1 |
330 |
jeremybenn |
/* Ada language support routines for GDB, the GNU debugger. Copyright (C)
|
2 |
|
|
|
3 |
|
|
1992, 1993, 1994, 1997, 1998, 1999, 2000, 2003, 2004, 2005, 2007, 2008,
|
4 |
|
|
2009 Free Software Foundation, Inc.
|
5 |
|
|
|
6 |
|
|
This file is part of GDB.
|
7 |
|
|
|
8 |
|
|
This program is free software; you can redistribute it and/or modify
|
9 |
|
|
it under the terms of the GNU General Public License as published by
|
10 |
|
|
the Free Software Foundation; either version 3 of the License, or
|
11 |
|
|
(at your option) any later version.
|
12 |
|
|
|
13 |
|
|
This program is distributed in the hope that it will be useful,
|
14 |
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
15 |
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
16 |
|
|
GNU General Public License for more details.
|
17 |
|
|
|
18 |
|
|
You should have received a copy of the GNU General Public License
|
19 |
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>. */
|
20 |
|
|
|
21 |
|
|
|
22 |
|
|
#include "defs.h"
|
23 |
|
|
#include <stdio.h>
|
24 |
|
|
#include "gdb_string.h"
|
25 |
|
|
#include <ctype.h>
|
26 |
|
|
#include <stdarg.h>
|
27 |
|
|
#include "demangle.h"
|
28 |
|
|
#include "gdb_regex.h"
|
29 |
|
|
#include "frame.h"
|
30 |
|
|
#include "symtab.h"
|
31 |
|
|
#include "gdbtypes.h"
|
32 |
|
|
#include "gdbcmd.h"
|
33 |
|
|
#include "expression.h"
|
34 |
|
|
#include "parser-defs.h"
|
35 |
|
|
#include "language.h"
|
36 |
|
|
#include "c-lang.h"
|
37 |
|
|
#include "inferior.h"
|
38 |
|
|
#include "symfile.h"
|
39 |
|
|
#include "objfiles.h"
|
40 |
|
|
#include "breakpoint.h"
|
41 |
|
|
#include "gdbcore.h"
|
42 |
|
|
#include "hashtab.h"
|
43 |
|
|
#include "gdb_obstack.h"
|
44 |
|
|
#include "ada-lang.h"
|
45 |
|
|
#include "completer.h"
|
46 |
|
|
#include "gdb_stat.h"
|
47 |
|
|
#ifdef UI_OUT
|
48 |
|
|
#include "ui-out.h"
|
49 |
|
|
#endif
|
50 |
|
|
#include "block.h"
|
51 |
|
|
#include "infcall.h"
|
52 |
|
|
#include "dictionary.h"
|
53 |
|
|
#include "exceptions.h"
|
54 |
|
|
#include "annotate.h"
|
55 |
|
|
#include "valprint.h"
|
56 |
|
|
#include "source.h"
|
57 |
|
|
#include "observer.h"
|
58 |
|
|
#include "vec.h"
|
59 |
|
|
#include "stack.h"
|
60 |
|
|
|
61 |
|
|
#include "psymtab.h"
|
62 |
|
|
|
63 |
|
|
/* Define whether or not the C operator '/' truncates towards zero for
|
64 |
|
|
differently signed operands (truncation direction is undefined in C).
|
65 |
|
|
Copied from valarith.c. */
|
66 |
|
|
|
67 |
|
|
#ifndef TRUNCATION_TOWARDS_ZERO
|
68 |
|
|
#define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
|
69 |
|
|
#endif
|
70 |
|
|
|
71 |
|
|
static void modify_general_field (struct type *, char *, LONGEST, int, int);
|
72 |
|
|
|
73 |
|
|
static struct type *desc_base_type (struct type *);
|
74 |
|
|
|
75 |
|
|
static struct type *desc_bounds_type (struct type *);
|
76 |
|
|
|
77 |
|
|
static struct value *desc_bounds (struct value *);
|
78 |
|
|
|
79 |
|
|
static int fat_pntr_bounds_bitpos (struct type *);
|
80 |
|
|
|
81 |
|
|
static int fat_pntr_bounds_bitsize (struct type *);
|
82 |
|
|
|
83 |
|
|
static struct type *desc_data_target_type (struct type *);
|
84 |
|
|
|
85 |
|
|
static struct value *desc_data (struct value *);
|
86 |
|
|
|
87 |
|
|
static int fat_pntr_data_bitpos (struct type *);
|
88 |
|
|
|
89 |
|
|
static int fat_pntr_data_bitsize (struct type *);
|
90 |
|
|
|
91 |
|
|
static struct value *desc_one_bound (struct value *, int, int);
|
92 |
|
|
|
93 |
|
|
static int desc_bound_bitpos (struct type *, int, int);
|
94 |
|
|
|
95 |
|
|
static int desc_bound_bitsize (struct type *, int, int);
|
96 |
|
|
|
97 |
|
|
static struct type *desc_index_type (struct type *, int);
|
98 |
|
|
|
99 |
|
|
static int desc_arity (struct type *);
|
100 |
|
|
|
101 |
|
|
static int ada_type_match (struct type *, struct type *, int);
|
102 |
|
|
|
103 |
|
|
static int ada_args_match (struct symbol *, struct value **, int);
|
104 |
|
|
|
105 |
|
|
static struct value *ensure_lval (struct value *,
|
106 |
|
|
struct gdbarch *, CORE_ADDR *);
|
107 |
|
|
|
108 |
|
|
static struct value *make_array_descriptor (struct type *, struct value *,
|
109 |
|
|
struct gdbarch *, CORE_ADDR *);
|
110 |
|
|
|
111 |
|
|
static void ada_add_block_symbols (struct obstack *,
|
112 |
|
|
struct block *, const char *,
|
113 |
|
|
domain_enum, struct objfile *, int);
|
114 |
|
|
|
115 |
|
|
static int is_nonfunction (struct ada_symbol_info *, int);
|
116 |
|
|
|
117 |
|
|
static void add_defn_to_vec (struct obstack *, struct symbol *,
|
118 |
|
|
struct block *);
|
119 |
|
|
|
120 |
|
|
static int num_defns_collected (struct obstack *);
|
121 |
|
|
|
122 |
|
|
static struct ada_symbol_info *defns_collected (struct obstack *, int);
|
123 |
|
|
|
124 |
|
|
static struct value *resolve_subexp (struct expression **, int *, int,
|
125 |
|
|
struct type *);
|
126 |
|
|
|
127 |
|
|
static void replace_operator_with_call (struct expression **, int, int, int,
|
128 |
|
|
struct symbol *, struct block *);
|
129 |
|
|
|
130 |
|
|
static int possible_user_operator_p (enum exp_opcode, struct value **);
|
131 |
|
|
|
132 |
|
|
static char *ada_op_name (enum exp_opcode);
|
133 |
|
|
|
134 |
|
|
static const char *ada_decoded_op_name (enum exp_opcode);
|
135 |
|
|
|
136 |
|
|
static int numeric_type_p (struct type *);
|
137 |
|
|
|
138 |
|
|
static int integer_type_p (struct type *);
|
139 |
|
|
|
140 |
|
|
static int scalar_type_p (struct type *);
|
141 |
|
|
|
142 |
|
|
static int discrete_type_p (struct type *);
|
143 |
|
|
|
144 |
|
|
static enum ada_renaming_category parse_old_style_renaming (struct type *,
|
145 |
|
|
const char **,
|
146 |
|
|
int *,
|
147 |
|
|
const char **);
|
148 |
|
|
|
149 |
|
|
static struct symbol *find_old_style_renaming_symbol (const char *,
|
150 |
|
|
struct block *);
|
151 |
|
|
|
152 |
|
|
static struct type *ada_lookup_struct_elt_type (struct type *, char *,
|
153 |
|
|
int, int, int *);
|
154 |
|
|
|
155 |
|
|
static struct value *evaluate_subexp_type (struct expression *, int *);
|
156 |
|
|
|
157 |
|
|
static struct type *ada_find_parallel_type_with_name (struct type *,
|
158 |
|
|
const char *);
|
159 |
|
|
|
160 |
|
|
static int is_dynamic_field (struct type *, int);
|
161 |
|
|
|
162 |
|
|
static struct type *to_fixed_variant_branch_type (struct type *,
|
163 |
|
|
const gdb_byte *,
|
164 |
|
|
CORE_ADDR, struct value *);
|
165 |
|
|
|
166 |
|
|
static struct type *to_fixed_array_type (struct type *, struct value *, int);
|
167 |
|
|
|
168 |
|
|
static struct type *to_fixed_range_type (struct type *, struct value *);
|
169 |
|
|
|
170 |
|
|
static struct type *to_static_fixed_type (struct type *);
|
171 |
|
|
static struct type *static_unwrap_type (struct type *type);
|
172 |
|
|
|
173 |
|
|
static struct value *unwrap_value (struct value *);
|
174 |
|
|
|
175 |
|
|
static struct type *constrained_packed_array_type (struct type *, long *);
|
176 |
|
|
|
177 |
|
|
static struct type *decode_constrained_packed_array_type (struct type *);
|
178 |
|
|
|
179 |
|
|
static long decode_packed_array_bitsize (struct type *);
|
180 |
|
|
|
181 |
|
|
static struct value *decode_constrained_packed_array (struct value *);
|
182 |
|
|
|
183 |
|
|
static int ada_is_packed_array_type (struct type *);
|
184 |
|
|
|
185 |
|
|
static int ada_is_unconstrained_packed_array_type (struct type *);
|
186 |
|
|
|
187 |
|
|
static struct value *value_subscript_packed (struct value *, int,
|
188 |
|
|
struct value **);
|
189 |
|
|
|
190 |
|
|
static void move_bits (gdb_byte *, int, const gdb_byte *, int, int, int);
|
191 |
|
|
|
192 |
|
|
static struct value *coerce_unspec_val_to_type (struct value *,
|
193 |
|
|
struct type *);
|
194 |
|
|
|
195 |
|
|
static struct value *get_var_value (char *, char *);
|
196 |
|
|
|
197 |
|
|
static int lesseq_defined_than (struct symbol *, struct symbol *);
|
198 |
|
|
|
199 |
|
|
static int equiv_types (struct type *, struct type *);
|
200 |
|
|
|
201 |
|
|
static int is_name_suffix (const char *);
|
202 |
|
|
|
203 |
|
|
static int wild_match (const char *, int, const char *);
|
204 |
|
|
|
205 |
|
|
static struct value *ada_coerce_ref (struct value *);
|
206 |
|
|
|
207 |
|
|
static LONGEST pos_atr (struct value *);
|
208 |
|
|
|
209 |
|
|
static struct value *value_pos_atr (struct type *, struct value *);
|
210 |
|
|
|
211 |
|
|
static struct value *value_val_atr (struct type *, struct value *);
|
212 |
|
|
|
213 |
|
|
static struct symbol *standard_lookup (const char *, const struct block *,
|
214 |
|
|
domain_enum);
|
215 |
|
|
|
216 |
|
|
static struct value *ada_search_struct_field (char *, struct value *, int,
|
217 |
|
|
struct type *);
|
218 |
|
|
|
219 |
|
|
static struct value *ada_value_primitive_field (struct value *, int, int,
|
220 |
|
|
struct type *);
|
221 |
|
|
|
222 |
|
|
static int find_struct_field (char *, struct type *, int,
|
223 |
|
|
struct type **, int *, int *, int *, int *);
|
224 |
|
|
|
225 |
|
|
static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
|
226 |
|
|
struct value *);
|
227 |
|
|
|
228 |
|
|
static int ada_resolve_function (struct ada_symbol_info *, int,
|
229 |
|
|
struct value **, int, const char *,
|
230 |
|
|
struct type *);
|
231 |
|
|
|
232 |
|
|
static struct value *ada_coerce_to_simple_array (struct value *);
|
233 |
|
|
|
234 |
|
|
static int ada_is_direct_array_type (struct type *);
|
235 |
|
|
|
236 |
|
|
static void ada_language_arch_info (struct gdbarch *,
|
237 |
|
|
struct language_arch_info *);
|
238 |
|
|
|
239 |
|
|
static void check_size (const struct type *);
|
240 |
|
|
|
241 |
|
|
static struct value *ada_index_struct_field (int, struct value *, int,
|
242 |
|
|
struct type *);
|
243 |
|
|
|
244 |
|
|
static struct value *assign_aggregate (struct value *, struct value *,
|
245 |
|
|
struct expression *, int *, enum noside);
|
246 |
|
|
|
247 |
|
|
static void aggregate_assign_from_choices (struct value *, struct value *,
|
248 |
|
|
struct expression *,
|
249 |
|
|
int *, LONGEST *, int *,
|
250 |
|
|
int, LONGEST, LONGEST);
|
251 |
|
|
|
252 |
|
|
static void aggregate_assign_positional (struct value *, struct value *,
|
253 |
|
|
struct expression *,
|
254 |
|
|
int *, LONGEST *, int *, int,
|
255 |
|
|
LONGEST, LONGEST);
|
256 |
|
|
|
257 |
|
|
|
258 |
|
|
static void aggregate_assign_others (struct value *, struct value *,
|
259 |
|
|
struct expression *,
|
260 |
|
|
int *, LONGEST *, int, LONGEST, LONGEST);
|
261 |
|
|
|
262 |
|
|
|
263 |
|
|
static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
|
264 |
|
|
|
265 |
|
|
|
266 |
|
|
static struct value *ada_evaluate_subexp (struct type *, struct expression *,
|
267 |
|
|
int *, enum noside);
|
268 |
|
|
|
269 |
|
|
static void ada_forward_operator_length (struct expression *, int, int *,
|
270 |
|
|
int *);
|
271 |
|
|
|
272 |
|
|
|
273 |
|
|
|
274 |
|
|
/* Maximum-sized dynamic type. */
|
275 |
|
|
static unsigned int varsize_limit;
|
276 |
|
|
|
277 |
|
|
/* FIXME: brobecker/2003-09-17: No longer a const because it is
|
278 |
|
|
returned by a function that does not return a const char *. */
|
279 |
|
|
static char *ada_completer_word_break_characters =
|
280 |
|
|
#ifdef VMS
|
281 |
|
|
" \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
|
282 |
|
|
#else
|
283 |
|
|
" \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
|
284 |
|
|
#endif
|
285 |
|
|
|
286 |
|
|
/* The name of the symbol to use to get the name of the main subprogram. */
|
287 |
|
|
static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
|
288 |
|
|
= "__gnat_ada_main_program_name";
|
289 |
|
|
|
290 |
|
|
/* Limit on the number of warnings to raise per expression evaluation. */
|
291 |
|
|
static int warning_limit = 2;
|
292 |
|
|
|
293 |
|
|
/* Number of warning messages issued; reset to 0 by cleanups after
|
294 |
|
|
expression evaluation. */
|
295 |
|
|
static int warnings_issued = 0;
|
296 |
|
|
|
297 |
|
|
static const char *known_runtime_file_name_patterns[] = {
|
298 |
|
|
ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
|
299 |
|
|
};
|
300 |
|
|
|
301 |
|
|
static const char *known_auxiliary_function_name_patterns[] = {
|
302 |
|
|
ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
|
303 |
|
|
};
|
304 |
|
|
|
305 |
|
|
/* Space for allocating results of ada_lookup_symbol_list. */
|
306 |
|
|
static struct obstack symbol_list_obstack;
|
307 |
|
|
|
308 |
|
|
/* Inferior-specific data. */
|
309 |
|
|
|
310 |
|
|
/* Per-inferior data for this module. */
|
311 |
|
|
|
312 |
|
|
struct ada_inferior_data
|
313 |
|
|
{
|
314 |
|
|
/* The ada__tags__type_specific_data type, which is used when decoding
|
315 |
|
|
tagged types. With older versions of GNAT, this type was directly
|
316 |
|
|
accessible through a component ("tsd") in the object tag. But this
|
317 |
|
|
is no longer the case, so we cache it for each inferior. */
|
318 |
|
|
struct type *tsd_type;
|
319 |
|
|
};
|
320 |
|
|
|
321 |
|
|
/* Our key to this module's inferior data. */
|
322 |
|
|
static const struct inferior_data *ada_inferior_data;
|
323 |
|
|
|
324 |
|
|
/* A cleanup routine for our inferior data. */
|
325 |
|
|
static void
|
326 |
|
|
ada_inferior_data_cleanup (struct inferior *inf, void *arg)
|
327 |
|
|
{
|
328 |
|
|
struct ada_inferior_data *data;
|
329 |
|
|
|
330 |
|
|
data = inferior_data (inf, ada_inferior_data);
|
331 |
|
|
if (data != NULL)
|
332 |
|
|
xfree (data);
|
333 |
|
|
}
|
334 |
|
|
|
335 |
|
|
/* Return our inferior data for the given inferior (INF).
|
336 |
|
|
|
337 |
|
|
This function always returns a valid pointer to an allocated
|
338 |
|
|
ada_inferior_data structure. If INF's inferior data has not
|
339 |
|
|
been previously set, this functions creates a new one with all
|
340 |
|
|
fields set to zero, sets INF's inferior to it, and then returns
|
341 |
|
|
a pointer to that newly allocated ada_inferior_data. */
|
342 |
|
|
|
343 |
|
|
static struct ada_inferior_data *
|
344 |
|
|
get_ada_inferior_data (struct inferior *inf)
|
345 |
|
|
{
|
346 |
|
|
struct ada_inferior_data *data;
|
347 |
|
|
|
348 |
|
|
data = inferior_data (inf, ada_inferior_data);
|
349 |
|
|
if (data == NULL)
|
350 |
|
|
{
|
351 |
|
|
data = XZALLOC (struct ada_inferior_data);
|
352 |
|
|
set_inferior_data (inf, ada_inferior_data, data);
|
353 |
|
|
}
|
354 |
|
|
|
355 |
|
|
return data;
|
356 |
|
|
}
|
357 |
|
|
|
358 |
|
|
/* Perform all necessary cleanups regarding our module's inferior data
|
359 |
|
|
that is required after the inferior INF just exited. */
|
360 |
|
|
|
361 |
|
|
static void
|
362 |
|
|
ada_inferior_exit (struct inferior *inf)
|
363 |
|
|
{
|
364 |
|
|
ada_inferior_data_cleanup (inf, NULL);
|
365 |
|
|
set_inferior_data (inf, ada_inferior_data, NULL);
|
366 |
|
|
}
|
367 |
|
|
|
368 |
|
|
/* Utilities */
|
369 |
|
|
|
370 |
|
|
/* Given DECODED_NAME a string holding a symbol name in its
|
371 |
|
|
decoded form (ie using the Ada dotted notation), returns
|
372 |
|
|
its unqualified name. */
|
373 |
|
|
|
374 |
|
|
static const char *
|
375 |
|
|
ada_unqualified_name (const char *decoded_name)
|
376 |
|
|
{
|
377 |
|
|
const char *result = strrchr (decoded_name, '.');
|
378 |
|
|
|
379 |
|
|
if (result != NULL)
|
380 |
|
|
result++; /* Skip the dot... */
|
381 |
|
|
else
|
382 |
|
|
result = decoded_name;
|
383 |
|
|
|
384 |
|
|
return result;
|
385 |
|
|
}
|
386 |
|
|
|
387 |
|
|
/* Return a string starting with '<', followed by STR, and '>'.
|
388 |
|
|
The result is good until the next call. */
|
389 |
|
|
|
390 |
|
|
static char *
|
391 |
|
|
add_angle_brackets (const char *str)
|
392 |
|
|
{
|
393 |
|
|
static char *result = NULL;
|
394 |
|
|
|
395 |
|
|
xfree (result);
|
396 |
|
|
result = xstrprintf ("<%s>", str);
|
397 |
|
|
return result;
|
398 |
|
|
}
|
399 |
|
|
|
400 |
|
|
static char *
|
401 |
|
|
ada_get_gdb_completer_word_break_characters (void)
|
402 |
|
|
{
|
403 |
|
|
return ada_completer_word_break_characters;
|
404 |
|
|
}
|
405 |
|
|
|
406 |
|
|
/* Print an array element index using the Ada syntax. */
|
407 |
|
|
|
408 |
|
|
static void
|
409 |
|
|
ada_print_array_index (struct value *index_value, struct ui_file *stream,
|
410 |
|
|
const struct value_print_options *options)
|
411 |
|
|
{
|
412 |
|
|
LA_VALUE_PRINT (index_value, stream, options);
|
413 |
|
|
fprintf_filtered (stream, " => ");
|
414 |
|
|
}
|
415 |
|
|
|
416 |
|
|
/* Assuming VECT points to an array of *SIZE objects of size
|
417 |
|
|
ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
|
418 |
|
|
updating *SIZE as necessary and returning the (new) array. */
|
419 |
|
|
|
420 |
|
|
void *
|
421 |
|
|
grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
|
422 |
|
|
{
|
423 |
|
|
if (*size < min_size)
|
424 |
|
|
{
|
425 |
|
|
*size *= 2;
|
426 |
|
|
if (*size < min_size)
|
427 |
|
|
*size = min_size;
|
428 |
|
|
vect = xrealloc (vect, *size * element_size);
|
429 |
|
|
}
|
430 |
|
|
return vect;
|
431 |
|
|
}
|
432 |
|
|
|
433 |
|
|
/* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
|
434 |
|
|
suffix of FIELD_NAME beginning "___". */
|
435 |
|
|
|
436 |
|
|
static int
|
437 |
|
|
field_name_match (const char *field_name, const char *target)
|
438 |
|
|
{
|
439 |
|
|
int len = strlen (target);
|
440 |
|
|
|
441 |
|
|
return
|
442 |
|
|
(strncmp (field_name, target, len) == 0
|
443 |
|
|
&& (field_name[len] == '\0'
|
444 |
|
|
|| (strncmp (field_name + len, "___", 3) == 0
|
445 |
|
|
&& strcmp (field_name + strlen (field_name) - 6,
|
446 |
|
|
"___XVN") != 0)));
|
447 |
|
|
}
|
448 |
|
|
|
449 |
|
|
|
450 |
|
|
/* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
|
451 |
|
|
a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
|
452 |
|
|
and return its index. This function also handles fields whose name
|
453 |
|
|
have ___ suffixes because the compiler sometimes alters their name
|
454 |
|
|
by adding such a suffix to represent fields with certain constraints.
|
455 |
|
|
If the field could not be found, return a negative number if
|
456 |
|
|
MAYBE_MISSING is set. Otherwise raise an error. */
|
457 |
|
|
|
458 |
|
|
int
|
459 |
|
|
ada_get_field_index (const struct type *type, const char *field_name,
|
460 |
|
|
int maybe_missing)
|
461 |
|
|
{
|
462 |
|
|
int fieldno;
|
463 |
|
|
struct type *struct_type = check_typedef ((struct type *) type);
|
464 |
|
|
|
465 |
|
|
for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
|
466 |
|
|
if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
|
467 |
|
|
return fieldno;
|
468 |
|
|
|
469 |
|
|
if (!maybe_missing)
|
470 |
|
|
error (_("Unable to find field %s in struct %s. Aborting"),
|
471 |
|
|
field_name, TYPE_NAME (struct_type));
|
472 |
|
|
|
473 |
|
|
return -1;
|
474 |
|
|
}
|
475 |
|
|
|
476 |
|
|
/* The length of the prefix of NAME prior to any "___" suffix. */
|
477 |
|
|
|
478 |
|
|
int
|
479 |
|
|
ada_name_prefix_len (const char *name)
|
480 |
|
|
{
|
481 |
|
|
if (name == NULL)
|
482 |
|
|
return 0;
|
483 |
|
|
else
|
484 |
|
|
{
|
485 |
|
|
const char *p = strstr (name, "___");
|
486 |
|
|
|
487 |
|
|
if (p == NULL)
|
488 |
|
|
return strlen (name);
|
489 |
|
|
else
|
490 |
|
|
return p - name;
|
491 |
|
|
}
|
492 |
|
|
}
|
493 |
|
|
|
494 |
|
|
/* Return non-zero if SUFFIX is a suffix of STR.
|
495 |
|
|
Return zero if STR is null. */
|
496 |
|
|
|
497 |
|
|
static int
|
498 |
|
|
is_suffix (const char *str, const char *suffix)
|
499 |
|
|
{
|
500 |
|
|
int len1, len2;
|
501 |
|
|
|
502 |
|
|
if (str == NULL)
|
503 |
|
|
return 0;
|
504 |
|
|
len1 = strlen (str);
|
505 |
|
|
len2 = strlen (suffix);
|
506 |
|
|
return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
|
507 |
|
|
}
|
508 |
|
|
|
509 |
|
|
/* The contents of value VAL, treated as a value of type TYPE. The
|
510 |
|
|
result is an lval in memory if VAL is. */
|
511 |
|
|
|
512 |
|
|
static struct value *
|
513 |
|
|
coerce_unspec_val_to_type (struct value *val, struct type *type)
|
514 |
|
|
{
|
515 |
|
|
type = ada_check_typedef (type);
|
516 |
|
|
if (value_type (val) == type)
|
517 |
|
|
return val;
|
518 |
|
|
else
|
519 |
|
|
{
|
520 |
|
|
struct value *result;
|
521 |
|
|
|
522 |
|
|
/* Make sure that the object size is not unreasonable before
|
523 |
|
|
trying to allocate some memory for it. */
|
524 |
|
|
check_size (type);
|
525 |
|
|
|
526 |
|
|
result = allocate_value (type);
|
527 |
|
|
set_value_component_location (result, val);
|
528 |
|
|
set_value_bitsize (result, value_bitsize (val));
|
529 |
|
|
set_value_bitpos (result, value_bitpos (val));
|
530 |
|
|
set_value_address (result, value_address (val));
|
531 |
|
|
if (value_lazy (val)
|
532 |
|
|
|| TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
|
533 |
|
|
set_value_lazy (result, 1);
|
534 |
|
|
else
|
535 |
|
|
memcpy (value_contents_raw (result), value_contents (val),
|
536 |
|
|
TYPE_LENGTH (type));
|
537 |
|
|
return result;
|
538 |
|
|
}
|
539 |
|
|
}
|
540 |
|
|
|
541 |
|
|
static const gdb_byte *
|
542 |
|
|
cond_offset_host (const gdb_byte *valaddr, long offset)
|
543 |
|
|
{
|
544 |
|
|
if (valaddr == NULL)
|
545 |
|
|
return NULL;
|
546 |
|
|
else
|
547 |
|
|
return valaddr + offset;
|
548 |
|
|
}
|
549 |
|
|
|
550 |
|
|
static CORE_ADDR
|
551 |
|
|
cond_offset_target (CORE_ADDR address, long offset)
|
552 |
|
|
{
|
553 |
|
|
if (address == 0)
|
554 |
|
|
return 0;
|
555 |
|
|
else
|
556 |
|
|
return address + offset;
|
557 |
|
|
}
|
558 |
|
|
|
559 |
|
|
/* Issue a warning (as for the definition of warning in utils.c, but
|
560 |
|
|
with exactly one argument rather than ...), unless the limit on the
|
561 |
|
|
number of warnings has passed during the evaluation of the current
|
562 |
|
|
expression. */
|
563 |
|
|
|
564 |
|
|
/* FIXME: cagney/2004-10-10: This function is mimicking the behavior
|
565 |
|
|
provided by "complaint". */
|
566 |
|
|
static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
|
567 |
|
|
|
568 |
|
|
static void
|
569 |
|
|
lim_warning (const char *format, ...)
|
570 |
|
|
{
|
571 |
|
|
va_list args;
|
572 |
|
|
|
573 |
|
|
va_start (args, format);
|
574 |
|
|
warnings_issued += 1;
|
575 |
|
|
if (warnings_issued <= warning_limit)
|
576 |
|
|
vwarning (format, args);
|
577 |
|
|
|
578 |
|
|
va_end (args);
|
579 |
|
|
}
|
580 |
|
|
|
581 |
|
|
/* Issue an error if the size of an object of type T is unreasonable,
|
582 |
|
|
i.e. if it would be a bad idea to allocate a value of this type in
|
583 |
|
|
GDB. */
|
584 |
|
|
|
585 |
|
|
static void
|
586 |
|
|
check_size (const struct type *type)
|
587 |
|
|
{
|
588 |
|
|
if (TYPE_LENGTH (type) > varsize_limit)
|
589 |
|
|
error (_("object size is larger than varsize-limit"));
|
590 |
|
|
}
|
591 |
|
|
|
592 |
|
|
/* Maximum value of a SIZE-byte signed integer type. */
|
593 |
|
|
static LONGEST
|
594 |
|
|
max_of_size (int size)
|
595 |
|
|
{
|
596 |
|
|
LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
|
597 |
|
|
|
598 |
|
|
return top_bit | (top_bit - 1);
|
599 |
|
|
}
|
600 |
|
|
|
601 |
|
|
/* Minimum value of a SIZE-byte signed integer type. */
|
602 |
|
|
static LONGEST
|
603 |
|
|
min_of_size (int size)
|
604 |
|
|
{
|
605 |
|
|
return -max_of_size (size) - 1;
|
606 |
|
|
}
|
607 |
|
|
|
608 |
|
|
/* Maximum value of a SIZE-byte unsigned integer type. */
|
609 |
|
|
static ULONGEST
|
610 |
|
|
umax_of_size (int size)
|
611 |
|
|
{
|
612 |
|
|
ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
|
613 |
|
|
|
614 |
|
|
return top_bit | (top_bit - 1);
|
615 |
|
|
}
|
616 |
|
|
|
617 |
|
|
/* Maximum value of integral type T, as a signed quantity. */
|
618 |
|
|
static LONGEST
|
619 |
|
|
max_of_type (struct type *t)
|
620 |
|
|
{
|
621 |
|
|
if (TYPE_UNSIGNED (t))
|
622 |
|
|
return (LONGEST) umax_of_size (TYPE_LENGTH (t));
|
623 |
|
|
else
|
624 |
|
|
return max_of_size (TYPE_LENGTH (t));
|
625 |
|
|
}
|
626 |
|
|
|
627 |
|
|
/* Minimum value of integral type T, as a signed quantity. */
|
628 |
|
|
static LONGEST
|
629 |
|
|
min_of_type (struct type *t)
|
630 |
|
|
{
|
631 |
|
|
if (TYPE_UNSIGNED (t))
|
632 |
|
|
return 0;
|
633 |
|
|
else
|
634 |
|
|
return min_of_size (TYPE_LENGTH (t));
|
635 |
|
|
}
|
636 |
|
|
|
637 |
|
|
/* The largest value in the domain of TYPE, a discrete type, as an integer. */
|
638 |
|
|
LONGEST
|
639 |
|
|
ada_discrete_type_high_bound (struct type *type)
|
640 |
|
|
{
|
641 |
|
|
switch (TYPE_CODE (type))
|
642 |
|
|
{
|
643 |
|
|
case TYPE_CODE_RANGE:
|
644 |
|
|
return TYPE_HIGH_BOUND (type);
|
645 |
|
|
case TYPE_CODE_ENUM:
|
646 |
|
|
return TYPE_FIELD_BITPOS (type, TYPE_NFIELDS (type) - 1);
|
647 |
|
|
case TYPE_CODE_BOOL:
|
648 |
|
|
return 1;
|
649 |
|
|
case TYPE_CODE_CHAR:
|
650 |
|
|
case TYPE_CODE_INT:
|
651 |
|
|
return max_of_type (type);
|
652 |
|
|
default:
|
653 |
|
|
error (_("Unexpected type in ada_discrete_type_high_bound."));
|
654 |
|
|
}
|
655 |
|
|
}
|
656 |
|
|
|
657 |
|
|
/* The largest value in the domain of TYPE, a discrete type, as an integer. */
|
658 |
|
|
LONGEST
|
659 |
|
|
ada_discrete_type_low_bound (struct type *type)
|
660 |
|
|
{
|
661 |
|
|
switch (TYPE_CODE (type))
|
662 |
|
|
{
|
663 |
|
|
case TYPE_CODE_RANGE:
|
664 |
|
|
return TYPE_LOW_BOUND (type);
|
665 |
|
|
case TYPE_CODE_ENUM:
|
666 |
|
|
return TYPE_FIELD_BITPOS (type, 0);
|
667 |
|
|
case TYPE_CODE_BOOL:
|
668 |
|
|
return 0;
|
669 |
|
|
case TYPE_CODE_CHAR:
|
670 |
|
|
case TYPE_CODE_INT:
|
671 |
|
|
return min_of_type (type);
|
672 |
|
|
default:
|
673 |
|
|
error (_("Unexpected type in ada_discrete_type_low_bound."));
|
674 |
|
|
}
|
675 |
|
|
}
|
676 |
|
|
|
677 |
|
|
/* The identity on non-range types. For range types, the underlying
|
678 |
|
|
non-range scalar type. */
|
679 |
|
|
|
680 |
|
|
static struct type *
|
681 |
|
|
base_type (struct type *type)
|
682 |
|
|
{
|
683 |
|
|
while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
|
684 |
|
|
{
|
685 |
|
|
if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
|
686 |
|
|
return type;
|
687 |
|
|
type = TYPE_TARGET_TYPE (type);
|
688 |
|
|
}
|
689 |
|
|
return type;
|
690 |
|
|
}
|
691 |
|
|
|
692 |
|
|
|
693 |
|
|
/* Language Selection */
|
694 |
|
|
|
695 |
|
|
/* If the main program is in Ada, return language_ada, otherwise return LANG
|
696 |
|
|
(the main program is in Ada iif the adainit symbol is found). */
|
697 |
|
|
|
698 |
|
|
enum language
|
699 |
|
|
ada_update_initial_language (enum language lang)
|
700 |
|
|
{
|
701 |
|
|
if (lookup_minimal_symbol ("adainit", (const char *) NULL,
|
702 |
|
|
(struct objfile *) NULL) != NULL)
|
703 |
|
|
return language_ada;
|
704 |
|
|
|
705 |
|
|
return lang;
|
706 |
|
|
}
|
707 |
|
|
|
708 |
|
|
/* If the main procedure is written in Ada, then return its name.
|
709 |
|
|
The result is good until the next call. Return NULL if the main
|
710 |
|
|
procedure doesn't appear to be in Ada. */
|
711 |
|
|
|
712 |
|
|
char *
|
713 |
|
|
ada_main_name (void)
|
714 |
|
|
{
|
715 |
|
|
struct minimal_symbol *msym;
|
716 |
|
|
static char *main_program_name = NULL;
|
717 |
|
|
|
718 |
|
|
/* For Ada, the name of the main procedure is stored in a specific
|
719 |
|
|
string constant, generated by the binder. Look for that symbol,
|
720 |
|
|
extract its address, and then read that string. If we didn't find
|
721 |
|
|
that string, then most probably the main procedure is not written
|
722 |
|
|
in Ada. */
|
723 |
|
|
msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
|
724 |
|
|
|
725 |
|
|
if (msym != NULL)
|
726 |
|
|
{
|
727 |
|
|
CORE_ADDR main_program_name_addr;
|
728 |
|
|
int err_code;
|
729 |
|
|
|
730 |
|
|
main_program_name_addr = SYMBOL_VALUE_ADDRESS (msym);
|
731 |
|
|
if (main_program_name_addr == 0)
|
732 |
|
|
error (_("Invalid address for Ada main program name."));
|
733 |
|
|
|
734 |
|
|
xfree (main_program_name);
|
735 |
|
|
target_read_string (main_program_name_addr, &main_program_name,
|
736 |
|
|
1024, &err_code);
|
737 |
|
|
|
738 |
|
|
if (err_code != 0)
|
739 |
|
|
return NULL;
|
740 |
|
|
return main_program_name;
|
741 |
|
|
}
|
742 |
|
|
|
743 |
|
|
/* The main procedure doesn't seem to be in Ada. */
|
744 |
|
|
return NULL;
|
745 |
|
|
}
|
746 |
|
|
|
747 |
|
|
/* Symbols */
|
748 |
|
|
|
749 |
|
|
/* Table of Ada operators and their GNAT-encoded names. Last entry is pair
|
750 |
|
|
of NULLs. */
|
751 |
|
|
|
752 |
|
|
const struct ada_opname_map ada_opname_table[] = {
|
753 |
|
|
{"Oadd", "\"+\"", BINOP_ADD},
|
754 |
|
|
{"Osubtract", "\"-\"", BINOP_SUB},
|
755 |
|
|
{"Omultiply", "\"*\"", BINOP_MUL},
|
756 |
|
|
{"Odivide", "\"/\"", BINOP_DIV},
|
757 |
|
|
{"Omod", "\"mod\"", BINOP_MOD},
|
758 |
|
|
{"Orem", "\"rem\"", BINOP_REM},
|
759 |
|
|
{"Oexpon", "\"**\"", BINOP_EXP},
|
760 |
|
|
{"Olt", "\"<\"", BINOP_LESS},
|
761 |
|
|
{"Ole", "\"<=\"", BINOP_LEQ},
|
762 |
|
|
{"Ogt", "\">\"", BINOP_GTR},
|
763 |
|
|
{"Oge", "\">=\"", BINOP_GEQ},
|
764 |
|
|
{"Oeq", "\"=\"", BINOP_EQUAL},
|
765 |
|
|
{"One", "\"/=\"", BINOP_NOTEQUAL},
|
766 |
|
|
{"Oand", "\"and\"", BINOP_BITWISE_AND},
|
767 |
|
|
{"Oor", "\"or\"", BINOP_BITWISE_IOR},
|
768 |
|
|
{"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
|
769 |
|
|
{"Oconcat", "\"&\"", BINOP_CONCAT},
|
770 |
|
|
{"Oabs", "\"abs\"", UNOP_ABS},
|
771 |
|
|
{"Onot", "\"not\"", UNOP_LOGICAL_NOT},
|
772 |
|
|
{"Oadd", "\"+\"", UNOP_PLUS},
|
773 |
|
|
{"Osubtract", "\"-\"", UNOP_NEG},
|
774 |
|
|
{NULL, NULL}
|
775 |
|
|
};
|
776 |
|
|
|
777 |
|
|
/* The "encoded" form of DECODED, according to GNAT conventions.
|
778 |
|
|
The result is valid until the next call to ada_encode. */
|
779 |
|
|
|
780 |
|
|
char *
|
781 |
|
|
ada_encode (const char *decoded)
|
782 |
|
|
{
|
783 |
|
|
static char *encoding_buffer = NULL;
|
784 |
|
|
static size_t encoding_buffer_size = 0;
|
785 |
|
|
const char *p;
|
786 |
|
|
int k;
|
787 |
|
|
|
788 |
|
|
if (decoded == NULL)
|
789 |
|
|
return NULL;
|
790 |
|
|
|
791 |
|
|
GROW_VECT (encoding_buffer, encoding_buffer_size,
|
792 |
|
|
2 * strlen (decoded) + 10);
|
793 |
|
|
|
794 |
|
|
k = 0;
|
795 |
|
|
for (p = decoded; *p != '\0'; p += 1)
|
796 |
|
|
{
|
797 |
|
|
if (*p == '.')
|
798 |
|
|
{
|
799 |
|
|
encoding_buffer[k] = encoding_buffer[k + 1] = '_';
|
800 |
|
|
k += 2;
|
801 |
|
|
}
|
802 |
|
|
else if (*p == '"')
|
803 |
|
|
{
|
804 |
|
|
const struct ada_opname_map *mapping;
|
805 |
|
|
|
806 |
|
|
for (mapping = ada_opname_table;
|
807 |
|
|
mapping->encoded != NULL
|
808 |
|
|
&& strncmp (mapping->decoded, p,
|
809 |
|
|
strlen (mapping->decoded)) != 0; mapping += 1)
|
810 |
|
|
;
|
811 |
|
|
if (mapping->encoded == NULL)
|
812 |
|
|
error (_("invalid Ada operator name: %s"), p);
|
813 |
|
|
strcpy (encoding_buffer + k, mapping->encoded);
|
814 |
|
|
k += strlen (mapping->encoded);
|
815 |
|
|
break;
|
816 |
|
|
}
|
817 |
|
|
else
|
818 |
|
|
{
|
819 |
|
|
encoding_buffer[k] = *p;
|
820 |
|
|
k += 1;
|
821 |
|
|
}
|
822 |
|
|
}
|
823 |
|
|
|
824 |
|
|
encoding_buffer[k] = '\0';
|
825 |
|
|
return encoding_buffer;
|
826 |
|
|
}
|
827 |
|
|
|
828 |
|
|
/* Return NAME folded to lower case, or, if surrounded by single
|
829 |
|
|
quotes, unfolded, but with the quotes stripped away. Result good
|
830 |
|
|
to next call. */
|
831 |
|
|
|
832 |
|
|
char *
|
833 |
|
|
ada_fold_name (const char *name)
|
834 |
|
|
{
|
835 |
|
|
static char *fold_buffer = NULL;
|
836 |
|
|
static size_t fold_buffer_size = 0;
|
837 |
|
|
|
838 |
|
|
int len = strlen (name);
|
839 |
|
|
GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
|
840 |
|
|
|
841 |
|
|
if (name[0] == '\'')
|
842 |
|
|
{
|
843 |
|
|
strncpy (fold_buffer, name + 1, len - 2);
|
844 |
|
|
fold_buffer[len - 2] = '\000';
|
845 |
|
|
}
|
846 |
|
|
else
|
847 |
|
|
{
|
848 |
|
|
int i;
|
849 |
|
|
|
850 |
|
|
for (i = 0; i <= len; i += 1)
|
851 |
|
|
fold_buffer[i] = tolower (name[i]);
|
852 |
|
|
}
|
853 |
|
|
|
854 |
|
|
return fold_buffer;
|
855 |
|
|
}
|
856 |
|
|
|
857 |
|
|
/* Return nonzero if C is either a digit or a lowercase alphabet character. */
|
858 |
|
|
|
859 |
|
|
static int
|
860 |
|
|
is_lower_alphanum (const char c)
|
861 |
|
|
{
|
862 |
|
|
return (isdigit (c) || (isalpha (c) && islower (c)));
|
863 |
|
|
}
|
864 |
|
|
|
865 |
|
|
/* Remove either of these suffixes:
|
866 |
|
|
. .{DIGIT}+
|
867 |
|
|
. ${DIGIT}+
|
868 |
|
|
. ___{DIGIT}+
|
869 |
|
|
. __{DIGIT}+.
|
870 |
|
|
These are suffixes introduced by the compiler for entities such as
|
871 |
|
|
nested subprogram for instance, in order to avoid name clashes.
|
872 |
|
|
They do not serve any purpose for the debugger. */
|
873 |
|
|
|
874 |
|
|
static void
|
875 |
|
|
ada_remove_trailing_digits (const char *encoded, int *len)
|
876 |
|
|
{
|
877 |
|
|
if (*len > 1 && isdigit (encoded[*len - 1]))
|
878 |
|
|
{
|
879 |
|
|
int i = *len - 2;
|
880 |
|
|
|
881 |
|
|
while (i > 0 && isdigit (encoded[i]))
|
882 |
|
|
i--;
|
883 |
|
|
if (i >= 0 && encoded[i] == '.')
|
884 |
|
|
*len = i;
|
885 |
|
|
else if (i >= 0 && encoded[i] == '$')
|
886 |
|
|
*len = i;
|
887 |
|
|
else if (i >= 2 && strncmp (encoded + i - 2, "___", 3) == 0)
|
888 |
|
|
*len = i - 2;
|
889 |
|
|
else if (i >= 1 && strncmp (encoded + i - 1, "__", 2) == 0)
|
890 |
|
|
*len = i - 1;
|
891 |
|
|
}
|
892 |
|
|
}
|
893 |
|
|
|
894 |
|
|
/* Remove the suffix introduced by the compiler for protected object
|
895 |
|
|
subprograms. */
|
896 |
|
|
|
897 |
|
|
static void
|
898 |
|
|
ada_remove_po_subprogram_suffix (const char *encoded, int *len)
|
899 |
|
|
{
|
900 |
|
|
/* Remove trailing N. */
|
901 |
|
|
|
902 |
|
|
/* Protected entry subprograms are broken into two
|
903 |
|
|
separate subprograms: The first one is unprotected, and has
|
904 |
|
|
a 'N' suffix; the second is the protected version, and has
|
905 |
|
|
the 'P' suffix. The second calls the first one after handling
|
906 |
|
|
the protection. Since the P subprograms are internally generated,
|
907 |
|
|
we leave these names undecoded, giving the user a clue that this
|
908 |
|
|
entity is internal. */
|
909 |
|
|
|
910 |
|
|
if (*len > 1
|
911 |
|
|
&& encoded[*len - 1] == 'N'
|
912 |
|
|
&& (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
|
913 |
|
|
*len = *len - 1;
|
914 |
|
|
}
|
915 |
|
|
|
916 |
|
|
/* Remove trailing X[bn]* suffixes (indicating names in package bodies). */
|
917 |
|
|
|
918 |
|
|
static void
|
919 |
|
|
ada_remove_Xbn_suffix (const char *encoded, int *len)
|
920 |
|
|
{
|
921 |
|
|
int i = *len - 1;
|
922 |
|
|
|
923 |
|
|
while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n'))
|
924 |
|
|
i--;
|
925 |
|
|
|
926 |
|
|
if (encoded[i] != 'X')
|
927 |
|
|
return;
|
928 |
|
|
|
929 |
|
|
if (i == 0)
|
930 |
|
|
return;
|
931 |
|
|
|
932 |
|
|
if (isalnum (encoded[i-1]))
|
933 |
|
|
*len = i;
|
934 |
|
|
}
|
935 |
|
|
|
936 |
|
|
/* If ENCODED follows the GNAT entity encoding conventions, then return
|
937 |
|
|
the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
|
938 |
|
|
replaced by ENCODED.
|
939 |
|
|
|
940 |
|
|
The resulting string is valid until the next call of ada_decode.
|
941 |
|
|
If the string is unchanged by decoding, the original string pointer
|
942 |
|
|
is returned. */
|
943 |
|
|
|
944 |
|
|
const char *
|
945 |
|
|
ada_decode (const char *encoded)
|
946 |
|
|
{
|
947 |
|
|
int i, j;
|
948 |
|
|
int len0;
|
949 |
|
|
const char *p;
|
950 |
|
|
char *decoded;
|
951 |
|
|
int at_start_name;
|
952 |
|
|
static char *decoding_buffer = NULL;
|
953 |
|
|
static size_t decoding_buffer_size = 0;
|
954 |
|
|
|
955 |
|
|
/* The name of the Ada main procedure starts with "_ada_".
|
956 |
|
|
This prefix is not part of the decoded name, so skip this part
|
957 |
|
|
if we see this prefix. */
|
958 |
|
|
if (strncmp (encoded, "_ada_", 5) == 0)
|
959 |
|
|
encoded += 5;
|
960 |
|
|
|
961 |
|
|
/* If the name starts with '_', then it is not a properly encoded
|
962 |
|
|
name, so do not attempt to decode it. Similarly, if the name
|
963 |
|
|
starts with '<', the name should not be decoded. */
|
964 |
|
|
if (encoded[0] == '_' || encoded[0] == '<')
|
965 |
|
|
goto Suppress;
|
966 |
|
|
|
967 |
|
|
len0 = strlen (encoded);
|
968 |
|
|
|
969 |
|
|
ada_remove_trailing_digits (encoded, &len0);
|
970 |
|
|
ada_remove_po_subprogram_suffix (encoded, &len0);
|
971 |
|
|
|
972 |
|
|
/* Remove the ___X.* suffix if present. Do not forget to verify that
|
973 |
|
|
the suffix is located before the current "end" of ENCODED. We want
|
974 |
|
|
to avoid re-matching parts of ENCODED that have previously been
|
975 |
|
|
marked as discarded (by decrementing LEN0). */
|
976 |
|
|
p = strstr (encoded, "___");
|
977 |
|
|
if (p != NULL && p - encoded < len0 - 3)
|
978 |
|
|
{
|
979 |
|
|
if (p[3] == 'X')
|
980 |
|
|
len0 = p - encoded;
|
981 |
|
|
else
|
982 |
|
|
goto Suppress;
|
983 |
|
|
}
|
984 |
|
|
|
985 |
|
|
/* Remove any trailing TKB suffix. It tells us that this symbol
|
986 |
|
|
is for the body of a task, but that information does not actually
|
987 |
|
|
appear in the decoded name. */
|
988 |
|
|
|
989 |
|
|
if (len0 > 3 && strncmp (encoded + len0 - 3, "TKB", 3) == 0)
|
990 |
|
|
len0 -= 3;
|
991 |
|
|
|
992 |
|
|
/* Remove any trailing TB suffix. The TB suffix is slightly different
|
993 |
|
|
from the TKB suffix because it is used for non-anonymous task
|
994 |
|
|
bodies. */
|
995 |
|
|
|
996 |
|
|
if (len0 > 2 && strncmp (encoded + len0 - 2, "TB", 2) == 0)
|
997 |
|
|
len0 -= 2;
|
998 |
|
|
|
999 |
|
|
/* Remove trailing "B" suffixes. */
|
1000 |
|
|
/* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
|
1001 |
|
|
|
1002 |
|
|
if (len0 > 1 && strncmp (encoded + len0 - 1, "B", 1) == 0)
|
1003 |
|
|
len0 -= 1;
|
1004 |
|
|
|
1005 |
|
|
/* Make decoded big enough for possible expansion by operator name. */
|
1006 |
|
|
|
1007 |
|
|
GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
|
1008 |
|
|
decoded = decoding_buffer;
|
1009 |
|
|
|
1010 |
|
|
/* Remove trailing __{digit}+ or trailing ${digit}+. */
|
1011 |
|
|
|
1012 |
|
|
if (len0 > 1 && isdigit (encoded[len0 - 1]))
|
1013 |
|
|
{
|
1014 |
|
|
i = len0 - 2;
|
1015 |
|
|
while ((i >= 0 && isdigit (encoded[i]))
|
1016 |
|
|
|| (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
|
1017 |
|
|
i -= 1;
|
1018 |
|
|
if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
|
1019 |
|
|
len0 = i - 1;
|
1020 |
|
|
else if (encoded[i] == '$')
|
1021 |
|
|
len0 = i;
|
1022 |
|
|
}
|
1023 |
|
|
|
1024 |
|
|
/* The first few characters that are not alphabetic are not part
|
1025 |
|
|
of any encoding we use, so we can copy them over verbatim. */
|
1026 |
|
|
|
1027 |
|
|
for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
|
1028 |
|
|
decoded[j] = encoded[i];
|
1029 |
|
|
|
1030 |
|
|
at_start_name = 1;
|
1031 |
|
|
while (i < len0)
|
1032 |
|
|
{
|
1033 |
|
|
/* Is this a symbol function? */
|
1034 |
|
|
if (at_start_name && encoded[i] == 'O')
|
1035 |
|
|
{
|
1036 |
|
|
int k;
|
1037 |
|
|
|
1038 |
|
|
for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
|
1039 |
|
|
{
|
1040 |
|
|
int op_len = strlen (ada_opname_table[k].encoded);
|
1041 |
|
|
if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
|
1042 |
|
|
op_len - 1) == 0)
|
1043 |
|
|
&& !isalnum (encoded[i + op_len]))
|
1044 |
|
|
{
|
1045 |
|
|
strcpy (decoded + j, ada_opname_table[k].decoded);
|
1046 |
|
|
at_start_name = 0;
|
1047 |
|
|
i += op_len;
|
1048 |
|
|
j += strlen (ada_opname_table[k].decoded);
|
1049 |
|
|
break;
|
1050 |
|
|
}
|
1051 |
|
|
}
|
1052 |
|
|
if (ada_opname_table[k].encoded != NULL)
|
1053 |
|
|
continue;
|
1054 |
|
|
}
|
1055 |
|
|
at_start_name = 0;
|
1056 |
|
|
|
1057 |
|
|
/* Replace "TK__" with "__", which will eventually be translated
|
1058 |
|
|
into "." (just below). */
|
1059 |
|
|
|
1060 |
|
|
if (i < len0 - 4 && strncmp (encoded + i, "TK__", 4) == 0)
|
1061 |
|
|
i += 2;
|
1062 |
|
|
|
1063 |
|
|
/* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
|
1064 |
|
|
be translated into "." (just below). These are internal names
|
1065 |
|
|
generated for anonymous blocks inside which our symbol is nested. */
|
1066 |
|
|
|
1067 |
|
|
if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
|
1068 |
|
|
&& encoded [i+2] == 'B' && encoded [i+3] == '_'
|
1069 |
|
|
&& isdigit (encoded [i+4]))
|
1070 |
|
|
{
|
1071 |
|
|
int k = i + 5;
|
1072 |
|
|
|
1073 |
|
|
while (k < len0 && isdigit (encoded[k]))
|
1074 |
|
|
k++; /* Skip any extra digit. */
|
1075 |
|
|
|
1076 |
|
|
/* Double-check that the "__B_{DIGITS}+" sequence we found
|
1077 |
|
|
is indeed followed by "__". */
|
1078 |
|
|
if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
|
1079 |
|
|
i = k;
|
1080 |
|
|
}
|
1081 |
|
|
|
1082 |
|
|
/* Remove _E{DIGITS}+[sb] */
|
1083 |
|
|
|
1084 |
|
|
/* Just as for protected object subprograms, there are 2 categories
|
1085 |
|
|
of subprograms created by the compiler for each entry. The first
|
1086 |
|
|
one implements the actual entry code, and has a suffix following
|
1087 |
|
|
the convention above; the second one implements the barrier and
|
1088 |
|
|
uses the same convention as above, except that the 'E' is replaced
|
1089 |
|
|
by a 'B'.
|
1090 |
|
|
|
1091 |
|
|
Just as above, we do not decode the name of barrier functions
|
1092 |
|
|
to give the user a clue that the code he is debugging has been
|
1093 |
|
|
internally generated. */
|
1094 |
|
|
|
1095 |
|
|
if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
|
1096 |
|
|
&& isdigit (encoded[i+2]))
|
1097 |
|
|
{
|
1098 |
|
|
int k = i + 3;
|
1099 |
|
|
|
1100 |
|
|
while (k < len0 && isdigit (encoded[k]))
|
1101 |
|
|
k++;
|
1102 |
|
|
|
1103 |
|
|
if (k < len0
|
1104 |
|
|
&& (encoded[k] == 'b' || encoded[k] == 's'))
|
1105 |
|
|
{
|
1106 |
|
|
k++;
|
1107 |
|
|
/* Just as an extra precaution, make sure that if this
|
1108 |
|
|
suffix is followed by anything else, it is a '_'.
|
1109 |
|
|
Otherwise, we matched this sequence by accident. */
|
1110 |
|
|
if (k == len0
|
1111 |
|
|
|| (k < len0 && encoded[k] == '_'))
|
1112 |
|
|
i = k;
|
1113 |
|
|
}
|
1114 |
|
|
}
|
1115 |
|
|
|
1116 |
|
|
/* Remove trailing "N" in [a-z0-9]+N__. The N is added by
|
1117 |
|
|
the GNAT front-end in protected object subprograms. */
|
1118 |
|
|
|
1119 |
|
|
if (i < len0 + 3
|
1120 |
|
|
&& encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
|
1121 |
|
|
{
|
1122 |
|
|
/* Backtrack a bit up until we reach either the begining of
|
1123 |
|
|
the encoded name, or "__". Make sure that we only find
|
1124 |
|
|
digits or lowercase characters. */
|
1125 |
|
|
const char *ptr = encoded + i - 1;
|
1126 |
|
|
|
1127 |
|
|
while (ptr >= encoded && is_lower_alphanum (ptr[0]))
|
1128 |
|
|
ptr--;
|
1129 |
|
|
if (ptr < encoded
|
1130 |
|
|
|| (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
|
1131 |
|
|
i++;
|
1132 |
|
|
}
|
1133 |
|
|
|
1134 |
|
|
if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
|
1135 |
|
|
{
|
1136 |
|
|
/* This is a X[bn]* sequence not separated from the previous
|
1137 |
|
|
part of the name with a non-alpha-numeric character (in other
|
1138 |
|
|
words, immediately following an alpha-numeric character), then
|
1139 |
|
|
verify that it is placed at the end of the encoded name. If
|
1140 |
|
|
not, then the encoding is not valid and we should abort the
|
1141 |
|
|
decoding. Otherwise, just skip it, it is used in body-nested
|
1142 |
|
|
package names. */
|
1143 |
|
|
do
|
1144 |
|
|
i += 1;
|
1145 |
|
|
while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
|
1146 |
|
|
if (i < len0)
|
1147 |
|
|
goto Suppress;
|
1148 |
|
|
}
|
1149 |
|
|
else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
|
1150 |
|
|
{
|
1151 |
|
|
/* Replace '__' by '.'. */
|
1152 |
|
|
decoded[j] = '.';
|
1153 |
|
|
at_start_name = 1;
|
1154 |
|
|
i += 2;
|
1155 |
|
|
j += 1;
|
1156 |
|
|
}
|
1157 |
|
|
else
|
1158 |
|
|
{
|
1159 |
|
|
/* It's a character part of the decoded name, so just copy it
|
1160 |
|
|
over. */
|
1161 |
|
|
decoded[j] = encoded[i];
|
1162 |
|
|
i += 1;
|
1163 |
|
|
j += 1;
|
1164 |
|
|
}
|
1165 |
|
|
}
|
1166 |
|
|
decoded[j] = '\000';
|
1167 |
|
|
|
1168 |
|
|
/* Decoded names should never contain any uppercase character.
|
1169 |
|
|
Double-check this, and abort the decoding if we find one. */
|
1170 |
|
|
|
1171 |
|
|
for (i = 0; decoded[i] != '\0'; i += 1)
|
1172 |
|
|
if (isupper (decoded[i]) || decoded[i] == ' ')
|
1173 |
|
|
goto Suppress;
|
1174 |
|
|
|
1175 |
|
|
if (strcmp (decoded, encoded) == 0)
|
1176 |
|
|
return encoded;
|
1177 |
|
|
else
|
1178 |
|
|
return decoded;
|
1179 |
|
|
|
1180 |
|
|
Suppress:
|
1181 |
|
|
GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
|
1182 |
|
|
decoded = decoding_buffer;
|
1183 |
|
|
if (encoded[0] == '<')
|
1184 |
|
|
strcpy (decoded, encoded);
|
1185 |
|
|
else
|
1186 |
|
|
xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
|
1187 |
|
|
return decoded;
|
1188 |
|
|
|
1189 |
|
|
}
|
1190 |
|
|
|
1191 |
|
|
/* Table for keeping permanent unique copies of decoded names. Once
|
1192 |
|
|
allocated, names in this table are never released. While this is a
|
1193 |
|
|
storage leak, it should not be significant unless there are massive
|
1194 |
|
|
changes in the set of decoded names in successive versions of a
|
1195 |
|
|
symbol table loaded during a single session. */
|
1196 |
|
|
static struct htab *decoded_names_store;
|
1197 |
|
|
|
1198 |
|
|
/* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
|
1199 |
|
|
in the language-specific part of GSYMBOL, if it has not been
|
1200 |
|
|
previously computed. Tries to save the decoded name in the same
|
1201 |
|
|
obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
|
1202 |
|
|
in any case, the decoded symbol has a lifetime at least that of
|
1203 |
|
|
GSYMBOL).
|
1204 |
|
|
The GSYMBOL parameter is "mutable" in the C++ sense: logically
|
1205 |
|
|
const, but nevertheless modified to a semantically equivalent form
|
1206 |
|
|
when a decoded name is cached in it.
|
1207 |
|
|
*/
|
1208 |
|
|
|
1209 |
|
|
char *
|
1210 |
|
|
ada_decode_symbol (const struct general_symbol_info *gsymbol)
|
1211 |
|
|
{
|
1212 |
|
|
char **resultp =
|
1213 |
|
|
(char **) &gsymbol->language_specific.cplus_specific.demangled_name;
|
1214 |
|
|
|
1215 |
|
|
if (*resultp == NULL)
|
1216 |
|
|
{
|
1217 |
|
|
const char *decoded = ada_decode (gsymbol->name);
|
1218 |
|
|
|
1219 |
|
|
if (gsymbol->obj_section != NULL)
|
1220 |
|
|
{
|
1221 |
|
|
struct objfile *objf = gsymbol->obj_section->objfile;
|
1222 |
|
|
|
1223 |
|
|
*resultp = obsavestring (decoded, strlen (decoded),
|
1224 |
|
|
&objf->objfile_obstack);
|
1225 |
|
|
}
|
1226 |
|
|
/* Sometimes, we can't find a corresponding objfile, in which
|
1227 |
|
|
case, we put the result on the heap. Since we only decode
|
1228 |
|
|
when needed, we hope this usually does not cause a
|
1229 |
|
|
significant memory leak (FIXME). */
|
1230 |
|
|
if (*resultp == NULL)
|
1231 |
|
|
{
|
1232 |
|
|
char **slot = (char **) htab_find_slot (decoded_names_store,
|
1233 |
|
|
decoded, INSERT);
|
1234 |
|
|
|
1235 |
|
|
if (*slot == NULL)
|
1236 |
|
|
*slot = xstrdup (decoded);
|
1237 |
|
|
*resultp = *slot;
|
1238 |
|
|
}
|
1239 |
|
|
}
|
1240 |
|
|
|
1241 |
|
|
return *resultp;
|
1242 |
|
|
}
|
1243 |
|
|
|
1244 |
|
|
static char *
|
1245 |
|
|
ada_la_decode (const char *encoded, int options)
|
1246 |
|
|
{
|
1247 |
|
|
return xstrdup (ada_decode (encoded));
|
1248 |
|
|
}
|
1249 |
|
|
|
1250 |
|
|
/* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
|
1251 |
|
|
suffixes that encode debugging information or leading _ada_ on
|
1252 |
|
|
SYM_NAME (see is_name_suffix commentary for the debugging
|
1253 |
|
|
information that is ignored). If WILD, then NAME need only match a
|
1254 |
|
|
suffix of SYM_NAME minus the same suffixes. Also returns 0 if
|
1255 |
|
|
either argument is NULL. */
|
1256 |
|
|
|
1257 |
|
|
static int
|
1258 |
|
|
ada_match_name (const char *sym_name, const char *name, int wild)
|
1259 |
|
|
{
|
1260 |
|
|
if (sym_name == NULL || name == NULL)
|
1261 |
|
|
return 0;
|
1262 |
|
|
else if (wild)
|
1263 |
|
|
return wild_match (name, strlen (name), sym_name);
|
1264 |
|
|
else
|
1265 |
|
|
{
|
1266 |
|
|
int len_name = strlen (name);
|
1267 |
|
|
|
1268 |
|
|
return (strncmp (sym_name, name, len_name) == 0
|
1269 |
|
|
&& is_name_suffix (sym_name + len_name))
|
1270 |
|
|
|| (strncmp (sym_name, "_ada_", 5) == 0
|
1271 |
|
|
&& strncmp (sym_name + 5, name, len_name) == 0
|
1272 |
|
|
&& is_name_suffix (sym_name + len_name + 5));
|
1273 |
|
|
}
|
1274 |
|
|
}
|
1275 |
|
|
|
1276 |
|
|
|
1277 |
|
|
/* Arrays */
|
1278 |
|
|
|
1279 |
|
|
/* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
|
1280 |
|
|
generated by the GNAT compiler to describe the index type used
|
1281 |
|
|
for each dimension of an array, check whether it follows the latest
|
1282 |
|
|
known encoding. If not, fix it up to conform to the latest encoding.
|
1283 |
|
|
Otherwise, do nothing. This function also does nothing if
|
1284 |
|
|
INDEX_DESC_TYPE is NULL.
|
1285 |
|
|
|
1286 |
|
|
The GNAT encoding used to describle the array index type evolved a bit.
|
1287 |
|
|
Initially, the information would be provided through the name of each
|
1288 |
|
|
field of the structure type only, while the type of these fields was
|
1289 |
|
|
described as unspecified and irrelevant. The debugger was then expected
|
1290 |
|
|
to perform a global type lookup using the name of that field in order
|
1291 |
|
|
to get access to the full index type description. Because these global
|
1292 |
|
|
lookups can be very expensive, the encoding was later enhanced to make
|
1293 |
|
|
the global lookup unnecessary by defining the field type as being
|
1294 |
|
|
the full index type description.
|
1295 |
|
|
|
1296 |
|
|
The purpose of this routine is to allow us to support older versions
|
1297 |
|
|
of the compiler by detecting the use of the older encoding, and by
|
1298 |
|
|
fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
|
1299 |
|
|
we essentially replace each field's meaningless type by the associated
|
1300 |
|
|
index subtype). */
|
1301 |
|
|
|
1302 |
|
|
void
|
1303 |
|
|
ada_fixup_array_indexes_type (struct type *index_desc_type)
|
1304 |
|
|
{
|
1305 |
|
|
int i;
|
1306 |
|
|
|
1307 |
|
|
if (index_desc_type == NULL)
|
1308 |
|
|
return;
|
1309 |
|
|
gdb_assert (TYPE_NFIELDS (index_desc_type) > 0);
|
1310 |
|
|
|
1311 |
|
|
/* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
|
1312 |
|
|
to check one field only, no need to check them all). If not, return
|
1313 |
|
|
now.
|
1314 |
|
|
|
1315 |
|
|
If our INDEX_DESC_TYPE was generated using the older encoding,
|
1316 |
|
|
the field type should be a meaningless integer type whose name
|
1317 |
|
|
is not equal to the field name. */
|
1318 |
|
|
if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL
|
1319 |
|
|
&& strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)),
|
1320 |
|
|
TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
|
1321 |
|
|
return;
|
1322 |
|
|
|
1323 |
|
|
/* Fixup each field of INDEX_DESC_TYPE. */
|
1324 |
|
|
for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++)
|
1325 |
|
|
{
|
1326 |
|
|
char *name = TYPE_FIELD_NAME (index_desc_type, i);
|
1327 |
|
|
struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
|
1328 |
|
|
|
1329 |
|
|
if (raw_type)
|
1330 |
|
|
TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
|
1331 |
|
|
}
|
1332 |
|
|
}
|
1333 |
|
|
|
1334 |
|
|
/* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
|
1335 |
|
|
|
1336 |
|
|
static char *bound_name[] = {
|
1337 |
|
|
"LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
|
1338 |
|
|
"LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
|
1339 |
|
|
};
|
1340 |
|
|
|
1341 |
|
|
/* Maximum number of array dimensions we are prepared to handle. */
|
1342 |
|
|
|
1343 |
|
|
#define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
|
1344 |
|
|
|
1345 |
|
|
/* Like modify_field, but allows bitpos > wordlength. */
|
1346 |
|
|
|
1347 |
|
|
static void
|
1348 |
|
|
modify_general_field (struct type *type, char *addr,
|
1349 |
|
|
LONGEST fieldval, int bitpos, int bitsize)
|
1350 |
|
|
{
|
1351 |
|
|
modify_field (type, addr + bitpos / 8, fieldval, bitpos % 8, bitsize);
|
1352 |
|
|
}
|
1353 |
|
|
|
1354 |
|
|
|
1355 |
|
|
/* The desc_* routines return primitive portions of array descriptors
|
1356 |
|
|
(fat pointers). */
|
1357 |
|
|
|
1358 |
|
|
/* The descriptor or array type, if any, indicated by TYPE; removes
|
1359 |
|
|
level of indirection, if needed. */
|
1360 |
|
|
|
1361 |
|
|
static struct type *
|
1362 |
|
|
desc_base_type (struct type *type)
|
1363 |
|
|
{
|
1364 |
|
|
if (type == NULL)
|
1365 |
|
|
return NULL;
|
1366 |
|
|
type = ada_check_typedef (type);
|
1367 |
|
|
if (type != NULL
|
1368 |
|
|
&& (TYPE_CODE (type) == TYPE_CODE_PTR
|
1369 |
|
|
|| TYPE_CODE (type) == TYPE_CODE_REF))
|
1370 |
|
|
return ada_check_typedef (TYPE_TARGET_TYPE (type));
|
1371 |
|
|
else
|
1372 |
|
|
return type;
|
1373 |
|
|
}
|
1374 |
|
|
|
1375 |
|
|
/* True iff TYPE indicates a "thin" array pointer type. */
|
1376 |
|
|
|
1377 |
|
|
static int
|
1378 |
|
|
is_thin_pntr (struct type *type)
|
1379 |
|
|
{
|
1380 |
|
|
return
|
1381 |
|
|
is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
|
1382 |
|
|
|| is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
|
1383 |
|
|
}
|
1384 |
|
|
|
1385 |
|
|
/* The descriptor type for thin pointer type TYPE. */
|
1386 |
|
|
|
1387 |
|
|
static struct type *
|
1388 |
|
|
thin_descriptor_type (struct type *type)
|
1389 |
|
|
{
|
1390 |
|
|
struct type *base_type = desc_base_type (type);
|
1391 |
|
|
|
1392 |
|
|
if (base_type == NULL)
|
1393 |
|
|
return NULL;
|
1394 |
|
|
if (is_suffix (ada_type_name (base_type), "___XVE"))
|
1395 |
|
|
return base_type;
|
1396 |
|
|
else
|
1397 |
|
|
{
|
1398 |
|
|
struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
|
1399 |
|
|
|
1400 |
|
|
if (alt_type == NULL)
|
1401 |
|
|
return base_type;
|
1402 |
|
|
else
|
1403 |
|
|
return alt_type;
|
1404 |
|
|
}
|
1405 |
|
|
}
|
1406 |
|
|
|
1407 |
|
|
/* A pointer to the array data for thin-pointer value VAL. */
|
1408 |
|
|
|
1409 |
|
|
static struct value *
|
1410 |
|
|
thin_data_pntr (struct value *val)
|
1411 |
|
|
{
|
1412 |
|
|
struct type *type = value_type (val);
|
1413 |
|
|
struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
|
1414 |
|
|
|
1415 |
|
|
data_type = lookup_pointer_type (data_type);
|
1416 |
|
|
|
1417 |
|
|
if (TYPE_CODE (type) == TYPE_CODE_PTR)
|
1418 |
|
|
return value_cast (data_type, value_copy (val));
|
1419 |
|
|
else
|
1420 |
|
|
return value_from_longest (data_type, value_address (val));
|
1421 |
|
|
}
|
1422 |
|
|
|
1423 |
|
|
/* True iff TYPE indicates a "thick" array pointer type. */
|
1424 |
|
|
|
1425 |
|
|
static int
|
1426 |
|
|
is_thick_pntr (struct type *type)
|
1427 |
|
|
{
|
1428 |
|
|
type = desc_base_type (type);
|
1429 |
|
|
return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
|
1430 |
|
|
&& lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
|
1431 |
|
|
}
|
1432 |
|
|
|
1433 |
|
|
/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
|
1434 |
|
|
pointer to one, the type of its bounds data; otherwise, NULL. */
|
1435 |
|
|
|
1436 |
|
|
static struct type *
|
1437 |
|
|
desc_bounds_type (struct type *type)
|
1438 |
|
|
{
|
1439 |
|
|
struct type *r;
|
1440 |
|
|
|
1441 |
|
|
type = desc_base_type (type);
|
1442 |
|
|
|
1443 |
|
|
if (type == NULL)
|
1444 |
|
|
return NULL;
|
1445 |
|
|
else if (is_thin_pntr (type))
|
1446 |
|
|
{
|
1447 |
|
|
type = thin_descriptor_type (type);
|
1448 |
|
|
if (type == NULL)
|
1449 |
|
|
return NULL;
|
1450 |
|
|
r = lookup_struct_elt_type (type, "BOUNDS", 1);
|
1451 |
|
|
if (r != NULL)
|
1452 |
|
|
return ada_check_typedef (r);
|
1453 |
|
|
}
|
1454 |
|
|
else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
|
1455 |
|
|
{
|
1456 |
|
|
r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
|
1457 |
|
|
if (r != NULL)
|
1458 |
|
|
return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
|
1459 |
|
|
}
|
1460 |
|
|
return NULL;
|
1461 |
|
|
}
|
1462 |
|
|
|
1463 |
|
|
/* If ARR is an array descriptor (fat or thin pointer), or pointer to
|
1464 |
|
|
one, a pointer to its bounds data. Otherwise NULL. */
|
1465 |
|
|
|
1466 |
|
|
static struct value *
|
1467 |
|
|
desc_bounds (struct value *arr)
|
1468 |
|
|
{
|
1469 |
|
|
struct type *type = ada_check_typedef (value_type (arr));
|
1470 |
|
|
|
1471 |
|
|
if (is_thin_pntr (type))
|
1472 |
|
|
{
|
1473 |
|
|
struct type *bounds_type =
|
1474 |
|
|
desc_bounds_type (thin_descriptor_type (type));
|
1475 |
|
|
LONGEST addr;
|
1476 |
|
|
|
1477 |
|
|
if (bounds_type == NULL)
|
1478 |
|
|
error (_("Bad GNAT array descriptor"));
|
1479 |
|
|
|
1480 |
|
|
/* NOTE: The following calculation is not really kosher, but
|
1481 |
|
|
since desc_type is an XVE-encoded type (and shouldn't be),
|
1482 |
|
|
the correct calculation is a real pain. FIXME (and fix GCC). */
|
1483 |
|
|
if (TYPE_CODE (type) == TYPE_CODE_PTR)
|
1484 |
|
|
addr = value_as_long (arr);
|
1485 |
|
|
else
|
1486 |
|
|
addr = value_address (arr);
|
1487 |
|
|
|
1488 |
|
|
return
|
1489 |
|
|
value_from_longest (lookup_pointer_type (bounds_type),
|
1490 |
|
|
addr - TYPE_LENGTH (bounds_type));
|
1491 |
|
|
}
|
1492 |
|
|
|
1493 |
|
|
else if (is_thick_pntr (type))
|
1494 |
|
|
return value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
|
1495 |
|
|
_("Bad GNAT array descriptor"));
|
1496 |
|
|
else
|
1497 |
|
|
return NULL;
|
1498 |
|
|
}
|
1499 |
|
|
|
1500 |
|
|
/* If TYPE is the type of an array-descriptor (fat pointer), the bit
|
1501 |
|
|
position of the field containing the address of the bounds data. */
|
1502 |
|
|
|
1503 |
|
|
static int
|
1504 |
|
|
fat_pntr_bounds_bitpos (struct type *type)
|
1505 |
|
|
{
|
1506 |
|
|
return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
|
1507 |
|
|
}
|
1508 |
|
|
|
1509 |
|
|
/* If TYPE is the type of an array-descriptor (fat pointer), the bit
|
1510 |
|
|
size of the field containing the address of the bounds data. */
|
1511 |
|
|
|
1512 |
|
|
static int
|
1513 |
|
|
fat_pntr_bounds_bitsize (struct type *type)
|
1514 |
|
|
{
|
1515 |
|
|
type = desc_base_type (type);
|
1516 |
|
|
|
1517 |
|
|
if (TYPE_FIELD_BITSIZE (type, 1) > 0)
|
1518 |
|
|
return TYPE_FIELD_BITSIZE (type, 1);
|
1519 |
|
|
else
|
1520 |
|
|
return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
|
1521 |
|
|
}
|
1522 |
|
|
|
1523 |
|
|
/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
|
1524 |
|
|
pointer to one, the type of its array data (a array-with-no-bounds type);
|
1525 |
|
|
otherwise, NULL. Use ada_type_of_array to get an array type with bounds
|
1526 |
|
|
data. */
|
1527 |
|
|
|
1528 |
|
|
static struct type *
|
1529 |
|
|
desc_data_target_type (struct type *type)
|
1530 |
|
|
{
|
1531 |
|
|
type = desc_base_type (type);
|
1532 |
|
|
|
1533 |
|
|
/* NOTE: The following is bogus; see comment in desc_bounds. */
|
1534 |
|
|
if (is_thin_pntr (type))
|
1535 |
|
|
return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
|
1536 |
|
|
else if (is_thick_pntr (type))
|
1537 |
|
|
{
|
1538 |
|
|
struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
|
1539 |
|
|
|
1540 |
|
|
if (data_type
|
1541 |
|
|
&& TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
|
1542 |
|
|
return TYPE_TARGET_TYPE (data_type);
|
1543 |
|
|
}
|
1544 |
|
|
|
1545 |
|
|
return NULL;
|
1546 |
|
|
}
|
1547 |
|
|
|
1548 |
|
|
/* If ARR is an array descriptor (fat or thin pointer), a pointer to
|
1549 |
|
|
its array data. */
|
1550 |
|
|
|
1551 |
|
|
static struct value *
|
1552 |
|
|
desc_data (struct value *arr)
|
1553 |
|
|
{
|
1554 |
|
|
struct type *type = value_type (arr);
|
1555 |
|
|
|
1556 |
|
|
if (is_thin_pntr (type))
|
1557 |
|
|
return thin_data_pntr (arr);
|
1558 |
|
|
else if (is_thick_pntr (type))
|
1559 |
|
|
return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
|
1560 |
|
|
_("Bad GNAT array descriptor"));
|
1561 |
|
|
else
|
1562 |
|
|
return NULL;
|
1563 |
|
|
}
|
1564 |
|
|
|
1565 |
|
|
|
1566 |
|
|
/* If TYPE is the type of an array-descriptor (fat pointer), the bit
|
1567 |
|
|
position of the field containing the address of the data. */
|
1568 |
|
|
|
1569 |
|
|
static int
|
1570 |
|
|
fat_pntr_data_bitpos (struct type *type)
|
1571 |
|
|
{
|
1572 |
|
|
return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
|
1573 |
|
|
}
|
1574 |
|
|
|
1575 |
|
|
/* If TYPE is the type of an array-descriptor (fat pointer), the bit
|
1576 |
|
|
size of the field containing the address of the data. */
|
1577 |
|
|
|
1578 |
|
|
static int
|
1579 |
|
|
fat_pntr_data_bitsize (struct type *type)
|
1580 |
|
|
{
|
1581 |
|
|
type = desc_base_type (type);
|
1582 |
|
|
|
1583 |
|
|
if (TYPE_FIELD_BITSIZE (type, 0) > 0)
|
1584 |
|
|
return TYPE_FIELD_BITSIZE (type, 0);
|
1585 |
|
|
else
|
1586 |
|
|
return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
|
1587 |
|
|
}
|
1588 |
|
|
|
1589 |
|
|
/* If BOUNDS is an array-bounds structure (or pointer to one), return
|
1590 |
|
|
the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
|
1591 |
|
|
bound, if WHICH is 1. The first bound is I=1. */
|
1592 |
|
|
|
1593 |
|
|
static struct value *
|
1594 |
|
|
desc_one_bound (struct value *bounds, int i, int which)
|
1595 |
|
|
{
|
1596 |
|
|
return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
|
1597 |
|
|
_("Bad GNAT array descriptor bounds"));
|
1598 |
|
|
}
|
1599 |
|
|
|
1600 |
|
|
/* If BOUNDS is an array-bounds structure type, return the bit position
|
1601 |
|
|
of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
|
1602 |
|
|
bound, if WHICH is 1. The first bound is I=1. */
|
1603 |
|
|
|
1604 |
|
|
static int
|
1605 |
|
|
desc_bound_bitpos (struct type *type, int i, int which)
|
1606 |
|
|
{
|
1607 |
|
|
return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
|
1608 |
|
|
}
|
1609 |
|
|
|
1610 |
|
|
/* If BOUNDS is an array-bounds structure type, return the bit field size
|
1611 |
|
|
of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
|
1612 |
|
|
bound, if WHICH is 1. The first bound is I=1. */
|
1613 |
|
|
|
1614 |
|
|
static int
|
1615 |
|
|
desc_bound_bitsize (struct type *type, int i, int which)
|
1616 |
|
|
{
|
1617 |
|
|
type = desc_base_type (type);
|
1618 |
|
|
|
1619 |
|
|
if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
|
1620 |
|
|
return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
|
1621 |
|
|
else
|
1622 |
|
|
return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
|
1623 |
|
|
}
|
1624 |
|
|
|
1625 |
|
|
/* If TYPE is the type of an array-bounds structure, the type of its
|
1626 |
|
|
Ith bound (numbering from 1). Otherwise, NULL. */
|
1627 |
|
|
|
1628 |
|
|
static struct type *
|
1629 |
|
|
desc_index_type (struct type *type, int i)
|
1630 |
|
|
{
|
1631 |
|
|
type = desc_base_type (type);
|
1632 |
|
|
|
1633 |
|
|
if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
|
1634 |
|
|
return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
|
1635 |
|
|
else
|
1636 |
|
|
return NULL;
|
1637 |
|
|
}
|
1638 |
|
|
|
1639 |
|
|
/* The number of index positions in the array-bounds type TYPE.
