function (class = %d)"),
10985
           sym_name, SYMBOL_CLASS (sym));
10986
 
10987
  sal = find_function_start_sal (sym, 1);
10988
 
10989
  /* Set ADDR_STRING.  */
10990
 
10991
  *addr_string = xstrdup (sym_name);
10992
 
10993
  /* Set the COND and COND_STRING (if not NULL).  */
10994
 
10995
  if (cond_string != NULL && cond != NULL)
10996
    {
10997
      if (*cond_string != NULL)
10998
        {
10999
          xfree (*cond_string);
11000
          *cond_string = NULL;
11001
        }
11002
      if (*cond != NULL)
11003
        {
11004
          xfree (*cond);
11005
          *cond = NULL;
11006
        }
11007
      if (exp_string != NULL)
11008
        {
11009
          *cond_string = ada_exception_catchpoint_cond_string (exp_string);
11010
          *cond = ada_parse_catchpoint_condition (*cond_string, sal);
11011
        }
11012
    }
11013
 
11014
  /* Set OPS.  */
11015
  *ops = ada_exception_breakpoint_ops (ex);
11016
 
11017
  return sal;
11018
}
11019
 
11020
/* Parse the arguments (ARGS) of the "catch exception" command.
11021
 
11022
   Set TYPE to the appropriate exception catchpoint type.
11023
   If the user asked the catchpoint to catch only a specific
11024
   exception, then save the exception name in ADDR_STRING.
11025
 
11026
   See ada_exception_sal for a description of all the remaining
11027
   function arguments of this function.  */
11028
 
11029
struct symtab_and_line
11030
ada_decode_exception_location (char *args, char **addr_string,
11031
                               char **exp_string, char **cond_string,
11032
                               struct expression **cond,
11033
                               struct breakpoint_ops **ops)
11034
{
11035
  enum exception_catchpoint_kind ex;
11036
 
11037
  catch_ada_exception_command_split (args, &ex, exp_string);
11038
  return ada_exception_sal (ex, *exp_string, addr_string, cond_string,
11039
                            cond, ops);
11040
}
11041
 
11042
struct symtab_and_line
11043
ada_decode_assert_location (char *args, char **addr_string,
11044
                            struct breakpoint_ops **ops)
11045
{
11046
  /* Check that no argument where provided at the end of the command.  */
11047
 
11048
  if (args != NULL)
11049
    {
11050
      while (isspace (*args))
11051
        args++;
11052
      if (*args != '\0')
11053
        error (_("Junk at end of arguments."));
11054
    }
11055
 
11056
  return ada_exception_sal (ex_catch_assert, NULL, addr_string, NULL, NULL,
11057
                            ops);
11058
}
11059
 
11060
                                /* Operators */
11061
/* Information about operators given special treatment in functions
11062
   below.  */
11063
/* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>).  */
11064
 
11065
#define ADA_OPERATORS \
11066
    OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
11067
    OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
11068
    OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
11069
    OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
11070
    OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
11071
    OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
11072
    OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
11073
    OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
11074
    OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
11075
    OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
11076
    OP_DEFN (OP_ATR_POS, 1, 2, 0) \
11077
    OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
11078
    OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
11079
    OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
11080
    OP_DEFN (UNOP_QUAL, 3, 1, 0) \
11081
    OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
11082
    OP_DEFN (OP_OTHERS, 1, 1, 0) \
11083
    OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
11084
    OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
11085
 
11086
static void
11087
ada_operator_length (const struct expression *exp, int pc, int *oplenp,
11088
                     int *argsp)
11089
{
11090
  switch (exp->elts[pc - 1].opcode)
11091
    {
11092
    default:
11093
      operator_length_standard (exp, pc, oplenp, argsp);
11094
      break;
11095
 
11096
#define OP_DEFN(op, len, args, binop) \
11097
    case op: *oplenp = len; *argsp = args; break;
11098
      ADA_OPERATORS;
11099
#undef OP_DEFN
11100
 
11101
    case OP_AGGREGATE:
11102
      *oplenp = 3;
11103
      *argsp = longest_to_int (exp->elts[pc - 2].longconst);
11104
      break;
11105
 
