1 |
330 |
jeremybenn |
/* Frame unwinder for frames with DWARF Call Frame Information.
|
2 |
|
|
|
3 |
|
|
Copyright (C) 2003, 2004, 2005, 2007, 2008, 2009, 2010
|
4 |
|
|
Free Software Foundation, Inc.
|
5 |
|
|
|
6 |
|
|
Contributed by Mark Kettenis.
|
7 |
|
|
|
8 |
|
|
This file is part of GDB.
|
9 |
|
|
|
10 |
|
|
This program is free software; you can redistribute it and/or modify
|
11 |
|
|
it under the terms of the GNU General Public License as published by
|
12 |
|
|
the Free Software Foundation; either version 3 of the License, or
|
13 |
|
|
(at your option) any later version.
|
14 |
|
|
|
15 |
|
|
This program is distributed in the hope that it will be useful,
|
16 |
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
17 |
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
18 |
|
|
GNU General Public License for more details.
|
19 |
|
|
|
20 |
|
|
You should have received a copy of the GNU General Public License
|
21 |
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>. */
|
22 |
|
|
|
23 |
|
|
#include "defs.h"
|
24 |
|
|
#include "dwarf2expr.h"
|
25 |
|
|
#include "dwarf2.h"
|
26 |
|
|
#include "frame.h"
|
27 |
|
|
#include "frame-base.h"
|
28 |
|
|
#include "frame-unwind.h"
|
29 |
|
|
#include "gdbcore.h"
|
30 |
|
|
#include "gdbtypes.h"
|
31 |
|
|
#include "symtab.h"
|
32 |
|
|
#include "objfiles.h"
|
33 |
|
|
#include "regcache.h"
|
34 |
|
|
#include "value.h"
|
35 |
|
|
|
36 |
|
|
#include "gdb_assert.h"
|
37 |
|
|
#include "gdb_string.h"
|
38 |
|
|
|
39 |
|
|
#include "complaints.h"
|
40 |
|
|
#include "dwarf2-frame.h"
|
41 |
|
|
|
42 |
|
|
struct comp_unit;
|
43 |
|
|
|
44 |
|
|
/* Call Frame Information (CFI). */
|
45 |
|
|
|
46 |
|
|
/* Common Information Entry (CIE). */
|
47 |
|
|
|
48 |
|
|
struct dwarf2_cie
|
49 |
|
|
{
|
50 |
|
|
/* Computation Unit for this CIE. */
|
51 |
|
|
struct comp_unit *unit;
|
52 |
|
|
|
53 |
|
|
/* Offset into the .debug_frame section where this CIE was found.
|
54 |
|
|
Used to identify this CIE. */
|
55 |
|
|
ULONGEST cie_pointer;
|
56 |
|
|
|
57 |
|
|
/* Constant that is factored out of all advance location
|
58 |
|
|
instructions. */
|
59 |
|
|
ULONGEST code_alignment_factor;
|
60 |
|
|
|
61 |
|
|
/* Constants that is factored out of all offset instructions. */
|
62 |
|
|
LONGEST data_alignment_factor;
|
63 |
|
|
|
64 |
|
|
/* Return address column. */
|
65 |
|
|
ULONGEST return_address_register;
|
66 |
|
|
|
67 |
|
|
/* Instruction sequence to initialize a register set. */
|
68 |
|
|
gdb_byte *initial_instructions;
|
69 |
|
|
gdb_byte *end;
|
70 |
|
|
|
71 |
|
|
/* Saved augmentation, in case it's needed later. */
|
72 |
|
|
char *augmentation;
|
73 |
|
|
|
74 |
|
|
/* Encoding of addresses. */
|
75 |
|
|
gdb_byte encoding;
|
76 |
|
|
|
77 |
|
|
/* Target address size in bytes. */
|
78 |
|
|
int addr_size;
|
79 |
|
|
|
80 |
|
|
/* True if a 'z' augmentation existed. */
|
81 |
|
|
unsigned char saw_z_augmentation;
|
82 |
|
|
|
83 |
|
|
/* True if an 'S' augmentation existed. */
|
84 |
|
|
unsigned char signal_frame;
|
85 |
|
|
|
86 |
|
|
/* The version recorded in the CIE. */
|
87 |
|
|
unsigned char version;
|
88 |
|
|
|
89 |
|
|
/* The segment size. */
|
90 |
|
|
unsigned char segment_size;
|
91 |
|
|
};
|
92 |
|
|
|
93 |
|
|
struct dwarf2_cie_table
|
94 |
|
|
{
|
95 |
|
|
int num_entries;
|
96 |
|
|
struct dwarf2_cie **entries;
|
97 |
|
|
};
|
98 |
|
|
|
99 |
|
|
/* Frame Description Entry (FDE). */
|
100 |
|
|
|
101 |
|
|
struct dwarf2_fde
|
102 |
|
|
{
|
103 |
|
|
/* CIE for this FDE. */
|
104 |
|
|
struct dwarf2_cie *cie;
|
105 |
|
|
|
106 |
|
|
/* First location associated with this FDE. */
|
107 |
|
|
CORE_ADDR initial_location;
|
108 |
|
|
|
109 |
|
|
/* Number of bytes of program instructions described by this FDE. */
|
110 |
|
|
CORE_ADDR address_range;
|
111 |
|
|
|
112 |
|
|
/* Instruction sequence. */
|
113 |
|
|
gdb_byte *instructions;
|
114 |
|
|
gdb_byte *end;
|
115 |
|
|
|
116 |
|
|
/* True if this FDE is read from a .eh_frame instead of a .debug_frame
|
117 |
|
|
section. */
|
118 |
|
|
unsigned char eh_frame_p;
|
119 |
|
|
};
|
120 |
|
|
|
121 |
|
|
struct dwarf2_fde_table
|
122 |
|
|
{
|
123 |
|
|
int num_entries;
|
124 |
|
|
struct dwarf2_fde **entries;
|
125 |
|
|
};
|
126 |
|
|
|
127 |
|
|
/* A minimal decoding of DWARF2 compilation units. We only decode
|
128 |
|
|
what's needed to get to the call frame information. */
|
129 |
|
|
|
130 |
|
|
struct comp_unit
|
131 |
|
|
{
|
132 |
|
|
/* Keep the bfd convenient. */
|
133 |
|
|
bfd *abfd;
|
134 |
|
|
|
135 |
|
|
struct objfile *objfile;
|
136 |
|
|
|
137 |
|
|
/* Pointer to the .debug_frame section loaded into memory. */
|
138 |
|
|
gdb_byte *dwarf_frame_buffer;
|
139 |
|
|
|
140 |
|
|
/* Length of the loaded .debug_frame section. */
|
141 |
|
|
bfd_size_type dwarf_frame_size;
|
142 |
|
|
|
143 |
|
|
/* Pointer to the .debug_frame section. */
|
144 |
|
|
asection *dwarf_frame_section;
|
145 |
|
|
|
146 |
|
|
/* Base for DW_EH_PE_datarel encodings. */
|
147 |
|
|
bfd_vma dbase;
|
148 |
|
|
|
149 |
|
|
/* Base for DW_EH_PE_textrel encodings. */
|
150 |
|
|
bfd_vma tbase;
|
151 |
|
|
};
|
152 |
|
|
|
153 |
|
|
static struct dwarf2_fde *dwarf2_frame_find_fde (CORE_ADDR *pc,
|
154 |
|
|
CORE_ADDR *out_offset);
|
155 |
|
|
|
156 |
|
|
static int dwarf2_frame_adjust_regnum (struct gdbarch *gdbarch, int regnum,
|
157 |
|
|
int eh_frame_p);
|
158 |
|
|
|
159 |
|
|
static CORE_ADDR read_encoded_value (struct comp_unit *unit, gdb_byte encoding,
|
160 |
|
|
int ptr_len, const gdb_byte *buf,
|
161 |
|
|
unsigned int *bytes_read_ptr,
|
162 |
|
|
CORE_ADDR func_base);
|
163 |
|
|
|
164 |
|
|
|
165 |
|
|
/* Structure describing a frame state. */
|
166 |
|
|
|
167 |
|
|
struct dwarf2_frame_state
|
168 |
|
|
{
|
169 |
|
|
/* Each register save state can be described in terms of a CFA slot,
|
170 |
|
|
another register, or a location expression. */
|
171 |
|
|
struct dwarf2_frame_state_reg_info
|
172 |
|
|
{
|
173 |
|
|
struct dwarf2_frame_state_reg *reg;
|
174 |
|
|
int num_regs;
|
175 |
|
|
|
176 |
|
|
LONGEST cfa_offset;
|
177 |
|
|
ULONGEST cfa_reg;
|
178 |
|
|
enum {
|
179 |
|
|
CFA_UNSET,
|
180 |
|
|
CFA_REG_OFFSET,
|
181 |
|
|
CFA_EXP
|
182 |
|
|
} cfa_how;
|
183 |
|
|
const gdb_byte *cfa_exp;
|
184 |
|
|
|
185 |
|
|
/* Used to implement DW_CFA_remember_state. */
|
186 |
|
|
struct dwarf2_frame_state_reg_info *prev;
|
187 |
|
|
} regs;
|
188 |
|
|
|
189 |
|
|
/* The PC described by the current frame state. */
|
190 |
|
|
CORE_ADDR pc;
|
191 |
|
|
|
192 |
|
|
/* Initial register set from the CIE.