|
1640 |
|
|
Return 0 if TYPE is NULL. */
|
1641 |
|
|
|
1642 |
|
|
static int
|
1643 |
|
|
desc_arity (struct type *type)
|
1644 |
|
|
{
|
1645 |
|
|
type = desc_base_type (type);
|
1646 |
|
|
|
1647 |
|
|
if (type != NULL)
|
1648 |
|
|
return TYPE_NFIELDS (type) / 2;
|
1649 |
|
|
return 0;
|
1650 |
|
|
}
|
1651 |
|
|
|
1652 |
|
|
/* Non-zero iff TYPE is a simple array type (not a pointer to one) or
|
1653 |
|
|
an array descriptor type (representing an unconstrained array
|
1654 |
|
|
type). */
|
1655 |
|
|
|
1656 |
|
|
static int
|
1657 |
|
|
ada_is_direct_array_type (struct type *type)
|
1658 |
|
|
{
|
1659 |
|
|
if (type == NULL)
|
1660 |
|
|
return 0;
|
1661 |
|
|
type = ada_check_typedef (type);
|
1662 |
|
|
return (TYPE_CODE (type) == TYPE_CODE_ARRAY
|
1663 |
|
|
|| ada_is_array_descriptor_type (type));
|
1664 |
|
|
}
|
1665 |
|
|
|
1666 |
|
|
/* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
|
1667 |
|
|
* to one. */
|
1668 |
|
|
|
1669 |
|
|
static int
|
1670 |
|
|
ada_is_array_type (struct type *type)
|
1671 |
|
|
{
|
1672 |
|
|
while (type != NULL
|
1673 |
|
|
&& (TYPE_CODE (type) == TYPE_CODE_PTR
|
1674 |
|
|
|| TYPE_CODE (type) == TYPE_CODE_REF))
|
1675 |
|
|
type = TYPE_TARGET_TYPE (type);
|
1676 |
|
|
return ada_is_direct_array_type (type);
|
1677 |
|
|
}
|
1678 |
|
|
|
1679 |
|
|
/* Non-zero iff TYPE is a simple array type or pointer to one. */
|
1680 |
|
|
|
1681 |
|
|
int
|
1682 |
|
|
ada_is_simple_array_type (struct type *type)
|
1683 |
|
|
{
|
1684 |
|
|
if (type == NULL)
|
1685 |
|
|
return 0;
|
1686 |
|
|
type = ada_check_typedef (type);
|
1687 |
|
|
return (TYPE_CODE (type) == TYPE_CODE_ARRAY
|
1688 |
|
|
|| (TYPE_CODE (type) == TYPE_CODE_PTR
|
1689 |
|
|
&& TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_ARRAY));
|
1690 |
|
|
}
|
1691 |
|
|
|
1692 |
|
|
/* Non-zero iff TYPE belongs to a GNAT array descriptor. */
|
1693 |
|
|
|
1694 |
|
|
int
|
1695 |
|
|
ada_is_array_descriptor_type (struct type *type)
|
1696 |
|
|
{
|
1697 |
|
|
struct type *data_type = desc_data_target_type (type);
|
1698 |
|
|
|
1699 |
|
|
if (type == NULL)
|
1700 |
|
|
return 0;
|
1701 |
|
|
type = ada_check_typedef (type);
|
1702 |
|
|
return (data_type != NULL
|
1703 |
|
|
&& TYPE_CODE (data_type) == TYPE_CODE_ARRAY
|
1704 |
|
|
&& desc_arity (desc_bounds_type (type)) > 0);
|
1705 |
|
|
}
|
1706 |
|
|
|
1707 |
|
|
/* Non-zero iff type is a partially mal-formed GNAT array
|
1708 |
|
|
descriptor. FIXME: This is to compensate for some problems with
|
1709 |
|
|
debugging output from GNAT. Re-examine periodically to see if it
|
1710 |
|
|
is still needed. */
|
1711 |
|
|
|
1712 |
|
|
int
|
1713 |
|
|
ada_is_bogus_array_descriptor (struct type *type)
|
1714 |
|
|
{
|
1715 |
|
|
return
|
1716 |
|
|
type != NULL
|
1717 |
|
|
&& TYPE_CODE (type) == TYPE_CODE_STRUCT
|
1718 |
|
|
&& (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
|
1719 |
|
|
|| lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
|
1720 |
|
|
&& !ada_is_array_descriptor_type (type);
|
1721 |
|
|
}
|
1722 |
|
|
|
1723 |
|
|
|
1724 |
|
|
/* If ARR has a record type in the form of a standard GNAT array descriptor,
|
1725 |
|
|
(fat pointer) returns the type of the array data described---specifically,
|
1726 |
|
|
a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
|
1727 |
|
|
in from the descriptor; otherwise, they are left unspecified. If
|
1728 |
|
|
the ARR denotes a null array descriptor and BOUNDS is non-zero,
|
1729 |
|
|
returns NULL. The result is simply the type of ARR if ARR is not
|
1730 |
|
|
a descriptor. */
|
1731 |
|
|
struct type *
|
1732 |
|
|
ada_type_of_array (struct value *arr, int bounds)
|
1733 |
|
|
{
|
1734 |
|
|
if (ada_is_constrained_packed_array_type (value_type (arr)))
|
1735 |
|
|
return decode_constrained_packed_array_type (value_type (arr));
|
1736 |
|
|
|
1737 |
|
|
if (!ada_is_array_descriptor_type (value_type (arr)))
|
1738 |
|
|
return value_type (arr);
|
1739 |
|
|
|
1740 |
|
|
if (!bounds)
|
1741 |
|
|
{
|
1742 |
|
|
struct type *array_type =
|
1743 |
|
|
ada_check_typedef (desc_data_target_type (value_type (arr)));
|
1744 |
|
|
|
1745 |
|
|
if (ada_is_unconstrained_packed_array_type (value_type (arr)))
|
1746 |
|
|
TYPE_FIELD_BITSIZE (array_type, 0) =
|
1747 |
|
|
decode_packed_array_bitsize (value_type (arr));
|
1748 |
|
|
|
1749 |
|
|
return array_type;
|
1750 |
|
|
}
|
1751 |
|
|
else
|
1752 |
|
|
{
|
1753 |
|
|
struct type *elt_type;
|
1754 |
|
|
int arity;
|
1755 |
|
|
struct value *descriptor;
|
1756 |
|
|
|
1757 |
|
|
elt_type = ada_array_element_type (value_type (arr), -1);
|
1758 |
|
|
arity = ada_array_arity (value_type (arr));
|
1759 |
|
|
|
1760 |
|
|
if (elt_type == NULL || arity == 0)
|
1761 |
|
|
return ada_check_typedef (value_type (arr));
|
1762 |
|
|
|
1763 |
|
|
descriptor = desc_bounds (arr);
|
1764 |
|
|
if (value_as_long (descriptor) == 0)
|
1765 |
|
|
return NULL;
|
1766 |
|
|
while (arity > 0)
|
1767 |
|
|
{
|
1768 |
|
|
struct type *range_type = alloc_type_copy (value_type (arr));
|
1769 |
|
|
struct type *array_type = alloc_type_copy (value_type (arr));
|
1770 |
|
|
struct value *low = desc_one_bound (descriptor, arity, 0);
|
1771 |
|
|
struct value *high = desc_one_bound (descriptor, arity, 1);
|
1772 |
|
|
|
1773 |
|
|
arity -= 1;
|
1774 |
|
|
create_range_type (range_type, value_type (low),
|
1775 |
|
|
longest_to_int (value_as_long (low)),
|
1776 |
|
|
longest_to_int (value_as_long (high)));
|
1777 |
|
|
elt_type = create_array_type (array_type, elt_type, range_type);
|
1778 |
|
|
|
1779 |
|
|
if (ada_is_unconstrained_packed_array_type (value_type (arr)))
|
1780 |
|
|
TYPE_FIELD_BITSIZE (elt_type, 0) =
|
1781 |
|
|
decode_packed_array_bitsize (value_type (arr));
|
1782 |
|
|
}
|
1783 |
|
|
|
1784 |
|
|
return lookup_pointer_type (elt_type);
|
1785 |
|
|
}
|
1786 |
|
|
}
|
1787 |
|
|
|
1788 |
|
|
/* If ARR does not represent an array, returns ARR unchanged.
|
1789 |
|
|
Otherwise, returns either a standard GDB array with bounds set
|
1790 |
|
|
appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
|
1791 |
|
|
GDB array. Returns NULL if ARR is a null fat pointer. */
|
1792 |
|
|
|
1793 |
|
|
struct value *
|
1794 |
|
|
ada_coerce_to_simple_array_ptr (struct value *arr)
|
1795 |
|
|
{
|
1796 |
|
|
if (ada_is_array_descriptor_type (value_type (arr)))
|
1797 |
|
|
{
|
1798 |
|
|
struct type *arrType = ada_type_of_array (arr, 1);
|
1799 |
|
|
|
1800 |
|
|
if (arrType == NULL)
|
1801 |
|
|
return NULL;
|
1802 |
|
|
return value_cast (arrType, value_copy (desc_data (arr)));
|
1803 |
|
|
}
|
1804 |
|
|
else if (ada_is_constrained_packed_array_type (value_type (arr)))
|
1805 |
|
|
return decode_constrained_packed_array (arr);
|
1806 |
|
|
else
|
1807 |
|
|
return arr;
|
1808 |
|
|
}
|
1809 |
|
|
|
1810 |
|
|
/* If ARR does not represent an array, returns ARR unchanged.
|
1811 |
|
|
Otherwise, returns a standard GDB array describing ARR (which may
|
1812 |
|
|
be ARR itself if it already is in the proper form). */
|
1813 |
|
|
|
1814 |
|
|
static struct value *
|
1815 |
|
|
ada_coerce_to_simple_array (struct value *arr)
|
1816 |
|
|
{
|
1817 |
|
|
if (ada_is_array_descriptor_type (value_type (arr)))
|
1818 |
|
|
{
|
1819 |
|
|
struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
|
1820 |
|
|
|
1821 |
|
|
if (arrVal == NULL)
|
1822 |
|
|
error (_("Bounds unavailable for null array pointer."));
|
1823 |
|
|
check_size (TYPE_TARGET_TYPE (value_type (arrVal)));
|
1824 |
|
|
return value_ind (arrVal);
|
1825 |
|
|
}
|
1826 |
|
|
else if (ada_is_constrained_packed_array_type (value_type (arr)))
|
1827 |
|
|
return decode_constrained_packed_array (arr);
|
1828 |
|
|
else
|
1829 |
|
|
return arr;
|
1830 |
|
|
}
|
1831 |
|
|
|
1832 |
|
|
/* If TYPE represents a GNAT array type, return it translated to an
|
1833 |
|
|
ordinary GDB array type (possibly with BITSIZE fields indicating
|
1834 |
|
|
packing). For other types, is the identity. */
|
1835 |
|
|
|
1836 |
|
|
struct type *
|
1837 |
|
|
ada_coerce_to_simple_array_type (struct type *type)
|
1838 |
|
|
{
|
1839 |
|
|
if (ada_is_constrained_packed_array_type (type))
|
1840 |
|
|
return decode_constrained_packed_array_type (type);
|
1841 |
|
|
|
1842 |
|
|
if (ada_is_array_descriptor_type (type))
|
1843 |
|
|
return ada_check_typedef (desc_data_target_type (type));
|
1844 |
|
|
|
1845 |
|
|
return type;
|
1846 |
|
|
}
|
1847 |
|
|
|
1848 |
|
|
/* Non-zero iff TYPE represents a standard GNAT packed-array type. */
|
1849 |
|
|
|
1850 |
|
|
static int
|
1851 |
|
|
ada_is_packed_array_type (struct type *type)
|
1852 |
|
|
{
|
1853 |
|
|
if (type == NULL)
|
1854 |
|
|
return 0;
|
1855 |
|
|
type = desc_base_type (type);
|
1856 |
|
|
type = ada_check_typedef (type);
|
1857 |
|
|
return
|
1858 |
|
|
ada_type_name (type) != NULL
|
1859 |
|
|
&& strstr (ada_type_name (type), "___XP") != NULL;
|
1860 |
|
|
}
|
1861 |
|
|
|
1862 |
|
|
/* Non-zero iff TYPE represents a standard GNAT constrained
|
1863 |
|
|
packed-array type. */
|
1864 |
|
|
|
1865 |
|
|
int
|
1866 |
|
|
ada_is_constrained_packed_array_type (struct type *type)
|
1867 |
|
|
{
|
1868 |
|
|
return ada_is_packed_array_type (type)
|
1869 |
|
|
&& !ada_is_array_descriptor_type (type);
|
1870 |
|
|
}
|
1871 |
|
|
|
1872 |
|
|
/* Non-zero iff TYPE represents an array descriptor for a
|
1873 |
|
|
unconstrained packed-array type. */
|
1874 |
|
|
|
1875 |
|
|
static int
|
1876 |
|
|
ada_is_unconstrained_packed_array_type (struct type *type)
|
1877 |
|
|
{
|
1878 |
|
|
return ada_is_packed_array_type (type)
|
1879 |
|
|
&& ada_is_array_descriptor_type (type);
|
1880 |
|
|
}
|
1881 |
|
|
|
1882 |
|
|
/* Given that TYPE encodes a packed array type (constrained or unconstrained),
|
1883 |
|
|
return the size of its elements in bits. */
|
1884 |
|
|
|
1885 |
|
|
static long
|
1886 |
|
|
decode_packed_array_bitsize (struct type *type)
|
1887 |
|
|
{
|
1888 |
|
|
char *raw_name = ada_type_name (ada_check_typedef (type));
|
1889 |
|
|
char *tail;
|
1890 |
|
|
long bits;
|
1891 |
|
|
|
1892 |
|
|
if (!raw_name)
|
1893 |
|
|
raw_name = ada_type_name (desc_base_type (type));
|
1894 |
|
|
|
1895 |
|
|
if (!raw_name)
|
1896 |
|
|
return 0;
|
1897 |
|
|
|
1898 |
|
|
tail = strstr (raw_name, "___XP");
|
1899 |
|
|
|
1900 |
|
|
if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
|
1901 |
|
|
{
|
1902 |
|
|
lim_warning
|
1903 |
|
|
(_("could not understand bit size information on packed array"));
|
1904 |
|
|
return 0;
|
1905 |
|
|
}
|
1906 |
|
|
|
1907 |
|
|
return bits;
|
1908 |
|
|
}
|
1909 |
|
|
|
1910 |
|
|
/* Given that TYPE is a standard GDB array type with all bounds filled
|
1911 |
|
|
in, and that the element size of its ultimate scalar constituents
|
1912 |
|
|
(that is, either its elements, or, if it is an array of arrays, its
|
1913 |
|
|
elements' elements, etc.) is *ELT_BITS, return an identical type,
|
1914 |
|
|
but with the bit sizes of its elements (and those of any
|
1915 |
|
|
constituent arrays) recorded in the BITSIZE components of its
|
1916 |
|
|
TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
|
1917 |
|
|
in bits. */
|
1918 |
|
|
|
1919 |
|
|
static struct type *
|
1920 |
|
|
constrained_packed_array_type (struct type *type, long *elt_bits)
|
1921 |
|
|
{
|
1922 |
|
|
struct type *new_elt_type;
|
1923 |
|
|
struct type *new_type;
|
1924 |
|
|
LONGEST low_bound, high_bound;
|
1925 |
|
|
|
1926 |
|
|
type = ada_check_typedef (type);
|
1927 |
|
|
if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
|
1928 |
|
|
return type;
|
1929 |
|
|
|
1930 |
|
|
new_type = alloc_type_copy (type);
|
1931 |
|
|
new_elt_type =
|
1932 |
|
|
constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
|
1933 |
|
|
elt_bits);
|
1934 |
|
|
create_array_type (new_type, new_elt_type, TYPE_INDEX_TYPE (type));
|
1935 |
|
|
TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
|
1936 |
|
|
TYPE_NAME (new_type) = ada_type_name (type);
|
1937 |
|
|
|
1938 |
|
|
if (get_discrete_bounds (TYPE_INDEX_TYPE (type),
|
1939 |
|
|
&low_bound, &high_bound) < 0)
|
1940 |
|
|
low_bound = high_bound = 0;
|
1941 |
|
|
if (high_bound < low_bound)
|
1942 |
|
|
*elt_bits = TYPE_LENGTH (new_type) = 0;
|
1943 |
|
|
else
|
1944 |
|
|
{
|
1945 |
|
|
*elt_bits *= (high_bound - low_bound + 1);
|
1946 |
|
|
TYPE_LENGTH (new_type) =
|
1947 |
|
|
(*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
|
1948 |
|
|
}
|
1949 |
|
|
|
1950 |
|
|
TYPE_FIXED_INSTANCE (new_type) = 1;
|
1951 |
|
|
return new_type;
|
1952 |
|
|
}
|
1953 |
|
|
|
1954 |
|
|
/* The array type encoded by TYPE, where
|
1955 |
|
|
ada_is_constrained_packed_array_type (TYPE). */
|
1956 |
|
|
|
1957 |
|
|
static struct type *
|
1958 |
|
|
decode_constrained_packed_array_type (struct type *type)
|
1959 |
|
|
{
|
1960 |
|
|
char *raw_name = ada_type_name (ada_check_typedef (type));
|
1961 |
|
|
char *name;
|
1962 |
|
|
char *tail;
|
1963 |
|
|
struct type *shadow_type;
|
1964 |
|
|
long bits;
|
1965 |
|
|
|
1966 |
|
|
if (!raw_name)
|
1967 |
|
|
raw_name = ada_type_name (desc_base_type (type));
|
1968 |
|
|
|
1969 |
|
|
if (!raw_name)
|
1970 |
|
|
return NULL;
|
1971 |
|
|
|
1972 |
|
|
name = (char *) alloca (strlen (raw_name) + 1);
|
1973 |
|
|
tail = strstr (raw_name, "___XP");
|
1974 |
|
|
type = desc_base_type (type);
|
1975 |
|
|
|
1976 |
|
|
memcpy (name, raw_name, tail - raw_name);
|
1977 |
|
|
name[tail - raw_name] = '\000';
|
1978 |
|
|
|
1979 |
|
|
shadow_type = ada_find_parallel_type_with_name (type, name);
|
1980 |
|
|
|
1981 |
|
|
if (shadow_type == NULL)
|
1982 |
|
|
{
|
1983 |
|
|
lim_warning (_("could not find bounds information on packed array"));
|
1984 |
|
|
return NULL;
|
1985 |
|
|
}
|
1986 |
|
|
CHECK_TYPEDEF (shadow_type);
|
1987 |
|
|
|
1988 |
|
|
if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
|
1989 |
|
|
{
|
1990 |
|
|
lim_warning (_("could not understand bounds information on packed array"));
|
1991 |
|
|
return NULL;
|
1992 |
|
|
}
|
1993 |
|
|
|
1994 |
|
|
bits = decode_packed_array_bitsize (type);
|
1995 |
|
|
return constrained_packed_array_type (shadow_type, &bits);
|
1996 |
|
|
}
|
1997 |
|
|
|
1998 |
|
|
/* Given that ARR is a struct value *indicating a GNAT constrained packed
|
1999 |
|
|
array, returns a simple array that denotes that array. Its type is a
|
2000 |
|
|
standard GDB array type except that the BITSIZEs of the array
|
2001 |
|
|
target types are set to the number of bits in each element, and the
|
2002 |
|
|
type length is set appropriately. */
|
2003 |
|
|
|
2004 |
|
|
static struct value *
|
2005 |
|
|
decode_constrained_packed_array (struct value *arr)
|
2006 |
|
|
{
|
2007 |
|
|
struct type *type;
|
2008 |
|
|
|
2009 |
|
|
arr = ada_coerce_ref (arr);
|
2010 |
|
|
|
2011 |
|
|
/* If our value is a pointer, then dererence it. Make sure that
|
2012 |
|
|
this operation does not cause the target type to be fixed, as
|
2013 |
|
|
this would indirectly cause this array to be decoded. The rest
|
2014 |
|
|
of the routine assumes that the array hasn't been decoded yet,
|
2015 |
|
|
so we use the basic "value_ind" routine to perform the dereferencing,
|
2016 |
|
|
as opposed to using "ada_value_ind". */
|
2017 |
|
|
if (TYPE_CODE (value_type (arr)) == TYPE_CODE_PTR)
|
2018 |
|
|
arr = value_ind (arr);
|
2019 |
|
|
|
2020 |
|
|
type = decode_constrained_packed_array_type (value_type (arr));
|
2021 |
|
|
if (type == NULL)
|
2022 |
|
|
{
|
2023 |
|
|
error (_("can't unpack array"));
|
2024 |
|
|
return NULL;
|
2025 |
|
|
}
|
2026 |
|
|
|
2027 |
|
|
if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
|
2028 |
|
|
&& ada_is_modular_type (value_type (arr)))
|
2029 |
|
|
{
|
2030 |
|
|
/* This is a (right-justified) modular type representing a packed
|
2031 |
|
|
array with no wrapper. In order to interpret the value through
|
2032 |
|
|
the (left-justified) packed array type we just built, we must
|
2033 |
|
|
first left-justify it. */
|
2034 |
|
|
int bit_size, bit_pos;
|
2035 |
|
|
ULONGEST mod;
|
2036 |
|
|
|
2037 |
|
|
mod = ada_modulus (value_type (arr)) - 1;
|
2038 |
|
|
bit_size = 0;
|
2039 |
|
|
while (mod > 0)
|
2040 |
|
|
{
|
2041 |
|
|
bit_size += 1;
|
2042 |
|
|
mod >>= 1;
|
2043 |
|
|
}
|
2044 |
|
|
bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
|
2045 |
|
|
arr = ada_value_primitive_packed_val (arr, NULL,
|
2046 |
|
|
bit_pos / HOST_CHAR_BIT,
|
2047 |
|
|
bit_pos % HOST_CHAR_BIT,
|
2048 |
|
|
bit_size,
|
2049 |
|
|
type);
|
2050 |
|
|
}
|
2051 |
|
|
|
2052 |
|
|
return coerce_unspec_val_to_type (arr, type);
|
2053 |
|
|
}
|
2054 |
|
|
|
2055 |
|
|
|
2056 |
|
|
/* The value of the element of packed array ARR at the ARITY indices
|
2057 |
|
|
given in IND. ARR must be a simple array. */
|
2058 |
|
|
|
2059 |
|
|
static struct value *
|
2060 |
|
|
value_subscript_packed (struct value *arr, int arity, struct value **ind)
|
2061 |
|
|
{
|
2062 |
|
|
int i;
|
2063 |
|
|
int bits, elt_off, bit_off;
|
2064 |
|
|
long elt_total_bit_offset;
|
2065 |
|
|
struct type *elt_type;
|
2066 |
|
|
struct value *v;
|
2067 |
|
|
|
2068 |
|
|
bits = 0;
|
2069 |
|
|
elt_total_bit_offset = 0;
|
2070 |
|
|
elt_type = ada_check_typedef (value_type (arr));
|
2071 |
|
|
for (i = 0; i < arity; i += 1)
|
2072 |
|
|
{
|
2073 |
|
|
if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
|
2074 |
|
|
|| TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
|
2075 |
|
|
error
|
2076 |
|
|
(_("attempt to do packed indexing of something other than a packed array"));
|
2077 |
|
|
else
|
2078 |
|
|
{
|
2079 |
|
|
struct type *range_type = TYPE_INDEX_TYPE (elt_type);
|
2080 |
|
|
LONGEST lowerbound, upperbound;
|
2081 |
|
|
LONGEST idx;
|
2082 |
|
|
|
2083 |
|
|
if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
|
2084 |
|
|
{
|
2085 |
|
|
lim_warning (_("don't know bounds of array"));
|
2086 |
|
|
lowerbound = upperbound = 0;
|
2087 |
|
|
}
|
2088 |
|
|
|
2089 |
|
|
idx = pos_atr (ind[i]);
|
2090 |
|
|
if (idx < lowerbound || idx > upperbound)
|
2091 |
|
|
lim_warning (_("packed array index %ld out of bounds"), (long) idx);
|
2092 |
|
|
bits = TYPE_FIELD_BITSIZE (elt_type, 0);
|
2093 |
|
|
elt_total_bit_offset += (idx - lowerbound) * bits;
|
2094 |
|
|
elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
|
2095 |
|
|
}
|
2096 |
|
|
}
|
2097 |
|
|
elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
|
2098 |
|
|
bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
|
2099 |
|
|
|
2100 |
|
|
v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
|
2101 |
|
|
bits, elt_type);
|
2102 |
|
|
return v;
|
2103 |
|
|
}
|
2104 |
|
|
|
2105 |
|
|
/* Non-zero iff TYPE includes negative integer values. */
|
2106 |
|
|
|
2107 |
|
|
static int
|
2108 |
|
|
has_negatives (struct type *type)
|
2109 |
|
|
{
|
2110 |
|
|
switch (TYPE_CODE (type))
|
2111 |
|
|
{
|
2112 |
|
|
default:
|
2113 |
|
|
return 0;
|
2114 |
|
|
case TYPE_CODE_INT:
|
2115 |
|
|
return !TYPE_UNSIGNED (type);
|
2116 |
|
|
case TYPE_CODE_RANGE:
|
2117 |
|
|
return TYPE_LOW_BOUND (type) < 0;
|
2118 |
|
|
}
|
2119 |
|
|
}
|
2120 |
|
|
|
2121 |
|
|
|
2122 |
|
|
/* Create a new value of type TYPE from the contents of OBJ starting
|
2123 |
|
|
at byte OFFSET, and bit offset BIT_OFFSET within that byte,
|
2124 |
|
|
proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
|
2125 |
|
|
assigning through the result will set the field fetched from.
|
2126 |
|
|
VALADDR is ignored unless OBJ is NULL, in which case,
|
2127 |
|
|
VALADDR+OFFSET must address the start of storage containing the
|
2128 |
|
|
packed value. The value returned in this case is never an lval.
|
2129 |
|
|
Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
|
2130 |
|
|
|
2131 |
|
|
struct value *
|
2132 |
|
|
ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
|
2133 |
|
|
long offset, int bit_offset, int bit_size,
|
2134 |
|
|
struct type *type)
|
2135 |
|
|
{
|
2136 |
|
|
struct value *v;
|
2137 |
|
|
int src, /* Index into the source area */
|
2138 |
|
|
targ, /* Index into the target area */
|
2139 |
|
|
srcBitsLeft, /* Number of source bits left to move */
|
2140 |
|
|
nsrc, ntarg, /* Number of source and target bytes */
|
2141 |
|
|
unusedLS, /* Number of bits in next significant
|
2142 |
|
|
byte of source that are unused */
|
2143 |
|
|
accumSize; /* Number of meaningful bits in accum */
|
2144 |
|
|
unsigned char *bytes; /* First byte containing data to unpack */
|
2145 |
|
|
unsigned char *unpacked;
|
2146 |
|
|
unsigned long accum; /* Staging area for bits being transferred */
|
2147 |
|
|
unsigned char sign;
|
2148 |
|
|
int len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
|
2149 |
|
|
/* Transmit bytes from least to most significant; delta is the direction
|
2150 |
|
|
the indices move. */
|
2151 |
|
|
int delta = gdbarch_bits_big_endian (get_type_arch (type)) ? -1 : 1;
|
2152 |
|
|
|
2153 |
|
|
type = ada_check_typedef (type);
|
2154 |
|
|
|
2155 |
|
|
if (obj == NULL)
|
2156 |
|
|
{
|
2157 |
|
|
v = allocate_value (type);
|
2158 |
|
|
bytes = (unsigned char *) (valaddr + offset);
|
2159 |
|
|
}
|
2160 |
|
|
else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
|
2161 |
|
|
{
|
2162 |
|
|
v = value_at (type,
|
2163 |
|
|
value_address (obj) + offset);
|
2164 |
|
|
bytes = (unsigned char *) alloca (len);
|
2165 |
|
|
read_memory (value_address (v), bytes, len);
|
2166 |
|
|
}
|
2167 |
|
|
else
|
2168 |
|
|
{
|
2169 |
|
|
v = allocate_value (type);
|
2170 |
|
|
bytes = (unsigned char *) value_contents (obj) + offset;
|
2171 |
|
|
}
|
2172 |
|
|
|
2173 |
|
|
if (obj != NULL)
|
2174 |
|
|
{
|
2175 |
|
|
CORE_ADDR new_addr;
|
2176 |
|
|
|
2177 |
|
|
set_value_component_location (v, obj);
|
2178 |
|
|
new_addr = value_address (obj) + offset;
|
2179 |
|
|
set_value_bitpos (v, bit_offset + value_bitpos (obj));
|
2180 |
|
|
set_value_bitsize (v, bit_size);
|
2181 |
|
|
if (value_bitpos (v) >= HOST_CHAR_BIT)
|
2182 |
|
|
{
|
2183 |
|
|
++new_addr;
|
2184 |
|
|
set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
|
2185 |
|
|
}
|
2186 |
|
|
set_value_address (v, new_addr);
|
2187 |
|
|
}
|
2188 |
|
|
else
|
2189 |
|
|
set_value_bitsize (v, bit_size);
|
2190 |
|
|
unpacked = (unsigned char *) value_contents (v);
|
2191 |
|
|
|
2192 |
|
|
srcBitsLeft = bit_size;
|
2193 |
|
|
nsrc = len;
|
2194 |
|
|
ntarg = TYPE_LENGTH (type);
|
2195 |
|
|
sign = 0;
|
2196 |
|
|
if (bit_size == 0)
|
2197 |
|
|
{
|
2198 |
|
|
memset (unpacked, 0, TYPE_LENGTH (type));
|
2199 |
|
|
return v;
|
2200 |
|
|
}
|
2201 |
|
|
else if (gdbarch_bits_big_endian (get_type_arch (type)))
|
2202 |
|
|
{
|
2203 |
|
|
src = len - 1;
|
2204 |
|
|
if (has_negatives (type)
|
2205 |
|
|
&& ((bytes[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
|
2206 |
|
|
sign = ~0;
|
2207 |
|
|
|
2208 |
|
|
unusedLS =
|
2209 |
|
|
(HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
|
2210 |
|
|
% HOST_CHAR_BIT;
|
2211 |
|
|
|
2212 |
|
|
switch (TYPE_CODE (type))
|
2213 |
|
|
{
|
2214 |
|
|
case TYPE_CODE_ARRAY:
|
2215 |
|
|
case TYPE_CODE_UNION:
|
2216 |
|
|
case TYPE_CODE_STRUCT:
|
2217 |
|
|
/* Non-scalar values must be aligned at a byte boundary... */
|
2218 |
|
|
accumSize =
|
2219 |
|
|
(HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
|
2220 |
|
|
/* ... And are placed at the beginning (most-significant) bytes
|
2221 |
|
|
of the target. */
|
2222 |
|
|
targ = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
|
2223 |
|
|
ntarg = targ + 1;
|
2224 |
|
|
break;
|
2225 |
|
|
default:
|
2226 |
|
|
accumSize = 0;
|
2227 |
|
|
targ = TYPE_LENGTH (type) - 1;
|
2228 |
|
|
break;
|
2229 |
|
|
}
|
2230 |
|
|
}
|
2231 |
|
|
else
|
2232 |
|
|
{
|
2233 |
|
|
int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
|
2234 |
|
|
|
2235 |
|
|
src = targ = 0;
|
2236 |
|
|
unusedLS = bit_offset;
|
2237 |
|
|
accumSize = 0;
|
2238 |
|
|
|
2239 |
|
|
if (has_negatives (type) && (bytes[len - 1] & (1 << sign_bit_offset)))
|
2240 |
|
|
sign = ~0;
|
2241 |
|
|
}
|
2242 |
|
|
|
2243 |
|
|
accum = 0;
|
2244 |
|
|
while (nsrc > 0)
|
2245 |
|
|
{
|
2246 |
|
|
/* Mask for removing bits of the next source byte that are not
|
2247 |
|
|
part of the value. */
|
2248 |
|
|
unsigned int unusedMSMask =
|
2249 |
|
|
(1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
|
2250 |
|
|
1;
|
2251 |
|
|
/* Sign-extend bits for this byte. */
|
2252 |
|
|
unsigned int signMask = sign & ~unusedMSMask;
|
2253 |
|
|
|
2254 |
|
|
accum |=
|
2255 |
|
|
(((bytes[src] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
|
2256 |
|
|
accumSize += HOST_CHAR_BIT - unusedLS;
|
2257 |
|
|
if (accumSize >= HOST_CHAR_BIT)
|
2258 |
|
|
{
|
2259 |
|
|
unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
|
2260 |
|
|
accumSize -= HOST_CHAR_BIT;
|
2261 |
|
|
accum >>= HOST_CHAR_BIT;
|
2262 |
|
|
ntarg -= 1;
|
2263 |
|
|
targ += delta;
|
2264 |
|
|
}
|
2265 |
|
|
srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
|
2266 |
|
|
unusedLS = 0;
|
2267 |
|
|
nsrc -= 1;
|
2268 |
|
|
src += delta;
|
2269 |
|
|
}
|
2270 |
|
|
while (ntarg > 0)
|
2271 |
|
|
{
|
2272 |
|
|
accum |= sign << accumSize;
|
2273 |
|
|
unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
|
2274 |
|
|
accumSize -= HOST_CHAR_BIT;
|
2275 |
|
|
accum >>= HOST_CHAR_BIT;
|
2276 |
|
|
ntarg -= 1;
|
2277 |
|
|
targ += delta;
|
2278 |
|
|
}
|
2279 |
|
|
|
2280 |
|
|
return v;
|
2281 |
|
|
}
|
2282 |
|
|
|
2283 |
|
|
/* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
|
2284 |
|
|
TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
|
2285 |
|
|
not overlap. */
|
2286 |
|
|
static void
|
2287 |
|
|
move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
|
2288 |
|
|
int src_offset, int n, int bits_big_endian_p)
|
2289 |
|
|
{
|
2290 |
|
|
unsigned int accum, mask;
|
2291 |
|
|
int accum_bits, chunk_size;
|
2292 |
|
|
|
2293 |
|
|
target += targ_offset / HOST_CHAR_BIT;
|
2294 |
|
|
targ_offset %= HOST_CHAR_BIT;
|
2295 |
|
|
source += src_offset / HOST_CHAR_BIT;
|
2296 |
|
|
src_offset %= HOST_CHAR_BIT;
|
2297 |
|
|
if (bits_big_endian_p)
|
2298 |
|
|
{
|
2299 |
|
|
accum = (unsigned char) *source;
|
2300 |
|
|
source += 1;
|
2301 |
|
|
accum_bits = HOST_CHAR_BIT - src_offset;
|
2302 |
|
|
|
2303 |
|
|
while (n > 0)
|
2304 |
|
|
{
|
2305 |
|
|
int unused_right;
|
2306 |
|
|
|
2307 |
|
|
accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
|
2308 |
|
|
accum_bits += HOST_CHAR_BIT;
|
2309 |
|
|
source += 1;
|
2310 |
|
|
chunk_size = HOST_CHAR_BIT - targ_offset;
|
2311 |
|
|
if (chunk_size > n)
|
2312 |
|
|
chunk_size = n;
|
2313 |
|
|
unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
|
2314 |
|
|
mask = ((1 << chunk_size) - 1) << unused_right;
|
2315 |
|
|
*target =
|
2316 |
|
|
(*target & ~mask)
|
2317 |
|
|
| ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
|
2318 |
|
|
n -= chunk_size;
|
2319 |
|
|
accum_bits -= chunk_size;
|
2320 |
|
|
target += 1;
|
2321 |
|
|
targ_offset = 0;
|
2322 |
|
|
}
|
2323 |
|
|
}
|
2324 |
|
|
else
|
2325 |
|
|
{
|
2326 |
|
|
accum = (unsigned char) *source >> src_offset;
|
2327 |
|
|
source += 1;
|
2328 |
|
|
accum_bits = HOST_CHAR_BIT - src_offset;
|
2329 |
|
|
|
2330 |
|
|
while (n > 0)
|
2331 |
|
|
{
|
2332 |
|
|
accum = accum + ((unsigned char) *source << accum_bits);
|
2333 |
|
|
accum_bits += HOST_CHAR_BIT;
|
2334 |
|
|
source += 1;
|
2335 |
|
|
chunk_size = HOST_CHAR_BIT - targ_offset;
|
2336 |
|
|
if (chunk_size > n)
|
2337 |
|
|
chunk_size = n;
|
2338 |
|
|
mask = ((1 << chunk_size) - 1) << targ_offset;
|
2339 |
|
|
*target = (*target & ~mask) | ((accum << targ_offset) & mask);
|
2340 |
|
|
n -= chunk_size;
|
2341 |
|
|
accum_bits -= chunk_size;
|
2342 |
|
|
accum >>= chunk_size;
|
2343 |
|
|
target += 1;
|
2344 |
|
|
targ_offset = 0;
|
2345 |
|
|
}
|
2346 |
|
|
}
|
2347 |
|
|
}
|
2348 |
|
|
|
2349 |
|
|
/* Store the contents of FROMVAL into the location of TOVAL.
|
2350 |
|
|
Return a new value with the location of TOVAL and contents of
|
2351 |
|
|
FROMVAL. Handles assignment into packed fields that have
|
2352 |
|
|
floating-point or non-scalar types. */
|
2353 |
|
|
|
2354 |
|
|
static struct value *
|
2355 |
|
|
ada_value_assign (struct value *toval, struct value *fromval)
|
2356 |
|
|
{
|
2357 |
|
|
struct type *type = value_type (toval);
|
2358 |
|
|
int bits = value_bitsize (toval);
|
2359 |
|
|
|
2360 |
|
|
toval = ada_coerce_ref (toval);
|
2361 |
|
|
fromval = ada_coerce_ref (fromval);
|
2362 |
|
|
|
2363 |
|
|
if (ada_is_direct_array_type (value_type (toval)))
|
2364 |
|
|
toval = ada_coerce_to_simple_array (toval);
|
2365 |
|
|
if (ada_is_direct_array_type (value_type (fromval)))
|
2366 |
|
|
fromval = ada_coerce_to_simple_array (fromval);
|
2367 |
|
|
|
2368 |
|
|
if (!deprecated_value_modifiable (toval))
|
2369 |
|
|
error (_("Left operand of assignment is not a modifiable lvalue."));
|
2370 |
|
|
|
2371 |
|
|
if (VALUE_LVAL (toval) == lval_memory
|
2372 |
|
|
&& bits > 0
|
2373 |
|
|
&& (TYPE_CODE (type) == TYPE_CODE_FLT
|
2374 |
|
|
|| TYPE_CODE (type) == TYPE_CODE_STRUCT))
|
2375 |
|
|
{
|
2376 |
|
|
int len = (value_bitpos (toval)
|
2377 |
|
|
+ bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
|
2378 |
|
|
int from_size;
|
2379 |
|
|
char *buffer = (char *) alloca (len);
|
2380 |
|
|
struct value *val;
|
2381 |
|
|
CORE_ADDR to_addr = value_address (toval);
|
2382 |
|
|
|
2383 |
|
|
if (TYPE_CODE (type) == TYPE_CODE_FLT)
|
2384 |
|
|
fromval = value_cast (type, fromval);
|
2385 |
|
|
|
2386 |
|
|
read_memory (to_addr, buffer, len);
|
2387 |
|
|
from_size = value_bitsize (fromval);
|
2388 |
|
|
if (from_size == 0)
|
2389 |
|
|
from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
|
2390 |
|
|
if (gdbarch_bits_big_endian (get_type_arch (type)))
|
2391 |
|
|
move_bits (buffer, value_bitpos (toval),
|
2392 |
|
|
value_contents (fromval), from_size - bits, bits, 1);
|
2393 |
|
|
else
|
2394 |
|
|
move_bits (buffer, value_bitpos (toval),
|
2395 |
|
|
value_contents (fromval), 0, bits, 0);
|
2396 |
|
|
write_memory (to_addr, buffer, len);
|
2397 |
|
|
observer_notify_memory_changed (to_addr, len, buffer);
|
2398 |
|
|
|
2399 |
|
|
val = value_copy (toval);
|
2400 |
|
|
memcpy (value_contents_raw (val), value_contents (fromval),
|
2401 |
|
|
TYPE_LENGTH (type));
|
2402 |
|
|
deprecated_set_value_type (val, type);
|
2403 |
|
|
|
2404 |
|
|
return val;
|
2405 |
|
|
}
|
2406 |
|
|
|
2407 |
|
|
return value_assign (toval, fromval);
|
2408 |
|
|
}
|
2409 |
|
|
|
2410 |
|
|
|
2411 |
|
|
/* Given that COMPONENT is a memory lvalue that is part of the lvalue
|
2412 |
|
|
* CONTAINER, assign the contents of VAL to COMPONENTS's place in
|
2413 |
|
|
* CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
|
2414 |
|
|
* COMPONENT, and not the inferior's memory. The current contents
|
2415 |
|
|
* of COMPONENT are ignored. */
|
2416 |
|
|
static void
|
2417 |
|
|
value_assign_to_component (struct value *container, struct value *component,
|
2418 |
|
|
struct value *val)
|
2419 |
|
|
{
|
2420 |
|
|
LONGEST offset_in_container =
|
2421 |
|
|
(LONGEST) (value_address (component) - value_address (container));
|
2422 |
|
|
int bit_offset_in_container =
|
2423 |
|
|
value_bitpos (component) - value_bitpos (container);
|
2424 |
|
|
int bits;
|
2425 |
|
|
|
2426 |
|
|
val = value_cast (value_type (component), val);
|
2427 |
|
|
|
2428 |
|
|
if (value_bitsize (component) == 0)
|
2429 |
|
|
bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
|
2430 |
|
|
else
|
2431 |
|
|
bits = value_bitsize (component);
|
2432 |
|
|
|
2433 |
|
|
if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
|
2434 |
|
|
move_bits (value_contents_writeable (container) + offset_in_container,
|
2435 |
|
|
value_bitpos (container) + bit_offset_in_container,
|
2436 |
|
|
value_contents (val),
|
2437 |
|
|
TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
|
2438 |
|
|
bits, 1);
|
2439 |
|
|
else
|
2440 |
|
|
move_bits (value_contents_writeable (container) + offset_in_container,
|
2441 |
|
|
value_bitpos (container) + bit_offset_in_container,
|
2442 |
|
|
value_contents (val), 0, bits, 0);
|
2443 |
|
|
}
|
2444 |
|
|
|
2445 |
|
|
/* The value of the element of array ARR at the ARITY indices given in IND.
|
2446 |
|
|
ARR may be either a simple array, GNAT array descriptor, or pointer
|
2447 |
|
|
thereto. */
|
2448 |
|
|
|
2449 |
|
|
struct value *
|
2450 |
|
|
ada_value_subscript (struct value *arr, int arity, struct value **ind)
|
2451 |
|
|
{
|
2452 |
|
|
int k;
|
2453 |
|
|
struct value *elt;
|
2454 |
|
|
struct type *elt_type;
|
2455 |
|
|
|
2456 |
|
|
elt = ada_coerce_to_simple_array (arr);
|
2457 |
|
|
|
2458 |
|
|
elt_type = ada_check_typedef (value_type (elt));
|
2459 |
|
|
if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
|
2460 |
|
|
&& TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
|
2461 |
|
|
return value_subscript_packed (elt, arity, ind);
|
2462 |
|
|
|
2463 |
|
|
for (k = 0; k < arity; k += 1)
|
2464 |
|
|
{
|
2465 |
|
|
if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
|
2466 |
|
|
error (_("too many subscripts (%d expected)"), k);
|
2467 |
|
|
elt = value_subscript (elt, pos_atr (ind[k]));
|
2468 |
|
|
}
|
2469 |
|
|
return elt;
|
2470 |
|
|
}
|
2471 |
|
|
|
2472 |
|
|
/* Assuming ARR is a pointer to a standard GDB array of type TYPE, the
|
2473 |
|
|
value of the element of *ARR at the ARITY indices given in
|
2474 |
|
|
IND. Does not read the entire array into memory. */
|
2475 |
|
|
|
2476 |
|
|
static struct value *
|
2477 |
|
|
ada_value_ptr_subscript (struct value *arr, struct type *type, int arity,
|
2478 |
|
|
struct value **ind)
|
2479 |
|
|
{
|
2480 |
|
|
int k;
|
2481 |
|
|
|
2482 |
|
|
for (k = 0; k < arity; k += 1)
|
2483 |
|
|
{
|
2484 |
|
|
LONGEST lwb, upb;
|
2485 |
|
|
|
2486 |
|
|
if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
|
2487 |
|
|
error (_("too many subscripts (%d expected)"), k);
|
2488 |
|
|
arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
|
2489 |
|
|
value_copy (arr));
|
2490 |
|
|
get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
|
2491 |
|
|
arr = value_ptradd (arr, pos_atr (ind[k]) - lwb);
|
2492 |
|
|
type = TYPE_TARGET_TYPE (type);
|
2493 |
|
|
}
|
2494 |
|
|
|
2495 |
|
|
return value_ind (arr);
|
2496 |
|
|
}
|
2497 |
|
|
|
2498 |
|
|
/* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
|
2499 |
|
|
actual type of ARRAY_PTR is ignored), returns the Ada slice of HIGH-LOW+1
|
2500 |
|
|
elements starting at index LOW. The lower bound of this array is LOW, as
|
2501 |
|
|
per Ada rules. */
|
2502 |
|
|
static struct value *
|
2503 |
|
|
ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
|
2504 |
|
|
int low, int high)
|
2505 |
|
|
{
|
2506 |
|
|
CORE_ADDR base = value_as_address (array_ptr)
|
2507 |
|
|
+ ((low - ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type)))
|
2508 |
|
|
* TYPE_LENGTH (TYPE_TARGET_TYPE (type)));
|
2509 |
|
|
struct type *index_type =
|
2510 |
|
|
create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type)),
|
2511 |
|
|
low, high);
|
2512 |
|
|
struct type *slice_type =
|
2513 |
|
|
create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
|
2514 |
|
|
|
2515 |
|
|
return value_at_lazy (slice_type, base);
|
2516 |
|
|
}
|
2517 |
|
|
|
2518 |
|
|
|
2519 |
|
|
static struct value *
|
2520 |
|
|
ada_value_slice (struct value *array, int low, int high)
|
2521 |
|
|
{
|
2522 |
|
|
struct type *type = value_type (array);
|
2523 |
|
|
struct type *index_type =
|
2524 |
|
|
create_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
|
2525 |
|
|
struct type *slice_type =
|
2526 |
|
|
create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
|
2527 |
|
|
|
2528 |
|
|
return value_cast (slice_type, value_slice (array, low, high - low + 1));
|
2529 |
|
|
}
|
2530 |
|
|
|
2531 |
|
|
/* If type is a record type in the form of a standard GNAT array
|
2532 |
|
|
descriptor, returns the number of dimensions for type. If arr is a
|
2533 |
|
|
simple array, returns the number of "array of"s that prefix its
|
2534 |
|
|
type designation. Otherwise, returns 0. */
|
2535 |
|
|
|
2536 |
|
|
int
|
2537 |
|
|
ada_array_arity (struct type *type)
|
2538 |
|
|
{
|
2539 |
|
|
int arity;
|
2540 |
|
|
|
2541 |
|
|
if (type == NULL)
|
2542 |
|
|
return 0;
|
2543 |
|
|
|
2544 |
|
|
type = desc_base_type (type);
|
2545 |
|
|
|
2546 |
|
|
arity = 0;
|
2547 |
|
|
if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
|
2548 |
|
|
return desc_arity (desc_bounds_type (type));
|
2549 |
|
|
else
|
2550 |
|
|
while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
|
2551 |
|
|
{
|
2552 |
|
|
arity += 1;
|
2553 |
|
|
type = ada_check_typedef (TYPE_TARGET_TYPE (type));
|
2554 |
|
|
}
|
2555 |
|
|
|
2556 |
|
|
return arity;
|
2557 |
|
|
}
|
2558 |
|
|
|
2559 |
|
|
/* If TYPE is a record type in the form of a standard GNAT array
|
2560 |
|
|
descriptor or a simple array type, returns the element type for
|
2561 |
|
|
TYPE after indexing by NINDICES indices, or by all indices if
|
2562 |
|
|
NINDICES is -1. Otherwise, returns NULL. */
|
2563 |
|
|
|
2564 |
|
|
struct type *
|
2565 |
|
|
ada_array_element_type (struct type *type, int nindices)
|
2566 |
|
|
{
|
2567 |
|
|
type = desc_base_type (type);
|
2568 |
|
|
|
2569 |
|
|
if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
|
2570 |
|
|
{
|
2571 |
|
|
int k;
|
2572 |
|
|
struct type *p_array_type;
|
2573 |
|
|
|
2574 |
|
|
p_array_type = desc_data_target_type (type);
|
2575 |
|
|
|
2576 |
|
|
k = ada_array_arity (type);
|
2577 |
|
|
if (k == 0)
|
2578 |
|
|
return NULL;
|
2579 |
|
|
|
2580 |
|
|
/* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
|
2581 |
|
|
if (nindices >= 0 && k > nindices)
|
2582 |
|
|
k = nindices;
|
2583 |
|
|
while (k > 0 && p_array_type != NULL)
|
2584 |
|
|
{
|
2585 |
|
|
p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
|
2586 |
|
|
k -= 1;
|
2587 |
|
|
}
|
2588 |
|
|
return p_array_type;
|
2589 |
|
|
}
|
2590 |
|
|
else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
|
2591 |
|
|
{
|
2592 |
|
|
while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
|
2593 |
|
|
{
|
2594 |
|
|
type = TYPE_TARGET_TYPE (type);
|
2595 |
|
|
nindices -= 1;
|
2596 |
|
|
}
|
2597 |
|
|
return type;
|
2598 |
|
|
}
|
2599 |
|
|
|
2600 |
|
|
return NULL;
|
2601 |
|
|
}
|
2602 |
|
|
|
2603 |
|
|
/* The type of nth index in arrays of given type (n numbering from 1).
|
2604 |
|
|
Does not examine memory. Throws an error if N is invalid or TYPE
|
2605 |
|
|
is not an array type. NAME is the name of the Ada attribute being
|
2606 |
|
|
evaluated ('range, 'first, 'last, or 'length); it is used in building
|
2607 |
|
|
the error message. */
|
2608 |
|
|
|
2609 |
|
|
static struct type *
|
2610 |
|
|
ada_index_type (struct type *type, int n, const char *name)
|
2611 |
|
|
{
|
2612 |
|
|
struct type *result_type;
|
2613 |
|
|
|
2614 |
|
|
type = desc_base_type (type);
|
2615 |
|
|
|
2616 |
|
|
if (n < 0 || n > ada_array_arity (type))
|
2617 |
|
|
error (_("invalid dimension number to '%s"), name);
|
2618 |
|
|
|
2619 |
|
|
if (ada_is_simple_array_type (type))
|
2620 |
|
|
{
|
2621 |
|
|
int i;
|
2622 |
|
|
|
2623 |
|
|
for (i = 1; i < n; i += 1)
|
2624 |
|
|
type = TYPE_TARGET_TYPE (type);
|
2625 |
|
|
result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
|
2626 |
|
|
/* FIXME: The stabs type r(0,0);bound;bound in an array type
|
2627 |
|
|
has a target type of TYPE_CODE_UNDEF. We compensate here, but
|
2628 |
|
|
perhaps stabsread.c would make more sense. */
|
2629 |
|
|
if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
|
2630 |
|
|
result_type = NULL;
|
2631 |
|
|
}
|
2632 |
|
|
else
|
2633 |
|
|
{
|
2634 |
|
|
result_type = desc_index_type (desc_bounds_type (type), n);
|
2635 |
|
|
if (result_type == NULL)
|
2636 |
|
|
error (_("attempt to take bound of something that is not an array"));
|
2637 |
|
|
}
|
2638 |
|
|
|
2639 |
|
|
return result_type;
|
2640 |
|
|
}
|
2641 |
|
|
|
2642 |
|
|
/* Given that arr is an array type, returns the lower bound of the
|
2643 |
|
|
Nth index (numbering from 1) if WHICH is 0, and the upper bound if
|
2644 |
|
|
WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
|
2645 |
|
|
array-descriptor type. It works for other arrays with bounds supplied
|
2646 |
|
|
by run-time quantities other than discriminants. */
|
2647 |
|
|
|
2648 |
|
|
static LONGEST
|
2649 |
|
|
ada_array_bound_from_type (struct type * arr_type, int n, int which)
|
2650 |
|
|
{
|
2651 |
|
|
struct type *type, *elt_type, *index_type_desc, *index_type;
|
2652 |
|
|
int i;
|
2653 |
|
|
|
2654 |
|
|
gdb_assert (which == 0 || which == 1);
|
2655 |
|
|
|
2656 |
|
|
if (ada_is_constrained_packed_array_type (arr_type))
|
2657 |
|
|
arr_type = decode_constrained_packed_array_type (arr_type);
|
2658 |
|
|
|
2659 |
|
|
if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
|
2660 |
|
|
return (LONGEST) - which;
|
2661 |
|
|
|
2662 |
|
|
if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
|
2663 |
|
|
type = TYPE_TARGET_TYPE (arr_type);
|
2664 |
|
|
else
|
2665 |
|
|
type = arr_type;
|
2666 |
|
|
|
2667 |
|
|
elt_type = type;
|
2668 |
|
|
for (i = n; i > 1; i--)
|
2669 |
|
|
elt_type = TYPE_TARGET_TYPE (type);
|
2670 |
|
|
|
2671 |
|
|
index_type_desc = ada_find_parallel_type (type, "___XA");
|
2672 |
|
|
ada_fixup_array_indexes_type (index_type_desc);
|
2673 |
|
|
if (index_type_desc != NULL)
|
2674 |
|
|
index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
|
2675 |
|
|
NULL);
|
2676 |
|
|
else
|
2677 |
|
|
index_type = TYPE_INDEX_TYPE (elt_type);
|
2678 |
|
|
|
2679 |
|
|
return
|
2680 |
|
|
(LONGEST) (which == 0
|
2681 |
|
|
? ada_discrete_type_low_bound (index_type)
|
2682 |
|
|
: ada_discrete_type_high_bound (index_type));
|
2683 |
|
|
}
|
2684 |
|
|
|
2685 |
|
|
/* Given that arr is an array value, returns the lower bound of the
|
2686 |
|
|
nth index (numbering from 1) if WHICH is 0, and the upper bound if
|
2687 |
|
|
WHICH is 1. This routine will also work for arrays with bounds
|
2688 |
|
|
supplied by run-time quantities other than discriminants. */
|
2689 |
|
|
|
2690 |
|
|
static LONGEST
|
2691 |
|
|
ada_array_bound (struct value *arr, int n, int which)
|
2692 |
|
|
{
|
2693 |
|
|
struct type *arr_type = value_type (arr);
|
2694 |
|
|
|
2695 |
|
|
if (ada_is_constrained_packed_array_type (arr_type))
|
2696 |
|
|
return ada_array_bound (decode_constrained_packed_array (arr), n, which);
|
2697 |
|
|
else if (ada_is_simple_array_type (arr_type))
|
2698 |
|
|
return ada_array_bound_from_type (arr_type, n, which);
|
2699 |
|
|
else
|
2700 |
|
|
return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
|
2701 |
|
|
}
|
2702 |
|
|
|
2703 |
|
|
/* Given that arr is an array value, returns the length of the
|
2704 |
|
|
nth index. This routine will also work for arrays with bounds
|
2705 |
|
|
supplied by run-time quantities other than discriminants.