11106
    case OP_CHOICES:
11107
      *oplenp = 3;
11108
      *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
11109
      break;
11110
    }
11111
}
11112
 
11113
/* Implementation of the exp_descriptor method operator_check.  */
11114
 
11115
static int
11116
ada_operator_check (struct expression *exp, int pos,
11117
                    int (*objfile_func) (struct objfile *objfile, void *data),
11118
                    void *data)
11119
{
11120
  const union exp_element *const elts = exp->elts;
11121
  struct type *type = NULL;
11122
 
11123
  switch (elts[pos].opcode)
11124
    {
11125
      case UNOP_IN_RANGE:
11126
      case UNOP_QUAL:
11127
        type = elts[pos + 1].type;
11128
        break;
11129
 
11130
      default:
11131
        return operator_check_standard (exp, pos, objfile_func, data);
11132
    }
11133
 
11134
  /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL.  */
11135
 
11136
  if (type && TYPE_OBJFILE (type)
11137
      && (*objfile_func) (TYPE_OBJFILE (type), data))
11138
    return 1;
11139
 
11140
  return 0;
11141
}
11142
 
11143
static char *
11144
ada_op_name (enum exp_opcode opcode)
11145
{
11146
  switch (opcode)
11147
    {
11148
    default:
11149
      return op_name_standard (opcode);
11150
 
11151
#define OP_DEFN(op, len, args, binop) case op: return #op;
11152
      ADA_OPERATORS;
11153
#undef OP_DEFN
11154
 
11155
    case OP_AGGREGATE:
11156
      return "OP_AGGREGATE";
11157
    case OP_CHOICES:
11158
      return "OP_CHOICES";
11159
    case OP_NAME:
11160
      return "OP_NAME";
11161
    }
11162
}
11163
 
11164
/* As for operator_length, but assumes PC is pointing at the first
11165
   element of the operator, and gives meaningful results only for the
11166
   Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise.  */
11167
 
11168
static void
11169
ada_forward_operator_length (struct expression *exp, int pc,
11170
                             int *oplenp, int *argsp)
11171
{
11172
  switch (exp->elts[pc].opcode)
11173
    {
11174
    default:
11175
      *oplenp = *argsp = 0;
11176
      break;
11177
 
11178
#define OP_DEFN(op, len, args, binop) \
11179
    case op: *oplenp = len; *argsp = args; break;
11180
      ADA_OPERATORS;
11181
#undef OP_DEFN
11182
 
11183
    case OP_AGGREGATE:
11184
      *oplenp = 3;
11185
      *argsp = longest_to_int (exp->elts[pc + 1].longconst);
11186
      break;
11187
 
11188
    case OP_CHOICES:
11189
      *oplenp = 3;
11190
      *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
11191
      break;
11192
 
11193
    case OP_STRING:
11194
    case OP_NAME:
11195
      {
11196
        int len = longest_to_int (exp->elts[pc + 1].longconst);
11197
 
11198
        *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
11199
        *argsp = 0;
11200
        break;
11201
      }
11202
    }
11203
}
11204
 
11205
static int
11206
ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
11207
{
11208
  enum exp_opcode op = exp->elts[elt].opcode;
11209
  int oplen, nargs;
11210
  int pc = elt;
11211
  int i;
11212
 
11213
  ada_forward_operator_length (exp, elt, &oplen, &nargs);
11214
 
11215
  switch (op)
11216
    {
11217
      /* Ada attributes ('Foo).  */
11218
    case OP_ATR_FIRST:
11219
    case OP_ATR_LAST:
11220
    case OP_ATR_LENGTH:
11221
    case OP_ATR_IMAGE:
11222
    case OP_ATR_MAX:
11223
    case OP_ATR_MIN:
11224
    case OP_ATR_MODULUS:
11225
    case OP_ATR_POS:
11226
    case OP_ATR_SIZE:
11227
    case OP_ATR_TAG:
11228
    case OP_ATR_VAL:
11229
      break;
11230
 