|
193 |
|
|
Used to implement DW_CFA_restore. */
|
194 |
|
|
struct dwarf2_frame_state_reg_info initial;
|
195 |
|
|
|
196 |
|
|
/* The information we care about from the CIE. */
|
197 |
|
|
LONGEST data_align;
|
198 |
|
|
ULONGEST code_align;
|
199 |
|
|
ULONGEST retaddr_column;
|
200 |
|
|
|
201 |
|
|
/* Flags for known producer quirks. */
|
202 |
|
|
|
203 |
|
|
/* The ARM compilers, in DWARF2 mode, assume that DW_CFA_def_cfa
|
204 |
|
|
and DW_CFA_def_cfa_offset takes a factored offset. */
|
205 |
|
|
int armcc_cfa_offsets_sf;
|
206 |
|
|
|
207 |
|
|
/* The ARM compilers, in DWARF2 or DWARF3 mode, may assume that
|
208 |
|
|
the CFA is defined as REG - OFFSET rather than REG + OFFSET. */
|
209 |
|
|
int armcc_cfa_offsets_reversed;
|
210 |
|
|
};
|
211 |
|
|
|
212 |
|
|
/* Store the length the expression for the CFA in the `cfa_reg' field,
|
213 |
|
|
which is unused in that case. */
|
214 |
|
|
#define cfa_exp_len cfa_reg
|
215 |
|
|
|
216 |
|
|
/* Assert that the register set RS is large enough to store gdbarch_num_regs
|
217 |
|
|
columns. If necessary, enlarge the register set. */
|
218 |
|
|
|
219 |
|
|
static void
|
220 |
|
|
dwarf2_frame_state_alloc_regs (struct dwarf2_frame_state_reg_info *rs,
|
221 |
|
|
int num_regs)
|
222 |
|
|
{
|
223 |
|
|
size_t size = sizeof (struct dwarf2_frame_state_reg);
|
224 |
|
|
|
225 |
|
|
if (num_regs <= rs->num_regs)
|
226 |
|
|
return;
|
227 |
|
|
|
228 |
|
|
rs->reg = (struct dwarf2_frame_state_reg *)
|
229 |
|
|
xrealloc (rs->reg, num_regs * size);
|
230 |
|
|
|
231 |
|
|
/* Initialize newly allocated registers. */
|
232 |
|
|
memset (rs->reg + rs->num_regs, 0, (num_regs - rs->num_regs) * size);
|
233 |
|
|
rs->num_regs = num_regs;
|
234 |
|
|
}
|
235 |
|
|
|
236 |
|
|
/* Copy the register columns in register set RS into newly allocated
|
237 |
|
|
memory and return a pointer to this newly created copy. */
|
238 |
|
|
|
239 |
|
|
static struct dwarf2_frame_state_reg *
|
240 |
|
|
dwarf2_frame_state_copy_regs (struct dwarf2_frame_state_reg_info *rs)
|
241 |
|
|
{
|
242 |
|
|
size_t size = rs->num_regs * sizeof (struct dwarf2_frame_state_reg);
|
243 |
|
|
struct dwarf2_frame_state_reg *reg;
|
244 |
|
|
|
245 |
|
|
reg = (struct dwarf2_frame_state_reg *) xmalloc (size);
|
246 |
|
|
memcpy (reg, rs->reg, size);
|
247 |
|
|
|
248 |
|
|
return reg;
|
249 |
|
|
}
|
250 |
|
|
|
251 |
|
|
/* Release the memory allocated to register set RS. */
|
252 |
|
|
|
253 |
|
|
static void
|
254 |
|
|
dwarf2_frame_state_free_regs (struct dwarf2_frame_state_reg_info *rs)
|
255 |
|
|
{
|
256 |
|
|
if (rs)
|
257 |
|
|
{
|
258 |
|
|
dwarf2_frame_state_free_regs (rs->prev);
|
259 |
|
|
|
260 |
|
|
xfree (rs->reg);
|
261 |
|
|
xfree (rs);
|
262 |
|
|
}
|
263 |
|
|
}
|
264 |
|
|
|
265 |
|
|
/* Release the memory allocated to the frame state FS. */
|
266 |
|
|
|
267 |
|
|
static void
|
268 |
|
|
dwarf2_frame_state_free (void *p)
|
269 |
|
|
{
|
270 |
|
|
struct dwarf2_frame_state *fs = p;
|
271 |
|
|
|
272 |
|
|
dwarf2_frame_state_free_regs (fs->initial.prev);
|
273 |
|
|
dwarf2_frame_state_free_regs (fs->regs.prev);
|
274 |
|
|
xfree (fs->initial.reg);
|
275 |
|
|
xfree (fs->regs.reg);
|
276 |
|
|
xfree (fs);
|
277 |
|
|
}
|
278 |
|
|
|
279 |
|
|
|
280 |
|
|
/* Helper functions for execute_stack_op. */
|
281 |
|
|
|
282 |
|
|
static CORE_ADDR
|
283 |
|
|
read_reg (void *baton, int reg)
|
284 |
|
|
{
|
285 |
|
|
struct frame_info *this_frame = (struct frame_info *) baton;
|
286 |
|
|
struct gdbarch *gdbarch = get_frame_arch (this_frame);
|
287 |
|
|
int regnum;
|
288 |
|
|
gdb_byte *buf;
|
289 |
|
|
|
290 |
|
|
regnum = gdbarch_dwarf2_reg_to_regnum (gdbarch, reg);
|
291 |
|
|
|
292 |
|
|
buf = alloca (register_size (gdbarch, regnum));
|
293 |
|
|
get_frame_register (this_frame, regnum, buf);
|
294 |
|
|
|
295 |
|
|
/* Convert the register to an integer. This returns a LONGEST
|
296 |
|
|
rather than a CORE_ADDR, but unpack_pointer does the same thing
|
297 |
|
|
under the covers, and this makes more sense for non-pointer
|
298 |
|
|
registers. Maybe read_reg and the associated interfaces should
|
299 |
|
|
deal with "struct value" instead of CORE_ADDR. */
|
300 |
|
|
return unpack_long (register_type (gdbarch, regnum), buf);
|
301 |
|
|
}
|
302 |
|
|
|
303 |
|
|
static void
|
304 |
|
|
read_mem (void *baton, gdb_byte *buf, CORE_ADDR addr, size_t len)
|
305 |
|
|
{
|
306 |
|
|
read_memory (addr, buf, len);
|
307 |
|
|
}
|
308 |
|
|
|
309 |
|
|
static void
|
310 |
|
|
no_get_frame_base (void *baton, const gdb_byte **start, size_t *length)
|
311 |
|
|
{
|
312 |
|
|
internal_error (__FILE__, __LINE__,
|
313 |
|
|
_("Support for DW_OP_fbreg is unimplemented"));
|
314 |
|
|
}
|
315 |
|
|
|
316 |
|
|
/* Helper function for execute_stack_op. */
|
317 |
|
|
|
318 |
|
|
static CORE_ADDR
|
319 |
|
|
no_get_frame_cfa (void *baton)
|
320 |
|
|
{
|
321 |
|
|
internal_error (__FILE__, __LINE__,
|
322 |
|
|
_("Support for DW_OP_call_frame_cfa is unimplemented"));
|
323 |
|
|
}
|
324 |
|
|
|
325 |
|
|
static CORE_ADDR
|
326 |
|
|
no_get_tls_address (void *baton, CORE_ADDR offset)
|
327 |
|
|
{
|
328 |
|
|
internal_error (__FILE__, __LINE__,
|
329 |
|
|
_("Support for DW_OP_GNU_push_tls_address is unimplemented"));
|
330 |
|
|
}
|
331 |
|
|
|
332 |
|
|
/* Helper function for execute_stack_op. */
|
333 |
|
|
|
334 |
|
|
static void
|
335 |
|
|
no_dwarf_call (struct dwarf_expr_context *ctx, size_t die_offset)
|
336 |
|
|
{
|
337 |
|
|
internal_error (__FILE__, __LINE__,
|
338 |
|
|
_("Support for DW_OP_call* is invalid in CFI"));
|
339 |
|
|
}
|
340 |
|
|
|
341 |
|
|
/* Execute the required actions for both the DW_CFA_restore and
|
342 |
|
|
DW_CFA_restore_extended instructions. */
|
343 |
|
|
static void
|
344 |
|
|
dwarf2_restore_rule (struct gdbarch *gdbarch, ULONGEST reg_num,
|
345 |
|
|
struct dwarf2_frame_state *fs, int eh_frame_p)
|
346 |
|
|
{
|
347 |
|
|
ULONGEST reg;
|
348 |
|
|
|
349 |
|
|
gdb_assert (fs->initial.reg);
|
350 |
|
|
reg = dwarf2_frame_adjust_regnum (gdbarch, reg_num, eh_frame_p);
|
351 |
|
|
dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
|
352 |
|
|
|
353 |
|
|
/* Check if this register was explicitly initialized in the
|
354 |
|
|
CIE initial instructions. If not, default the rule to
|
355 |
|
|
UNSPECIFIED. */
|
356 |
|
|
if (reg < fs->initial.num_regs)
|
357 |
|
|
fs->regs.reg[reg] = fs->initial.reg[reg];
|
358 |
|
|
else
|
359 |
|
|
fs->regs.reg[reg].how = DWARF2_FRAME_REG_UNSPECIFIED;
|
360 |
|
|
|
361 |
|
|
if (fs->regs.reg[reg].how == DWARF2_FRAME_REG_UNSPECIFIED)
|
362 |
|
|
complaint (&symfile_complaints, _("\
|
363 |
|
|
incomplete CFI data; DW_CFA_restore unspecified\n\
|
364 |
|
|
register %s (#%d) at %s"),
|
365 |
|
|
gdbarch_register_name
|
366 |
|
|
(gdbarch, gdbarch_dwarf2_reg_to_regnum (gdbarch, reg)),
|
367 |
|
|
gdbarch_dwarf2_reg_to_regnum (gdbarch, reg),
|
368 |
|
|
paddress (gdbarch, fs->pc));
|
369 |
|
|
}
|
370 |
|
|
|
371 |
|
|
static CORE_ADDR
|
372 |
|
|
execute_stack_op (const gdb_byte *exp, ULONGEST len, int addr_size,
|
373 |
|
|
CORE_ADDR offset, struct frame_info *this_frame,
|
374 |
|
|
CORE_ADDR initial, int initial_in_stack_memory)
|
375 |
|
|
{
|
376 |
|
|
struct dwarf_expr_context *ctx;
|
377 |
|
|
CORE_ADDR result;
|
378 |
|
|
struct cleanup *old_chain;
|
379 |
|
|
|
380 |
|
|
ctx = new_dwarf_expr_context ();
|
381 |
|
|
old_chain = make_cleanup_free_dwarf_expr_context (ctx);
|
382 |
|
|
|
383 |
|
|
ctx->gdbarch = get_frame_arch (this_frame);
|
384 |
|
|
ctx->addr_size = addr_size;
|
385 |
|
|
ctx->offset = offset;
|
386 |
|
|
ctx->baton = this_frame;
|
387 |
|
|
ctx->read_reg = read_reg;
|
388 |
|
|
ctx->read_mem = read_mem;
|
389 |
|
|
ctx->get_frame_base = no_get_frame_base;
|
390 |
|
|
ctx->get_frame_cfa = no_get_frame_cfa;
|
391 |
|
|
ctx->get_tls_address = no_get_tls_address;
|
392 |
|
|
ctx->dwarf_call = no_dwarf_call;
|
393 |
|
|
|
394 |
|
|
dwarf_expr_push (ctx, initial, initial_in_stack_memory);
|
395 |
|
|
dwarf_expr_eval (ctx, exp, len);
|
396 |
|
|
|
397 |
|
|
if (ctx->location == DWARF_VALUE_MEMORY)
|
398 |
|
|
result = dwarf_expr_fetch_address (ctx, 0);
|
399 |
|
|
else if (ctx->location == DWARF_VALUE_REGISTER)
|
400 |
|
|
result = read_reg (this_frame, dwarf_expr_fetch (ctx, 0));
|
401 |
|
|
else
|
402 |
|
|
{
|
403 |
|
|
/* This is actually invalid DWARF, but if we ever do run across
|
404 |
|
|
it somehow, we might as well support it. So, instead, report
|
405 |
|
|
it as unimplemented. */
|
406 |
|
|
error (_("Not implemented: computing unwound register using explicit value operator"));
|
407 |
|
|
}
|
408 |
|
|
|
409 |
|
|
do_cleanups (old_chain);
|
410 |
|
|
|
411 |
|
|
return result;
|
412 |
|
|
}
|
413 |
|
|
|
414 |
|
|
|
415 |
|
|
static void
|
416 |
|
|
execute_cfa_program (struct dwarf2_fde *fde, const gdb_byte *insn_ptr,
|
417 |
|
|
const gdb_byte *insn_end, struct frame_info *this_frame,
|
418 |
|
|
struct dwarf2_frame_state *fs)
|
419 |
|
|
{
|
420 |
|
|
int eh_frame_p = fde->eh_frame_p;
|
421 |
|
|
CORE_ADDR pc = get_frame_pc (this_frame);
|
422 |
|
|
int bytes_read;
|
423 |
|
|
struct gdbarch *gdbarch = get_frame_arch (this_frame);
|
424 |
|
|
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
425 |
|
|
|
426 |
|
|
while (insn_ptr < insn_end && fs->pc <= pc)
|
427 |
|
|
{
|
428 |
|
|
gdb_byte insn = *insn_ptr++;
|
429 |
|
|
ULONGEST utmp, reg;
|
430 |
|
|
LONGEST offset;
|
431 |
|
|
|
432 |
|
|
if ((insn & 0xc0) == DW_CFA_advance_loc)
|
433 |
|
|