|
2706 |
|
|
Does not work for arrays indexed by enumeration types with representation
|
2707 |
|
|
clauses at the moment. */
|
2708 |
|
|
|
2709 |
|
|
static LONGEST
|
2710 |
|
|
ada_array_length (struct value *arr, int n)
|
2711 |
|
|
{
|
2712 |
|
|
struct type *arr_type = ada_check_typedef (value_type (arr));
|
2713 |
|
|
|
2714 |
|
|
if (ada_is_constrained_packed_array_type (arr_type))
|
2715 |
|
|
return ada_array_length (decode_constrained_packed_array (arr), n);
|
2716 |
|
|
|
2717 |
|
|
if (ada_is_simple_array_type (arr_type))
|
2718 |
|
|
return (ada_array_bound_from_type (arr_type, n, 1)
|
2719 |
|
|
- ada_array_bound_from_type (arr_type, n, 0) + 1);
|
2720 |
|
|
else
|
2721 |
|
|
return (value_as_long (desc_one_bound (desc_bounds (arr), n, 1))
|
2722 |
|
|
- value_as_long (desc_one_bound (desc_bounds (arr), n, 0)) + 1);
|
2723 |
|
|
}
|
2724 |
|
|
|
2725 |
|
|
/* An empty array whose type is that of ARR_TYPE (an array type),
|
2726 |
|
|
with bounds LOW to LOW-1. */
|
2727 |
|
|
|
2728 |
|
|
static struct value *
|
2729 |
|
|
empty_array (struct type *arr_type, int low)
|
2730 |
|
|
{
|
2731 |
|
|
struct type *index_type =
|
2732 |
|
|
create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type)),
|
2733 |
|
|
low, low - 1);
|
2734 |
|
|
struct type *elt_type = ada_array_element_type (arr_type, 1);
|
2735 |
|
|
|
2736 |
|
|
return allocate_value (create_array_type (NULL, elt_type, index_type));
|
2737 |
|
|
}
|
2738 |
|
|
|
2739 |
|
|
|
2740 |
|
|
/* Name resolution */
|
2741 |
|
|
|
2742 |
|
|
/* The "decoded" name for the user-definable Ada operator corresponding
|
2743 |
|
|
to OP. */
|
2744 |
|
|
|
2745 |
|
|
static const char *
|
2746 |
|
|
ada_decoded_op_name (enum exp_opcode op)
|
2747 |
|
|
{
|
2748 |
|
|
int i;
|
2749 |
|
|
|
2750 |
|
|
for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
|
2751 |
|
|
{
|
2752 |
|
|
if (ada_opname_table[i].op == op)
|
2753 |
|
|
return ada_opname_table[i].decoded;
|
2754 |
|
|
}
|
2755 |
|
|
error (_("Could not find operator name for opcode"));
|
2756 |
|
|
}
|
2757 |
|
|
|
2758 |
|
|
|
2759 |
|
|
/* Same as evaluate_type (*EXP), but resolves ambiguous symbol
|
2760 |
|
|
references (marked by OP_VAR_VALUE nodes in which the symbol has an
|
2761 |
|
|
undefined namespace) and converts operators that are
|
2762 |
|
|
user-defined into appropriate function calls. If CONTEXT_TYPE is
|
2763 |
|
|
non-null, it provides a preferred result type [at the moment, only
|
2764 |
|
|
type void has any effect---causing procedures to be preferred over
|
2765 |
|
|
functions in calls]. A null CONTEXT_TYPE indicates that a non-void
|
2766 |
|
|
return type is preferred. May change (expand) *EXP. */
|
2767 |
|
|
|
2768 |
|
|
static void
|
2769 |
|
|
resolve (struct expression **expp, int void_context_p)
|
2770 |
|
|
{
|
2771 |
|
|
struct type *context_type = NULL;
|
2772 |
|
|
int pc = 0;
|
2773 |
|
|
|
2774 |
|
|
if (void_context_p)
|
2775 |
|
|
context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
|
2776 |
|
|
|
2777 |
|
|
resolve_subexp (expp, &pc, 1, context_type);
|
2778 |
|
|
}
|
2779 |
|
|
|
2780 |
|
|
/* Resolve the operator of the subexpression beginning at
|
2781 |
|
|
position *POS of *EXPP. "Resolving" consists of replacing
|
2782 |
|
|
the symbols that have undefined namespaces in OP_VAR_VALUE nodes
|
2783 |
|
|
with their resolutions, replacing built-in operators with
|
2784 |
|
|
function calls to user-defined operators, where appropriate, and,
|
2785 |
|
|
when DEPROCEDURE_P is non-zero, converting function-valued variables
|
2786 |
|
|
into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
|
2787 |
|
|
are as in ada_resolve, above. */
|
2788 |
|
|
|
2789 |
|
|
static struct value *
|
2790 |
|
|
resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
|
2791 |
|
|
struct type *context_type)
|
2792 |
|
|
{
|
2793 |
|
|
int pc = *pos;
|
2794 |
|
|
int i;
|
2795 |
|
|
struct expression *exp; /* Convenience: == *expp. */
|
2796 |
|
|
enum exp_opcode op = (*expp)->elts[pc].opcode;
|
2797 |
|
|
struct value **argvec; /* Vector of operand types (alloca'ed). */
|
2798 |
|
|
int nargs; /* Number of operands. */
|
2799 |
|
|
int oplen;
|
2800 |
|
|
|
2801 |
|
|
argvec = NULL;
|
2802 |
|
|
nargs = 0;
|
2803 |
|
|
exp = *expp;
|
2804 |
|
|
|
2805 |
|
|
/* Pass one: resolve operands, saving their types and updating *pos,
|
2806 |
|
|
if needed. */
|
2807 |
|
|
switch (op)
|
2808 |
|
|
{
|
2809 |
|
|
case OP_FUNCALL:
|
2810 |
|
|
if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
|
2811 |
|
|
&& SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
|
2812 |
|
|
*pos += 7;
|
2813 |
|
|
else
|
2814 |
|
|
{
|
2815 |
|
|
*pos += 3;
|
2816 |
|
|
resolve_subexp (expp, pos, 0, NULL);
|
2817 |
|
|
}
|
2818 |
|
|
nargs = longest_to_int (exp->elts[pc + 1].longconst);
|
2819 |
|
|
break;
|
2820 |
|
|
|
2821 |
|
|
case UNOP_ADDR:
|
2822 |
|
|
*pos += 1;
|
2823 |
|
|
resolve_subexp (expp, pos, 0, NULL);
|
2824 |
|
|
break;
|
2825 |
|
|
|
2826 |
|
|
case UNOP_QUAL:
|
2827 |
|
|
*pos += 3;
|
2828 |
|
|
resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type));
|
2829 |
|
|
break;
|
2830 |
|
|
|
2831 |
|
|
case OP_ATR_MODULUS:
|
2832 |
|
|
case OP_ATR_SIZE:
|
2833 |
|
|
case OP_ATR_TAG:
|
2834 |
|
|
case OP_ATR_FIRST:
|
2835 |
|
|
case OP_ATR_LAST:
|
2836 |
|
|
case OP_ATR_LENGTH:
|
2837 |
|
|
case OP_ATR_POS:
|
2838 |
|
|
case OP_ATR_VAL:
|
2839 |
|
|
case OP_ATR_MIN:
|
2840 |
|
|
case OP_ATR_MAX:
|
2841 |
|
|
case TERNOP_IN_RANGE:
|
2842 |
|
|
case BINOP_IN_BOUNDS:
|
2843 |
|
|
case UNOP_IN_RANGE:
|
2844 |
|
|
case OP_AGGREGATE:
|
2845 |
|
|
case OP_OTHERS:
|
2846 |
|
|
case OP_CHOICES:
|
2847 |
|
|
case OP_POSITIONAL:
|
2848 |
|
|
case OP_DISCRETE_RANGE:
|
2849 |
|
|
case OP_NAME:
|
2850 |
|
|
ada_forward_operator_length (exp, pc, &oplen, &nargs);
|
2851 |
|
|
*pos += oplen;
|
2852 |
|
|
break;
|
2853 |
|
|
|
2854 |
|
|
case BINOP_ASSIGN:
|
2855 |
|
|
{
|
2856 |
|
|
struct value *arg1;
|
2857 |
|
|
|
2858 |
|
|
*pos += 1;
|
2859 |
|
|
arg1 = resolve_subexp (expp, pos, 0, NULL);
|
2860 |
|
|
if (arg1 == NULL)
|
2861 |
|
|
resolve_subexp (expp, pos, 1, NULL);
|
2862 |
|
|
else
|
2863 |
|
|
resolve_subexp (expp, pos, 1, value_type (arg1));
|
2864 |
|
|
break;
|
2865 |
|
|
}
|
2866 |
|
|
|
2867 |
|
|
case UNOP_CAST:
|
2868 |
|
|
*pos += 3;
|
2869 |
|
|
nargs = 1;
|
2870 |
|
|
break;
|
2871 |
|
|
|
2872 |
|
|
case BINOP_ADD:
|
2873 |
|
|
case BINOP_SUB:
|
2874 |
|
|
case BINOP_MUL:
|
2875 |
|
|
case BINOP_DIV:
|
2876 |
|
|
case BINOP_REM:
|
2877 |
|
|
case BINOP_MOD:
|
2878 |
|
|
case BINOP_EXP:
|
2879 |
|
|
case BINOP_CONCAT:
|
2880 |
|
|
case BINOP_LOGICAL_AND:
|
2881 |
|
|
case BINOP_LOGICAL_OR:
|
2882 |
|
|
case BINOP_BITWISE_AND:
|
2883 |
|
|
case BINOP_BITWISE_IOR:
|
2884 |
|
|
case BINOP_BITWISE_XOR:
|
2885 |
|
|
|
2886 |
|
|
case BINOP_EQUAL:
|
2887 |
|
|
case BINOP_NOTEQUAL:
|
2888 |
|
|
case BINOP_LESS:
|
2889 |
|
|
case BINOP_GTR:
|
2890 |
|
|
case BINOP_LEQ:
|
2891 |
|
|
case BINOP_GEQ:
|
2892 |
|
|
|
2893 |
|
|
case BINOP_REPEAT:
|
2894 |
|
|
case BINOP_SUBSCRIPT:
|
2895 |
|
|
case BINOP_COMMA:
|
2896 |
|
|
*pos += 1;
|
2897 |
|
|
nargs = 2;
|
2898 |
|
|
break;
|
2899 |
|
|
|
2900 |
|
|
case UNOP_NEG:
|
2901 |
|
|
case UNOP_PLUS:
|
2902 |
|
|
case UNOP_LOGICAL_NOT:
|
2903 |
|
|
case UNOP_ABS:
|
2904 |
|
|
case UNOP_IND:
|
2905 |
|
|
*pos += 1;
|
2906 |
|
|
nargs = 1;
|
2907 |
|
|
break;
|
2908 |
|
|
|
2909 |
|
|
case OP_LONG:
|
2910 |
|
|
case OP_DOUBLE:
|
2911 |
|
|
case OP_VAR_VALUE:
|
2912 |
|
|
*pos += 4;
|
2913 |
|
|
break;
|
2914 |
|
|
|
2915 |
|
|
case OP_TYPE:
|
2916 |
|
|
case OP_BOOL:
|
2917 |
|
|
case OP_LAST:
|
2918 |
|
|
case OP_INTERNALVAR:
|
2919 |
|
|
*pos += 3;
|
2920 |
|
|
break;
|
2921 |
|
|
|
2922 |
|
|
case UNOP_MEMVAL:
|
2923 |
|
|
*pos += 3;
|
2924 |
|
|
nargs = 1;
|
2925 |
|
|
break;
|
2926 |
|
|
|
2927 |
|
|
case OP_REGISTER:
|
2928 |
|
|
*pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
|
2929 |
|
|
break;
|
2930 |
|
|
|
2931 |
|
|
case STRUCTOP_STRUCT:
|
2932 |
|
|
*pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
|
2933 |
|
|
nargs = 1;
|
2934 |
|
|
break;
|
2935 |
|
|
|
2936 |
|
|
case TERNOP_SLICE:
|
2937 |
|
|
*pos += 1;
|
2938 |
|
|
nargs = 3;
|
2939 |
|
|
break;
|
2940 |
|
|
|
2941 |
|
|
case OP_STRING:
|
2942 |
|
|
break;
|
2943 |
|
|
|
2944 |
|
|
default:
|
2945 |
|
|
error (_("Unexpected operator during name resolution"));
|
2946 |
|
|
}
|
2947 |
|
|
|
2948 |
|
|
argvec = (struct value * *) alloca (sizeof (struct value *) * (nargs + 1));
|
2949 |
|
|
for (i = 0; i < nargs; i += 1)
|
2950 |
|
|
argvec[i] = resolve_subexp (expp, pos, 1, NULL);
|
2951 |
|
|
argvec[i] = NULL;
|
2952 |
|
|
exp = *expp;
|
2953 |
|
|
|
2954 |
|
|
/* Pass two: perform any resolution on principal operator. */
|
2955 |
|
|
switch (op)
|
2956 |
|
|
{
|
2957 |
|
|
default:
|
2958 |
|
|
break;
|
2959 |
|
|
|
2960 |
|
|
case OP_VAR_VALUE:
|
2961 |
|
|
if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
|
2962 |
|
|
{
|
2963 |
|
|
struct ada_symbol_info *candidates;
|
2964 |
|
|
int n_candidates;
|
2965 |
|
|
|
2966 |
|
|
n_candidates =
|
2967 |
|
|
ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
|
2968 |
|
|
(exp->elts[pc + 2].symbol),
|
2969 |
|
|
exp->elts[pc + 1].block, VAR_DOMAIN,
|
2970 |
|
|
&candidates);
|
2971 |
|
|
|
2972 |
|
|
if (n_candidates > 1)
|
2973 |
|
|
{
|
2974 |
|
|
/* Types tend to get re-introduced locally, so if there
|
2975 |
|
|
are any local symbols that are not types, first filter
|
2976 |
|
|
out all types. */
|
2977 |
|
|
int j;
|
2978 |
|
|
for (j = 0; j < n_candidates; j += 1)
|
2979 |
|
|
switch (SYMBOL_CLASS (candidates[j].sym))
|
2980 |
|
|
{
|
2981 |
|
|
case LOC_REGISTER:
|
2982 |
|
|
case LOC_ARG:
|
2983 |
|
|
case LOC_REF_ARG:
|
2984 |
|
|
case LOC_REGPARM_ADDR:
|
2985 |
|
|
case LOC_LOCAL:
|
2986 |
|
|
case LOC_COMPUTED:
|
2987 |
|
|
goto FoundNonType;
|
2988 |
|
|
default:
|
2989 |
|
|
break;
|
2990 |
|
|
}
|
2991 |
|
|
FoundNonType:
|
2992 |
|
|
if (j < n_candidates)
|
2993 |
|
|
{
|
2994 |
|
|
j = 0;
|
2995 |
|
|
while (j < n_candidates)
|
2996 |
|
|
{
|
2997 |
|
|
if (SYMBOL_CLASS (candidates[j].sym) == LOC_TYPEDEF)
|
2998 |
|
|
{
|
2999 |
|
|
candidates[j] = candidates[n_candidates - 1];
|
3000 |
|
|
n_candidates -= 1;
|
3001 |
|
|
}
|
3002 |
|
|
else
|
3003 |
|
|
j += 1;
|
3004 |
|
|
}
|
3005 |
|
|
}
|
3006 |
|
|
}
|
3007 |
|
|
|
3008 |
|
|
if (n_candidates == 0)
|
3009 |
|
|
error (_("No definition found for %s"),
|
3010 |
|
|
SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
|
3011 |
|
|
else if (n_candidates == 1)
|
3012 |
|
|
i = 0;
|
3013 |
|
|
else if (deprocedure_p
|
3014 |
|
|
&& !is_nonfunction (candidates, n_candidates))
|
3015 |
|
|
{
|
3016 |
|
|
i = ada_resolve_function
|
3017 |
|
|
(candidates, n_candidates, NULL, 0,
|
3018 |
|
|
SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
|
3019 |
|
|
context_type);
|
3020 |
|
|
if (i < 0)
|
3021 |
|
|
error (_("Could not find a match for %s"),
|
3022 |
|
|
SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
|
3023 |
|
|
}
|
3024 |
|
|
else
|
3025 |
|
|
{
|
3026 |
|
|
printf_filtered (_("Multiple matches for %s\n"),
|
3027 |
|
|
SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
|
3028 |
|
|
user_select_syms (candidates, n_candidates, 1);
|
3029 |
|
|
i = 0;
|
3030 |
|
|
}
|
3031 |
|
|
|
3032 |
|
|
exp->elts[pc + 1].block = candidates[i].block;
|
3033 |
|
|
exp->elts[pc + 2].symbol = candidates[i].sym;
|
3034 |
|
|
if (innermost_block == NULL
|
3035 |
|
|
|| contained_in (candidates[i].block, innermost_block))
|
3036 |
|
|
innermost_block = candidates[i].block;
|
3037 |
|
|
}
|
3038 |
|
|
|
3039 |
|
|
if (deprocedure_p
|
3040 |
|
|
&& (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
|
3041 |
|
|
== TYPE_CODE_FUNC))
|
3042 |
|
|
{
|
3043 |
|
|
replace_operator_with_call (expp, pc, 0, 0,
|
3044 |
|
|
exp->elts[pc + 2].symbol,
|
3045 |
|
|
exp->elts[pc + 1].block);
|
3046 |
|
|
exp = *expp;
|
3047 |
|
|
}
|
3048 |
|
|
break;
|
3049 |
|
|
|
3050 |
|
|
case OP_FUNCALL:
|
3051 |
|
|
{
|
3052 |
|
|
if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
|
3053 |
|
|
&& SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
|
3054 |
|
|
{
|
3055 |
|
|
struct ada_symbol_info *candidates;
|
3056 |
|
|
int n_candidates;
|
3057 |
|
|
|
3058 |
|
|
n_candidates =
|
3059 |
|
|
ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
|
3060 |
|
|
(exp->elts[pc + 5].symbol),
|
3061 |
|
|
exp->elts[pc + 4].block, VAR_DOMAIN,
|
3062 |
|
|
&candidates);
|
3063 |
|
|
if (n_candidates == 1)
|
3064 |
|
|
i = 0;
|
3065 |
|
|
else
|
3066 |
|
|
{
|
3067 |
|
|
i = ada_resolve_function
|
3068 |
|
|
(candidates, n_candidates,
|
3069 |
|
|
argvec, nargs,
|
3070 |
|
|
SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
|
3071 |
|
|
context_type);
|
3072 |
|
|
if (i < 0)
|
3073 |
|
|
error (_("Could not find a match for %s"),
|
3074 |
|
|
SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
|
3075 |
|
|
}
|
3076 |
|
|
|
3077 |
|
|
exp->elts[pc + 4].block = candidates[i].block;
|
3078 |
|
|
exp->elts[pc + 5].symbol = candidates[i].sym;
|
3079 |
|
|
if (innermost_block == NULL
|
3080 |
|
|
|| contained_in (candidates[i].block, innermost_block))
|
3081 |
|
|
innermost_block = candidates[i].block;
|
3082 |
|
|
}
|
3083 |
|
|
}
|
3084 |
|
|
break;
|
3085 |
|
|
case BINOP_ADD:
|
3086 |
|
|
case BINOP_SUB:
|
3087 |
|
|
case BINOP_MUL:
|
3088 |
|
|
case BINOP_DIV:
|
3089 |
|
|
case BINOP_REM:
|
3090 |
|
|
case BINOP_MOD:
|
3091 |
|
|
case BINOP_CONCAT:
|
3092 |
|
|
case BINOP_BITWISE_AND:
|
3093 |
|
|
case BINOP_BITWISE_IOR:
|
3094 |
|
|
case BINOP_BITWISE_XOR:
|
3095 |
|
|
case BINOP_EQUAL:
|
3096 |
|
|
case BINOP_NOTEQUAL:
|
3097 |
|
|
case BINOP_LESS:
|
3098 |
|
|
case BINOP_GTR:
|
3099 |
|
|
case BINOP_LEQ:
|
3100 |
|
|
case BINOP_GEQ:
|
3101 |
|
|
case BINOP_EXP:
|
3102 |
|
|
case UNOP_NEG:
|
3103 |
|
|
case UNOP_PLUS:
|
3104 |
|
|
case UNOP_LOGICAL_NOT:
|
3105 |
|
|
case UNOP_ABS:
|
3106 |
|
|
if (possible_user_operator_p (op, argvec))
|
3107 |
|
|
{
|
3108 |
|
|
struct ada_symbol_info *candidates;
|
3109 |
|
|
int n_candidates;
|
3110 |
|
|
|
3111 |
|
|
n_candidates =
|
3112 |
|
|
ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)),
|
3113 |
|
|
(struct block *) NULL, VAR_DOMAIN,
|
3114 |
|
|
&candidates);
|
3115 |
|
|
i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
|
3116 |
|
|
ada_decoded_op_name (op), NULL);
|
3117 |
|
|
if (i < 0)
|
3118 |
|
|
break;
|
3119 |
|
|
|
3120 |
|
|
replace_operator_with_call (expp, pc, nargs, 1,
|
3121 |
|
|
candidates[i].sym, candidates[i].block);
|
3122 |
|
|
exp = *expp;
|
3123 |
|
|
}
|
3124 |
|
|
break;
|
3125 |
|
|
|
3126 |
|
|
case OP_TYPE:
|
3127 |
|
|
case OP_REGISTER:
|
3128 |
|
|
return NULL;
|
3129 |
|
|
}
|
3130 |
|
|
|
3131 |
|
|
*pos = pc;
|
3132 |
|
|
return evaluate_subexp_type (exp, pos);
|
3133 |
|
|
}
|
3134 |
|
|
|
3135 |
|
|
/* Return non-zero if formal type FTYPE matches actual type ATYPE. If
|
3136 |
|
|
MAY_DEREF is non-zero, the formal may be a pointer and the actual
|
3137 |
|
|
a non-pointer. */
|
3138 |
|
|
/* The term "match" here is rather loose. The match is heuristic and
|
3139 |
|
|
liberal. */
|
3140 |
|
|
|
3141 |
|
|
static int
|
3142 |
|
|
ada_type_match (struct type *ftype, struct type *atype, int may_deref)
|
3143 |
|
|
{
|
3144 |
|
|
ftype = ada_check_typedef (ftype);
|
3145 |
|
|
atype = ada_check_typedef (atype);
|
3146 |
|
|
|
3147 |
|
|
if (TYPE_CODE (ftype) == TYPE_CODE_REF)
|
3148 |
|
|
ftype = TYPE_TARGET_TYPE (ftype);
|
3149 |
|
|
if (TYPE_CODE (atype) == TYPE_CODE_REF)
|
3150 |
|
|
atype = TYPE_TARGET_TYPE (atype);
|
3151 |
|
|
|
3152 |
|
|
switch (TYPE_CODE (ftype))
|
3153 |
|
|
{
|
3154 |
|
|
default:
|
3155 |
|
|
return TYPE_CODE (ftype) == TYPE_CODE (atype);
|
3156 |
|
|
case TYPE_CODE_PTR:
|
3157 |
|
|
if (TYPE_CODE (atype) == TYPE_CODE_PTR)
|
3158 |
|
|
return ada_type_match (TYPE_TARGET_TYPE (ftype),
|
3159 |
|
|
TYPE_TARGET_TYPE (atype), 0);
|
3160 |
|
|
else
|
3161 |
|
|
return (may_deref
|
3162 |
|
|
&& ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
|
3163 |
|
|
case TYPE_CODE_INT:
|
3164 |
|
|
case TYPE_CODE_ENUM:
|
3165 |
|
|
case TYPE_CODE_RANGE:
|
3166 |
|
|
switch (TYPE_CODE (atype))
|
3167 |
|
|
{
|
3168 |
|
|
case TYPE_CODE_INT:
|
3169 |
|
|
case TYPE_CODE_ENUM:
|
3170 |
|
|
case TYPE_CODE_RANGE:
|
3171 |
|
|
return 1;
|
3172 |
|
|
default:
|
3173 |
|
|
return 0;
|
3174 |
|
|
}
|
3175 |
|
|
|
3176 |
|
|
case TYPE_CODE_ARRAY:
|
3177 |
|
|
return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
|
3178 |
|
|
|| ada_is_array_descriptor_type (atype));
|
3179 |
|
|
|
3180 |
|
|
case TYPE_CODE_STRUCT:
|
3181 |
|
|
if (ada_is_array_descriptor_type (ftype))
|
3182 |
|
|
return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
|
3183 |
|
|
|| ada_is_array_descriptor_type (atype));
|
3184 |
|
|
else
|
3185 |
|
|
return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
|
3186 |
|
|
&& !ada_is_array_descriptor_type (atype));
|
3187 |
|
|
|
3188 |
|
|
case TYPE_CODE_UNION:
|
3189 |
|
|
case TYPE_CODE_FLT:
|
3190 |
|
|
return (TYPE_CODE (atype) == TYPE_CODE (ftype));
|
3191 |
|
|
}
|
3192 |
|
|
}
|
3193 |
|
|
|
3194 |
|
|
/* Return non-zero if the formals of FUNC "sufficiently match" the
|
3195 |
|
|
vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
|
3196 |
|
|
may also be an enumeral, in which case it is treated as a 0-
|
3197 |
|
|
argument function. */
|
3198 |
|
|
|
3199 |
|
|
static int
|
3200 |
|
|
ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
|
3201 |
|
|
{
|
3202 |
|
|
int i;
|
3203 |
|
|
struct type *func_type = SYMBOL_TYPE (func);
|
3204 |
|
|
|
3205 |
|
|
if (SYMBOL_CLASS (func) == LOC_CONST
|
3206 |
|
|
&& TYPE_CODE (func_type) == TYPE_CODE_ENUM)
|
3207 |
|
|
return (n_actuals == 0);
|
3208 |
|
|
else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
|
3209 |
|
|
return 0;
|
3210 |
|
|
|
3211 |
|
|
if (TYPE_NFIELDS (func_type) != n_actuals)
|
3212 |
|
|
return 0;
|
3213 |
|
|
|
3214 |
|
|
for (i = 0; i < n_actuals; i += 1)
|
3215 |
|
|
{
|
3216 |
|
|
if (actuals[i] == NULL)
|
3217 |
|
|
return 0;
|
3218 |
|
|
else
|
3219 |
|
|
{
|
3220 |
|
|
struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
|
3221 |
|
|
i));
|
3222 |
|
|
struct type *atype = ada_check_typedef (value_type (actuals[i]));
|
3223 |
|
|
|
3224 |
|
|
if (!ada_type_match (ftype, atype, 1))
|
3225 |
|
|
return 0;
|
3226 |
|
|
}
|
3227 |
|
|
}
|
3228 |
|
|
return 1;
|
3229 |
|
|
}
|
3230 |
|
|
|
3231 |
|
|
/* False iff function type FUNC_TYPE definitely does not produce a value
|
3232 |
|
|
compatible with type CONTEXT_TYPE. Conservatively returns 1 if
|
3233 |
|
|
FUNC_TYPE is not a valid function type with a non-null return type
|
3234 |
|
|
or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
|
3235 |
|
|
|
3236 |
|
|
static int
|
3237 |
|
|
return_match (struct type *func_type, struct type *context_type)
|
3238 |
|
|
{
|
3239 |
|
|
struct type *return_type;
|
3240 |
|
|
|
3241 |
|
|
if (func_type == NULL)
|
3242 |
|
|
return 1;
|
3243 |
|
|
|
3244 |
|
|
if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
|
3245 |
|
|
return_type = base_type (TYPE_TARGET_TYPE (func_type));
|
3246 |
|
|
else
|
3247 |
|
|
return_type = base_type (func_type);
|
3248 |
|
|
if (return_type == NULL)
|
3249 |
|
|
return 1;
|
3250 |
|
|
|
3251 |
|
|
context_type = base_type (context_type);
|
3252 |
|
|
|
3253 |
|
|
if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
|
3254 |
|
|
return context_type == NULL || return_type == context_type;
|
3255 |
|
|
else if (context_type == NULL)
|
3256 |
|
|
return TYPE_CODE (return_type) != TYPE_CODE_VOID;
|
3257 |
|
|
else
|
3258 |
|
|
return TYPE_CODE (return_type) == TYPE_CODE (context_type);
|
3259 |
|
|
}
|
3260 |
|
|
|
3261 |
|
|
|
3262 |
|
|
/* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
|
3263 |
|
|
function (if any) that matches the types of the NARGS arguments in
|
3264 |
|
|
ARGS. If CONTEXT_TYPE is non-null and there is at least one match
|
3265 |
|
|
that returns that type, then eliminate matches that don't. If
|
3266 |
|
|
CONTEXT_TYPE is void and there is at least one match that does not
|
3267 |
|
|
return void, eliminate all matches that do.
|
3268 |
|
|
|
3269 |
|
|
Asks the user if there is more than one match remaining. Returns -1
|
3270 |
|
|
if there is no such symbol or none is selected. NAME is used
|
3271 |
|
|
solely for messages. May re-arrange and modify SYMS in
|
3272 |
|
|
the process; the index returned is for the modified vector. */
|
3273 |
|
|
|
3274 |
|
|
static int
|
3275 |
|
|
ada_resolve_function (struct ada_symbol_info syms[],
|
3276 |
|
|
int nsyms, struct value **args, int nargs,
|
3277 |
|
|
const char *name, struct type *context_type)
|
3278 |
|
|
{
|
3279 |
|
|
int fallback;
|
3280 |
|
|
int k;
|
3281 |
|
|
int m; /* Number of hits */
|
3282 |
|
|
|
3283 |
|
|
m = 0;
|
3284 |
|
|
/* In the first pass of the loop, we only accept functions matching
|
3285 |
|
|
context_type. If none are found, we add a second pass of the loop
|
3286 |
|
|
where every function is accepted. */
|
3287 |
|
|
for (fallback = 0; m == 0 && fallback < 2; fallback++)
|
3288 |
|
|
{
|
3289 |
|
|
for (k = 0; k < nsyms; k += 1)
|
3290 |
|
|
{
|
3291 |
|
|
struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].sym));
|
3292 |
|
|
|
3293 |
|
|
if (ada_args_match (syms[k].sym, args, nargs)
|
3294 |
|
|
&& (fallback || return_match (type, context_type)))
|
3295 |
|
|
{
|
3296 |
|
|
syms[m] = syms[k];
|
3297 |
|
|
m += 1;
|
3298 |
|
|
}
|
3299 |
|
|
}
|
3300 |
|
|
}
|
3301 |
|
|
|
3302 |
|
|
if (m == 0)
|
3303 |
|
|
return -1;
|
3304 |
|
|
else if (m > 1)
|
3305 |
|
|
{
|
3306 |
|
|
printf_filtered (_("Multiple matches for %s\n"), name);
|
3307 |
|
|
user_select_syms (syms, m, 1);
|
3308 |
|
|
return 0;
|
3309 |
|
|
}
|
3310 |
|
|
return 0;
|
3311 |
|
|
}
|
3312 |
|
|
|
3313 |
|
|
/* Returns true (non-zero) iff decoded name N0 should appear before N1
|
3314 |
|
|
in a listing of choices during disambiguation (see sort_choices, below).
|
3315 |
|
|
The idea is that overloadings of a subprogram name from the
|
3316 |
|
|
same package should sort in their source order. We settle for ordering
|
3317 |
|
|
such symbols by their trailing number (__N or $N). */
|
3318 |
|
|
|
3319 |
|
|
static int
|
3320 |
|
|
encoded_ordered_before (char *N0, char *N1)
|
3321 |
|
|
{
|
3322 |
|
|
if (N1 == NULL)
|
3323 |
|
|
return 0;
|
3324 |
|
|
else if (N0 == NULL)
|
3325 |
|
|
return 1;
|
3326 |
|
|
else
|
3327 |
|
|
{
|
3328 |
|
|
int k0, k1;
|
3329 |
|
|
|
3330 |
|
|
for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
|
3331 |
|
|
;
|
3332 |
|
|
for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
|
3333 |
|
|
;
|
3334 |
|
|
if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
|
3335 |
|
|
&& (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
|
3336 |
|
|
{
|
3337 |
|
|
int n0, n1;
|
3338 |
|
|
|
3339 |
|
|
n0 = k0;
|
3340 |
|
|
while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
|
3341 |
|
|
n0 -= 1;
|
3342 |
|
|
n1 = k1;
|
3343 |
|
|
while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
|
3344 |
|
|
n1 -= 1;
|
3345 |
|
|
if (n0 == n1 && strncmp (N0, N1, n0) == 0)
|
3346 |
|
|
return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
|
3347 |
|
|
}
|
3348 |
|
|
return (strcmp (N0, N1) < 0);
|
3349 |
|
|
}
|
3350 |
|
|
}
|
3351 |
|
|
|
3352 |
|
|
/* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
|
3353 |
|
|
encoded names. */
|
3354 |
|
|
|
3355 |
|
|
static void
|
3356 |
|
|
sort_choices (struct ada_symbol_info syms[], int nsyms)
|
3357 |
|
|
{
|
3358 |
|
|
int i;
|
3359 |
|
|
|
3360 |
|
|
for (i = 1; i < nsyms; i += 1)
|
3361 |
|
|
{
|
3362 |
|
|
struct ada_symbol_info sym = syms[i];
|
3363 |
|
|
int j;
|
3364 |
|
|
|
3365 |
|
|
for (j = i - 1; j >= 0; j -= 1)
|
3366 |
|
|
{
|
3367 |
|
|
if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].sym),
|
3368 |
|
|
SYMBOL_LINKAGE_NAME (sym.sym)))
|
3369 |
|
|
break;
|
3370 |
|
|
syms[j + 1] = syms[j];
|
3371 |
|
|
}
|
3372 |
|
|
syms[j + 1] = sym;
|
3373 |
|
|
}
|
3374 |
|
|
}
|
3375 |
|
|
|
3376 |
|
|
/* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
|
3377 |
|
|
by asking the user (if necessary), returning the number selected,
|
3378 |
|
|
and setting the first elements of SYMS items. Error if no symbols
|
3379 |
|
|
selected. */
|
3380 |
|
|
|
3381 |
|
|
/* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
|
3382 |
|
|
to be re-integrated one of these days. */
|
3383 |
|
|
|
3384 |
|
|
int
|
3385 |
|
|
user_select_syms (struct ada_symbol_info *syms, int nsyms, int max_results)
|
3386 |
|
|
{
|
3387 |
|
|
int i;
|
3388 |
|
|
int *chosen = (int *) alloca (sizeof (int) * nsyms);
|
3389 |
|
|
int n_chosen;
|
3390 |
|
|
int first_choice = (max_results == 1) ? 1 : 2;
|
3391 |
|
|
const char *select_mode = multiple_symbols_select_mode ();
|
3392 |
|
|
|
3393 |
|
|
if (max_results < 1)
|
3394 |
|
|
error (_("Request to select 0 symbols!"));
|
3395 |
|
|
if (nsyms <= 1)
|
3396 |
|
|
return nsyms;
|
3397 |
|
|
|
3398 |
|
|
if (select_mode == multiple_symbols_cancel)
|
3399 |
|
|
error (_("\
|
3400 |
|
|
canceled because the command is ambiguous\n\
|
3401 |
|
|
See set/show multiple-symbol."));
|
3402 |
|
|
|
3403 |
|
|
/* If select_mode is "all", then return all possible symbols.
|
3404 |
|
|
Only do that if more than one symbol can be selected, of course.
|
3405 |
|
|
Otherwise, display the menu as usual. */
|
3406 |
|
|
if (select_mode == multiple_symbols_all && max_results > 1)
|
3407 |
|
|
return nsyms;
|
3408 |
|
|
|
3409 |
|
|
printf_unfiltered (_("[0] cancel\n"));
|
3410 |
|
|
if (max_results > 1)
|
3411 |
|
|
printf_unfiltered (_("[1] all\n"));
|
3412 |
|
|
|
3413 |
|
|
sort_choices (syms, nsyms);
|
3414 |
|
|
|
3415 |
|
|
for (i = 0; i < nsyms; i += 1)
|
3416 |
|
|
{
|
3417 |
|
|
if (syms[i].sym == NULL)
|
3418 |
|
|
continue;
|
3419 |
|
|
|
3420 |
|
|
if (SYMBOL_CLASS (syms[i].sym) == LOC_BLOCK)
|
3421 |
|
|
{
|
3422 |
|
|
struct symtab_and_line sal =
|
3423 |
|
|
find_function_start_sal (syms[i].sym, 1);
|
3424 |
|
|
|
3425 |
|
|
if (sal.symtab == NULL)
|
3426 |
|
|
printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"),
|
3427 |
|
|
i + first_choice,
|
3428 |
|
|
SYMBOL_PRINT_NAME (syms[i].sym),
|
3429 |
|
|
sal.line);
|
3430 |
|
|
else
|
3431 |
|
|
printf_unfiltered (_("[%d] %s at %s:%d\n"), i + first_choice,
|
3432 |
|
|
SYMBOL_PRINT_NAME (syms[i].sym),
|
3433 |
|
|
sal.symtab->filename, sal.line);
|
3434 |
|
|
continue;
|
3435 |
|
|
}
|
3436 |
|
|
else
|
3437 |
|
|
{
|
3438 |
|
|
int is_enumeral =
|
3439 |
|
|
(SYMBOL_CLASS (syms[i].sym) == LOC_CONST
|
3440 |
|
|
&& SYMBOL_TYPE (syms[i].sym) != NULL
|
3441 |
|
|
&& TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) == TYPE_CODE_ENUM);
|
3442 |
|
|
struct symtab *symtab = syms[i].sym->symtab;
|
3443 |
|
|
|
3444 |
|
|
if (SYMBOL_LINE (syms[i].sym) != 0 && symtab != NULL)
|
3445 |
|
|
printf_unfiltered (_("[%d] %s at %s:%d\n"),
|
3446 |
|
|
i + first_choice,
|
3447 |
|
|
SYMBOL_PRINT_NAME (syms[i].sym),
|
3448 |
|
|
symtab->filename, SYMBOL_LINE (syms[i].sym));
|
3449 |
|
|
else if (is_enumeral
|
3450 |
|
|
&& TYPE_NAME (SYMBOL_TYPE (syms[i].sym)) != NULL)
|
3451 |
|
|
{
|
3452 |
|
|
printf_unfiltered (("[%d] "), i + first_choice);
|
3453 |
|
|
ada_print_type (SYMBOL_TYPE (syms[i].sym), NULL,
|
3454 |
|
|
gdb_stdout, -1, 0);
|
3455 |
|
|
printf_unfiltered (_("'(%s) (enumeral)\n"),
|
3456 |
|
|
SYMBOL_PRINT_NAME (syms[i].sym));
|
3457 |
|
|
}
|
3458 |
|
|
else if (symtab != NULL)
|
3459 |
|
|
printf_unfiltered (is_enumeral
|
3460 |
|
|
? _("[%d] %s in %s (enumeral)\n")
|
3461 |
|
|
: _("[%d] %s at %s:?\n"),
|
3462 |
|
|
i + first_choice,
|
3463 |
|
|
SYMBOL_PRINT_NAME (syms[i].sym),
|
3464 |
|
|
symtab->filename);
|
3465 |
|
|
else
|
3466 |
|
|
printf_unfiltered (is_enumeral
|
3467 |
|
|
? _("[%d] %s (enumeral)\n")
|
3468 |
|
|
: _("[%d] %s at ?\n"),
|
3469 |
|
|
i + first_choice,
|
3470 |
|
|
SYMBOL_PRINT_NAME (syms[i].sym));
|
3471 |
|
|
}
|
3472 |
|
|
}
|
3473 |
|
|
|
3474 |
|
|
n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
|
3475 |
|
|
"overload-choice");
|
3476 |
|
|
|
3477 |
|
|
for (i = 0; i < n_chosen; i += 1)
|
3478 |
|
|
syms[i] = syms[chosen[i]];
|
3479 |
|
|
|
3480 |
|
|
return n_chosen;
|
3481 |
|
|
}
|
3482 |
|
|
|
3483 |
|
|
/* Read and validate a set of numeric choices from the user in the
|
3484 |
|
|
range 0 .. N_CHOICES-1. Place the results in increasing
|
3485 |
|
|
order in CHOICES[0 .. N-1], and return N.
|
3486 |
|
|
|
3487 |
|
|
The user types choices as a sequence of numbers on one line
|
3488 |
|
|
separated by blanks, encoding them as follows:
|
3489 |
|
|
|
3490 |
|
|
+ A choice of 0 means to cancel the selection, throwing an error.
|
3491 |
|
|
+ If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
|
3492 |
|
|
+ The user chooses k by typing k+IS_ALL_CHOICE+1.
|
3493 |
|
|
|
3494 |
|
|
The user is not allowed to choose more than MAX_RESULTS values.
|
3495 |
|
|
|
3496 |
|
|
ANNOTATION_SUFFIX, if present, is used to annotate the input
|
3497 |
|
|
prompts (for use with the -f switch). */
|
3498 |
|
|
|
3499 |
|
|
int
|
3500 |
|
|
get_selections (int *choices, int n_choices, int max_results,
|
3501 |
|
|
int is_all_choice, char *annotation_suffix)
|
3502 |
|
|
{
|
3503 |
|
|
char *args;
|
3504 |
|
|
char *prompt;
|
3505 |
|
|
int n_chosen;
|
3506 |
|
|
int first_choice = is_all_choice ? 2 : 1;
|
3507 |
|
|
|
3508 |
|
|
prompt = getenv ("PS2");
|
3509 |
|
|
if (prompt == NULL)
|
3510 |
|
|
prompt = "> ";
|
3511 |
|
|
|
3512 |
|
|
args = command_line_input (prompt, 0, annotation_suffix);
|
3513 |
|
|
|
3514 |
|
|
if (args == NULL)
|
3515 |
|
|
error_no_arg (_("one or more choice numbers"));
|
3516 |
|
|
|
3517 |
|
|
n_chosen = 0;
|
3518 |
|
|
|
3519 |
|
|
/* Set choices[0 .. n_chosen-1] to the users' choices in ascending
|
3520 |
|
|
order, as given in args. Choices are validated. */
|
3521 |
|
|
while (1)
|
3522 |
|
|
{
|
3523 |
|
|
char *args2;
|
3524 |
|
|
int choice, j;
|
3525 |
|
|
|
3526 |
|
|
while (isspace (*args))
|
3527 |
|
|
args += 1;
|
3528 |
|
|
if (*args == '\0' && n_chosen == 0)
|
3529 |
|
|
error_no_arg (_("one or more choice numbers"));
|
3530 |
|
|
else if (*args == '\0')
|
3531 |
|
|
break;
|
3532 |
|
|
|
3533 |
|
|
choice = strtol (args, &args2, 10);
|
3534 |
|
|
if (args == args2 || choice < 0
|
3535 |
|
|
|| choice > n_choices + first_choice - 1)
|
3536 |
|
|
error (_("Argument must be choice number"));
|
3537 |
|
|
args = args2;
|
3538 |
|
|
|
3539 |
|
|
if (choice == 0)
|
3540 |
|
|
error (_("cancelled"));
|
3541 |
|
|
|
3542 |
|
|
if (choice < first_choice)
|
3543 |
|
|
{
|
3544 |
|
|
n_chosen = n_choices;
|
3545 |
|
|
for (j = 0; j < n_choices; j += 1)
|
3546 |
|
|
choices[j] = j;
|
3547 |
|
|
break;
|
3548 |
|
|
}
|
3549 |
|
|
choice -= first_choice;
|
3550 |
|
|
|
3551 |
|
|
for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
|
3552 |
|
|
{
|
3553 |
|
|
}
|
3554 |
|
|
|
3555 |
|
|
if (j < 0 || choice != choices[j])
|
3556 |
|
|
{
|
3557 |
|
|
int k;
|
3558 |
|
|
|
3559 |
|
|
for (k = n_chosen - 1; k > j; k -= 1)
|
3560 |
|
|
choices[k + 1] = choices[k];
|
3561 |
|
|
choices[j + 1] = choice;
|
3562 |
|
|
n_chosen += 1;
|
3563 |
|
|
}
|
3564 |
|
|
}
|
3565 |
|
|
|
3566 |
|
|
if (n_chosen > max_results)
|
3567 |
|
|
error (_("Select no more than %d of the above"), max_results);
|
3568 |
|
|
|
3569 |
|
|
return n_chosen;
|
3570 |
|
|
}
|
3571 |
|
|
|
3572 |
|
|
/* Replace the operator of length OPLEN at position PC in *EXPP with a call
|
3573 |
|
|
on the function identified by SYM and BLOCK, and taking NARGS
|
3574 |
|
|
arguments. Update *EXPP as needed to hold more space. */
|
3575 |
|
|
|
3576 |
|
|
static void
|
3577 |
|
|
replace_operator_with_call (struct expression **expp, int pc, int nargs,
|
3578 |
|
|
int oplen, struct symbol *sym,
|
3579 |
|
|
struct block *block)
|
3580 |
|
|
{
|
3581 |
|
|
/* A new expression, with 6 more elements (3 for funcall, 4 for function
|
3582 |
|
|
symbol, -oplen for operator being replaced). */
|
3583 |
|
|
struct expression *newexp = (struct expression *)
|
3584 |
|
|
xmalloc (sizeof (struct expression)
|
3585 |
|
|
+ EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
|
3586 |
|
|
struct expression *exp = *expp;
|
3587 |
|
|
|
3588 |
|
|
newexp->nelts = exp->nelts + 7 - oplen;
|
3589 |
|
|
newexp->language_defn = exp->language_defn;
|
3590 |
|
|
memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
|
3591 |
|
|
memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
|
3592 |
|
|
EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
|
3593 |
|
|
|
3594 |
|
|
newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
|
3595 |
|
|
newexp->elts[pc + 1].longconst = (LONGEST) nargs;
|
3596 |
|
|
|
3597 |
|
|
newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
|
3598 |
|
|
newexp->elts[pc + 4].block = block;
|
3599 |
|
|
newexp->elts[pc + 5].symbol = sym;
|
3600 |
|
|
|
3601 |
|
|
*expp = newexp;
|
3602 |
|
|
xfree (exp);
|
3603 |
|
|
}
|
3604 |
|
|
|
3605 |
|
|
/* Type-class predicates */
|
3606 |
|
|
|
3607 |
|
|
/* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
|
3608 |
|
|
or FLOAT). */
|
3609 |
|
|
|
3610 |
|
|
static int
|
3611 |
|
|
numeric_type_p (struct type *type)
|
3612 |
|
|
{
|
3613 |
|
|
if (type == NULL)
|
3614 |
|
|
return 0;
|
3615 |
|
|
else
|
3616 |
|
|
{
|
3617 |
|
|
switch (TYPE_CODE (type))
|
3618 |
|
|
{
|
3619 |
|
|
case TYPE_CODE_INT:
|
3620 |
|
|
case TYPE_CODE_FLT:
|
3621 |
|
|
return 1;
|
3622 |
|
|
case TYPE_CODE_RANGE:
|
3623 |
|
|
return (type == TYPE_TARGET_TYPE (type)
|
3624 |
|
|
|| numeric_type_p (TYPE_TARGET_TYPE (type)));
|
3625 |
|
|
default:
|
3626 |
|
|
return 0;
|
3627 |
|
|
}
|
3628 |
|
|
}
|
3629 |
|
|
}
|
3630 |
|
|
|
3631 |
|
|
/* True iff TYPE is integral (an INT or RANGE of INTs). */
|
3632 |
|
|
|
3633 |
|
|
static int
|
3634 |
|
|
integer_type_p (struct type *type)
|
3635 |
|
|
{
|
3636 |
|
|
if (type == NULL)
|
3637 |
|
|
return 0;
|
3638 |
|
|
else
|
3639 |
|
|
{
|
3640 |
|
|
switch (TYPE_CODE (type))
|
3641 |
|
|
{
|
3642 |
|
|
case TYPE_CODE_INT:
|
3643 |
|
|
return 1;
|
3644 |
|
|
case TYPE_CODE_RANGE:
|
3645 |
|
|
return (type == TYPE_TARGET_TYPE (type)
|
3646 |
|
|
|| integer_type_p (TYPE_TARGET_TYPE (type)));
|
3647 |
|
|
default:
|
3648 |
|
|
return 0;
|
3649 |
|
|
}
|
3650 |
|
|
}
|
3651 |
|
|
}
|
3652 |
|
|
|
3653 |
|
|
/* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
|
3654 |
|
|
|
3655 |
|
|
static int
|
3656 |
|
|
scalar_type_p (struct type *type)
|
3657 |
|
|
{
|
3658 |
|
|
if (type == NULL)
|
3659 |
|
|
return 0;
|
3660 |
|
|
else
|
3661 |
|
|
{
|
3662 |
|
|
switch (TYPE_CODE (type))
|
3663 |
|
|
{
|
3664 |
|
|
case TYPE_CODE_INT:
|
3665 |
|
|
case TYPE_CODE_RANGE:
|
3666 |
|
|
case TYPE_CODE_ENUM:
|
3667 |
|
|
case TYPE_CODE_FLT:
|
3668 |
|
|
return 1;
|
3669 |
|
|
default:
|
3670 |
|
|
return 0;
|
3671 |
|
|
}
|
3672 |
|
|
}
|
3673 |
|
|
}
|
3674 |
|
|
|
3675 |
|
|
/* True iff TYPE is discrete (INT, RANGE, ENUM). */
|
3676 |
|
|
|
3677 |
|
|
static int
|
3678 |
|
|
discrete_type_p (struct type *type)
|
3679 |
|
|
{
|
3680 |
|
|
if (type == NULL)
|
3681 |
|
|
return 0;
|
3682 |
|
|
else
|
3683 |
|
|
{
|
3684 |
|
|
switch (TYPE_CODE (type))
|
3685 |
|
|
{
|
3686 |
|
|
case TYPE_CODE_INT:
|
3687 |
|
|
case TYPE_CODE_RANGE:
|
3688 |
|
|
case TYPE_CODE_ENUM:
|
3689 |
|
|
case TYPE_CODE_BOOL:
|
3690 |
|
|
return 1;
|
3691 |
|
|
default:
|
3692 |
|
|
return 0;
|
3693 |
|
|
}
|
3694 |
|
|
}
|
3695 |
|
|
}
|
3696 |
|
|
|
3697 |
|
|
/* Returns non-zero if OP with operands in the vector ARGS could be
|
3698 |
|
|
a user-defined function. Errs on the side of pre-defined operators
|
3699 |
|
|
(i.e., result 0). */
|
3700 |
|
|
|
3701 |
|
|
static int
|
3702 |
|
|
possible_user_operator_p (enum exp_opcode op, struct value *args[])
|
3703 |
|
|
{
|
3704 |
|
|
struct type *type0 =
|
3705 |
|
|
(args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
|
3706 |
|
|
struct type *type1 =
|
3707 |
|
|
(args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
|
3708 |
|
|
|
3709 |
|
|
if (type0 == NULL)
|
3710 |
|
|
return 0;
|
3711 |
|
|
|
3712 |
|
|
switch (op)
|
3713 |
|
|
{
|
3714 |
|
|
default:
|
3715 |
|
|
return 0;
|
3716 |
|
|
|
3717 |
|
|
case BINOP_ADD:
|
3718 |
|
|
case BINOP_SUB:
|
3719 |
|
|
case BINOP_MUL:
|
3720 |
|
|
case BINOP_DIV:
|
3721 |
|
|
return (!(numeric_type_p (type0) && numeric_type_p (type1)));
|
3722 |
|
|
|
3723 |
|
|
case BINOP_REM:
|
3724 |
|
|
case BINOP_MOD:
|
3725 |
|
|
case BINOP_BITWISE_AND:
|
3726 |
|
|
case BINOP_BITWISE_IOR:
|
3727 |
|
|
case BINOP_BITWISE_XOR:
|
3728 |
|
|
return (!(integer_type_p (type0) && integer_type_p (type1)));
|
3729 |
|
|
|
3730 |
|
|
case BINOP_EQUAL:
|
3731 |
|
|
case BINOP_NOTEQUAL:
|
3732 |
|
|
case BINOP_LESS:
|
3733 |
|
|
case BINOP_GTR:
|
3734 |
|
|
case BINOP_LEQ:
|
3735 |
|
|
case BINOP_GEQ:
|
3736 |
|
|
return (!(scalar_type_p (type0) && scalar_type_p (type1)));
|
3737 |
|
|
|
3738 |
|
|
case BINOP_CONCAT:
|
3739 |
|
|
return !ada_is_array_type (type0) || !ada_is_array_type (type1);
|
3740 |
|
|
|
3741 |
|
|
case BINOP_EXP:
|
3742 |
|
|
return (!(numeric_type_p (type0) && integer_type_p (type1)));
|
3743 |
|
|
|
3744 |
|
|
case UNOP_NEG:
|
3745 |
|
|
case UNOP_PLUS:
|
3746 |
|
|
case UNOP_LOGICAL_NOT:
|
3747 |
|
|
case UNOP_ABS:
|
3748 |
|
|
return (!numeric_type_p (type0));
|
3749 |
|
|
|
3750 |
|
|
}
|
3751 |
|
|
}
|
3752 |
|
|
|
3753 |
|
|
/* Renaming */
|
3754 |
|
|
|
3755 |
|
|
/* NOTES:
|
3756 |
|
|
|
3757 |
|
|
1. In the following, we assume that a renaming type's name may
|
3758 |
|
|
have an ___XD suffix. It would be nice if this went away at some
|
3759 |
|
|
point.
|
3760 |
|
|
2. We handle both the (old) purely type-based representation of
|
3761 |
|
|
renamings and the (new) variable-based encoding. At some point,
|
3762 |
|
|
it is devoutly to be hoped that the former goes away
|
3763 |
|
|
(FIXME: hilfinger-2007-07-09).
|
3764 |
|
|
3. Subprogram renamings are not implemented, although the XRS
|
3765 |
|
|
suffix is recognized (FIXME: hilfinger-2007-07-09). */
|
3766 |
|
|
|
3767 |
|
|
/* If SYM encodes a renaming,
|
3768 |
|
|
|
3769 |
|
|
<renaming> renames <renamed entity>,
|
3770 |
|
|
|
3771 |
|
|
sets *LEN to the length of the renamed entity's name,
|
3772 |
|
|
*RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
|
3773 |
|
|
the string describing the subcomponent selected from the renamed
|
3774 |
|
|
entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
|
3775 |
|
|
(in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
|
3776 |
|
|
are undefined). Otherwise, returns a value indicating the category
|
3777 |
|
|
of entity renamed: an object (ADA_OBJECT_RENAMING), exception
|
3778 |
|
|
(ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
|
3779 |
|
|
subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
|
3780 |
|
|
strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
|
3781 |
|
|
deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
|
3782 |
|
|
may be NULL, in which case they are not assigned.
|
3783 |
|
|
|
3784 |
|
|
[Currently, however, GCC does not generate subprogram renamings.] */
|
3785 |
|
|
|
3786 |
|
|
enum ada_renaming_category
|
3787 |
|
|
ada_parse_renaming (struct symbol *sym,
|
3788 |
|
|
const char **renamed_entity, int *len,
|
3789 |
|
|
const char **renaming_expr)
|
3790 |
|
|
{
|
3791 |
|
|
enum ada_renaming_category kind;
|
3792 |
|
|
const char *info;
|
3793 |
|
|
const char *suffix;
|
3794 |
|
|
|
3795 |
|
|
if (sym == NULL)
|
3796 |
|
|
return ADA_NOT_RENAMING;
|
3797 |
|
|
switch (SYMBOL_CLASS (sym))
|
3798 |
|
|
{
|
3799 |
|
|
default:
|
3800 |
|
|
return ADA_NOT_RENAMING;
|
3801 |
|
|
case LOC_TYPEDEF:
|
3802 |
|
|
return parse_old_style_renaming (SYMBOL_TYPE (sym),
|
3803 |
|
|
renamed_entity, len, renaming_expr);
|
3804 |
|
|
case LOC_LOCAL:
|
3805 |
|
|
case LOC_STATIC:
|
3806 |
|
|
case LOC_COMPUTED:
|
3807 |
|
|
case LOC_OPTIMIZED_OUT:
|
3808 |
|
|
info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
|
3809 |
|
|
if (info == NULL)
|
3810 |
|
|
return ADA_NOT_RENAMING;
|
3811 |
|
|
switch (info[5])
|
3812 |
|
|
{
|
3813 |
|
|
case '_':
|
3814 |
|
|
kind = ADA_OBJECT_RENAMING;
|
3815 |
|
|
info += 6;
|
3816 |
|
|
break;
|
3817 |
|
|
case 'E':
|
3818 |
|
|
kind = ADA_EXCEPTION_RENAMING;
|
3819 |
|
|
info += 7;
|
3820 |
|
|
break;
|
3821 |
|
|
case 'P':
|
3822 |
|
|
kind = ADA_PACKAGE_RENAMING;
|
3823 |
|
|
info += 7;
|
3824 |
|
|
break;
|
3825 |
|
|
case 'S':
|
3826 |
|
|
kind = ADA_SUBPROGRAM_RENAMING;
|
3827 |
|
|
info += 7;
|
3828 |
|
|
break;
|
3829 |
|
|
default:
|
3830 |
|
|
return ADA_NOT_RENAMING;
|
3831 |
|
|
}
|
3832 |
|
|
}
|
3833 |
|
|
|
3834 |
|
|
if (renamed_entity != NULL)
|
3835 |
|
|
*renamed_entity = info;
|
3836 |
|
|
suffix = strstr (info, "___XE");
|
3837 |
|
|
if (suffix == NULL || suffix == info)
|
3838 |
|
|
return ADA_NOT_RENAMING;
|
3839 |
|
|
if (len != NULL)
|
3840 |
|
|
*len = strlen (info) - strlen (suffix);
|
3841 |
|
|
suffix += 5;
|
3842 |
|
|
if (renaming_expr != NULL)
|
3843 |
|
|
*renaming_expr = suffix;
|
3844 |
|
|
return kind;
|
3845 |
|
|
}
|
3846 |
|
|
|
3847 |
|
|
/* Assuming TYPE encodes a renaming according to the old encoding in
|
3848 |
|
|
exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
|
3849 |
|
|
*LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
|
3850 |
|
|
ADA_NOT_RENAMING otherwise. */
|
3851 |
|
|
static enum ada_renaming_category
|
3852 |
|
|
parse_old_style_renaming (struct type *type,
|
3853 |
|
|
const char **renamed_entity, int *len,
|
3854 |
|
|
const char **renaming_expr)
|
3855 |
|
|
{
|
3856 |
|
|
enum ada_renaming_category kind;
|
3857 |
|
|
const char *name;
|
3858 |
|
|
const char *info;
|
3859 |
|
|
const char *suffix;
|
3860 |
|
|
|
3861 |
|
|
if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
|
3862 |
|
|
|| TYPE_NFIELDS (type) != 1)
|
3863 |
|
|
return ADA_NOT_RENAMING;
|
3864 |
|
|
|
3865 |
|
|
name = type_name_no_tag (type);
|
3866 |
|
|
if (name == NULL)
|
3867 |
|
|
return ADA_NOT_RENAMING;
|
3868 |
|
|
|
3869 |
|
|
name = strstr (name, "___XR");
|
3870 |
|
|
if (name == NULL)
|
3871 |
|
|
return ADA_NOT_RENAMING;
|
3872 |
|
|
switch (name[5])
|
3873 |
|
|
{
|
3874 |
|
|
case '\0':
|
3875 |
|
|
case '_':
|
3876 |
|
|
kind = ADA_OBJECT_RENAMING;
|
3877 |
|
|
break;
|
3878 |
|
|
case 'E':
|
3879 |
|
|
kind = ADA_EXCEPTION_RENAMING;
|
3880 |
|
|
break;
|
3881 |
|
|
case 'P':
|
3882 |
|
|
kind = ADA_PACKAGE_RENAMING;
|
3883 |
|
|
break;
|
3884 |
|
|
case 'S':
|
3885 |
|
|
kind = ADA_SUBPROGRAM_RENAMING;
|
3886 |
|
|
break;
|
3887 |
|
|
default:
|
3888 |
|
|
return ADA_NOT_RENAMING;
|
3889 |
|
|
}
|
3890 |
|
|
|
3891 |
|
|
info = TYPE_FIELD_NAME (type, 0);
|
3892 |
|
|
if (info == NULL)
|
3893 |
|
|
return ADA_NOT_RENAMING;
|
3894 |
|
|
if (renamed_entity != NULL)
|
3895 |
|
|
*renamed_entity = info;
|
3896 |
|
|
suffix = strstr (info, "___XE");
|
3897 |
|
|
if (renaming_expr != NULL)
|
3898 |
|
|
*renaming_expr = suffix + 5;
|
3899 |
|
|
if (suffix == NULL || suffix == info)
|
3900 |
|
|
return ADA_NOT_RENAMING;
|
3901 |
|
|
if (len != NULL)
|
3902 |
|
|
*len = suffix - info;
|
3903 |
|
|
return kind;
|
3904 |
|
|
}
|
3905 |
|
|
|
3906 |
|
|
|
3907 |
|
|
|
3908 |
|
|
/* Evaluation: Function Calls */
|
3909 |
|
|
|
3910 |
|
|
/* Return an lvalue containing the value VAL. This is the identity on
|
3911 |
|
|
lvalues, and otherwise has the side-effect of pushing a copy of VAL
|
3912 |
|
|
on the stack, using and updating *SP as the stack pointer, and
|
3913 |
|
|
returning an lvalue whose value_address points to the copy. */
|
3914 |
|
|
|
3915 |
|
|
static struct value *
|
3916 |
|
|
ensure_lval (struct value *val, struct gdbarch *gdbarch, CORE_ADDR *sp)
|
3917 |
|
|
{
|
3918 |
|
|
if (! VALUE_LVAL (val))
|
3919 |
|
|
{
|
3920 |
|
|
int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
|
3921 |
|
|
|
3922 |
|
|
/* The following is taken from the structure-return code in
|
3923 |
|
|
call_function_by_hand. FIXME: Therefore, some refactoring seems
|
3924 |
|
|
indicated. */
|
3925 |
|
|
if (gdbarch_inner_than (gdbarch, 1, 2))
|
3926 |
|
|
{
|
3927 |
|
|
/* Stack grows downward. Align SP and value_address (val) after
|
3928 |
|
|
reserving sufficient space. */
|
3929 |
|
|
*sp -= len;
|
3930 |
|
|
if (gdbarch_frame_align_p (gdbarch))
|
3931 |
|
|
*sp = gdbarch_frame_align (gdbarch, *sp);
|
3932 |
|
|
set_value_address (val, *sp);
|
3933 |
|
|
}
|
3934 |
|
|
else
|
3935 |
|
|
{
|
3936 |
|
|
/* Stack grows upward. Align the frame, allocate space, and
|
3937 |
|
|
then again, re-align the frame. */
|
3938 |
|
|
if (gdbarch_frame_align_p (gdbarch))
|
3939 |
|
|
*sp = gdbarch_frame_align (gdbarch, *sp);
|
3940 |
|
|
set_value_address (val, *sp);
|
3941 |
|
|
*sp += len;
|
3942 |
|
|
if (gdbarch_frame_align_p (gdbarch))
|
3943 |
|
|
*sp = gdbarch_frame_align (gdbarch, *sp);
|
3944 |
|
|
}
|
3945 |
|
|
VALUE_LVAL (val) = lval_memory;
|
3946 |
|
|
|
3947 |
|
|
write_memory (value_address (val), value_contents (val), len);
|
3948 |
|
|
}
|
3949 |
|
|
|
3950 |
|
|
return val;
|
3951 |
|
|
}
|
3952 |
|
|
|
3953 |
|
|
/* Return the value ACTUAL, converted to be an appropriate value for a
|
3954 |
|
|
formal of type FORMAL_TYPE. Use *SP as a stack pointer for
|
3955 |
|
|
allocating any necessary descriptors (fat pointers), or copies of
|
3956 |
|
|
values not residing in memory, updating it as needed. */
|
3957 |
|
|
|
3958 |
|
|
struct value *
|
3959 |
|
|
ada_convert_actual (struct value *actual, struct type *formal_type0,
|
3960 |
|
|
struct gdbarch *gdbarch, CORE_ADDR *sp)
|
3961 |
|
|
{
|
3962 |
|
|
struct type *actual_type = ada_check_typedef (value_type (actual));
|
3963 |
|
|
struct type *formal_type = ada_check_typedef (formal_type0);
|
3964 |
|
|
struct type *formal_target =
|
3965 |
|
|
TYPE_CODE (formal_type) == TYPE_CODE_PTR
|
3966 |
|
|
? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
|
3967 |
|
|
struct type *actual_target =
|
3968 |
|
|
TYPE_CODE (actual_type) == TYPE_CODE_PTR
|
3969 |
|
|
? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
|
3970 |
|
|
|
3971 |
|
|
if (ada_is_array_descriptor_type (formal_target)
|
3972 |
|
|
&& TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
|
3973 |
|
|
return make_array_descriptor (formal_type, actual, gdbarch, sp);
|
3974 |
|
|
else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
|
3975 |
|
|
|| TYPE_CODE (formal_type) == TYPE_CODE_REF)
|
3976 |
|
|
{
|
3977 |
|
|
struct value *result;
|
3978 |
|
|
|
3979 |
|
|
if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
|
3980 |
|
|
&& ada_is_array_descriptor_type (actual_target))
|
3981 |
|
|
result = desc_data (actual);
|
3982 |
|
|
else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
|
3983 |
|
|
{
|
3984 |
|
|
if (VALUE_LVAL (actual) != lval_memory)
|
3985 |
|
|
{
|
3986 |
|
|
struct value *val;
|
3987 |
|
|
|
3988 |
|
|
actual_type = ada_check_typedef (value_type (actual));
|
3989 |
|
|
val = allocate_value (actual_type);
|
3990 |
|
|
memcpy ((char *) value_contents_raw (val),
|
3991 |
|
|
(char *) value_contents (actual),
|
3992 |
|
|
TYPE_LENGTH (actual_type));
|
3993 |
|
|
actual = ensure_lval (val, gdbarch, sp);
|
3994 |
|
|
}
|
3995 |
|
|
result = value_addr (actual);
|
3996 |
|
|
}
|
3997 |
|
|
else
|
3998 |
|
|
return actual;
|
3999 |
|
|
return value_cast_pointers (formal_type, result);
|
4000 |
|
|
}
|
4001 |
|
|
else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
|
4002 |
|
|
return ada_value_ind (actual);
|
4003 |
|
|
|
4004 |
|
|
return actual;
|
4005 |
|
|
}
|
4006 |
|
|
|
4007 |
|
|
/* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
|
4008 |
|
|
type TYPE. This is usually an inefficient no-op except on some targets
|
4009 |
|
|
(such as AVR) where the representation of a pointer and an address
|
4010 |
|
|
differs. */
|
4011 |
|
|
|
4012 |
|
|
static CORE_ADDR
|
4013 |
|
|
value_pointer (struct value *value, struct type *type)
|
4014 |
|
|
{
|
4015 |
|
|
struct gdbarch *gdbarch = get_type_arch (type);
|
4016 |
|
|
unsigned len = TYPE_LENGTH (type);
|
4017 |
|
|
gdb_byte *buf = alloca (len);
|
4018 |
|
|
CORE_ADDR addr;
|
4019 |
|
|
|
4020 |
|
|
addr = value_address (value);
|
4021 |
|
|
gdbarch_address_to_pointer (gdbarch, type, buf, addr);
|
4022 |
|
|
addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch));
|
4023 |
|
|
return addr;
|
4024 |
|
|
}
|
4025 |
|
|
|
4026 |
|
|
|
4027 |
|
|
/* Push a descriptor of type TYPE for array value ARR on the stack at
|
4028 |
|
|
*SP, updating *SP to reflect the new descriptor. Return either
|
4029 |
|
|
an lvalue representing the new descriptor, or (if TYPE is a pointer-
|
4030 |
|
|
to-descriptor type rather than a descriptor type), a struct value *
|
4031 |
|
|
representing a pointer to this descriptor. */
|
4032 |
|
|
|
4033 |
|
|
static struct value *
|
4034 |
|
|
make_array_descriptor (struct type *type, struct value *arr,
|
4035 |
|
|
struct gdbarch *gdbarch, CORE_ADDR *sp)
|
4036 |
|
|
{
|
4037 |
|
|
struct type *bounds_type = desc_bounds_type (type);
|
4038 |
|
|
struct type *desc_type = desc_base_type (type);
|
4039 |
|
|
struct value *descriptor = allocate_value (desc_type);
|
4040 |
|
|
struct value *bounds = allocate_value (bounds_type);
|
4041 |
|
|
int i;
|
4042 |
|
|
|
4043 |
|
|
for (i = ada_array_arity (ada_check_typedef (value_type (arr))); i > 0; i -= 1)
|
4044 |
|
|
{
|
4045 |
|
|
modify_general_field (value_type (bounds),
|
4046 |
|
|
value_contents_writeable (bounds),
|
4047 |
|
|
ada_array_bound (arr, i, 0),
|
4048 |
|
|
desc_bound_bitpos (bounds_type, i, 0),
|
4049 |
|
|
desc_bound_bitsize (bounds_type, i, 0));
|
4050 |
|
|
modify_general_field (value_type (bounds),
|
4051 |
|
|
value_contents_writeable (bounds),
|
4052 |
|
|
ada_array_bound (arr, i, 1),
|
4053 |
|
|
desc_bound_bitpos (bounds_type, i, 1),
|
4054 |
|
|
desc_bound_bitsize (bounds_type, i, 1));
|
4055 |
|
|
}
|
4056 |
|
|
|
4057 |
|
|
bounds = ensure_lval (bounds, gdbarch, sp);
|
4058 |
|
|
|
4059 |
|
|
modify_general_field (value_type (descriptor),
|
4060 |
|
|
value_contents_writeable (descriptor),
|
4061 |
|
|
value_pointer (ensure_lval (arr, gdbarch, sp),
|
4062 |
|
|
TYPE_FIELD_TYPE (desc_type, 0)),
|
4063 |
|
|
fat_pntr_data_bitpos (desc_type),
|
4064 |
|
|
fat_pntr_data_bitsize (desc_type));
|
4065 |
|
|
|
4066 |
|
|
modify_general_field (value_type (descriptor),
|
4067 |
|
|
value_contents_writeable (descriptor),
|
4068 |
|
|
value_pointer (bounds,
|
4069 |
|
|
TYPE_FIELD_TYPE (desc_type, 1)),
|
4070 |
|
|
fat_pntr_bounds_bitpos (desc_type),
|
4071 |
|
|
fat_pntr_bounds_bitsize (desc_type));
|
4072 |
|
|
|
4073 |
|
|
descriptor = ensure_lval (descriptor, gdbarch, sp);
|
4074 |
|
|
|
4075 |
|
|
if (TYPE_CODE (type) == TYPE_CODE_PTR)
|
4076 |
|
|
return value_addr (descriptor);
|
4077 |
|
|
else
|
4078 |
|
|
return descriptor;
|
4079 |
|
|
}
|
4080 |
|
|
|
4081 |
|
|
/* Dummy definitions for an experimental caching module that is not
|
4082 |
|
|
* used in the public sources. */
|
4083 |
|
|
|
4084 |
|
|
static int
|
4085 |
|
|
lookup_cached_symbol (const char *name, domain_enum namespace,
|
4086 |
|
|
struct symbol **sym, struct block **block)
|
4087 |
|
|
{
|
4088 |
|
|
return 0;
|
4089 |
|
|
}
|
4090 |
|
|
|
4091 |
|
|
static void
|
4092 |
|
|
cache_symbol (const char *name, domain_enum namespace, struct symbol *sym,
|
4093 |
|
|
struct block *block)
|
4094 |
|
|
{
|
4095 |
|
|
}
|
4096 |
|
|
|
4097 |
|
|
/* Symbol Lookup */
|
4098 |
|
|
|
4099 |
|
|
/* Return the result of a standard (literal, C-like) lookup of NAME in
|
4100 |
|
|
given DOMAIN, visible from lexical block BLOCK. */
|
4101 |
|
|
|
4102 |
|
|
static struct symbol *
|
4103 |
|
|
standard_lookup (const char *name, const struct block *block,
|
4104 |
|
|
domain_enum domain)
|
4105 |
|
|
{
|
4106 |
|
|
struct symbol *sym;
|
4107 |
|
|
|
4108 |
|
|
if (lookup_cached_symbol (name, domain, &sym, NULL))
|
4109 |
|
|
return sym;
|
4110 |
|
|
sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
|
4111 |
|
|
cache_symbol (name, domain, sym, block_found);
|
4112 |
|
|
return sym;
|
4113 |
|
|
}
|
4114 |
|
|
|
4115 |
|
|
|
4116 |
|
|
/* Non-zero iff there is at least one non-function/non-enumeral symbol
|
4117 |
|
|
in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
|
4118 |
|
|
since they contend in overloading in the same way. */
|
4119 |
|
|
static int
|
4120 |
|
|
is_nonfunction (struct ada_symbol_info syms[], int n)
|
4121 |
|
|
{
|
4122 |
|
|
int i;
|
4123 |
|
|
|
4124 |
|
|
for (i = 0; i < n; i += 1)
|
4125 |
|
|
if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_FUNC
|
4126 |
|
|
&& (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM
|
4127 |
|
|
|| SYMBOL_CLASS (syms[i].sym) != LOC_CONST))
|
4128 |
|
|
return 1;
|
4129 |
|
|
|
4130 |
|
|
return 0;
|
4131 |
|
|
}
|
4132 |
|
|
|
4133 |
|
|
/* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
|
4134 |
|
|
struct types. Otherwise, they may not. */
|
4135 |
|
|
|
4136 |
|
|
static int
|
4137 |
|
|
equiv_types (struct type *type0, struct type *type1)
|
4138 |
|
|
{
|
4139 |
|
|
if (type0 == type1)
|
4140 |
|
|
return 1;
|
4141 |
|
|
if (type0 == NULL || type1 == NULL
|
4142 |
|
|
|| TYPE_CODE (type0) != TYPE_CODE (type1))
|
4143 |
|
|
return 0;
|
4144 |
|
|
if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
|
4145 |
|
|
|| TYPE_CODE (type0) == TYPE_CODE_ENUM)
|
4146 |
|
|
&& ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
|
4147 |
|
|
&& strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
|
4148 |
|
|
return 1;
|
4149 |
|
|
|
4150 |
|
|
return 0;
|
4151 |
|
|
}
|
4152 |
|
|
|
4153 |
|
|
/* True iff SYM0 represents the same entity as SYM1, or one that is
|
4154 |
|
|
no more defined than that of SYM1. */
|
4155 |
|
|
|
4156 |
|
|
static int
|
4157 |
|
|
lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
|
4158 |
|
|
{
|
4159 |
|
|
if (sym0 == sym1)
|
4160 |
|
|
return 1;
|
4161 |
|
|
if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
|
4162 |
|
|
|| SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
|
4163 |
|
|
return 0;
|
4164 |
|
|
|
4165 |
|
|
switch (SYMBOL_CLASS (sym0))
|
4166 |
|
|
{
|
4167 |
|
|
case LOC_UNDEF:
|
4168 |
|
|
return 1;
|
4169 |
|
|
case LOC_TYPEDEF:
|
4170 |
|
|
{
|
4171 |
|
|
struct type *type0 = SYMBOL_TYPE (sym0);
|
4172 |
|
|
struct type *type1 = SYMBOL_TYPE (sym1);
|
4173 |
|
|
char *name0 = SYMBOL_LINKAGE_NAME (sym0);
|
4174 |
|
|
char *name1 = SYMBOL_LINKAGE_NAME (sym1);
|
4175 |
|
|
int len0 = strlen (name0);
|
4176 |
|
|
|
4177 |
|
|
return
|
4178 |
|
|
TYPE_CODE (type0) == TYPE_CODE (type1)
|
4179 |
|
|
&& (equiv_types (type0, type1)
|
4180 |
|
|
|| (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
|
4181 |
|
|
&& strncmp (name1 + len0, "___XV", 5) == 0));
|
4182 |
|
|
}
|
4183 |
|
|
case LOC_CONST:
|
4184 |
|
|
return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
|
4185 |
|
|
&& equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
|
4186 |
|
|
default:
|
4187 |
|
|
return 0;
|
4188 |
|
|
}
|
4189 |
|
|
}
|
4190 |
|
|
|
4191 |
|
|
/* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct ada_symbol_info
|
4192 |
|
|
records in OBSTACKP. Do nothing if SYM is a duplicate. */
|
4193 |
|
|
|
4194 |
|
|
static void
|
4195 |
|
|
add_defn_to_vec (struct obstack *obstackp,
|
4196 |
|
|
struct symbol *sym,
|
4197 |
|
|
struct block *block)
|
4198 |
|
|
{
|
4199 |
|
|
int i;
|
4200 |
|
|
struct ada_symbol_info *prevDefns = defns_collected (obstackp, 0);
|
4201 |
|
|
|
4202 |
|
|
/* Do not try to complete stub types, as the debugger is probably
|
4203 |
|
|
already scanning all symbols matching a certain name at the
|
4204 |
|
|
time when this function is called. Trying to replace the stub
|
4205 |
|
|
type by its associated full type will cause us to restart a scan
|
4206 |
|
|
which may lead to an infinite recursion. Instead, the client
|
4207 |
|
|
collecting the matching symbols will end up collecting several
|
4208 |
|
|
matches, with at least one of them complete. It can then filter
|
4209 |
|
|
out the stub ones if needed. */
|
4210 |
|
|
|
4211 |
|
|
for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
|
4212 |
|
|
{
|
4213 |
|
|
if (lesseq_defined_than (sym, prevDefns[i].sym))
|
4214 |
|
|
return;
|
4215 |
|
|
else if (lesseq_defined_than (prevDefns[i].sym, sym))
|
4216 |
|
|
{
|
4217 |
|
|
prevDefns[i].sym = sym;
|
4218 |
|
|
prevDefns[i].block = block;
|
4219 |
|
|
return;
|
4220 |
|
|
}
|
4221 |
|
|
}
|
4222 |
|
|
|
4223 |
|
|
{
|
4224 |
|
|
struct ada_symbol_info info;
|
4225 |
|
|
|
4226 |
|
|
info.sym = sym;
|
4227 |
|
|
info.block = block;
|
4228 |
|
|
obstack_grow (obstackp, &info, sizeof (struct ada_symbol_info));
|
4229 |
|
|
}
|
4230 |
|
|
}
|
4231 |
|
|
|
4232 |
|
|
/* Number of ada_symbol_info structures currently collected in
|
4233 |
|
|
current vector in *OBSTACKP. */
|
4234 |
|
|
|
4235 |
|
|
static int
|
4236 |
|
|
num_defns_collected (struct obstack *obstackp)
|
4237 |
|
|
{
|
4238 |
|
|
return obstack_object_size (obstackp) / sizeof (struct ada_symbol_info);
|
4239 |
|
|
}
|
4240 |
|
|
|
4241 |
|
|
/* Vector of ada_symbol_info structures currently collected in current
|
4242 |
|
|
vector in *OBSTACKP. If FINISH, close off the vector and return
|
4243 |
|
|
its final address. */
|
4244 |
|
|
|
4245 |
|
|
static struct ada_symbol_info *
|
4246 |
|
|
defns_collected (struct obstack *obstackp, int finish)
|
4247 |
|
|
{
|
4248 |
|
|
if (finish)
|
4249 |
|
|
return obstack_finish (obstackp);
|
4250 |
|
|
else
|
4251 |
|
|
return (struct ada_symbol_info *) obstack_base (obstackp);
|
4252 |
|
|
}
|
4253 |
|
|
|
4254 |
|
|
/* Return a minimal symbol matching NAME according to Ada decoding
|
4255 |
|
|
rules. Returns NULL if there is no such minimal symbol. Names
|
4256 |
|
|
prefixed with "standard__" are handled specially: "standard__" is
|
4257 |
|
|
first stripped off, and only static and global symbols are searched. */
|
4258 |
|
|
|
4259 |
|
|
struct minimal_symbol *
|
4260 |
|
|
ada_lookup_simple_minsym (const char *name)
|
4261 |
|
|
{
|
4262 |
|
|
struct objfile *objfile;
|
4263 |
|
|
struct minimal_symbol *msymbol;
|
4264 |
|
|
int wild_match;
|
4265 |
|
|
|
4266 |
|
|
if (strncmp (name, "standard__", sizeof ("standard__") - 1) == 0)
|
4267 |
|
|
{
|
4268 |
|
|
name += sizeof ("standard__") - 1;
|
4269 |
|
|
wild_match = 0;
|
4270 |
|
|
}
|
4271 |
|
|
else
|
4272 |
|
|
wild_match = (strstr (name, "__") == NULL);
|
4273 |
|
|
|
4274 |
|
|
ALL_MSYMBOLS (objfile, msymbol)
|
4275 |
|
|
{
|
4276 |
|
|
if (ada_match_name (SYMBOL_LINKAGE_NAME (msymbol), name, wild_match)
|
4277 |
|
|
&& MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
|
4278 |
|
|
return msymbol;
|
4279 |
|
|
}
|
4280 |
|
|
|
4281 |
|
|
return NULL;
|
4282 |
|
|
}
|
4283 |
|
|
|
4284 |
|
|
/* For all subprograms that statically enclose the subprogram of the
|
4285 |
|
|
selected frame, add symbols matching identifier NAME in DOMAIN
|
4286 |
|
|
and their blocks to the list of data in OBSTACKP, as for
|
4287 |
|
|
ada_add_block_symbols (q.v.). If WILD, treat as NAME with a
|
4288 |
|
|
wildcard prefix. */
|
4289 |
|
|
|
4290 |
|
|
static void
|
4291 |
|
|
add_symbols_from_enclosing_procs (struct obstack *obstackp,
|
4292 |
|
|
const char *name, domain_enum namespace,
|
4293 |
|
|
int wild_match)
|
4294 |
|
|
{
|
4295 |
|
|
}
|
4296 |
|
|
|
4297 |
|
|
/* True if TYPE is definitely an artificial type supplied to a symbol
|
4298 |
|
|
for which no debugging information was given in the symbol file. */
|
4299 |
|
|
|
4300 |
|
|
static int
|
4301 |
|
|
is_nondebugging_type (struct type *type)
|
4302 |
|
|
{
|
4303 |
|
|
char *name = ada_type_name (type);
|
4304 |
|
|
|
4305 |
|
|
return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
|
4306 |
|
|
}
|
4307 |
|
|
|
4308 |
|
|
/* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
|
4309 |
|
|
duplicate other symbols in the list (The only case I know of where
|
4310 |
|
|
this happens is when object files containing stabs-in-ecoff are
|
4311 |
|
|
linked with files containing ordinary ecoff debugging symbols (or no
|
4312 |
|
|
debugging symbols)). Modifies SYMS to squeeze out deleted entries.
|
4313 |
|
|
Returns the number of items in the modified list. */
|
4314 |
|
|
|
4315 |
|
|
static int
|
4316 |
|
|
remove_extra_symbols (struct ada_symbol_info *syms, int nsyms)
|
4317 |
|
|
{
|
4318 |
|
|
int i, j;
|
4319 |
|
|
|
4320 |
|
|
i = 0;
|
4321 |
|
|
while (i < nsyms)
|
4322 |
|
|
{
|
4323 |
|
|
int remove = 0;
|
4324 |
|
|
|
4325 |
|
|
/* If two symbols have the same name and one of them is a stub type,
|
4326 |
|
|
the get rid of the stub. */
|
4327 |
|
|
|
4328 |
|
|
if (TYPE_STUB (SYMBOL_TYPE (syms[i].sym))
|
4329 |
|
|
&& SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL)
|
4330 |
|
|
{
|
4331 |
|
|
for (j = 0; j < nsyms; j++)
|
4332 |
|
|
{
|
4333 |
|
|
if (j != i
|
4334 |
|
|
&& !TYPE_STUB (SYMBOL_TYPE (syms[j].sym))
|
4335 |
|
|
&& SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
|
4336 |
|
|
&& strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
|
4337 |
|
|
SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0)
|
4338 |
|
|
remove = 1;
|
4339 |
|
|
}
|
4340 |
|
|
}
|
4341 |
|
|
|
4342 |
|
|
/* Two symbols with the same name, same class and same address
|
4343 |
|
|
should be identical. */
|
4344 |
|
|
|
4345 |
|
|
else if (SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL
|
4346 |
|
|
&& SYMBOL_CLASS (syms[i].sym) == LOC_STATIC
|
4347 |
|
|
&& is_nondebugging_type (SYMBOL_TYPE (syms[i].sym)))
|
4348 |
|
|
{
|
4349 |
|
|
for (j = 0; j < nsyms; j += 1)
|
4350 |
|
|
{
|
4351 |
|
|
if (i != j
|
4352 |
|
|
&& SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
|
4353 |
|
|
&& strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
|
4354 |
|
|
SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0
|
4355 |
|
|
&& SYMBOL_CLASS (syms[i].sym) == SYMBOL_CLASS (syms[j].sym)
|
4356 |
|
|
&& SYMBOL_VALUE_ADDRESS (syms[i].sym)
|
4357 |
|
|
== SYMBOL_VALUE_ADDRESS (syms[j].sym))
|
4358 |
|
|
remove = 1;
|
4359 |
|
|
}
|
4360 |
|
|
}
|
4361 |
|
|
|
4362 |
|
|
if (remove)
|
4363 |
|
|
{
|
4364 |
|
|
for (j = i + 1; j < nsyms; j += 1)
|
4365 |
|
|
syms[j - 1] = syms[j];
|
4366 |
|
|
nsyms -= 1;
|
4367 |
|
|
}
|
4368 |
|
|
|
4369 |
|
|
i += 1;
|
4370 |
|
|
}
|
4371 |
|
|
return nsyms;
|
4372 |
|
|
}
|
4373 |
|
|
|
4374 |
|
|
/* Given a type that corresponds to a renaming entity, use the type name
|
4375 |
|
|
to extract the scope (package name or function name, fully qualified,
|
4376 |
|
|
and following the GNAT encoding convention) where this renaming has been
|
4377 |
|
|
defined. The string returned needs to be deallocated after use. */
|
4378 |
|
|
|
4379 |
|
|
static char *
|
4380 |
|
|
xget_renaming_scope (struct type *renaming_type)
|
4381 |
|
|
{
|
4382 |
|
|
/* The renaming types adhere to the following convention:
|
4383 |
|
|
<scope>__<rename>___<XR extension>.
|
4384 |
|
|
So, to extract the scope, we search for the "___XR" extension,
|
4385 |
|
|
and then backtrack until we find the first "__". */
|
4386 |
|
|
|
4387 |
|
|
const char *name = type_name_no_tag (renaming_type);
|
4388 |
|
|
char *suffix = strstr (name, "___XR");
|
4389 |
|
|
char *last;
|
4390 |
|
|
int scope_len;
|
4391 |
|
|
char *scope;
|
4392 |
|
|
|
4393 |
|
|
/* Now, backtrack a bit until we find the first "__". Start looking
|
4394 |
|
|
at suffix - 3, as the <rename> part is at least one character long. */
|
4395 |
|
|
|
4396 |
|
|
for (last = suffix - 3; last > name; last--)
|
4397 |
|
|
if (last[0] == '_' && last[1] == '_')
|
4398 |
|
|
break;
|
4399 |
|
|
|
4400 |
|
|
/* Make a copy of scope and return it. */
|
4401 |
|
|
|
4402 |
|
|
scope_len = last - name;
|
4403 |
|
|
scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
|
4404 |
|
|
|
4405 |
|
|
strncpy (scope, name, scope_len);
|
4406 |
|
|
scope[scope_len] = '\0';
|
4407 |
|
|
|
4408 |
|
|
return scope;
|
4409 |
|
|
}
|
4410 |
|
|
|
4411 |
|
|
/* Return nonzero if NAME corresponds to a package name. */
|
4412 |
|
|
|
4413 |
|
|
static int
|
4414 |
|
|
is_package_name (const char *name)
|
4415 |
|
|
{
|
4416 |
|
|
/* Here, We take advantage of the fact that no symbols are generated
|
4417 |
|
|
for packages, while symbols are generated for each function.