11231
    case UNOP_IN_RANGE:
11232
    case UNOP_QUAL:
11233
      /* XXX: gdb_sprint_host_address, type_sprint */
11234
      fprintf_filtered (stream, _("Type @"));
11235
      gdb_print_host_address (exp->elts[pc + 1].type, stream);
11236
      fprintf_filtered (stream, " (");
11237
      type_print (exp->elts[pc + 1].type, NULL, stream, 0);
11238
      fprintf_filtered (stream, ")");
11239
      break;
11240
    case BINOP_IN_BOUNDS:
11241
      fprintf_filtered (stream, " (%d)",
11242
                        longest_to_int (exp->elts[pc + 2].longconst));
11243
      break;
11244
    case TERNOP_IN_RANGE:
11245
      break;
11246
 
11247
    case OP_AGGREGATE:
11248
    case OP_OTHERS:
11249
    case OP_DISCRETE_RANGE:
11250
    case OP_POSITIONAL:
11251
    case OP_CHOICES:
11252
      break;
11253
 
11254
    case OP_NAME:
11255
    case OP_STRING:
11256
      {
11257
        char *name = &exp->elts[elt + 2].string;
11258
        int len = longest_to_int (exp->elts[elt + 1].longconst);
11259
 
11260
        fprintf_filtered (stream, "Text: `%.*s'", len, name);
11261
        break;
11262
      }
11263
 
11264
    default:
11265
      return dump_subexp_body_standard (exp, stream, elt);
11266
    }
11267
 
11268
  elt += oplen;
11269
  for (i = 0; i < nargs; i += 1)
11270
    elt = dump_subexp (exp, stream, elt);
11271
 
11272
  return elt;
11273
}
11274
 
11275
/* The Ada extension of print_subexp (q.v.).  */
11276
 
11277
static void
11278
ada_print_subexp (struct expression *exp, int *pos,
11279
                  struct ui_file *stream, enum precedence prec)
11280
{
11281
  int oplen, nargs, i;
11282
  int pc = *pos;
11283
  enum exp_opcode op = exp->elts[pc].opcode;
11284
 
11285
  ada_forward_operator_length (exp, pc, &oplen, &nargs);
11286
 
11287
  *pos += oplen;
11288
  switch (op)
11289
    {
11290
    default:
11291
      *pos -= oplen;
11292
      print_subexp_standard (exp, pos, stream, prec);
11293
      return;
11294
 
11295
    case OP_VAR_VALUE:
11296
      fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
11297
      return;
11298
 
11299
    case BINOP_IN_BOUNDS:
11300
      /* XXX: sprint_subexp */
11301
      print_subexp (exp, pos, stream, PREC_SUFFIX);
11302
      fputs_filtered (" in ", stream);
11303
      print_subexp (exp, pos, stream, PREC_SUFFIX);
11304
      fputs_filtered ("'range", stream);
11305
      if (exp->elts[pc + 1].longconst > 1)
11306
        fprintf_filtered (stream, "(%ld)",
11307
                          (long) exp->elts[pc + 1].longconst);
11308
      return;
11309
 
11310
    case TERNOP_IN_RANGE:
11311
      if (prec >= PREC_EQUAL)
11312
        fputs_filtered ("(", stream);
11313
      /* XXX: sprint_subexp */
11314
      print_subexp (exp, pos, stream, PREC_SUFFIX);
11315
      fputs_filtered (" in ", stream);
11316
      print_subexp (exp, pos, stream, PREC_EQUAL);
11317
      fputs_filtered (" .. ", stream);
11318
      print_subexp (exp, pos, stream, PREC_EQUAL);
11319
      if (prec >= PREC_EQUAL)
11320
        fputs_filtered (")", stream);
11321
      return;
11322
 
11323
    case OP_ATR_FIRST:
11324
    case OP_ATR_LAST:
11325
    case OP_ATR_LENGTH:
11326
    case OP_ATR_IMAGE:
11327
    case OP_ATR_MAX:
11328
    case OP_ATR_MIN:
11329
    case OP_ATR_MODULUS:
11330
    case OP_ATR_POS:
11331
    case OP_ATR_SIZE:
11332
    case OP_ATR_TAG:
11333
    case OP_ATR_VAL:
11334
      if (exp->elts[*pos].opcode == OP_TYPE)
11335
        {
11336
          if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
11337
            LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0);
11338
          *pos += 3;
11339
        }
11340
      else
11341
        print_subexp (exp, pos, stream, PREC_SUFFIX);
11342
      fprintf_filtered (stream, "'%s", ada_attribute_name (op));
11343
      if (nargs > 1)
11344
        {
11345
          int tem;
11346
 