fs->pc += (insn & 0x3f) * fs->code_align;
|
434 |
|
|
else if ((insn & 0xc0) == DW_CFA_offset)
|
435 |
|
|
{
|
436 |
|
|
reg = insn & 0x3f;
|
437 |
|
|
reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
|
438 |
|
|
insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
|
439 |
|
|
offset = utmp * fs->data_align;
|
440 |
|
|
dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
|
441 |
|
|
fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
|
442 |
|
|
fs->regs.reg[reg].loc.offset = offset;
|
443 |
|
|
}
|
444 |
|
|
else if ((insn & 0xc0) == DW_CFA_restore)
|
445 |
|
|
{
|
446 |
|
|
reg = insn & 0x3f;
|
447 |
|
|
dwarf2_restore_rule (gdbarch, reg, fs, eh_frame_p);
|
448 |
|
|
}
|
449 |
|
|
else
|
450 |
|
|
{
|
451 |
|
|
switch (insn)
|
452 |
|
|
{
|
453 |
|
|
case DW_CFA_set_loc:
|
454 |
|
|
fs->pc = read_encoded_value (fde->cie->unit, fde->cie->encoding,
|
455 |
|
|
fde->cie->addr_size, insn_ptr,
|
456 |
|
|
&bytes_read, fde->initial_location);
|
457 |
|
|
/* Apply the objfile offset for relocatable objects. */
|
458 |
|
|
fs->pc += ANOFFSET (fde->cie->unit->objfile->section_offsets,
|
459 |
|
|
SECT_OFF_TEXT (fde->cie->unit->objfile));
|
460 |
|
|
insn_ptr += bytes_read;
|
461 |
|
|
break;
|
462 |
|
|
|
463 |
|
|
case DW_CFA_advance_loc1:
|
464 |
|
|
utmp = extract_unsigned_integer (insn_ptr, 1, byte_order);
|
465 |
|
|
fs->pc += utmp * fs->code_align;
|
466 |
|
|
insn_ptr++;
|
467 |
|
|
break;
|
468 |
|
|
case DW_CFA_advance_loc2:
|
469 |
|
|
utmp = extract_unsigned_integer (insn_ptr, 2, byte_order);
|
470 |
|
|
fs->pc += utmp * fs->code_align;
|
471 |
|
|
insn_ptr += 2;
|
472 |
|
|
break;
|
473 |
|
|
case DW_CFA_advance_loc4:
|
474 |
|
|
utmp = extract_unsigned_integer (insn_ptr, 4, byte_order);
|
475 |
|
|
fs->pc += utmp * fs->code_align;
|
476 |
|
|
insn_ptr += 4;
|
477 |
|
|
break;
|
478 |
|
|
|
479 |
|
|
case DW_CFA_offset_extended:
|
480 |
|
|
insn_ptr = read_uleb128 (insn_ptr, insn_end, ®);
|
481 |
|
|
reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
|
482 |
|
|
insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
|
483 |
|
|
offset = utmp * fs->data_align;
|
484 |
|
|
dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
|
485 |
|
|
fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
|
486 |
|
|
fs->regs.reg[reg].loc.offset = offset;
|
487 |
|
|
break;
|
488 |
|
|
|
489 |
|
|
case DW_CFA_restore_extended:
|
490 |
|
|
insn_ptr = read_uleb128 (insn_ptr, insn_end, ®);
|
491 |
|
|
dwarf2_restore_rule (gdbarch, reg, fs, eh_frame_p);
|
492 |
|
|
break;
|
493 |
|
|
|
494 |
|
|
case DW_CFA_undefined:
|
495 |
|
|
insn_ptr = read_uleb128 (insn_ptr, insn_end, ®);
|
496 |
|
|
reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
|
497 |
|
|
dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
|
498 |
|
|
fs->regs.reg[reg].how = DWARF2_FRAME_REG_UNDEFINED;
|
499 |
|
|
break;
|
500 |
|
|
|
501 |
|
|
case DW_CFA_same_value:
|
502 |
|
|
insn_ptr = read_uleb128 (insn_ptr, insn_end, ®);
|
503 |
|
|
reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
|
504 |
|
|
dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
|
505 |
|
|
fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAME_VALUE;
|
506 |
|
|
break;
|
507 |
|
|
|
508 |
|
|
case DW_CFA_register:
|
509 |
|
|
insn_ptr = read_uleb128 (insn_ptr, insn_end, ®);
|
510 |
|
|
reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
|
511 |
|
|
insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
|
512 |
|
|
utmp = dwarf2_frame_adjust_regnum (gdbarch, utmp, eh_frame_p);
|
513 |
|
|
dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
|
514 |
|
|
fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_REG;
|
515 |
|
|
fs->regs.reg[reg].loc.reg = utmp;
|
516 |
|
|
break;
|
517 |
|
|
|
518 |
|
|
case DW_CFA_remember_state:
|
519 |
|
|
{
|
520 |
|
|
struct dwarf2_frame_state_reg_info *new_rs;
|
521 |
|
|
|
522 |
|
|
new_rs = XMALLOC (struct dwarf2_frame_state_reg_info);
|
523 |
|
|
*new_rs = fs->regs;
|
524 |
|
|
fs->regs.reg = dwarf2_frame_state_copy_regs (&fs->regs);
|
525 |
|
|
fs->regs.prev = new_rs;
|
526 |
|
|
}
|
527 |
|
|
break;
|
528 |
|
|
|
529 |
|
|
case DW_CFA_restore_state:
|
530 |
|
|
{
|
531 |
|
|
struct dwarf2_frame_state_reg_info *old_rs = fs->regs.prev;
|
532 |
|
|
|
533 |
|
|
if (old_rs == NULL)
|
534 |
|
|
{
|
535 |
|
|
complaint (&symfile_complaints, _("\
|
536 |
|
|
bad CFI data; mismatched DW_CFA_restore_state at %s"),
|
537 |
|
|
paddress (gdbarch, fs->pc));
|
538 |
|
|
}
|
539 |
|
|
else
|
540 |
|
|
{
|
541 |
|
|
xfree (fs->regs.reg);
|
542 |
|
|
fs->regs = *old_rs;
|
543 |
|
|
xfree (old_rs);
|
544 |
|
|
}
|
545 |
|
|
}
|
546 |
|
|
break;
|
547 |
|
|
|
548 |
|
|
case DW_CFA_def_cfa:
|
549 |
|
|
insn_ptr = read_uleb128 (insn_ptr, insn_end, &fs->regs.cfa_reg);
|
550 |
|
|
insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
|
551 |
|
|
|
552 |
|
|
if (fs->armcc_cfa_offsets_sf)
|
553 |
|
|
utmp *= fs->data_align;
|
554 |
|
|
|
555 |
|
|
fs->regs.cfa_offset = utmp;
|
556 |
|
|
fs->regs.cfa_how = CFA_REG_OFFSET;
|
557 |
|
|
break;
|
558 |
|
|
|
559 |
|
|
case DW_CFA_def_cfa_register:
|
560 |
|
|
insn_ptr = read_uleb128 (insn_ptr, insn_end, &fs->regs.cfa_reg);
|
561 |
|
|
fs->regs.cfa_reg = dwarf2_frame_adjust_regnum (gdbarch,
|
562 |
|
|
fs->regs.cfa_reg,
|
563 |
|
|
eh_frame_p);
|
564 |
|
|
fs->regs.cfa_how = CFA_REG_OFFSET;
|
565 |
|
|
break;
|
566 |
|
|
|
567 |
|
|
case DW_CFA_def_cfa_offset:
|
568 |
|
|
insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
|
569 |
|
|
|
570 |
|
|
if (fs->armcc_cfa_offsets_sf)
|
571 |
|
|
utmp *= fs->data_align;
|
572 |
|
|
|
573 |
|
|
fs->regs.cfa_offset = utmp;
|
574 |
|
|
/* cfa_how deliberately not set. */
|
575 |
|
|
break;
|
576 |
|
|
|
577 |
|
|
case DW_CFA_nop:
|
578 |
|
|
break;
|
579 |
|
|
|
580 |
|
|
case DW_CFA_def_cfa_expression:
|
581 |
|
|
insn_ptr = read_uleb128 (insn_ptr, insn_end,
|
582 |
|
|
&fs->regs.cfa_exp_len);
|
583 |
|
|
fs->regs.cfa_exp = insn_ptr;
|
584 |
|
|
fs->regs.cfa_how = CFA_EXP;
|
585 |
|
|
insn_ptr += fs->regs.cfa_exp_len;
|
586 |
|
|
break;
|
587 |
|
|
|
588 |
|
|
case DW_CFA_expression:
|
589 |
|
|
insn_ptr = read_uleb128 (insn_ptr, insn_end, ®);
|
590 |
|
|
reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
|
591 |
|
|
dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
|
592 |
|
|
insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
|
593 |
|
|
fs->regs.reg[reg].loc.exp = insn_ptr;
|
594 |
|
|
fs->regs.reg[reg].exp_len = utmp;
|
595 |
|
|
fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_EXP;
|
596 |
|
|
insn_ptr += utmp;
|
597 |
|
|
break;
|
598 |
|
|
|
599 |
|
|
case DW_CFA_offset_extended_sf:
|
600 |
|
|
insn_ptr = read_uleb128 (insn_ptr, insn_end, ®);
|
601 |
|
|
reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
|
602 |
|
|
insn_ptr = read_sleb128 (insn_ptr, insn_end, &offset);
|
603 |
|
|
offset *= fs->data_align;
|
604 |
|
|
dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
|
605 |
|
|
fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
|
606 |
|
|
fs->regs.reg[reg].loc.offset = offset;
|
607 |
|
|
break;
|
608 |
|
|
|
609 |
|
|
case DW_CFA_val_offset:
|
610 |
|
|
insn_ptr = read_uleb128 (insn_ptr, insn_end, ®);
|
611 |
|
|
dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
|
612 |
|
|
insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
|
613 |
|
|
offset = utmp * fs->data_align;
|
614 |
|
|
fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_VAL_OFFSET;
|
615 |
|
|
fs->regs.reg[reg].loc.offset = offset;
|
616 |
|
|
break;
|
617 |
|
|
|
618 |
|
|
case DW_CFA_val_offset_sf:
|
619 |
|
|
insn_ptr = read_uleb128 (insn_ptr, insn_end, ®);
|
620 |
|
|
dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
|
621 |
|
|
insn_ptr = read_sleb128 (insn_ptr, insn_end, &offset);
|
622 |
|
|
offset *= fs->data_align;
|
623 |
|
|
fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_VAL_OFFSET;
|
624 |
|
|
fs->regs.reg[reg].loc.offset = offset;
|
625 |
|
|
break;
|
626 |
|
|
|
627 |
|
|
case DW_CFA_val_expression:
|
628 |
|
|
insn_ptr = read_uleb128 (insn_ptr, insn_end, ®);
|
629 |
|
|
dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
|
630 |
|
|
insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
|
631 |
|
|
fs->regs.reg[reg].loc.exp = insn_ptr;
|
632 |
|
|
fs->regs.reg[reg].exp_len = utmp;
|
633 |
|
|
fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_VAL_EXP;
|
634 |
|
|
insn_ptr += utmp;
|
635 |
|
|
break;
|
636 |
|
|
|
637 |
|
|
case DW_CFA_def_cfa_sf:
|
638 |
|
|
insn_ptr = read_uleb128 (insn_ptr, insn_end, &fs->regs.cfa_reg);
|
639 |
|
|
fs->regs.cfa_reg = dwarf2_frame_adjust_regnum (gdbarch,
|
640 |
|
|
fs->regs.cfa_reg,
|
641 |
|
|
eh_frame_p);
|
642 |
|
|
insn_ptr = read_sleb128 (insn_ptr, insn_end, &offset);
|
643 |
|
|
fs->regs.cfa_offset = offset * fs->data_align;
|
644 |
|
|
fs->regs.cfa_how = CFA_REG_OFFSET;
|
645 |
|
|
break;
|
646 |
|
|
|
647 |
|
|
case DW_CFA_def_cfa_offset_sf:
|
648 |
|
|
insn_ptr = read_sleb128 (insn_ptr, insn_end, &offset);
|
649 |
|
|
fs->regs.cfa_offset = offset * fs->data_align;
|
650 |
|
|
/* cfa_how deliberately not set. */
|
651 |
|
|
break;
|
652 |
|
|
|
653 |
|
|
case DW_CFA_GNU_window_save:
|
654 |
|
|
/* This is SPARC-specific code, and contains hard-coded
|
655 |
|
|
constants for the register numbering scheme used by
|
656 |
|
|
GCC. Rather than having a architecture-specific
|
657 |
|
|
operation that's only ever used by a single
|
658 |
|
|
architecture, we provide the implementation here.