|
4418 |
|
|
So the condition for NAME represent a package becomes equivalent
|
4419 |
|
|
to NAME not existing in our list of symbols. There is only one
|
4420 |
|
|
small complication with library-level functions (see below). */
|
4421 |
|
|
|
4422 |
|
|
char *fun_name;
|
4423 |
|
|
|
4424 |
|
|
/* If it is a function that has not been defined at library level,
|
4425 |
|
|
then we should be able to look it up in the symbols. */
|
4426 |
|
|
if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
|
4427 |
|
|
return 0;
|
4428 |
|
|
|
4429 |
|
|
/* Library-level function names start with "_ada_". See if function
|
4430 |
|
|
"_ada_" followed by NAME can be found. */
|
4431 |
|
|
|
4432 |
|
|
/* Do a quick check that NAME does not contain "__", since library-level
|
4433 |
|
|
functions names cannot contain "__" in them. */
|
4434 |
|
|
if (strstr (name, "__") != NULL)
|
4435 |
|
|
return 0;
|
4436 |
|
|
|
4437 |
|
|
fun_name = xstrprintf ("_ada_%s", name);
|
4438 |
|
|
|
4439 |
|
|
return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
|
4440 |
|
|
}
|
4441 |
|
|
|
4442 |
|
|
/* Return nonzero if SYM corresponds to a renaming entity that is
|
4443 |
|
|
not visible from FUNCTION_NAME. */
|
4444 |
|
|
|
4445 |
|
|
static int
|
4446 |
|
|
old_renaming_is_invisible (const struct symbol *sym, char *function_name)
|
4447 |
|
|
{
|
4448 |
|
|
char *scope;
|
4449 |
|
|
|
4450 |
|
|
if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
|
4451 |
|
|
return 0;
|
4452 |
|
|
|
4453 |
|
|
scope = xget_renaming_scope (SYMBOL_TYPE (sym));
|
4454 |
|
|
|
4455 |
|
|
make_cleanup (xfree, scope);
|
4456 |
|
|
|
4457 |
|
|
/* If the rename has been defined in a package, then it is visible. */
|
4458 |
|
|
if (is_package_name (scope))
|
4459 |
|
|
return 0;
|
4460 |
|
|
|
4461 |
|
|
/* Check that the rename is in the current function scope by checking
|
4462 |
|
|
that its name starts with SCOPE. */
|
4463 |
|
|
|
4464 |
|
|
/* If the function name starts with "_ada_", it means that it is
|
4465 |
|
|
a library-level function. Strip this prefix before doing the
|
4466 |
|
|
comparison, as the encoding for the renaming does not contain
|
4467 |
|
|
this prefix. */
|
4468 |
|
|
if (strncmp (function_name, "_ada_", 5) == 0)
|
4469 |
|
|
function_name += 5;
|
4470 |
|
|
|
4471 |
|
|
return (strncmp (function_name, scope, strlen (scope)) != 0);
|
4472 |
|
|
}
|
4473 |
|
|
|
4474 |
|
|
/* Remove entries from SYMS that corresponds to a renaming entity that
|
4475 |
|
|
is not visible from the function associated with CURRENT_BLOCK or
|
4476 |
|
|
that is superfluous due to the presence of more specific renaming
|
4477 |
|
|
information. Places surviving symbols in the initial entries of
|
4478 |
|
|
SYMS and returns the number of surviving symbols.
|
4479 |
|
|
|
4480 |
|
|
Rationale:
|
4481 |
|
|
First, in cases where an object renaming is implemented as a
|
4482 |
|
|
reference variable, GNAT may produce both the actual reference
|
4483 |
|
|
variable and the renaming encoding. In this case, we discard the
|
4484 |
|
|
latter.
|
4485 |
|
|
|
4486 |
|
|
Second, GNAT emits a type following a specified encoding for each renaming
|
4487 |
|
|
entity. Unfortunately, STABS currently does not support the definition
|
4488 |
|
|
of types that are local to a given lexical block, so all renamings types
|
4489 |
|
|
are emitted at library level. As a consequence, if an application
|
4490 |
|
|
contains two renaming entities using the same name, and a user tries to
|
4491 |
|
|
print the value of one of these entities, the result of the ada symbol
|
4492 |
|
|
lookup will also contain the wrong renaming type.
|
4493 |
|
|
|
4494 |
|
|
This function partially covers for this limitation by attempting to
|
4495 |
|
|
remove from the SYMS list renaming symbols that should be visible
|
4496 |
|
|
from CURRENT_BLOCK. However, there does not seem be a 100% reliable
|
4497 |
|
|
method with the current information available. The implementation
|
4498 |
|
|
below has a couple of limitations (FIXME: brobecker-2003-05-12):
|
4499 |
|
|
|
4500 |
|
|
- When the user tries to print a rename in a function while there
|
4501 |
|
|
is another rename entity defined in a package: Normally, the
|
4502 |
|
|
rename in the function has precedence over the rename in the
|
4503 |
|
|
package, so the latter should be removed from the list. This is
|
4504 |
|
|
currently not the case.
|
4505 |
|
|
|
4506 |
|
|
- This function will incorrectly remove valid renames if
|
4507 |
|
|
the CURRENT_BLOCK corresponds to a function which symbol name
|
4508 |
|
|
has been changed by an "Export" pragma. As a consequence,
|
4509 |
|
|
the user will be unable to print such rename entities. */
|
4510 |
|
|
|
4511 |
|
|
static int
|
4512 |
|
|
remove_irrelevant_renamings (struct ada_symbol_info *syms,
|
4513 |
|
|
int nsyms, const struct block *current_block)
|
4514 |
|
|
{
|
4515 |
|
|
struct symbol *current_function;
|
4516 |
|
|
char *current_function_name;
|
4517 |
|
|
int i;
|
4518 |
|
|
int is_new_style_renaming;
|
4519 |
|
|
|
4520 |
|
|
/* If there is both a renaming foo___XR... encoded as a variable and
|
4521 |
|
|
a simple variable foo in the same block, discard the latter.
|
4522 |
|
|
First, zero out such symbols, then compress. */
|
4523 |
|
|
is_new_style_renaming = 0;
|
4524 |
|
|
for (i = 0; i < nsyms; i += 1)
|
4525 |
|
|
{
|
4526 |
|
|
struct symbol *sym = syms[i].sym;
|
4527 |
|
|
struct block *block = syms[i].block;
|
4528 |
|
|
const char *name;
|
4529 |
|
|
const char *suffix;
|
4530 |
|
|
|
4531 |
|
|
if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
|
4532 |
|
|
continue;
|
4533 |
|
|
name = SYMBOL_LINKAGE_NAME (sym);
|
4534 |
|
|
suffix = strstr (name, "___XR");
|
4535 |
|
|
|
4536 |
|
|
if (suffix != NULL)
|
4537 |
|
|
{
|
4538 |
|
|
int name_len = suffix - name;
|
4539 |
|
|
int j;
|
4540 |
|
|
|
4541 |
|
|
is_new_style_renaming = 1;
|
4542 |
|
|
for (j = 0; j < nsyms; j += 1)
|
4543 |
|
|
if (i != j && syms[j].sym != NULL
|
4544 |
|
|
&& strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].sym),
|
4545 |
|
|
name_len) == 0
|
4546 |
|
|
&& block == syms[j].block)
|
4547 |
|
|
syms[j].sym = NULL;
|
4548 |
|
|
}
|
4549 |
|
|
}
|
4550 |
|
|
if (is_new_style_renaming)
|
4551 |
|
|
{
|
4552 |
|
|
int j, k;
|
4553 |
|
|
|
4554 |
|
|
for (j = k = 0; j < nsyms; j += 1)
|
4555 |
|
|
if (syms[j].sym != NULL)
|
4556 |
|
|
{
|
4557 |
|
|
syms[k] = syms[j];
|
4558 |
|
|
k += 1;
|
4559 |
|
|
}
|
4560 |
|
|
return k;
|
4561 |
|
|
}
|
4562 |
|
|
|
4563 |
|
|
/* Extract the function name associated to CURRENT_BLOCK.
|
4564 |
|
|
Abort if unable to do so. */
|
4565 |
|
|
|
4566 |
|
|
if (current_block == NULL)
|
4567 |
|
|
return nsyms;
|
4568 |
|
|
|
4569 |
|
|
current_function = block_linkage_function (current_block);
|
4570 |
|
|
if (current_function == NULL)
|
4571 |
|
|
return nsyms;
|
4572 |
|
|
|
4573 |
|
|
current_function_name = SYMBOL_LINKAGE_NAME (current_function);
|
4574 |
|
|
if (current_function_name == NULL)
|
4575 |
|
|
return nsyms;
|
4576 |
|
|
|
4577 |
|
|
/* Check each of the symbols, and remove it from the list if it is
|
4578 |
|
|
a type corresponding to a renaming that is out of the scope of
|
4579 |
|
|
the current block. */
|
4580 |
|
|
|
4581 |
|
|
i = 0;
|
4582 |
|
|
while (i < nsyms)
|
4583 |
|
|
{
|
4584 |
|
|
if (ada_parse_renaming (syms[i].sym, NULL, NULL, NULL)
|
4585 |
|
|
== ADA_OBJECT_RENAMING
|
4586 |
|
|
&& old_renaming_is_invisible (syms[i].sym, current_function_name))
|
4587 |
|
|
{
|
4588 |
|
|
int j;
|
4589 |
|
|
|
4590 |
|
|
for (j = i + 1; j < nsyms; j += 1)
|
4591 |
|
|
syms[j - 1] = syms[j];
|
4592 |
|
|
nsyms -= 1;
|
4593 |
|
|
}
|
4594 |
|
|
else
|
4595 |
|
|
i += 1;
|
4596 |
|
|
}
|
4597 |
|
|
|
4598 |
|
|
return nsyms;
|
4599 |
|
|
}
|
4600 |
|
|
|
4601 |
|
|
/* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
|
4602 |
|
|
whose name and domain match NAME and DOMAIN respectively.
|
4603 |
|
|
If no match was found, then extend the search to "enclosing"
|
4604 |
|
|
routines (in other words, if we're inside a nested function,
|
4605 |
|
|
search the symbols defined inside the enclosing functions).
|
4606 |
|
|
|
4607 |
|
|
Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
|
4608 |
|
|
|
4609 |
|
|
static void
|
4610 |
|
|
ada_add_local_symbols (struct obstack *obstackp, const char *name,
|
4611 |
|
|
struct block *block, domain_enum domain,
|
4612 |
|
|
int wild_match)
|
4613 |
|
|
{
|
4614 |
|
|
int block_depth = 0;
|
4615 |
|
|
|
4616 |
|
|
while (block != NULL)
|
4617 |
|
|
{
|
4618 |
|
|
block_depth += 1;
|
4619 |
|
|
ada_add_block_symbols (obstackp, block, name, domain, NULL, wild_match);
|
4620 |
|
|
|
4621 |
|
|
/* If we found a non-function match, assume that's the one. */
|
4622 |
|
|
if (is_nonfunction (defns_collected (obstackp, 0),
|
4623 |
|
|
num_defns_collected (obstackp)))
|
4624 |
|
|
return;
|
4625 |
|
|
|
4626 |
|
|
block = BLOCK_SUPERBLOCK (block);
|
4627 |
|
|
}
|
4628 |
|
|
|
4629 |
|
|
/* If no luck so far, try to find NAME as a local symbol in some lexically
|
4630 |
|
|
enclosing subprogram. */
|
4631 |
|
|
if (num_defns_collected (obstackp) == 0 && block_depth > 2)
|
4632 |
|
|
add_symbols_from_enclosing_procs (obstackp, name, domain, wild_match);
|
4633 |
|
|
}
|
4634 |
|
|
|
4635 |
|
|
/* An object of this type is used as the user_data argument when
|
4636 |
|
|
calling the map_ada_symtabs method. */
|
4637 |
|
|
|
4638 |
|
|
struct ada_psym_data
|
4639 |
|
|
{
|
4640 |
|
|
struct obstack *obstackp;
|
4641 |
|
|
const char *name;
|
4642 |
|
|
domain_enum domain;
|
4643 |
|
|
int global;
|
4644 |
|
|
int wild_match;
|
4645 |
|
|
};
|
4646 |
|
|
|
4647 |
|
|
/* Callback function for map_ada_symtabs. */
|
4648 |
|
|
|
4649 |
|
|
static void
|
4650 |
|
|
ada_add_psyms (struct objfile *objfile, struct symtab *s, void *user_data)
|
4651 |
|
|
{
|
4652 |
|
|
struct ada_psym_data *data = user_data;
|
4653 |
|
|
const int block_kind = data->global ? GLOBAL_BLOCK : STATIC_BLOCK;
|
4654 |
|
|
|
4655 |
|
|
ada_add_block_symbols (data->obstackp,
|
4656 |
|
|
BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), block_kind),
|
4657 |
|
|
data->name, data->domain, objfile, data->wild_match);
|
4658 |
|
|
}
|
4659 |
|
|
|
4660 |
|
|
/* Add to OBSTACKP all non-local symbols whose name and domain match
|
4661 |
|
|
NAME and DOMAIN respectively. The search is performed on GLOBAL_BLOCK
|
4662 |
|
|
symbols if GLOBAL is non-zero, or on STATIC_BLOCK symbols otherwise. */
|
4663 |
|
|
|
4664 |
|
|
static void
|
4665 |
|
|
ada_add_non_local_symbols (struct obstack *obstackp, const char *name,
|
4666 |
|
|
domain_enum domain, int global,
|
4667 |
|
|
int is_wild_match)
|
4668 |
|
|
{
|
4669 |
|
|
struct objfile *objfile;
|
4670 |
|
|
struct ada_psym_data data;
|
4671 |
|
|
|
4672 |
|
|
data.obstackp = obstackp;
|
4673 |
|
|
data.name = name;
|
4674 |
|
|
data.domain = domain;
|
4675 |
|
|
data.global = global;
|
4676 |
|
|
data.wild_match = is_wild_match;
|
4677 |
|
|
|
4678 |
|
|
ALL_OBJFILES (objfile)
|
4679 |
|
|
{
|
4680 |
|
|
if (objfile->sf)
|
4681 |
|
|
objfile->sf->qf->map_ada_symtabs (objfile, wild_match, is_name_suffix,
|
4682 |
|
|
ada_add_psyms, name,
|
4683 |
|
|
global, domain,
|
4684 |
|
|
is_wild_match, &data);
|
4685 |
|
|
}
|
4686 |
|
|
}
|
4687 |
|
|
|
4688 |
|
|
/* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing
|
4689 |
|
|
scope and in global scopes, returning the number of matches. Sets
|
4690 |
|
|
*RESULTS to point to a vector of (SYM,BLOCK) tuples,
|
4691 |
|
|
indicating the symbols found and the blocks and symbol tables (if
|
4692 |
|
|
any) in which they were found. This vector are transient---good only to
|
4693 |
|
|
the next call of ada_lookup_symbol_list. Any non-function/non-enumeral
|
4694 |
|
|
symbol match within the nest of blocks whose innermost member is BLOCK0,
|
4695 |
|
|
is the one match returned (no other matches in that or
|
4696 |
|
|
enclosing blocks is returned). If there are any matches in or
|
4697 |
|
|
surrounding BLOCK0, then these alone are returned. Otherwise, the
|
4698 |
|
|
search extends to global and file-scope (static) symbol tables.
|
4699 |
|
|
Names prefixed with "standard__" are handled specially: "standard__"
|
4700 |
|
|
is first stripped off, and only static and global symbols are searched. */
|
4701 |
|
|
|
4702 |
|
|
int
|
4703 |
|
|
ada_lookup_symbol_list (const char *name0, const struct block *block0,
|
4704 |
|
|
domain_enum namespace,
|
4705 |
|
|
struct ada_symbol_info **results)
|
4706 |
|
|
{
|
4707 |
|
|
struct symbol *sym;
|
4708 |
|
|
struct block *block;
|
4709 |
|
|
const char *name;
|
4710 |
|
|
int wild_match;
|
4711 |
|
|
int cacheIfUnique;
|
4712 |
|
|
int ndefns;
|
4713 |
|
|
|
4714 |
|
|
obstack_free (&symbol_list_obstack, NULL);
|
4715 |
|
|
obstack_init (&symbol_list_obstack);
|
4716 |
|
|
|
4717 |
|
|
cacheIfUnique = 0;
|
4718 |
|
|
|
4719 |
|
|
/* Search specified block and its superiors. */
|
4720 |
|
|
|
4721 |
|
|
wild_match = (strstr (name0, "__") == NULL);
|
4722 |
|
|
name = name0;
|
4723 |
|
|
block = (struct block *) block0; /* FIXME: No cast ought to be
|
4724 |
|
|
needed, but adding const will
|
4725 |
|
|
have a cascade effect. */
|
4726 |
|
|
|
4727 |
|
|
/* Special case: If the user specifies a symbol name inside package
|
4728 |
|
|
Standard, do a non-wild matching of the symbol name without
|
4729 |
|
|
the "standard__" prefix. This was primarily introduced in order
|
4730 |
|
|
to allow the user to specifically access the standard exceptions
|
4731 |
|
|
using, for instance, Standard.Constraint_Error when Constraint_Error
|
4732 |
|
|
is ambiguous (due to the user defining its own Constraint_Error
|
4733 |
|
|
entity inside its program). */
|
4734 |
|
|
if (strncmp (name0, "standard__", sizeof ("standard__") - 1) == 0)
|
4735 |
|
|
{
|
4736 |
|
|
wild_match = 0;
|
4737 |
|
|
block = NULL;
|
4738 |
|
|
name = name0 + sizeof ("standard__") - 1;
|
4739 |
|
|
}
|
4740 |
|
|
|
4741 |
|
|
/* Check the non-global symbols. If we have ANY match, then we're done. */
|
4742 |
|
|
|
4743 |
|
|
ada_add_local_symbols (&symbol_list_obstack, name, block, namespace,
|
4744 |
|
|
wild_match);
|
4745 |
|
|
if (num_defns_collected (&symbol_list_obstack) > 0)
|
4746 |
|
|
goto done;
|
4747 |
|
|
|
4748 |
|
|
/* No non-global symbols found. Check our cache to see if we have
|
4749 |
|
|
already performed this search before. If we have, then return
|
4750 |
|
|
the same result. */
|
4751 |
|
|
|
4752 |
|
|
cacheIfUnique = 1;
|
4753 |
|
|
if (lookup_cached_symbol (name0, namespace, &sym, &block))
|
4754 |
|
|
{
|
4755 |
|
|
if (sym != NULL)
|
4756 |
|
|
add_defn_to_vec (&symbol_list_obstack, sym, block);
|
4757 |
|
|
goto done;
|
4758 |
|
|
}
|
4759 |
|
|
|
4760 |
|
|
/* Search symbols from all global blocks. */
|
4761 |
|
|
|
4762 |
|
|
ada_add_non_local_symbols (&symbol_list_obstack, name, namespace, 1,
|
4763 |
|
|
wild_match);
|
4764 |
|
|
|
4765 |
|
|
/* Now add symbols from all per-file blocks if we've gotten no hits
|
4766 |
|
|
(not strictly correct, but perhaps better than an error). */
|
4767 |
|
|
|
4768 |
|
|
if (num_defns_collected (&symbol_list_obstack) == 0)
|
4769 |
|
|
ada_add_non_local_symbols (&symbol_list_obstack, name, namespace, 0,
|
4770 |
|
|
wild_match);
|
4771 |
|
|
|
4772 |
|
|
done:
|
4773 |
|
|
ndefns = num_defns_collected (&symbol_list_obstack);
|
4774 |
|
|
*results = defns_collected (&symbol_list_obstack, 1);
|
4775 |
|
|
|
4776 |
|
|
ndefns = remove_extra_symbols (*results, ndefns);
|
4777 |
|
|
|
4778 |
|
|
if (ndefns == 0)
|
4779 |
|
|
cache_symbol (name0, namespace, NULL, NULL);
|
4780 |
|
|
|
4781 |
|
|
if (ndefns == 1 && cacheIfUnique)
|
4782 |
|
|
cache_symbol (name0, namespace, (*results)[0].sym, (*results)[0].block);
|
4783 |
|
|
|
4784 |
|
|
ndefns = remove_irrelevant_renamings (*results, ndefns, block0);
|
4785 |
|
|
|
4786 |
|
|
return ndefns;
|
4787 |
|
|
}
|
4788 |
|
|
|
4789 |
|
|
struct symbol *
|
4790 |
|
|
ada_lookup_encoded_symbol (const char *name, const struct block *block0,
|
4791 |
|
|
domain_enum namespace, struct block **block_found)
|
4792 |
|
|
{
|
4793 |
|
|
struct ada_symbol_info *candidates;
|
4794 |
|
|
int n_candidates;
|
4795 |
|
|
|
4796 |
|
|
n_candidates = ada_lookup_symbol_list (name, block0, namespace, &candidates);
|
4797 |
|
|
|
4798 |
|
|
if (n_candidates == 0)
|
4799 |
|
|
return NULL;
|
4800 |
|
|
|
4801 |
|
|
if (block_found != NULL)
|
4802 |
|
|
*block_found = candidates[0].block;
|
4803 |
|
|
|
4804 |
|
|
return fixup_symbol_section (candidates[0].sym, NULL);
|
4805 |
|
|
}
|
4806 |
|
|
|
4807 |
|
|
/* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
|
4808 |
|
|
scope and in global scopes, or NULL if none. NAME is folded and
|
4809 |
|
|
encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
|
4810 |
|
|
choosing the first symbol if there are multiple choices.
|
4811 |
|
|
*IS_A_FIELD_OF_THIS is set to 0 and *SYMTAB is set to the symbol
|
4812 |
|
|
table in which the symbol was found (in both cases, these
|
4813 |
|
|
assignments occur only if the pointers are non-null). */
|
4814 |
|
|
struct symbol *
|
4815 |
|
|
ada_lookup_symbol (const char *name, const struct block *block0,
|
4816 |
|
|
domain_enum namespace, int *is_a_field_of_this)
|
4817 |
|
|
{
|
4818 |
|
|
if (is_a_field_of_this != NULL)
|
4819 |
|
|
*is_a_field_of_this = 0;
|
4820 |
|
|
|
4821 |
|
|
return
|
4822 |
|
|
ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)),
|
4823 |
|
|
block0, namespace, NULL);
|
4824 |
|
|
}
|
4825 |
|
|
|
4826 |
|
|
static struct symbol *
|
4827 |
|
|
ada_lookup_symbol_nonlocal (const char *name,
|
4828 |
|
|
const struct block *block,
|
4829 |
|
|
const domain_enum domain)
|
4830 |
|
|
{
|
4831 |
|
|
return ada_lookup_symbol (name, block_static_block (block), domain, NULL);
|
4832 |
|
|
}
|
4833 |
|
|
|
4834 |
|
|
|
4835 |
|
|
/* True iff STR is a possible encoded suffix of a normal Ada name
|
4836 |
|
|
that is to be ignored for matching purposes. Suffixes of parallel
|
4837 |
|
|
names (e.g., XVE) are not included here. Currently, the possible suffixes
|
4838 |
|
|
are given by any of the regular expressions:
|
4839 |
|
|
|
4840 |
|
|
[.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
|
4841 |
|
|
___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
|
4842 |
|
|
_E[0-9]+[bs]$ [protected object entry suffixes]
|
4843 |
|
|
(X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
|
4844 |
|
|
|
4845 |
|
|
Also, any leading "__[0-9]+" sequence is skipped before the suffix
|
4846 |
|
|
match is performed. This sequence is used to differentiate homonyms,
|
4847 |
|
|
is an optional part of a valid name suffix. */
|
4848 |
|
|
|
4849 |
|
|
static int
|
4850 |
|
|
is_name_suffix (const char *str)
|
4851 |
|
|
{
|
4852 |
|
|
int k;
|
4853 |
|
|
const char *matching;
|
4854 |
|
|
const int len = strlen (str);
|
4855 |
|
|
|
4856 |
|
|
/* Skip optional leading __[0-9]+. */
|
4857 |
|
|
|
4858 |
|
|
if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
|
4859 |
|
|
{
|
4860 |
|
|
str += 3;
|
4861 |
|
|
while (isdigit (str[0]))
|
4862 |
|
|
str += 1;
|
4863 |
|
|
}
|
4864 |
|
|
|
4865 |
|
|
/* [.$][0-9]+ */
|
4866 |
|
|
|
4867 |
|
|
if (str[0] == '.' || str[0] == '$')
|
4868 |
|
|
{
|
4869 |
|
|
matching = str + 1;
|
4870 |
|
|
while (isdigit (matching[0]))
|
4871 |
|
|
matching += 1;
|
4872 |
|
|
if (matching[0] == '\0')
|
4873 |
|
|
return 1;
|
4874 |
|
|
}
|
4875 |
|
|
|
4876 |
|
|
/* ___[0-9]+ */
|
4877 |
|
|
|
4878 |
|
|
if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
|
4879 |
|
|
{
|
4880 |
|
|
matching = str + 3;
|
4881 |
|
|
while (isdigit (matching[0]))
|
4882 |
|
|
matching += 1;
|
4883 |
|
|
if (matching[0] == '\0')
|
4884 |
|
|
return 1;
|
4885 |
|
|
}
|
4886 |
|
|
|
4887 |
|
|
#if 0
|
4888 |
|
|
/* FIXME: brobecker/2005-09-23: Protected Object subprograms end
|
4889 |
|
|
with a N at the end. Unfortunately, the compiler uses the same
|
4890 |
|
|
convention for other internal types it creates. So treating
|
4891 |
|
|
all entity names that end with an "N" as a name suffix causes
|
4892 |
|
|
some regressions. For instance, consider the case of an enumerated
|
4893 |
|
|
type. To support the 'Image attribute, it creates an array whose
|
4894 |
|
|
name ends with N.
|
4895 |
|
|
Having a single character like this as a suffix carrying some
|
4896 |
|
|
information is a bit risky. Perhaps we should change the encoding
|
4897 |
|
|
to be something like "_N" instead. In the meantime, do not do
|
4898 |
|
|
the following check. */
|
4899 |
|
|
/* Protected Object Subprograms */
|
4900 |
|
|
if (len == 1 && str [0] == 'N')
|
4901 |
|
|
return 1;
|
4902 |
|
|
#endif
|
4903 |
|
|
|
4904 |
|
|
/* _E[0-9]+[bs]$ */
|
4905 |
|
|
if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
|
4906 |
|
|
{
|
4907 |
|
|
matching = str + 3;
|
4908 |
|
|
while (isdigit (matching[0]))
|
4909 |
|
|
matching += 1;
|
4910 |
|
|
if ((matching[0] == 'b' || matching[0] == 's')
|
4911 |
|
|
&& matching [1] == '\0')
|
4912 |
|
|
return 1;
|
4913 |
|
|
}
|
4914 |
|
|
|
4915 |
|
|
/* ??? We should not modify STR directly, as we are doing below. This
|
4916 |
|
|
is fine in this case, but may become problematic later if we find
|
4917 |
|
|
that this alternative did not work, and want to try matching
|
4918 |
|
|
another one from the begining of STR. Since we modified it, we
|
4919 |
|
|
won't be able to find the begining of the string anymore! */
|
4920 |
|
|
if (str[0] == 'X')
|
4921 |
|
|
{
|
4922 |
|
|
str += 1;
|
4923 |
|
|
while (str[0] != '_' && str[0] != '\0')
|
4924 |
|
|
{
|
4925 |
|
|
if (str[0] != 'n' && str[0] != 'b')
|
4926 |
|
|
return 0;
|
4927 |
|
|
str += 1;
|
4928 |
|
|
}
|
4929 |
|
|
}
|
4930 |
|
|
|
4931 |
|
|
if (str[0] == '\000')
|
4932 |
|
|
return 1;
|
4933 |
|
|
|
4934 |
|
|
if (str[0] == '_')
|
4935 |
|
|
{
|
4936 |
|
|
if (str[1] != '_' || str[2] == '\000')
|
4937 |
|
|
return 0;
|
4938 |
|
|
if (str[2] == '_')
|
4939 |
|
|
{
|
4940 |
|
|
if (strcmp (str + 3, "JM") == 0)
|
4941 |
|
|
return 1;
|
4942 |
|
|
/* FIXME: brobecker/2004-09-30: GNAT will soon stop using
|
4943 |
|
|
the LJM suffix in favor of the JM one. But we will
|
4944 |
|
|
still accept LJM as a valid suffix for a reasonable
|
4945 |
|
|
amount of time, just to allow ourselves to debug programs
|
4946 |
|
|
compiled using an older version of GNAT. */
|
4947 |
|
|
if (strcmp (str + 3, "LJM") == 0)
|
4948 |
|
|
return 1;
|
4949 |
|
|
if (str[3] != 'X')
|
4950 |
|
|
return 0;
|
4951 |
|
|
if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
|
4952 |
|
|
|| str[4] == 'U' || str[4] == 'P')
|
4953 |
|
|
return 1;
|
4954 |
|
|
if (str[4] == 'R' && str[5] != 'T')
|
4955 |
|
|
return 1;
|
4956 |
|
|
return 0;
|
4957 |
|
|
}
|
4958 |
|
|
if (!isdigit (str[2]))
|
4959 |
|
|
return 0;
|
4960 |
|
|
for (k = 3; str[k] != '\0'; k += 1)
|
4961 |
|
|
if (!isdigit (str[k]) && str[k] != '_')
|
4962 |
|
|
return 0;
|
4963 |
|
|
return 1;
|
4964 |
|
|
}
|
4965 |
|
|
if (str[0] == '$' && isdigit (str[1]))
|
4966 |
|
|
{
|
4967 |
|
|
for (k = 2; str[k] != '\0'; k += 1)
|
4968 |
|
|
if (!isdigit (str[k]) && str[k] != '_')
|
4969 |
|
|
return 0;
|
4970 |
|
|
return 1;
|
4971 |
|
|
}
|
4972 |
|
|
return 0;
|
4973 |
|
|
}
|
4974 |
|
|
|
4975 |
|
|
/* Return non-zero if the string starting at NAME and ending before
|
4976 |
|
|
NAME_END contains no capital letters. */
|
4977 |
|
|
|
4978 |
|
|
static int
|
4979 |
|
|
is_valid_name_for_wild_match (const char *name0)
|
4980 |
|
|
{
|
4981 |
|
|
const char *decoded_name = ada_decode (name0);
|
4982 |
|
|
int i;
|
4983 |
|
|
|
4984 |
|
|
/* If the decoded name starts with an angle bracket, it means that
|
4985 |
|
|
NAME0 does not follow the GNAT encoding format. It should then
|
4986 |
|
|
not be allowed as a possible wild match. */
|
4987 |
|
|
if (decoded_name[0] == '<')
|
4988 |
|
|
return 0;
|
4989 |
|
|
|
4990 |
|
|
for (i=0; decoded_name[i] != '\0'; i++)
|
4991 |
|
|
if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
|
4992 |
|
|
return 0;
|
4993 |
|
|
|
4994 |
|
|
return 1;
|
4995 |
|
|
}
|
4996 |
|
|
|
4997 |
|
|
/* True if NAME represents a name of the form A1.A2....An, n>=1 and
|
4998 |
|
|
PATN[0..PATN_LEN-1] = Ak.Ak+1.....An for some k >= 1. Ignores
|
4999 |
|
|
informational suffixes of NAME (i.e., for which is_name_suffix is
|
5000 |
|
|
true). */
|
5001 |
|
|
|
5002 |
|
|
static int
|
5003 |
|
|
wild_match (const char *patn0, int patn_len, const char *name0)
|
5004 |
|
|
{
|
5005 |
|
|
char* match;
|
5006 |
|
|
const char* start;
|
5007 |
|
|
|
5008 |
|
|
start = name0;
|
5009 |
|
|
while (1)
|
5010 |
|
|
{
|
5011 |
|
|
match = strstr (start, patn0);
|
5012 |
|
|
if (match == NULL)
|
5013 |
|
|
return 0;
|
5014 |
|
|
if ((match == name0
|
5015 |
|
|
|| match[-1] == '.'
|
5016 |
|
|
|| (match > name0 + 1 && match[-1] == '_' && match[-2] == '_')
|
5017 |
|
|
|| (match == name0 + 5 && strncmp ("_ada_", name0, 5) == 0))
|
5018 |
|
|
&& is_name_suffix (match + patn_len))
|
5019 |
|
|
return (match == name0 || is_valid_name_for_wild_match (name0));
|
5020 |
|
|
start = match + 1;
|
5021 |
|
|
}
|
5022 |
|
|
}
|
5023 |
|
|
|
5024 |
|
|
/* Add symbols from BLOCK matching identifier NAME in DOMAIN to
|
5025 |
|
|
vector *defn_symbols, updating the list of symbols in OBSTACKP
|
5026 |
|
|
(if necessary). If WILD, treat as NAME with a wildcard prefix.
|
5027 |
|
|
OBJFILE is the section containing BLOCK.
|
5028 |
|
|
SYMTAB is recorded with each symbol added. */
|
5029 |
|
|
|
5030 |
|
|
static void
|
5031 |
|
|
ada_add_block_symbols (struct obstack *obstackp,
|
5032 |
|
|
struct block *block, const char *name,
|
5033 |
|
|
domain_enum domain, struct objfile *objfile,
|
5034 |
|
|
int wild)
|
5035 |
|
|
{
|
5036 |
|
|
struct dict_iterator iter;
|
5037 |
|
|
int name_len = strlen (name);
|
5038 |
|
|
/* A matching argument symbol, if any. */
|
5039 |
|
|
struct symbol *arg_sym;
|
5040 |
|
|
/* Set true when we find a matching non-argument symbol. */
|
5041 |
|
|
int found_sym;
|
5042 |
|
|
struct symbol *sym;
|
5043 |
|
|
|
5044 |
|
|
arg_sym = NULL;
|
5045 |
|
|
found_sym = 0;
|
5046 |
|
|
if (wild)
|
5047 |
|
|
{
|
5048 |
|
|
struct symbol *sym;
|
5049 |
|
|
|
5050 |
|
|
ALL_BLOCK_SYMBOLS (block, iter, sym)
|
5051 |
|
|
{
|
5052 |
|
|
if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
|
5053 |
|
|
SYMBOL_DOMAIN (sym), domain)
|
5054 |
|
|
&& wild_match (name, name_len, SYMBOL_LINKAGE_NAME (sym)))
|
5055 |
|
|
{
|
5056 |
|
|
if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
|
5057 |
|
|
continue;
|
5058 |
|
|
else if (SYMBOL_IS_ARGUMENT (sym))
|
5059 |
|
|
arg_sym = sym;
|
5060 |
|
|
else
|
5061 |
|
|
{
|
5062 |
|
|
found_sym = 1;
|
5063 |
|
|
add_defn_to_vec (obstackp,
|
5064 |
|
|
fixup_symbol_section (sym, objfile),
|
5065 |
|
|
block);
|
5066 |
|
|
}
|
5067 |
|
|
}
|
5068 |
|
|
}
|
5069 |
|
|
}
|
5070 |
|
|
else
|
5071 |
|
|
{
|
5072 |
|
|
ALL_BLOCK_SYMBOLS (block, iter, sym)
|
5073 |
|
|
{
|
5074 |
|
|
if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
|
5075 |
|
|
SYMBOL_DOMAIN (sym), domain))
|
5076 |
|
|
{
|
5077 |
|
|
int cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym), name_len);
|
5078 |
|
|
|
5079 |
|
|
if (cmp == 0
|
5080 |
|
|
&& is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len))
|
5081 |
|
|
{
|
5082 |
|
|
if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
|
5083 |
|
|
{
|
5084 |
|
|
if (SYMBOL_IS_ARGUMENT (sym))
|
5085 |
|
|
arg_sym = sym;
|
5086 |
|
|
else
|
5087 |
|
|
{
|
5088 |
|
|
found_sym = 1;
|
5089 |
|
|
add_defn_to_vec (obstackp,
|
5090 |
|
|
fixup_symbol_section (sym, objfile),
|
5091 |
|
|
block);
|
5092 |
|
|
}
|
5093 |
|
|
}
|
5094 |
|
|
}
|
5095 |
|
|
}
|
5096 |
|
|
}
|
5097 |
|
|
}
|
5098 |
|
|
|
5099 |
|
|
if (!found_sym && arg_sym != NULL)
|
5100 |
|
|
{
|
5101 |
|
|
add_defn_to_vec (obstackp,
|
5102 |
|
|
fixup_symbol_section (arg_sym, objfile),
|
5103 |
|
|
block);
|
5104 |
|
|
}
|
5105 |
|
|
|
5106 |
|
|
if (!wild)
|
5107 |
|
|
{
|
5108 |
|
|
arg_sym = NULL;
|
5109 |
|
|
found_sym = 0;
|
5110 |
|
|
|
5111 |
|
|
ALL_BLOCK_SYMBOLS (block, iter, sym)
|
5112 |
|
|
{
|
5113 |
|
|
if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
|
5114 |
|
|
SYMBOL_DOMAIN (sym), domain))
|
5115 |
|
|
{
|
5116 |
|
|
int cmp;
|
5117 |
|
|
|
5118 |
|
|
cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
|
5119 |
|
|
if (cmp == 0)
|
5120 |
|
|
{
|
5121 |
|
|
cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (sym), 5);
|
5122 |
|
|
if (cmp == 0)
|
5123 |
|
|
cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
|
5124 |
|
|
name_len);
|
5125 |
|
|
}
|
5126 |
|
|
|
5127 |
|
|
if (cmp == 0
|
5128 |
|
|
&& is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
|
5129 |
|
|
{
|
5130 |
|
|
if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
|
5131 |
|
|
{
|
5132 |
|
|
if (SYMBOL_IS_ARGUMENT (sym))
|
5133 |
|
|
arg_sym = sym;
|
5134 |
|
|
else
|
5135 |
|
|
{
|
5136 |
|
|
found_sym = 1;
|
5137 |
|
|
add_defn_to_vec (obstackp,
|
5138 |
|
|
fixup_symbol_section (sym, objfile),
|
5139 |
|
|
block);
|
5140 |
|
|
}
|
5141 |
|
|
}
|
5142 |
|
|
}
|
5143 |
|
|
}
|
5144 |
|
|
}
|
5145 |
|
|
|
5146 |
|
|
/* NOTE: This really shouldn't be needed for _ada_ symbols.
|
5147 |
|
|
They aren't parameters, right? */
|
5148 |
|
|
if (!found_sym && arg_sym != NULL)
|
5149 |
|
|
{
|
5150 |
|
|
add_defn_to_vec (obstackp,
|
5151 |
|
|
fixup_symbol_section (arg_sym, objfile),
|
5152 |
|
|
block);
|
5153 |
|
|
}
|
5154 |
|
|
}
|
5155 |
|
|
}
|
5156 |
|
|
|
5157 |
|
|
|
5158 |
|
|
/* Symbol Completion */
|
5159 |
|
|
|
5160 |
|
|
/* If SYM_NAME is a completion candidate for TEXT, return this symbol
|
5161 |
|
|
name in a form that's appropriate for the completion. The result
|
5162 |
|
|
does not need to be deallocated, but is only good until the next call.
|
5163 |
|
|
|
5164 |
|
|
TEXT_LEN is equal to the length of TEXT.
|
5165 |
|
|
Perform a wild match if WILD_MATCH is set.
|
5166 |
|
|
ENCODED should be set if TEXT represents the start of a symbol name
|
5167 |
|
|
in its encoded form. */
|
5168 |
|
|
|
5169 |
|
|
static const char *
|
5170 |
|
|
symbol_completion_match (const char *sym_name,
|
5171 |
|
|
const char *text, int text_len,
|
5172 |
|
|
int wild_match, int encoded)
|
5173 |
|
|
{
|
5174 |
|
|
const int verbatim_match = (text[0] == '<');
|
5175 |
|
|
int match = 0;
|
5176 |
|
|
|
5177 |
|
|
if (verbatim_match)
|
5178 |
|
|
{
|
5179 |
|
|
/* Strip the leading angle bracket. */
|
5180 |
|
|
text = text + 1;
|
5181 |
|
|
text_len--;
|
5182 |
|
|
}
|
5183 |
|
|
|
5184 |
|
|
/* First, test against the fully qualified name of the symbol. */
|
5185 |
|
|
|
5186 |
|
|
if (strncmp (sym_name, text, text_len) == 0)
|
5187 |
|
|
match = 1;
|
5188 |
|
|
|
5189 |
|
|
if (match && !encoded)
|
5190 |
|
|
{
|
5191 |
|
|
/* One needed check before declaring a positive match is to verify
|
5192 |
|
|
that iff we are doing a verbatim match, the decoded version
|
5193 |
|
|
of the symbol name starts with '<'. Otherwise, this symbol name
|
5194 |
|
|
is not a suitable completion. */
|
5195 |
|
|
const char *sym_name_copy = sym_name;
|
5196 |
|
|
int has_angle_bracket;
|
5197 |
|
|
|
5198 |
|
|
sym_name = ada_decode (sym_name);
|
5199 |
|
|
has_angle_bracket = (sym_name[0] == '<');
|
5200 |
|
|
match = (has_angle_bracket == verbatim_match);
|
5201 |
|
|
sym_name = sym_name_copy;
|
5202 |
|
|
}
|
5203 |
|
|
|
5204 |
|
|
if (match && !verbatim_match)
|
5205 |
|
|
{
|
5206 |
|
|
/* When doing non-verbatim match, another check that needs to
|
5207 |
|
|
be done is to verify that the potentially matching symbol name
|
5208 |
|
|
does not include capital letters, because the ada-mode would
|
5209 |
|
|
not be able to understand these symbol names without the
|
5210 |
|
|
angle bracket notation. */
|
5211 |
|
|
const char *tmp;
|
5212 |
|
|
|
5213 |
|
|
for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
|
5214 |
|
|
if (*tmp != '\0')
|
5215 |
|
|
match = 0;
|
5216 |
|
|
}
|
5217 |
|
|
|
5218 |
|
|
/* Second: Try wild matching... */
|
5219 |
|
|
|
5220 |
|
|
if (!match && wild_match)
|
5221 |
|
|
{
|
5222 |
|
|
/* Since we are doing wild matching, this means that TEXT
|
5223 |
|
|
may represent an unqualified symbol name. We therefore must
|
5224 |
|
|
also compare TEXT against the unqualified name of the symbol. */
|
5225 |
|
|
sym_name = ada_unqualified_name (ada_decode (sym_name));
|
5226 |
|
|
|
5227 |
|
|
if (strncmp (sym_name, text, text_len) == 0)
|
5228 |
|
|
match = 1;
|
5229 |
|
|
}
|
5230 |
|
|
|
5231 |
|
|
/* Finally: If we found a mach, prepare the result to return. */
|
5232 |
|
|
|
5233 |
|
|
if (!match)
|
5234 |
|
|
return NULL;
|
5235 |
|
|
|
5236 |
|
|
if (verbatim_match)
|
5237 |
|
|
sym_name = add_angle_brackets (sym_name);
|
5238 |
|
|
|
5239 |
|
|
if (!encoded)
|
5240 |
|
|
sym_name = ada_decode (sym_name);
|
5241 |
|
|
|
5242 |
|
|
return sym_name;
|
5243 |
|
|
}
|
5244 |
|
|
|
5245 |
|
|
DEF_VEC_P (char_ptr);
|
5246 |
|
|
|
5247 |
|
|
/* A companion function to ada_make_symbol_completion_list().
|
5248 |
|
|
Check if SYM_NAME represents a symbol which name would be suitable
|
5249 |
|
|
to complete TEXT (TEXT_LEN is the length of TEXT), in which case
|
5250 |
|
|
it is appended at the end of the given string vector SV.
|
5251 |
|
|
|
5252 |
|
|
ORIG_TEXT is the string original string from the user command
|
5253 |
|
|
that needs to be completed. WORD is the entire command on which
|
5254 |
|
|
completion should be performed. These two parameters are used to
|
5255 |
|
|
determine which part of the symbol name should be added to the
|
5256 |
|
|
completion vector.
|
5257 |
|
|
if WILD_MATCH is set, then wild matching is performed.
|
5258 |
|
|
ENCODED should be set if TEXT represents a symbol name in its
|
5259 |
|
|
encoded formed (in which case the completion should also be
|
5260 |
|
|
encoded). */
|
5261 |
|
|
|
5262 |
|
|
static void
|
5263 |
|
|
symbol_completion_add (VEC(char_ptr) **sv,
|
5264 |
|
|
const char *sym_name,
|
5265 |
|
|
const char *text, int text_len,
|
5266 |
|
|
const char *orig_text, const char *word,
|
5267 |
|
|
int wild_match, int encoded)
|
5268 |
|
|
{
|
5269 |
|
|
const char *match = symbol_completion_match (sym_name, text, text_len,
|
5270 |
|
|
wild_match, encoded);
|
5271 |
|
|
char *completion;
|
5272 |
|
|
|
5273 |
|
|
if (match == NULL)
|
5274 |
|
|
return;
|
5275 |
|
|
|
5276 |
|
|
/* We found a match, so add the appropriate completion to the given
|
5277 |
|
|
string vector. */
|
5278 |
|
|
|
5279 |
|
|
if (word == orig_text)
|
5280 |
|
|
{
|
5281 |
|
|
completion = xmalloc (strlen (match) + 5);
|
5282 |
|
|
strcpy (completion, match);
|
5283 |
|
|
}
|
5284 |
|
|
else if (word > orig_text)
|
5285 |
|
|
{
|
5286 |
|
|
/* Return some portion of sym_name. */
|
5287 |
|
|
completion = xmalloc (strlen (match) + 5);
|
5288 |
|
|
strcpy (completion, match + (word - orig_text));
|
5289 |
|
|
}
|
5290 |
|
|
else
|
5291 |
|
|
{
|
5292 |
|
|
/* Return some of ORIG_TEXT plus sym_name. */
|
5293 |
|
|
completion = xmalloc (strlen (match) + (orig_text - word) + 5);
|
5294 |
|
|
strncpy (completion, word, orig_text - word);
|
5295 |
|
|
completion[orig_text - word] = '\0';
|
5296 |
|
|
strcat (completion, match);
|
5297 |
|
|
}
|
5298 |
|
|
|
5299 |
|
|
VEC_safe_push (char_ptr, *sv, completion);
|
5300 |
|
|
}
|
5301 |
|
|
|
5302 |
|
|
/* An object of this type is passed as the user_data argument to the
|
5303 |
|
|
map_partial_symbol_names method. */
|
5304 |
|
|
struct add_partial_datum
|
5305 |
|
|
{
|
5306 |
|
|
VEC(char_ptr) **completions;
|
5307 |
|
|
char *text;
|
5308 |
|
|
int text_len;
|
5309 |
|
|
char *text0;
|
5310 |
|
|
char *word;
|
5311 |
|
|
int wild_match;
|
5312 |
|
|
int encoded;
|
5313 |
|
|
};
|
5314 |
|
|
|
5315 |
|
|
/* A callback for map_partial_symbol_names. */
|
5316 |
|
|
static void
|
5317 |
|
|
ada_add_partial_symbol_completions (const char *name, void *user_data)
|
5318 |
|
|
{
|
5319 |
|
|
struct add_partial_datum *data = user_data;
|
5320 |
|
|
|
5321 |
|
|
symbol_completion_add (data->completions, name,
|
5322 |
|
|
data->text, data->text_len, data->text0, data->word,
|
5323 |
|
|
data->wild_match, data->encoded);
|
5324 |
|
|
}
|
5325 |
|
|
|
5326 |
|
|
/* Return a list of possible symbol names completing TEXT0. The list
|
5327 |
|
|
is NULL terminated. WORD is the entire command on which completion
|
5328 |
|
|
is made. */
|
5329 |
|
|
|
5330 |
|
|
static char **
|
5331 |
|
|
ada_make_symbol_completion_list (char *text0, char *word)
|
5332 |
|
|
{
|
5333 |
|
|
char *text;
|
5334 |
|
|
int text_len;
|
5335 |
|
|
int wild_match;
|
5336 |
|
|
int encoded;
|
5337 |
|
|
VEC(char_ptr) *completions = VEC_alloc (char_ptr, 128);
|
5338 |
|
|
struct symbol *sym;
|
5339 |
|
|
struct symtab *s;
|
5340 |
|
|
struct minimal_symbol *msymbol;
|
5341 |
|
|
struct objfile *objfile;
|
5342 |
|
|
struct block *b, *surrounding_static_block = 0;
|
5343 |
|
|
int i;
|
5344 |
|
|
struct dict_iterator iter;
|
5345 |
|
|
|
5346 |
|
|
if (text0[0] == '<')
|
5347 |
|
|
{
|
5348 |
|
|
text = xstrdup (text0);
|
5349 |
|
|
make_cleanup (xfree, text);
|
5350 |
|
|
text_len = strlen (text);
|
5351 |
|
|
wild_match = 0;
|
5352 |
|
|
encoded = 1;
|
5353 |
|
|
}
|
5354 |
|
|
else
|
5355 |
|
|
{
|
5356 |
|
|
text = xstrdup (ada_encode (text0));
|
5357 |
|
|
make_cleanup (xfree, text);
|
5358 |
|
|
text_len = strlen (text);
|
5359 |
|
|
for (i = 0; i < text_len; i++)
|
5360 |
|
|
text[i] = tolower (text[i]);
|
5361 |
|
|
|
5362 |
|
|
encoded = (strstr (text0, "__") != NULL);
|
5363 |
|
|
/* If the name contains a ".", then the user is entering a fully
|
5364 |
|
|
qualified entity name, and the match must not be done in wild
|
5365 |
|
|
mode. Similarly, if the user wants to complete what looks like
|
5366 |
|
|
an encoded name, the match must not be done in wild mode. */
|
5367 |
|
|
wild_match = (strchr (text0, '.') == NULL && !encoded);
|
5368 |
|
|
}
|
5369 |
|
|
|
5370 |
|
|
/* First, look at the partial symtab symbols. */
|
5371 |
|
|
{
|
5372 |
|
|
struct add_partial_datum data;
|
5373 |
|
|
|
5374 |
|
|
data.completions = &completions;
|
5375 |
|
|
data.text = text;
|
5376 |
|
|
data.text_len = text_len;
|
5377 |
|
|
data.text0 = text0;
|
5378 |
|
|
data.word = word;
|
5379 |
|
|
data.wild_match = wild_match;
|
5380 |
|
|
data.encoded = encoded;
|
5381 |
|
|
map_partial_symbol_names (ada_add_partial_symbol_completions, &data);
|
5382 |
|
|
}
|
5383 |
|
|
|
5384 |
|
|
/* At this point scan through the misc symbol vectors and add each
|
5385 |
|
|
symbol you find to the list. Eventually we want to ignore
|
5386 |
|
|
anything that isn't a text symbol (everything else will be
|
5387 |
|
|
handled by the psymtab code above). */
|
5388 |
|
|
|
5389 |
|
|
ALL_MSYMBOLS (objfile, msymbol)
|
5390 |
|
|
{
|
5391 |
|
|
QUIT;
|
5392 |
|
|
symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (msymbol),
|
5393 |
|
|
text, text_len, text0, word, wild_match, encoded);
|
5394 |
|
|
}
|
5395 |
|
|
|
5396 |
|
|
/* Search upwards from currently selected frame (so that we can
|
5397 |
|
|
complete on local vars. */
|
5398 |
|
|
|
5399 |
|
|
for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
|
5400 |
|
|
{
|
5401 |
|
|
if (!BLOCK_SUPERBLOCK (b))
|
5402 |
|
|
surrounding_static_block = b; /* For elmin of dups */
|
5403 |
|
|
|
5404 |
|
|
ALL_BLOCK_SYMBOLS (b, iter, sym)
|
5405 |
|
|
{
|
5406 |
|
|
symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
|
5407 |
|
|
text, text_len, text0, word,
|
5408 |
|
|
wild_match, encoded);
|
5409 |
|
|
}
|
5410 |
|
|
}
|
5411 |
|
|
|
5412 |
|
|
/* Go through the symtabs and check the externs and statics for
|
5413 |
|
|
symbols which match. */
|
5414 |
|
|
|
5415 |
|
|
ALL_SYMTABS (objfile, s)
|
5416 |
|
|
{
|
5417 |
|
|
QUIT;
|
5418 |
|
|
b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
|
5419 |
|
|
ALL_BLOCK_SYMBOLS (b, iter, sym)
|
5420 |
|
|
{
|
5421 |
|
|
symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
|
5422 |
|
|
text, text_len, text0, word,
|
5423 |
|
|
wild_match, encoded);
|
5424 |
|
|
}
|
5425 |
|
|
}
|
5426 |
|
|
|
5427 |
|
|
ALL_SYMTABS (objfile, s)
|
5428 |
|
|
{
|
5429 |
|
|
QUIT;
|
5430 |
|
|
b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
|
5431 |
|
|
/* Don't do this block twice. */
|
5432 |
|
|
if (b == surrounding_static_block)
|
5433 |
|
|
continue;
|
5434 |
|
|
ALL_BLOCK_SYMBOLS (b, iter, sym)
|
5435 |
|
|
{
|
5436 |
|
|
symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
|
5437 |
|
|
text, text_len, text0, word,
|
5438 |
|
|
wild_match, encoded);
|
5439 |
|
|
}
|
5440 |
|
|
}
|
5441 |
|
|
|
5442 |
|
|
/* Append the closing NULL entry. */
|
5443 |
|
|
VEC_safe_push (char_ptr, completions, NULL);
|
5444 |
|
|
|
5445 |
|
|
/* Make a copy of the COMPLETIONS VEC before we free it, and then
|
5446 |
|
|
return the copy. It's unfortunate that we have to make a copy
|
5447 |
|
|
of an array that we're about to destroy, but there is nothing much
|
5448 |
|
|
we can do about it. Fortunately, it's typically not a very large
|
5449 |
|
|
array. */
|
5450 |
|
|
{
|
5451 |
|
|
const size_t completions_size =
|
5452 |
|
|
VEC_length (char_ptr, completions) * sizeof (char *);
|
5453 |
|
|
char **result = malloc (completions_size);
|
5454 |
|
|
|
5455 |
|
|
memcpy (result, VEC_address (char_ptr, completions), completions_size);
|
5456 |
|
|
|
5457 |
|
|
VEC_free (char_ptr, completions);
|
5458 |
|
|
return result;
|
5459 |
|
|
}
|
5460 |
|
|
}
|
5461 |
|
|
|
5462 |
|
|
/* Field Access */
|
5463 |
|
|
|
5464 |
|
|
/* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
|
5465 |
|
|
for tagged types. */
|
5466 |
|
|
|
5467 |
|
|
static int
|
5468 |
|
|
ada_is_dispatch_table_ptr_type (struct type *type)
|
5469 |
|
|
{
|
5470 |
|
|
char *name;
|
5471 |
|
|
|
5472 |
|
|
if (TYPE_CODE (type) != TYPE_CODE_PTR)
|
5473 |
|
|
return 0;
|
5474 |
|
|
|
5475 |
|
|
name = TYPE_NAME (TYPE_TARGET_TYPE (type));
|
5476 |
|
|
if (name == NULL)
|
5477 |
|
|
return 0;
|
5478 |
|
|
|
5479 |
|
|
return (strcmp (name, "ada__tags__dispatch_table") == 0);
|
5480 |
|
|
}
|
5481 |
|
|
|
5482 |
|
|
/* True if field number FIELD_NUM in struct or union type TYPE is supposed
|
5483 |
|
|
to be invisible to users. */
|
5484 |
|
|
|
5485 |
|
|
int
|
5486 |
|
|
ada_is_ignored_field (struct type *type, int field_num)
|
5487 |
|
|
{
|
5488 |
|
|
if (field_num < 0 || field_num > TYPE_NFIELDS (type))
|
5489 |
|
|
return 1;
|
5490 |
|
|
|
5491 |
|
|
/* Check the name of that field. */
|
5492 |
|
|
{
|
5493 |
|
|
const char *name = TYPE_FIELD_NAME (type, field_num);
|
5494 |
|
|
|
5495 |
|
|
/* Anonymous field names should not be printed.
|
5496 |
|
|
brobecker/2007-02-20: I don't think this can actually happen
|
5497 |
|
|
but we don't want to print the value of annonymous fields anyway. */
|
5498 |
|
|
if (name == NULL)
|
5499 |
|
|
return 1;
|
5500 |
|
|
|
5501 |
|
|
/* A field named "_parent" is internally generated by GNAT for
|
5502 |
|
|
tagged types, and should not be printed either. */
|
5503 |
|
|
if (name[0] == '_' && strncmp (name, "_parent", 7) != 0)
|
5504 |
|
|
return 1;
|
5505 |
|
|
}
|
5506 |
|
|
|
5507 |
|
|
/* If this is the dispatch table of a tagged type, then ignore. */
|
5508 |
|
|
if (ada_is_tagged_type (type, 1)
|
5509 |
|
|
&& ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num)))
|
5510 |
|
|
return 1;
|
5511 |
|
|
|
5512 |
|
|
/* Not a special field, so it should not be ignored. */
|
5513 |
|
|
return 0;
|
5514 |
|
|
}
|
5515 |
|
|
|
5516 |
|
|
/* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
|
5517 |
|
|
pointer or reference type whose ultimate target has a tag field. */
|
5518 |
|
|
|
5519 |
|
|
int
|
5520 |
|
|
ada_is_tagged_type (struct type *type, int refok)
|
5521 |
|
|
{
|
5522 |
|
|
return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL);
|
5523 |
|
|
}
|
5524 |
|
|
|
5525 |
|
|
/* True iff TYPE represents the type of X'Tag */
|
5526 |
|
|
|
5527 |
|
|
int
|
5528 |
|
|
ada_is_tag_type (struct type *type)
|
5529 |
|
|
{
|
5530 |
|
|
if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
|
5531 |
|
|
return 0;
|
5532 |
|
|
else
|
5533 |
|
|
{
|
5534 |
|
|
const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
|
5535 |
|
|
|
5536 |
|
|
return (name != NULL
|
5537 |
|
|
&& strcmp (name, "ada__tags__dispatch_table") == 0);
|
5538 |
|
|
}
|
5539 |
|
|
}
|
5540 |
|
|
|
5541 |
|
|
/* The type of the tag on VAL. */
|
5542 |
|
|
|
5543 |
|
|
struct type *
|
5544 |
|
|
ada_tag_type (struct value *val)
|
5545 |
|
|
{
|
5546 |
|
|
return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL);
|
5547 |
|
|
}
|
5548 |
|
|
|
5549 |
|
|
/* The value of the tag on VAL. */
|
5550 |
|
|
|
5551 |
|
|
struct value *
|
5552 |
|
|
ada_value_tag (struct value *val)
|
5553 |
|
|
{
|
5554 |
|
|
return ada_value_struct_elt (val, "_tag", 0);
|
5555 |
|
|
}
|
5556 |
|
|
|
5557 |
|
|
/* The value of the tag on the object of type TYPE whose contents are
|
5558 |
|
|
saved at VALADDR, if it is non-null, or is at memory address
|
5559 |
|
|
ADDRESS. */
|
5560 |
|
|
|
5561 |
|
|
static struct value *
|
5562 |
|
|
value_tag_from_contents_and_address (struct type *type,
|
5563 |
|
|
const gdb_byte *valaddr,
|
5564 |
|
|
CORE_ADDR address)
|
5565 |
|
|
{
|
5566 |
|
|
int tag_byte_offset;
|
5567 |
|
|
struct type *tag_type;
|
5568 |
|
|
|
5569 |
|
|
if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
|
5570 |
|
|
NULL, NULL, NULL))
|
5571 |
|
|
{
|
5572 |
|
|
const gdb_byte *valaddr1 = ((valaddr == NULL)
|
5573 |
|
|
? NULL
|
5574 |
|
|
: valaddr + tag_byte_offset);
|
5575 |
|
|
CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
|
5576 |
|
|
|
5577 |
|
|
return value_from_contents_and_address (tag_type, valaddr1, address1);
|
5578 |
|
|
}
|
5579 |
|
|
return NULL;
|
5580 |
|
|
}
|
5581 |
|
|
|
5582 |
|
|
static struct type *
|
5583 |
|
|
type_from_tag (struct value *tag)
|
5584 |
|
|
{
|
5585 |
|
|
const char *type_name = ada_tag_name (tag);
|
5586 |
|
|
|
5587 |
|
|
if (type_name != NULL)
|
5588 |
|
|
return ada_find_any_type (ada_encode (type_name));
|
5589 |
|
|
return NULL;
|
5590 |
|
|
}
|
5591 |
|
|
|
5592 |
|
|
struct tag_args
|
5593 |
|
|
{
|
5594 |
|
|
struct value *tag;
|
5595 |
|
|
char *name;
|
5596 |
|
|
};
|
5597 |
|
|
|
5598 |
|
|
|
5599 |
|
|
static int ada_tag_name_1 (void *);
|
5600 |
|
|
static int ada_tag_name_2 (struct tag_args *);
|
5601 |
|
|
|
5602 |
|
|
/* Wrapper function used by ada_tag_name. Given a struct tag_args*
|
5603 |
|
|
value ARGS, sets ARGS->name to the tag name of ARGS->tag.
|
5604 |
|
|
The value stored in ARGS->name is valid until the next call to
|
5605 |
|
|
ada_tag_name_1. */
|
5606 |
|
|
|
5607 |
|
|
static int
|
5608 |
|
|
ada_tag_name_1 (void *args0)
|
5609 |
|
|
{
|
5610 |
|
|
struct tag_args *args = (struct tag_args *) args0;
|
5611 |
|
|
static char name[1024];
|
5612 |
|
|
char *p;
|
5613 |
|
|
struct value *val;
|
5614 |
|
|
|
5615 |
|
|
args->name = NULL;
|
5616 |
|
|
val = ada_value_struct_elt (args->tag, "tsd", 1);
|
5617 |
|
|
if (val == NULL)
|
5618 |
|
|
return ada_tag_name_2 (args);
|
5619 |
|
|
val = ada_value_struct_elt (val, "expanded_name", 1);
|
5620 |
|
|
if (val == NULL)
|
5621 |
|
|
return 0;
|
5622 |
|
|
read_memory_string (value_as_address (val), name, sizeof (name) - 1);
|
5623 |
|
|
for (p = name; *p != '\0'; p += 1)
|
5624 |
|
|
if (isalpha (*p))
|
5625 |
|
|
*p = tolower (*p);
|
5626 |
|
|
args->name = name;
|
5627 |
|
|
return 0;
|
5628 |
|
|
}
|
5629 |
|
|
|
5630 |
|
|
/* Return the "ada__tags__type_specific_data" type. */
|
5631 |
|
|
|
5632 |
|
|
static struct type *
|
5633 |
|
|
ada_get_tsd_type (struct inferior *inf)
|
5634 |
|
|
{
|
5635 |
|
|
struct ada_inferior_data *data = get_ada_inferior_data (inf);
|
5636 |
|
|
|
5637 |
|
|
if (data->tsd_type == 0)
|
5638 |
|
|
data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
|
5639 |
|
|
return data->tsd_type;
|
5640 |
|
|
}
|
5641 |
|
|
|
5642 |
|
|
/* Utility function for ada_tag_name_1 that tries the second
|
5643 |
|
|
representation for the dispatch table (in which there is no
|
5644 |
|
|
explicit 'tsd' field in the referent of the tag pointer, and instead
|
5645 |
|
|
the tsd pointer is stored just before the dispatch table. */
|
5646 |
|
|
|
5647 |
|
|
static int
|
5648 |
|
|
ada_tag_name_2 (struct tag_args *args)
|
5649 |
|
|
{
|
5650 |
|
|
struct type *info_type;
|
5651 |
|
|
static char name[1024];
|
5652 |
|
|
char *p;
|
5653 |
|
|
struct value *val, *valp;
|
5654 |
|
|
|
5655 |
|
|
args->name = NULL;
|
5656 |
|
|
info_type = ada_get_tsd_type (current_inferior());
|
5657 |
|
|
if (info_type == NULL)
|
5658 |
|
|
return 0;
|
5659 |
|
|
info_type = lookup_pointer_type (lookup_pointer_type (info_type));
|
5660 |
|
|
valp = value_cast (info_type, args->tag);
|
5661 |
|
|
if (valp == NULL)
|
5662 |
|
|
return 0;
|
5663 |
|
|
val = value_ind (value_ptradd (valp, -1));
|
5664 |
|
|
if (val == NULL)
|
5665 |
|
|
return 0;
|
5666 |
|
|
val = ada_value_struct_elt (val, "expanded_name", 1);
|
5667 |
|
|
if (val == NULL)
|
5668 |
|
|
return 0;
|
5669 |
|
|
read_memory_string (value_as_address (val), name, sizeof (name) - 1);
|
5670 |
|
|
for (p = name; *p != '\0'; p += 1)
|
5671 |
|
|
if (isalpha (*p))
|
5672 |
|
|
*p = tolower (*p);
|
5673 |
|
|
args->name = name;
|
5674 |
|
|
return 0;
|
5675 |
|
|
}
|
5676 |
|
|
|
5677 |
|
|
/* The type name of the dynamic type denoted by the 'tag value TAG, as
|
5678 |
|
|
a C string. */
|
5679 |
|
|
|
5680 |
|
|
const char *
|
5681 |
|
|
ada_tag_name (struct value *tag)
|
5682 |
|
|
{
|
5683 |
|
|
struct tag_args args;
|
5684 |
|
|
|
5685 |
|
|
if (!ada_is_tag_type (value_type (tag)))
|
5686 |
|
|
return NULL;
|
5687 |
|
|
args.tag = tag;
|
5688 |
|
|
args.name = NULL;
|
5689 |
|
|
catch_errors (ada_tag_name_1, &args, NULL, RETURN_MASK_ALL);
|
5690 |
|
|
return args.name;
|
5691 |
|
|
}
|
5692 |
|
|
|
5693 |
|
|
/* The parent type of TYPE, or NULL if none. */
|
5694 |
|
|
|
5695 |
|
|
struct type *
|
5696 |
|
|
ada_parent_type (struct type *type)
|
5697 |
|
|
{
|
5698 |
|
|
int i;
|
5699 |
|
|
|
5700 |
|
|
type = ada_check_typedef (type);
|
5701 |
|
|
|
5702 |
|
|
if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
|
5703 |
|
|
return NULL;
|
5704 |
|
|
|
5705 |
|
|
for (i = 0; i < TYPE_NFIELDS (type); i += 1)
|
5706 |
|
|
if (ada_is_parent_field (type, i))
|
5707 |
|
|
{
|
5708 |
|
|
struct type *parent_type = TYPE_FIELD_TYPE (type, i);
|
5709 |
|
|
|
5710 |
|
|
/* If the _parent field is a pointer, then dereference it. */
|
5711 |
|
|
if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
|
5712 |
|
|
parent_type = TYPE_TARGET_TYPE (parent_type);
|
5713 |
|
|
/* If there is a parallel XVS type, get the actual base type. */
|
5714 |
|
|
parent_type = ada_get_base_type (parent_type);
|
5715 |
|
|
|
5716 |
|
|
return ada_check_typedef (parent_type);
|
5717 |
|
|
}
|
5718 |
|
|
|
5719 |
|
|
return NULL;
|
5720 |
|
|
}
|
5721 |
|
|
|
5722 |
|
|
/* True iff field number FIELD_NUM of structure type TYPE contains the
|
5723 |
|
|
parent-type (inherited) fields of a derived type. Assumes TYPE is
|
5724 |
|
|
a structure type with at least FIELD_NUM+1 fields. */
|
5725 |
|
|
|
5726 |
|
|
int
|
5727 |
|
|
ada_is_parent_field (struct type *type, int field_num)
|
5728 |
|
|
{
|
5729 |
|
|
const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
|
5730 |
|
|
|
5731 |
|
|
return (name != NULL
|
5732 |
|
|
&& (strncmp (name, "PARENT", 6) == 0
|
5733 |
|
|
|| strncmp (name, "_parent", 7) == 0));
|
5734 |
|
|
}
|
5735 |
|
|
|
5736 |
|
|
/* True iff field number FIELD_NUM of structure type TYPE is a
|
5737 |
|
|
transparent wrapper field (which should be silently traversed when doing
|
5738 |
|
|
field selection and flattened when printing). Assumes TYPE is a
|
5739 |
|
|
structure type with at least FIELD_NUM+1 fields. Such fields are always
|
5740 |
|
|
structures. */
|
5741 |
|
|
|
5742 |
|
|
int
|
5743 |
|
|
ada_is_wrapper_field (struct type *type, int field_num)
|
5744 |
|
|
{
|
5745 |
|
|
const char *name = TYPE_FIELD_NAME (type, field_num);
|
5746 |
|
|
|
5747 |
|
|
return (name != NULL
|
5748 |
|
|
&& (strncmp (name, "PARENT", 6) == 0
|
5749 |
|
|
|| strcmp (name, "REP") == 0
|
5750 |
|
|
|| strncmp (name, "_parent", 7) == 0
|
5751 |
|
|
|| name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
|
5752 |
|
|
}
|
5753 |
|
|
|
5754 |
|
|
/* True iff field number FIELD_NUM of structure or union type TYPE
|
5755 |
|
|
is a variant wrapper. Assumes TYPE is a structure type with at least
|
5756 |
|
|
FIELD_NUM+1 fields. */
|
5757 |
|
|
|
5758 |
|
|
int
|
5759 |
|
|
ada_is_variant_part (struct type *type, int field_num)
|
5760 |
|
|
{
|
5761 |
|
|
struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
|
5762 |
|
|
|
5763 |
|
|
return (TYPE_CODE (field_type) == TYPE_CODE_UNION
|
5764 |
|
|
|| (is_dynamic_field (type, field_num)
|
5765 |
|
|
&& (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
|
5766 |
|
|
== TYPE_CODE_UNION)));
|
5767 |
|
|
}
|
5768 |
|
|
|
5769 |
|
|
/* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
|
5770 |
|
|
whose discriminants are contained in the record type OUTER_TYPE,
|
5771 |
|
|
returns the type of the controlling discriminant for the variant.
|
5772 |
|
|
May return NULL if the type could not be found. */
|
5773 |
|
|
|
5774 |
|
|
struct type *
|
5775 |
|
|
ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
|
5776 |
|
|
{
|
5777 |
|
|
char *name = ada_variant_discrim_name (var_type);
|
5778 |
|
|
|
5779 |
|
|
return ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL);
|
5780 |
|
|
}
|
5781 |
|
|
|
5782 |
|
|
/* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
|
5783 |
|
|
valid field number within it, returns 1 iff field FIELD_NUM of TYPE
|
5784 |
|
|
represents a 'when others' clause; otherwise 0. */
|
5785 |
|
|
|
5786 |
|
|
int
|
5787 |
|
|
ada_is_others_clause (struct type *type, int field_num)
|
5788 |
|
|
{
|
5789 |
|
|
const char *name = TYPE_FIELD_NAME (type, field_num);
|
5790 |
|
|
|
5791 |
|
|
return (name != NULL && name[0] == 'O');
|
5792 |
|
|
}
|
5793 |
|
|
|
5794 |
|
|
/* Assuming that TYPE0 is the type of the variant part of a record,
|
5795 |
|
|
returns the name of the discriminant controlling the variant.
|
5796 |
|
|
The value is valid until the next call to ada_variant_discrim_name. */
|
5797 |
|
|
|
5798 |
|
|
char *
|
5799 |
|
|
ada_variant_discrim_name (struct type *type0)
|
5800 |
|
|
{
|
5801 |
|
|
static char *result = NULL;
|
5802 |
|
|
static size_t result_len = 0;
|
5803 |
|
|
struct type *type;
|
5804 |
|
|
const char *name;
|
5805 |
|
|
const char *discrim_end;
|
5806 |
|
|
const char *discrim_start;
|
5807 |
|
|
|
5808 |
|
|
if (TYPE_CODE (type0) == TYPE_CODE_PTR)
|
5809 |
|
|
type = TYPE_TARGET_TYPE (type0);
|
5810 |
|
|
else
|
5811 |
|
|
type = type0;
|
5812 |
|
|
|
5813 |
|
|
name = ada_type_name (type);
|
5814 |
|
|
|
5815 |
|
|
if (name == NULL || name[0] == '\000')
|
5816 |
|
|
return "";
|
5817 |
|
|
|
5818 |
|
|
for (discrim_end = name + strlen (name) - 6; discrim_end != name;
|
5819 |
|
|
discrim_end -= 1)
|
5820 |
|
|
{
|
5821 |
|
|
if (strncmp (discrim_end, "___XVN", 6) == 0)
|
5822 |
|
|
break;
|
5823 |
|
|
}
|
5824 |
|
|
if (discrim_end == name)
|
5825 |
|
|
return "";
|
5826 |
|
|
|
5827 |
|
|
for (discrim_start = discrim_end; discrim_start != name + 3;
|
5828 |
|
|
discrim_start -= 1)
|
5829 |
|
|
{
|
5830 |
|
|
if (discrim_start == name + 1)
|
5831 |
|
|
return "";
|
5832 |
|
|
if ((discrim_start > name + 3
|
5833 |
|
|
&& strncmp (discrim_start - 3, "___", 3) == 0)
|
5834 |
|
|
|| discrim_start[-1] == '.')
|
5835 |
|
|
break;
|
5836 |
|
|
}
|
5837 |
|
|
|
5838 |
|
|
GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
|
5839 |
|
|
strncpy (result, discrim_start, discrim_end - discrim_start);
|
5840 |
|
|
result[discrim_end - discrim_start] = '\0';
|
5841 |
|
|
return result;
|
5842 |
|
|
}
|
5843 |
|
|
|
5844 |
|
|
/* Scan STR for a subtype-encoded number, beginning at position K.
|
5845 |
|
|
Put the position of the character just past the number scanned in
|
5846 |
|
|
*NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
|
5847 |
|
|
Return 1 if there was a valid number at the given position, and 0
|
5848 |
|
|
otherwise. A "subtype-encoded" number consists of the absolute value
|
5849 |
|
|
in decimal, followed by the letter 'm' to indicate a negative number.