11347
          for (tem = 1; tem < nargs; tem += 1)
11348
            {
11349
              fputs_filtered ((tem == 1) ? " (" : ", ", stream);
11350
              print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
11351
            }
11352
          fputs_filtered (")", stream);
11353
        }
11354
      return;
11355
 
11356
    case UNOP_QUAL:
11357
      type_print (exp->elts[pc + 1].type, "", stream, 0);
11358
      fputs_filtered ("'(", stream);
11359
      print_subexp (exp, pos, stream, PREC_PREFIX);
11360
      fputs_filtered (")", stream);
11361
      return;
11362
 
11363
    case UNOP_IN_RANGE:
11364
      /* XXX: sprint_subexp */
11365
      print_subexp (exp, pos, stream, PREC_SUFFIX);
11366
      fputs_filtered (" in ", stream);
11367
      LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0);
11368
      return;
11369
 
11370
    case OP_DISCRETE_RANGE:
11371
      print_subexp (exp, pos, stream, PREC_SUFFIX);
11372
      fputs_filtered ("..", stream);
11373
      print_subexp (exp, pos, stream, PREC_SUFFIX);
11374
      return;
11375
 
11376
    case OP_OTHERS:
11377
      fputs_filtered ("others => ", stream);
11378
      print_subexp (exp, pos, stream, PREC_SUFFIX);
11379
      return;
11380
 
11381
    case OP_CHOICES:
11382
      for (i = 0; i < nargs-1; i += 1)
11383
        {
11384
          if (i > 0)
11385
            fputs_filtered ("|", stream);
11386
          print_subexp (exp, pos, stream, PREC_SUFFIX);
11387
        }
11388
      fputs_filtered (" => ", stream);
11389
      print_subexp (exp, pos, stream, PREC_SUFFIX);
11390
      return;
11391
 
11392
    case OP_POSITIONAL:
11393
      print_subexp (exp, pos, stream, PREC_SUFFIX);
11394
      return;
11395
 
11396
    case OP_AGGREGATE:
11397
      fputs_filtered ("(", stream);
11398
      for (i = 0; i < nargs; i += 1)
11399
        {
11400
          if (i > 0)
11401
            fputs_filtered (", ", stream);
11402
          print_subexp (exp, pos, stream, PREC_SUFFIX);
11403
        }
11404
      fputs_filtered (")", stream);
11405
      return;
11406
    }
11407
}
11408
 
11409
/* Table mapping opcodes into strings for printing operators
11410
   and precedences of the operators.  */
11411
 
11412
static const struct op_print ada_op_print_tab[] = {
11413
  {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
11414
  {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
11415
  {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
11416
  {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
11417
  {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
11418
  {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
11419
  {"=", BINOP_EQUAL, PREC_EQUAL, 0},
11420
  {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
11421
  {"<=", BINOP_LEQ, PREC_ORDER, 0},
11422
  {">=", BINOP_GEQ, PREC_ORDER, 0},
11423
  {">", BINOP_GTR, PREC_ORDER, 0},
11424
  {"<", BINOP_LESS, PREC_ORDER, 0},
11425
  {">>", BINOP_RSH, PREC_SHIFT, 0},
11426
  {"<<", BINOP_LSH, PREC_SHIFT, 0},
11427
  {"+", BINOP_ADD, PREC_ADD, 0},
11428
  {"-", BINOP_SUB, PREC_ADD, 0},
11429
  {"&", BINOP_CONCAT, PREC_ADD, 0},
11430
  {"*", BINOP_MUL, PREC_MUL, 0},
11431
  {"/", BINOP_DIV, PREC_MUL, 0},
11432
  {"rem", BINOP_REM, PREC_MUL, 0},
11433
  {"mod", BINOP_MOD, PREC_MUL, 0},
11434
  {"**", BINOP_EXP, PREC_REPEAT, 0},
11435
  {"@", BINOP_REPEAT, PREC_REPEAT, 0},
11436
  {"-", UNOP_NEG, PREC_PREFIX, 0},
11437
  {"+", UNOP_PLUS, PREC_PREFIX, 0},
11438
  {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
11439
  {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
11440
  {"abs ", UNOP_ABS, PREC_PREFIX, 0},
11441
  {".all", UNOP_IND, PREC_SUFFIX, 1},
11442
  {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
11443
  {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
11444
  {NULL, 0, 0, 0}
11445
};
11446
 