|
659 |
|
|
Incidentally that's what GCC does too in its
|
660 |
|
|
unwinder. */
|
661 |
|
|
{
|
662 |
|
|
int size = register_size (gdbarch, 0);
|
663 |
|
|
|
664 |
|
|
dwarf2_frame_state_alloc_regs (&fs->regs, 32);
|
665 |
|
|
for (reg = 8; reg < 16; reg++)
|
666 |
|
|
{
|
667 |
|
|
fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_REG;
|
668 |
|
|
fs->regs.reg[reg].loc.reg = reg + 16;
|
669 |
|
|
}
|
670 |
|
|
for (reg = 16; reg < 32; reg++)
|
671 |
|
|
{
|
672 |
|
|
fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
|
673 |
|
|
fs->regs.reg[reg].loc.offset = (reg - 16) * size;
|
674 |
|
|
}
|
675 |
|
|
}
|
676 |
|
|
break;
|
677 |
|
|
|
678 |
|
|
case DW_CFA_GNU_args_size:
|
679 |
|
|
/* Ignored. */
|
680 |
|
|
insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
|
681 |
|
|
break;
|
682 |
|
|
|
683 |
|
|
case DW_CFA_GNU_negative_offset_extended:
|
684 |
|
|
insn_ptr = read_uleb128 (insn_ptr, insn_end, ®);
|
685 |
|
|
reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
|
686 |
|
|
insn_ptr = read_uleb128 (insn_ptr, insn_end, &offset);
|
687 |
|
|
offset *= fs->data_align;
|
688 |
|
|
dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
|
689 |
|
|
fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
|
690 |
|
|
fs->regs.reg[reg].loc.offset = -offset;
|
691 |
|
|
break;
|
692 |
|
|
|
693 |
|
|
default:
|
694 |
|
|
internal_error (__FILE__, __LINE__, _("Unknown CFI encountered."));
|
695 |
|
|
}
|
696 |
|
|
}
|
697 |
|
|
}
|
698 |
|
|
|
699 |
|
|
/* Don't allow remember/restore between CIE and FDE programs. */
|
700 |
|
|
dwarf2_frame_state_free_regs (fs->regs.prev);
|
701 |
|
|
fs->regs.prev = NULL;
|
702 |
|
|
}
|
703 |
|
|
|
704 |
|
|
|
705 |
|
|
/* Architecture-specific operations. */
|
706 |
|
|
|
707 |
|
|
/* Per-architecture data key. */
|
708 |
|
|
static struct gdbarch_data *dwarf2_frame_data;
|
709 |
|
|
|
710 |
|
|
struct dwarf2_frame_ops
|
711 |
|
|
{
|
712 |
|
|
/* Pre-initialize the register state REG for register REGNUM. */
|
713 |
|
|
void (*init_reg) (struct gdbarch *, int, struct dwarf2_frame_state_reg *,
|
714 |
|
|
struct frame_info *);
|
715 |
|
|
|
716 |
|
|
/* Check whether the THIS_FRAME is a signal trampoline. */
|
717 |
|
|
int (*signal_frame_p) (struct gdbarch *, struct frame_info *);
|
718 |
|
|
|
719 |
|
|
/* Convert .eh_frame register number to DWARF register number, or
|
720 |
|
|
adjust .debug_frame register number. */
|
721 |
|
|
int (*adjust_regnum) (struct gdbarch *, int, int);
|
722 |
|
|
};
|
723 |
|
|
|
724 |
|
|
/* Default architecture-specific register state initialization
|
725 |
|
|
function. */
|
726 |
|
|
|
727 |
|
|
static void
|
728 |
|
|
dwarf2_frame_default_init_reg (struct gdbarch *gdbarch, int regnum,
|
729 |
|
|
struct dwarf2_frame_state_reg *reg,
|
730 |
|
|
struct frame_info *this_frame)
|
731 |
|
|
{
|
732 |
|
|
/* If we have a register that acts as a program counter, mark it as
|
733 |
|
|
a destination for the return address. If we have a register that
|
734 |
|
|
serves as the stack pointer, arrange for it to be filled with the
|
735 |
|
|
call frame address (CFA). The other registers are marked as
|
736 |
|
|
unspecified.
|
737 |
|
|
|
738 |
|
|
We copy the return address to the program counter, since many
|
739 |
|
|
parts in GDB assume that it is possible to get the return address
|
740 |
|
|
by unwinding the program counter register. However, on ISA's
|
741 |
|
|
with a dedicated return address register, the CFI usually only
|
742 |
|
|
contains information to unwind that return address register.
|
743 |
|
|
|
744 |
|
|
The reason we're treating the stack pointer special here is
|
745 |
|
|
because in many cases GCC doesn't emit CFI for the stack pointer
|
746 |
|
|
and implicitly assumes that it is equal to the CFA. This makes
|
747 |
|
|
some sense since the DWARF specification (version 3, draft 8,
|
748 |
|
|
p. 102) says that:
|
749 |
|
|
|
750 |
|
|
"Typically, the CFA is defined to be the value of the stack
|
751 |
|
|
pointer at the call site in the previous frame (which may be
|
752 |
|
|
different from its value on entry to the current frame)."
|
753 |
|
|
|
754 |
|
|
However, this isn't true for all platforms supported by GCC
|
755 |
|
|
(e.g. IBM S/390 and zSeries). Those architectures should provide
|
756 |
|
|
their own architecture-specific initialization function. */
|
757 |
|
|
|
758 |
|
|
if (regnum == gdbarch_pc_regnum (gdbarch))
|
759 |
|
|
reg->how = DWARF2_FRAME_REG_RA;
|
760 |
|
|
else if (regnum == gdbarch_sp_regnum (gdbarch))
|
761 |
|
|
reg->how = DWARF2_FRAME_REG_CFA;
|
762 |
|
|
}
|
763 |
|
|
|
764 |
|
|
/* Return a default for the architecture-specific operations. */
|
765 |
|
|
|
766 |
|
|
static void *
|
767 |
|
|
dwarf2_frame_init (struct obstack *obstack)
|
768 |
|
|
{
|
769 |
|
|
struct dwarf2_frame_ops *ops;
|
770 |
|
|
|
771 |
|
|
ops = OBSTACK_ZALLOC (obstack, struct dwarf2_frame_ops);
|
772 |
|
|
ops->init_reg = dwarf2_frame_default_init_reg;
|
773 |
|
|
return ops;
|
774 |
|
|
}
|
775 |
|
|
|
776 |
|
|
/* Set the architecture-specific register state initialization
|
777 |
|
|
function for GDBARCH to INIT_REG. */
|
778 |
|
|
|
779 |
|
|
void
|
780 |
|
|
dwarf2_frame_set_init_reg (struct gdbarch *gdbarch,
|
781 |
|
|
void (*init_reg) (struct gdbarch *, int,
|
782 |
|
|
struct dwarf2_frame_state_reg *,
|
783 |
|
|
struct frame_info *))
|
784 |
|
|
{
|
785 |
|
|
struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
|
786 |
|
|
|
787 |
|
|
ops->init_reg = init_reg;
|
788 |
|
|
}
|
789 |
|
|
|
790 |
|
|
/* Pre-initialize the register state REG for register REGNUM. */
|
791 |
|
|
|
792 |
|
|
static void
|
793 |
|
|
dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
|
794 |
|
|
struct dwarf2_frame_state_reg *reg,
|
795 |
|
|
struct frame_info *this_frame)
|
796 |
|
|
{
|
797 |
|
|
struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
|
798 |
|
|
|
799 |
|
|
ops->init_reg (gdbarch, regnum, reg, this_frame);
|
800 |
|
|
}
|
801 |
|
|
|
802 |
|
|
/* Set the architecture-specific signal trampoline recognition
|
803 |
|
|
function for GDBARCH to SIGNAL_FRAME_P. */
|
804 |
|
|
|
805 |
|
|
void
|
806 |
|
|
dwarf2_frame_set_signal_frame_p (struct gdbarch *gdbarch,
|
807 |
|
|
int (*signal_frame_p) (struct gdbarch *,
|
808 |
|
|
struct frame_info *))
|
809 |
|
|
{
|
810 |
|
|
struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
|
811 |
|
|
|
812 |
|
|
ops->signal_frame_p = signal_frame_p;
|
813 |
|
|
}
|
814 |
|
|
|
815 |
|
|
/* Query the architecture-specific signal frame recognizer for
|
816 |
|
|
THIS_FRAME. */
|
817 |
|
|
|
818 |
|
|
static int
|
819 |
|
|
dwarf2_frame_signal_frame_p (struct gdbarch *gdbarch,
|
820 |
|
|
struct frame_info *this_frame)
|
821 |
|
|
{
|
822 |
|
|
struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
|
823 |
|
|
|
824 |
|
|
if (ops->signal_frame_p == NULL)
|
825 |
|
|
return 0;
|
826 |
|
|
return ops->signal_frame_p (gdbarch, this_frame);
|
827 |
|
|
}
|
828 |
|
|
|
829 |
|
|
/* Set the architecture-specific adjustment of .eh_frame and .debug_frame
|
830 |
|
|
register numbers. */
|
831 |
|
|
|
832 |
|
|
void
|
833 |
|
|
dwarf2_frame_set_adjust_regnum (struct gdbarch *gdbarch,
|
834 |
|
|
int (*adjust_regnum) (struct gdbarch *,
|
835 |
|
|
int, int))
|
836 |
|
|
{
|
837 |
|
|
struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
|
838 |
|
|
|
839 |
|
|
ops->adjust_regnum = adjust_regnum;
|
840 |
|
|
}
|
841 |
|
|
|
842 |
|
|
/* Translate a .eh_frame register to DWARF register, or adjust a .debug_frame
|
843 |
|
|
register. */
|
844 |
|
|
|
845 |
|
|
static int
|
846 |
|
|
dwarf2_frame_adjust_regnum (struct gdbarch *gdbarch, int regnum, int eh_frame_p)
|
847 |
|
|
{
|
848 |
|
|
struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
|
849 |
|
|
|
850 |
|
|
if (ops->adjust_regnum == NULL)
|
851 |
|
|
return regnum;
|
852 |
|
|
return ops->adjust_regnum (gdbarch, regnum, eh_frame_p);
|
853 |
|
|
}
|
854 |
|
|
|
855 |
|
|
static void
|
856 |
|
|
dwarf2_frame_find_quirks (struct dwarf2_frame_state *fs,
|
857 |
|
|
struct dwarf2_fde *fde)
|
858 |
|
|
{
|
859 |
|
|
struct symtab *s;
|
860 |
|
|
|
861 |
|
|
s = find_pc_symtab (fs->pc);
|
862 |
|
|
if (s == NULL)
|
863 |
|
|
return;
|
864 |
|
|
|
865 |
|
|
if (producer_is_realview (s->producer))
|
866 |
|
|
{
|
867 |
|
|
if (fde->cie->version == 1)
|
868 |
|
|
fs->armcc_cfa_offsets_sf = 1;
|
869 |
|
|
|
870 |
|
|
if (fde->cie->version == 1)
|
871 |
|
|
fs->armcc_cfa_offsets_reversed = 1;
|
872 |
|
|
|
873 |
|
|
/* The reversed offset problem is present in some compilers
|
874 |
|
|
using DWARF3, but it was eventually fixed. Check the ARM
|
875 |
|
|