|
5850 |
|
|
Assumes 0m does not occur. */
|
5851 |
|
|
|
5852 |
|
|
int
|
5853 |
|
|
ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
|
5854 |
|
|
{
|
5855 |
|
|
ULONGEST RU;
|
5856 |
|
|
|
5857 |
|
|
if (!isdigit (str[k]))
|
5858 |
|
|
return 0;
|
5859 |
|
|
|
5860 |
|
|
/* Do it the hard way so as not to make any assumption about
|
5861 |
|
|
the relationship of unsigned long (%lu scan format code) and
|
5862 |
|
|
LONGEST. */
|
5863 |
|
|
RU = 0;
|
5864 |
|
|
while (isdigit (str[k]))
|
5865 |
|
|
{
|
5866 |
|
|
RU = RU * 10 + (str[k] - '0');
|
5867 |
|
|
k += 1;
|
5868 |
|
|
}
|
5869 |
|
|
|
5870 |
|
|
if (str[k] == 'm')
|
5871 |
|
|
{
|
5872 |
|
|
if (R != NULL)
|
5873 |
|
|
*R = (-(LONGEST) (RU - 1)) - 1;
|
5874 |
|
|
k += 1;
|
5875 |
|
|
}
|
5876 |
|
|
else if (R != NULL)
|
5877 |
|
|
*R = (LONGEST) RU;
|
5878 |
|
|
|
5879 |
|
|
/* NOTE on the above: Technically, C does not say what the results of
|
5880 |
|
|
- (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
|
5881 |
|
|
number representable as a LONGEST (although either would probably work
|
5882 |
|
|
in most implementations). When RU>0, the locution in the then branch
|
5883 |
|
|
above is always equivalent to the negative of RU. */
|
5884 |
|
|
|
5885 |
|
|
if (new_k != NULL)
|
5886 |
|
|
*new_k = k;
|
5887 |
|
|
return 1;
|
5888 |
|
|
}
|
5889 |
|
|
|
5890 |
|
|
/* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
|
5891 |
|
|
and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
|
5892 |
|
|
in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
|
5893 |
|
|
|
5894 |
|
|
int
|
5895 |
|
|
ada_in_variant (LONGEST val, struct type *type, int field_num)
|
5896 |
|
|
{
|
5897 |
|
|
const char *name = TYPE_FIELD_NAME (type, field_num);
|
5898 |
|
|
int p;
|
5899 |
|
|
|
5900 |
|
|
p = 0;
|
5901 |
|
|
while (1)
|
5902 |
|
|
{
|
5903 |
|
|
switch (name[p])
|
5904 |
|
|
{
|
5905 |
|
|
case '\0':
|
5906 |
|
|
return 0;
|
5907 |
|
|
case 'S':
|
5908 |
|
|
{
|
5909 |
|
|
LONGEST W;
|
5910 |
|
|
|
5911 |
|
|
if (!ada_scan_number (name, p + 1, &W, &p))
|
5912 |
|
|
return 0;
|
5913 |
|
|
if (val == W)
|
5914 |
|
|
return 1;
|
5915 |
|
|
break;
|
5916 |
|
|
}
|
5917 |
|
|
case 'R':
|
5918 |
|
|
{
|
5919 |
|
|
LONGEST L, U;
|
5920 |
|
|
|
5921 |
|
|
if (!ada_scan_number (name, p + 1, &L, &p)
|
5922 |
|
|
|| name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
|
5923 |
|
|
return 0;
|
5924 |
|
|
if (val >= L && val <= U)
|
5925 |
|
|
return 1;
|
5926 |
|
|
break;
|
5927 |
|
|
}
|
5928 |
|
|
case 'O':
|
5929 |
|
|
return 1;
|
5930 |
|
|
default:
|
5931 |
|
|
return 0;
|
5932 |
|
|
}
|
5933 |
|
|
}
|
5934 |
|
|
}
|
5935 |
|
|
|
5936 |
|
|
/* FIXME: Lots of redundancy below. Try to consolidate. */
|
5937 |
|
|
|
5938 |
|
|
/* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
|
5939 |
|
|
ARG_TYPE, extract and return the value of one of its (non-static)
|
5940 |
|
|
fields. FIELDNO says which field. Differs from value_primitive_field
|
5941 |
|
|
only in that it can handle packed values of arbitrary type. */
|
5942 |
|
|
|
5943 |
|
|
static struct value *
|
5944 |
|
|
ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
|
5945 |
|
|
struct type *arg_type)
|
5946 |
|
|
{
|
5947 |
|
|
struct type *type;
|
5948 |
|
|
|
5949 |
|
|
arg_type = ada_check_typedef (arg_type);
|
5950 |
|
|
type = TYPE_FIELD_TYPE (arg_type, fieldno);
|
5951 |
|
|
|
5952 |
|
|
/* Handle packed fields. */
|
5953 |
|
|
|
5954 |
|
|
if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
|
5955 |
|
|
{
|
5956 |
|
|
int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
|
5957 |
|
|
int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
|
5958 |
|
|
|
5959 |
|
|
return ada_value_primitive_packed_val (arg1, value_contents (arg1),
|
5960 |
|
|
offset + bit_pos / 8,
|
5961 |
|
|
bit_pos % 8, bit_size, type);
|
5962 |
|
|
}
|
5963 |
|
|
else
|
5964 |
|
|
return value_primitive_field (arg1, offset, fieldno, arg_type);
|
5965 |
|
|
}
|
5966 |
|
|
|
5967 |
|
|
/* Find field with name NAME in object of type TYPE. If found,
|
5968 |
|
|
set the following for each argument that is non-null:
|
5969 |
|
|
- *FIELD_TYPE_P to the field's type;
|
5970 |
|
|
- *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
|
5971 |
|
|
an object of that type;
|
5972 |
|
|
- *BIT_OFFSET_P to the bit offset modulo byte size of the field;
|
5973 |
|
|
- *BIT_SIZE_P to its size in bits if the field is packed, and
|
5974 |
|
|
|
5975 |
|
|
If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
|
5976 |
|
|
fields up to but not including the desired field, or by the total
|
5977 |
|
|
number of fields if not found. A NULL value of NAME never
|
5978 |
|
|
matches; the function just counts visible fields in this case.
|
5979 |
|
|
|
5980 |
|
|
Returns 1 if found, 0 otherwise. */
|
5981 |
|
|
|
5982 |
|
|
static int
|
5983 |
|
|
find_struct_field (char *name, struct type *type, int offset,
|
5984 |
|
|
struct type **field_type_p,
|
5985 |
|
|
int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
|
5986 |
|
|
int *index_p)
|
5987 |
|
|
{
|
5988 |
|
|
int i;
|
5989 |
|
|
|
5990 |
|
|
type = ada_check_typedef (type);
|
5991 |
|
|
|
5992 |
|
|
if (field_type_p != NULL)
|
5993 |
|
|
*field_type_p = NULL;
|
5994 |
|
|
if (byte_offset_p != NULL)
|
5995 |
|
|
*byte_offset_p = 0;
|
5996 |
|
|
if (bit_offset_p != NULL)
|
5997 |
|
|
*bit_offset_p = 0;
|
5998 |
|
|
if (bit_size_p != NULL)
|
5999 |
|
|
*bit_size_p = 0;
|
6000 |
|
|
|
6001 |
|
|
for (i = 0; i < TYPE_NFIELDS (type); i += 1)
|
6002 |
|
|
{
|
6003 |
|
|
int bit_pos = TYPE_FIELD_BITPOS (type, i);
|
6004 |
|
|
int fld_offset = offset + bit_pos / 8;
|
6005 |
|
|
char *t_field_name = TYPE_FIELD_NAME (type, i);
|
6006 |
|
|
|
6007 |
|
|
if (t_field_name == NULL)
|
6008 |
|
|
continue;
|
6009 |
|
|
|
6010 |
|
|
else if (name != NULL && field_name_match (t_field_name, name))
|
6011 |
|
|
{
|
6012 |
|
|
int bit_size = TYPE_FIELD_BITSIZE (type, i);
|
6013 |
|
|
|
6014 |
|
|
if (field_type_p != NULL)
|
6015 |
|
|
*field_type_p = TYPE_FIELD_TYPE (type, i);
|
6016 |
|
|
if (byte_offset_p != NULL)
|
6017 |
|
|
*byte_offset_p = fld_offset;
|
6018 |
|
|
if (bit_offset_p != NULL)
|
6019 |
|
|
*bit_offset_p = bit_pos % 8;
|
6020 |
|
|
if (bit_size_p != NULL)
|
6021 |
|
|
*bit_size_p = bit_size;
|
6022 |
|
|
return 1;
|
6023 |
|
|
}
|
6024 |
|
|
else if (ada_is_wrapper_field (type, i))
|
6025 |
|
|
{
|
6026 |
|
|
if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
|
6027 |
|
|
field_type_p, byte_offset_p, bit_offset_p,
|
6028 |
|
|
bit_size_p, index_p))
|
6029 |
|
|
return 1;
|
6030 |
|
|
}
|
6031 |
|
|
else if (ada_is_variant_part (type, i))
|
6032 |
|
|
{
|
6033 |
|
|
/* PNH: Wait. Do we ever execute this section, or is ARG always of
|
6034 |
|
|
fixed type?? */
|
6035 |
|
|
int j;
|
6036 |
|
|
struct type *field_type
|
6037 |
|
|
= ada_check_typedef (TYPE_FIELD_TYPE (type, i));
|
6038 |
|
|
|
6039 |
|
|
for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
|
6040 |
|
|
{
|
6041 |
|
|
if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
|
6042 |
|
|
fld_offset
|
6043 |
|
|
+ TYPE_FIELD_BITPOS (field_type, j) / 8,
|
6044 |
|
|
field_type_p, byte_offset_p,
|
6045 |
|
|
bit_offset_p, bit_size_p, index_p))
|
6046 |
|
|
return 1;
|
6047 |
|
|
}
|
6048 |
|
|
}
|
6049 |
|
|
else if (index_p != NULL)
|
6050 |
|
|
*index_p += 1;
|
6051 |
|
|
}
|
6052 |
|
|
return 0;
|
6053 |
|
|
}
|
6054 |
|
|
|
6055 |
|
|
/* Number of user-visible fields in record type TYPE. */
|
6056 |
|
|
|
6057 |
|
|
static int
|
6058 |
|
|
num_visible_fields (struct type *type)
|
6059 |
|
|
{
|
6060 |
|
|
int n;
|
6061 |
|
|
|
6062 |
|
|
n = 0;
|
6063 |
|
|
find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
|
6064 |
|
|
return n;
|
6065 |
|
|
}
|
6066 |
|
|
|
6067 |
|
|
/* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
|
6068 |
|
|
and search in it assuming it has (class) type TYPE.
|
6069 |
|
|
If found, return value, else return NULL.
|
6070 |
|
|
|
6071 |
|
|
Searches recursively through wrapper fields (e.g., '_parent'). */
|
6072 |
|
|
|
6073 |
|
|
static struct value *
|
6074 |
|
|
ada_search_struct_field (char *name, struct value *arg, int offset,
|
6075 |
|
|
struct type *type)
|
6076 |
|
|
{
|
6077 |
|
|
int i;
|
6078 |
|
|
|
6079 |
|
|
type = ada_check_typedef (type);
|
6080 |
|
|
for (i = 0; i < TYPE_NFIELDS (type); i += 1)
|
6081 |
|
|
{
|
6082 |
|
|
char *t_field_name = TYPE_FIELD_NAME (type, i);
|
6083 |
|
|
|
6084 |
|
|
if (t_field_name == NULL)
|
6085 |
|
|
continue;
|
6086 |
|
|
|
6087 |
|
|
else if (field_name_match (t_field_name, name))
|
6088 |
|
|
return ada_value_primitive_field (arg, offset, i, type);
|
6089 |
|
|
|
6090 |
|
|
else if (ada_is_wrapper_field (type, i))
|
6091 |
|
|
{
|
6092 |
|
|
struct value *v = /* Do not let indent join lines here. */
|
6093 |
|
|
ada_search_struct_field (name, arg,
|
6094 |
|
|
offset + TYPE_FIELD_BITPOS (type, i) / 8,
|
6095 |
|
|
TYPE_FIELD_TYPE (type, i));
|
6096 |
|
|
|
6097 |
|
|
if (v != NULL)
|
6098 |
|
|
return v;
|
6099 |
|
|
}
|
6100 |
|
|
|
6101 |
|
|
else if (ada_is_variant_part (type, i))
|
6102 |
|
|
{
|
6103 |
|
|
/* PNH: Do we ever get here? See find_struct_field. */
|
6104 |
|
|
int j;
|
6105 |
|
|
struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
|
6106 |
|
|
i));
|
6107 |
|
|
int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
|
6108 |
|
|
|
6109 |
|
|
for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
|
6110 |
|
|
{
|
6111 |
|
|
struct value *v = ada_search_struct_field /* Force line break. */
|
6112 |
|
|
(name, arg,
|
6113 |
|
|
var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
|
6114 |
|
|
TYPE_FIELD_TYPE (field_type, j));
|
6115 |
|
|
|
6116 |
|
|
if (v != NULL)
|
6117 |
|
|
return v;
|
6118 |
|
|
}
|
6119 |
|
|
}
|
6120 |
|
|
}
|
6121 |
|
|
return NULL;
|
6122 |
|
|
}
|
6123 |
|
|
|
6124 |
|
|
static struct value *ada_index_struct_field_1 (int *, struct value *,
|
6125 |
|
|
int, struct type *);
|
6126 |
|
|
|
6127 |
|
|
|
6128 |
|
|
/* Return field #INDEX in ARG, where the index is that returned by
|
6129 |
|
|
* find_struct_field through its INDEX_P argument. Adjust the address
|
6130 |
|
|
* of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
|
6131 |
|
|
* If found, return value, else return NULL. */
|
6132 |
|
|
|
6133 |
|
|
static struct value *
|
6134 |
|
|
ada_index_struct_field (int index, struct value *arg, int offset,
|
6135 |
|
|
struct type *type)
|
6136 |
|
|
{
|
6137 |
|
|
return ada_index_struct_field_1 (&index, arg, offset, type);
|
6138 |
|
|
}
|
6139 |
|
|
|
6140 |
|
|
|
6141 |
|
|
/* Auxiliary function for ada_index_struct_field. Like
|
6142 |
|
|
* ada_index_struct_field, but takes index from *INDEX_P and modifies
|
6143 |
|
|
* *INDEX_P. */
|
6144 |
|
|
|
6145 |
|
|
static struct value *
|
6146 |
|
|
ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
|
6147 |
|
|
struct type *type)
|
6148 |
|
|
{
|
6149 |
|
|
int i;
|
6150 |
|
|
type = ada_check_typedef (type);
|
6151 |
|
|
|
6152 |
|
|
for (i = 0; i < TYPE_NFIELDS (type); i += 1)
|
6153 |
|
|
{
|
6154 |
|
|
if (TYPE_FIELD_NAME (type, i) == NULL)
|
6155 |
|
|
continue;
|
6156 |
|
|
else if (ada_is_wrapper_field (type, i))
|
6157 |
|
|
{
|
6158 |
|
|
struct value *v = /* Do not let indent join lines here. */
|
6159 |
|
|
ada_index_struct_field_1 (index_p, arg,
|
6160 |
|
|
offset + TYPE_FIELD_BITPOS (type, i) / 8,
|
6161 |
|
|
TYPE_FIELD_TYPE (type, i));
|
6162 |
|
|
|
6163 |
|
|
if (v != NULL)
|
6164 |
|
|
return v;
|
6165 |
|
|
}
|
6166 |
|
|
|
6167 |
|
|
else if (ada_is_variant_part (type, i))
|
6168 |
|
|
{
|
6169 |
|
|
/* PNH: Do we ever get here? See ada_search_struct_field,
|
6170 |
|
|
find_struct_field. */
|
6171 |
|
|
error (_("Cannot assign this kind of variant record"));
|
6172 |
|
|
}
|
6173 |
|
|
else if (*index_p == 0)
|
6174 |
|
|
return ada_value_primitive_field (arg, offset, i, type);
|
6175 |
|
|
else
|
6176 |
|
|
*index_p -= 1;
|
6177 |
|
|
}
|
6178 |
|
|
return NULL;
|
6179 |
|
|
}
|
6180 |
|
|
|
6181 |
|
|
/* Given ARG, a value of type (pointer or reference to a)*
|
6182 |
|
|
structure/union, extract the component named NAME from the ultimate
|
6183 |
|
|
target structure/union and return it as a value with its
|
6184 |
|
|
appropriate type.
|
6185 |
|
|
|
6186 |
|
|
The routine searches for NAME among all members of the structure itself
|
6187 |
|
|
and (recursively) among all members of any wrapper members
|
6188 |
|
|
(e.g., '_parent').
|
6189 |
|
|
|
6190 |
|
|
If NO_ERR, then simply return NULL in case of error, rather than
|
6191 |
|
|
calling error. */
|
6192 |
|
|
|
6193 |
|
|
struct value *
|
6194 |
|
|
ada_value_struct_elt (struct value *arg, char *name, int no_err)
|
6195 |
|
|
{
|
6196 |
|
|
struct type *t, *t1;
|
6197 |
|
|
struct value *v;
|
6198 |
|
|
|
6199 |
|
|
v = NULL;
|
6200 |
|
|
t1 = t = ada_check_typedef (value_type (arg));
|
6201 |
|
|
if (TYPE_CODE (t) == TYPE_CODE_REF)
|
6202 |
|
|
{
|
6203 |
|
|
t1 = TYPE_TARGET_TYPE (t);
|
6204 |
|
|
if (t1 == NULL)
|
6205 |
|
|
goto BadValue;
|
6206 |
|
|
t1 = ada_check_typedef (t1);
|
6207 |
|
|
if (TYPE_CODE (t1) == TYPE_CODE_PTR)
|
6208 |
|
|
{
|
6209 |
|
|
arg = coerce_ref (arg);
|
6210 |
|
|
t = t1;
|
6211 |
|
|
}
|
6212 |
|
|
}
|
6213 |
|
|
|
6214 |
|
|
while (TYPE_CODE (t) == TYPE_CODE_PTR)
|
6215 |
|
|
{
|
6216 |
|
|
t1 = TYPE_TARGET_TYPE (t);
|
6217 |
|
|
if (t1 == NULL)
|
6218 |
|
|
goto BadValue;
|
6219 |
|
|
t1 = ada_check_typedef (t1);
|
6220 |
|
|
if (TYPE_CODE (t1) == TYPE_CODE_PTR)
|
6221 |
|
|
{
|
6222 |
|
|
arg = value_ind (arg);
|
6223 |
|
|
t = t1;
|
6224 |
|
|
}
|
6225 |
|
|
else
|
6226 |
|
|
break;
|
6227 |
|
|
}
|
6228 |
|
|
|
6229 |
|
|
if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
|
6230 |
|
|
goto BadValue;
|
6231 |
|
|
|
6232 |
|
|
if (t1 == t)
|
6233 |
|
|
v = ada_search_struct_field (name, arg, 0, t);
|
6234 |
|
|
else
|
6235 |
|
|
{
|
6236 |
|
|
int bit_offset, bit_size, byte_offset;
|
6237 |
|
|
struct type *field_type;
|
6238 |
|
|
CORE_ADDR address;
|
6239 |
|
|
|
6240 |
|
|
if (TYPE_CODE (t) == TYPE_CODE_PTR)
|
6241 |
|
|
address = value_as_address (arg);
|
6242 |
|
|
else
|
6243 |
|
|
address = unpack_pointer (t, value_contents (arg));
|
6244 |
|
|
|
6245 |
|
|
t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1);
|
6246 |
|
|
if (find_struct_field (name, t1, 0,
|
6247 |
|
|
&field_type, &byte_offset, &bit_offset,
|
6248 |
|
|
&bit_size, NULL))
|
6249 |
|
|
{
|
6250 |
|
|
if (bit_size != 0)
|
6251 |
|
|
{
|
6252 |
|
|
if (TYPE_CODE (t) == TYPE_CODE_REF)
|
6253 |
|
|
arg = ada_coerce_ref (arg);
|
6254 |
|
|
else
|
6255 |
|
|
arg = ada_value_ind (arg);
|
6256 |
|
|
v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
|
6257 |
|
|
bit_offset, bit_size,
|
6258 |
|
|
field_type);
|
6259 |
|
|
}
|
6260 |
|
|
else
|
6261 |
|
|
v = value_at_lazy (field_type, address + byte_offset);
|
6262 |
|
|
}
|
6263 |
|
|
}
|
6264 |
|
|
|
6265 |
|
|
if (v != NULL || no_err)
|
6266 |
|
|
return v;
|
6267 |
|
|
else
|
6268 |
|
|
error (_("There is no member named %s."), name);
|
6269 |
|
|
|
6270 |
|
|
BadValue:
|
6271 |
|
|
if (no_err)
|
6272 |
|
|
return NULL;
|
6273 |
|
|
else
|
6274 |
|
|
error (_("Attempt to extract a component of a value that is not a record."));
|
6275 |
|
|
}
|
6276 |
|
|
|
6277 |
|
|
/* Given a type TYPE, look up the type of the component of type named NAME.
|
6278 |
|
|
If DISPP is non-null, add its byte displacement from the beginning of a
|
6279 |
|
|
structure (pointed to by a value) of type TYPE to *DISPP (does not
|
6280 |
|
|
work for packed fields).
|
6281 |
|
|
|
6282 |
|
|
Matches any field whose name has NAME as a prefix, possibly
|
6283 |
|
|
followed by "___".
|
6284 |
|
|
|
6285 |
|
|
TYPE can be either a struct or union. If REFOK, TYPE may also
|
6286 |
|
|
be a (pointer or reference)+ to a struct or union, and the
|
6287 |
|
|
ultimate target type will be searched.
|
6288 |
|
|
|
6289 |
|
|
Looks recursively into variant clauses and parent types.
|
6290 |
|
|
|
6291 |
|
|
If NOERR is nonzero, return NULL if NAME is not suitably defined or
|
6292 |
|
|
TYPE is not a type of the right kind. */
|
6293 |
|
|
|
6294 |
|
|
static struct type *
|
6295 |
|
|
ada_lookup_struct_elt_type (struct type *type, char *name, int refok,
|
6296 |
|
|
int noerr, int *dispp)
|
6297 |
|
|
{
|
6298 |
|
|
int i;
|
6299 |
|
|
|
6300 |
|
|
if (name == NULL)
|
6301 |
|
|
goto BadName;
|
6302 |
|
|
|
6303 |
|
|
if (refok && type != NULL)
|
6304 |
|
|
while (1)
|
6305 |
|
|
{
|
6306 |
|
|
type = ada_check_typedef (type);
|
6307 |
|
|
if (TYPE_CODE (type) != TYPE_CODE_PTR
|
6308 |
|
|
&& TYPE_CODE (type) != TYPE_CODE_REF)
|
6309 |
|
|
break;
|
6310 |
|
|
type = TYPE_TARGET_TYPE (type);
|
6311 |
|
|
}
|
6312 |
|
|
|
6313 |
|
|
if (type == NULL
|
6314 |
|
|
|| (TYPE_CODE (type) != TYPE_CODE_STRUCT
|
6315 |
|
|
&& TYPE_CODE (type) != TYPE_CODE_UNION))
|
6316 |
|
|
{
|
6317 |
|
|
if (noerr)
|
6318 |
|
|
return NULL;
|
6319 |
|
|
else
|
6320 |
|
|
{
|
6321 |
|
|
target_terminal_ours ();
|
6322 |
|
|
gdb_flush (gdb_stdout);
|
6323 |
|
|
if (type == NULL)
|
6324 |
|
|
error (_("Type (null) is not a structure or union type"));
|
6325 |
|
|
else
|
6326 |
|
|
{
|
6327 |
|
|
/* XXX: type_sprint */
|
6328 |
|
|
fprintf_unfiltered (gdb_stderr, _("Type "));
|
6329 |
|
|
type_print (type, "", gdb_stderr, -1);
|
6330 |
|
|
error (_(" is not a structure or union type"));
|
6331 |
|
|
}
|
6332 |
|
|
}
|
6333 |
|
|
}
|
6334 |
|
|
|
6335 |
|
|
type = to_static_fixed_type (type);
|
6336 |
|
|
|
6337 |
|
|
for (i = 0; i < TYPE_NFIELDS (type); i += 1)
|
6338 |
|
|
{
|
6339 |
|
|
char *t_field_name = TYPE_FIELD_NAME (type, i);
|
6340 |
|
|
struct type *t;
|
6341 |
|
|
int disp;
|
6342 |
|
|
|
6343 |
|
|
if (t_field_name == NULL)
|
6344 |
|
|
continue;
|
6345 |
|
|
|
6346 |
|
|
else if (field_name_match (t_field_name, name))
|
6347 |
|
|
{
|
6348 |
|
|
if (dispp != NULL)
|
6349 |
|
|
*dispp += TYPE_FIELD_BITPOS (type, i) / 8;
|
6350 |
|
|
return ada_check_typedef (TYPE_FIELD_TYPE (type, i));
|
6351 |
|
|
}
|
6352 |
|
|
|
6353 |
|
|
else if (ada_is_wrapper_field (type, i))
|
6354 |
|
|
{
|
6355 |
|
|
disp = 0;
|
6356 |
|
|
t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
|
6357 |
|
|
0, 1, &disp);
|
6358 |
|
|
if (t != NULL)
|
6359 |
|
|
{
|
6360 |
|
|
if (dispp != NULL)
|
6361 |
|
|
*dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
|
6362 |
|
|
return t;
|
6363 |
|
|
}
|
6364 |
|
|
}
|
6365 |
|
|
|
6366 |
|
|
else if (ada_is_variant_part (type, i))
|
6367 |
|
|
{
|
6368 |
|
|
int j;
|
6369 |
|
|
struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
|
6370 |
|
|
i));
|
6371 |
|
|
|
6372 |
|
|
for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
|
6373 |
|
|
{
|
6374 |
|
|
/* FIXME pnh 2008/01/26: We check for a field that is
|
6375 |
|
|
NOT wrapped in a struct, since the compiler sometimes
|
6376 |
|
|
generates these for unchecked variant types. Revisit
|
6377 |
|
|
if the compiler changes this practice. */
|
6378 |
|
|
char *v_field_name = TYPE_FIELD_NAME (field_type, j);
|
6379 |
|
|
disp = 0;
|
6380 |
|
|
if (v_field_name != NULL
|
6381 |
|
|
&& field_name_match (v_field_name, name))
|
6382 |
|
|
t = ada_check_typedef (TYPE_FIELD_TYPE (field_type, j));
|
6383 |
|
|
else
|
6384 |
|
|
t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type, j),
|
6385 |
|
|
name, 0, 1, &disp);
|
6386 |
|
|
|
6387 |
|
|
if (t != NULL)
|
6388 |
|
|
{
|
6389 |
|
|
if (dispp != NULL)
|
6390 |
|
|
*dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
|
6391 |
|
|
return t;
|
6392 |
|
|
}
|
6393 |
|
|
}
|
6394 |
|
|
}
|
6395 |
|
|
|
6396 |
|
|
}
|
6397 |
|
|
|
6398 |
|
|
BadName:
|
6399 |
|
|
if (!noerr)
|
6400 |
|
|
{
|
6401 |
|
|
target_terminal_ours ();
|
6402 |
|
|
gdb_flush (gdb_stdout);
|
6403 |
|
|
if (name == NULL)
|
6404 |
|
|
{
|
6405 |
|
|
/* XXX: type_sprint */
|
6406 |
|
|
fprintf_unfiltered (gdb_stderr, _("Type "));
|
6407 |
|
|
type_print (type, "", gdb_stderr, -1);
|
6408 |
|
|
error (_(" has no component named <null>"));
|
6409 |
|
|
}
|
6410 |
|
|
else
|
6411 |
|
|
{
|
6412 |
|
|
/* XXX: type_sprint */
|
6413 |
|
|
fprintf_unfiltered (gdb_stderr, _("Type "));
|
6414 |
|
|
type_print (type, "", gdb_stderr, -1);
|
6415 |
|
|
error (_(" has no component named %s"), name);
|
6416 |
|
|
}
|
6417 |
|
|
}
|
6418 |
|
|
|
6419 |
|
|
return NULL;
|
6420 |
|
|
}
|
6421 |
|
|
|
6422 |
|
|
/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
|
6423 |
|
|
within a value of type OUTER_TYPE, return true iff VAR_TYPE
|
6424 |
|
|
represents an unchecked union (that is, the variant part of a
|
6425 |
|
|
record that is named in an Unchecked_Union pragma). */
|
6426 |
|
|
|
6427 |
|
|
static int
|
6428 |
|
|
is_unchecked_variant (struct type *var_type, struct type *outer_type)
|
6429 |
|
|
{
|
6430 |
|
|
char *discrim_name = ada_variant_discrim_name (var_type);
|
6431 |
|
|
|
6432 |
|
|
return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1, NULL)
|
6433 |
|
|
== NULL);
|
6434 |
|
|
}
|
6435 |
|
|
|
6436 |
|
|
|
6437 |
|
|
/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
|
6438 |
|
|
within a value of type OUTER_TYPE that is stored in GDB at
|
6439 |
|
|
OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
|
6440 |
|
|
numbering from 0) is applicable. Returns -1 if none are. */
|
6441 |
|
|
|
6442 |
|
|
int
|
6443 |
|
|
ada_which_variant_applies (struct type *var_type, struct type *outer_type,
|
6444 |
|
|
const gdb_byte *outer_valaddr)
|
6445 |
|
|
{
|
6446 |
|
|
int others_clause;
|
6447 |
|
|
int i;
|
6448 |
|
|
char *discrim_name = ada_variant_discrim_name (var_type);
|
6449 |
|
|
struct value *outer;
|
6450 |
|
|
struct value *discrim;
|
6451 |
|
|
LONGEST discrim_val;
|
6452 |
|
|
|
6453 |
|
|
outer = value_from_contents_and_address (outer_type, outer_valaddr, 0);
|
6454 |
|
|
discrim = ada_value_struct_elt (outer, discrim_name, 1);
|
6455 |
|
|
if (discrim == NULL)
|
6456 |
|
|
return -1;
|
6457 |
|
|
discrim_val = value_as_long (discrim);
|
6458 |
|
|
|
6459 |
|
|
others_clause = -1;
|
6460 |
|
|
for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
|
6461 |
|
|
{
|
6462 |
|
|
if (ada_is_others_clause (var_type, i))
|
6463 |
|
|
others_clause = i;
|
6464 |
|
|
else if (ada_in_variant (discrim_val, var_type, i))
|
6465 |
|
|
return i;
|
6466 |
|
|
}
|
6467 |
|
|
|
6468 |
|
|
return others_clause;
|
6469 |
|
|
}
|
6470 |
|
|
|
6471 |
|
|
|
6472 |
|
|
|
6473 |
|
|
/* Dynamic-Sized Records */
|
6474 |
|
|
|
6475 |
|
|
/* Strategy: The type ostensibly attached to a value with dynamic size
|
6476 |
|
|
(i.e., a size that is not statically recorded in the debugging
|
6477 |
|
|
data) does not accurately reflect the size or layout of the value.
|
6478 |
|
|
Our strategy is to convert these values to values with accurate,
|
6479 |
|
|
conventional types that are constructed on the fly. */
|
6480 |
|
|
|
6481 |
|
|
/* There is a subtle and tricky problem here. In general, we cannot
|
6482 |
|
|
determine the size of dynamic records without its data. However,
|
6483 |
|
|
the 'struct value' data structure, which GDB uses to represent
|
6484 |
|
|
quantities in the inferior process (the target), requires the size
|
6485 |
|
|
of the type at the time of its allocation in order to reserve space
|
6486 |
|
|
for GDB's internal copy of the data. That's why the
|
6487 |
|
|
'to_fixed_xxx_type' routines take (target) addresses as parameters,
|
6488 |
|
|
rather than struct value*s.
|
6489 |
|
|
|
6490 |
|
|
However, GDB's internal history variables ($1, $2, etc.) are
|
6491 |
|
|
struct value*s containing internal copies of the data that are not, in
|
6492 |
|
|
general, the same as the data at their corresponding addresses in
|
6493 |
|
|
the target. Fortunately, the types we give to these values are all
|
6494 |
|
|
conventional, fixed-size types (as per the strategy described
|
6495 |
|
|
above), so that we don't usually have to perform the
|
6496 |
|
|
'to_fixed_xxx_type' conversions to look at their values.
|
6497 |
|
|
Unfortunately, there is one exception: if one of the internal
|
6498 |
|
|
history variables is an array whose elements are unconstrained
|
6499 |
|
|
records, then we will need to create distinct fixed types for each
|
6500 |
|
|
element selected. */
|
6501 |
|
|
|
6502 |
|
|
/* The upshot of all of this is that many routines take a (type, host
|
6503 |
|
|
address, target address) triple as arguments to represent a value.
|
6504 |
|
|
The host address, if non-null, is supposed to contain an internal
|
6505 |
|
|
copy of the relevant data; otherwise, the program is to consult the
|
6506 |
|
|
target at the target address. */
|
6507 |
|
|
|
6508 |
|
|
/* Assuming that VAL0 represents a pointer value, the result of
|
6509 |
|
|
dereferencing it. Differs from value_ind in its treatment of
|
6510 |
|
|
dynamic-sized types. */
|
6511 |
|
|
|
6512 |
|
|
struct value *
|
6513 |
|
|
ada_value_ind (struct value *val0)
|
6514 |
|
|
{
|
6515 |
|
|
struct value *val = unwrap_value (value_ind (val0));
|
6516 |
|
|
|
6517 |
|
|
return ada_to_fixed_value (val);
|
6518 |
|
|
}
|
6519 |
|
|
|
6520 |
|
|
/* The value resulting from dereferencing any "reference to"
|
6521 |
|
|
qualifiers on VAL0. */
|
6522 |
|
|
|
6523 |
|
|
static struct value *
|
6524 |
|
|
ada_coerce_ref (struct value *val0)
|
6525 |
|
|
{
|
6526 |
|
|
if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
|
6527 |
|
|
{
|
6528 |
|
|
struct value *val = val0;
|
6529 |
|
|
|
6530 |
|
|
val = coerce_ref (val);
|
6531 |
|
|
val = unwrap_value (val);
|
6532 |
|
|
return ada_to_fixed_value (val);
|
6533 |
|
|
}
|
6534 |
|
|
else
|
6535 |
|
|
return val0;
|
6536 |
|
|
}
|
6537 |
|
|
|
6538 |
|
|
/* Return OFF rounded upward if necessary to a multiple of
|
6539 |
|
|
ALIGNMENT (a power of 2). */
|
6540 |
|
|
|
6541 |
|
|
static unsigned int
|
6542 |
|
|
align_value (unsigned int off, unsigned int alignment)
|
6543 |
|
|
{
|
6544 |
|
|
return (off + alignment - 1) & ~(alignment - 1);
|
6545 |
|
|
}
|
6546 |
|
|
|
6547 |
|
|
/* Return the bit alignment required for field #F of template type TYPE. */
|
6548 |
|
|
|
6549 |
|
|
static unsigned int
|
6550 |
|
|
field_alignment (struct type *type, int f)
|
6551 |
|
|
{
|
6552 |
|
|
const char *name = TYPE_FIELD_NAME (type, f);
|
6553 |
|
|
int len;
|
6554 |
|
|
int align_offset;
|
6555 |
|
|
|
6556 |
|
|
/* The field name should never be null, unless the debugging information
|
6557 |
|
|
is somehow malformed. In this case, we assume the field does not
|
6558 |
|
|
require any alignment. */
|
6559 |
|
|
if (name == NULL)
|
6560 |
|
|
return 1;
|
6561 |
|
|
|
6562 |
|
|
len = strlen (name);
|
6563 |
|
|
|
6564 |
|
|
if (!isdigit (name[len - 1]))
|
6565 |
|
|
return 1;
|
6566 |
|
|
|
6567 |
|
|
if (isdigit (name[len - 2]))
|
6568 |
|
|
align_offset = len - 2;
|
6569 |
|
|
else
|
6570 |
|
|
align_offset = len - 1;
|
6571 |
|
|
|
6572 |
|
|
if (align_offset < 7 || strncmp ("___XV", name + align_offset - 6, 5) != 0)
|
6573 |
|
|
return TARGET_CHAR_BIT;
|
6574 |
|
|
|
6575 |
|
|
return atoi (name + align_offset) * TARGET_CHAR_BIT;
|
6576 |
|
|
}
|
6577 |
|
|
|
6578 |
|
|
/* Find a symbol named NAME. Ignores ambiguity. */
|
6579 |
|
|
|
6580 |
|
|
struct symbol *
|
6581 |
|
|
ada_find_any_symbol (const char *name)
|
6582 |
|
|
{
|
6583 |
|
|
struct symbol *sym;
|
6584 |
|
|
|
6585 |
|
|
sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
|
6586 |
|
|
if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
|
6587 |
|
|
return sym;
|
6588 |
|
|
|
6589 |
|
|
sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
|
6590 |
|
|
return sym;
|
6591 |
|
|
}
|
6592 |
|
|
|
6593 |
|
|
/* Find a type named NAME. Ignores ambiguity. This routine will look
|
6594 |
|
|
solely for types defined by debug info, it will not search the GDB
|
6595 |
|
|
primitive types. */
|
6596 |
|
|
|
6597 |
|
|
struct type *
|
6598 |
|
|
ada_find_any_type (const char *name)
|
6599 |
|
|
{
|
6600 |
|
|
struct symbol *sym = ada_find_any_symbol (name);
|
6601 |
|
|
|
6602 |
|
|
if (sym != NULL)
|
6603 |
|
|
return SYMBOL_TYPE (sym);
|
6604 |
|
|
|
6605 |
|
|
return NULL;
|
6606 |
|
|
}
|
6607 |
|
|
|
6608 |
|
|
/* Given NAME and an associated BLOCK, search all symbols for
|
6609 |
|
|
NAME suffixed with "___XR", which is the ``renaming'' symbol
|
6610 |
|
|
associated to NAME. Return this symbol if found, return
|
6611 |
|
|
NULL otherwise. */
|
6612 |
|
|
|
6613 |
|
|
struct symbol *
|
6614 |
|
|
ada_find_renaming_symbol (const char *name, struct block *block)
|
6615 |
|
|
{
|
6616 |
|
|
struct symbol *sym;
|
6617 |
|
|
|
6618 |
|
|
sym = find_old_style_renaming_symbol (name, block);
|
6619 |
|
|
|
6620 |
|
|
if (sym != NULL)
|
6621 |
|
|
return sym;
|
6622 |
|
|
|
6623 |
|
|
/* Not right yet. FIXME pnh 7/20/2007. */
|
6624 |
|
|
sym = ada_find_any_symbol (name);
|
6625 |
|
|
if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
|
6626 |
|
|
return sym;
|
6627 |
|
|
else
|
6628 |
|
|
return NULL;
|
6629 |
|
|
}
|
6630 |
|
|
|
6631 |
|
|
static struct symbol *
|
6632 |
|
|
find_old_style_renaming_symbol (const char *name, struct block *block)
|
6633 |
|
|
{
|
6634 |
|
|
const struct symbol *function_sym = block_linkage_function (block);
|
6635 |
|
|
char *rename;
|
6636 |
|
|
|
6637 |
|
|
if (function_sym != NULL)
|
6638 |
|
|
{
|
6639 |
|
|
/* If the symbol is defined inside a function, NAME is not fully
|
6640 |
|
|
qualified. This means we need to prepend the function name
|
6641 |
|
|
as well as adding the ``___XR'' suffix to build the name of
|
6642 |
|
|
the associated renaming symbol. */
|
6643 |
|
|
char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
|
6644 |
|
|
/* Function names sometimes contain suffixes used
|
6645 |
|
|
for instance to qualify nested subprograms. When building
|
6646 |
|
|
the XR type name, we need to make sure that this suffix is
|
6647 |
|
|
not included. So do not include any suffix in the function
|
6648 |
|
|
name length below. */
|
6649 |
|
|
int function_name_len = ada_name_prefix_len (function_name);
|
6650 |
|
|
const int rename_len = function_name_len + 2 /* "__" */
|
6651 |
|
|
+ strlen (name) + 6 /* "___XR\0" */ ;
|
6652 |
|
|
|
6653 |
|
|
/* Strip the suffix if necessary. */
|
6654 |
|
|
ada_remove_trailing_digits (function_name, &function_name_len);
|
6655 |
|
|
ada_remove_po_subprogram_suffix (function_name, &function_name_len);
|
6656 |
|
|
ada_remove_Xbn_suffix (function_name, &function_name_len);
|
6657 |
|
|
|
6658 |
|
|
/* Library-level functions are a special case, as GNAT adds
|
6659 |
|
|
a ``_ada_'' prefix to the function name to avoid namespace
|
6660 |
|
|
pollution. However, the renaming symbols themselves do not
|
6661 |
|
|
have this prefix, so we need to skip this prefix if present. */
|
6662 |
|
|
if (function_name_len > 5 /* "_ada_" */
|
6663 |
|
|
&& strstr (function_name, "_ada_") == function_name)
|
6664 |
|
|
{
|
6665 |
|
|
function_name += 5;
|
6666 |
|
|
function_name_len -= 5;
|
6667 |
|
|
}
|
6668 |
|
|
|
6669 |
|
|
rename = (char *) alloca (rename_len * sizeof (char));
|
6670 |
|
|
strncpy (rename, function_name, function_name_len);
|
6671 |
|
|
xsnprintf (rename + function_name_len, rename_len - function_name_len,
|
6672 |
|
|
"__%s___XR", name);
|
6673 |
|
|
}
|
6674 |
|
|
else
|
6675 |
|
|
{
|
6676 |
|
|
const int rename_len = strlen (name) + 6;
|
6677 |
|
|
|
6678 |
|
|
rename = (char *) alloca (rename_len * sizeof (char));
|
6679 |
|
|
xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
|
6680 |
|
|
}
|
6681 |
|
|
|
6682 |
|
|
return ada_find_any_symbol (rename);
|
6683 |
|
|
}
|
6684 |
|
|
|
6685 |
|
|
/* Because of GNAT encoding conventions, several GDB symbols may match a
|
6686 |
|
|
given type name. If the type denoted by TYPE0 is to be preferred to
|
6687 |
|
|
that of TYPE1 for purposes of type printing, return non-zero;
|
6688 |
|
|
otherwise return 0. */
|
6689 |
|
|
|
6690 |
|
|
int
|
6691 |
|
|
ada_prefer_type (struct type *type0, struct type *type1)
|
6692 |
|
|
{
|
6693 |
|
|
if (type1 == NULL)
|
6694 |
|
|
return 1;
|
6695 |
|
|
else if (type0 == NULL)
|
6696 |
|
|
return 0;
|
6697 |
|
|
else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
|
6698 |
|
|
return 1;
|
6699 |
|
|
else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
|
6700 |
|
|
return 0;
|
6701 |
|
|
else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
|
6702 |
|
|
return 1;
|
6703 |
|
|
else if (ada_is_constrained_packed_array_type (type0))
|
6704 |
|
|
return 1;
|
6705 |
|
|
else if (ada_is_array_descriptor_type (type0)
|
6706 |
|
|
&& !ada_is_array_descriptor_type (type1))
|
6707 |
|
|
return 1;
|
6708 |
|
|
else
|
6709 |
|
|
{
|
6710 |
|
|
const char *type0_name = type_name_no_tag (type0);
|
6711 |
|
|
const char *type1_name = type_name_no_tag (type1);
|
6712 |
|
|
|
6713 |
|
|
if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
|
6714 |
|
|
&& (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
|
6715 |
|
|
return 1;
|
6716 |
|
|
}
|
6717 |
|
|
return 0;
|
6718 |
|
|
}
|
6719 |
|
|
|
6720 |
|
|
/* The name of TYPE, which is either its TYPE_NAME, or, if that is
|
6721 |
|
|
null, its TYPE_TAG_NAME. Null if TYPE is null. */
|
6722 |
|
|
|
6723 |
|
|
char *
|
6724 |
|
|
ada_type_name (struct type *type)
|
6725 |
|
|
{
|
6726 |
|
|
if (type == NULL)
|
6727 |
|
|
return NULL;
|
6728 |
|
|
else if (TYPE_NAME (type) != NULL)
|
6729 |
|
|
return TYPE_NAME (type);
|
6730 |
|
|
else
|
6731 |
|
|
return TYPE_TAG_NAME (type);
|
6732 |
|
|
}
|
6733 |
|
|
|
6734 |
|
|
/* Search the list of "descriptive" types associated to TYPE for a type
|
6735 |
|
|
whose name is NAME. */
|
6736 |
|
|
|
6737 |
|
|
static struct type *
|
6738 |
|
|
find_parallel_type_by_descriptive_type (struct type *type, const char *name)
|
6739 |
|
|
{
|
6740 |
|
|
struct type *result;
|
6741 |
|
|
|
6742 |
|
|
/* If there no descriptive-type info, then there is no parallel type
|
6743 |
|
|
to be found. */
|
6744 |
|
|
if (!HAVE_GNAT_AUX_INFO (type))
|
6745 |
|
|
return NULL;
|
6746 |
|
|
|
6747 |
|
|
result = TYPE_DESCRIPTIVE_TYPE (type);
|
6748 |
|
|
while (result != NULL)
|
6749 |
|
|
{
|
6750 |
|
|
char *result_name = ada_type_name (result);
|
6751 |
|
|
|
6752 |
|
|
if (result_name == NULL)
|
6753 |
|
|
{
|
6754 |
|
|
warning (_("unexpected null name on descriptive type"));
|
6755 |
|
|
return NULL;
|
6756 |
|
|
}
|
6757 |
|
|
|
6758 |
|
|
/* If the names match, stop. */
|
6759 |
|
|
if (strcmp (result_name, name) == 0)
|
6760 |
|
|
break;
|
6761 |
|
|
|
6762 |
|
|
/* Otherwise, look at the next item on the list, if any. */
|
6763 |
|
|
if (HAVE_GNAT_AUX_INFO (result))
|
6764 |
|
|
result = TYPE_DESCRIPTIVE_TYPE (result);
|
6765 |
|
|
else
|
6766 |
|
|
result = NULL;
|
6767 |
|
|
}
|
6768 |
|
|
|
6769 |
|
|
/* If we didn't find a match, see whether this is a packed array. With
|
6770 |
|
|
older compilers, the descriptive type information is either absent or
|
6771 |
|
|
irrelevant when it comes to packed arrays so the above lookup fails.
|
6772 |
|
|
Fall back to using a parallel lookup by name in this case. */
|
6773 |
|
|
if (result == NULL && ada_is_constrained_packed_array_type (type))
|
6774 |
|
|
return ada_find_any_type (name);
|
6775 |
|
|
|
6776 |
|
|
return result;
|
6777 |
|
|
}
|
6778 |
|
|
|
6779 |
|
|
/* Find a parallel type to TYPE with the specified NAME, using the
|
6780 |
|
|
descriptive type taken from the debugging information, if available,
|
6781 |
|
|
and otherwise using the (slower) name-based method. */
|
6782 |
|
|
|
6783 |
|
|
static struct type *
|
6784 |
|
|
ada_find_parallel_type_with_name (struct type *type, const char *name)
|
6785 |
|
|
{
|
6786 |
|
|
struct type *result = NULL;
|
6787 |
|
|
|
6788 |
|
|
if (HAVE_GNAT_AUX_INFO (type))
|
6789 |
|
|
result = find_parallel_type_by_descriptive_type (type, name);
|
6790 |
|
|
else
|
6791 |
|
|
result = ada_find_any_type (name);
|
6792 |
|
|
|
6793 |
|
|
return result;
|
6794 |
|
|
}
|
6795 |
|
|
|
6796 |
|
|
/* Same as above, but specify the name of the parallel type by appending
|
6797 |
|
|
SUFFIX to the name of TYPE. */
|
6798 |
|
|
|
6799 |
|
|
struct type *
|
6800 |
|
|
ada_find_parallel_type (struct type *type, const char *suffix)
|
6801 |
|
|
{
|
6802 |
|
|
char *name, *typename = ada_type_name (type);
|
6803 |
|
|
int len;
|
6804 |
|
|
|
6805 |
|
|
if (typename == NULL)
|
6806 |
|
|
return NULL;
|
6807 |
|
|
|
6808 |
|
|
len = strlen (typename);
|
6809 |
|
|
|
6810 |
|
|
name = (char *) alloca (len + strlen (suffix) + 1);
|
6811 |
|
|
|
6812 |
|
|
strcpy (name, typename);
|
6813 |
|
|
strcpy (name + len, suffix);
|
6814 |
|
|
|
6815 |
|
|
return ada_find_parallel_type_with_name (type, name);
|
6816 |
|
|
}
|
6817 |
|
|
|
6818 |
|
|
/* If TYPE is a variable-size record type, return the corresponding template
|
6819 |
|
|
type describing its fields. Otherwise, return NULL. */
|
6820 |
|
|
|
6821 |
|
|
static struct type *
|
6822 |
|
|
dynamic_template_type (struct type *type)
|
6823 |
|
|
{
|
6824 |
|
|
type = ada_check_typedef (type);
|
6825 |
|
|
|
6826 |
|
|
if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
|
6827 |
|
|
|| ada_type_name (type) == NULL)
|
6828 |
|
|
return NULL;
|
6829 |
|
|
else
|
6830 |
|
|
{
|
6831 |
|
|
int len = strlen (ada_type_name (type));
|
6832 |
|
|
|
6833 |
|
|
if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
|
6834 |
|
|
return type;
|
6835 |
|
|
else
|
6836 |
|
|
return ada_find_parallel_type (type, "___XVE");
|
6837 |
|
|
}
|
6838 |
|
|
}
|
6839 |
|
|
|
6840 |
|
|
/* Assuming that TEMPL_TYPE is a union or struct type, returns
|
6841 |
|
|
non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
|
6842 |
|
|
|
6843 |
|
|
static int
|
6844 |
|
|
is_dynamic_field (struct type *templ_type, int field_num)
|
6845 |
|
|
{
|
6846 |
|
|
const char *name = TYPE_FIELD_NAME (templ_type, field_num);
|
6847 |
|
|
|
6848 |
|
|
return name != NULL
|
6849 |
|
|
&& TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
|
6850 |
|
|
&& strstr (name, "___XVL") != NULL;
|
6851 |
|
|
}
|
6852 |
|
|
|
6853 |
|
|
/* The index of the variant field of TYPE, or -1 if TYPE does not
|
6854 |
|
|
represent a variant record type. */
|
6855 |
|
|
|
6856 |
|
|
static int
|
6857 |
|
|
variant_field_index (struct type *type)
|
6858 |
|
|
{
|
6859 |
|
|
int f;
|
6860 |
|
|
|
6861 |
|
|
if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
|
6862 |
|
|
return -1;
|
6863 |
|
|
|
6864 |
|
|
for (f = 0; f < TYPE_NFIELDS (type); f += 1)
|
6865 |
|
|
{
|
6866 |
|
|
if (ada_is_variant_part (type, f))
|
6867 |
|
|
return f;
|
6868 |
|
|
}
|
6869 |
|
|
return -1;
|
6870 |
|
|
}
|
6871 |
|
|
|
6872 |
|
|
/* A record type with no fields. */
|
6873 |
|
|
|
6874 |
|
|
static struct type *
|
6875 |
|
|
empty_record (struct type *template)
|
6876 |
|
|
{
|
6877 |
|
|
struct type *type = alloc_type_copy (template);
|
6878 |
|
|
|
6879 |
|
|
TYPE_CODE (type) = TYPE_CODE_STRUCT;
|
6880 |
|
|
TYPE_NFIELDS (type) = 0;
|
6881 |
|
|
TYPE_FIELDS (type) = NULL;
|
6882 |
|
|
INIT_CPLUS_SPECIFIC (type);
|
6883 |
|
|
TYPE_NAME (type) = "<empty>";
|
6884 |
|
|
TYPE_TAG_NAME (type) = NULL;
|
6885 |
|
|
TYPE_LENGTH (type) = 0;
|
6886 |
|
|
return type;
|
6887 |
|
|
}
|
6888 |
|
|
|
6889 |
|
|
/* An ordinary record type (with fixed-length fields) that describes
|
6890 |
|
|
the value of type TYPE at VALADDR or ADDRESS (see comments at
|
6891 |
|
|
the beginning of this section) VAL according to GNAT conventions.
|
6892 |
|
|
DVAL0 should describe the (portion of a) record that contains any
|
6893 |
|
|
necessary discriminants. It should be NULL if value_type (VAL) is
|
6894 |
|
|
an outer-level type (i.e., as opposed to a branch of a variant.) A
|
6895 |
|
|
variant field (unless unchecked) is replaced by a particular branch
|
6896 |
|
|
of the variant.
|
6897 |
|
|
|
6898 |
|
|
If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
|
6899 |
|
|
length are not statically known are discarded. As a consequence,
|
6900 |
|
|
VALADDR, ADDRESS and DVAL0 are ignored.
|
6901 |
|
|
|
6902 |
|
|
NOTE: Limitations: For now, we assume that dynamic fields and
|
6903 |
|
|
variants occupy whole numbers of bytes. However, they need not be
|
6904 |
|
|
byte-aligned. */
|
6905 |
|
|
|
6906 |
|
|
struct type *
|
6907 |
|
|
ada_template_to_fixed_record_type_1 (struct type *type,
|
6908 |
|
|
const gdb_byte *valaddr,
|
6909 |
|
|
CORE_ADDR address, struct value *dval0,
|
6910 |
|
|
int keep_dynamic_fields)
|
6911 |
|
|
{
|
6912 |
|
|
struct value *mark = value_mark ();
|
6913 |
|
|
struct value *dval;
|
6914 |
|
|
struct type *rtype;
|
6915 |
|
|
int nfields, bit_len;
|
6916 |
|
|
int variant_field;
|
6917 |
|
|
long off;
|
6918 |
|
|
int fld_bit_len, bit_incr;
|
6919 |
|
|
int f;
|
6920 |
|
|
|
6921 |
|
|
/* Compute the number of fields in this record type that are going
|
6922 |
|
|
to be processed: unless keep_dynamic_fields, this includes only
|
6923 |
|
|
fields whose position and length are static will be processed. */
|
6924 |
|
|
if (keep_dynamic_fields)
|
6925 |
|
|
nfields = TYPE_NFIELDS (type);
|
6926 |
|
|
else
|
6927 |
|
|
{
|
6928 |
|
|
nfields = 0;
|
6929 |
|
|
while (nfields < TYPE_NFIELDS (type)
|
6930 |
|
|
&& !ada_is_variant_part (type, nfields)
|
6931 |
|
|
&& !is_dynamic_field (type, nfields))
|
6932 |
|
|
nfields++;
|
6933 |
|
|
}
|
6934 |
|
|
|
6935 |
|
|
rtype = alloc_type_copy (type);
|
6936 |
|
|
TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
|
6937 |
|
|
INIT_CPLUS_SPECIFIC (rtype);
|
6938 |
|
|
TYPE_NFIELDS (rtype) = nfields;
|
6939 |
|
|
TYPE_FIELDS (rtype) = (struct field *)
|
6940 |
|
|
TYPE_ALLOC (rtype, nfields * sizeof (struct field));
|
6941 |
|
|
memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
|
6942 |
|
|
TYPE_NAME (rtype) = ada_type_name (type);
|
6943 |
|
|
TYPE_TAG_NAME (rtype) = NULL;
|
6944 |
|
|
TYPE_FIXED_INSTANCE (rtype) = 1;
|
6945 |
|
|
|
6946 |
|
|
off = 0;
|
6947 |
|
|
bit_len = 0;
|
6948 |
|
|
variant_field = -1;
|
6949 |
|
|
|
6950 |
|
|
for (f = 0; f < nfields; f += 1)
|
6951 |
|
|
{
|
6952 |
|
|
off = align_value (off, field_alignment (type, f))
|
6953 |
|
|
+ TYPE_FIELD_BITPOS (type, f);
|
6954 |
|
|
TYPE_FIELD_BITPOS (rtype, f) = off;
|
6955 |
|
|
TYPE_FIELD_BITSIZE (rtype, f) = 0;
|
6956 |
|
|
|
6957 |
|
|
if (ada_is_variant_part (type, f))
|
6958 |
|
|
{
|
6959 |
|
|
variant_field = f;
|
6960 |
|
|
fld_bit_len = bit_incr = 0;
|
6961 |
|
|
}
|
6962 |
|
|
else if (is_dynamic_field (type, f))
|
6963 |
|
|
{
|
6964 |
|
|
const gdb_byte *field_valaddr = valaddr;
|
6965 |
|
|
CORE_ADDR field_address = address;
|
6966 |
|
|
struct type *field_type =
|
6967 |
|
|
TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
|
6968 |
|
|
|
6969 |
|
|
if (dval0 == NULL)
|
6970 |
|
|
{
|
6971 |
|
|
/* rtype's length is computed based on the run-time
|
6972 |
|
|
value of discriminants. If the discriminants are not
|
6973 |
|
|
initialized, the type size may be completely bogus and
|
6974 |
|
|
GDB may fail to allocate a value for it. So check the
|
6975 |
|
|
size first before creating the value. */
|
6976 |
|
|
check_size (rtype);
|
6977 |
|
|
dval = value_from_contents_and_address (rtype, valaddr, address);
|
6978 |
|
|
}
|
6979 |
|
|
else
|
6980 |
|
|
dval = dval0;
|
6981 |
|
|
|
6982 |
|
|
/* If the type referenced by this field is an aligner type, we need
|
6983 |
|
|
to unwrap that aligner type, because its size might not be set.
|
6984 |
|
|
Keeping the aligner type would cause us to compute the wrong
|
6985 |
|
|
size for this field, impacting the offset of the all the fields
|
6986 |
|
|
that follow this one. */
|
6987 |
|
|
if (ada_is_aligner_type (field_type))
|
6988 |
|
|
{
|
6989 |
|
|
long field_offset = TYPE_FIELD_BITPOS (field_type, f);
|
6990 |
|
|
|
6991 |
|
|
field_valaddr = cond_offset_host (field_valaddr, field_offset);
|
6992 |
|
|
field_address = cond_offset_target (field_address, field_offset);
|
6993 |
|
|
field_type = ada_aligned_type (field_type);
|
6994 |
|
|
}
|
6995 |
|
|
|
6996 |
|
|
field_valaddr = cond_offset_host (field_valaddr,
|
6997 |
|
|
off / TARGET_CHAR_BIT);
|
6998 |
|
|
field_address = cond_offset_target (field_address,
|
6999 |
|
|
off / TARGET_CHAR_BIT);
|
7000 |
|
|
|
7001 |
|
|
/* Get the fixed type of the field. Note that, in this case,
|
7002 |
|
|
we do not want to get the real type out of the tag: if
|
7003 |
|
|
the current field is the parent part of a tagged record,
|
7004 |
|
|
we will get the tag of the object. Clearly wrong: the real
|
7005 |
|
|
type of the parent is not the real type of the child. We
|
7006 |
|
|
would end up in an infinite loop. */
|
7007 |
|
|
field_type = ada_get_base_type (field_type);
|
7008 |
|
|
field_type = ada_to_fixed_type (field_type, field_valaddr,
|
7009 |
|
|
field_address, dval, 0);
|
7010 |
|
|
|
7011 |
|
|
TYPE_FIELD_TYPE (rtype, f) = field_type;
|
7012 |
|
|
TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
|
7013 |
|
|
bit_incr = fld_bit_len =
|
7014 |
|
|
TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
|
7015 |
|
|
}
|
7016 |
|
|
else
|
7017 |
|
|
{
|
7018 |
|
|
struct type *field_type = TYPE_FIELD_TYPE (type, f);
|
7019 |
|
|
|
7020 |
|
|
TYPE_FIELD_TYPE (rtype, f) = field_type;
|
7021 |
|
|
TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
|
7022 |
|
|
if (TYPE_FIELD_BITSIZE (type, f) > 0)
|
7023 |
|
|
bit_incr = fld_bit_len =
|
7024 |
|
|
TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
|
7025 |
|
|
else
|
7026 |
|
|
bit_incr = fld_bit_len =
|
7027 |
|
|
TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
|
7028 |
|
|
}
|
7029 |
|
|
if (off + fld_bit_len > bit_len)
|
7030 |
|
|
bit_len = off + fld_bit_len;
|
7031 |
|
|
off += bit_incr;
|
7032 |
|
|
TYPE_LENGTH (rtype) =
|
7033 |
|
|
align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
|
7034 |
|
|
}
|
7035 |
|
|
|
7036 |
|
|
/* We handle the variant part, if any, at the end because of certain
|
7037 |
|
|
odd cases in which it is re-ordered so as NOT to be the last field of
|
7038 |
|
|
the record. This can happen in the presence of representation
|
7039 |
|
|
clauses. */
|
7040 |
|
|
if (variant_field >= 0)
|
7041 |
|
|
{
|
7042 |
|
|
struct type *branch_type;
|
7043 |
|
|
|
7044 |
|
|
off = TYPE_FIELD_BITPOS (rtype, variant_field);
|
7045 |
|
|
|
7046 |
|
|
if (dval0 == NULL)
|
7047 |
|
|
dval = value_from_contents_and_address (rtype, valaddr, address);
|
7048 |
|
|
else
|
7049 |
|
|
dval = dval0;
|
7050 |
|
|
|
7051 |
|
|
branch_type =
|
7052 |
|
|
to_fixed_variant_branch_type
|
7053 |
|
|
(TYPE_FIELD_TYPE (type, variant_field),
|
7054 |
|
|
cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
|
7055 |
|
|
cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
|
7056 |
|
|
if (branch_type == NULL)
|
7057 |
|
|
{
|
7058 |
|
|
for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
|
7059 |
|
|
TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
|
7060 |
|
|
TYPE_NFIELDS (rtype) -= 1;
|
7061 |
|
|
}
|
7062 |
|
|
else
|
7063 |
|
|
{
|
7064 |
|
|
TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
|
7065 |
|
|
TYPE_FIELD_NAME (rtype, variant_field) = "S";
|
7066 |
|
|
fld_bit_len =
|
7067 |
|
|
TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
|
7068 |
|
|
TARGET_CHAR_BIT;
|
7069 |
|
|
if (off + fld_bit_len > bit_len)
|
7070 |
|
|
bit_len = off + fld_bit_len;
|
7071 |
|
|
TYPE_LENGTH (rtype) =
|
7072 |
|
|
align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
|
7073 |
|
|
}
|
7074 |
|
|
}
|
7075 |
|
|
|
7076 |
|
|
/* According to exp_dbug.ads, the size of TYPE for variable-size records
|
7077 |
|
|
should contain the alignment of that record, which should be a strictly
|
7078 |
|
|
positive value. If null or negative, then something is wrong, most
|
7079 |
|
|
probably in the debug info. In that case, we don't round up the size
|
7080 |
|
|
of the resulting type. If this record is not part of another structure,
|
7081 |
|
|
the current RTYPE length might be good enough for our purposes. */
|
7082 |
|
|
if (TYPE_LENGTH (type) <= 0)
|
7083 |
|
|
{
|
7084 |
|
|
if (TYPE_NAME (rtype))
|
7085 |
|
|
warning (_("Invalid type size for `%s' detected: %d."),
|
7086 |
|
|
TYPE_NAME (rtype), TYPE_LENGTH (type));
|
7087 |
|
|
else
|
7088 |
|
|
warning (_("Invalid type size for <unnamed> detected: %d."),
|
7089 |
|
|
TYPE_LENGTH (type));
|
7090 |
|
|
}
|
7091 |
|
|
else
|
7092 |
|
|
{
|
7093 |
|
|
TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
|
7094 |
|
|
TYPE_LENGTH (type));
|
7095 |
|
|
}
|
7096 |
|
|
|
7097 |
|
|
value_free_to_mark (mark);
|
7098 |
|
|
if (TYPE_LENGTH (rtype) > varsize_limit)
|
7099 |
|
|
error (_("record type with dynamic size is larger than varsize-limit"));
|
7100 |
|
|
return rtype;
|
7101 |
|
|
}
|
7102 |
|
|
|
7103 |
|
|
/* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
|
7104 |
|
|
of 1. */
|
7105 |
|
|
|
7106 |
|
|
static struct type *
|
7107 |
|
|
template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
|
7108 |
|
|
CORE_ADDR address, struct value *dval0)
|
7109 |
|
|
{
|
7110 |
|
|
return ada_template_to_fixed_record_type_1 (type, valaddr,
|
7111 |
|
|
address, dval0, 1);
|
7112 |
|
|
}
|
7113 |
|
|
|
7114 |
|
|
/* An ordinary record type in which ___XVL-convention fields and
|
7115 |
|
|
___XVU- and ___XVN-convention field types in TYPE0 are replaced with
|
7116 |
|
|
static approximations, containing all possible fields. Uses
|
7117 |
|
|
no runtime values. Useless for use in values, but that's OK,
|
7118 |
|
|
since the results are used only for type determinations. Works on both
|
7119 |
|
|
structs and unions. Representation note: to save space, we memorize
|
7120 |
|
|
the result of this function in the TYPE_TARGET_TYPE of the
|
7121 |
|
|
template type. */
|
7122 |
|
|
|
7123 |
|
|
static struct type *
|
7124 |
|
|
template_to_static_fixed_type (struct type *type0)
|
7125 |
|
|
{
|
7126 |
|
|
struct type *type;
|
7127 |
|
|
int nfields;
|
7128 |
|
|
int f;
|
7129 |
|
|
|
7130 |
|
|
if (TYPE_TARGET_TYPE (type0) != NULL)
|
7131 |
|
|
return TYPE_TARGET_TYPE (type0);
|
7132 |
|
|
|
7133 |
|
|
nfields = TYPE_NFIELDS (type0);
|
7134 |
|
|
type = type0;
|
7135 |
|
|
|
7136 |
|
|
for (f = 0; f < nfields; f += 1)
|
7137 |
|
|
{
|
7138 |
|
|
struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type0, f));
|
7139 |
|
|
struct type *new_type;
|
7140 |
|
|
|
7141 |
|
|
if (is_dynamic_field (type0, f))
|
7142 |
|
|
new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
|
7143 |
|
|
else
|
7144 |
|
|
new_type = static_unwrap_type (field_type);
|
7145 |
|
|
if (type == type0 && new_type != field_type)
|
7146 |
|
|
{
|
7147 |
|
|
TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
|
7148 |
|
|
TYPE_CODE (type) = TYPE_CODE (type0);
|
7149 |
|
|
INIT_CPLUS_SPECIFIC (type);
|
7150 |
|
|
TYPE_NFIELDS (type) = nfields;
|
7151 |
|
|
TYPE_FIELDS (type) = (struct field *)
|
7152 |
|
|
TYPE_ALLOC (type, nfields * sizeof (struct field));
|
7153 |
|
|
memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
|
7154 |
|
|
sizeof (struct field) * nfields);
|
7155 |
|
|
TYPE_NAME (type) = ada_type_name (type0);
|
7156 |
|
|
TYPE_TAG_NAME (type) = NULL;
|
7157 |
|
|
TYPE_FIXED_INSTANCE (type) = 1;
|
7158 |
|
|
TYPE_LENGTH (type) = 0;
|
7159 |
|
|
}
|
7160 |
|
|
TYPE_FIELD_TYPE (type, f) = new_type;
|
7161 |
|
|
TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
|
7162 |
|
|
}
|
7163 |
|
|
return type;
|
7164 |
|
|
}
|
7165 |
|
|
|
7166 |
|
|
/* Given an object of type TYPE whose contents are at VALADDR and
|
7167 |
|
|
whose address in memory is ADDRESS, returns a revision of TYPE,
|
7168 |
|
|
which should be a non-dynamic-sized record, in which the variant
|
7169 |
|
|
part, if any, is replaced with the appropriate branch. Looks
|
7170 |
|
|
for discriminant values in DVAL0, which can be NULL if the record
|
7171 |
|
|
contains the necessary discriminant values. */
|
7172 |
|
|
|
7173 |
|
|
static struct type *
|
7174 |
|
|
to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
|
7175 |
|
|
CORE_ADDR address, struct value *dval0)
|
7176 |
|
|
{
|
7177 |
|
|
struct value *mark = value_mark ();
|
7178 |
|
|
struct value *dval;
|
7179 |
|
|
struct type *rtype;
|
7180 |
|
|
struct type *branch_type;
|
7181 |
|
|
int nfields = TYPE_NFIELDS (type);
|
7182 |
|
|
int variant_field = variant_field_index (type);
|
7183 |
|
|
|
7184 |
|
|
if (variant_field == -1)
|
7185 |
|
|
return type;
|
7186 |
|
|
|
7187 |
|
|
if (dval0 == NULL)
|
7188 |
|
|
dval = value_from_contents_and_address (type, valaddr, address);
|
7189 |
|
|
else
|
7190 |
|
|
dval = dval0;
|
7191 |
|
|
|
7192 |
|
|
rtype = alloc_type_copy (type);
|
7193 |
|
|
TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
|
7194 |
|
|
INIT_CPLUS_SPECIFIC (rtype);
|
7195 |
|
|
TYPE_NFIELDS (rtype) = nfields;
|
7196 |
|
|
TYPE_FIELDS (rtype) =
|
7197 |
|
|
(struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
|
7198 |
|
|
memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
|
7199 |
|
|
sizeof (struct field) * nfields);
|
7200 |
|
|
TYPE_NAME (rtype) = ada_type_name (type);
|
7201 |
|
|
TYPE_TAG_NAME (rtype) = NULL;
|
7202 |
|
|
TYPE_FIXED_INSTANCE (rtype) = 1;
|
7203 |
|
|
TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
|
7204 |
|
|
|
7205 |
|
|
branch_type = to_fixed_variant_branch_type
|
7206 |
|
|
(TYPE_FIELD_TYPE (type, variant_field),
|
7207 |
|
|
cond_offset_host (valaddr,
|
7208 |
|
|
TYPE_FIELD_BITPOS (type, variant_field)
|
7209 |
|
|
/ TARGET_CHAR_BIT),
|
7210 |
|
|
cond_offset_target (address,
|
7211 |
|
|
TYPE_FIELD_BITPOS (type, variant_field)
|
7212 |
|
|
/ TARGET_CHAR_BIT), dval);
|
7213 |
|
|
if (branch_type == NULL)
|
7214 |
|
|
{
|
7215 |
|
|
int f;
|
7216 |
|
|
|
7217 |
|
|
for (f = variant_field + 1; f < nfields; f += 1)
|
7218 |
|
|
TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
|
7219 |
|
|
TYPE_NFIELDS (rtype) -= 1;
|
7220 |
|
|
}
|
7221 |
|
|
else
|
7222 |
|
|
{
|
7223 |
|
|
TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
|
7224 |
|
|
TYPE_FIELD_NAME (rtype, variant_field) = "S";
|
7225 |
|
|
TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
|
7226 |
|
|
TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
|
7227 |
|
|
}
|
7228 |
|
|
TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
|
7229 |
|
|
|
7230 |
|
|
value_free_to_mark (mark);
|
7231 |
|
|
return rtype;
|
7232 |
|
|
}
|
7233 |
|
|
|
7234 |
|
|
/* An ordinary record type (with fixed-length fields) that describes
|
7235 |
|
|
the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
|
7236 |
|
|
beginning of this section]. Any necessary discriminants' values
|
7237 |
|
|
should be in DVAL, a record value; it may be NULL if the object
|
7238 |
|
|
at ADDR itself contains any necessary discriminant values.
|
7239 |
|
|
Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
|
7240 |
|
|
values from the record are needed. Except in the case that DVAL,
|
7241 |
|
|
VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
|
7242 |
|
|
unchecked) is replaced by a particular branch of the variant.
|
7243 |
|
|
|
7244 |
|
|
NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
|
7245 |
|
|
is questionable and may be removed. It can arise during the
|
7246 |
|
|
processing of an unconstrained-array-of-record type where all the
|
7247 |
|
|
variant branches have exactly the same size. This is because in
|
7248 |
|
|
such cases, the compiler does not bother to use the XVS convention
|
7249 |
|
|
when encoding the record. I am currently dubious of this
|
7250 |
|
|
shortcut and suspect the compiler should be altered. FIXME. */
|
7251 |
|
|
|
7252 |
|
|
static struct type *
|
7253 |
|
|
to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
|
7254 |
|
|
CORE_ADDR address, struct value *dval)
|
7255 |
|
|
{
|
7256 |
|
|
struct type *templ_type;
|
7257 |
|
|
|
7258 |
|
|
if (TYPE_FIXED_INSTANCE (type0))
|
7259 |
|
|
return type0;
|
7260 |
|
|
|
7261 |
|
|
templ_type = dynamic_template_type (type0);
|
7262 |
|
|
|
7263 |
|
|
if (templ_type != NULL)
|
7264 |
|
|
return template_to_fixed_record_type (templ_type, valaddr, address, dval);
|
7265 |
|
|
else if (variant_field_index (type0) >= 0)
|
7266 |
|
|
{
|
7267 |
|
|
if (dval == NULL && valaddr == NULL && address == 0)
|
7268 |
|
|
return type0;
|
7269 |
|
|
return to_record_with_fixed_variant_part (type0, valaddr, address,
|
7270 |
|
|
dval);
|
7271 |
|
|
}
|
7272 |
|
|
else
|
7273 |
|
|
{
|
7274 |
|
|
TYPE_FIXED_INSTANCE (type0) = 1;
|
7275 |
|
|
return type0;
|
7276 |
|
|
}
|
7277 |
|
|
|
7278 |
|
|
}
|
7279 |
|
|
|
7280 |
|
|
/* An ordinary record type (with fixed-length fields) that describes
|
7281 |
|
|
the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
|
7282 |
|
|
union type. Any necessary discriminants' values should be in DVAL,
|
7283 |
|
|
a record value. That is, this routine selects the appropriate
|
7284 |
|
|
branch of the union at ADDR according to the discriminant value
|
7285 |
|
|
indicated in the union's type name. Returns VAR_TYPE0 itself if
|
7286 |
|
|
it represents a variant subject to a pragma Unchecked_Union. */
|
7287 |
|
|
|
7288 |
|
|
static struct type *
|
7289 |
|
|
to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
|
7290 |
|
|
CORE_ADDR address, struct value *dval)
|
7291 |
|
|
{
|
7292 |
|
|
int which;
|
7293 |
|
|
struct type *templ_type;
|
7294 |
|
|
struct type *var_type;
|
7295 |
|
|
|
7296 |
|
|
if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
|
7297 |
|
|
var_type = TYPE_TARGET_TYPE (var_type0);
|
7298 |
|
|
else
|
7299 |
|
|
var_type = var_type0;
|
7300 |
|
|
|
7301 |
|
|
templ_type = ada_find_parallel_type (var_type, "___XVU");
|
7302 |
|
|
|
7303 |
|
|
if (templ_type != NULL)
|
7304 |
|
|
var_type = templ_type;
|
7305 |
|
|
|
7306 |
|
|
if (is_unchecked_variant (var_type, value_type (dval)))
|
7307 |
|
|
return var_type0;
|
7308 |
|
|
which =
|
7309 |
|
|
ada_which_variant_applies (var_type,
|
7310 |
|
|
value_type (dval), value_contents (dval));
|
7311 |
|
|
|
7312 |
|
|
if (which < 0)
|
7313 |
|
|
return empty_record (var_type);
|
7314 |
|
|
else if (is_dynamic_field (var_type, which))
|
7315 |
|
|
return to_fixed_record_type
|
7316 |
|
|
(TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
|
7317 |
|
|
valaddr, address, dval);
|
7318 |
|
|
else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
|
7319 |
|
|
return
|
7320 |
|
|
to_fixed_record_type
|
7321 |
|
|
(TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
|
7322 |
|
|
else
|
7323 |
|
|
return TYPE_FIELD_TYPE (var_type, which);
|
7324 |
|
|
}
|
7325 |
|
|
|
7326 |
|
|
/* Assuming that TYPE0 is an array type describing the type of a value
|
7327 |
|
|
at ADDR, and that DVAL describes a record containing any
|
7328 |
|
|
discriminants used in TYPE0, returns a type for the value that
|
7329 |
|
|
contains no dynamic components (that is, no components whose sizes
|
7330 |
|
|
are determined by run-time quantities). Unless IGNORE_TOO_BIG is
|
7331 |
|
|
true, gives an error message if the resulting type's size is over
|
7332 |
|
|
varsize_limit. */
|
7333 |
|
|
|
7334 |
|
|
static struct type *
|
7335 |
|
|
to_fixed_array_type (struct type *type0, struct value *dval,
|
7336 |
|
|
int ignore_too_big)
|
7337 |
|
|
{
|
7338 |
|
|
struct type *index_type_desc;
|
7339 |
|
|
struct type *result;
|
7340 |
|
|
int constrained_packed_array_p;
|
7341 |
|
|
|
7342 |
|
|
if (TYPE_FIXED_INSTANCE (type0))
|
7343 |
|
|
return type0;
|
7344 |
|
|
|
7345 |
|
|
constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
|
7346 |
|
|
if (constrained_packed_array_p)
|
7347 |
|
|
type0 = decode_constrained_packed_array_type (type0);
|
7348 |
|
|
|
7349 |
|
|
index_type_desc = ada_find_parallel_type (type0, "___XA");
|
7350 |
|
|
ada_fixup_array_indexes_type (index_type_desc);
|
7351 |
|
|
if (index_type_desc == NULL)
|
7352 |
|
|
{
|
7353 |
|
|
struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
|
7354 |
|
|
|
7355 |
|
|
/* NOTE: elt_type---the fixed version of elt_type0---should never
|
7356 |
|
|
depend on the contents of the array in properly constructed
|
7357 |
|
|
debugging data. */
|
7358 |
|
|
/* Create a fixed version of the array element type.