11447
enum ada_primitive_types {
11448
  ada_primitive_type_int,
11449
  ada_primitive_type_long,
11450
  ada_primitive_type_short,
11451
  ada_primitive_type_char,
11452
  ada_primitive_type_float,
11453
  ada_primitive_type_double,
11454
  ada_primitive_type_void,
11455
  ada_primitive_type_long_long,
11456
  ada_primitive_type_long_double,
11457
  ada_primitive_type_natural,
11458
  ada_primitive_type_positive,
11459
  ada_primitive_type_system_address,
11460
  nr_ada_primitive_types
11461
};
11462
 
11463
static void
11464
ada_language_arch_info (struct gdbarch *gdbarch,
11465
                        struct language_arch_info *lai)
11466
{
11467
  const struct builtin_type *builtin = builtin_type (gdbarch);
11468
 
11469
  lai->primitive_type_vector
11470
    = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
11471
                              struct type *);
11472
 
11473
  lai->primitive_type_vector [ada_primitive_type_int]
11474
    = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
11475
                         0, "integer");
11476
  lai->primitive_type_vector [ada_primitive_type_long]
11477
    = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
11478
                         0, "long_integer");
11479
  lai->primitive_type_vector [ada_primitive_type_short]
11480
    = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
11481
                         0, "short_integer");
11482
  lai->string_char_type
11483
    = lai->primitive_type_vector [ada_primitive_type_char]
11484
    = arch_integer_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
11485
  lai->primitive_type_vector [ada_primitive_type_float]
11486
    = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
11487
                       "float", NULL);
11488
  lai->primitive_type_vector [ada_primitive_type_double]
11489
    = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
11490
                       "long_float", NULL);
11491
  lai->primitive_type_vector [ada_primitive_type_long_long]
11492
    = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
11493
                         0, "long_long_integer");
11494
  lai->primitive_type_vector [ada_primitive_type_long_double]
11495
    = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
11496
                       "long_long_float", NULL);
11497
  lai->primitive_type_vector [ada_primitive_type_natural]
11498
    = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
11499
                         0, "natural");
11500
  lai->primitive_type_vector [ada_primitive_type_positive]
11501
    = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
11502
                         0, "positive");
11503
  lai->primitive_type_vector [ada_primitive_type_void]
11504
    = builtin->builtin_void;
11505
 
11506
  lai->primitive_type_vector [ada_primitive_type_system_address]
11507
    = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, 1, "void"));
11508
  TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
11509
    = "system__address";
11510
 
11511
  lai->bool_type_symbol = NULL;
11512
  lai->bool_type_default = builtin->builtin_bool;
11513
}
11514
 
11515
                                /* Language vector */
11516
 
11517
/* Not really used, but needed in the ada_language_defn.  */
11518
 
11519
static void
11520
emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
11521
{
11522
  ada_emit_char (c, type, stream, quoter, 1);
11523
}
11524
 
11525
static int
11526
parse (void)
11527
{
11528
  warnings_issued = 0;
11529
  return ada_parse ();
11530
}
11531
 
11532
static const struct exp_descriptor ada_exp_descriptor = {
11533
  ada_print_subexp,
11534
  ada_operator_length,
11535
  ada_operator_check,
11536
  ada_op_name,
11537
  ada_dump_subexp_body,
11538
  ada_evaluate_subexp
11539
};
11540
 