defined augmentations, which are in the format "armcc" followed
|
876 |
|
|
by a list of one-character options. The "+" option means
|
877 |
|
|
this problem is fixed (no quirk needed). If the armcc
|
878 |
|
|
augmentation is missing, the quirk is needed. */
|
879 |
|
|
if (fde->cie->version == 3
|
880 |
|
|
&& (strncmp (fde->cie->augmentation, "armcc", 5) != 0
|
881 |
|
|
|| strchr (fde->cie->augmentation + 5, '+') == NULL))
|
882 |
|
|
fs->armcc_cfa_offsets_reversed = 1;
|
883 |
|
|
|
884 |
|
|
return;
|
885 |
|
|
}
|
886 |
|
|
}
|
887 |
|
|
|
888 |
|
|
|
889 |
|
|
struct dwarf2_frame_cache
|
890 |
|
|
{
|
891 |
|
|
/* DWARF Call Frame Address. */
|
892 |
|
|
CORE_ADDR cfa;
|
893 |
|
|
|
894 |
|
|
/* Set if the return address column was marked as undefined. */
|
895 |
|
|
int undefined_retaddr;
|
896 |
|
|
|
897 |
|
|
/* Saved registers, indexed by GDB register number, not by DWARF
|
898 |
|
|
register number. */
|
899 |
|
|
struct dwarf2_frame_state_reg *reg;
|
900 |
|
|
|
901 |
|
|
/* Return address register. */
|
902 |
|
|
struct dwarf2_frame_state_reg retaddr_reg;
|
903 |
|
|
|
904 |
|
|
/* Target address size in bytes. */
|
905 |
|
|
int addr_size;
|
906 |
|
|
|
907 |
|
|
/* The .text offset. */
|
908 |
|
|
CORE_ADDR text_offset;
|
909 |
|
|
};
|
910 |
|
|
|
911 |
|
|
static struct dwarf2_frame_cache *
|
912 |
|
|
dwarf2_frame_cache (struct frame_info *this_frame, void **this_cache)
|
913 |
|
|
{
|
914 |
|
|
struct cleanup *old_chain;
|
915 |
|
|
struct gdbarch *gdbarch = get_frame_arch (this_frame);
|
916 |
|
|
const int num_regs = gdbarch_num_regs (gdbarch)
|
917 |
|
|
+ gdbarch_num_pseudo_regs (gdbarch);
|
918 |
|
|
struct dwarf2_frame_cache *cache;
|
919 |
|
|
struct dwarf2_frame_state *fs;
|
920 |
|
|
struct dwarf2_fde *fde;
|
921 |
|
|
|
922 |
|
|
if (*this_cache)
|
923 |
|
|
return *this_cache;
|
924 |
|
|
|
925 |
|
|
/* Allocate a new cache. */
|
926 |
|
|
cache = FRAME_OBSTACK_ZALLOC (struct dwarf2_frame_cache);
|
927 |
|
|
cache->reg = FRAME_OBSTACK_CALLOC (num_regs, struct dwarf2_frame_state_reg);
|
928 |
|
|
|
929 |
|
|
/* Allocate and initialize the frame state. */
|
930 |
|
|
fs = XMALLOC (struct dwarf2_frame_state);
|
931 |
|
|
memset (fs, 0, sizeof (struct dwarf2_frame_state));
|
932 |
|
|
old_chain = make_cleanup (dwarf2_frame_state_free, fs);
|
933 |
|
|
|
934 |
|
|
/* Unwind the PC.
|
935 |
|
|
|
936 |
|
|
Note that if the next frame is never supposed to return (i.e. a call
|
937 |
|
|
to abort), the compiler might optimize away the instruction at
|
938 |
|
|
its return address. As a result the return address will
|
939 |
|
|
point at some random instruction, and the CFI for that
|
940 |
|
|
instruction is probably worthless to us. GCC's unwinder solves
|
941 |
|
|
this problem by substracting 1 from the return address to get an
|
942 |
|
|
address in the middle of a presumed call instruction (or the
|
943 |
|
|
instruction in the associated delay slot). This should only be
|
944 |
|
|
done for "normal" frames and not for resume-type frames (signal
|
945 |
|
|
handlers, sentinel frames, dummy frames). The function
|
946 |
|
|
get_frame_address_in_block does just this. It's not clear how
|
947 |
|
|
reliable the method is though; there is the potential for the
|
948 |
|
|
register state pre-call being different to that on return. */
|
949 |
|
|
fs->pc = get_frame_address_in_block (this_frame);
|
950 |
|
|
|
951 |
|
|
/* Find the correct FDE. */
|
952 |
|
|
fde = dwarf2_frame_find_fde (&fs->pc, &cache->text_offset);
|
953 |
|
|
gdb_assert (fde != NULL);
|
954 |
|
|
|
955 |
|
|
/* Extract any interesting information from the CIE. */
|
956 |
|
|
fs->data_align = fde->cie->data_alignment_factor;
|
957 |
|
|
fs->code_align = fde->cie->code_alignment_factor;
|
958 |
|
|
fs->retaddr_column = fde->cie->return_address_register;
|
959 |
|
|
cache->addr_size = fde->cie->addr_size;
|
960 |
|
|
|
961 |
|
|
/* Check for "quirks" - known bugs in producers. */
|
962 |
|
|
dwarf2_frame_find_quirks (fs, fde);
|
963 |
|
|
|
964 |
|
|
/* First decode all the insns in the CIE. */
|
965 |
|
|
execute_cfa_program (fde, fde->cie->initial_instructions,
|
966 |
|
|
fde->cie->end, this_frame, fs);
|
967 |
|
|
|
968 |
|
|
/* Save the initialized register set. */
|
969 |
|
|
fs->initial = fs->regs;
|
970 |
|
|
fs->initial.reg = dwarf2_frame_state_copy_regs (&fs->regs);
|
971 |
|
|
|
972 |
|
|
/* Then decode the insns in the FDE up to our target PC. */
|
973 |
|
|
execute_cfa_program (fde, fde->instructions, fde->end, this_frame, fs);
|
974 |
|
|
|
975 |
|
|
/* Calculate the CFA. */
|
976 |
|
|
switch (fs->regs.cfa_how)
|
977 |
|
|
{
|
978 |
|
|
case CFA_REG_OFFSET:
|
979 |
|
|
cache->cfa = read_reg (this_frame, fs->regs.cfa_reg);
|
980 |
|
|
if (fs->armcc_cfa_offsets_reversed)
|
981 |
|
|
cache->cfa -= fs->regs.cfa_offset;
|
982 |
|
|
else
|
983 |
|
|
cache->cfa += fs->regs.cfa_offset;
|
984 |
|
|
break;
|
985 |
|
|
|
986 |
|
|
case CFA_EXP:
|
987 |
|
|
cache->cfa =
|
988 |
|
|
execute_stack_op (fs->regs.cfa_exp, fs->regs.cfa_exp_len,
|
989 |
|
|
cache->addr_size, cache->text_offset,
|
990 |
|
|
this_frame, 0, 0);
|
991 |
|
|
break;
|
992 |
|
|
|
993 |
|
|
default:
|
994 |
|
|
internal_error (__FILE__, __LINE__, _("Unknown CFA rule."));
|
995 |
|
|
}
|
996 |
|
|
|
997 |
|
|
/* Initialize the register state. */
|
998 |
|
|
{
|
999 |
|
|
int regnum;
|
1000 |
|
|
|
1001 |
|
|
for (regnum = 0; regnum < num_regs; regnum++)
|
1002 |
|
|
dwarf2_frame_init_reg (gdbarch, regnum, &cache->reg[regnum], this_frame);
|
1003 |
|
|
}
|
1004 |
|
|
|
1005 |
|
|
/* Go through the DWARF2 CFI generated table and save its register
|
1006 |
|
|
location information in the cache. Note that we don't skip the
|
1007 |
|
|
return address column; it's perfectly all right for it to
|
1008 |
|
|
correspond to a real register. If it doesn't correspond to a
|
1009 |
|
|
real register, or if we shouldn't treat it as such,
|
1010 |
|
|
gdbarch_dwarf2_reg_to_regnum should be defined to return a number outside
|
1011 |
|
|
the range [0, gdbarch_num_regs). */
|
1012 |
|
|
{
|
1013 |
|
|
int column; /* CFI speak for "register number". */
|
1014 |
|
|
|
1015 |
|
|
for (column = 0; column < fs->regs.num_regs; column++)
|
1016 |
|
|
{
|
1017 |
|
|
/* Use the GDB register number as the destination index. */
|
1018 |
|
|
int regnum = gdbarch_dwarf2_reg_to_regnum (gdbarch, column);
|
1019 |
|
|
|
1020 |
|
|
/* If there's no corresponding GDB register, ignore it. */
|
1021 |
|
|
if (regnum < 0 || regnum >= num_regs)
|
1022 |
|
|
continue;
|
1023 |
|
|
|
1024 |
|
|
/* NOTE: cagney/2003-09-05: CFI should specify the disposition
|
1025 |
|
|
of all debug info registers. If it doesn't, complain (but
|
1026 |
|
|
not too loudly). It turns out that GCC assumes that an
|
1027 |
|
|
unspecified register implies "same value" when CFI (draft
|
1028 |
|
|
7) specifies nothing at all. Such a register could equally
|
1029 |
|
|
be interpreted as "undefined". Also note that this check
|
1030 |
|
|
isn't sufficient; it only checks that all registers in the
|
1031 |
|
|
range [0 .. max column] are specified, and won't detect
|
1032 |
|
|
problems when a debug info register falls outside of the
|
1033 |
|
|
table. We need a way of iterating through all the valid
|
1034 |
|
|
DWARF2 register numbers. */
|
1035 |
|
|
if (fs->regs.reg[column].how == DWARF2_FRAME_REG_UNSPECIFIED)
|
1036 |
|
|
{
|
1037 |
|
|
if (cache->reg[regnum].how == DWARF2_FRAME_REG_UNSPECIFIED)
|
1038 |
|
|
complaint (&symfile_complaints, _("\
|
1039 |
|
|
incomplete CFI data; unspecified registers (e.g., %s) at %s"),
|
1040 |
|
|
gdbarch_register_name (gdbarch, regnum),
|
1041 |
|
|
paddress (gdbarch, fs->pc));
|
1042 |
|
|
}
|
1043 |
|
|
else
|
1044 |
|
|
cache->reg[regnum] = fs->regs.reg[column];
|
1045 |
|
|
}
|
1046 |
|
|
}
|
1047 |
|
|
|
1048 |
|
|
/* Eliminate any DWARF2_FRAME_REG_RA rules, and save the information
|
1049 |
|
|
we need for evaluating DWARF2_FRAME_REG_RA_OFFSET rules. */
|
1050 |
|
|
{
|
1051 |
|
|
int regnum;
|
1052 |
|
|
|
1053 |
|
|
for (regnum = 0; regnum < num_regs; regnum++)
|
1054 |
|
|
{
|
1055 |
|
|
if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA
|
1056 |
|
|
|| cache->reg[regnum].how == DWARF2_FRAME_REG_RA_OFFSET)
|
1057 |
|
|
{
|
1058 |
|
|
struct dwarf2_frame_state_reg *retaddr_reg =
|
1059 |
|
|
&fs->regs.reg[fs->retaddr_column];
|
1060 |
|
|
|
1061 |
|
|
/* It seems rather bizarre to specify an "empty" column as
|
1062 |
|
|
the return adress column. However, this is exactly
|
1063 |
|
|
what GCC does on some targets. It turns out that GCC
|
1064 |
|
|
assumes that the return address can be found in the
|
1065 |
|
|
register corresponding to the return address column.