|
7359 |
|
|
We're not providing the address of an element here,
|
7360 |
|
|
and thus the actual object value cannot be inspected to do
|
7361 |
|
|
the conversion. This should not be a problem, since arrays of
|
7362 |
|
|
unconstrained objects are not allowed. In particular, all
|
7363 |
|
|
the elements of an array of a tagged type should all be of
|
7364 |
|
|
the same type specified in the debugging info. No need to
|
7365 |
|
|
consult the object tag. */
|
7366 |
|
|
struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
|
7367 |
|
|
|
7368 |
|
|
/* Make sure we always create a new array type when dealing with
|
7369 |
|
|
packed array types, since we're going to fix-up the array
|
7370 |
|
|
type length and element bitsize a little further down. */
|
7371 |
|
|
if (elt_type0 == elt_type && !constrained_packed_array_p)
|
7372 |
|
|
result = type0;
|
7373 |
|
|
else
|
7374 |
|
|
result = create_array_type (alloc_type_copy (type0),
|
7375 |
|
|
elt_type, TYPE_INDEX_TYPE (type0));
|
7376 |
|
|
}
|
7377 |
|
|
else
|
7378 |
|
|
{
|
7379 |
|
|
int i;
|
7380 |
|
|
struct type *elt_type0;
|
7381 |
|
|
|
7382 |
|
|
elt_type0 = type0;
|
7383 |
|
|
for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
|
7384 |
|
|
elt_type0 = TYPE_TARGET_TYPE (elt_type0);
|
7385 |
|
|
|
7386 |
|
|
/* NOTE: result---the fixed version of elt_type0---should never
|
7387 |
|
|
depend on the contents of the array in properly constructed
|
7388 |
|
|
debugging data. */
|
7389 |
|
|
/* Create a fixed version of the array element type.
|
7390 |
|
|
We're not providing the address of an element here,
|
7391 |
|
|
and thus the actual object value cannot be inspected to do
|
7392 |
|
|
the conversion. This should not be a problem, since arrays of
|
7393 |
|
|
unconstrained objects are not allowed. In particular, all
|
7394 |
|
|
the elements of an array of a tagged type should all be of
|
7395 |
|
|
the same type specified in the debugging info. No need to
|
7396 |
|
|
consult the object tag. */
|
7397 |
|
|
result =
|
7398 |
|
|
ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
|
7399 |
|
|
|
7400 |
|
|
elt_type0 = type0;
|
7401 |
|
|
for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
|
7402 |
|
|
{
|
7403 |
|
|
struct type *range_type =
|
7404 |
|
|
to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
|
7405 |
|
|
|
7406 |
|
|
result = create_array_type (alloc_type_copy (elt_type0),
|
7407 |
|
|
result, range_type);
|
7408 |
|
|
elt_type0 = TYPE_TARGET_TYPE (elt_type0);
|
7409 |
|
|
}
|
7410 |
|
|
if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
|
7411 |
|
|
error (_("array type with dynamic size is larger than varsize-limit"));
|
7412 |
|
|
}
|
7413 |
|
|
|
7414 |
|
|
if (constrained_packed_array_p)
|
7415 |
|
|
{
|
7416 |
|
|
/* So far, the resulting type has been created as if the original
|
7417 |
|
|
type was a regular (non-packed) array type. As a result, the
|
7418 |
|
|
bitsize of the array elements needs to be set again, and the array
|
7419 |
|
|
length needs to be recomputed based on that bitsize. */
|
7420 |
|
|
int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
|
7421 |
|
|
int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
|
7422 |
|
|
|
7423 |
|
|
TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
|
7424 |
|
|
TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
|
7425 |
|
|
if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
|
7426 |
|
|
TYPE_LENGTH (result)++;
|
7427 |
|
|
}
|
7428 |
|
|
|
7429 |
|
|
TYPE_FIXED_INSTANCE (result) = 1;
|
7430 |
|
|
return result;
|
7431 |
|
|
}
|
7432 |
|
|
|
7433 |
|
|
|
7434 |
|
|
/* A standard type (containing no dynamically sized components)
|
7435 |
|
|
corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
|
7436 |
|
|
DVAL describes a record containing any discriminants used in TYPE0,
|
7437 |
|
|
and may be NULL if there are none, or if the object of type TYPE at
|
7438 |
|
|
ADDRESS or in VALADDR contains these discriminants.
|
7439 |
|
|
|
7440 |
|
|
If CHECK_TAG is not null, in the case of tagged types, this function
|
7441 |
|
|
attempts to locate the object's tag and use it to compute the actual
|
7442 |
|
|
type. However, when ADDRESS is null, we cannot use it to determine the
|
7443 |
|
|
location of the tag, and therefore compute the tagged type's actual type.
|
7444 |
|
|
So we return the tagged type without consulting the tag. */
|
7445 |
|
|
|
7446 |
|
|
static struct type *
|
7447 |
|
|
ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
|
7448 |
|
|
CORE_ADDR address, struct value *dval, int check_tag)
|
7449 |
|
|
{
|
7450 |
|
|
type = ada_check_typedef (type);
|
7451 |
|
|
switch (TYPE_CODE (type))
|
7452 |
|
|
{
|
7453 |
|
|
default:
|
7454 |
|
|
return type;
|
7455 |
|
|
case TYPE_CODE_STRUCT:
|
7456 |
|
|
{
|
7457 |
|
|
struct type *static_type = to_static_fixed_type (type);
|
7458 |
|
|
struct type *fixed_record_type =
|
7459 |
|
|
to_fixed_record_type (type, valaddr, address, NULL);
|
7460 |
|
|
|
7461 |
|
|
/* If STATIC_TYPE is a tagged type and we know the object's address,
|
7462 |
|
|
then we can determine its tag, and compute the object's actual
|
7463 |
|
|
type from there. Note that we have to use the fixed record
|
7464 |
|
|
type (the parent part of the record may have dynamic fields
|
7465 |
|
|
and the way the location of _tag is expressed may depend on
|
7466 |
|
|
them). */
|
7467 |
|
|
|
7468 |
|
|
if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
|
7469 |
|
|
{
|
7470 |
|
|
struct type *real_type =
|
7471 |
|
|
type_from_tag (value_tag_from_contents_and_address
|
7472 |
|
|
(fixed_record_type,
|
7473 |
|
|
valaddr,
|
7474 |
|
|
address));
|
7475 |
|
|
|
7476 |
|
|
if (real_type != NULL)
|
7477 |
|
|
return to_fixed_record_type (real_type, valaddr, address, NULL);
|
7478 |
|
|
}
|
7479 |
|
|
|
7480 |
|
|
/* Check to see if there is a parallel ___XVZ variable.
|
7481 |
|
|
If there is, then it provides the actual size of our type. */
|
7482 |
|
|
else if (ada_type_name (fixed_record_type) != NULL)
|
7483 |
|
|
{
|
7484 |
|
|
char *name = ada_type_name (fixed_record_type);
|
7485 |
|
|
char *xvz_name = alloca (strlen (name) + 7 /* "___XVZ\0" */);
|
7486 |
|
|
int xvz_found = 0;
|
7487 |
|
|
LONGEST size;
|
7488 |
|
|
|
7489 |
|
|
xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
|
7490 |
|
|
size = get_int_var_value (xvz_name, &xvz_found);
|
7491 |
|
|
if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
|
7492 |
|
|
{
|
7493 |
|
|
fixed_record_type = copy_type (fixed_record_type);
|
7494 |
|
|
TYPE_LENGTH (fixed_record_type) = size;
|
7495 |
|
|
|
7496 |
|
|
/* The FIXED_RECORD_TYPE may have be a stub. We have
|
7497 |
|
|
observed this when the debugging info is STABS, and
|
7498 |
|
|
apparently it is something that is hard to fix.
|
7499 |
|
|
|
7500 |
|
|
In practice, we don't need the actual type definition
|
7501 |
|
|
at all, because the presence of the XVZ variable allows us
|
7502 |
|
|
to assume that there must be a XVS type as well, which we
|
7503 |
|
|
should be able to use later, when we need the actual type
|
7504 |
|
|
definition.
|
7505 |
|
|
|
7506 |
|
|
In the meantime, pretend that the "fixed" type we are
|
7507 |
|
|
returning is NOT a stub, because this can cause trouble
|
7508 |
|
|
when using this type to create new types targeting it.
|
7509 |
|
|
Indeed, the associated creation routines often check
|
7510 |
|
|
whether the target type is a stub and will try to replace
|
7511 |
|
|
it, thus using a type with the wrong size. This, in turn,
|
7512 |
|
|
might cause the new type to have the wrong size too.
|
7513 |
|
|
Consider the case of an array, for instance, where the size
|
7514 |
|
|
of the array is computed from the number of elements in
|
7515 |
|
|
our array multiplied by the size of its element. */
|
7516 |
|
|
TYPE_STUB (fixed_record_type) = 0;
|
7517 |
|
|
}
|
7518 |
|
|
}
|
7519 |
|
|
return fixed_record_type;
|
7520 |
|
|
}
|
7521 |
|
|
case TYPE_CODE_ARRAY:
|
7522 |
|
|
return to_fixed_array_type (type, dval, 1);
|
7523 |
|
|
case TYPE_CODE_UNION:
|
7524 |
|
|
if (dval == NULL)
|
7525 |
|
|
return type;
|
7526 |
|
|
else
|
7527 |
|
|
return to_fixed_variant_branch_type (type, valaddr, address, dval);
|
7528 |
|
|
}
|
7529 |
|
|
}
|
7530 |
|
|
|
7531 |
|
|
/* The same as ada_to_fixed_type_1, except that it preserves the type
|
7532 |
|
|
if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
|
7533 |
|
|
ada_to_fixed_type_1 would return the type referenced by TYPE. */
|
7534 |
|
|
|
7535 |
|
|
struct type *
|
7536 |
|
|
ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
|
7537 |
|
|
CORE_ADDR address, struct value *dval, int check_tag)
|
7538 |
|
|
|
7539 |
|
|
{
|
7540 |
|
|
struct type *fixed_type =
|
7541 |
|
|
ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
|
7542 |
|
|
|
7543 |
|
|
if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
|
7544 |
|
|
&& TYPE_TARGET_TYPE (type) == fixed_type)
|
7545 |
|
|
return type;
|
7546 |
|
|
|
7547 |
|
|
return fixed_type;
|
7548 |
|
|
}
|
7549 |
|
|
|
7550 |
|
|
/* A standard (static-sized) type corresponding as well as possible to
|
7551 |
|
|
TYPE0, but based on no runtime data. */
|
7552 |
|
|
|
7553 |
|
|
static struct type *
|
7554 |
|
|
to_static_fixed_type (struct type *type0)
|
7555 |
|
|
{
|
7556 |
|
|
struct type *type;
|
7557 |
|
|
|
7558 |
|
|
if (type0 == NULL)
|
7559 |
|
|
return NULL;
|
7560 |
|
|
|
7561 |
|
|
if (TYPE_FIXED_INSTANCE (type0))
|
7562 |
|
|
return type0;
|
7563 |
|
|
|
7564 |
|
|
type0 = ada_check_typedef (type0);
|
7565 |
|
|
|
7566 |
|
|
switch (TYPE_CODE (type0))
|
7567 |
|
|
{
|
7568 |
|
|
default:
|
7569 |
|
|
return type0;
|
7570 |
|
|
case TYPE_CODE_STRUCT:
|
7571 |
|
|
type = dynamic_template_type (type0);
|
7572 |
|
|
if (type != NULL)
|
7573 |
|
|
return template_to_static_fixed_type (type);
|
7574 |
|
|
else
|
7575 |
|
|
return template_to_static_fixed_type (type0);
|
7576 |
|
|
case TYPE_CODE_UNION:
|
7577 |
|
|
type = ada_find_parallel_type (type0, "___XVU");
|
7578 |
|
|
if (type != NULL)
|
7579 |
|
|
return template_to_static_fixed_type (type);
|
7580 |
|
|
else
|
7581 |
|
|
return template_to_static_fixed_type (type0);
|
7582 |
|
|
}
|
7583 |
|
|
}
|
7584 |
|
|
|
7585 |
|
|
/* A static approximation of TYPE with all type wrappers removed. */
|
7586 |
|
|
|
7587 |
|
|
static struct type *
|
7588 |
|
|
static_unwrap_type (struct type *type)
|
7589 |
|
|
{
|
7590 |
|
|
if (ada_is_aligner_type (type))
|
7591 |
|
|
{
|
7592 |
|
|
struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
|
7593 |
|
|
if (ada_type_name (type1) == NULL)
|
7594 |
|
|
TYPE_NAME (type1) = ada_type_name (type);
|
7595 |
|
|
|
7596 |
|
|
return static_unwrap_type (type1);
|
7597 |
|
|
}
|
7598 |
|
|
else
|
7599 |
|
|
{
|
7600 |
|
|
struct type *raw_real_type = ada_get_base_type (type);
|
7601 |
|
|
|
7602 |
|
|
if (raw_real_type == type)
|
7603 |
|
|
return type;
|
7604 |
|
|
else
|
7605 |
|
|
return to_static_fixed_type (raw_real_type);
|
7606 |
|
|
}
|
7607 |
|
|
}
|
7608 |
|
|
|
7609 |
|
|
/* In some cases, incomplete and private types require
|
7610 |
|
|
cross-references that are not resolved as records (for example,
|
7611 |
|
|
type Foo;
|
7612 |
|
|
type FooP is access Foo;
|
7613 |
|
|
V: FooP;
|
7614 |
|
|
type Foo is array ...;
|
7615 |
|
|
). In these cases, since there is no mechanism for producing
|
7616 |
|
|
cross-references to such types, we instead substitute for FooP a
|
7617 |
|
|
stub enumeration type that is nowhere resolved, and whose tag is
|
7618 |
|
|
the name of the actual type. Call these types "non-record stubs". */
|
7619 |
|
|
|
7620 |
|
|
/* A type equivalent to TYPE that is not a non-record stub, if one
|
7621 |
|
|
exists, otherwise TYPE. */
|
7622 |
|
|
|
7623 |
|
|
struct type *
|
7624 |
|
|
ada_check_typedef (struct type *type)
|
7625 |
|
|
{
|
7626 |
|
|
if (type == NULL)
|
7627 |
|
|
return NULL;
|
7628 |
|
|
|
7629 |
|
|
CHECK_TYPEDEF (type);
|
7630 |
|
|
if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
|
7631 |
|
|
|| !TYPE_STUB (type)
|
7632 |
|
|
|| TYPE_TAG_NAME (type) == NULL)
|
7633 |
|
|
return type;
|
7634 |
|
|
else
|
7635 |
|
|
{
|
7636 |
|
|
char *name = TYPE_TAG_NAME (type);
|
7637 |
|
|
struct type *type1 = ada_find_any_type (name);
|
7638 |
|
|
|
7639 |
|
|
return (type1 == NULL) ? type : type1;
|
7640 |
|
|
}
|
7641 |
|
|
}
|
7642 |
|
|
|
7643 |
|
|
/* A value representing the data at VALADDR/ADDRESS as described by
|
7644 |
|
|
type TYPE0, but with a standard (static-sized) type that correctly
|
7645 |
|
|
describes it. If VAL0 is not NULL and TYPE0 already is a standard
|
7646 |
|
|
type, then return VAL0 [this feature is simply to avoid redundant
|
7647 |
|
|
creation of struct values]. */
|
7648 |
|
|
|
7649 |
|
|
static struct value *
|
7650 |
|
|
ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
|
7651 |
|
|
struct value *val0)
|
7652 |
|
|
{
|
7653 |
|
|
struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
|
7654 |
|
|
|
7655 |
|
|
if (type == type0 && val0 != NULL)
|
7656 |
|
|
return val0;
|
7657 |
|
|
else
|
7658 |
|
|
return value_from_contents_and_address (type, 0, address);
|
7659 |
|
|
}
|
7660 |
|
|
|
7661 |
|
|
/* A value representing VAL, but with a standard (static-sized) type
|
7662 |
|
|
that correctly describes it. Does not necessarily create a new
|
7663 |
|
|
value. */
|
7664 |
|
|
|
7665 |
|
|
struct value *
|
7666 |
|
|
ada_to_fixed_value (struct value *val)
|
7667 |
|
|
{
|
7668 |
|
|
return ada_to_fixed_value_create (value_type (val),
|
7669 |
|
|
value_address (val),
|
7670 |
|
|
val);
|
7671 |
|
|
}
|
7672 |
|
|
|
7673 |
|
|
|
7674 |
|
|
/* Attributes */
|
7675 |
|
|
|
7676 |
|
|
/* Table mapping attribute numbers to names.
|
7677 |
|
|
NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
|
7678 |
|
|
|
7679 |
|
|
static const char *attribute_names[] = {
|
7680 |
|
|
"<?>",
|
7681 |
|
|
|
7682 |
|
|
"first",
|
7683 |
|
|
"last",
|
7684 |
|
|
"length",
|
7685 |
|
|
"image",
|
7686 |
|
|
"max",
|
7687 |
|
|
"min",
|
7688 |
|
|
"modulus",
|
7689 |
|
|
"pos",
|
7690 |
|
|
"size",
|
7691 |
|
|
"tag",
|
7692 |
|
|
"val",
|
7693 |
|
|
|
7694 |
|
|
};
|
7695 |
|
|
|
7696 |
|
|
const char *
|
7697 |
|
|
ada_attribute_name (enum exp_opcode n)
|
7698 |
|
|
{
|
7699 |
|
|
if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
|
7700 |
|
|
return attribute_names[n - OP_ATR_FIRST + 1];
|
7701 |
|
|
else
|
7702 |
|
|
return attribute_names[0];
|
7703 |
|
|
}
|
7704 |
|
|
|
7705 |
|
|
/* Evaluate the 'POS attribute applied to ARG. */
|
7706 |
|
|
|
7707 |
|
|
static LONGEST
|
7708 |
|
|
pos_atr (struct value *arg)
|
7709 |
|
|
{
|
7710 |
|
|
struct value *val = coerce_ref (arg);
|
7711 |
|
|
struct type *type = value_type (val);
|
7712 |
|
|
|
7713 |
|
|
if (!discrete_type_p (type))
|
7714 |
|
|
error (_("'POS only defined on discrete types"));
|
7715 |
|
|
|
7716 |
|
|
if (TYPE_CODE (type) == TYPE_CODE_ENUM)
|
7717 |
|
|
{
|
7718 |
|
|
int i;
|
7719 |
|
|
LONGEST v = value_as_long (val);
|
7720 |
|
|
|
7721 |
|
|
for (i = 0; i < TYPE_NFIELDS (type); i += 1)
|
7722 |
|
|
{
|
7723 |
|
|
if (v == TYPE_FIELD_BITPOS (type, i))
|
7724 |
|
|
return i;
|
7725 |
|
|
}
|
7726 |
|
|
error (_("enumeration value is invalid: can't find 'POS"));
|
7727 |
|
|
}
|
7728 |
|
|
else
|
7729 |
|
|
return value_as_long (val);
|
7730 |
|
|
}
|
7731 |
|
|
|
7732 |
|
|
static struct value *
|
7733 |
|
|
value_pos_atr (struct type *type, struct value *arg)
|
7734 |
|
|
{
|
7735 |
|
|
return value_from_longest (type, pos_atr (arg));
|
7736 |
|
|
}
|
7737 |
|
|
|
7738 |
|
|
/* Evaluate the TYPE'VAL attribute applied to ARG. */
|
7739 |
|
|
|
7740 |
|
|
static struct value *
|
7741 |
|
|
value_val_atr (struct type *type, struct value *arg)
|
7742 |
|
|
{
|
7743 |
|
|
if (!discrete_type_p (type))
|
7744 |
|
|
error (_("'VAL only defined on discrete types"));
|
7745 |
|
|
if (!integer_type_p (value_type (arg)))
|
7746 |
|
|
error (_("'VAL requires integral argument"));
|
7747 |
|
|
|
7748 |
|
|
if (TYPE_CODE (type) == TYPE_CODE_ENUM)
|
7749 |
|
|
{
|
7750 |
|
|
long pos = value_as_long (arg);
|
7751 |
|
|
|
7752 |
|
|
if (pos < 0 || pos >= TYPE_NFIELDS (type))
|
7753 |
|
|
error (_("argument to 'VAL out of range"));
|
7754 |
|
|
return value_from_longest (type, TYPE_FIELD_BITPOS (type, pos));
|
7755 |
|
|
}
|
7756 |
|
|
else
|
7757 |
|
|
return value_from_longest (type, value_as_long (arg));
|
7758 |
|
|
}
|
7759 |
|
|
|
7760 |
|
|
|
7761 |
|
|
/* Evaluation */
|
7762 |
|
|
|
7763 |
|
|
/* True if TYPE appears to be an Ada character type.
|
7764 |
|
|
[At the moment, this is true only for Character and Wide_Character;
|
7765 |
|
|
It is a heuristic test that could stand improvement]. */
|
7766 |
|
|
|
7767 |
|
|
int
|
7768 |
|
|
ada_is_character_type (struct type *type)
|
7769 |
|
|
{
|
7770 |
|
|
const char *name;
|
7771 |
|
|
|
7772 |
|
|
/* If the type code says it's a character, then assume it really is,
|
7773 |
|
|
and don't check any further. */
|
7774 |
|
|
if (TYPE_CODE (type) == TYPE_CODE_CHAR)
|
7775 |
|
|
return 1;
|
7776 |
|
|
|
7777 |
|
|
/* Otherwise, assume it's a character type iff it is a discrete type
|
7778 |
|
|
with a known character type name. */
|
7779 |
|
|
name = ada_type_name (type);
|
7780 |
|
|
return (name != NULL
|
7781 |
|
|
&& (TYPE_CODE (type) == TYPE_CODE_INT
|
7782 |
|
|
|| TYPE_CODE (type) == TYPE_CODE_RANGE)
|
7783 |
|
|
&& (strcmp (name, "character") == 0
|
7784 |
|
|
|| strcmp (name, "wide_character") == 0
|
7785 |
|
|
|| strcmp (name, "wide_wide_character") == 0
|
7786 |
|
|
|| strcmp (name, "unsigned char") == 0));
|
7787 |
|
|
}
|
7788 |
|
|
|
7789 |
|
|
/* True if TYPE appears to be an Ada string type. */
|
7790 |
|
|
|
7791 |
|
|
int
|
7792 |
|
|
ada_is_string_type (struct type *type)
|
7793 |
|
|
{
|
7794 |
|
|
type = ada_check_typedef (type);
|
7795 |
|
|
if (type != NULL
|
7796 |
|
|
&& TYPE_CODE (type) != TYPE_CODE_PTR
|
7797 |
|
|
&& (ada_is_simple_array_type (type)
|
7798 |
|
|
|| ada_is_array_descriptor_type (type))
|
7799 |
|
|
&& ada_array_arity (type) == 1)
|
7800 |
|
|
{
|
7801 |
|
|
struct type *elttype = ada_array_element_type (type, 1);
|
7802 |
|
|
|
7803 |
|
|
return ada_is_character_type (elttype);
|
7804 |
|
|
}
|
7805 |
|
|
else
|
7806 |
|
|
return 0;
|
7807 |
|
|
}
|
7808 |
|
|
|
7809 |
|
|
/* The compiler sometimes provides a parallel XVS type for a given
|
7810 |
|
|
PAD type. Normally, it is safe to follow the PAD type directly,
|
7811 |
|
|
but older versions of the compiler have a bug that causes the offset
|
7812 |
|
|
of its "F" field to be wrong. Following that field in that case
|
7813 |
|
|
would lead to incorrect results, but this can be worked around
|
7814 |
|
|
by ignoring the PAD type and using the associated XVS type instead.
|
7815 |
|
|
|
7816 |
|
|
Set to True if the debugger should trust the contents of PAD types.
|
7817 |
|
|
Otherwise, ignore the PAD type if there is a parallel XVS type. */
|
7818 |
|
|
static int trust_pad_over_xvs = 1;
|
7819 |
|
|
|
7820 |
|
|
/* True if TYPE is a struct type introduced by the compiler to force the
|
7821 |
|
|
alignment of a value. Such types have a single field with a
|
7822 |
|
|
distinctive name. */
|
7823 |
|
|
|
7824 |
|
|
int
|
7825 |
|
|
ada_is_aligner_type (struct type *type)
|
7826 |
|
|
{
|
7827 |
|
|
type = ada_check_typedef (type);
|
7828 |
|
|
|
7829 |
|
|
if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
|
7830 |
|
|
return 0;
|
7831 |
|
|
|
7832 |
|
|
return (TYPE_CODE (type) == TYPE_CODE_STRUCT
|
7833 |
|
|
&& TYPE_NFIELDS (type) == 1
|
7834 |
|
|
&& strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
|
7835 |
|
|
}
|
7836 |
|
|
|
7837 |
|
|
/* If there is an ___XVS-convention type parallel to SUBTYPE, return
|
7838 |
|
|
the parallel type. */
|
7839 |
|
|
|
7840 |
|
|
struct type *
|
7841 |
|
|
ada_get_base_type (struct type *raw_type)
|
7842 |
|
|
{
|
7843 |
|
|
struct type *real_type_namer;
|
7844 |
|
|
struct type *raw_real_type;
|
7845 |
|
|
|
7846 |
|
|
if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
|
7847 |
|
|
return raw_type;
|
7848 |
|
|
|
7849 |
|
|
if (ada_is_aligner_type (raw_type))
|
7850 |
|
|
/* The encoding specifies that we should always use the aligner type.
|
7851 |
|
|
So, even if this aligner type has an associated XVS type, we should
|
7852 |
|
|
simply ignore it.
|
7853 |
|
|
|
7854 |
|
|
According to the compiler gurus, an XVS type parallel to an aligner
|
7855 |
|
|
type may exist because of a stabs limitation. In stabs, aligner
|
7856 |
|
|
types are empty because the field has a variable-sized type, and
|
7857 |
|
|
thus cannot actually be used as an aligner type. As a result,
|
7858 |
|
|
we need the associated parallel XVS type to decode the type.
|
7859 |
|
|
Since the policy in the compiler is to not change the internal
|
7860 |
|
|
representation based on the debugging info format, we sometimes
|
7861 |
|
|
end up having a redundant XVS type parallel to the aligner type. */
|
7862 |
|
|
return raw_type;
|
7863 |
|
|
|
7864 |
|
|
real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
|
7865 |
|
|
if (real_type_namer == NULL
|
7866 |
|
|
|| TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
|
7867 |
|
|
|| TYPE_NFIELDS (real_type_namer) != 1)
|
7868 |
|
|
return raw_type;
|
7869 |
|
|
|
7870 |
|
|
if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
|
7871 |
|
|
{
|
7872 |
|
|
/* This is an older encoding form where the base type needs to be
|
7873 |
|
|
looked up by name. We prefer the newer enconding because it is
|
7874 |
|
|
more efficient. */
|
7875 |
|
|
raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
|
7876 |
|
|
if (raw_real_type == NULL)
|
7877 |
|
|
return raw_type;
|
7878 |
|
|
else
|
7879 |
|
|
return raw_real_type;
|
7880 |
|
|
}
|
7881 |
|
|
|
7882 |
|
|
/* The field in our XVS type is a reference to the base type. */
|
7883 |
|
|
return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
|
7884 |
|
|
}
|
7885 |
|
|
|
7886 |
|
|
/* The type of value designated by TYPE, with all aligners removed. */
|
7887 |
|
|
|
7888 |
|
|
struct type *
|
7889 |
|
|
ada_aligned_type (struct type *type)
|
7890 |
|
|
{
|
7891 |
|
|
if (ada_is_aligner_type (type))
|
7892 |
|
|
return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
|
7893 |
|
|
else
|
7894 |
|
|
return ada_get_base_type (type);
|
7895 |
|
|
}
|
7896 |
|
|
|
7897 |
|
|
|
7898 |
|
|
/* The address of the aligned value in an object at address VALADDR
|
7899 |
|
|
having type TYPE. Assumes ada_is_aligner_type (TYPE). */
|
7900 |
|
|
|
7901 |
|
|
const gdb_byte *
|
7902 |
|
|
ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
|
7903 |
|
|
{
|
7904 |
|
|
if (ada_is_aligner_type (type))
|
7905 |
|
|
return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
|
7906 |
|
|
valaddr +
|
7907 |
|
|
TYPE_FIELD_BITPOS (type,
|
7908 |
|
|
0) / TARGET_CHAR_BIT);
|
7909 |
|
|
else
|
7910 |
|
|
return valaddr;
|
7911 |
|
|
}
|
7912 |
|
|
|
7913 |
|
|
|
7914 |
|
|
|
7915 |
|
|
/* The printed representation of an enumeration literal with encoded
|
7916 |
|
|
name NAME. The value is good to the next call of ada_enum_name. */
|
7917 |
|
|
const char *
|
7918 |
|
|
ada_enum_name (const char *name)
|
7919 |
|
|
{
|
7920 |
|
|
static char *result;
|
7921 |
|
|
static size_t result_len = 0;
|
7922 |
|
|
char *tmp;
|
7923 |
|
|
|
7924 |
|
|
/* First, unqualify the enumeration name:
|
7925 |
|
|
1. Search for the last '.' character. If we find one, then skip
|
7926 |
|
|
all the preceeding characters, the unqualified name starts
|
7927 |
|
|
right after that dot.
|
7928 |
|
|
2. Otherwise, we may be debugging on a target where the compiler
|
7929 |
|
|
translates dots into "__". Search forward for double underscores,
|
7930 |
|
|
but stop searching when we hit an overloading suffix, which is
|
7931 |
|
|
of the form "__" followed by digits. */
|
7932 |
|
|
|
7933 |
|
|
tmp = strrchr (name, '.');
|
7934 |
|
|
if (tmp != NULL)
|
7935 |
|
|
name = tmp + 1;
|
7936 |
|
|
else
|
7937 |
|
|
{
|
7938 |
|
|
while ((tmp = strstr (name, "__")) != NULL)
|
7939 |
|
|
{
|
7940 |
|
|
if (isdigit (tmp[2]))
|
7941 |
|
|
break;
|
7942 |
|
|
else
|
7943 |
|
|
name = tmp + 2;
|
7944 |
|
|
}
|
7945 |
|
|
}
|
7946 |
|
|
|
7947 |
|
|
if (name[0] == 'Q')
|
7948 |
|
|
{
|
7949 |
|
|
int v;
|
7950 |
|
|
|
7951 |
|
|
if (name[1] == 'U' || name[1] == 'W')
|
7952 |
|
|
{
|
7953 |
|
|
if (sscanf (name + 2, "%x", &v) != 1)
|
7954 |
|
|
return name;
|
7955 |
|
|
}
|
7956 |
|
|
else
|
7957 |
|
|
return name;
|
7958 |
|
|
|
7959 |
|
|
GROW_VECT (result, result_len, 16);
|
7960 |
|
|
if (isascii (v) && isprint (v))
|
7961 |
|
|
xsnprintf (result, result_len, "'%c'", v);
|
7962 |
|
|
else if (name[1] == 'U')
|
7963 |
|
|
xsnprintf (result, result_len, "[\"%02x\"]", v);
|
7964 |
|
|
else
|
7965 |
|
|
xsnprintf (result, result_len, "[\"%04x\"]", v);
|
7966 |
|
|
|
7967 |
|
|
return result;
|
7968 |
|
|
}
|
7969 |
|
|
else
|
7970 |
|
|
{
|
7971 |
|
|
tmp = strstr (name, "__");
|
7972 |
|
|
if (tmp == NULL)
|
7973 |
|
|
tmp = strstr (name, "$");
|
7974 |
|
|
if (tmp != NULL)
|
7975 |
|
|
{
|
7976 |
|
|
GROW_VECT (result, result_len, tmp - name + 1);
|
7977 |
|
|
strncpy (result, name, tmp - name);
|
7978 |
|
|
result[tmp - name] = '\0';
|
7979 |
|
|
return result;
|
7980 |
|
|
}
|
7981 |
|
|
|
7982 |
|
|
return name;
|
7983 |
|
|
}
|
7984 |
|
|
}
|
7985 |
|
|
|
7986 |
|
|
/* Evaluate the subexpression of EXP starting at *POS as for
|
7987 |
|
|
evaluate_type, updating *POS to point just past the evaluated
|
7988 |
|
|
expression. */
|
7989 |
|
|
|
7990 |
|
|
static struct value *
|
7991 |
|
|
evaluate_subexp_type (struct expression *exp, int *pos)
|
7992 |
|
|
{
|
7993 |
|
|
return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
|
7994 |
|
|
}
|
7995 |
|
|
|
7996 |
|
|
/* If VAL is wrapped in an aligner or subtype wrapper, return the
|
7997 |
|
|
value it wraps. */
|
7998 |
|
|
|
7999 |
|
|
static struct value *
|
8000 |
|
|
unwrap_value (struct value *val)
|
8001 |
|
|
{
|
8002 |
|
|
struct type *type = ada_check_typedef (value_type (val));
|
8003 |
|
|
|
8004 |
|
|
if (ada_is_aligner_type (type))
|
8005 |
|
|
{
|
8006 |
|
|
struct value *v = ada_value_struct_elt (val, "F", 0);
|
8007 |
|
|
struct type *val_type = ada_check_typedef (value_type (v));
|
8008 |
|
|
|
8009 |
|
|
if (ada_type_name (val_type) == NULL)
|
8010 |
|
|
TYPE_NAME (val_type) = ada_type_name (type);
|
8011 |
|
|
|
8012 |
|
|
return unwrap_value (v);
|
8013 |
|
|
}
|
8014 |
|
|
else
|
8015 |
|
|
{
|
8016 |
|
|
struct type *raw_real_type =
|
8017 |
|
|
ada_check_typedef (ada_get_base_type (type));
|
8018 |
|
|
|
8019 |
|
|
/* If there is no parallel XVS or XVE type, then the value is
|
8020 |
|
|
already unwrapped. Return it without further modification. */
|
8021 |
|
|
if ((type == raw_real_type)
|
8022 |
|
|
&& ada_find_parallel_type (type, "___XVE") == NULL)
|
8023 |
|
|
return val;
|
8024 |
|
|
|
8025 |
|
|
return
|
8026 |
|
|
coerce_unspec_val_to_type
|
8027 |
|
|
(val, ada_to_fixed_type (raw_real_type, 0,
|
8028 |
|
|
value_address (val),
|
8029 |
|
|
NULL, 1));
|
8030 |
|
|
}
|
8031 |
|
|
}
|
8032 |
|
|
|
8033 |
|
|
static struct value *
|
8034 |
|
|
cast_to_fixed (struct type *type, struct value *arg)
|
8035 |
|
|
{
|
8036 |
|
|
LONGEST val;
|
8037 |
|
|
|
8038 |
|
|
if (type == value_type (arg))
|
8039 |
|
|
return arg;
|
8040 |
|
|
else if (ada_is_fixed_point_type (value_type (arg)))
|
8041 |
|
|
val = ada_float_to_fixed (type,
|
8042 |
|
|
ada_fixed_to_float (value_type (arg),
|
8043 |
|
|
value_as_long (arg)));
|
8044 |
|
|
else
|
8045 |
|
|
{
|
8046 |
|
|
DOUBLEST argd = value_as_double (arg);
|
8047 |
|
|
|
8048 |
|
|
val = ada_float_to_fixed (type, argd);
|
8049 |
|
|
}
|
8050 |
|
|
|
8051 |
|
|
return value_from_longest (type, val);
|
8052 |
|
|
}
|
8053 |
|
|
|
8054 |
|
|
static struct value *
|
8055 |
|
|
cast_from_fixed (struct type *type, struct value *arg)
|
8056 |
|
|
{
|
8057 |
|
|
DOUBLEST val = ada_fixed_to_float (value_type (arg),
|
8058 |
|
|
value_as_long (arg));
|
8059 |
|
|
|
8060 |
|
|
return value_from_double (type, val);
|
8061 |
|
|
}
|
8062 |
|
|
|
8063 |
|
|
/* Coerce VAL as necessary for assignment to an lval of type TYPE, and
|
8064 |
|
|
return the converted value. */
|
8065 |
|
|
|
8066 |
|
|
static struct value *
|
8067 |
|
|
coerce_for_assign (struct type *type, struct value *val)
|
8068 |
|
|
{
|
8069 |
|
|
struct type *type2 = value_type (val);
|
8070 |
|
|
|
8071 |
|
|
if (type == type2)
|
8072 |
|
|
return val;
|
8073 |
|
|
|
8074 |
|
|
type2 = ada_check_typedef (type2);
|
8075 |
|
|
type = ada_check_typedef (type);
|
8076 |
|
|
|
8077 |
|
|
if (TYPE_CODE (type2) == TYPE_CODE_PTR
|
8078 |
|
|
&& TYPE_CODE (type) == TYPE_CODE_ARRAY)
|
8079 |
|
|
{
|
8080 |
|
|
val = ada_value_ind (val);
|
8081 |
|
|
type2 = value_type (val);
|
8082 |
|
|
}
|
8083 |
|
|
|
8084 |
|
|
if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
|
8085 |
|
|
&& TYPE_CODE (type) == TYPE_CODE_ARRAY)
|
8086 |
|
|
{
|
8087 |
|
|
if (TYPE_LENGTH (type2) != TYPE_LENGTH (type)
|
8088 |
|
|
|| TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
|
8089 |
|
|
!= TYPE_LENGTH (TYPE_TARGET_TYPE (type2)))
|
8090 |
|
|
error (_("Incompatible types in assignment"));
|
8091 |
|
|
deprecated_set_value_type (val, type);
|
8092 |
|
|
}
|
8093 |
|
|
return val;
|
8094 |
|
|
}
|
8095 |
|
|
|
8096 |
|
|
static struct value *
|
8097 |
|
|
ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
|
8098 |
|
|
{
|
8099 |
|
|
struct value *val;
|
8100 |
|
|
struct type *type1, *type2;
|
8101 |
|
|
LONGEST v, v1, v2;
|
8102 |
|
|
|
8103 |
|
|
arg1 = coerce_ref (arg1);
|
8104 |
|
|
arg2 = coerce_ref (arg2);
|
8105 |
|
|
type1 = base_type (ada_check_typedef (value_type (arg1)));
|
8106 |
|
|
type2 = base_type (ada_check_typedef (value_type (arg2)));
|
8107 |
|
|
|
8108 |
|
|
if (TYPE_CODE (type1) != TYPE_CODE_INT
|
8109 |
|
|
|| TYPE_CODE (type2) != TYPE_CODE_INT)
|
8110 |
|
|
return value_binop (arg1, arg2, op);
|
8111 |
|
|
|
8112 |
|
|
switch (op)
|
8113 |
|
|
{
|
8114 |
|
|
case BINOP_MOD:
|
8115 |
|
|
case BINOP_DIV:
|
8116 |
|
|
case BINOP_REM:
|
8117 |
|
|
break;
|
8118 |
|
|
default:
|
8119 |
|
|
return value_binop (arg1, arg2, op);
|
8120 |
|
|
}
|
8121 |
|
|
|
8122 |
|
|
v2 = value_as_long (arg2);
|
8123 |
|
|
if (v2 == 0)
|
8124 |
|
|
error (_("second operand of %s must not be zero."), op_string (op));
|
8125 |
|
|
|
8126 |
|
|
if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
|
8127 |
|
|
return value_binop (arg1, arg2, op);
|
8128 |
|
|
|
8129 |
|
|
v1 = value_as_long (arg1);
|
8130 |
|
|
switch (op)
|
8131 |
|
|
{
|
8132 |
|
|
case BINOP_DIV:
|
8133 |
|
|
v = v1 / v2;
|
8134 |
|
|
if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
|
8135 |
|
|
v += v > 0 ? -1 : 1;
|
8136 |
|
|
break;
|
8137 |
|
|
case BINOP_REM:
|
8138 |
|
|
v = v1 % v2;
|
8139 |
|
|
if (v * v1 < 0)
|
8140 |
|
|
v -= v2;
|
8141 |
|
|
break;
|
8142 |
|
|
default:
|
8143 |
|
|
/* Should not reach this point. */
|
8144 |
|
|
v = 0;
|
8145 |
|
|
}
|
8146 |
|
|
|
8147 |
|
|
val = allocate_value (type1);
|
8148 |
|
|
store_unsigned_integer (value_contents_raw (val),
|
8149 |
|
|
TYPE_LENGTH (value_type (val)),
|
8150 |
|
|
gdbarch_byte_order (get_type_arch (type1)), v);
|
8151 |
|
|
return val;
|
8152 |
|
|
}
|
8153 |
|
|
|
8154 |
|
|
static int
|
8155 |
|
|
ada_value_equal (struct value *arg1, struct value *arg2)
|
8156 |
|
|
{
|
8157 |
|
|
if (ada_is_direct_array_type (value_type (arg1))
|
8158 |
|
|
|| ada_is_direct_array_type (value_type (arg2)))
|
8159 |
|
|
{
|
8160 |
|
|
/* Automatically dereference any array reference before
|
8161 |
|
|
we attempt to perform the comparison. */
|
8162 |
|
|
arg1 = ada_coerce_ref (arg1);
|
8163 |
|
|
arg2 = ada_coerce_ref (arg2);
|
8164 |
|
|
|
8165 |
|
|
arg1 = ada_coerce_to_simple_array (arg1);
|
8166 |
|
|
arg2 = ada_coerce_to_simple_array (arg2);
|
8167 |
|
|
if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
|
8168 |
|
|
|| TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
|
8169 |
|
|
error (_("Attempt to compare array with non-array"));
|
8170 |
|
|
/* FIXME: The following works only for types whose
|
8171 |
|
|
representations use all bits (no padding or undefined bits)
|
8172 |
|
|
and do not have user-defined equality. */
|
8173 |
|
|
return
|
8174 |
|
|
TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
|
8175 |
|
|
&& memcmp (value_contents (arg1), value_contents (arg2),
|
8176 |
|
|
TYPE_LENGTH (value_type (arg1))) == 0;
|
8177 |
|
|
}
|
8178 |
|
|
return value_equal (arg1, arg2);
|
8179 |
|
|
}
|
8180 |
|
|
|
8181 |
|
|
/* Total number of component associations in the aggregate starting at
|
8182 |
|
|
index PC in EXP. Assumes that index PC is the start of an
|
8183 |
|
|
OP_AGGREGATE. */
|
8184 |
|
|
|
8185 |
|
|
static int
|
8186 |
|
|
num_component_specs (struct expression *exp, int pc)
|
8187 |
|
|
{
|
8188 |
|
|
int n, m, i;
|
8189 |
|
|
|
8190 |
|
|
m = exp->elts[pc + 1].longconst;
|
8191 |
|
|
pc += 3;
|
8192 |
|
|
n = 0;
|
8193 |
|
|
for (i = 0; i < m; i += 1)
|
8194 |
|
|
{
|
8195 |
|
|
switch (exp->elts[pc].opcode)
|
8196 |
|
|
{
|
8197 |
|
|
default:
|
8198 |
|
|
n += 1;
|
8199 |
|
|
break;
|
8200 |
|
|
case OP_CHOICES:
|
8201 |
|
|
n += exp->elts[pc + 1].longconst;
|
8202 |
|
|
break;
|
8203 |
|
|
}
|
8204 |
|
|
ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
|
8205 |
|
|
}
|
8206 |
|
|
return n;
|
8207 |
|
|
}
|
8208 |
|
|
|
8209 |
|
|
/* Assign the result of evaluating EXP starting at *POS to the INDEXth
|
8210 |
|
|
component of LHS (a simple array or a record), updating *POS past
|
8211 |
|
|
the expression, assuming that LHS is contained in CONTAINER. Does
|
8212 |
|
|
not modify the inferior's memory, nor does it modify LHS (unless
|
8213 |
|
|
LHS == CONTAINER). */
|
8214 |
|
|
|
8215 |
|
|
static void
|
8216 |
|
|
assign_component (struct value *container, struct value *lhs, LONGEST index,
|
8217 |
|
|
struct expression *exp, int *pos)
|
8218 |
|
|
{
|
8219 |
|
|
struct value *mark = value_mark ();
|
8220 |
|
|
struct value *elt;
|
8221 |
|
|
|
8222 |
|
|
if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
|
8223 |
|
|
{
|
8224 |
|
|
struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
|
8225 |
|
|
struct value *index_val = value_from_longest (index_type, index);
|
8226 |
|
|
|
8227 |
|
|
elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
|
8228 |
|
|
}
|
8229 |
|
|
else
|
8230 |
|
|
{
|
8231 |
|
|
elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
|
8232 |
|
|
elt = ada_to_fixed_value (unwrap_value (elt));
|
8233 |
|
|
}
|
8234 |
|
|
|
8235 |
|
|
if (exp->elts[*pos].opcode == OP_AGGREGATE)
|
8236 |
|
|
assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
|
8237 |
|
|
else
|
8238 |
|
|
value_assign_to_component (container, elt,
|
8239 |
|
|
ada_evaluate_subexp (NULL, exp, pos,
|
8240 |
|
|
EVAL_NORMAL));
|
8241 |
|
|
|
8242 |
|
|
value_free_to_mark (mark);
|
8243 |
|
|
}
|
8244 |
|
|
|
8245 |
|
|
/* Assuming that LHS represents an lvalue having a record or array
|
8246 |
|
|
type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
|
8247 |
|
|
of that aggregate's value to LHS, advancing *POS past the
|
8248 |
|
|
aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
|
8249 |
|
|
lvalue containing LHS (possibly LHS itself). Does not modify
|
8250 |
|
|
the inferior's memory, nor does it modify the contents of
|
8251 |
|
|
LHS (unless == CONTAINER). Returns the modified CONTAINER. */
|
8252 |
|
|
|
8253 |
|
|
static struct value *
|
8254 |
|
|
assign_aggregate (struct value *container,
|
8255 |
|
|
struct value *lhs, struct expression *exp,
|
8256 |
|
|
int *pos, enum noside noside)
|
8257 |
|
|
{
|
8258 |
|
|
struct type *lhs_type;
|
8259 |
|
|
int n = exp->elts[*pos+1].longconst;
|
8260 |
|
|
LONGEST low_index, high_index;
|
8261 |
|
|
int num_specs;
|
8262 |
|
|
LONGEST *indices;
|
8263 |
|
|
int max_indices, num_indices;
|
8264 |
|
|
int is_array_aggregate;
|
8265 |
|
|
int i;
|
8266 |
|
|
|
8267 |
|
|
*pos += 3;
|
8268 |
|
|
if (noside != EVAL_NORMAL)
|
8269 |
|
|
{
|
8270 |
|
|
int i;
|
8271 |
|
|
|
8272 |
|
|
for (i = 0; i < n; i += 1)
|
8273 |
|
|
ada_evaluate_subexp (NULL, exp, pos, noside);
|
8274 |
|
|
return container;
|
8275 |
|
|
}
|
8276 |
|
|
|
8277 |
|
|
container = ada_coerce_ref (container);
|
8278 |
|
|
if (ada_is_direct_array_type (value_type (container)))
|
8279 |
|
|
container = ada_coerce_to_simple_array (container);
|
8280 |
|
|
lhs = ada_coerce_ref (lhs);
|
8281 |
|
|
if (!deprecated_value_modifiable (lhs))
|
8282 |
|
|
error (_("Left operand of assignment is not a modifiable lvalue."));
|
8283 |
|
|
|
8284 |
|
|
lhs_type = value_type (lhs);
|
8285 |
|
|
if (ada_is_direct_array_type (lhs_type))
|
8286 |
|
|
{
|
8287 |
|
|
lhs = ada_coerce_to_simple_array (lhs);
|
8288 |
|
|
lhs_type = value_type (lhs);
|
8289 |
|
|
low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
|
8290 |
|
|
high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
|
8291 |
|
|
is_array_aggregate = 1;
|
8292 |
|
|
}
|
8293 |
|
|
else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
|
8294 |
|
|
{
|
8295 |
|
|
low_index = 0;
|
8296 |
|
|
high_index = num_visible_fields (lhs_type) - 1;
|
8297 |
|
|
is_array_aggregate = 0;
|
8298 |
|
|
}
|
8299 |
|
|
else
|
8300 |
|
|
error (_("Left-hand side must be array or record."));
|
8301 |
|
|
|
8302 |
|
|
num_specs = num_component_specs (exp, *pos - 3);
|
8303 |
|
|
max_indices = 4 * num_specs + 4;
|
8304 |
|
|
indices = alloca (max_indices * sizeof (indices[0]));
|
8305 |
|
|
indices[0] = indices[1] = low_index - 1;
|
8306 |
|
|
indices[2] = indices[3] = high_index + 1;
|
8307 |
|
|
num_indices = 4;
|
8308 |
|
|
|
8309 |
|
|
for (i = 0; i < n; i += 1)
|
8310 |
|
|
{
|
8311 |
|
|
switch (exp->elts[*pos].opcode)
|
8312 |
|
|
{
|
8313 |
|
|
case OP_CHOICES:
|
8314 |
|
|
aggregate_assign_from_choices (container, lhs, exp, pos, indices,
|
8315 |
|
|
&num_indices, max_indices,
|
8316 |
|
|
low_index, high_index);
|
8317 |
|
|
break;
|
8318 |
|
|
case OP_POSITIONAL:
|
8319 |
|
|
aggregate_assign_positional (container, lhs, exp, pos, indices,
|
8320 |
|
|
&num_indices, max_indices,
|
8321 |
|
|
low_index, high_index);
|
8322 |
|
|
break;
|
8323 |
|
|
case OP_OTHERS:
|
8324 |
|
|
if (i != n-1)
|
8325 |
|
|
error (_("Misplaced 'others' clause"));
|
8326 |
|
|
aggregate_assign_others (container, lhs, exp, pos, indices,
|
8327 |
|
|
num_indices, low_index, high_index);
|
8328 |
|
|
break;
|
8329 |
|
|
default:
|
8330 |
|
|
error (_("Internal error: bad aggregate clause"));
|
8331 |
|
|
}
|
8332 |
|
|
}
|
8333 |
|
|
|
8334 |
|
|
return container;
|
8335 |
|
|
}
|
8336 |
|
|
|
8337 |
|
|
/* Assign into the component of LHS indexed by the OP_POSITIONAL
|
8338 |
|
|
construct at *POS, updating *POS past the construct, given that
|
8339 |
|
|
the positions are relative to lower bound LOW, where HIGH is the
|
8340 |
|
|
upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
|
8341 |
|
|
updating *NUM_INDICES as needed. CONTAINER is as for
|
8342 |
|
|
assign_aggregate. */
|
8343 |
|
|
static void
|
8344 |
|
|
aggregate_assign_positional (struct value *container,
|
8345 |
|
|
struct value *lhs, struct expression *exp,
|
8346 |
|
|
int *pos, LONGEST *indices, int *num_indices,
|
8347 |
|
|
int max_indices, LONGEST low, LONGEST high)
|
8348 |
|
|
{
|
8349 |
|
|
LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
|
8350 |
|
|
|
8351 |
|
|
if (ind - 1 == high)
|
8352 |
|
|
warning (_("Extra components in aggregate ignored."));
|
8353 |
|
|
if (ind <= high)
|
8354 |
|
|
{
|
8355 |
|
|
add_component_interval (ind, ind, indices, num_indices, max_indices);
|
8356 |
|
|
*pos += 3;
|
8357 |
|
|
assign_component (container, lhs, ind, exp, pos);
|
8358 |
|
|
}
|
8359 |
|
|
else
|
8360 |
|
|
ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
|
8361 |
|
|
}
|
8362 |
|
|
|
8363 |
|
|
/* Assign into the components of LHS indexed by the OP_CHOICES
|
8364 |
|
|
construct at *POS, updating *POS past the construct, given that
|
8365 |
|
|
the allowable indices are LOW..HIGH. Record the indices assigned
|
8366 |
|
|
to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
|
8367 |
|
|
needed. CONTAINER is as for assign_aggregate. */
|
8368 |
|
|
static void
|
8369 |
|
|
aggregate_assign_from_choices (struct value *container,
|
8370 |
|
|
struct value *lhs, struct expression *exp,
|
8371 |
|
|
int *pos, LONGEST *indices, int *num_indices,
|
8372 |
|
|
int max_indices, LONGEST low, LONGEST high)
|
8373 |
|
|
{
|
8374 |
|
|
int j;
|
8375 |
|
|
int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
|
8376 |
|
|
int choice_pos, expr_pc;
|
8377 |
|
|
int is_array = ada_is_direct_array_type (value_type (lhs));
|
8378 |
|
|
|
8379 |
|
|
choice_pos = *pos += 3;
|
8380 |
|
|
|
8381 |
|
|
for (j = 0; j < n_choices; j += 1)
|
8382 |
|
|
ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
|
8383 |
|
|
expr_pc = *pos;
|
8384 |
|
|
ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
|
8385 |
|
|
|
8386 |
|
|
for (j = 0; j < n_choices; j += 1)
|
8387 |
|
|
{
|
8388 |
|
|
LONGEST lower, upper;
|
8389 |
|
|
enum exp_opcode op = exp->elts[choice_pos].opcode;
|
8390 |
|
|
|
8391 |
|
|
if (op == OP_DISCRETE_RANGE)
|
8392 |
|
|
{
|
8393 |
|
|
choice_pos += 1;
|
8394 |
|
|
lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
|
8395 |
|
|
EVAL_NORMAL));
|
8396 |
|
|
upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
|
8397 |
|
|
EVAL_NORMAL));
|
8398 |
|
|
}
|
8399 |
|
|
else if (is_array)
|
8400 |
|
|
{
|
8401 |
|
|
lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
|
8402 |
|
|
EVAL_NORMAL));
|
8403 |
|
|
upper = lower;
|
8404 |
|
|
}
|
8405 |
|
|
else
|
8406 |
|
|
{
|
8407 |
|
|
int ind;
|
8408 |
|
|
char *name;
|
8409 |
|
|
|
8410 |
|
|
switch (op)
|
8411 |
|
|
{
|
8412 |
|
|
case OP_NAME:
|
8413 |
|
|
name = &exp->elts[choice_pos + 2].string;
|
8414 |
|
|
break;
|
8415 |
|
|
case OP_VAR_VALUE:
|
8416 |
|
|
name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
|
8417 |
|
|
break;
|
8418 |
|
|
default:
|
8419 |
|
|
error (_("Invalid record component association."));
|
8420 |
|
|
}
|
8421 |
|
|
ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
|
8422 |
|
|
ind = 0;
|
8423 |
|
|
if (! find_struct_field (name, value_type (lhs), 0,
|
8424 |
|
|
NULL, NULL, NULL, NULL, &ind))
|
8425 |
|
|
error (_("Unknown component name: %s."), name);
|
8426 |
|
|
lower = upper = ind;
|
8427 |
|
|
}
|
8428 |
|
|
|
8429 |
|
|
if (lower <= upper && (lower < low || upper > high))
|
8430 |
|
|
error (_("Index in component association out of bounds."));
|
8431 |
|
|
|
8432 |
|
|
add_component_interval (lower, upper, indices, num_indices,
|
8433 |
|
|
max_indices);
|
8434 |
|
|
while (lower <= upper)
|
8435 |
|
|
{
|
8436 |
|
|
int pos1;
|
8437 |
|
|
|
8438 |
|
|
pos1 = expr_pc;
|
8439 |
|
|
assign_component (container, lhs, lower, exp, &pos1);
|
8440 |
|
|
lower += 1;
|
8441 |
|
|
}
|
8442 |
|
|
}
|
8443 |
|
|
}
|
8444 |
|
|
|
8445 |
|
|
/* Assign the value of the expression in the OP_OTHERS construct in
|
8446 |
|
|
EXP at *POS into the components of LHS indexed from LOW .. HIGH that
|
8447 |
|
|
have not been previously assigned. The index intervals already assigned
|
8448 |
|
|
are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
|
8449 |
|
|
OP_OTHERS clause. CONTAINER is as for assign_aggregate*/
|
8450 |
|
|
static void
|
8451 |
|
|
aggregate_assign_others (struct value *container,
|
8452 |
|
|
struct value *lhs, struct expression *exp,
|
8453 |
|
|
int *pos, LONGEST *indices, int num_indices,
|
8454 |
|
|
LONGEST low, LONGEST high)
|
8455 |
|
|
{
|
8456 |
|
|
int i;
|
8457 |
|
|
int expr_pc = *pos+1;
|
8458 |
|
|
|
8459 |
|
|
for (i = 0; i < num_indices - 2; i += 2)
|
8460 |
|
|
{
|
8461 |
|
|
LONGEST ind;
|
8462 |
|
|
|
8463 |
|
|
for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
|
8464 |
|
|
{
|
8465 |
|
|
int pos;
|
8466 |
|
|
|
8467 |
|
|
pos = expr_pc;
|
8468 |
|
|
assign_component (container, lhs, ind, exp, &pos);
|
8469 |
|
|
}
|
8470 |
|
|
}
|
8471 |
|
|
ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
|
8472 |
|
|
}
|
8473 |
|
|
|
8474 |
|
|
/* Add the interval [LOW .. HIGH] to the sorted set of intervals
|
8475 |
|
|
[ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
|
8476 |
|
|
modifying *SIZE as needed. It is an error if *SIZE exceeds
|
8477 |
|
|
MAX_SIZE. The resulting intervals do not overlap. */
|
8478 |
|
|
static void
|
8479 |
|
|
add_component_interval (LONGEST low, LONGEST high,
|
8480 |
|
|
LONGEST* indices, int *size, int max_size)
|
8481 |
|
|
{
|
8482 |
|
|
int i, j;
|
8483 |
|
|
|
8484 |
|
|
for (i = 0; i < *size; i += 2) {
|
8485 |
|
|
if (high >= indices[i] && low <= indices[i + 1])
|
8486 |
|
|
{
|
8487 |
|
|
int kh;
|
8488 |
|
|
|
8489 |
|
|
for (kh = i + 2; kh < *size; kh += 2)
|
8490 |
|
|
if (high < indices[kh])
|
8491 |
|
|
break;
|
8492 |
|
|
if (low < indices[i])
|
8493 |
|
|
indices[i] = low;
|
8494 |
|
|
indices[i + 1] = indices[kh - 1];
|
8495 |
|
|
if (high > indices[i + 1])
|
8496 |
|
|
indices[i + 1] = high;
|
8497 |
|
|
memcpy (indices + i + 2, indices + kh, *size - kh);
|
8498 |
|
|
*size -= kh - i - 2;
|
8499 |
|
|
return;
|
8500 |
|
|
}
|
8501 |
|
|
else if (high < indices[i])
|
8502 |
|
|
break;
|
8503 |
|
|
}
|
8504 |
|
|
|
8505 |
|
|
if (*size == max_size)
|
8506 |
|
|
error (_("Internal error: miscounted aggregate components."));
|
8507 |
|
|
*size += 2;
|
8508 |
|
|
for (j = *size-1; j >= i+2; j -= 1)
|
8509 |
|
|
indices[j] = indices[j - 2];
|
8510 |
|
|
indices[i] = low;
|
8511 |
|
|
indices[i + 1] = high;
|
8512 |
|
|
}
|
8513 |
|
|
|
8514 |
|
|
/* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
|
8515 |
|
|
is different. */
|
8516 |
|
|
|
8517 |
|
|
static struct value *
|
8518 |
|
|
ada_value_cast (struct type *type, struct value *arg2, enum noside noside)
|
8519 |
|
|
{
|
8520 |
|
|
if (type == ada_check_typedef (value_type (arg2)))
|
8521 |
|
|
return arg2;
|
8522 |
|
|
|
8523 |
|
|
if (ada_is_fixed_point_type (type))
|
8524 |
|
|
return (cast_to_fixed (type, arg2));
|
8525 |
|
|
|
8526 |
|
|
if (ada_is_fixed_point_type (value_type (arg2)))
|
8527 |
|
|
return cast_from_fixed (type, arg2);
|
8528 |
|
|
|
8529 |
|
|
return value_cast (type, arg2);
|
8530 |
|
|
}
|
8531 |
|
|
|
8532 |
|
|
/* Evaluating Ada expressions, and printing their result.
|
8533 |
|
|
------------------------------------------------------
|
8534 |
|
|
|
8535 |
|
|
1. Introduction:
|
8536 |
|
|
----------------
|
8537 |
|
|
|
8538 |
|
|
We usually evaluate an Ada expression in order to print its value.
|
8539 |
|
|
We also evaluate an expression in order to print its type, which
|
8540 |
|
|
happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
|
8541 |
|
|
but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
|
8542 |
|
|
EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
|
8543 |
|
|
the evaluation compared to the EVAL_NORMAL, but is otherwise very
|
8544 |
|
|
similar.
|
8545 |
|
|
|
8546 |
|
|
Evaluating expressions is a little more complicated for Ada entities
|
8547 |
|
|
than it is for entities in languages such as C. The main reason for
|
8548 |
|
|
this is that Ada provides types whose definition might be dynamic.
|
8549 |
|
|
One example of such types is variant records. Or another example
|
8550 |
|
|
would be an array whose bounds can only be known at run time.
|
8551 |
|
|
|
8552 |
|
|
The following description is a general guide as to what should be
|
8553 |
|
|
done (and what should NOT be done) in order to evaluate an expression
|
8554 |
|
|
involving such types, and when. This does not cover how the semantic
|
8555 |
|
|
information is encoded by GNAT as this is covered separatly. For the
|
8556 |
|
|
document used as the reference for the GNAT encoding, see exp_dbug.ads
|
8557 |
|
|
in the GNAT sources.
|
8558 |
|
|
|
8559 |
|
|
Ideally, we should embed each part of this description next to its
|
8560 |
|
|
associated code. Unfortunately, the amount of code is so vast right
|
8561 |
|
|
now that it's hard to see whether the code handling a particular
|
8562 |
|
|
situation might be duplicated or not. One day, when the code is
|
8563 |
|
|
cleaned up, this guide might become redundant with the comments
|
8564 |
|
|
inserted in the code, and we might want to remove it.
|
8565 |
|
|
|
8566 |
|
|
2. ``Fixing'' an Entity, the Simple Case:
|
8567 |
|
|
-----------------------------------------
|
8568 |
|
|
|
8569 |
|
|
When evaluating Ada expressions, the tricky issue is that they may
|
8570 |
|
|
reference entities whose type contents and size are not statically
|
8571 |
|
|
known. Consider for instance a variant record:
|
8572 |
|
|
|
8573 |
|
|
type Rec (Empty : Boolean := True) is record
|
8574 |
|
|
case Empty is
|
8575 |
|
|
when True => null;
|
8576 |
|
|
when False => Value : Integer;
|
8577 |
|
|
end case;
|
8578 |
|
|
end record;
|
8579 |
|
|
Yes : Rec := (Empty => False, Value => 1);
|
8580 |
|
|
No : Rec := (empty => True);
|
8581 |
|
|
|
8582 |
|
|
The size and contents of that record depends on the value of the
|
8583 |
|
|
descriminant (Rec.Empty). At this point, neither the debugging
|
8584 |
|
|
information nor the associated type structure in GDB are able to
|
8585 |
|
|
express such dynamic types. So what the debugger does is to create
|
8586 |
|
|
"fixed" versions of the type that applies to the specific object.
|
8587 |
|
|
We also informally refer to this opperation as "fixing" an object,
|
8588 |
|
|
which means creating its associated fixed type.
|
8589 |
|
|
|
8590 |
|
|
Example: when printing the value of variable "Yes" above, its fixed
|
8591 |
|
|
type would look like this:
|
8592 |
|
|
|
8593 |
|
|
type Rec is record
|
8594 |
|
|
Empty : Boolean;
|
8595 |
|
|
Value : Integer;
|
8596 |
|
|
end record;
|
8597 |
|
|
|
8598 |
|
|
On the other hand, if we printed the value of "No", its fixed type
|
8599 |
|
|
would become:
|
8600 |
|
|
|
8601 |
|
|
type Rec is record
|
8602 |
|
|
Empty : Boolean;
|
8603 |
|
|
end record;
|
8604 |
|
|
|
8605 |
|
|
Things become a little more complicated when trying to fix an entity
|
8606 |
|
|
with a dynamic type that directly contains another dynamic type,
|
8607 |
|
|
such as an array of variant records, for instance. There are
|
8608 |
|
|
two possible cases: Arrays, and records.
|
8609 |
|
|
|
8610 |
|
|
3. ``Fixing'' Arrays:
|
8611 |
|
|
---------------------
|
8612 |
|
|
|
8613 |
|
|
The type structure in GDB describes an array in terms of its bounds,
|
8614 |
|
|
and the type of its elements. By design, all elements in the array
|
8615 |
|
|
have the same type and we cannot represent an array of variant elements
|
8616 |
|
|
using the current type structure in GDB. When fixing an array,
|
8617 |
|
|
we cannot fix the array element, as we would potentially need one
|
8618 |
|
|
fixed type per element of the array. As a result, the best we can do
|
8619 |
|
|
when fixing an array is to produce an array whose bounds and size
|
8620 |
|
|
are correct (allowing us to read it from memory), but without having
|
8621 |
|
|
touched its element type. Fixing each element will be done later,
|
8622 |
|
|
when (if) necessary.
|
8623 |
|
|
|
8624 |
|
|
Arrays are a little simpler to handle than records, because the same
|
8625 |
|
|
amount of memory is allocated for each element of the array, even if
|
8626 |
|
|
the amount of space actually used by each element differs from element
|
8627 |
|
|
to element. Consider for instance the following array of type Rec:
|
8628 |
|
|
|
8629 |
|
|
type Rec_Array is array (1 .. 2) of Rec;
|
8630 |
|
|
|
8631 |
|
|
The actual amount of memory occupied by each element might be different
|
8632 |
|
|
from element to element, depending on the value of their discriminant.
|
8633 |
|
|
But the amount of space reserved for each element in the array remains
|
8634 |
|
|
fixed regardless. So we simply need to compute that size using
|
8635 |
|
|
the debugging information available, from which we can then determine
|
8636 |
|
|
the array size (we multiply the number of elements of the array by
|
8637 |
|
|
the size of each element).
|
8638 |
|
|
|
8639 |
|
|
The simplest case is when we have an array of a constrained element
|
8640 |
|
|
type. For instance, consider the following type declarations:
|
8641 |
|
|
|
8642 |
|
|
type Bounded_String (Max_Size : Integer) is
|
8643 |
|
|
Length : Integer;
|
8644 |
|
|
Buffer : String (1 .. Max_Size);
|
8645 |
|
|
end record;
|
8646 |
|
|
type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
|
8647 |
|
|
|
8648 |
|
|
In this case, the compiler describes the array as an array of
|
8649 |
|
|
variable-size elements (identified by its XVS suffix) for which
|
8650 |
|
|
the size can be read in the parallel XVZ variable.
|
8651 |
|
|
|
8652 |
|
|
In the case of an array of an unconstrained element type, the compiler
|
8653 |
|
|
wraps the array element inside a private PAD type. This type should not
|
8654 |
|
|
be shown to the user, and must be "unwrap"'ed before printing. Note
|
8655 |
|
|
that we also use the adjective "aligner" in our code to designate
|
8656 |
|
|
these wrapper types.
|
8657 |
|
|
|
8658 |
|
|
In some cases, the size allocated for each element is statically
|
8659 |
|
|
known. In that case, the PAD type already has the correct size,
|
8660 |
|
|
and the array element should remain unfixed.
|
8661 |
|
|
|
8662 |
|
|
But there are cases when this size is not statically known.
|
8663 |
|
|
For instance, assuming that "Five" is an integer variable:
|
8664 |
|
|
|
8665 |
|
|
type Dynamic is array (1 .. Five) of Integer;
|
8666 |
|
|
type Wrapper (Has_Length : Boolean := False) is record
|
8667 |
|
|
Data : Dynamic;
|
8668 |
|
|
case Has_Length is
|
8669 |
|
|
when True => Length : Integer;
|
8670 |
|
|
when False => null;
|
8671 |
|
|
end case;
|
8672 |
|
|
end record;
|
8673 |
|
|
type Wrapper_Array is array (1 .. 2) of Wrapper;
|
8674 |
|
|
|
8675 |
|
|
Hello : Wrapper_Array := (others => (Has_Length => True,
|
8676 |
|
|
Data => (others => 17),
|
8677 |
|
|
Length => 1));
|
8678 |
|
|
|
8679 |
|
|
|
8680 |
|
|
The debugging info would describe variable Hello as being an
|
8681 |
|
|
array of a PAD type. The size of that PAD type is not statically
|
8682 |
|
|
known, but can be determined using a parallel XVZ variable.
|
8683 |
|
|
In that case, a copy of the PAD type with the correct size should
|
8684 |
|
|
be used for the fixed array.
|
8685 |
|
|
|
8686 |
|
|
3. ``Fixing'' record type objects:
|
8687 |
|
|
----------------------------------
|
8688 |
|
|
|
8689 |
|
|
Things are slightly different from arrays in the case of dynamic
|
8690 |
|
|
record types. In this case, in order to compute the associated
|
8691 |
|
|
fixed type, we need to determine the size and offset of each of
|
8692 |
|
|
its components. This, in turn, requires us to compute the fixed
|
8693 |
|
|
type of each of these components.
|
8694 |
|
|
|
8695 |
|
|
Consider for instance the example:
|
8696 |
|
|
|
8697 |
|
|
type Bounded_String (Max_Size : Natural) is record
|
8698 |
|
|
Str : String (1 .. Max_Size);
|
8699 |
|
|
Length : Natural;
|
8700 |
|
|
end record;
|
8701 |
|
|
My_String : Bounded_String (Max_Size => 10);
|
8702 |
|
|
|
8703 |
|
|
In that case, the position of field "Length" depends on the size
|
8704 |
|
|
of field Str, which itself depends on the value of the Max_Size
|
8705 |
|
|
discriminant. In order to fix the type of variable My_String,
|
8706 |
|
|
we need to fix the type of field Str. Therefore, fixing a variant
|
8707 |
|
|
record requires us to fix each of its components.
|
8708 |
|
|
|
8709 |
|
|
However, if a component does not have a dynamic size, the component
|
8710 |
|
|
should not be fixed. In particular, fields that use a PAD type
|
8711 |
|
|
should not fixed. Here is an example where this might happen
|
8712 |
|
|
(assuming type Rec above):
|
8713 |
|
|
|
8714 |
|
|
type Container (Big : Boolean) is record
|
8715 |
|
|
First : Rec;
|
8716 |
|
|
After : Integer;
|
8717 |
|
|
case Big is
|
8718 |
|
|
when True => Another : Integer;
|
8719 |
|
|
when False => null;
|
8720 |
|
|
end case;
|
8721 |
|
|
end record;
|
8722 |
|
|
My_Container : Container := (Big => False,
|
8723 |
|
|
First => (Empty => True),
|
8724 |
|
|
After => 42);
|
8725 |
|
|
|
8726 |
|
|
In that example, the compiler creates a PAD type for component First,
|
8727 |
|
|
whose size is constant, and then positions the component After just
|
8728 |
|
|
right after it. The offset of component After is therefore constant
|
8729 |
|
|
in this case.
|
8730 |
|
|
|
8731 |
|
|
The debugger computes the position of each field based on an algorithm
|
8732 |
|
|
that uses, among other things, the actual position and size of the field
|
8733 |
|
|
preceding it. Let's now imagine that the user is trying to print
|
8734 |
|
|
the value of My_Container. If the type fixing was recursive, we would
|
8735 |
|
|
end up computing the offset of field After based on the size of the
|
8736 |
|
|
fixed version of field First. And since in our example First has
|
8737 |
|
|
only one actual field, the size of the fixed type is actually smaller
|
8738 |
|
|
than the amount of space allocated to that field, and thus we would
|
8739 |
|
|
compute the wrong offset of field After.
|
8740 |
|
|
|
8741 |
|
|
To make things more complicated, we need to watch out for dynamic
|
8742 |
|
|
components of variant records (identified by the ___XVL suffix in
|
8743 |
|
|
the component name). Even if the target type is a PAD type, the size
|
8744 |
|
|
of that type might not be statically known. So the PAD type needs
|
8745 |
|
|
to be unwrapped and the resulting type needs to be fixed. Otherwise,
|
8746 |
|
|
we might end up with the wrong size for our component. This can be
|
8747 |
|
|
observed with the following type declarations:
|
8748 |
|
|
|
8749 |
|
|
type Octal is new Integer range 0 .. 7;
|
8750 |
|
|
type Octal_Array is array (Positive range <>) of Octal;
|
8751 |
|
|
pragma Pack (Octal_Array);
|
8752 |
|
|
|
8753 |
|
|
type Octal_Buffer (Size : Positive) is record
|
8754 |
|
|
Buffer : Octal_Array (1 .. Size);
|
8755 |
|
|
Length : Integer;
|
8756 |
|
|
end record;
|
8757 |
|
|
|
8758 |
|
|
In that case, Buffer is a PAD type whose size is unset and needs
|
8759 |
|
|
to be computed by fixing the unwrapped type.
|
8760 |
|
|
|
8761 |
|
|
4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
|
8762 |
|
|
----------------------------------------------------------
|
8763 |
|
|
|
8764 |
|
|
Lastly, when should the sub-elements of an entity that remained unfixed
|
8765 |
|
|
thus far, be actually fixed?
|
8766 |
|
|
|
8767 |
|
|
The answer is: Only when referencing that element. For instance
|
8768 |
|
|
when selecting one component of a record, this specific component
|
8769 |
|
|
should be fixed at that point in time. Or when printing the value
|
8770 |
|
|
of a record, each component should be fixed before its value gets
|
8771 |
|
|
printed. Similarly for arrays, the element of the array should be
|
8772 |
|
|
fixed when printing each element of the array, or when extracting
|
8773 |
|
|
one element out of that array. On the other hand, fixing should
|
8774 |
|
|
not be performed on the elements when taking a slice of an array!