11541
const struct language_defn ada_language_defn = {
11542
  "ada",                        /* Language name */
11543
  language_ada,
11544
  range_check_off,
11545
  type_check_off,
11546
  case_sensitive_on,            /* Yes, Ada is case-insensitive, but
11547
                                   that's not quite what this means.  */
11548
  array_row_major,
11549
  macro_expansion_no,
11550
  &ada_exp_descriptor,
11551
  parse,
11552
  ada_error,
11553
  resolve,
11554
  ada_printchar,                /* Print a character constant */
11555
  ada_printstr,                 /* Function to print string constant */
11556
  emit_char,                    /* Function to print single char (not used) */
11557
  ada_print_type,               /* Print a type using appropriate syntax */
11558
  ada_print_typedef,            /* Print a typedef using appropriate syntax */
11559
  ada_val_print,                /* Print a value using appropriate syntax */
11560
  ada_value_print,              /* Print a top-level value */
11561
  NULL,                         /* Language specific skip_trampoline */
11562
  NULL,                         /* name_of_this */
11563
  ada_lookup_symbol_nonlocal,   /* Looking up non-local symbols.  */
11564
  basic_lookup_transparent_type,        /* lookup_transparent_type */
11565
  ada_la_decode,                /* Language specific symbol demangler */
11566
  NULL,                         /* Language specific class_name_from_physname */
11567
  ada_op_print_tab,             /* expression operators for printing */
11568
  0,                            /* c-style arrays */
11569
  1,                            /* String lower bound */
11570
  ada_get_gdb_completer_word_break_characters,
11571
  ada_make_symbol_completion_list,
11572
  ada_language_arch_info,
11573
  ada_print_array_index,
11574
  default_pass_by_reference,
11575
  c_get_string,
11576
  LANG_MAGIC
11577
};
11578
 
11579
/* Provide a prototype to silence -Wmissing-prototypes.  */
11580
extern initialize_file_ftype _initialize_ada_language;
11581
 
11582
/* Command-list for the "set/show ada" prefix command.  */
11583
static struct cmd_list_element *set_ada_list;
11584
static struct cmd_list_element *show_ada_list;
11585
 
11586
/* Implement the "set ada" prefix command.  */
11587
 
11588
static void
11589
set_ada_command (char *arg, int from_tty)
11590
{
11591
  printf_unfiltered (_(\
11592
"\"set ada\" must be followed by the name of a setting.\n"));
11593
  help_list (set_ada_list, "set ada ", -1, gdb_stdout);
11594
}
11595
 
11596
/* Implement the "show ada" prefix command.  */
11597
 
11598
static void
11599
show_ada_command (char *args, int from_tty)
11600
{
11601
  cmd_show_list (show_ada_list, from_tty, "");
11602
}
11603
 
11604
void
11605
_initialize_ada_language (void)
11606
{
11607
  add_language (&ada_language_defn);
11608
 
11609
  add_prefix_cmd ("ada", no_class, set_ada_command,
11610
                  _("Prefix command for changing Ada-specfic settings"),
11611
                  &set_ada_list, "set ada ", 0, &setlist);
11612
 
11613
  add_prefix_cmd ("ada", no_class, show_ada_command,
11614
                  _("Generic command for showing Ada-specific settings."),
11615
                  &show_ada_list, "show ada ", 0, &showlist);
11616
 
11617
  add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
11618
                           &trust_pad_over_xvs, _("\
11619
Enable or disable an optimization trusting PAD types over XVS types"), _("\
11620
Show whether an optimization trusting PAD types over XVS types is activated"),
11621
                           _("\
11622
This is related to the encoding used by the GNAT compiler.  The debugger\n\
11623
should normally trust the contents of PAD types, but certain older versions\n\
11624
of GNAT have a bug that sometimes causes the information in the PAD type\n\
11625
to be incorrect.  Turning this setting \"off\" allows the debugger to\n\
11626
work around this bug.  It is always safe to turn this option \"off\", but\n\
11627
this incurs a slight performance penalty, so it is recommended to NOT change\n\
11628
this option to \"off\" unless necessary."),
11629
                            NULL, NULL, &set_ada_list, &show_ada_list);
11630
 
11631
  varsize_limit = 65536;
11632
 
11633
  obstack_init (&symbol_list_obstack);
11634
 
11635
  decoded_names_store = htab_create_alloc
11636
    (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
11637
     NULL, xcalloc, xfree);
11638
 
11639
  observer_attach_executable_changed (ada_executable_changed_observer);
11640
 
11641
  /* Setup per-inferior data.  */
11642
  observer_attach_inferior_exit (ada_inferior_exit);
11643
  ada_inferior_data
11644
    = register_inferior_data_with_cleanup (ada_inferior_data_cleanup);
11645
}

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.