|
1066 |
|
|
Incidentally, that's how we should treat a return
|
1067 |
|
|
address column specifying "same value" too. */
|
1068 |
|
|
if (fs->retaddr_column < fs->regs.num_regs
|
1069 |
|
|
&& retaddr_reg->how != DWARF2_FRAME_REG_UNSPECIFIED
|
1070 |
|
|
&& retaddr_reg->how != DWARF2_FRAME_REG_SAME_VALUE)
|
1071 |
|
|
{
|
1072 |
|
|
if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA)
|
1073 |
|
|
cache->reg[regnum] = *retaddr_reg;
|
1074 |
|
|
else
|
1075 |
|
|
cache->retaddr_reg = *retaddr_reg;
|
1076 |
|
|
}
|
1077 |
|
|
else
|
1078 |
|
|
{
|
1079 |
|
|
if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA)
|
1080 |
|
|
{
|
1081 |
|
|
cache->reg[regnum].loc.reg = fs->retaddr_column;
|
1082 |
|
|
cache->reg[regnum].how = DWARF2_FRAME_REG_SAVED_REG;
|
1083 |
|
|
}
|
1084 |
|
|
else
|
1085 |
|
|
{
|
1086 |
|
|
cache->retaddr_reg.loc.reg = fs->retaddr_column;
|
1087 |
|
|
cache->retaddr_reg.how = DWARF2_FRAME_REG_SAVED_REG;
|
1088 |
|
|
}
|
1089 |
|
|
}
|
1090 |
|
|
}
|
1091 |
|
|
}
|
1092 |
|
|
}
|
1093 |
|
|
|
1094 |
|
|
if (fs->retaddr_column < fs->regs.num_regs
|
1095 |
|
|
&& fs->regs.reg[fs->retaddr_column].how == DWARF2_FRAME_REG_UNDEFINED)
|
1096 |
|
|
cache->undefined_retaddr = 1;
|
1097 |
|
|
|
1098 |
|
|
do_cleanups (old_chain);
|
1099 |
|
|
|
1100 |
|
|
*this_cache = cache;
|
1101 |
|
|
return cache;
|
1102 |
|
|
}
|
1103 |
|
|
|
1104 |
|
|
static void
|
1105 |
|
|
dwarf2_frame_this_id (struct frame_info *this_frame, void **this_cache,
|
1106 |
|
|
struct frame_id *this_id)
|
1107 |
|
|
{
|
1108 |
|
|
struct dwarf2_frame_cache *cache =
|
1109 |
|
|
dwarf2_frame_cache (this_frame, this_cache);
|
1110 |
|
|
|
1111 |
|
|
if (cache->undefined_retaddr)
|
1112 |
|
|
return;
|
1113 |
|
|
|
1114 |
|
|
(*this_id) = frame_id_build (cache->cfa, get_frame_func (this_frame));
|
1115 |
|
|
}
|
1116 |
|
|
|
1117 |
|
|
static struct value *
|
1118 |
|
|
dwarf2_frame_prev_register (struct frame_info *this_frame, void **this_cache,
|
1119 |
|
|
int regnum)
|
1120 |
|
|
{
|
1121 |
|
|
struct gdbarch *gdbarch = get_frame_arch (this_frame);
|
1122 |
|
|
struct dwarf2_frame_cache *cache =
|
1123 |
|
|
dwarf2_frame_cache (this_frame, this_cache);
|
1124 |
|
|
CORE_ADDR addr;
|
1125 |
|
|
int realnum;
|
1126 |
|
|
|
1127 |
|
|
switch (cache->reg[regnum].how)
|
1128 |
|
|
{
|
1129 |
|
|
case DWARF2_FRAME_REG_UNDEFINED:
|
1130 |
|
|
/* If CFI explicitly specified that the value isn't defined,
|
1131 |
|
|
mark it as optimized away; the value isn't available. */
|
1132 |
|
|
return frame_unwind_got_optimized (this_frame, regnum);
|
1133 |
|
|
|
1134 |
|
|
case DWARF2_FRAME_REG_SAVED_OFFSET:
|
1135 |
|
|
addr = cache->cfa + cache->reg[regnum].loc.offset;
|
1136 |
|
|
return frame_unwind_got_memory (this_frame, regnum, addr);
|
1137 |
|
|
|
1138 |
|
|
case DWARF2_FRAME_REG_SAVED_REG:
|
1139 |
|
|
realnum
|
1140 |
|
|
= gdbarch_dwarf2_reg_to_regnum (gdbarch, cache->reg[regnum].loc.reg);
|
1141 |
|
|
return frame_unwind_got_register (this_frame, regnum, realnum);
|
1142 |
|
|
|
1143 |
|
|
case DWARF2_FRAME_REG_SAVED_EXP:
|
1144 |
|
|
addr = execute_stack_op (cache->reg[regnum].loc.exp,
|
1145 |
|
|
cache->reg[regnum].exp_len,
|
1146 |
|
|
cache->addr_size, cache->text_offset,
|
1147 |
|
|
this_frame, cache->cfa, 1);
|
1148 |
|
|
return frame_unwind_got_memory (this_frame, regnum, addr);
|
1149 |
|
|
|
1150 |
|
|
case DWARF2_FRAME_REG_SAVED_VAL_OFFSET:
|
1151 |
|
|
addr = cache->cfa + cache->reg[regnum].loc.offset;
|
1152 |
|
|
return frame_unwind_got_constant (this_frame, regnum, addr);
|
1153 |
|
|
|
1154 |
|
|
case DWARF2_FRAME_REG_SAVED_VAL_EXP:
|
1155 |
|
|
addr = execute_stack_op (cache->reg[regnum].loc.exp,
|
1156 |
|
|
cache->reg[regnum].exp_len,
|
1157 |
|
|
cache->addr_size, cache->text_offset,
|
1158 |
|
|
this_frame, cache->cfa, 1);
|
1159 |
|
|
return frame_unwind_got_constant (this_frame, regnum, addr);
|
1160 |
|
|
|
1161 |
|
|
case DWARF2_FRAME_REG_UNSPECIFIED:
|
1162 |
|
|
/* GCC, in its infinite wisdom decided to not provide unwind
|
1163 |
|
|
information for registers that are "same value". Since
|
1164 |
|
|
DWARF2 (3 draft 7) doesn't define such behavior, said
|
1165 |
|
|
registers are actually undefined (which is different to CFI
|
1166 |
|
|
"undefined"). Code above issues a complaint about this.
|
1167 |
|
|
Here just fudge the books, assume GCC, and that the value is
|
1168 |
|
|
more inner on the stack. */
|
1169 |
|
|
return frame_unwind_got_register (this_frame, regnum, regnum);
|
1170 |
|
|
|
1171 |
|
|
case DWARF2_FRAME_REG_SAME_VALUE:
|
1172 |
|
|
return frame_unwind_got_register (this_frame, regnum, regnum);
|
1173 |
|
|
|
1174 |
|
|
case DWARF2_FRAME_REG_CFA:
|
1175 |
|
|
return frame_unwind_got_address (this_frame, regnum, cache->cfa);
|
1176 |
|
|
|
1177 |
|
|
case DWARF2_FRAME_REG_CFA_OFFSET:
|
1178 |
|
|
addr = cache->cfa + cache->reg[regnum].loc.offset;
|
1179 |
|
|
return frame_unwind_got_address (this_frame, regnum, addr);
|
1180 |
|
|
|
1181 |
|
|
case DWARF2_FRAME_REG_RA_OFFSET:
|
1182 |
|
|
addr = cache->reg[regnum].loc.offset;
|
1183 |
|
|
regnum = gdbarch_dwarf2_reg_to_regnum
|
1184 |
|
|
(gdbarch, cache->retaddr_reg.loc.reg);
|
1185 |
|
|
addr += get_frame_register_unsigned (this_frame, regnum);
|
1186 |
|
|
return frame_unwind_got_address (this_frame, regnum, addr);
|
1187 |
|
|
|
1188 |
|
|
case DWARF2_FRAME_REG_FN:
|
1189 |
|
|
return cache->reg[regnum].loc.fn (this_frame, this_cache, regnum);
|
1190 |
|
|
|
1191 |
|
|
default:
|
1192 |
|
|
internal_error (__FILE__, __LINE__, _("Unknown register rule."));
|
1193 |
|
|
}
|
1194 |
|
|
}
|
1195 |
|
|
|
1196 |
|
|
static int
|
1197 |
|
|
dwarf2_frame_sniffer (const struct frame_unwind *self,
|
1198 |
|
|
struct frame_info *this_frame, void **this_cache)
|
1199 |
|
|
{
|
1200 |
|
|
/* Grab an address that is guarenteed to reside somewhere within the
|
1201 |
|
|
function. get_frame_pc(), with a no-return next function, can
|
1202 |
|
|
end up returning something past the end of this function's body.
|
1203 |
|
|
If the frame we're sniffing for is a signal frame whose start
|
1204 |
|
|
address is placed on the stack by the OS, its FDE must
|
1205 |
|
|
extend one byte before its start address or we could potentially
|
1206 |
|
|
select the FDE of the previous function. */
|
1207 |
|
|
CORE_ADDR block_addr = get_frame_address_in_block (this_frame);
|
1208 |
|
|
struct dwarf2_fde *fde = dwarf2_frame_find_fde (&block_addr, NULL);
|
1209 |
|
|
|
1210 |
|
|
if (!fde)
|
1211 |
|
|
return 0;
|
1212 |
|
|
|
1213 |
|
|
/* On some targets, signal trampolines may have unwind information.