|
8775 |
|
|
|
8776 |
|
|
Note that one of the side-effects of miscomputing the offset and
|
8777 |
|
|
size of each field is that we end up also miscomputing the size
|
8778 |
|
|
of the containing type. This can have adverse results when computing
|
8779 |
|
|
the value of an entity. GDB fetches the value of an entity based
|
8780 |
|
|
on the size of its type, and thus a wrong size causes GDB to fetch
|
8781 |
|
|
the wrong amount of memory. In the case where the computed size is
|
8782 |
|
|
too small, GDB fetches too little data to print the value of our
|
8783 |
|
|
entiry. Results in this case as unpredicatble, as we usually read
|
8784 |
|
|
past the buffer containing the data =:-o. */
|
8785 |
|
|
|
8786 |
|
|
/* Implement the evaluate_exp routine in the exp_descriptor structure
|
8787 |
|
|
for the Ada language. */
|
8788 |
|
|
|
8789 |
|
|
static struct value *
|
8790 |
|
|
ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
|
8791 |
|
|
int *pos, enum noside noside)
|
8792 |
|
|
{
|
8793 |
|
|
enum exp_opcode op;
|
8794 |
|
|
int tem;
|
8795 |
|
|
int pc;
|
8796 |
|
|
struct value *arg1 = NULL, *arg2 = NULL, *arg3;
|
8797 |
|
|
struct type *type;
|
8798 |
|
|
int nargs, oplen;
|
8799 |
|
|
struct value **argvec;
|
8800 |
|
|
|
8801 |
|
|
pc = *pos;
|
8802 |
|
|
*pos += 1;
|
8803 |
|
|
op = exp->elts[pc].opcode;
|
8804 |
|
|
|
8805 |
|
|
switch (op)
|
8806 |
|
|
{
|
8807 |
|
|
default:
|
8808 |
|
|
*pos -= 1;
|
8809 |
|
|
arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
|
8810 |
|
|
arg1 = unwrap_value (arg1);
|
8811 |
|
|
|
8812 |
|
|
/* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided,
|
8813 |
|
|
then we need to perform the conversion manually, because
|
8814 |
|
|
evaluate_subexp_standard doesn't do it. This conversion is
|
8815 |
|
|
necessary in Ada because the different kinds of float/fixed
|
8816 |
|
|
types in Ada have different representations.
|
8817 |
|
|
|
8818 |
|
|
Similarly, we need to perform the conversion from OP_LONG
|
8819 |
|
|
ourselves. */
|
8820 |
|
|
if ((op == OP_DOUBLE || op == OP_LONG) && expect_type != NULL)
|
8821 |
|
|
arg1 = ada_value_cast (expect_type, arg1, noside);
|
8822 |
|
|
|
8823 |
|
|
return arg1;
|
8824 |
|
|
|
8825 |
|
|
case OP_STRING:
|
8826 |
|
|
{
|
8827 |
|
|
struct value *result;
|
8828 |
|
|
|
8829 |
|
|
*pos -= 1;
|
8830 |
|
|
result = evaluate_subexp_standard (expect_type, exp, pos, noside);
|
8831 |
|
|
/* The result type will have code OP_STRING, bashed there from
|
8832 |
|
|
OP_ARRAY. Bash it back. */
|
8833 |
|
|
if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
|
8834 |
|
|
TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
|
8835 |
|
|
return result;
|
8836 |
|
|
}
|
8837 |
|
|
|
8838 |
|
|
case UNOP_CAST:
|
8839 |
|
|
(*pos) += 2;
|
8840 |
|
|
type = exp->elts[pc + 1].type;
|
8841 |
|
|
arg1 = evaluate_subexp (type, exp, pos, noside);
|
8842 |
|
|
if (noside == EVAL_SKIP)
|
8843 |
|
|
goto nosideret;
|
8844 |
|
|
arg1 = ada_value_cast (type, arg1, noside);
|
8845 |
|
|
return arg1;
|
8846 |
|
|
|
8847 |
|
|
case UNOP_QUAL:
|
8848 |
|
|
(*pos) += 2;
|
8849 |
|
|
type = exp->elts[pc + 1].type;
|
8850 |
|
|
return ada_evaluate_subexp (type, exp, pos, noside);
|
8851 |
|
|
|
8852 |
|
|
case BINOP_ASSIGN:
|
8853 |
|
|
arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
8854 |
|
|
if (exp->elts[*pos].opcode == OP_AGGREGATE)
|
8855 |
|
|
{
|
8856 |
|
|
arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
|
8857 |
|
|
if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
|
8858 |
|
|
return arg1;
|
8859 |
|
|
return ada_value_assign (arg1, arg1);
|
8860 |
|
|
}
|
8861 |
|
|
/* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
|
8862 |
|
|
except if the lhs of our assignment is a convenience variable.
|
8863 |
|
|
In the case of assigning to a convenience variable, the lhs
|
8864 |
|
|
should be exactly the result of the evaluation of the rhs. */
|
8865 |
|
|
type = value_type (arg1);
|
8866 |
|
|
if (VALUE_LVAL (arg1) == lval_internalvar)
|
8867 |
|
|
type = NULL;
|
8868 |
|
|
arg2 = evaluate_subexp (type, exp, pos, noside);
|
8869 |
|
|
if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
|
8870 |
|
|
return arg1;
|
8871 |
|
|
if (ada_is_fixed_point_type (value_type (arg1)))
|
8872 |
|
|
arg2 = cast_to_fixed (value_type (arg1), arg2);
|
8873 |
|
|
else if (ada_is_fixed_point_type (value_type (arg2)))
|
8874 |
|
|
error
|
8875 |
|
|
(_("Fixed-point values must be assigned to fixed-point variables"));
|
8876 |
|
|
else
|
8877 |
|
|
arg2 = coerce_for_assign (value_type (arg1), arg2);
|
8878 |
|
|
return ada_value_assign (arg1, arg2);
|
8879 |
|
|
|
8880 |
|
|
case BINOP_ADD:
|
8881 |
|
|
arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
|
8882 |
|
|
arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
|
8883 |
|
|
if (noside == EVAL_SKIP)
|
8884 |
|
|
goto nosideret;
|
8885 |
|
|
if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
|
8886 |
|
|
return (value_from_longest
|
8887 |
|
|
(value_type (arg1),
|
8888 |
|
|
value_as_long (arg1) + value_as_long (arg2)));
|
8889 |
|
|
if ((ada_is_fixed_point_type (value_type (arg1))
|
8890 |
|
|
|| ada_is_fixed_point_type (value_type (arg2)))
|
8891 |
|
|
&& value_type (arg1) != value_type (arg2))
|
8892 |
|
|
error (_("Operands of fixed-point addition must have the same type"));
|
8893 |
|
|
/* Do the addition, and cast the result to the type of the first
|
8894 |
|
|
argument. We cannot cast the result to a reference type, so if
|
8895 |
|
|
ARG1 is a reference type, find its underlying type. */
|
8896 |
|
|
type = value_type (arg1);
|
8897 |
|
|
while (TYPE_CODE (type) == TYPE_CODE_REF)
|
8898 |
|
|
type = TYPE_TARGET_TYPE (type);
|
8899 |
|
|
binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
|
8900 |
|
|
return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
|
8901 |
|
|
|
8902 |
|
|
case BINOP_SUB:
|
8903 |
|
|
arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
|
8904 |
|
|
arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
|
8905 |
|
|
if (noside == EVAL_SKIP)
|
8906 |
|
|
goto nosideret;
|
8907 |
|
|
if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
|
8908 |
|
|
return (value_from_longest
|
8909 |
|
|
(value_type (arg1),
|
8910 |
|
|
value_as_long (arg1) - value_as_long (arg2)));
|
8911 |
|
|
if ((ada_is_fixed_point_type (value_type (arg1))
|
8912 |
|
|
|| ada_is_fixed_point_type (value_type (arg2)))
|
8913 |
|
|
&& value_type (arg1) != value_type (arg2))
|
8914 |
|
|
error (_("Operands of fixed-point subtraction must have the same type"));
|
8915 |
|
|
/* Do the substraction, and cast the result to the type of the first
|
8916 |
|
|
argument. We cannot cast the result to a reference type, so if
|
8917 |
|
|
ARG1 is a reference type, find its underlying type. */
|
8918 |
|
|
type = value_type (arg1);
|
8919 |
|
|
while (TYPE_CODE (type) == TYPE_CODE_REF)
|
8920 |
|
|
type = TYPE_TARGET_TYPE (type);
|
8921 |
|
|
binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
|
8922 |
|
|
return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
|
8923 |
|
|
|
8924 |
|
|
case BINOP_MUL:
|
8925 |
|
|
case BINOP_DIV:
|
8926 |
|
|
case BINOP_REM:
|
8927 |
|
|
case BINOP_MOD:
|
8928 |
|
|
arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
8929 |
|
|
arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
8930 |
|
|
if (noside == EVAL_SKIP)
|
8931 |
|
|
goto nosideret;
|
8932 |
|
|
else if (noside == EVAL_AVOID_SIDE_EFFECTS)
|
8933 |
|
|
{
|
8934 |
|
|
binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
|
8935 |
|
|
return value_zero (value_type (arg1), not_lval);
|
8936 |
|
|
}
|
8937 |
|
|
else
|
8938 |
|
|
{
|
8939 |
|
|
type = builtin_type (exp->gdbarch)->builtin_double;
|
8940 |
|
|
if (ada_is_fixed_point_type (value_type (arg1)))
|
8941 |
|
|
arg1 = cast_from_fixed (type, arg1);
|
8942 |
|
|
if (ada_is_fixed_point_type (value_type (arg2)))
|
8943 |
|
|
arg2 = cast_from_fixed (type, arg2);
|
8944 |
|
|
binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
|
8945 |
|
|
return ada_value_binop (arg1, arg2, op);
|
8946 |
|
|
}
|
8947 |
|
|
|
8948 |
|
|
case BINOP_EQUAL:
|
8949 |
|
|
case BINOP_NOTEQUAL:
|
8950 |
|
|
arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
8951 |
|
|
arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
|
8952 |
|
|
if (noside == EVAL_SKIP)
|
8953 |
|
|
goto nosideret;
|
8954 |
|
|
if (noside == EVAL_AVOID_SIDE_EFFECTS)
|
8955 |
|
|
tem = 0;
|
8956 |
|
|
else
|
8957 |
|
|
{
|
8958 |
|
|
binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
|
8959 |
|
|
tem = ada_value_equal (arg1, arg2);
|
8960 |
|
|
}
|
8961 |
|
|
if (op == BINOP_NOTEQUAL)
|
8962 |
|
|
tem = !tem;
|
8963 |
|
|
type = language_bool_type (exp->language_defn, exp->gdbarch);
|
8964 |
|
|
return value_from_longest (type, (LONGEST) tem);
|
8965 |
|
|
|
8966 |
|
|
case UNOP_NEG:
|
8967 |
|
|
arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
8968 |
|
|
if (noside == EVAL_SKIP)
|
8969 |
|
|
goto nosideret;
|
8970 |
|
|
else if (ada_is_fixed_point_type (value_type (arg1)))
|
8971 |
|
|
return value_cast (value_type (arg1), value_neg (arg1));
|
8972 |
|
|
else
|
8973 |
|
|
{
|
8974 |
|
|
unop_promote (exp->language_defn, exp->gdbarch, &arg1);
|
8975 |
|
|
return value_neg (arg1);
|
8976 |
|
|
}
|
8977 |
|
|
|
8978 |
|
|
case BINOP_LOGICAL_AND:
|
8979 |
|
|
case BINOP_LOGICAL_OR:
|
8980 |
|
|
case UNOP_LOGICAL_NOT:
|
8981 |
|
|
{
|
8982 |
|
|
struct value *val;
|
8983 |
|
|
|
8984 |
|
|
*pos -= 1;
|
8985 |
|
|
val = evaluate_subexp_standard (expect_type, exp, pos, noside);
|
8986 |
|
|
type = language_bool_type (exp->language_defn, exp->gdbarch);
|
8987 |
|
|
return value_cast (type, val);
|
8988 |
|
|
}
|
8989 |
|
|
|
8990 |
|
|
case BINOP_BITWISE_AND:
|
8991 |
|
|
case BINOP_BITWISE_IOR:
|
8992 |
|
|
case BINOP_BITWISE_XOR:
|
8993 |
|
|
{
|
8994 |
|
|
struct value *val;
|
8995 |
|
|
|
8996 |
|
|
arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
|
8997 |
|
|
*pos = pc;
|
8998 |
|
|
val = evaluate_subexp_standard (expect_type, exp, pos, noside);
|
8999 |
|
|
|
9000 |
|
|
return value_cast (value_type (arg1), val);
|
9001 |
|
|
}
|
9002 |
|
|
|
9003 |
|
|
case OP_VAR_VALUE:
|
9004 |
|
|
*pos -= 1;
|
9005 |
|
|
|
9006 |
|
|
if (noside == EVAL_SKIP)
|
9007 |
|
|
{
|
9008 |
|
|
*pos += 4;
|
9009 |
|
|
goto nosideret;
|
9010 |
|
|
}
|
9011 |
|
|
else if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
|
9012 |
|
|
/* Only encountered when an unresolved symbol occurs in a
|
9013 |
|
|
context other than a function call, in which case, it is
|
9014 |
|
|
invalid. */
|
9015 |
|
|
error (_("Unexpected unresolved symbol, %s, during evaluation"),
|
9016 |
|
|
SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
|
9017 |
|
|
else if (noside == EVAL_AVOID_SIDE_EFFECTS)
|
9018 |
|
|
{
|
9019 |
|
|
type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
|
9020 |
|
|
/* Check to see if this is a tagged type. We also need to handle
|
9021 |
|
|
the case where the type is a reference to a tagged type, but
|
9022 |
|
|
we have to be careful to exclude pointers to tagged types.
|
9023 |
|
|
The latter should be shown as usual (as a pointer), whereas
|
9024 |
|
|
a reference should mostly be transparent to the user. */
|
9025 |
|
|
if (ada_is_tagged_type (type, 0)
|
9026 |
|
|
|| (TYPE_CODE(type) == TYPE_CODE_REF
|
9027 |
|
|
&& ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
|
9028 |
|
|
{
|
9029 |
|
|
/* Tagged types are a little special in the fact that the real
|
9030 |
|
|
type is dynamic and can only be determined by inspecting the
|
9031 |
|
|
object's tag. This means that we need to get the object's
|
9032 |
|
|
value first (EVAL_NORMAL) and then extract the actual object
|
9033 |
|
|
type from its tag.
|
9034 |
|
|
|
9035 |
|
|
Note that we cannot skip the final step where we extract
|
9036 |
|
|
the object type from its tag, because the EVAL_NORMAL phase
|
9037 |
|
|
results in dynamic components being resolved into fixed ones.
|
9038 |
|
|
This can cause problems when trying to print the type
|
9039 |
|
|
description of tagged types whose parent has a dynamic size:
|
9040 |
|
|
We use the type name of the "_parent" component in order
|
9041 |
|
|
to print the name of the ancestor type in the type description.
|
9042 |
|
|
If that component had a dynamic size, the resolution into
|
9043 |
|
|
a fixed type would result in the loss of that type name,
|
9044 |
|
|
thus preventing us from printing the name of the ancestor
|
9045 |
|
|
type in the type description. */
|
9046 |
|
|
struct type *actual_type;
|
9047 |
|
|
|
9048 |
|
|
arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
|
9049 |
|
|
actual_type = type_from_tag (ada_value_tag (arg1));
|
9050 |
|
|
if (actual_type == NULL)
|
9051 |
|
|
/* If, for some reason, we were unable to determine
|
9052 |
|
|
the actual type from the tag, then use the static
|
9053 |
|
|
approximation that we just computed as a fallback.
|
9054 |
|
|
This can happen if the debugging information is
|
9055 |
|
|
incomplete, for instance. */
|
9056 |
|
|
actual_type = type;
|
9057 |
|
|
|
9058 |
|
|
return value_zero (actual_type, not_lval);
|
9059 |
|
|
}
|
9060 |
|
|
|
9061 |
|
|
*pos += 4;
|
9062 |
|
|
return value_zero
|
9063 |
|
|
(to_static_fixed_type
|
9064 |
|
|
(static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol))),
|
9065 |
|
|
not_lval);
|
9066 |
|
|
}
|
9067 |
|
|
else
|
9068 |
|
|
{
|
9069 |
|
|
arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
|
9070 |
|
|
arg1 = unwrap_value (arg1);
|
9071 |
|
|
return ada_to_fixed_value (arg1);
|
9072 |
|
|
}
|
9073 |
|
|
|
9074 |
|
|
case OP_FUNCALL:
|
9075 |
|
|
(*pos) += 2;
|
9076 |
|
|
|
9077 |
|
|
/* Allocate arg vector, including space for the function to be
|
9078 |
|
|
called in argvec[0] and a terminating NULL. */
|
9079 |
|
|
nargs = longest_to_int (exp->elts[pc + 1].longconst);
|
9080 |
|
|
argvec =
|
9081 |
|
|
(struct value **) alloca (sizeof (struct value *) * (nargs + 2));
|
9082 |
|
|
|
9083 |
|
|
if (exp->elts[*pos].opcode == OP_VAR_VALUE
|
9084 |
|
|
&& SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
|
9085 |
|
|
error (_("Unexpected unresolved symbol, %s, during evaluation"),
|
9086 |
|
|
SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
|
9087 |
|
|
else
|
9088 |
|
|
{
|
9089 |
|
|
for (tem = 0; tem <= nargs; tem += 1)
|
9090 |
|
|
argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
9091 |
|
|
argvec[tem] = 0;
|
9092 |
|
|
|
9093 |
|
|
if (noside == EVAL_SKIP)
|
9094 |
|
|
goto nosideret;
|
9095 |
|
|
}
|
9096 |
|
|
|
9097 |
|
|
if (ada_is_constrained_packed_array_type
|
9098 |
|
|
(desc_base_type (value_type (argvec[0]))))
|
9099 |
|
|
argvec[0] = ada_coerce_to_simple_array (argvec[0]);
|
9100 |
|
|
else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
|
9101 |
|
|
&& TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
|
9102 |
|
|
/* This is a packed array that has already been fixed, and
|
9103 |
|
|
therefore already coerced to a simple array. Nothing further
|
9104 |
|
|
to do. */
|
9105 |
|
|
;
|
9106 |
|
|
else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF
|
9107 |
|
|
|| (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
|
9108 |
|
|
&& VALUE_LVAL (argvec[0]) == lval_memory))
|
9109 |
|
|
argvec[0] = value_addr (argvec[0]);
|
9110 |
|
|
|
9111 |
|
|
type = ada_check_typedef (value_type (argvec[0]));
|
9112 |
|
|
if (TYPE_CODE (type) == TYPE_CODE_PTR)
|
9113 |
|
|
{
|
9114 |
|
|
switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
|
9115 |
|
|
{
|
9116 |
|
|
case TYPE_CODE_FUNC:
|
9117 |
|
|
type = ada_check_typedef (TYPE_TARGET_TYPE (type));
|
9118 |
|
|
break;
|
9119 |
|
|
case TYPE_CODE_ARRAY:
|
9120 |
|
|
break;
|
9121 |
|
|
case TYPE_CODE_STRUCT:
|
9122 |
|
|
if (noside != EVAL_AVOID_SIDE_EFFECTS)
|
9123 |
|
|
argvec[0] = ada_value_ind (argvec[0]);
|
9124 |
|
|
type = ada_check_typedef (TYPE_TARGET_TYPE (type));
|
9125 |
|
|
break;
|
9126 |
|
|
default:
|
9127 |
|
|
error (_("cannot subscript or call something of type `%s'"),
|
9128 |
|
|
ada_type_name (value_type (argvec[0])));
|
9129 |
|
|
break;
|
9130 |
|
|
}
|
9131 |
|
|
}
|
9132 |
|
|
|
9133 |
|
|
switch (TYPE_CODE (type))
|
9134 |
|
|
{
|
9135 |
|
|
case TYPE_CODE_FUNC:
|
9136 |
|
|
if (noside == EVAL_AVOID_SIDE_EFFECTS)
|
9137 |
|
|
return allocate_value (TYPE_TARGET_TYPE (type));
|
9138 |
|
|
return call_function_by_hand (argvec[0], nargs, argvec + 1);
|
9139 |
|
|
case TYPE_CODE_STRUCT:
|
9140 |
|
|
{
|
9141 |
|
|
int arity;
|
9142 |
|
|
|
9143 |
|
|
arity = ada_array_arity (type);
|
9144 |
|
|
type = ada_array_element_type (type, nargs);
|
9145 |
|
|
if (type == NULL)
|
9146 |
|
|
error (_("cannot subscript or call a record"));
|
9147 |
|
|
if (arity != nargs)
|
9148 |
|
|
error (_("wrong number of subscripts; expecting %d"), arity);
|
9149 |
|
|
if (noside == EVAL_AVOID_SIDE_EFFECTS)
|
9150 |
|
|
return value_zero (ada_aligned_type (type), lval_memory);
|
9151 |
|
|
return
|
9152 |
|
|
unwrap_value (ada_value_subscript
|
9153 |
|
|
(argvec[0], nargs, argvec + 1));
|
9154 |
|
|
}
|
9155 |
|
|
case TYPE_CODE_ARRAY:
|
9156 |
|
|
if (noside == EVAL_AVOID_SIDE_EFFECTS)
|
9157 |
|
|
{
|
9158 |
|
|
type = ada_array_element_type (type, nargs);
|
9159 |
|
|
if (type == NULL)
|
9160 |
|
|
error (_("element type of array unknown"));
|
9161 |
|
|
else
|
9162 |
|
|
return value_zero (ada_aligned_type (type), lval_memory);
|
9163 |
|
|
}
|
9164 |
|
|
return
|
9165 |
|
|
unwrap_value (ada_value_subscript
|
9166 |
|
|
(ada_coerce_to_simple_array (argvec[0]),
|
9167 |
|
|
nargs, argvec + 1));
|
9168 |
|
|
case TYPE_CODE_PTR: /* Pointer to array */
|
9169 |
|
|
type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
|
9170 |
|
|
if (noside == EVAL_AVOID_SIDE_EFFECTS)
|
9171 |
|
|
{
|
9172 |
|
|
type = ada_array_element_type (type, nargs);
|
9173 |
|
|
if (type == NULL)
|
9174 |
|
|
error (_("element type of array unknown"));
|
9175 |
|
|
else
|
9176 |
|
|
return value_zero (ada_aligned_type (type), lval_memory);
|
9177 |
|
|
}
|
9178 |
|
|
return
|
9179 |
|
|
unwrap_value (ada_value_ptr_subscript (argvec[0], type,
|
9180 |
|
|
nargs, argvec + 1));
|
9181 |
|
|
|
9182 |
|
|
default:
|
9183 |
|
|
error (_("Attempt to index or call something other than an "
|
9184 |
|
|
"array or function"));
|
9185 |
|
|
}
|
9186 |
|
|
|
9187 |
|
|
case TERNOP_SLICE:
|
9188 |
|
|
{
|
9189 |
|
|
struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
9190 |
|
|
struct value *low_bound_val =
|
9191 |
|
|
evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
9192 |
|
|
struct value *high_bound_val =
|
9193 |
|
|
evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
9194 |
|
|
LONGEST low_bound;
|
9195 |
|
|
LONGEST high_bound;
|
9196 |
|
|
|
9197 |
|
|
low_bound_val = coerce_ref (low_bound_val);
|
9198 |
|
|
high_bound_val = coerce_ref (high_bound_val);
|
9199 |
|
|
low_bound = pos_atr (low_bound_val);
|
9200 |
|
|
high_bound = pos_atr (high_bound_val);
|
9201 |
|
|
|
9202 |
|
|
if (noside == EVAL_SKIP)
|
9203 |
|
|
goto nosideret;
|
9204 |
|
|
|
9205 |
|
|
/* If this is a reference to an aligner type, then remove all
|
9206 |
|
|
the aligners. */
|
9207 |
|
|
if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
|
9208 |
|
|
&& ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
|
9209 |
|
|
TYPE_TARGET_TYPE (value_type (array)) =
|
9210 |
|
|
ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
|
9211 |
|
|
|
9212 |
|
|
if (ada_is_constrained_packed_array_type (value_type (array)))
|
9213 |
|
|
error (_("cannot slice a packed array"));
|
9214 |
|
|
|
9215 |
|
|
/* If this is a reference to an array or an array lvalue,
|
9216 |
|
|
convert to a pointer. */
|
9217 |
|
|
if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
|
9218 |
|
|
|| (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
|
9219 |
|
|
&& VALUE_LVAL (array) == lval_memory))
|
9220 |
|
|
array = value_addr (array);
|
9221 |
|
|
|
9222 |
|
|
if (noside == EVAL_AVOID_SIDE_EFFECTS
|
9223 |
|
|
&& ada_is_array_descriptor_type (ada_check_typedef
|
9224 |
|
|
(value_type (array))))
|
9225 |
|
|
return empty_array (ada_type_of_array (array, 0), low_bound);
|
9226 |
|
|
|
9227 |
|
|
array = ada_coerce_to_simple_array_ptr (array);
|
9228 |
|
|
|
9229 |
|
|
/* If we have more than one level of pointer indirection,
|
9230 |
|
|
dereference the value until we get only one level. */
|
9231 |
|
|
while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
|
9232 |
|
|
&& (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
|
9233 |
|
|
== TYPE_CODE_PTR))
|
9234 |
|
|
array = value_ind (array);
|
9235 |
|
|
|
9236 |
|
|
/* Make sure we really do have an array type before going further,
|
9237 |
|
|
to avoid a SEGV when trying to get the index type or the target
|
9238 |
|
|
type later down the road if the debug info generated by
|
9239 |
|
|
the compiler is incorrect or incomplete. */
|
9240 |
|
|
if (!ada_is_simple_array_type (value_type (array)))
|
9241 |
|
|
error (_("cannot take slice of non-array"));
|
9242 |
|
|
|
9243 |
|
|
if (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR)
|
9244 |
|
|
{
|
9245 |
|
|
if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
|
9246 |
|
|
return empty_array (TYPE_TARGET_TYPE (value_type (array)),
|
9247 |
|
|
low_bound);
|
9248 |
|
|
else
|
9249 |
|
|
{
|
9250 |
|
|
struct type *arr_type0 =
|
9251 |
|
|
to_fixed_array_type (TYPE_TARGET_TYPE (value_type (array)),
|
9252 |
|
|
NULL, 1);
|
9253 |
|
|
|
9254 |
|
|
return ada_value_slice_from_ptr (array, arr_type0,
|
9255 |
|
|
longest_to_int (low_bound),
|
9256 |
|
|
longest_to_int (high_bound));
|
9257 |
|
|
}
|
9258 |
|
|
}
|
9259 |
|
|
else if (noside == EVAL_AVOID_SIDE_EFFECTS)
|
9260 |
|
|
return array;
|
9261 |
|
|
else if (high_bound < low_bound)
|
9262 |
|
|
return empty_array (value_type (array), low_bound);
|
9263 |
|
|
else
|
9264 |
|
|
return ada_value_slice (array, longest_to_int (low_bound),
|
9265 |
|
|
longest_to_int (high_bound));
|
9266 |
|
|
}
|
9267 |
|
|
|
9268 |
|
|
case UNOP_IN_RANGE:
|
9269 |
|
|
(*pos) += 2;
|
9270 |
|
|
arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
9271 |
|
|
type = check_typedef (exp->elts[pc + 1].type);
|
9272 |
|
|
|
9273 |
|
|
if (noside == EVAL_SKIP)
|
9274 |
|
|
goto nosideret;
|
9275 |
|
|
|
9276 |
|
|
switch (TYPE_CODE (type))
|
9277 |
|
|
{
|
9278 |
|
|
default:
|
9279 |
|
|
lim_warning (_("Membership test incompletely implemented; "
|
9280 |
|
|
"always returns true"));
|
9281 |
|
|
type = language_bool_type (exp->language_defn, exp->gdbarch);
|
9282 |
|
|
return value_from_longest (type, (LONGEST) 1);
|
9283 |
|
|
|
9284 |
|
|
case TYPE_CODE_RANGE:
|
9285 |
|
|
arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
|
9286 |
|
|
arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
|
9287 |
|
|
binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
|
9288 |
|
|
binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
|
9289 |
|
|
type = language_bool_type (exp->language_defn, exp->gdbarch);
|
9290 |
|
|
return
|
9291 |
|
|
value_from_longest (type,
|
9292 |
|
|
(value_less (arg1, arg3)
|
9293 |
|
|
|| value_equal (arg1, arg3))
|
9294 |
|
|
&& (value_less (arg2, arg1)
|
9295 |
|
|
|| value_equal (arg2, arg1)));
|
9296 |
|
|
}
|
9297 |
|
|
|
9298 |
|
|
case BINOP_IN_BOUNDS:
|
9299 |
|
|
(*pos) += 2;
|
9300 |
|
|
arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
9301 |
|
|
arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
9302 |
|
|
|
9303 |
|
|
if (noside == EVAL_SKIP)
|
9304 |
|
|
goto nosideret;
|
9305 |
|
|
|
9306 |
|
|
if (noside == EVAL_AVOID_SIDE_EFFECTS)
|
9307 |
|
|
{
|
9308 |
|
|
type = language_bool_type (exp->language_defn, exp->gdbarch);
|
9309 |
|
|
return value_zero (type, not_lval);
|
9310 |
|
|
}
|
9311 |
|
|
|
9312 |
|
|
tem = longest_to_int (exp->elts[pc + 1].longconst);
|
9313 |
|
|
|
9314 |
|
|
type = ada_index_type (value_type (arg2), tem, "range");
|
9315 |
|
|
if (!type)
|
9316 |
|
|
type = value_type (arg1);
|
9317 |
|
|
|
9318 |
|
|
arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
|
9319 |
|
|
arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
|
9320 |
|
|
|
9321 |
|
|
binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
|
9322 |
|
|
binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
|
9323 |
|
|
type = language_bool_type (exp->language_defn, exp->gdbarch);
|
9324 |
|
|
return
|
9325 |
|
|
value_from_longest (type,
|
9326 |
|
|
(value_less (arg1, arg3)
|
9327 |
|
|
|| value_equal (arg1, arg3))
|
9328 |
|
|
&& (value_less (arg2, arg1)
|
9329 |
|
|
|| value_equal (arg2, arg1)));
|
9330 |
|
|
|
9331 |
|
|
case TERNOP_IN_RANGE:
|
9332 |
|
|
arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
9333 |
|
|
arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
9334 |
|
|
arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
9335 |
|
|
|
9336 |
|
|
if (noside == EVAL_SKIP)
|
9337 |
|
|
goto nosideret;
|
9338 |
|
|
|
9339 |
|
|
binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
|
9340 |
|
|
binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
|
9341 |
|
|
type = language_bool_type (exp->language_defn, exp->gdbarch);
|
9342 |
|
|
return
|
9343 |
|
|
value_from_longest (type,
|
9344 |
|
|
(value_less (arg1, arg3)
|
9345 |
|
|
|| value_equal (arg1, arg3))
|
9346 |
|
|
&& (value_less (arg2, arg1)
|
9347 |
|
|
|| value_equal (arg2, arg1)));
|
9348 |
|
|
|
9349 |
|
|
case OP_ATR_FIRST:
|
9350 |
|
|
case OP_ATR_LAST:
|
9351 |
|
|
case OP_ATR_LENGTH:
|
9352 |
|
|
{
|
9353 |
|
|
struct type *type_arg;
|
9354 |
|
|
|
9355 |
|
|
if (exp->elts[*pos].opcode == OP_TYPE)
|
9356 |
|
|
{
|
9357 |
|
|
evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
|
9358 |
|
|
arg1 = NULL;
|
9359 |
|
|
type_arg = check_typedef (exp->elts[pc + 2].type);
|
9360 |
|
|
}
|
9361 |
|
|
else
|
9362 |
|
|
{
|
9363 |
|
|
arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
9364 |
|
|
type_arg = NULL;
|
9365 |
|
|
}
|
9366 |
|
|
|
9367 |
|
|
if (exp->elts[*pos].opcode != OP_LONG)
|
9368 |
|
|
error (_("Invalid operand to '%s"), ada_attribute_name (op));
|
9369 |
|
|
tem = longest_to_int (exp->elts[*pos + 2].longconst);
|
9370 |
|
|
*pos += 4;
|
9371 |
|
|
|
9372 |
|
|
if (noside == EVAL_SKIP)
|
9373 |
|
|
goto nosideret;
|
9374 |
|
|
|
9375 |
|
|
if (type_arg == NULL)
|
9376 |
|
|
{
|
9377 |
|
|
arg1 = ada_coerce_ref (arg1);
|
9378 |
|
|
|
9379 |
|
|
if (ada_is_constrained_packed_array_type (value_type (arg1)))
|
9380 |
|
|
arg1 = ada_coerce_to_simple_array (arg1);
|
9381 |
|
|
|
9382 |
|
|
type = ada_index_type (value_type (arg1), tem,
|
9383 |
|
|
ada_attribute_name (op));
|
9384 |
|
|
if (type == NULL)
|
9385 |
|
|
type = builtin_type (exp->gdbarch)->builtin_int;
|
9386 |
|
|
|
9387 |
|
|
if (noside == EVAL_AVOID_SIDE_EFFECTS)
|
9388 |
|
|
return allocate_value (type);
|
9389 |
|
|
|
9390 |
|
|
switch (op)
|
9391 |
|
|
{
|
9392 |
|
|
default: /* Should never happen. */
|
9393 |
|
|
error (_("unexpected attribute encountered"));
|
9394 |
|
|
case OP_ATR_FIRST:
|
9395 |
|
|
return value_from_longest
|
9396 |
|
|
(type, ada_array_bound (arg1, tem, 0));
|
9397 |
|
|
case OP_ATR_LAST:
|
9398 |
|
|
return value_from_longest
|
9399 |
|
|
(type, ada_array_bound (arg1, tem, 1));
|
9400 |
|
|
case OP_ATR_LENGTH:
|
9401 |
|
|
return value_from_longest
|
9402 |
|
|
(type, ada_array_length (arg1, tem));
|
9403 |
|
|
}
|
9404 |
|
|
}
|
9405 |
|
|
else if (discrete_type_p (type_arg))
|
9406 |
|
|
{
|
9407 |
|
|
struct type *range_type;
|
9408 |
|
|
char *name = ada_type_name (type_arg);
|
9409 |
|
|
|
9410 |
|
|
range_type = NULL;
|
9411 |
|
|
if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
|
9412 |
|
|
range_type = to_fixed_range_type (type_arg, NULL);
|
9413 |
|
|
if (range_type == NULL)
|
9414 |
|
|
range_type = type_arg;
|
9415 |
|
|
switch (op)
|
9416 |
|
|
{
|
9417 |
|
|
default:
|
9418 |
|
|
error (_("unexpected attribute encountered"));
|
9419 |
|
|
case OP_ATR_FIRST:
|
9420 |
|
|
return value_from_longest
|
9421 |
|
|
(range_type, ada_discrete_type_low_bound (range_type));
|
9422 |
|
|
case OP_ATR_LAST:
|
9423 |
|
|
return value_from_longest
|
9424 |
|
|
(range_type, ada_discrete_type_high_bound (range_type));
|
9425 |
|
|
case OP_ATR_LENGTH:
|
9426 |
|
|
error (_("the 'length attribute applies only to array types"));
|
9427 |
|
|
}
|
9428 |
|
|
}
|
9429 |
|
|
else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
|
9430 |
|
|
error (_("unimplemented type attribute"));
|
9431 |
|
|
else
|
9432 |
|
|
{
|
9433 |
|
|
LONGEST low, high;
|
9434 |
|
|
|
9435 |
|
|
if (ada_is_constrained_packed_array_type (type_arg))
|
9436 |
|
|
type_arg = decode_constrained_packed_array_type (type_arg);
|
9437 |
|
|
|
9438 |
|
|
type = ada_index_type (type_arg, tem, ada_attribute_name (op));
|
9439 |
|
|
if (type == NULL)
|
9440 |
|
|
type = builtin_type (exp->gdbarch)->builtin_int;
|
9441 |
|
|
|
9442 |
|
|
if (noside == EVAL_AVOID_SIDE_EFFECTS)
|
9443 |
|
|
return allocate_value (type);
|
9444 |
|
|
|
9445 |
|
|
switch (op)
|
9446 |
|
|
{
|
9447 |
|
|
default:
|
9448 |
|
|
error (_("unexpected attribute encountered"));
|
9449 |
|
|
case OP_ATR_FIRST:
|
9450 |
|
|
low = ada_array_bound_from_type (type_arg, tem, 0);
|
9451 |
|
|
return value_from_longest (type, low);
|
9452 |
|
|
case OP_ATR_LAST:
|
9453 |
|
|
high = ada_array_bound_from_type (type_arg, tem, 1);
|
9454 |
|
|
return value_from_longest (type, high);
|
9455 |
|
|
case OP_ATR_LENGTH:
|
9456 |
|
|
low = ada_array_bound_from_type (type_arg, tem, 0);
|
9457 |
|
|
high = ada_array_bound_from_type (type_arg, tem, 1);
|
9458 |
|
|
return value_from_longest (type, high - low + 1);
|
9459 |
|
|
}
|
9460 |
|
|
}
|
9461 |
|
|
}
|
9462 |
|
|
|
9463 |
|
|
case OP_ATR_TAG:
|
9464 |
|
|
arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
9465 |
|
|
if (noside == EVAL_SKIP)
|
9466 |
|
|
goto nosideret;
|
9467 |
|
|
|
9468 |
|
|
if (noside == EVAL_AVOID_SIDE_EFFECTS)
|
9469 |
|
|
return value_zero (ada_tag_type (arg1), not_lval);
|
9470 |
|
|
|
9471 |
|
|
return ada_value_tag (arg1);
|
9472 |
|
|
|
9473 |
|
|
case OP_ATR_MIN:
|
9474 |
|
|
case OP_ATR_MAX:
|
9475 |
|
|
evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
|
9476 |
|
|
arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
9477 |
|
|
arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
9478 |
|
|
if (noside == EVAL_SKIP)
|
9479 |
|
|
goto nosideret;
|
9480 |
|
|
else if (noside == EVAL_AVOID_SIDE_EFFECTS)
|
9481 |
|
|
return value_zero (value_type (arg1), not_lval);
|
9482 |
|
|
else
|
9483 |
|
|
{
|
9484 |
|
|
binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
|
9485 |
|
|
return value_binop (arg1, arg2,
|
9486 |
|
|
op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
|
9487 |
|
|
}
|
9488 |
|
|
|
9489 |
|
|
case OP_ATR_MODULUS:
|
9490 |
|
|
{
|
9491 |
|
|
struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
|
9492 |
|
|
|
9493 |
|
|
evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
|
9494 |
|
|
if (noside == EVAL_SKIP)
|
9495 |
|
|
goto nosideret;
|
9496 |
|
|
|
9497 |
|
|
if (!ada_is_modular_type (type_arg))
|
9498 |
|
|
error (_("'modulus must be applied to modular type"));
|
9499 |
|
|
|
9500 |
|
|
return value_from_longest (TYPE_TARGET_TYPE (type_arg),
|
9501 |
|
|
ada_modulus (type_arg));
|
9502 |
|
|
}
|
9503 |
|
|
|
9504 |
|
|
|
9505 |
|
|
case OP_ATR_POS:
|
9506 |
|
|
evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
|
9507 |
|
|
arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
9508 |
|
|
if (noside == EVAL_SKIP)
|
9509 |
|
|
goto nosideret;
|
9510 |
|
|
type = builtin_type (exp->gdbarch)->builtin_int;
|
9511 |
|
|
if (noside == EVAL_AVOID_SIDE_EFFECTS)
|
9512 |
|
|
return value_zero (type, not_lval);
|
9513 |
|
|
else
|
9514 |
|
|
return value_pos_atr (type, arg1);
|
9515 |
|
|
|
9516 |
|
|
case OP_ATR_SIZE:
|
9517 |
|
|
arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
9518 |
|
|
type = value_type (arg1);
|
9519 |
|
|
|
9520 |
|
|
/* If the argument is a reference, then dereference its type, since
|
9521 |
|
|
the user is really asking for the size of the actual object,
|
9522 |
|
|
not the size of the pointer. */
|
9523 |
|
|
if (TYPE_CODE (type) == TYPE_CODE_REF)
|
9524 |
|
|
type = TYPE_TARGET_TYPE (type);
|
9525 |
|
|
|
9526 |
|
|
if (noside == EVAL_SKIP)
|
9527 |
|
|
goto nosideret;
|
9528 |
|
|
else if (noside == EVAL_AVOID_SIDE_EFFECTS)
|
9529 |
|
|
return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
|
9530 |
|
|
else
|
9531 |
|
|
return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
|
9532 |
|
|
TARGET_CHAR_BIT * TYPE_LENGTH (type));
|
9533 |
|
|
|
9534 |
|
|
case OP_ATR_VAL:
|
9535 |
|
|
evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
|
9536 |
|
|
arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
9537 |
|
|
type = exp->elts[pc + 2].type;
|
9538 |
|
|
if (noside == EVAL_SKIP)
|
9539 |
|
|
goto nosideret;
|
9540 |
|
|
else if (noside == EVAL_AVOID_SIDE_EFFECTS)
|
9541 |
|
|
return value_zero (type, not_lval);
|
9542 |
|
|
else
|
9543 |
|
|
return value_val_atr (type, arg1);
|
9544 |
|
|
|
9545 |
|
|
case BINOP_EXP:
|
9546 |
|
|
arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
9547 |
|
|
arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
9548 |
|
|
if (noside == EVAL_SKIP)
|
9549 |
|
|
goto nosideret;
|
9550 |
|
|
else if (noside == EVAL_AVOID_SIDE_EFFECTS)
|
9551 |
|
|
return value_zero (value_type (arg1), not_lval);
|
9552 |
|
|
else
|
9553 |
|
|
{
|
9554 |
|
|
/* For integer exponentiation operations,
|
9555 |
|
|
only promote the first argument. */
|
9556 |
|
|
if (is_integral_type (value_type (arg2)))
|
9557 |
|
|
unop_promote (exp->language_defn, exp->gdbarch, &arg1);
|
9558 |
|
|
else
|
9559 |
|
|
binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
|
9560 |
|
|
|
9561 |
|
|
return value_binop (arg1, arg2, op);
|
9562 |
|
|
}
|
9563 |
|
|
|
9564 |
|
|
case UNOP_PLUS:
|
9565 |
|
|
arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
9566 |
|
|
if (noside == EVAL_SKIP)
|
9567 |
|
|
goto nosideret;
|
9568 |
|
|
else
|
9569 |
|
|
return arg1;
|
9570 |
|
|
|
9571 |
|
|
case UNOP_ABS:
|
9572 |
|
|
arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
9573 |
|
|
if (noside == EVAL_SKIP)
|
9574 |
|
|
goto nosideret;
|
9575 |
|
|
unop_promote (exp->language_defn, exp->gdbarch, &arg1);
|
9576 |
|
|
if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
|
9577 |
|
|
return value_neg (arg1);
|
9578 |
|
|
else
|
9579 |
|
|
return arg1;
|
9580 |
|
|
|
9581 |
|
|
case UNOP_IND:
|
9582 |
|
|
arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
9583 |
|
|
if (noside == EVAL_SKIP)
|
9584 |
|
|
goto nosideret;
|
9585 |
|
|
type = ada_check_typedef (value_type (arg1));
|
9586 |
|
|
if (noside == EVAL_AVOID_SIDE_EFFECTS)
|
9587 |
|
|
{
|
9588 |
|
|
if (ada_is_array_descriptor_type (type))
|
9589 |
|
|
/* GDB allows dereferencing GNAT array descriptors. */
|
9590 |
|
|
{
|
9591 |
|
|
struct type *arrType = ada_type_of_array (arg1, 0);
|
9592 |
|
|
|
9593 |
|
|
if (arrType == NULL)
|
9594 |
|
|
error (_("Attempt to dereference null array pointer."));
|
9595 |
|
|
return value_at_lazy (arrType, 0);
|
9596 |
|
|
}
|
9597 |
|
|
else if (TYPE_CODE (type) == TYPE_CODE_PTR
|
9598 |
|
|
|| TYPE_CODE (type) == TYPE_CODE_REF
|
9599 |
|
|
/* In C you can dereference an array to get the 1st elt. */
|
9600 |
|
|
|| TYPE_CODE (type) == TYPE_CODE_ARRAY)
|
9601 |
|
|
{
|
9602 |
|
|
type = to_static_fixed_type
|
9603 |
|
|
(ada_aligned_type
|
9604 |
|
|
(ada_check_typedef (TYPE_TARGET_TYPE (type))));
|
9605 |
|
|
check_size (type);
|
9606 |
|
|
return value_zero (type, lval_memory);
|
9607 |
|
|
}
|
9608 |
|
|
else if (TYPE_CODE (type) == TYPE_CODE_INT)
|
9609 |
|
|
{
|
9610 |
|
|
/* GDB allows dereferencing an int. */
|
9611 |
|
|
if (expect_type == NULL)
|
9612 |
|
|
return value_zero (builtin_type (exp->gdbarch)->builtin_int,
|
9613 |
|
|
lval_memory);
|
9614 |
|
|
else
|
9615 |
|
|
{
|
9616 |
|
|
expect_type =
|
9617 |
|
|
to_static_fixed_type (ada_aligned_type (expect_type));
|
9618 |
|
|
return value_zero (expect_type, lval_memory);
|
9619 |
|
|
}
|
9620 |
|
|
}
|
9621 |
|
|
else
|
9622 |
|
|
error (_("Attempt to take contents of a non-pointer value."));
|
9623 |
|
|
}
|
9624 |
|
|
arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
|
9625 |
|
|
type = ada_check_typedef (value_type (arg1));
|
9626 |
|
|
|
9627 |
|
|
if (TYPE_CODE (type) == TYPE_CODE_INT)
|
9628 |
|
|
/* GDB allows dereferencing an int. If we were given
|
9629 |
|
|
the expect_type, then use that as the target type.
|
9630 |
|
|
Otherwise, assume that the target type is an int. */
|
9631 |
|
|
{
|
9632 |
|
|
if (expect_type != NULL)
|
9633 |
|
|
return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
|
9634 |
|
|
arg1));
|
9635 |
|
|
else
|
9636 |
|
|
return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
|
9637 |
|
|
(CORE_ADDR) value_as_address (arg1));
|
9638 |
|
|
}
|
9639 |
|
|
|
9640 |
|
|
if (ada_is_array_descriptor_type (type))
|
9641 |
|
|
/* GDB allows dereferencing GNAT array descriptors. */
|
9642 |
|
|
return ada_coerce_to_simple_array (arg1);
|
9643 |
|
|
else
|
9644 |
|
|
return ada_value_ind (arg1);
|
9645 |
|
|
|
9646 |
|
|
case STRUCTOP_STRUCT:
|
9647 |
|
|
tem = longest_to_int (exp->elts[pc + 1].longconst);
|
9648 |
|
|
(*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
|
9649 |
|
|
arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
9650 |
|
|
if (noside == EVAL_SKIP)
|
9651 |
|
|
goto nosideret;
|
9652 |
|
|
if (noside == EVAL_AVOID_SIDE_EFFECTS)
|
9653 |
|
|
{
|
9654 |
|
|
struct type *type1 = value_type (arg1);
|
9655 |
|
|
|
9656 |
|
|
if (ada_is_tagged_type (type1, 1))
|
9657 |
|
|
{
|
9658 |
|
|
type = ada_lookup_struct_elt_type (type1,
|
9659 |
|
|
&exp->elts[pc + 2].string,
|
9660 |
|
|
1, 1, NULL);
|
9661 |
|
|
if (type == NULL)
|
9662 |
|
|
/* In this case, we assume that the field COULD exist
|
9663 |
|
|
in some extension of the type. Return an object of
|
9664 |
|
|
"type" void, which will match any formal
|
9665 |
|
|
(see ada_type_match). */
|
9666 |
|
|
return value_zero (builtin_type (exp->gdbarch)->builtin_void,
|
9667 |
|
|
lval_memory);
|
9668 |
|
|
}
|
9669 |
|
|
else
|
9670 |
|
|
type =
|
9671 |
|
|
ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
|
9672 |
|
|
0, NULL);
|
9673 |
|
|
|
9674 |
|
|
return value_zero (ada_aligned_type (type), lval_memory);
|
9675 |
|
|
}
|
9676 |
|
|
else
|
9677 |
|
|
arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
|
9678 |
|
|
arg1 = unwrap_value (arg1);
|
9679 |
|
|
return ada_to_fixed_value (arg1);
|
9680 |
|
|
|
9681 |
|
|
case OP_TYPE:
|
9682 |
|
|
/* The value is not supposed to be used. This is here to make it
|
9683 |
|
|
easier to accommodate expressions that contain types. */
|
9684 |
|
|
(*pos) += 2;
|
9685 |
|
|
if (noside == EVAL_SKIP)
|
9686 |
|
|
goto nosideret;
|
9687 |
|
|
else if (noside == EVAL_AVOID_SIDE_EFFECTS)
|
9688 |
|
|
return allocate_value (exp->elts[pc + 1].type);
|
9689 |
|
|
else
|
9690 |
|
|
error (_("Attempt to use a type name as an expression"));
|
9691 |
|
|
|
9692 |
|
|
case OP_AGGREGATE:
|
9693 |
|
|
case OP_CHOICES:
|
9694 |
|
|
case OP_OTHERS:
|
9695 |
|
|
case OP_DISCRETE_RANGE:
|
9696 |
|
|
case OP_POSITIONAL:
|
9697 |
|
|
case OP_NAME:
|
9698 |
|
|
if (noside == EVAL_NORMAL)
|
9699 |
|
|
switch (op)
|
9700 |
|
|
{
|
9701 |
|
|
case OP_NAME:
|
9702 |
|
|
error (_("Undefined name, ambiguous name, or renaming used in "
|
9703 |
|
|
"component association: %s."), &exp->elts[pc+2].string);
|
9704 |
|
|
case OP_AGGREGATE:
|
9705 |
|
|
error (_("Aggregates only allowed on the right of an assignment"));
|
9706 |
|
|
default:
|
9707 |
|
|
internal_error (__FILE__, __LINE__, _("aggregate apparently mangled"));
|
9708 |
|
|
}
|
9709 |
|
|
|
9710 |
|
|
ada_forward_operator_length (exp, pc, &oplen, &nargs);
|
9711 |
|
|
*pos += oplen - 1;
|
9712 |
|
|
for (tem = 0; tem < nargs; tem += 1)
|
9713 |
|
|
ada_evaluate_subexp (NULL, exp, pos, noside);
|
9714 |
|
|
goto nosideret;
|
9715 |
|
|
}
|
9716 |
|
|
|
9717 |
|
|
nosideret:
|
9718 |
|
|
return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, 1);
|
9719 |
|
|
}
|
9720 |
|
|
|
9721 |
|
|
|
9722 |
|
|
/* Fixed point */
|
9723 |
|
|
|
9724 |
|
|
/* If TYPE encodes an Ada fixed-point type, return the suffix of the
|
9725 |
|
|
type name that encodes the 'small and 'delta information.
|
9726 |
|
|
Otherwise, return NULL. */
|
9727 |
|
|
|
9728 |
|
|
static const char *
|
9729 |
|
|
fixed_type_info (struct type *type)
|
9730 |
|
|
{
|
9731 |
|
|
const char *name = ada_type_name (type);
|
9732 |
|
|
enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
|
9733 |
|
|
|
9734 |
|
|
if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
|
9735 |
|
|
{
|
9736 |
|
|
const char *tail = strstr (name, "___XF_");
|
9737 |
|
|
|
9738 |
|
|
if (tail == NULL)
|
9739 |
|
|
return NULL;
|
9740 |
|
|
else
|
9741 |
|
|
return tail + 5;
|
9742 |
|
|
}
|
9743 |
|
|
else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
|
9744 |
|
|
return fixed_type_info (TYPE_TARGET_TYPE (type));
|
9745 |
|
|
else
|
9746 |
|
|
return NULL;
|
9747 |
|
|
}
|
9748 |
|
|
|
9749 |
|
|
/* Returns non-zero iff TYPE represents an Ada fixed-point type. */
|
9750 |
|
|
|
9751 |
|
|
int
|
9752 |
|
|
ada_is_fixed_point_type (struct type *type)
|
9753 |
|
|
{
|
9754 |
|
|
return fixed_type_info (type) != NULL;
|
9755 |
|
|
}
|
9756 |
|
|
|
9757 |
|
|
/* Return non-zero iff TYPE represents a System.Address type. */
|
9758 |
|
|
|
9759 |
|
|
int
|
9760 |
|
|
ada_is_system_address_type (struct type *type)
|
9761 |
|
|
{
|
9762 |
|
|
return (TYPE_NAME (type)
|
9763 |
|
|
&& strcmp (TYPE_NAME (type), "system__address") == 0);
|
9764 |
|
|
}
|
9765 |
|
|
|
9766 |
|
|
/* Assuming that TYPE is the representation of an Ada fixed-point
|
9767 |
|
|
type, return its delta, or -1 if the type is malformed and the
|
9768 |
|
|
delta cannot be determined. */
|
9769 |
|
|
|
9770 |
|
|
DOUBLEST
|
9771 |
|
|
ada_delta (struct type *type)
|
9772 |
|
|
{
|
9773 |
|
|
const char *encoding = fixed_type_info (type);
|
9774 |
|
|
DOUBLEST num, den;
|
9775 |
|
|
|
9776 |
|
|
/* Strictly speaking, num and den are encoded as integer. However,
|
9777 |
|
|
they may not fit into a long, and they will have to be converted
|
9778 |
|
|
to DOUBLEST anyway. So scan them as DOUBLEST. */
|
9779 |
|
|
if (sscanf (encoding, "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
|
9780 |
|
|
&num, &den) < 2)
|
9781 |
|
|
return -1.0;
|
9782 |
|
|
else
|
9783 |
|
|
return num / den;
|
9784 |
|
|
}
|
9785 |
|
|
|
9786 |
|
|
/* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
|
9787 |
|
|
factor ('SMALL value) associated with the type. */
|
9788 |
|
|
|
9789 |
|
|
static DOUBLEST
|
9790 |
|
|
scaling_factor (struct type *type)
|
9791 |
|
|
{
|
9792 |
|
|
const char *encoding = fixed_type_info (type);
|
9793 |
|
|
DOUBLEST num0, den0, num1, den1;
|
9794 |
|
|
int n;
|
9795 |
|
|
|
9796 |
|
|
/* Strictly speaking, num's and den's are encoded as integer. However,
|
9797 |
|
|
they may not fit into a long, and they will have to be converted
|
9798 |
|
|
to DOUBLEST anyway. So scan them as DOUBLEST. */
|
9799 |
|
|
n = sscanf (encoding,
|
9800 |
|
|
"_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT
|
9801 |
|
|
"_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
|
9802 |
|
|
&num0, &den0, &num1, &den1);
|
9803 |
|
|
|
9804 |
|
|
if (n < 2)
|
9805 |
|
|
return 1.0;
|
9806 |
|
|
else if (n == 4)
|
9807 |
|
|
return num1 / den1;
|
9808 |
|
|
else
|
9809 |
|
|
return num0 / den0;
|
9810 |
|
|
}
|
9811 |
|
|
|
9812 |
|
|
|
9813 |
|
|
/* Assuming that X is the representation of a value of fixed-point
|
9814 |
|
|
type TYPE, return its floating-point equivalent. */
|
9815 |
|
|
|
9816 |
|
|
DOUBLEST
|
9817 |
|
|
ada_fixed_to_float (struct type *type, LONGEST x)
|
9818 |
|
|
{
|
9819 |
|
|
return (DOUBLEST) x *scaling_factor (type);
|
9820 |
|
|
}
|
9821 |
|
|
|
9822 |
|
|
/* The representation of a fixed-point value of type TYPE
|
9823 |
|
|
corresponding to the value X. */
|
9824 |
|
|
|
9825 |
|
|
LONGEST
|
9826 |
|
|
ada_float_to_fixed (struct type *type, DOUBLEST x)
|
9827 |
|
|
{
|
9828 |
|
|
return (LONGEST) (x / scaling_factor (type) + 0.5);
|
9829 |
|
|
}
|
9830 |
|
|
|
9831 |
|
|
|
9832 |
|
|
|
9833 |
|
|
/* Range types */
|
9834 |
|
|
|
9835 |
|
|
/* Scan STR beginning at position K for a discriminant name, and
|
9836 |
|
|
return the value of that discriminant field of DVAL in *PX. If
|
9837 |
|
|
PNEW_K is not null, put the position of the character beyond the
|
9838 |
|
|
name scanned in *PNEW_K. Return 1 if successful; return 0 and do
|
9839 |
|
|
not alter *PX and *PNEW_K if unsuccessful. */
|
9840 |
|
|
|
9841 |
|
|
static int
|
9842 |
|
|
scan_discrim_bound (char *str, int k, struct value *dval, LONGEST * px,
|
9843 |
|
|
int *pnew_k)
|
9844 |
|
|
{
|
9845 |
|
|
static char *bound_buffer = NULL;
|
9846 |
|
|
static size_t bound_buffer_len = 0;
|
9847 |
|
|
char *bound;
|
9848 |
|
|
char *pend;
|
9849 |
|
|
struct value *bound_val;
|
9850 |
|
|
|
9851 |
|
|
if (dval == NULL || str == NULL || str[k] == '\0')
|
9852 |
|
|
return 0;
|
9853 |
|
|
|
9854 |
|
|
pend = strstr (str + k, "__");
|
9855 |
|
|
if (pend == NULL)
|
9856 |
|
|
{
|
9857 |
|
|
bound = str + k;
|
9858 |
|
|
k += strlen (bound);
|
9859 |
|
|
}
|
9860 |
|
|
else
|
9861 |
|
|
{
|
9862 |
|
|
GROW_VECT (bound_buffer, bound_buffer_len, pend - (str + k) + 1);
|
9863 |
|
|
bound = bound_buffer;
|
9864 |
|
|
strncpy (bound_buffer, str + k, pend - (str + k));
|
9865 |
|
|
bound[pend - (str + k)] = '\0';
|
9866 |
|
|
k = pend - str;
|
9867 |
|
|
}
|
9868 |
|
|
|
9869 |
|
|
bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
|
9870 |
|
|
if (bound_val == NULL)
|
9871 |
|
|
return 0;
|
9872 |
|
|
|
9873 |
|
|
*px = value_as_long (bound_val);
|
9874 |
|
|
if (pnew_k != NULL)
|
9875 |
|
|
*pnew_k = k;
|
9876 |
|
|
return 1;
|
9877 |
|
|
}
|
9878 |
|
|
|
9879 |
|
|
/* Value of variable named NAME in the current environment. If
|
9880 |
|
|
no such variable found, then if ERR_MSG is null, returns 0, and
|
9881 |
|
|
otherwise causes an error with message ERR_MSG. */
|
9882 |
|
|
|
9883 |
|
|
static struct value *
|
9884 |
|
|
get_var_value (char *name, char *err_msg)
|
9885 |
|
|
{
|
9886 |
|
|
struct ada_symbol_info *syms;
|
9887 |
|
|
int nsyms;
|
9888 |
|
|
|
9889 |
|
|
nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN,
|
9890 |
|
|
&syms);
|
9891 |
|
|
|
9892 |
|
|
if (nsyms != 1)
|
9893 |
|
|
{
|
9894 |
|
|
if (err_msg == NULL)
|
9895 |
|
|
return 0;
|
9896 |
|
|
else
|
9897 |
|
|
error (("%s"), err_msg);
|
9898 |
|
|
}
|
9899 |
|
|
|
9900 |
|
|
return value_of_variable (syms[0].sym, syms[0].block);
|
9901 |
|
|
}
|
9902 |
|
|
|
9903 |
|
|
/* Value of integer variable named NAME in the current environment. If
|
9904 |
|
|
no such variable found, returns 0, and sets *FLAG to 0. If
|
9905 |
|
|
successful, sets *FLAG to 1. */
|
9906 |
|
|
|
9907 |
|
|
LONGEST
|
9908 |
|
|
get_int_var_value (char *name, int *flag)
|
9909 |
|
|
{
|
9910 |
|
|
struct value *var_val = get_var_value (name, 0);
|
9911 |
|
|
|
9912 |
|
|
if (var_val == 0)
|
9913 |
|
|
{
|
9914 |
|
|
if (flag != NULL)
|
9915 |
|
|
*flag = 0;
|
9916 |
|
|
return 0;
|
9917 |
|
|
}
|
9918 |
|
|
else
|
9919 |
|
|
{
|
9920 |
|
|
if (flag != NULL)
|
9921 |
|
|
*flag = 1;
|
9922 |
|
|
return value_as_long (var_val);
|
9923 |
|
|
}
|
9924 |
|
|
}
|
9925 |
|
|
|
9926 |
|
|
|
9927 |
|
|
/* Return a range type whose base type is that of the range type named
|
9928 |
|
|
NAME in the current environment, and whose bounds are calculated
|
9929 |
|
|
from NAME according to the GNAT range encoding conventions.
|
9930 |
|
|
Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
|
9931 |
|
|
corresponding range type from debug information; fall back to using it
|
9932 |
|
|
if symbol lookup fails. If a new type must be created, allocate it
|
9933 |
|
|
like ORIG_TYPE was. The bounds information, in general, is encoded
|
9934 |
|
|
in NAME, the base type given in the named range type. */
|
9935 |
|
|
|
9936 |
|
|
static struct type *
|
9937 |
|
|
to_fixed_range_type (struct type *raw_type, struct value *dval)
|
9938 |
|
|
{
|
9939 |
|
|
char *name;
|
9940 |
|
|
struct type *base_type;
|
9941 |
|
|
char *subtype_info;
|
9942 |
|
|
|
9943 |
|
|
gdb_assert (raw_type != NULL);
|
9944 |
|
|
gdb_assert (TYPE_NAME (raw_type) != NULL);
|
9945 |
|
|
|
9946 |
|
|
if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
|
9947 |
|
|
base_type = TYPE_TARGET_TYPE (raw_type);
|
9948 |
|
|
else
|
9949 |
|
|
base_type = raw_type;
|
9950 |
|
|
|
9951 |
|
|
name = TYPE_NAME (raw_type);
|
9952 |
|
|
subtype_info = strstr (name, "___XD");
|
9953 |
|
|
if (subtype_info == NULL)
|
9954 |
|
|
{
|
9955 |
|
|
LONGEST L = ada_discrete_type_low_bound (raw_type);
|
9956 |
|
|
LONGEST U = ada_discrete_type_high_bound (raw_type);
|
9957 |
|
|
|
9958 |
|
|
if (L < INT_MIN || U > INT_MAX)
|
9959 |
|
|
return raw_type;
|
9960 |
|
|
else
|
9961 |
|
|
return create_range_type (alloc_type_copy (raw_type), raw_type,
|
9962 |
|
|
ada_discrete_type_low_bound (raw_type),
|
9963 |
|
|
ada_discrete_type_high_bound (raw_type));
|
9964 |
|
|
}
|
9965 |
|
|
else
|
9966 |
|
|
{
|
9967 |
|
|
static char *name_buf = NULL;
|
9968 |
|
|
static size_t name_len = 0;
|
9969 |
|
|
int prefix_len = subtype_info - name;
|
9970 |
|
|
LONGEST L, U;
|
9971 |
|
|
struct type *type;
|
9972 |
|
|
char *bounds_str;
|
9973 |
|
|
int n;
|
9974 |
|
|
|
9975 |
|
|
GROW_VECT (name_buf, name_len, prefix_len + 5);
|
9976 |
|
|
strncpy (name_buf, name, prefix_len);
|
9977 |
|
|
name_buf[prefix_len] = '\0';
|
9978 |
|
|
|
9979 |
|
|
subtype_info += 5;
|
9980 |
|
|
bounds_str = strchr (subtype_info, '_');
|
9981 |
|
|
n = 1;
|
9982 |
|
|
|
9983 |
|
|
if (*subtype_info == 'L')
|
9984 |
|
|
{
|
9985 |
|
|
if (!ada_scan_number (bounds_str, n, &L, &n)
|
9986 |
|
|
&& !scan_discrim_bound (bounds_str, n, dval, &L, &n))
|
9987 |
|
|
return raw_type;
|
9988 |
|
|
if (bounds_str[n] == '_')
|
9989 |
|
|
n += 2;
|
9990 |
|
|
else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
|
9991 |
|
|
n += 1;
|
9992 |
|
|
subtype_info += 1;
|
9993 |
|
|
}
|
9994 |
|
|
else
|
9995 |
|
|
{
|
9996 |
|
|
int ok;
|
9997 |
|
|
|
9998 |
|
|
strcpy (name_buf + prefix_len, "___L");
|
9999 |
|
|
L = get_int_var_value (name_buf, &ok);
|
10000 |
|
|
if (!ok)
|
10001 |
|
|
{
|
10002 |
|
|
lim_warning (_("Unknown lower bound, using 1."));
|
10003 |
|
|
L = 1;
|
10004 |
|
|
}
|
10005 |
|
|
}
|
10006 |
|
|
|
10007 |
|
|
if (*subtype_info == 'U')
|
10008 |
|
|
{
|
10009 |
|
|
if (!ada_scan_number (bounds_str, n, &U, &n)
|
10010 |
|
|
&& !scan_discrim_bound (bounds_str, n, dval, &U, &n))
|
10011 |
|
|
return raw_type;
|
10012 |
|
|
}
|
10013 |
|
|
else
|
10014 |
|
|
{
|
10015 |
|
|
int ok;
|
10016 |
|
|
|
10017 |
|
|
strcpy (name_buf + prefix_len, "___U");
|
10018 |
|
|
U = get_int_var_value (name_buf, &ok);
|
10019 |
|
|
if (!ok)
|
10020 |
|
|
{
|
10021 |
|
|
lim_warning (_("Unknown upper bound, using %ld."), (long) L);
|
10022 |
|
|
U = L;
|
10023 |
|
|
}
|
10024 |
|
|
}
|
10025 |
|
|
|
10026 |
|
|
type = create_range_type (alloc_type_copy (raw_type), base_type, L, U);
|
10027 |
|
|
TYPE_NAME (type) = name;
|
10028 |
|
|
return type;
|
10029 |
|
|
}
|
10030 |
|
|
}
|
10031 |
|
|
|
10032 |
|
|
/* True iff NAME is the name of a range type. */
|
10033 |
|
|
|
10034 |
|
|
int
|
10035 |
|
|
ada_is_range_type_name (const char *name)
|
10036 |
|
|
{
|
10037 |
|
|
return (name != NULL && strstr (name, "___XD"));
|
10038 |
|
|
}
|
10039 |
|
|
|
10040 |
|
|
|
10041 |
|
|
/* Modular types */
|
10042 |
|
|
|
10043 |
|
|
/* True iff TYPE is an Ada modular type. */
|
10044 |
|
|
|
10045 |
|
|
int
|
10046 |
|
|
ada_is_modular_type (struct type *type)
|
10047 |
|
|
{
|
10048 |
|
|
struct type *subranged_type = base_type (type);
|
10049 |
|
|
|
10050 |
|
|
return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
|
10051 |
|
|
&& TYPE_CODE (subranged_type) == TYPE_CODE_INT
|
10052 |
|
|
&& TYPE_UNSIGNED (subranged_type));
|
10053 |
|
|
}
|
10054 |
|
|
|
10055 |
|
|
/* Try to determine the lower and upper bounds of the given modular type
|
10056 |
|
|
using the type name only. Return non-zero and set L and U as the lower
|
10057 |
|
|
and upper bounds (respectively) if successful. */
|
10058 |
|
|
|
10059 |
|
|
int
|
10060 |
|
|
ada_modulus_from_name (struct type *type, ULONGEST *modulus)
|
10061 |
|
|
{
|
10062 |
|
|
char *name = ada_type_name (type);
|
10063 |
|
|
char *suffix;
|
10064 |
|
|
int k;
|
10065 |
|
|
LONGEST U;
|
10066 |
|
|
|
10067 |
|
|
if (name == NULL)
|
10068 |
|
|
return 0;
|
10069 |
|
|
|
10070 |
|
|
/* Discrete type bounds are encoded using an __XD suffix. In our case,
|
10071 |
|
|
we are looking for static bounds, which means an __XDLU suffix.
|
10072 |
|
|
Moreover, we know that the lower bound of modular types is always
|
10073 |
|
|
zero, so the actual suffix should start with "__XDLU_0__", and
|
10074 |
|
|
then be followed by the upper bound value. */
|
10075 |
|
|
suffix = strstr (name, "__XDLU_0__");
|
10076 |
|
|
if (suffix == NULL)
|
10077 |
|
|
return 0;
|
10078 |
|
|
k = 10;
|
10079 |
|
|
if (!ada_scan_number (suffix, k, &U, NULL))
|
10080 |
|
|
return 0;
|
10081 |
|
|
|
10082 |
|
|
*modulus = (ULONGEST) U + 1;
|
10083 |
|
|
return 1;
|
10084 |
|
|
}
|
10085 |
|
|
|
10086 |
|
|
/* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
|
10087 |
|
|
|
10088 |
|
|
ULONGEST
|
10089 |
|
|
ada_modulus (struct type *type)
|
10090 |
|
|
{
|
10091 |
|
|
return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
|
10092 |
|
|
}
|
10093 |
|
|
|
10094 |
|
|
|
10095 |
|
|
/* Ada exception catchpoint support:
|
10096 |
|
|
---------------------------------
|
10097 |
|
|
|
10098 |
|
|
We support 3 kinds of exception catchpoints:
|
10099 |
|
|
. catchpoints on Ada exceptions
|
10100 |
|
|
. catchpoints on unhandled Ada exceptions
|
10101 |
|
|
. catchpoints on failed assertions
|
10102 |
|
|
|
10103 |
|
|
Exceptions raised during failed assertions, or unhandled exceptions
|
10104 |
|
|
could perfectly be caught with the general catchpoint on Ada exceptions.
|
10105 |
|
|
However, we can easily differentiate these two special cases, and having
|
10106 |
|
|
the option to distinguish these two cases from the rest can be useful
|
10107 |
|
|
to zero-in on certain situations.
|
10108 |
|
|
|
10109 |
|
|
Exception catchpoints are a specialized form of breakpoint,
|
10110 |
|
|
since they rely on inserting breakpoints inside known routines
|
10111 |
|
|
of the GNAT runtime. The implementation therefore uses a standard
|
10112 |
|
|
breakpoint structure of the BP_BREAKPOINT type, but with its own set
|
10113 |
|
|
of breakpoint_ops.
|
10114 |
|
|
|
10115 |
|
|
Support in the runtime for exception catchpoints have been changed
|
10116 |
|
|
a few times already, and these changes affect the implementation
|
10117 |
|
|
of these catchpoints. In order to be able to support several
|
10118 |
|
|
variants of the runtime, we use a sniffer that will determine
|
10119 |
|
|
the runtime variant used by the program being debugged.
|
10120 |
|
|
|
10121 |
|
|
At this time, we do not support the use of conditions on Ada exception
|
10122 |
|
|
catchpoints. The COND and COND_STRING fields are therefore set
|
10123 |
|
|
to NULL (most of the time, see below).
|
10124 |
|
|
|
10125 |
|
|
Conditions where EXP_STRING, COND, and COND_STRING are used:
|
10126 |
|
|
|
10127 |
|
|
When a user specifies the name of a specific exception in the case
|
10128 |
|
|
of catchpoints on Ada exceptions, we store the name of that exception
|
10129 |
|
|
in the EXP_STRING. We then translate this request into an actual
|
10130 |
|
|
condition stored in COND_STRING, and then parse it into an expression
|
10131 |
|
|
stored in COND. */
|
10132 |
|
|
|
10133 |
|
|
/* The different types of catchpoints that we introduced for catching
|
10134 |
|
|
Ada exceptions. */
|
10135 |
|
|
|
10136 |
|
|
enum exception_catchpoint_kind
|
10137 |
|
|
{
|
10138 |
|
|
ex_catch_exception,
|
10139 |
|
|
ex_catch_exception_unhandled,
|
10140 |
|
|
ex_catch_assert
|
10141 |
|
|
};
|
10142 |
|
|
|
10143 |
|
|
/* Ada's standard exceptions. */
|
10144 |
|
|
|
10145 |
|
|
static char *standard_exc[] = {
|
10146 |
|
|
"constraint_error",
|
10147 |
|
|
"program_error",
|
10148 |
|
|
"storage_error",
|
10149 |
|
|
"tasking_error"
|
10150 |
|
|
};
|
10151 |
|
|
|
10152 |
|
|
typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
|
10153 |
|
|
|
10154 |
|
|
/* A structure that describes how to support exception catchpoints
|
10155 |
|
|
for a given executable. */
|
10156 |
|
|
|
10157 |
|
|
struct exception_support_info
|
10158 |
|
|
{
|
10159 |
|
|
/* The name of the symbol to break on in order to insert
|
10160 |
|
|
a catchpoint on exceptions. */
|
10161 |
|
|
const char *catch_exception_sym;
|
10162 |
|
|
|
10163 |
|
|
/* The name of the symbol to break on in order to insert
|
10164 |
|
|
a catchpoint on unhandled exceptions. */
|
10165 |
|
|
const char *catch_exception_unhandled_sym;
|
10166 |
|
|
|
10167 |
|
|
/* The name of the symbol to break on in order to insert
|
10168 |
|
|
a catchpoint on failed assertions. */
|
10169 |
|
|
const char *catch_assert_sym;
|
10170 |
|
|
|
10171 |
|
|
/* Assuming that the inferior just triggered an unhandled exception
|
10172 |
|
|
catchpoint, this function is responsible for returning the address
|
10173 |
|
|
in inferior memory where the name of that exception is stored.
|
10174 |
|
|
Return zero if the address could not be computed. */
|
10175 |
|
|
ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
|
10176 |
|
|
};
|
10177 |
|
|
|
10178 |
|
|
static CORE_ADDR ada_unhandled_exception_name_addr (void);
|
10179 |
|
|
static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
|
10180 |
|
|
|
10181 |
|
|
/* The following exception support info structure describes how to
|
10182 |
|
|
implement exception catchpoints with the latest version of the
|
10183 |
|
|
Ada runtime (as of 2007-03-06). */
|
10184 |
|
|
|
10185 |
|
|
static const struct exception_support_info default_exception_support_info =
|
10186 |
|
|
{
|
10187 |
|
|
"__gnat_debug_raise_exception", /* catch_exception_sym */
|
10188 |
|
|
"__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
|
10189 |
|
|
"__gnat_debug_raise_assert_failure", /* catch_assert_sym */
|
10190 |
|
|
ada_unhandled_exception_name_addr
|
10191 |
|
|
};
|
10192 |
|
|
|
10193 |
|
|
/* The following exception support info structure describes how to
|
10194 |
|
|
implement exception catchpoints with a slightly older version
|
10195 |
|
|
of the Ada runtime. */
|
10196 |
|
|
|
10197 |
|
|
static const struct exception_support_info exception_support_info_fallback =
|
10198 |
|
|
{
|
10199 |
|
|
"__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
|
10200 |
|
|
"__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
|
10201 |
|
|
"system__assertions__raise_assert_failure", /* catch_assert_sym */
|
10202 |
|
|
ada_unhandled_exception_name_addr_from_raise
|
10203 |
|
|
};
|
10204 |
|
|
|
10205 |
|
|
/* For each executable, we sniff which exception info structure to use
|
10206 |
|
|
and cache it in the following global variable. */
|
10207 |
|
|
|
10208 |
|
|
static const struct exception_support_info *exception_info = NULL;
|
10209 |
|
|
|
10210 |
|
|
/* Inspect the Ada runtime and determine which exception info structure
|
10211 |
|
|
should be used to provide support for exception catchpoints.