|
1214 |
|
|
We need to recognize them so that we set the frame type
|
1215 |
|
|
correctly. */
|
1216 |
|
|
|
1217 |
|
|
if (fde->cie->signal_frame
|
1218 |
|
|
|| dwarf2_frame_signal_frame_p (get_frame_arch (this_frame),
|
1219 |
|
|
this_frame))
|
1220 |
|
|
return self->type == SIGTRAMP_FRAME;
|
1221 |
|
|
|
1222 |
|
|
return self->type != SIGTRAMP_FRAME;
|
1223 |
|
|
}
|
1224 |
|
|
|
1225 |
|
|
static const struct frame_unwind dwarf2_frame_unwind =
|
1226 |
|
|
{
|
1227 |
|
|
NORMAL_FRAME,
|
1228 |
|
|
dwarf2_frame_this_id,
|
1229 |
|
|
dwarf2_frame_prev_register,
|
1230 |
|
|
NULL,
|
1231 |
|
|
dwarf2_frame_sniffer
|
1232 |
|
|
};
|
1233 |
|
|
|
1234 |
|
|
static const struct frame_unwind dwarf2_signal_frame_unwind =
|
1235 |
|
|
{
|
1236 |
|
|
SIGTRAMP_FRAME,
|
1237 |
|
|
dwarf2_frame_this_id,
|
1238 |
|
|
dwarf2_frame_prev_register,
|
1239 |
|
|
NULL,
|
1240 |
|
|
dwarf2_frame_sniffer
|
1241 |
|
|
};
|
1242 |
|
|
|
1243 |
|
|
/* Append the DWARF-2 frame unwinders to GDBARCH's list. */
|
1244 |
|
|
|
1245 |
|
|
void
|
1246 |
|
|
dwarf2_append_unwinders (struct gdbarch *gdbarch)
|
1247 |
|
|
{
|
1248 |
|
|
frame_unwind_append_unwinder (gdbarch, &dwarf2_frame_unwind);
|
1249 |
|
|
frame_unwind_append_unwinder (gdbarch, &dwarf2_signal_frame_unwind);
|
1250 |
|
|
}
|
1251 |
|
|
|
1252 |
|
|
|
1253 |
|
|
/* There is no explicitly defined relationship between the CFA and the
|
1254 |
|
|
location of frame's local variables and arguments/parameters.
|
1255 |
|
|
Therefore, frame base methods on this page should probably only be
|
1256 |
|
|
used as a last resort, just to avoid printing total garbage as a
|
1257 |
|
|
response to the "info frame" command. */
|
1258 |
|
|
|
1259 |
|
|
static CORE_ADDR
|
1260 |
|
|
dwarf2_frame_base_address (struct frame_info *this_frame, void **this_cache)
|
1261 |
|
|
{
|
1262 |
|
|
struct dwarf2_frame_cache *cache =
|
1263 |
|
|
dwarf2_frame_cache (this_frame, this_cache);
|
1264 |
|
|
|
1265 |
|
|
return cache->cfa;
|
1266 |
|
|
}
|
1267 |
|
|
|
1268 |
|
|
static const struct frame_base dwarf2_frame_base =
|
1269 |
|
|
{
|
1270 |
|
|
&dwarf2_frame_unwind,
|
1271 |
|
|
dwarf2_frame_base_address,
|
1272 |
|
|
dwarf2_frame_base_address,
|
1273 |
|
|
dwarf2_frame_base_address
|
1274 |
|
|
};
|
1275 |
|
|
|
1276 |
|
|
const struct frame_base *
|
1277 |
|
|
dwarf2_frame_base_sniffer (struct frame_info *this_frame)
|
1278 |
|
|
{
|
1279 |
|
|
CORE_ADDR block_addr = get_frame_address_in_block (this_frame);
|
1280 |
|
|
|
1281 |
|
|
if (dwarf2_frame_find_fde (&block_addr, NULL))
|
1282 |
|
|
return &dwarf2_frame_base;
|
1283 |
|
|
|
1284 |
|
|
return NULL;
|
1285 |
|
|
}
|
1286 |
|
|
|
1287 |
|
|
/* Compute the CFA for THIS_FRAME, but only if THIS_FRAME came from
|
1288 |
|
|
the DWARF unwinder. This is used to implement
|
1289 |
|
|
DW_OP_call_frame_cfa. */
|
1290 |
|
|
|
1291 |
|
|
CORE_ADDR
|
1292 |
|
|
dwarf2_frame_cfa (struct frame_info *this_frame)
|
1293 |
|
|
{
|
1294 |
|
|
while (get_frame_type (this_frame) == INLINE_FRAME)
|
1295 |
|
|
this_frame = get_prev_frame (this_frame);
|
1296 |
|
|
/* This restriction could be lifted if other unwinders are known to
|
1297 |
|
|
compute the frame base in a way compatible with the DWARF
|
1298 |
|
|
unwinder. */
|
1299 |
|
|
if (! frame_unwinder_is (this_frame, &dwarf2_frame_unwind))
|
1300 |
|
|
error (_("can't compute CFA for this frame"));
|
1301 |
|
|
return get_frame_base (this_frame);
|
1302 |
|
|
}
|
1303 |
|
|
|
1304 |
|
|
const struct objfile_data *dwarf2_frame_objfile_data;
|
1305 |
|
|
|
1306 |
|
|
static unsigned int
|
1307 |
|
|
read_1_byte (bfd *abfd, gdb_byte *buf)
|
1308 |
|
|
{
|
1309 |
|
|
return bfd_get_8 (abfd, buf);
|
1310 |
|
|
}
|
1311 |
|
|
|
1312 |
|
|
static unsigned int
|
1313 |
|
|
read_4_bytes (bfd *abfd, gdb_byte *buf)
|
1314 |
|
|
{
|
1315 |
|
|
return bfd_get_32 (abfd, buf);
|
1316 |
|
|
}
|
1317 |
|
|
|
1318 |
|
|
static ULONGEST
|
1319 |
|
|
read_8_bytes (bfd *abfd, gdb_byte *buf)
|
1320 |
|
|
{
|
1321 |
|
|
return bfd_get_64 (abfd, buf);
|
1322 |
|
|
}
|
1323 |
|
|
|
1324 |
|
|
static ULONGEST
|
1325 |
|
|
read_unsigned_leb128 (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
|
1326 |
|
|
{
|
1327 |
|
|
ULONGEST result;
|
1328 |
|
|
unsigned int num_read;
|
1329 |
|
|
int shift;
|
1330 |
|
|
gdb_byte byte;
|
1331 |
|
|
|
1332 |
|
|
result = 0;
|
1333 |
|
|
shift = 0;
|
1334 |
|
|
num_read = 0;
|
1335 |
|
|
|
1336 |
|
|
do
|
1337 |
|
|
{
|
1338 |
|
|
byte = bfd_get_8 (abfd, (bfd_byte *) buf);
|
1339 |
|
|
buf++;
|
1340 |
|
|
num_read++;
|
1341 |
|
|
result |= ((byte & 0x7f) << shift);
|
1342 |
|
|
shift += 7;
|
1343 |
|
|
}
|
1344 |
|
|
while (byte & 0x80);
|
1345 |
|
|
|
1346 |
|
|
*bytes_read_ptr = num_read;
|
1347 |
|
|
|
1348 |
|
|
return result;
|
1349 |
|
|
}
|
1350 |
|
|
|
1351 |
|
|
static LONGEST
|
1352 |
|
|
read_signed_leb128 (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
|
1353 |
|
|
{
|
1354 |
|
|
LONGEST result;
|
1355 |
|
|
int shift;
|
1356 |
|
|
unsigned int num_read;
|
1357 |
|
|
gdb_byte byte;
|
1358 |
|
|
|
1359 |
|
|
result = 0;
|
1360 |
|
|
shift = 0;
|
1361 |
|
|
num_read = 0;
|
1362 |
|
|
|
1363 |
|
|
do
|
1364 |
|
|
{
|
1365 |
|
|
byte = bfd_get_8 (abfd, (bfd_byte *) buf);
|
1366 |
|
|
buf++;
|
1367 |
|
|
num_read++;
|
1368 |
|
|
result |= ((byte & 0x7f) << shift);
|
1369 |
|
|
shift += 7;
|
1370 |
|
|
}
|
1371 |
|
|
while (byte & 0x80);
|
1372 |
|
|
|
1373 |
|
|
if (shift < 8 * sizeof (result) && (byte & 0x40))
|
1374 |
|
|
result |= -(((LONGEST)1) << shift);
|
1375 |
|
|
|
1376 |
|
|
*bytes_read_ptr = num_read;
|
1377 |
|
|
|
1378 |
|
|
return result;
|
1379 |
|
|
}
|
1380 |
|
|
|
1381 |
|
|
static ULONGEST
|
1382 |
|
|
read_initial_length (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
|
1383 |
|
|
{
|
1384 |
|
|
LONGEST result;
|
1385 |
|
|
|
1386 |
|
|
result = bfd_get_32 (abfd, buf);
|
1387 |
|
|
if (result == 0xffffffff)
|
1388 |
|
|
{
|
1389 |
|
|
result = bfd_get_64 (abfd, buf + 4);
|
1390 |
|
|
*bytes_read_ptr = 12;
|
1391 |
|
|
}
|
1392 |
|
|
else
|
1393 |
|
|
*bytes_read_ptr = 4;
|
1394 |
|
|
|
1395 |
|
|
return result;
|
1396 |
|
|
}
|
1397 |
|
|
|
1398 |
|
|
|
1399 |
|
|
/* Pointer encoding helper functions. */
|
1400 |
|
|
|
1401 |
|
|
/* GCC supports exception handling based on DWARF2 CFI. However, for
|
1402 |
|
|
technical reasons, it encodes addresses in its FDE's in a different
|
1403 |
|
|
way. Several "pointer encodings" are supported. The encoding
|
1404 |
|
|
that's used for a particular FDE is determined by the 'R'
|
1405 |
|
|
augmentation in the associated CIE. The argument of this
|
1406 |
|
|
augmentation is a single byte.