|
10212 |
|
|
|
10213 |
|
|
This function will always set exception_info, or raise an error. */
|
10214 |
|
|
|
10215 |
|
|
static void
|
10216 |
|
|
ada_exception_support_info_sniffer (void)
|
10217 |
|
|
{
|
10218 |
|
|
struct symbol *sym;
|
10219 |
|
|
|
10220 |
|
|
/* If the exception info is already known, then no need to recompute it. */
|
10221 |
|
|
if (exception_info != NULL)
|
10222 |
|
|
return;
|
10223 |
|
|
|
10224 |
|
|
/* Check the latest (default) exception support info. */
|
10225 |
|
|
sym = standard_lookup (default_exception_support_info.catch_exception_sym,
|
10226 |
|
|
NULL, VAR_DOMAIN);
|
10227 |
|
|
if (sym != NULL)
|
10228 |
|
|
{
|
10229 |
|
|
exception_info = &default_exception_support_info;
|
10230 |
|
|
return;
|
10231 |
|
|
}
|
10232 |
|
|
|
10233 |
|
|
/* Try our fallback exception suport info. */
|
10234 |
|
|
sym = standard_lookup (exception_support_info_fallback.catch_exception_sym,
|
10235 |
|
|
NULL, VAR_DOMAIN);
|
10236 |
|
|
if (sym != NULL)
|
10237 |
|
|
{
|
10238 |
|
|
exception_info = &exception_support_info_fallback;
|
10239 |
|
|
return;
|
10240 |
|
|
}
|
10241 |
|
|
|
10242 |
|
|
/* Sometimes, it is normal for us to not be able to find the routine
|
10243 |
|
|
we are looking for. This happens when the program is linked with
|
10244 |
|
|
the shared version of the GNAT runtime, and the program has not been
|
10245 |
|
|
started yet. Inform the user of these two possible causes if
|
10246 |
|
|
applicable. */
|
10247 |
|
|
|
10248 |
|
|
if (ada_update_initial_language (language_unknown) != language_ada)
|
10249 |
|
|
error (_("Unable to insert catchpoint. Is this an Ada main program?"));
|
10250 |
|
|
|
10251 |
|
|
/* If the symbol does not exist, then check that the program is
|
10252 |
|
|
already started, to make sure that shared libraries have been
|
10253 |
|
|
loaded. If it is not started, this may mean that the symbol is
|
10254 |
|
|
in a shared library. */
|
10255 |
|
|
|
10256 |
|
|
if (ptid_get_pid (inferior_ptid) == 0)
|
10257 |
|
|
error (_("Unable to insert catchpoint. Try to start the program first."));
|
10258 |
|
|
|
10259 |
|
|
/* At this point, we know that we are debugging an Ada program and
|
10260 |
|
|
that the inferior has been started, but we still are not able to
|
10261 |
|
|
find the run-time symbols. That can mean that we are in
|
10262 |
|
|
configurable run time mode, or that a-except as been optimized
|
10263 |
|
|
out by the linker... In any case, at this point it is not worth
|
10264 |
|
|
supporting this feature. */
|
10265 |
|
|
|
10266 |
|
|
error (_("Cannot insert catchpoints in this configuration."));
|
10267 |
|
|
}
|
10268 |
|
|
|
10269 |
|
|
/* An observer of "executable_changed" events.
|
10270 |
|
|
Its role is to clear certain cached values that need to be recomputed
|
10271 |
|
|
each time a new executable is loaded by GDB. */
|
10272 |
|
|
|
10273 |
|
|
static void
|
10274 |
|
|
ada_executable_changed_observer (void)
|
10275 |
|
|
{
|
10276 |
|
|
/* If the executable changed, then it is possible that the Ada runtime
|
10277 |
|
|
is different. So we need to invalidate the exception support info
|
10278 |
|
|
cache. */
|
10279 |
|
|
exception_info = NULL;
|
10280 |
|
|
}
|
10281 |
|
|
|
10282 |
|
|
/* True iff FRAME is very likely to be that of a function that is
|
10283 |
|
|
part of the runtime system. This is all very heuristic, but is
|
10284 |
|
|
intended to be used as advice as to what frames are uninteresting
|
10285 |
|
|
to most users. */
|
10286 |
|
|
|
10287 |
|
|
static int
|
10288 |
|
|
is_known_support_routine (struct frame_info *frame)
|
10289 |
|
|
{
|
10290 |
|
|
struct symtab_and_line sal;
|
10291 |
|
|
char *func_name;
|
10292 |
|
|
enum language func_lang;
|
10293 |
|
|
int i;
|
10294 |
|
|
|
10295 |
|
|
/* If this code does not have any debugging information (no symtab),
|
10296 |
|
|
This cannot be any user code. */
|
10297 |
|
|
|
10298 |
|
|
find_frame_sal (frame, &sal);
|
10299 |
|
|
if (sal.symtab == NULL)
|
10300 |
|
|
return 1;
|
10301 |
|
|
|
10302 |
|
|
/* If there is a symtab, but the associated source file cannot be
|
10303 |
|
|
located, then assume this is not user code: Selecting a frame
|
10304 |
|
|
for which we cannot display the code would not be very helpful
|
10305 |
|
|
for the user. This should also take care of case such as VxWorks
|
10306 |
|
|
where the kernel has some debugging info provided for a few units. */
|
10307 |
|
|
|
10308 |
|
|
if (symtab_to_fullname (sal.symtab) == NULL)
|
10309 |
|
|
return 1;
|
10310 |
|
|
|
10311 |
|
|
/* Check the unit filename againt the Ada runtime file naming.
|
10312 |
|
|
We also check the name of the objfile against the name of some
|
10313 |
|
|
known system libraries that sometimes come with debugging info
|
10314 |
|
|
too. */
|
10315 |
|
|
|
10316 |
|
|
for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
|
10317 |
|
|
{
|
10318 |
|
|
re_comp (known_runtime_file_name_patterns[i]);
|
10319 |
|
|
if (re_exec (sal.symtab->filename))
|
10320 |
|
|
return 1;
|
10321 |
|
|
if (sal.symtab->objfile != NULL
|
10322 |
|
|
&& re_exec (sal.symtab->objfile->name))
|
10323 |
|
|
return 1;
|
10324 |
|
|
}
|
10325 |
|
|
|
10326 |
|
|
/* Check whether the function is a GNAT-generated entity. */
|
10327 |
|
|
|
10328 |
|
|
find_frame_funname (frame, &func_name, &func_lang);
|
10329 |
|
|
if (func_name == NULL)
|
10330 |
|
|
return 1;
|
10331 |
|
|
|
10332 |
|
|
for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
|
10333 |
|
|
{
|
10334 |
|
|
re_comp (known_auxiliary_function_name_patterns[i]);
|
10335 |
|
|
if (re_exec (func_name))
|
10336 |
|
|
return 1;
|
10337 |
|
|
}
|
10338 |
|
|
|
10339 |
|
|
return 0;
|
10340 |
|
|
}
|
10341 |
|
|
|
10342 |
|
|
/* Find the first frame that contains debugging information and that is not
|
10343 |
|
|
part of the Ada run-time, starting from FI and moving upward. */
|
10344 |
|
|
|
10345 |
|
|
void
|
10346 |
|
|
ada_find_printable_frame (struct frame_info *fi)
|
10347 |
|
|
{
|
10348 |
|
|
for (; fi != NULL; fi = get_prev_frame (fi))
|
10349 |
|
|
{
|
10350 |
|
|
if (!is_known_support_routine (fi))
|
10351 |
|
|
{
|
10352 |
|
|
select_frame (fi);
|
10353 |
|
|
break;
|
10354 |
|
|
}
|
10355 |
|
|
}
|
10356 |
|
|
|
10357 |
|
|
}
|
10358 |
|
|
|
10359 |
|
|
/* Assuming that the inferior just triggered an unhandled exception
|
10360 |
|
|
catchpoint, return the address in inferior memory where the name
|
10361 |
|
|
of the exception is stored.
|
10362 |
|
|
|
10363 |
|
|
Return zero if the address could not be computed. */
|
10364 |
|
|
|
10365 |
|
|
static CORE_ADDR
|
10366 |
|
|
ada_unhandled_exception_name_addr (void)
|
10367 |
|
|
{
|
10368 |
|
|
return parse_and_eval_address ("e.full_name");
|
10369 |
|
|
}
|
10370 |
|
|
|
10371 |
|
|
/* Same as ada_unhandled_exception_name_addr, except that this function
|
10372 |
|
|
should be used when the inferior uses an older version of the runtime,
|
10373 |
|
|
where the exception name needs to be extracted from a specific frame
|
10374 |
|
|
several frames up in the callstack. */
|
10375 |
|
|
|
10376 |
|
|
static CORE_ADDR
|
10377 |
|
|
ada_unhandled_exception_name_addr_from_raise (void)
|
10378 |
|
|
{
|
10379 |
|
|
int frame_level;
|
10380 |
|
|
struct frame_info *fi;
|
10381 |
|
|
|
10382 |
|
|
/* To determine the name of this exception, we need to select
|
10383 |
|
|
the frame corresponding to RAISE_SYM_NAME. This frame is
|
10384 |
|
|
at least 3 levels up, so we simply skip the first 3 frames
|
10385 |
|
|
without checking the name of their associated function. */
|
10386 |
|
|
fi = get_current_frame ();
|
10387 |
|
|
for (frame_level = 0; frame_level < 3; frame_level += 1)
|
10388 |
|
|
if (fi != NULL)
|
10389 |
|
|
fi = get_prev_frame (fi);
|
10390 |
|
|
|
10391 |
|
|
while (fi != NULL)
|
10392 |
|
|
{
|
10393 |
|
|
char *func_name;
|
10394 |
|
|
enum language func_lang;
|
10395 |
|
|
|
10396 |
|
|
find_frame_funname (fi, &func_name, &func_lang);
|
10397 |
|
|
if (func_name != NULL
|
10398 |
|
|
&& strcmp (func_name, exception_info->catch_exception_sym) == 0)
|
10399 |
|
|
break; /* We found the frame we were looking for... */
|
10400 |
|
|
fi = get_prev_frame (fi);
|
10401 |
|
|
}
|
10402 |
|
|
|
10403 |
|
|
if (fi == NULL)
|
10404 |
|
|
return 0;
|
10405 |
|
|
|
10406 |
|
|
select_frame (fi);
|
10407 |
|
|
return parse_and_eval_address ("id.full_name");
|
10408 |
|
|
}
|
10409 |
|
|
|
10410 |
|
|
/* Assuming the inferior just triggered an Ada exception catchpoint
|
10411 |
|
|
(of any type), return the address in inferior memory where the name
|
10412 |
|
|
of the exception is stored, if applicable.
|
10413 |
|
|
|
10414 |
|
|
Return zero if the address could not be computed, or if not relevant. */
|
10415 |
|
|
|
10416 |
|
|
static CORE_ADDR
|
10417 |
|
|
ada_exception_name_addr_1 (enum exception_catchpoint_kind ex,
|
10418 |
|
|
struct breakpoint *b)
|
10419 |
|
|
{
|
10420 |
|
|
switch (ex)
|
10421 |
|
|
{
|
10422 |
|
|
case ex_catch_exception:
|
10423 |
|
|
return (parse_and_eval_address ("e.full_name"));
|
10424 |
|
|
break;
|
10425 |
|
|
|
10426 |
|
|
case ex_catch_exception_unhandled:
|
10427 |
|
|
return exception_info->unhandled_exception_name_addr ();
|
10428 |
|
|
break;
|
10429 |
|
|
|
10430 |
|
|
case ex_catch_assert:
|
10431 |
|
|
return 0; /* Exception name is not relevant in this case. */
|
10432 |
|
|
break;
|
10433 |
|
|
|
10434 |
|
|
default:
|
10435 |
|
|
internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
|
10436 |
|
|
break;
|
10437 |
|
|
}
|
10438 |
|
|
|
10439 |
|
|
return 0; /* Should never be reached. */
|
10440 |
|
|
}
|
10441 |
|
|
|
10442 |
|
|
/* Same as ada_exception_name_addr_1, except that it intercepts and contains
|
10443 |
|
|
any error that ada_exception_name_addr_1 might cause to be thrown.
|
10444 |
|
|
When an error is intercepted, a warning with the error message is printed,
|
10445 |
|
|
and zero is returned. */
|
10446 |
|
|
|
10447 |
|
|
static CORE_ADDR
|
10448 |
|
|
ada_exception_name_addr (enum exception_catchpoint_kind ex,
|
10449 |
|
|
struct breakpoint *b)
|
10450 |
|
|
{
|
10451 |
|
|
struct gdb_exception e;
|
10452 |
|
|
CORE_ADDR result = 0;
|
10453 |
|
|
|
10454 |
|
|
TRY_CATCH (e, RETURN_MASK_ERROR)
|
10455 |
|
|
{
|
10456 |
|
|
result = ada_exception_name_addr_1 (ex, b);
|
10457 |
|
|
}
|
10458 |
|
|
|
10459 |
|
|
if (e.reason < 0)
|
10460 |
|
|
{
|
10461 |
|
|
warning (_("failed to get exception name: %s"), e.message);
|
10462 |
|
|
return 0;
|
10463 |
|
|
}
|
10464 |
|
|
|
10465 |
|
|
return result;
|
10466 |
|
|
}
|
10467 |
|
|
|
10468 |
|
|
/* Implement the PRINT_IT method in the breakpoint_ops structure
|
10469 |
|
|
for all exception catchpoint kinds. */
|
10470 |
|
|
|
10471 |
|
|
static enum print_stop_action
|
10472 |
|
|
print_it_exception (enum exception_catchpoint_kind ex, struct breakpoint *b)
|
10473 |
|
|
{
|
10474 |
|
|
const CORE_ADDR addr = ada_exception_name_addr (ex, b);
|
10475 |
|
|
char exception_name[256];
|
10476 |
|
|
|
10477 |
|
|
if (addr != 0)
|
10478 |
|
|
{
|
10479 |
|
|
read_memory (addr, exception_name, sizeof (exception_name) - 1);
|
10480 |
|
|
exception_name [sizeof (exception_name) - 1] = '\0';
|
10481 |
|
|
}
|
10482 |
|
|
|
10483 |
|
|
ada_find_printable_frame (get_current_frame ());
|
10484 |
|
|
|
10485 |
|
|
annotate_catchpoint (b->number);
|
10486 |
|
|
switch (ex)
|
10487 |
|
|
{
|
10488 |
|
|
case ex_catch_exception:
|
10489 |
|
|
if (addr != 0)
|
10490 |
|
|
printf_filtered (_("\nCatchpoint %d, %s at "),
|
10491 |
|
|
b->number, exception_name);
|
10492 |
|
|
else
|
10493 |
|
|
printf_filtered (_("\nCatchpoint %d, exception at "), b->number);
|
10494 |
|
|
break;
|
10495 |
|
|
case ex_catch_exception_unhandled:
|
10496 |
|
|
if (addr != 0)
|
10497 |
|
|
printf_filtered (_("\nCatchpoint %d, unhandled %s at "),
|
10498 |
|
|
b->number, exception_name);
|
10499 |
|
|
else
|
10500 |
|
|
printf_filtered (_("\nCatchpoint %d, unhandled exception at "),
|
10501 |
|
|
b->number);
|
10502 |
|
|
break;
|
10503 |
|
|
case ex_catch_assert:
|
10504 |
|
|
printf_filtered (_("\nCatchpoint %d, failed assertion at "),
|
10505 |
|
|
b->number);
|
10506 |
|
|
break;
|
10507 |
|
|
}
|
10508 |
|
|
|
10509 |
|
|
return PRINT_SRC_AND_LOC;
|
10510 |
|
|
}
|
10511 |
|
|
|
10512 |
|
|
/* Implement the PRINT_ONE method in the breakpoint_ops structure
|
10513 |
|
|
for all exception catchpoint kinds. */
|
10514 |
|
|
|
10515 |
|
|
static void
|
10516 |
|
|
print_one_exception (enum exception_catchpoint_kind ex,
|
10517 |
|
|
struct breakpoint *b, struct bp_location **last_loc)
|
10518 |
|
|
{
|
10519 |
|
|
struct value_print_options opts;
|
10520 |
|
|
|
10521 |
|
|
get_user_print_options (&opts);
|
10522 |
|
|
if (opts.addressprint)
|
10523 |
|
|
{
|
10524 |
|
|
annotate_field (4);
|
10525 |
|
|
ui_out_field_core_addr (uiout, "addr", b->loc->gdbarch, b->loc->address);
|
10526 |
|
|
}
|
10527 |
|
|
|
10528 |
|
|
annotate_field (5);
|
10529 |
|
|
*last_loc = b->loc;
|
10530 |
|
|
switch (ex)
|
10531 |
|
|
{
|
10532 |
|
|
case ex_catch_exception:
|
10533 |
|
|
if (b->exp_string != NULL)
|
10534 |
|
|
{
|
10535 |
|
|
char *msg = xstrprintf (_("`%s' Ada exception"), b->exp_string);
|
10536 |
|
|
|
10537 |
|
|
ui_out_field_string (uiout, "what", msg);
|
10538 |
|
|
xfree (msg);
|
10539 |
|
|
}
|
10540 |
|
|
else
|
10541 |
|
|
ui_out_field_string (uiout, "what", "all Ada exceptions");
|
10542 |
|
|
|
10543 |
|
|
break;
|
10544 |
|
|
|
10545 |
|
|
case ex_catch_exception_unhandled:
|
10546 |
|
|
ui_out_field_string (uiout, "what", "unhandled Ada exceptions");
|
10547 |
|
|
break;
|
10548 |
|
|
|
10549 |
|
|
case ex_catch_assert:
|
10550 |
|
|
ui_out_field_string (uiout, "what", "failed Ada assertions");
|
10551 |
|
|
break;
|
10552 |
|
|
|
10553 |
|
|
default:
|
10554 |
|
|
internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
|
10555 |
|
|
break;
|
10556 |
|
|
}
|
10557 |
|
|
}
|
10558 |
|
|
|
10559 |
|
|
/* Implement the PRINT_MENTION method in the breakpoint_ops structure
|
10560 |
|
|
for all exception catchpoint kinds. */
|
10561 |
|
|
|
10562 |
|
|
static void
|
10563 |
|
|
print_mention_exception (enum exception_catchpoint_kind ex,
|
10564 |
|
|
struct breakpoint *b)
|
10565 |
|
|
{
|
10566 |
|
|
switch (ex)
|
10567 |
|
|
{
|
10568 |
|
|
case ex_catch_exception:
|
10569 |
|
|
if (b->exp_string != NULL)
|
10570 |
|
|
printf_filtered (_("Catchpoint %d: `%s' Ada exception"),
|
10571 |
|
|
b->number, b->exp_string);
|
10572 |
|
|
else
|
10573 |
|
|
printf_filtered (_("Catchpoint %d: all Ada exceptions"), b->number);
|
10574 |
|
|
|
10575 |
|
|
break;
|
10576 |
|
|
|
10577 |
|
|
case ex_catch_exception_unhandled:
|
10578 |
|
|
printf_filtered (_("Catchpoint %d: unhandled Ada exceptions"),
|
10579 |
|
|
b->number);
|
10580 |
|
|
break;
|
10581 |
|
|
|
10582 |
|
|
case ex_catch_assert:
|
10583 |
|
|
printf_filtered (_("Catchpoint %d: failed Ada assertions"), b->number);
|
10584 |
|
|
break;
|
10585 |
|
|
|
10586 |
|
|
default:
|
10587 |
|
|
internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
|
10588 |
|
|
break;
|
10589 |
|
|
}
|
10590 |
|
|
}
|
10591 |
|
|
|
10592 |
|
|
/* Implement the PRINT_RECREATE method in the breakpoint_ops structure
|
10593 |
|
|
for all exception catchpoint kinds. */
|
10594 |
|
|
|
10595 |
|
|
static void
|
10596 |
|
|
print_recreate_exception (enum exception_catchpoint_kind ex,
|
10597 |
|
|
struct breakpoint *b, struct ui_file *fp)
|
10598 |
|
|
{
|
10599 |
|
|
switch (ex)
|
10600 |
|
|
{
|
10601 |
|
|
case ex_catch_exception:
|
10602 |
|
|
fprintf_filtered (fp, "catch exception");
|
10603 |
|
|
if (b->exp_string != NULL)
|
10604 |
|
|
fprintf_filtered (fp, " %s", b->exp_string);
|
10605 |
|
|
break;
|
10606 |
|
|
|
10607 |
|
|
case ex_catch_exception_unhandled:
|
10608 |
|
|
fprintf_filtered (fp, "catch exception unhandled");
|
10609 |
|
|
break;
|
10610 |
|
|
|
10611 |
|
|
case ex_catch_assert:
|
10612 |
|
|
fprintf_filtered (fp, "catch assert");
|
10613 |
|
|
break;
|
10614 |
|
|
|
10615 |
|
|
default:
|
10616 |
|
|
internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
|
10617 |
|
|
}
|
10618 |
|
|
}
|
10619 |
|
|
|
10620 |
|
|
/* Virtual table for "catch exception" breakpoints. */
|
10621 |
|
|
|
10622 |
|
|
static enum print_stop_action
|
10623 |
|
|
print_it_catch_exception (struct breakpoint *b)
|
10624 |
|
|
{
|
10625 |
|
|
return print_it_exception (ex_catch_exception, b);
|
10626 |
|
|
}
|
10627 |
|
|
|
10628 |
|
|
static void
|
10629 |
|
|
print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
|
10630 |
|
|
{
|
10631 |
|
|
print_one_exception (ex_catch_exception, b, last_loc);
|
10632 |
|
|
}
|
10633 |
|
|
|
10634 |
|
|
static void
|
10635 |
|
|
print_mention_catch_exception (struct breakpoint *b)
|
10636 |
|
|
{
|
10637 |
|
|
print_mention_exception (ex_catch_exception, b);
|
10638 |
|
|
}
|
10639 |
|
|
|
10640 |
|
|
static void
|
10641 |
|
|
print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp)
|
10642 |
|
|
{
|
10643 |
|
|
print_recreate_exception (ex_catch_exception, b, fp);
|
10644 |
|
|
}
|
10645 |
|
|
|
10646 |
|
|
static struct breakpoint_ops catch_exception_breakpoint_ops =
|
10647 |
|
|
{
|
10648 |
|
|
NULL, /* insert */
|
10649 |
|
|
NULL, /* remove */
|
10650 |
|
|
NULL, /* breakpoint_hit */
|
10651 |
|
|
print_it_catch_exception,
|
10652 |
|
|
print_one_catch_exception,
|
10653 |
|
|
print_mention_catch_exception,
|
10654 |
|
|
print_recreate_catch_exception
|
10655 |
|
|
};
|
10656 |
|
|
|
10657 |
|
|
/* Virtual table for "catch exception unhandled" breakpoints. */
|
10658 |
|
|
|
10659 |
|
|
static enum print_stop_action
|
10660 |
|
|
print_it_catch_exception_unhandled (struct breakpoint *b)
|
10661 |
|
|
{
|
10662 |
|
|
return print_it_exception (ex_catch_exception_unhandled, b);
|
10663 |
|
|
}
|
10664 |
|
|
|
10665 |
|
|
static void
|
10666 |
|
|
print_one_catch_exception_unhandled (struct breakpoint *b,
|
10667 |
|
|
struct bp_location **last_loc)
|
10668 |
|
|
{
|
10669 |
|
|
print_one_exception (ex_catch_exception_unhandled, b, last_loc);
|
10670 |
|
|
}
|
10671 |
|
|
|
10672 |
|
|
static void
|
10673 |
|
|
print_mention_catch_exception_unhandled (struct breakpoint *b)
|
10674 |
|
|
{
|
10675 |
|
|
print_mention_exception (ex_catch_exception_unhandled, b);
|
10676 |
|
|
}
|
10677 |
|
|
|
10678 |
|
|
static void
|
10679 |
|
|
print_recreate_catch_exception_unhandled (struct breakpoint *b,
|
10680 |
|
|
struct ui_file *fp)
|
10681 |
|
|
{
|
10682 |
|
|
print_recreate_exception (ex_catch_exception_unhandled, b, fp);
|
10683 |
|
|
}
|
10684 |
|
|
|
10685 |
|
|
static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops = {
|
10686 |
|
|
NULL, /* insert */
|
10687 |
|
|
NULL, /* remove */
|
10688 |
|
|
NULL, /* breakpoint_hit */
|
10689 |
|
|
print_it_catch_exception_unhandled,
|
10690 |
|
|
print_one_catch_exception_unhandled,
|
10691 |
|
|
print_mention_catch_exception_unhandled,
|
10692 |
|
|
print_recreate_catch_exception_unhandled
|
10693 |
|
|
};
|
10694 |
|
|
|
10695 |
|
|
/* Virtual table for "catch assert" breakpoints. */
|
10696 |
|
|
|
10697 |
|
|
static enum print_stop_action
|
10698 |
|
|
print_it_catch_assert (struct breakpoint *b)
|
10699 |
|
|
{
|
10700 |
|
|
return print_it_exception (ex_catch_assert, b);
|
10701 |
|
|
}
|
10702 |
|
|
|
10703 |
|
|
static void
|
10704 |
|
|
print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
|
10705 |
|
|
{
|
10706 |
|
|
print_one_exception (ex_catch_assert, b, last_loc);
|
10707 |
|
|
}
|
10708 |
|
|
|
10709 |
|
|
static void
|
10710 |
|
|
print_mention_catch_assert (struct breakpoint *b)
|
10711 |
|
|
{
|
10712 |
|
|
print_mention_exception (ex_catch_assert, b);
|
10713 |
|
|
}
|
10714 |
|
|
|
10715 |
|
|
static void
|
10716 |
|
|
print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp)
|
10717 |
|
|
{
|
10718 |
|
|
print_recreate_exception (ex_catch_assert, b, fp);
|
10719 |
|
|
}
|
10720 |
|
|
|
10721 |
|
|
static struct breakpoint_ops catch_assert_breakpoint_ops = {
|
10722 |
|
|
NULL, /* insert */
|
10723 |
|
|
NULL, /* remove */
|
10724 |
|
|
NULL, /* breakpoint_hit */
|
10725 |
|
|
print_it_catch_assert,
|
10726 |
|
|
print_one_catch_assert,
|
10727 |
|
|
print_mention_catch_assert,
|
10728 |
|
|
print_recreate_catch_assert
|
10729 |
|
|
};
|
10730 |
|
|
|
10731 |
|
|
/* Return non-zero if B is an Ada exception catchpoint. */
|
10732 |
|
|
|
10733 |
|
|
int
|
10734 |
|
|
ada_exception_catchpoint_p (struct breakpoint *b)
|
10735 |
|
|
{
|
10736 |
|
|
return (b->ops == &catch_exception_breakpoint_ops
|
10737 |
|
|
|| b->ops == &catch_exception_unhandled_breakpoint_ops
|
10738 |
|
|
|| b->ops == &catch_assert_breakpoint_ops);
|
10739 |
|
|
}
|
10740 |
|
|
|
10741 |
|
|
/* Return a newly allocated copy of the first space-separated token
|
10742 |
|
|
in ARGSP, and then adjust ARGSP to point immediately after that
|
10743 |
|
|
token.
|
10744 |
|
|
|
10745 |
|
|
Return NULL if ARGPS does not contain any more tokens. */
|
10746 |
|
|
|
10747 |
|
|
static char *
|
10748 |
|
|
ada_get_next_arg (char **argsp)
|
10749 |
|
|
{
|
10750 |
|
|
char *args = *argsp;
|
10751 |
|
|
char *end;
|
10752 |
|
|
char *result;
|
10753 |
|
|
|
10754 |
|
|
/* Skip any leading white space. */
|
10755 |
|
|
|
10756 |
|
|
while (isspace (*args))
|
10757 |
|
|
args++;
|
10758 |
|
|
|
10759 |
|
|
if (args[0] == '\0')
|
10760 |
|
|
return NULL; /* No more arguments. */
|
10761 |
|
|
|
10762 |
|
|
/* Find the end of the current argument. */
|
10763 |
|
|
|
10764 |
|
|
end = args;
|
10765 |
|
|
while (*end != '\0' && !isspace (*end))
|
10766 |
|
|
end++;
|
10767 |
|
|
|
10768 |
|
|
/* Adjust ARGSP to point to the start of the next argument. */
|
10769 |
|
|
|
10770 |
|
|
*argsp = end;
|
10771 |
|
|
|
10772 |
|
|
/* Make a copy of the current argument and return it. */
|
10773 |
|
|
|
10774 |
|
|
result = xmalloc (end - args + 1);
|
10775 |
|
|
strncpy (result, args, end - args);
|
10776 |
|
|
result[end - args] = '\0';
|
10777 |
|
|
|
10778 |
|
|
return result;
|
10779 |
|
|
}
|
10780 |
|
|
|
10781 |
|
|
/* Split the arguments specified in a "catch exception" command.
|
10782 |
|
|
Set EX to the appropriate catchpoint type.
|
10783 |
|
|
Set EXP_STRING to the name of the specific exception if
|
10784 |
|
|
specified by the user. */
|
10785 |
|
|
|
10786 |
|
|
static void
|
10787 |
|
|
catch_ada_exception_command_split (char *args,
|
10788 |
|
|
enum exception_catchpoint_kind *ex,
|
10789 |
|
|
char **exp_string)
|
10790 |
|
|
{
|
10791 |
|
|
struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
|
10792 |
|
|
char *exception_name;
|
10793 |
|
|
|
10794 |
|
|
exception_name = ada_get_next_arg (&args);
|
10795 |
|
|
make_cleanup (xfree, exception_name);
|
10796 |
|
|
|
10797 |
|
|
/* Check that we do not have any more arguments. Anything else
|
10798 |
|
|
is unexpected. */
|
10799 |
|
|
|
10800 |
|
|
while (isspace (*args))
|
10801 |
|
|
args++;
|
10802 |
|
|
|
10803 |
|
|
if (args[0] != '\0')
|
10804 |
|
|
error (_("Junk at end of expression"));
|
10805 |
|
|
|
10806 |
|
|
discard_cleanups (old_chain);
|
10807 |
|
|
|
10808 |
|
|
if (exception_name == NULL)
|
10809 |
|
|
{
|
10810 |
|
|
/* Catch all exceptions. */
|
10811 |
|
|
*ex = ex_catch_exception;
|
10812 |
|
|
*exp_string = NULL;
|
10813 |
|
|
}
|
10814 |
|
|
else if (strcmp (exception_name, "unhandled") == 0)
|
10815 |
|
|
{
|
10816 |
|
|
/* Catch unhandled exceptions. */
|
10817 |
|
|
*ex = ex_catch_exception_unhandled;
|
10818 |
|
|
*exp_string = NULL;
|
10819 |
|
|
}
|
10820 |
|
|
else
|
10821 |
|
|
{
|
10822 |
|
|
/* Catch a specific exception. */
|
10823 |
|
|
*ex = ex_catch_exception;
|
10824 |
|
|
*exp_string = exception_name;
|
10825 |
|
|
}
|
10826 |
|
|
}
|
10827 |
|
|
|
10828 |
|
|
/* Return the name of the symbol on which we should break in order to
|
10829 |
|
|
implement a catchpoint of the EX kind. */
|
10830 |
|
|
|
10831 |
|
|
static const char *
|
10832 |
|
|
ada_exception_sym_name (enum exception_catchpoint_kind ex)
|
10833 |
|
|
{
|
10834 |
|
|
gdb_assert (exception_info != NULL);
|
10835 |
|
|
|
10836 |
|
|
switch (ex)
|
10837 |
|
|
{
|
10838 |
|
|
case ex_catch_exception:
|
10839 |
|
|
return (exception_info->catch_exception_sym);
|
10840 |
|
|
break;
|
10841 |
|
|
case ex_catch_exception_unhandled:
|
10842 |
|
|
return (exception_info->catch_exception_unhandled_sym);
|
10843 |
|
|
break;
|
10844 |
|
|
case ex_catch_assert:
|
10845 |
|
|
return (exception_info->catch_assert_sym);
|
10846 |
|
|
break;
|
10847 |
|
|
default:
|
10848 |
|
|
internal_error (__FILE__, __LINE__,
|
10849 |
|
|
_("unexpected catchpoint kind (%d)"), ex);
|
10850 |
|
|
}
|
10851 |
|
|
}
|
10852 |
|
|
|
10853 |
|
|
/* Return the breakpoint ops "virtual table" used for catchpoints
|
10854 |
|
|
of the EX kind. */
|
10855 |
|
|
|
10856 |
|
|
static struct breakpoint_ops *
|
10857 |
|
|
ada_exception_breakpoint_ops (enum exception_catchpoint_kind ex)
|
10858 |
|
|
{
|
10859 |
|
|
switch (ex)
|
10860 |
|
|
{
|
10861 |
|
|
case ex_catch_exception:
|
10862 |
|
|
return (&catch_exception_breakpoint_ops);
|
10863 |
|
|
break;
|
10864 |
|
|
case ex_catch_exception_unhandled:
|
10865 |
|
|
return (&catch_exception_unhandled_breakpoint_ops);
|
10866 |
|
|
break;
|
10867 |
|
|
case ex_catch_assert:
|
10868 |
|
|
return (&catch_assert_breakpoint_ops);
|
10869 |
|
|
break;
|
10870 |
|
|
default:
|
10871 |
|
|
internal_error (__FILE__, __LINE__,
|
10872 |
|
|
_("unexpected catchpoint kind (%d)"), ex);
|
10873 |
|
|
}
|
10874 |
|
|
}
|
10875 |
|
|
|
10876 |
|
|
/* Return the condition that will be used to match the current exception
|
10877 |
|
|
being raised with the exception that the user wants to catch. This
|
10878 |
|
|
assumes that this condition is used when the inferior just triggered
|
10879 |
|
|
an exception catchpoint.
|
10880 |
|
|
|
10881 |
|
|
The string returned is a newly allocated string that needs to be
|
10882 |
|
|
deallocated later. */
|
10883 |
|
|
|
10884 |
|
|
static char *
|
10885 |
|
|
ada_exception_catchpoint_cond_string (const char *exp_string)
|
10886 |
|
|
{
|
10887 |
|
|
int i;
|
10888 |
|
|
|
10889 |
|
|
/* The standard exceptions are a special case. They are defined in
|
10890 |
|
|
runtime units that have been compiled without debugging info; if
|
10891 |
|
|
EXP_STRING is the not-fully-qualified name of a standard
|
10892 |
|
|
exception (e.g. "constraint_error") then, during the evaluation
|
10893 |
|
|
of the condition expression, the symbol lookup on this name would
|
10894 |
|
|
*not* return this standard exception. The catchpoint condition
|
10895 |
|
|
may then be set only on user-defined exceptions which have the
|
10896 |
|
|
same not-fully-qualified name (e.g. my_package.constraint_error).
|
10897 |
|
|
|
10898 |
|
|
To avoid this unexcepted behavior, these standard exceptions are
|
10899 |
|
|
systematically prefixed by "standard". This means that "catch
|
10900 |
|
|
exception constraint_error" is rewritten into "catch exception
|
10901 |
|
|
standard.constraint_error".
|
10902 |
|
|
|
10903 |
|
|
If an exception named contraint_error is defined in another package of
|
10904 |
|
|
the inferior program, then the only way to specify this exception as a
|
10905 |
|
|
breakpoint condition is to use its fully-qualified named:
|
10906 |
|
|
e.g. my_package.constraint_error. */
|
10907 |
|
|
|
10908 |
|
|
for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
|
10909 |
|
|
{
|
10910 |
|
|
if (strcmp (standard_exc [i], exp_string) == 0)
|
10911 |
|
|
{
|
10912 |
|
|
return xstrprintf ("long_integer (e) = long_integer (&standard.%s)",
|
10913 |
|
|
exp_string);
|
10914 |
|
|
}
|
10915 |
|
|
}
|
10916 |
|
|
return xstrprintf ("long_integer (e) = long_integer (&%s)", exp_string);
|
10917 |
|
|
}
|
10918 |
|
|
|
10919 |
|
|
/* Return the expression corresponding to COND_STRING evaluated at SAL. */
|
10920 |
|
|
|
10921 |
|
|
static struct expression *
|
10922 |
|
|
ada_parse_catchpoint_condition (char *cond_string,
|
10923 |
|
|
struct symtab_and_line sal)
|
10924 |
|
|
{
|
10925 |
|
|
return (parse_exp_1 (&cond_string, block_for_pc (sal.pc), 0));
|
10926 |
|
|
}
|
10927 |
|
|
|
10928 |
|
|
/* Return the symtab_and_line that should be used to insert an exception
|
10929 |
|
|
catchpoint of the TYPE kind.
|
10930 |
|
|
|
10931 |
|
|
EX_STRING should contain the name of a specific exception
|
10932 |
|
|
that the catchpoint should catch, or NULL otherwise.
|
10933 |
|
|
|
10934 |
|
|
The idea behind all the remaining parameters is that their names match
|
10935 |
|
|
the name of certain fields in the breakpoint structure that are used to
|
10936 |
|
|
handle exception catchpoints. This function returns the value to which
|
10937 |
|
|
these fields should be set, depending on the type of catchpoint we need
|
10938 |
|
|
to create.
|
10939 |
|
|
|
10940 |
|
|
If COND and COND_STRING are both non-NULL, any value they might
|
10941 |
|
|
hold will be free'ed, and then replaced by newly allocated ones.
|
10942 |
|
|
These parameters are left untouched otherwise. */
|
10943 |
|
|
|
10944 |
|
|
static struct symtab_and_line
|
10945 |
|
|
ada_exception_sal (enum exception_catchpoint_kind ex, char *exp_string,
|
10946 |
|
|
char **addr_string, char **cond_string,
|
10947 |
|
|
struct expression **cond, struct breakpoint_ops **ops)
|
10948 |
|
|
{
|
10949 |
|
|
const char *sym_name;
|
10950 |
|
|
struct symbol *sym;
|
10951 |
|
|
struct symtab_and_line sal;
|
10952 |
|
|
|
10953 |
|
|
/* First, find out which exception support info to use. */
|
10954 |
|
|
ada_exception_support_info_sniffer ();
|
10955 |
|
|
|
10956 |
|
|
/* Then lookup the function on which we will break in order to catch
|
10957 |
|
|
the Ada exceptions requested by the user. */
|
10958 |
|
|
|
10959 |
|
|
sym_name = ada_exception_sym_name (ex);
|
10960 |
|
|
sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
|
10961 |
|
|
|
10962 |
|
|
/* The symbol we're looking up is provided by a unit in the GNAT runtime
|
10963 |
|
|
that should be compiled with debugging information. As a result, we
|
10964 |
|
|
expect to find that symbol in the symtabs. If we don't find it, then
|
10965 |
|
|
the target most likely does not support Ada exceptions, or we cannot
|
10966 |
|
|
insert exception breakpoints yet, because the GNAT runtime hasn't been
|
10967 |
|
|
loaded yet. */
|
10968 |
|
|
|
10969 |
|
|
/* brobecker/2006-12-26: It is conceivable that the runtime was compiled
|
10970 |
|
|
in such a way that no debugging information is produced for the symbol
|
10971 |
|
|
we are looking for. In this case, we could search the minimal symbols
|
10972 |
|
|
as a fall-back mechanism. This would still be operating in degraded
|
10973 |
|
|
mode, however, as we would still be missing the debugging information
|
10974 |
|
|
that is needed in order to extract the name of the exception being
|
10975 |
|
|
raised (this name is printed in the catchpoint message, and is also
|
10976 |
|
|
used when trying to catch a specific exception). We do not handle
|
10977 |
|
|
this case for now. */
|
10978 |
|
|
|
10979 |
|
|
if (sym == NULL)
|
10980 |
|
|
error (_("Unable to break on '%s' in this configuration."), sym_name);
|
10981 |
|
|
|
10982 |
|
|
/* Make sure that the symbol we found corresponds to a function. */
|
10983 |
|
|
if (SYMBOL_CLASS (sym) != LOC_BLOCK)
|
10984 |
|
|
error (_("Symbol \"%s\" is not a function (class = %d)"),
|
10985 |
|
|
sym_name, SYMBOL_CLASS (sym));
|
10986 |
|
|
|
10987 |
|
|
sal = find_function_start_sal (sym, 1);
|
10988 |
|
|
|
10989 |
|
|
/* Set ADDR_STRING. */
|
10990 |
|
|
|
10991 |
|
|
*addr_string = xstrdup (sym_name);
|
10992 |
|
|
|
10993 |
|
|
/* Set the COND and COND_STRING (if not NULL). */
|
10994 |
|
|
|
10995 |
|
|
if (cond_string != NULL && cond != NULL)
|
10996 |
|
|
{
|
10997 |
|
|
if (*cond_string != NULL)
|
10998 |
|
|
{
|
10999 |
|
|
xfree (*cond_string);
|
11000 |
|
|
*cond_string = NULL;
|
11001 |
|
|
}
|
11002 |
|
|
if (*cond != NULL)
|
11003 |
|
|
{
|
11004 |
|
|
xfree (*cond);
|
11005 |
|
|
*cond = NULL;
|
11006 |
|
|
}
|
11007 |
|
|
if (exp_string != NULL)
|
11008 |
|
|
{
|
11009 |
|
|
*cond_string = ada_exception_catchpoint_cond_string (exp_string);
|
11010 |
|
|
*cond = ada_parse_catchpoint_condition (*cond_string, sal);
|
11011 |
|
|
}
|
11012 |
|
|
}
|
11013 |
|
|
|
11014 |
|
|
/* Set OPS. */
|
11015 |
|
|
*ops = ada_exception_breakpoint_ops (ex);
|
11016 |
|
|
|
11017 |
|
|
return sal;
|
11018 |
|
|
}
|
11019 |
|
|
|
11020 |
|
|
/* Parse the arguments (ARGS) of the "catch exception" command.
|
11021 |
|
|
|
11022 |
|
|
Set TYPE to the appropriate exception catchpoint type.
|
11023 |
|
|
If the user asked the catchpoint to catch only a specific
|
11024 |
|
|
exception, then save the exception name in ADDR_STRING.
|
11025 |
|
|
|
11026 |
|
|
See ada_exception_sal for a description of all the remaining
|
11027 |
|
|
function arguments of this function. */
|
11028 |
|
|
|
11029 |
|
|
struct symtab_and_line
|
11030 |
|
|
ada_decode_exception_location (char *args, char **addr_string,
|
11031 |
|
|
char **exp_string, char **cond_string,
|
11032 |
|
|
struct expression **cond,
|
11033 |
|
|
struct breakpoint_ops **ops)
|
11034 |
|
|
{
|
11035 |
|
|
enum exception_catchpoint_kind ex;
|
11036 |
|
|
|
11037 |
|
|
catch_ada_exception_command_split (args, &ex, exp_string);
|
11038 |
|
|
return ada_exception_sal (ex, *exp_string, addr_string, cond_string,
|
11039 |
|
|
cond, ops);
|
11040 |
|
|
}
|
11041 |
|
|
|
11042 |
|
|
struct symtab_and_line
|
11043 |
|
|
ada_decode_assert_location (char *args, char **addr_string,
|
11044 |
|
|
struct breakpoint_ops **ops)
|
11045 |
|
|
{
|
11046 |
|
|
/* Check that no argument where provided at the end of the command. */
|
11047 |
|
|
|
11048 |
|
|
if (args != NULL)
|
11049 |
|
|
{
|
11050 |
|
|
while (isspace (*args))
|
11051 |
|
|
args++;
|
11052 |
|
|
if (*args != '\0')
|
11053 |
|
|
error (_("Junk at end of arguments."));
|
11054 |
|
|
}
|
11055 |
|
|
|
11056 |
|
|
return ada_exception_sal (ex_catch_assert, NULL, addr_string, NULL, NULL,
|
11057 |
|
|
ops);
|
11058 |
|
|
}
|
11059 |
|
|
|
11060 |
|
|
/* Operators */
|
11061 |
|
|
/* Information about operators given special treatment in functions
|
11062 |
|
|
below. */
|
11063 |
|
|
/* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
|
11064 |
|
|
|
11065 |
|
|
#define ADA_OPERATORS \
|
11066 |
|
|
OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
|
11067 |
|
|
OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
|
11068 |
|
|
OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
|
11069 |
|
|
OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
|
11070 |
|
|
OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
|
11071 |
|
|
OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
|
11072 |
|
|
OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
|
11073 |
|
|
OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
|
11074 |
|
|
OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
|
11075 |
|
|
OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
|
11076 |
|
|
OP_DEFN (OP_ATR_POS, 1, 2, 0) \
|
11077 |
|
|
OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
|
11078 |
|
|
OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
|
11079 |
|
|
OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
|
11080 |
|
|
OP_DEFN (UNOP_QUAL, 3, 1, 0) \
|
11081 |
|
|
OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
|
11082 |
|
|
OP_DEFN (OP_OTHERS, 1, 1, 0) \
|
11083 |
|
|
OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
|
11084 |
|
|
OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
|
11085 |
|
|
|
11086 |
|
|
static void
|
11087 |
|
|
ada_operator_length (const struct expression *exp, int pc, int *oplenp,
|
11088 |
|
|
int *argsp)
|
11089 |
|
|
{
|
11090 |
|
|
switch (exp->elts[pc - 1].opcode)
|
11091 |
|
|
{
|
11092 |
|
|
default:
|
11093 |
|
|
operator_length_standard (exp, pc, oplenp, argsp);
|
11094 |
|
|
break;
|
11095 |
|
|
|
11096 |
|
|
#define OP_DEFN(op, len, args, binop) \
|
11097 |
|
|
case op: *oplenp = len; *argsp = args; break;
|
11098 |
|
|
ADA_OPERATORS;
|
11099 |
|
|
#undef OP_DEFN
|
11100 |
|
|
|
11101 |
|
|
case OP_AGGREGATE:
|
11102 |
|
|
*oplenp = 3;
|
11103 |
|
|
*argsp = longest_to_int (exp->elts[pc - 2].longconst);
|
11104 |
|
|
break;
|
11105 |
|
|
|
11106 |
|
|
case OP_CHOICES:
|
11107 |
|
|
*oplenp = 3;
|
11108 |
|
|
*argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
|
11109 |
|
|
break;
|
11110 |
|
|
}
|
11111 |
|
|
}
|
11112 |
|
|
|
11113 |
|
|
/* Implementation of the exp_descriptor method operator_check. */
|
11114 |
|
|
|
11115 |
|
|
static int
|
11116 |
|
|
ada_operator_check (struct expression *exp, int pos,
|
11117 |
|
|
int (*objfile_func) (struct objfile *objfile, void *data),
|
11118 |
|
|
void *data)
|
11119 |
|
|
{
|
11120 |
|
|
const union exp_element *const elts = exp->elts;
|
11121 |
|
|
struct type *type = NULL;
|
11122 |
|
|
|
11123 |
|
|
switch (elts[pos].opcode)
|
11124 |
|
|
{
|
11125 |
|
|
case UNOP_IN_RANGE:
|
11126 |
|
|
case UNOP_QUAL:
|
11127 |
|
|
type = elts[pos + 1].type;
|
11128 |
|
|
break;
|
11129 |
|
|
|
11130 |
|
|
default:
|
11131 |
|
|
return operator_check_standard (exp, pos, objfile_func, data);
|
11132 |
|
|
}
|
11133 |
|
|
|
11134 |
|
|
/* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
|
11135 |
|
|
|
11136 |
|
|
if (type && TYPE_OBJFILE (type)
|
11137 |
|
|
&& (*objfile_func) (TYPE_OBJFILE (type), data))
|
11138 |
|
|
return 1;
|
11139 |
|
|
|
11140 |
|
|
return 0;
|
11141 |
|
|
}
|
11142 |
|
|
|
11143 |
|
|
static char *
|
11144 |
|
|
ada_op_name (enum exp_opcode opcode)
|
11145 |
|
|
{
|
11146 |
|
|
switch (opcode)
|
11147 |
|
|
{
|
11148 |
|
|
default:
|
11149 |
|
|
return op_name_standard (opcode);
|
11150 |
|
|
|
11151 |
|
|
#define OP_DEFN(op, len, args, binop) case op: return #op;
|
11152 |
|
|
ADA_OPERATORS;
|
11153 |
|
|
#undef OP_DEFN
|
11154 |
|
|
|
11155 |
|
|
case OP_AGGREGATE:
|
11156 |
|
|
return "OP_AGGREGATE";
|
11157 |
|
|
case OP_CHOICES:
|
11158 |
|
|
return "OP_CHOICES";
|
11159 |
|
|
case OP_NAME:
|
11160 |
|
|
return "OP_NAME";
|
11161 |
|
|
}
|
11162 |
|
|
}
|
11163 |
|
|
|
11164 |
|
|
/* As for operator_length, but assumes PC is pointing at the first
|
11165 |
|
|
element of the operator, and gives meaningful results only for the
|
11166 |
|
|
Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
|
11167 |
|
|
|
11168 |
|
|
static void
|
11169 |
|
|
ada_forward_operator_length (struct expression *exp, int pc,
|
11170 |
|
|
int *oplenp, int *argsp)
|
11171 |
|
|
{
|
11172 |
|
|
switch (exp->elts[pc].opcode)
|
11173 |
|
|
{
|
11174 |
|
|
default:
|
11175 |
|
|
*oplenp = *argsp = 0;
|
11176 |
|
|
break;
|
11177 |
|
|
|
11178 |
|
|
#define OP_DEFN(op, len, args, binop) \
|
11179 |
|
|
case op: *oplenp = len; *argsp = args; break;
|
11180 |
|
|
ADA_OPERATORS;
|
11181 |
|
|
#undef OP_DEFN
|
11182 |
|
|
|
11183 |
|
|
case OP_AGGREGATE:
|
11184 |
|
|
*oplenp = 3;
|
11185 |
|
|
*argsp = longest_to_int (exp->elts[pc + 1].longconst);
|
11186 |
|
|
break;
|
11187 |
|
|
|
11188 |
|
|
case OP_CHOICES:
|
11189 |
|
|
*oplenp = 3;
|
11190 |
|
|
*argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
|
11191 |
|
|
break;
|
11192 |
|
|
|
11193 |
|
|
case OP_STRING:
|
11194 |
|
|
case OP_NAME:
|
11195 |
|
|
{
|
11196 |
|
|
int len = longest_to_int (exp->elts[pc + 1].longconst);
|
11197 |
|
|
|
11198 |
|
|
*oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
|
11199 |
|
|
*argsp = 0;
|
11200 |
|
|
break;
|
11201 |
|
|
}
|
11202 |
|
|
}
|
11203 |
|
|
}
|
11204 |
|
|
|
11205 |
|
|
static int
|
11206 |
|
|
ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
|
11207 |
|
|
{
|
11208 |
|
|
enum exp_opcode op = exp->elts[elt].opcode;
|
11209 |
|
|
int oplen, nargs;
|
11210 |
|
|
int pc = elt;
|
11211 |
|
|
int i;
|
11212 |
|
|
|
11213 |
|
|
ada_forward_operator_length (exp, elt, &oplen, &nargs);
|
11214 |
|
|
|
11215 |
|
|
switch (op)
|
11216 |
|
|
{
|
11217 |
|
|
/* Ada attributes ('Foo). */
|
11218 |
|
|
case OP_ATR_FIRST:
|
11219 |
|
|
case OP_ATR_LAST:
|
11220 |
|
|
case OP_ATR_LENGTH:
|
11221 |
|
|
case OP_ATR_IMAGE:
|
11222 |
|
|
case OP_ATR_MAX:
|
11223 |
|
|
case OP_ATR_MIN:
|
11224 |
|
|
case OP_ATR_MODULUS:
|
11225 |
|
|
case OP_ATR_POS:
|
11226 |
|
|
case OP_ATR_SIZE:
|
11227 |
|
|
case OP_ATR_TAG:
|
11228 |
|
|
case OP_ATR_VAL:
|
11229 |
|
|
break;
|
11230 |
|
|
|
11231 |
|
|
case UNOP_IN_RANGE:
|
11232 |
|
|
case UNOP_QUAL:
|
11233 |
|
|
/* XXX: gdb_sprint_host_address, type_sprint */
|
11234 |
|
|
fprintf_filtered (stream, _("Type @"));
|
11235 |
|
|
gdb_print_host_address (exp->elts[pc + 1].type, stream);
|
11236 |
|
|
fprintf_filtered (stream, " (");
|
11237 |
|
|
type_print (exp->elts[pc + 1].type, NULL, stream, 0);
|
11238 |
|
|
fprintf_filtered (stream, ")");
|
11239 |
|
|
break;
|
11240 |
|
|
case BINOP_IN_BOUNDS:
|
11241 |
|
|
fprintf_filtered (stream, " (%d)",
|
11242 |
|
|
longest_to_int (exp->elts[pc + 2].longconst));
|
11243 |
|
|
break;
|
11244 |
|
|
case TERNOP_IN_RANGE:
|
11245 |
|
|
break;
|
11246 |
|
|
|
11247 |
|
|
case OP_AGGREGATE:
|
11248 |
|
|
case OP_OTHERS:
|
11249 |
|
|
case OP_DISCRETE_RANGE:
|
11250 |
|
|
case OP_POSITIONAL:
|
11251 |
|
|
case OP_CHOICES:
|
11252 |
|
|
break;
|
11253 |
|
|
|
11254 |
|
|
case OP_NAME:
|
11255 |
|
|
case OP_STRING:
|
11256 |
|
|
{
|
11257 |
|
|
char *name = &exp->elts[elt + 2].string;
|
11258 |
|
|
int len = longest_to_int (exp->elts[elt + 1].longconst);
|
11259 |
|
|
|
11260 |
|
|
fprintf_filtered (stream, "Text: `%.*s'", len, name);
|
11261 |
|
|
break;
|
11262 |
|
|
}
|
11263 |
|
|
|
11264 |
|
|
default:
|
11265 |
|
|
return dump_subexp_body_standard (exp, stream, elt);
|
11266 |
|
|
}
|
11267 |
|
|
|
11268 |
|
|
elt += oplen;
|
11269 |
|
|
for (i = 0; i < nargs; i += 1)
|
11270 |
|
|
elt = dump_subexp (exp, stream, elt);
|
11271 |
|
|
|
11272 |
|
|
return elt;
|
11273 |
|
|
}
|
11274 |
|
|
|
11275 |
|
|
/* The Ada extension of print_subexp (q.v.). */
|
11276 |
|
|
|
11277 |
|
|
static void
|
11278 |
|
|
ada_print_subexp (struct expression *exp, int *pos,
|
11279 |
|
|
struct ui_file *stream, enum precedence prec)
|
11280 |
|
|
{
|
11281 |
|
|
int oplen, nargs, i;
|
11282 |
|
|
int pc = *pos;
|
11283 |
|
|
enum exp_opcode op = exp->elts[pc].opcode;
|
11284 |
|
|
|
11285 |
|
|
ada_forward_operator_length (exp, pc, &oplen, &nargs);
|
11286 |
|
|
|
11287 |
|
|
*pos += oplen;
|
11288 |
|
|
switch (op)
|
11289 |
|
|
{
|
11290 |
|
|
default:
|
11291 |
|
|
*pos -= oplen;
|
11292 |
|
|
print_subexp_standard (exp, pos, stream, prec);
|
11293 |
|
|
return;
|
11294 |
|
|
|
11295 |
|
|
case OP_VAR_VALUE:
|
11296 |
|
|
fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
|
11297 |
|
|
return;
|
11298 |
|
|
|
11299 |
|
|
case BINOP_IN_BOUNDS:
|
11300 |
|
|
/* XXX: sprint_subexp */
|
11301 |
|
|
print_subexp (exp, pos, stream, PREC_SUFFIX);
|
11302 |
|
|
fputs_filtered (" in ", stream);
|
11303 |
|
|
print_subexp (exp, pos, stream, PREC_SUFFIX);
|
11304 |
|
|
fputs_filtered ("'range", stream);
|
11305 |
|
|
if (exp->elts[pc + 1].longconst > 1)
|
11306 |
|
|
fprintf_filtered (stream, "(%ld)",
|
11307 |
|
|
(long) exp->elts[pc + 1].longconst);
|
11308 |
|
|
return;
|
11309 |
|
|
|
11310 |
|
|
case TERNOP_IN_RANGE:
|
11311 |
|
|
if (prec >= PREC_EQUAL)
|
11312 |
|
|
fputs_filtered ("(", stream);
|
11313 |
|
|
/* XXX: sprint_subexp */
|
11314 |
|
|
print_subexp (exp, pos, stream, PREC_SUFFIX);
|
11315 |
|
|
fputs_filtered (" in ", stream);
|
11316 |
|
|
print_subexp (exp, pos, stream, PREC_EQUAL);
|
11317 |
|
|
fputs_filtered (" .. ", stream);
|
11318 |
|
|
print_subexp (exp, pos, stream, PREC_EQUAL);
|
11319 |
|
|
if (prec >= PREC_EQUAL)
|
11320 |
|
|
fputs_filtered (")", stream);
|
11321 |
|
|
return;
|
11322 |
|
|
|
11323 |
|
|
case OP_ATR_FIRST:
|
11324 |
|
|
case OP_ATR_LAST:
|
11325 |
|
|
case OP_ATR_LENGTH:
|
11326 |
|
|
case OP_ATR_IMAGE:
|
11327 |
|
|
case OP_ATR_MAX:
|
11328 |
|
|
case OP_ATR_MIN:
|
11329 |
|
|
case OP_ATR_MODULUS:
|
11330 |
|
|
case OP_ATR_POS:
|
11331 |
|
|
case OP_ATR_SIZE:
|
11332 |
|
|
case OP_ATR_TAG:
|
11333 |
|
|
case OP_ATR_VAL:
|
11334 |
|
|
if (exp->elts[*pos].opcode == OP_TYPE)
|
11335 |
|
|
{
|
11336 |
|
|
if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
|
11337 |
|
|
LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0);
|
11338 |
|
|
*pos += 3;
|
11339 |
|
|
}
|
11340 |
|
|
else
|
11341 |
|
|
print_subexp (exp, pos, stream, PREC_SUFFIX);
|
11342 |
|
|
fprintf_filtered (stream, "'%s", ada_attribute_name (op));
|
11343 |
|
|
if (nargs > 1)
|
11344 |
|
|
{
|
11345 |
|
|
int tem;
|
11346 |
|
|
|
11347 |
|
|
for (tem = 1; tem < nargs; tem += 1)
|
11348 |
|
|
{
|
11349 |
|
|
fputs_filtered ((tem == 1) ? " (" : ", ", stream);
|
11350 |
|
|
print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
|
11351 |
|
|
}
|
11352 |
|
|
fputs_filtered (")", stream);
|
11353 |
|
|
}
|
11354 |
|
|
return;
|
11355 |
|
|
|
11356 |
|
|
case UNOP_QUAL:
|
11357 |
|
|
type_print (exp->elts[pc + 1].type, "", stream, 0);
|
11358 |
|
|
fputs_filtered ("'(", stream);
|
11359 |
|
|
print_subexp (exp, pos, stream, PREC_PREFIX);
|
11360 |
|
|
fputs_filtered (")", stream);
|
11361 |
|
|
return;
|
11362 |
|
|
|
11363 |
|
|
case UNOP_IN_RANGE:
|
11364 |
|
|
/* XXX: sprint_subexp */
|
11365 |
|
|
print_subexp (exp, pos, stream, PREC_SUFFIX);
|
11366 |
|
|
fputs_filtered (" in ", stream);
|
11367 |
|
|
LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0);
|
11368 |
|
|
return;
|
11369 |
|
|
|
11370 |
|
|
case OP_DISCRETE_RANGE:
|
11371 |
|
|
print_subexp (exp, pos, stream, PREC_SUFFIX);
|
11372 |
|
|
fputs_filtered ("..", stream);
|
11373 |
|
|
print_subexp (exp, pos, stream, PREC_SUFFIX);
|
11374 |
|
|
return;
|
11375 |
|
|
|
11376 |
|
|
case OP_OTHERS:
|
11377 |
|
|
fputs_filtered ("others => ", stream);
|
11378 |
|
|
print_subexp (exp, pos, stream, PREC_SUFFIX);
|
11379 |
|
|
return;
|
11380 |
|
|
|
11381 |
|
|
case OP_CHOICES:
|
11382 |
|
|
for (i = 0; i < nargs-1; i += 1)
|
11383 |
|
|
{
|
11384 |
|
|
if (i > 0)
|
11385 |
|
|
fputs_filtered ("|", stream);
|
11386 |
|
|
print_subexp (exp, pos, stream, PREC_SUFFIX);
|
11387 |
|
|
}
|
11388 |
|
|
fputs_filtered (" => ", stream);
|
11389 |
|
|
print_subexp (exp, pos, stream, PREC_SUFFIX);
|
11390 |
|
|
return;
|
11391 |
|
|
|
11392 |
|
|
case OP_POSITIONAL:
|
11393 |
|
|
print_subexp (exp, pos, stream, PREC_SUFFIX);
|
11394 |
|
|
return;
|
11395 |
|
|
|
11396 |
|
|
case OP_AGGREGATE:
|
11397 |
|
|
fputs_filtered ("(", stream);
|
11398 |
|
|
for (i = 0; i < nargs; i += 1)
|
11399 |
|
|
{
|
11400 |
|
|
if (i > 0)
|
11401 |
|
|
fputs_filtered (", ", stream);
|
11402 |
|
|
print_subexp (exp, pos, stream, PREC_SUFFIX);
|
11403 |
|
|
}
|
11404 |
|
|
fputs_filtered (")", stream);
|
11405 |
|
|
return;
|
11406 |
|
|
}
|
11407 |
|
|
}
|
11408 |
|
|
|
11409 |
|
|
/* Table mapping opcodes into strings for printing operators
|
11410 |
|
|
and precedences of the operators. */
|
11411 |
|
|
|
11412 |
|
|
static const struct op_print ada_op_print_tab[] = {
|
11413 |
|
|
{":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
|
11414 |
|
|
{"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
|
11415 |
|
|
{"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
|
11416 |
|
|
{"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
|
11417 |
|
|
{"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
|
11418 |
|
|
{"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
|
11419 |
|
|
{"=", BINOP_EQUAL, PREC_EQUAL, 0},
|
11420 |
|
|
{"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
|
11421 |
|
|
{"<=", BINOP_LEQ, PREC_ORDER, 0},
|
11422 |
|
|
{">=", BINOP_GEQ, PREC_ORDER, 0},
|
11423 |
|
|
{">", BINOP_GTR, PREC_ORDER, 0},
|
11424 |
|
|
{"<", BINOP_LESS, PREC_ORDER, 0},
|
11425 |
|
|
{">>", BINOP_RSH, PREC_SHIFT, 0},
|
11426 |
|
|
{"<<", BINOP_LSH, PREC_SHIFT, 0},
|
11427 |
|
|
{"+", BINOP_ADD, PREC_ADD, 0},
|
11428 |
|
|
{"-", BINOP_SUB, PREC_ADD, 0},
|
11429 |
|
|
{"&", BINOP_CONCAT, PREC_ADD, 0},
|
11430 |
|
|
{"*", BINOP_MUL, PREC_MUL, 0},
|
11431 |
|
|
{"/", BINOP_DIV, PREC_MUL, 0},
|
11432 |
|
|
{"rem", BINOP_REM, PREC_MUL, 0},
|
11433 |
|
|
{"mod", BINOP_MOD, PREC_MUL, 0},
|
11434 |
|
|
{"**", BINOP_EXP, PREC_REPEAT, 0},
|
11435 |
|
|
{"@", BINOP_REPEAT, PREC_REPEAT, 0},
|
11436 |
|
|
{"-", UNOP_NEG, PREC_PREFIX, 0},
|
11437 |
|
|
{"+", UNOP_PLUS, PREC_PREFIX, 0},
|
11438 |
|
|
{"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
|
11439 |
|
|
{"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
|
11440 |
|
|
{"abs ", UNOP_ABS, PREC_PREFIX, 0},
|
11441 |
|
|
{".all", UNOP_IND, PREC_SUFFIX, 1},
|
11442 |
|
|
{"'access", UNOP_ADDR, PREC_SUFFIX, 1},
|
11443 |
|
|
{"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
|
11444 |
|
|
{NULL, 0, 0, 0}
|
11445 |
|
|
};
|
11446 |
|
|
|
11447 |
|
|
enum ada_primitive_types {
|
11448 |
|
|
ada_primitive_type_int,
|
11449 |
|
|
ada_primitive_type_long,
|
11450 |
|
|
ada_primitive_type_short,
|
11451 |
|
|
ada_primitive_type_char,
|
11452 |
|
|
ada_primitive_type_float,
|
11453 |
|
|
ada_primitive_type_double,
|
11454 |
|
|
ada_primitive_type_void,
|
11455 |
|
|
ada_primitive_type_long_long,
|
11456 |
|
|
ada_primitive_type_long_double,
|
11457 |
|
|
ada_primitive_type_natural,
|
11458 |
|
|
ada_primitive_type_positive,
|
11459 |
|
|
ada_primitive_type_system_address,
|
11460 |
|
|
nr_ada_primitive_types
|
11461 |
|
|
};
|
11462 |
|
|
|
11463 |
|
|
static void
|
11464 |
|
|
ada_language_arch_info (struct gdbarch *gdbarch,
|
11465 |
|
|
struct language_arch_info *lai)
|
11466 |
|
|
{
|
11467 |
|
|
const struct builtin_type *builtin = builtin_type (gdbarch);
|
11468 |
|
|
|
11469 |
|
|
lai->primitive_type_vector
|
11470 |
|
|
= GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
|
11471 |
|
|
struct type *);
|
11472 |
|
|
|
11473 |
|
|
lai->primitive_type_vector [ada_primitive_type_int]
|
11474 |
|
|
= arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
|
11475 |
|
|
0, "integer");
|
11476 |
|
|
lai->primitive_type_vector [ada_primitive_type_long]
|
11477 |
|
|
= arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
|
11478 |
|
|
0, "long_integer");
|
11479 |
|
|
lai->primitive_type_vector [ada_primitive_type_short]
|
11480 |
|
|
= arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
|
11481 |
|
|
0, "short_integer");
|
11482 |
|
|
lai->string_char_type
|
11483 |
|
|
= lai->primitive_type_vector [ada_primitive_type_char]
|
11484 |
|
|
= arch_integer_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
|
11485 |
|
|
lai->primitive_type_vector [ada_primitive_type_float]
|
11486 |
|
|
= arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
|
11487 |
|
|
"float", NULL);
|
11488 |
|
|
lai->primitive_type_vector [ada_primitive_type_double]
|
11489 |
|
|
= arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
|
11490 |
|
|
"long_float", NULL);
|
11491 |
|
|
lai->primitive_type_vector [ada_primitive_type_long_long]
|
11492 |
|
|
= arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
|
11493 |
|
|
0, "long_long_integer");
|
11494 |
|
|
lai->primitive_type_vector [ada_primitive_type_long_double]
|
11495 |
|
|
= arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
|
11496 |
|
|
"long_long_float", NULL);
|
11497 |
|
|
lai->primitive_type_vector [ada_primitive_type_natural]
|
11498 |
|
|
= arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
|
11499 |
|
|
0, "natural");
|
11500 |
|
|
lai->primitive_type_vector [ada_primitive_type_positive]
|
11501 |
|
|
= arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
|
11502 |
|
|
0, "positive");
|
11503 |
|
|
lai->primitive_type_vector [ada_primitive_type_void]
|
11504 |
|
|
= builtin->builtin_void;
|
11505 |
|
|
|
11506 |
|
|
lai->primitive_type_vector [ada_primitive_type_system_address]
|
11507 |
|
|
= lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, 1, "void"));
|
11508 |
|
|
TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
|
11509 |
|
|
= "system__address";
|
11510 |
|
|
|
11511 |
|
|
lai->bool_type_symbol = NULL;
|
11512 |
|
|
lai->bool_type_default = builtin->builtin_bool;
|
11513 |
|
|
}
|
11514 |
|
|
|
11515 |
|
|
/* Language vector */
|
11516 |
|
|
|
11517 |
|
|
/* Not really used, but needed in the ada_language_defn. */
|
11518 |
|
|
|
11519 |
|
|
static void
|
11520 |
|
|
emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
|
11521 |
|
|
{
|
11522 |
|
|
ada_emit_char (c, type, stream, quoter, 1);
|
11523 |
|
|
}
|
11524 |
|
|
|
11525 |
|
|
static int
|
11526 |
|
|
parse (void)
|
11527 |
|
|
{
|
11528 |
|
|
warnings_issued = 0;
|
11529 |
|
|
return ada_parse ();
|
11530 |
|
|
}
|
11531 |
|
|
|
11532 |
|
|
static const struct exp_descriptor ada_exp_descriptor = {
|
11533 |
|
|
ada_print_subexp,
|
11534 |
|
|
ada_operator_length,
|
11535 |
|
|
ada_operator_check,
|
11536 |
|
|
ada_op_name,
|
11537 |
|
|
ada_dump_subexp_body,
|
11538 |
|
|
ada_evaluate_subexp
|
11539 |
|
|
};
|
11540 |
|
|
|
11541 |
|
|
const struct language_defn ada_language_defn = {
|
11542 |
|
|
"ada", /* Language name */
|
11543 |
|
|
language_ada,
|
11544 |
|
|
range_check_off,
|
11545 |
|
|
type_check_off,
|
11546 |
|
|
case_sensitive_on, /* Yes, Ada is case-insensitive, but
|
11547 |
|
|
that's not quite what this means. */
|
11548 |
|
|
array_row_major,
|
11549 |
|
|
macro_expansion_no,
|
11550 |
|
|
&ada_exp_descriptor,
|
11551 |
|
|
parse,
|
11552 |
|
|
ada_error,
|
11553 |
|
|
resolve,
|
11554 |
|
|
ada_printchar, /* Print a character constant */
|
11555 |
|
|
ada_printstr, /* Function to print string constant */
|
11556 |
|
|
emit_char, /* Function to print single char (not used) */
|
11557 |
|
|
ada_print_type, /* Print a type using appropriate syntax */
|
11558 |
|
|
ada_print_typedef, /* Print a typedef using appropriate syntax */
|
11559 |
|
|
ada_val_print, /* Print a value using appropriate syntax */
|
11560 |
|
|
ada_value_print, /* Print a top-level value */
|
11561 |
|
|
NULL, /* Language specific skip_trampoline */
|
11562 |
|
|
NULL, /* name_of_this */
|
11563 |
|
|
ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
|
11564 |
|
|
basic_lookup_transparent_type, /* lookup_transparent_type */
|
11565 |
|
|
ada_la_decode, /* Language specific symbol demangler */
|
11566 |
|
|
NULL, /* Language specific class_name_from_physname */
|
11567 |
|
|
ada_op_print_tab, /* expression operators for printing */
|
11568 |
|
|
0, /* c-style arrays */
|
11569 |
|
|
1, /* String lower bound */
|
11570 |
|
|
ada_get_gdb_completer_word_break_characters,
|
11571 |
|
|
ada_make_symbol_completion_list,
|
11572 |
|
|
ada_language_arch_info,
|
11573 |
|
|
ada_print_array_index,
|
11574 |
|
|
default_pass_by_reference,
|
11575 |
|
|
c_get_string,
|
11576 |
|
|
LANG_MAGIC
|
11577 |
|
|
};
|
11578 |
|
|
|
11579 |
|
|
/* Provide a prototype to silence -Wmissing-prototypes. */
|
11580 |
|
|
extern initialize_file_ftype _initialize_ada_language;
|
11581 |
|
|
|
11582 |
|
|
/* Command-list for the "set/show ada" prefix command. */
|
11583 |
|
|
static struct cmd_list_element *set_ada_list;
|
11584 |
|
|
static struct cmd_list_element *show_ada_list;
|
11585 |
|
|
|
11586 |
|
|
/* Implement the "set ada" prefix command. */
|
11587 |
|
|
|
11588 |
|
|
static void
|
11589 |
|
|
set_ada_command (char *arg, int from_tty)
|
11590 |
|
|
{
|
11591 |
|
|
printf_unfiltered (_(\
|
11592 |
|
|
"\"set ada\" must be followed by the name of a setting.\n"));
|
11593 |
|
|
help_list (set_ada_list, "set ada ", -1, gdb_stdout);
|
11594 |
|
|
}
|
11595 |
|
|
|
11596 |
|
|
/* Implement the "show ada" prefix command. */
|
11597 |
|
|
|
11598 |
|
|
static void
|
11599 |
|
|
show_ada_command (char *args, int from_tty)
|
11600 |
|
|
{
|
11601 |
|
|
cmd_show_list (show_ada_list, from_tty, "");
|
11602 |
|
|
}
|
11603 |
|
|
|
11604 |
|
|
void
|
11605 |
|
|
_initialize_ada_language (void)
|
11606 |
|
|
{
|
11607 |
|
|
add_language (&ada_language_defn);
|
11608 |
|
|
|
11609 |
|
|
add_prefix_cmd ("ada", no_class, set_ada_command,
|
11610 |
|
|
_("Prefix command for changing Ada-specfic settings"),
|
11611 |
|
|
&set_ada_list, "set ada ", 0, &setlist);
|
11612 |
|
|
|
11613 |
|
|
add_prefix_cmd ("ada", no_class, show_ada_command,
|
11614 |
|
|
_("Generic command for showing Ada-specific settings."),
|
11615 |
|
|
&show_ada_list, "show ada ", 0, &showlist);
|
11616 |
|
|
|
11617 |
|
|
add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
|
11618 |
|
|
&trust_pad_over_xvs, _("\
|
11619 |
|
|
Enable or disable an optimization trusting PAD types over XVS types"), _("\
|
11620 |
|
|
Show whether an optimization trusting PAD types over XVS types is activated"),
|
11621 |
|
|
_("\
|
11622 |
|
|
This is related to the encoding used by the GNAT compiler. The debugger\n\
|
11623 |
|
|
should normally trust the contents of PAD types, but certain older versions\n\
|
11624 |
|
|
of GNAT have a bug that sometimes causes the information in the PAD type\n\
|
11625 |
|
|
to be incorrect. Turning this setting \"off\" allows the debugger to\n\
|
11626 |
|
|
work around this bug. It is always safe to turn this option \"off\", but\n\
|
11627 |
|
|
this incurs a slight performance penalty, so it is recommended to NOT change\n\
|
11628 |
|
|
this option to \"off\" unless necessary."),
|
11629 |
|
|
NULL, NULL, &set_ada_list, &show_ada_list);
|
11630 |
|
|
|
11631 |
|
|
varsize_limit = 65536;
|
11632 |
|
|
|
11633 |
|
|
obstack_init (&symbol_list_obstack);
|
11634 |
|
|
|
11635 |
|
|
decoded_names_store = htab_create_alloc
|
11636 |
|
|
(256, htab_hash_string, (int (*)(const void *, const void *)) streq,
|
11637 |
|
|
NULL, xcalloc, xfree);
|
11638 |
|
|
|
11639 |
|
|
observer_attach_executable_changed (ada_executable_changed_observer);
|
11640 |
|
|
|
11641 |
|
|
/* Setup per-inferior data. */
|
11642 |
|
|
observer_attach_inferior_exit (ada_inferior_exit);
|
11643 |
|
|
ada_inferior_data
|
11644 |
|
|
= register_inferior_data_with_cleanup (ada_inferior_data_cleanup);
|
11645 |
|
|
}
|