|
1407 |
|
|
|
1408 |
|
|
The address can be encoded as 2 bytes, 4 bytes, 8 bytes, or as a
|
1409 |
|
|
LEB128. This is encoded in bits 0, 1 and 2. Bit 3 encodes whether
|
1410 |
|
|
the address is signed or unsigned. Bits 4, 5 and 6 encode how the
|
1411 |
|
|
address should be interpreted (absolute, relative to the current
|
1412 |
|
|
position in the FDE, ...). Bit 7, indicates that the address
|
1413 |
|
|
should be dereferenced. */
|
1414 |
|
|
|
1415 |
|
|
static gdb_byte
|
1416 |
|
|
encoding_for_size (unsigned int size)
|
1417 |
|
|
{
|
1418 |
|
|
switch (size)
|
1419 |
|
|
{
|
1420 |
|
|
case 2:
|
1421 |
|
|
return DW_EH_PE_udata2;
|
1422 |
|
|
case 4:
|
1423 |
|
|
return DW_EH_PE_udata4;
|
1424 |
|
|
case 8:
|
1425 |
|
|
return DW_EH_PE_udata8;
|
1426 |
|
|
default:
|
1427 |
|
|
internal_error (__FILE__, __LINE__, _("Unsupported address size"));
|
1428 |
|
|
}
|
1429 |
|
|
}
|
1430 |
|
|
|
1431 |
|
|
static CORE_ADDR
|
1432 |
|
|
read_encoded_value (struct comp_unit *unit, gdb_byte encoding,
|
1433 |
|
|
int ptr_len, const gdb_byte *buf,
|
1434 |
|
|
unsigned int *bytes_read_ptr,
|
1435 |
|
|
CORE_ADDR func_base)
|
1436 |
|
|
{
|
1437 |
|
|
ptrdiff_t offset;
|
1438 |
|
|
CORE_ADDR base;
|
1439 |
|
|
|
1440 |
|
|
/* GCC currently doesn't generate DW_EH_PE_indirect encodings for
|
1441 |
|
|
FDE's. */
|
1442 |
|
|
if (encoding & DW_EH_PE_indirect)
|
1443 |
|
|
internal_error (__FILE__, __LINE__,
|
1444 |
|
|
_("Unsupported encoding: DW_EH_PE_indirect"));
|
1445 |
|
|
|
1446 |
|
|
*bytes_read_ptr = 0;
|
1447 |
|
|
|
1448 |
|
|
switch (encoding & 0x70)
|
1449 |
|
|
{
|
1450 |
|
|
case DW_EH_PE_absptr:
|
1451 |
|
|
base = 0;
|
1452 |
|
|
break;
|
1453 |
|
|
case DW_EH_PE_pcrel:
|
1454 |
|
|
base = bfd_get_section_vma (unit->abfd, unit->dwarf_frame_section);
|
1455 |
|
|
base += (buf - unit->dwarf_frame_buffer);
|
1456 |
|
|
break;
|
1457 |
|
|
case DW_EH_PE_datarel:
|
1458 |
|
|
base = unit->dbase;
|
1459 |
|
|
break;
|
1460 |
|
|
case DW_EH_PE_textrel:
|
1461 |
|
|
base = unit->tbase;
|
1462 |
|
|
break;
|
1463 |
|
|
case DW_EH_PE_funcrel:
|
1464 |
|
|
base = func_base;
|
1465 |
|
|
break;
|
1466 |
|
|
case DW_EH_PE_aligned:
|
1467 |
|
|
base = 0;
|
1468 |
|
|
offset = buf - unit->dwarf_frame_buffer;
|
1469 |
|
|
if ((offset % ptr_len) != 0)
|
1470 |
|
|
{
|
1471 |
|
|
*bytes_read_ptr = ptr_len - (offset % ptr_len);
|
1472 |
|
|
buf += *bytes_read_ptr;
|
1473 |
|
|
}
|
1474 |
|
|
break;
|
1475 |
|
|
default:
|
1476 |
|
|
internal_error (__FILE__, __LINE__, _("Invalid or unsupported encoding"));
|
1477 |
|
|
}
|
1478 |
|
|
|
1479 |
|
|
if ((encoding & 0x07) == 0x00)
|
1480 |
|
|
{
|
1481 |
|
|
encoding |= encoding_for_size (ptr_len);
|
1482 |
|
|
if (bfd_get_sign_extend_vma (unit->abfd))
|
1483 |
|
|
encoding |= DW_EH_PE_signed;
|
1484 |
|
|
}
|
1485 |
|
|
|
1486 |
|
|
switch (encoding & 0x0f)
|
1487 |
|
|
{
|
1488 |
|
|
case DW_EH_PE_uleb128:
|
1489 |
|
|
{
|
1490 |
|
|
ULONGEST value;
|
1491 |
|
|
const gdb_byte *end_buf = buf + (sizeof (value) + 1) * 8 / 7;
|
1492 |
|
|
|
1493 |
|
|
*bytes_read_ptr += read_uleb128 (buf, end_buf, &value) - buf;
|
1494 |
|
|
return base + value;
|
1495 |
|
|
}
|
1496 |
|
|
case DW_EH_PE_udata2:
|
1497 |
|
|
*bytes_read_ptr += 2;
|
1498 |
|
|
return (base + bfd_get_16 (unit->abfd, (bfd_byte *) buf));
|
1499 |
|
|
case DW_EH_PE_udata4:
|
1500 |
|
|
*bytes_read_ptr += 4;
|
1501 |
|
|
return (base + bfd_get_32 (unit->abfd, (bfd_byte *) buf));
|
1502 |
|
|
case DW_EH_PE_udata8:
|
1503 |
|
|
*bytes_read_ptr += 8;
|
1504 |
|
|
return (base + bfd_get_64 (unit->abfd, (bfd_byte *) buf));
|
1505 |
|
|
case DW_EH_PE_sleb128:
|
1506 |
|
|
{
|
1507 |
|
|
LONGEST value;
|
1508 |
|
|
const gdb_byte *end_buf = buf + (sizeof (value) + 1) * 8 / 7;
|
1509 |
|
|
|
1510 |
|
|
*bytes_read_ptr += read_sleb128 (buf, end_buf, &value) - buf;
|
1511 |
|
|
return base + value;
|
1512 |
|
|
}
|
1513 |
|
|
case DW_EH_PE_sdata2:
|
1514 |
|
|
*bytes_read_ptr += 2;
|
1515 |
|
|
return (base + bfd_get_signed_16 (unit->abfd, (bfd_byte *) buf));
|
1516 |
|
|
case DW_EH_PE_sdata4:
|
1517 |
|
|
*bytes_read_ptr += 4;
|
1518 |
|
|
return (base + bfd_get_signed_32 (unit->abfd, (bfd_byte *) buf));
|
1519 |
|
|
case DW_EH_PE_sdata8:
|
1520 |
|
|
*bytes_read_ptr += 8;
|
1521 |
|
|
return (base + bfd_get_signed_64 (unit->abfd, (bfd_byte *) buf));
|
1522 |
|
|
default:
|
1523 |
|
|
internal_error (__FILE__, __LINE__, _("Invalid or unsupported encoding"));
|
1524 |
|
|
}
|
1525 |
|
|
}
|
1526 |
|
|
|
1527 |
|
|
|
1528 |
|
|
static int
|
1529 |
|
|
bsearch_cie_cmp (const void *key, const void *element)
|
1530 |
|
|
{
|
1531 |
|
|
ULONGEST cie_pointer = *(ULONGEST *) key;
|
1532 |
|
|
struct dwarf2_cie *cie = *(struct dwarf2_cie **) element;
|
1533 |
|
|
|
1534 |
|
|
if (cie_pointer == cie->cie_pointer)
|
1535 |
|
|
return 0;
|
1536 |
|
|
|
1537 |
|
|
return (cie_pointer < cie->cie_pointer) ? -1 : 1;
|
1538 |
|
|
}
|
1539 |
|
|
|
1540 |
|
|
/* Find CIE with the given CIE_POINTER in CIE_TABLE. */
|
1541 |
|
|
static struct dwarf2_cie *
|
1542 |
|
|
find_cie (struct dwarf2_cie_table *cie_table, ULONGEST cie_pointer)
|
1543 |
|
|
{
|
1544 |
|
|
struct dwarf2_cie **p_cie;
|
1545 |
|
|
|
1546 |
|
|
/* The C standard (ISO/IEC 9899:TC2) requires the BASE argument to
|
1547 |
|
|
bsearch be non-NULL. */
|
1548 |
|
|
if (cie_table->entries == NULL)
|
1549 |
|
|
{
|
1550 |
|
|
gdb_assert (cie_table->num_entries == 0);
|
1551 |
|
|
return NULL;
|
1552 |
|
|
}
|
1553 |
|
|
|
1554 |
|
|
p_cie = bsearch (&cie_pointer, cie_table->entries, cie_table->num_entries,
|
1555 |
|
|
sizeof (cie_table->entries[0]), bsearch_cie_cmp);
|
1556 |
|
|
if (p_cie != NULL)
|
1557 |
|
|
return *p_cie;
|
1558 |
|
|
return NULL;
|
1559 |
|
|
}
|
1560 |
|
|
|
1561 |
|
|
/* Add a pointer to new CIE to the CIE_TABLE, allocating space for it. */
|
1562 |
|
|
static void
|
1563 |
|
|
add_cie (struct dwarf2_cie_table *cie_table, struct dwarf2_cie *cie)
|
1564 |
|
|
{
|
1565 |
|
|
const int n = cie_table->num_entries;
|
1566 |
|
|
|
1567 |
|
|
gdb_assert (n < 1
|
1568 |
|
|
|| cie_table->entries[n - 1]->cie_pointer < cie->cie_pointer);
|
1569 |
|
|
|
1570 |
|
|
cie_table->entries =
|
1571 |
|
|
xrealloc (cie_table->entries, (n + 1) * sizeof (cie_table->entries[0]));
|
1572 |
|
|
cie_table->entries[n] = cie;
|
1573 |
|
|
cie_table->num_entries = n + 1;
|
1574 |
|
|
}
|
1575 |
|
|
|
1576 |
|
|
static int
|
1577 |
|
|
bsearch_fde_cmp (const void *key, const void *element)
|
1578 |
|
|
{
|
1579 |
|
|
CORE_ADDR seek_pc = *(CORE_ADDR *) key;
|
1580 |
|
|
struct dwarf2_fde *fde = *(struct dwarf2_fde **) element;
|
1581 |
|
|
|
1582 |
|
|
if (seek_pc < fde->initial_location)
|
1583 |
|
|
return -1;
|
1584 |
|
|
if (seek_pc < fde->initial_location + fde->address_range)
|
1585 |
|
|
return 0;
|
1586 |
|
|
return 1;
|
1587 |
|
|
}
|
1588 |
|
|
|
1589 |
|
|
/* Find the FDE for *PC. Return a pointer to the FDE, and store the
|
1590 |
|
|
inital location associated with it into *PC. */
|
1591 |
|
|
|
1592 |
|
|
static struct dwarf2_fde *
|
1593 |
|
|
dwarf2_frame_find_fde (CORE_ADDR *pc, CORE_ADDR *out_offset)
|
1594 |
|
|
{
|
1595 |
|
|
struct objfile *objfile;
|
1596 |
|
|
|
1597 |
|
|
ALL_OBJFILES (objfile)
|
1598 |
|
|
{
|
1599 |
|
|
struct dwarf2_fde_table *fde_table;
|
1600 |
|
|
struct dwarf2_fde **p_fde;
|
1601 |
|
|
CORE_ADDR offset;
|
1602 |
|
|
CORE_ADDR seek_pc;
|
1603 |
|
|
|
1604 |
|
|
fde_table = objfile_data (objfile, dwarf2_frame_objfile_data);
|
1605 |
|
|
if (fde_table == NULL)
|
1606 |
|
|
{
|
1607 |
|
|
dwarf2_build_frame_info (objfile);
|
1608 |
|
|
fde_table = objfile_data (objfile, dwarf2_frame_objfile_data);
|
1609 |
|
|
}
|
1610 |
|
|
gdb_assert (fde_table != NULL);
|
1611 |
|
|
|
1612 |
|
|
if (fde_table->num_entries == 0)
|
1613 |
|
|
continue;
|
1614 |
|
|
|
1615 |
|
|
gdb_assert (objfile->section_offsets);
|
1616 |
|
|
offset = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
|
1617 |
|
|
|
1618 |
|
|
gdb_assert (fde_table->num_entries > 0);
|
1619 |
|
|
if (*pc < offset + fde_table->entries[0]->initial_location)
|
1620 |
|
|
continue;
|
1621 |
|
|
|
1622 |
|
|
seek_pc = *pc - offset;
|
1623 |
|
|
p_fde = bsearch (&seek_pc, fde_table->entries, fde_table->num_entries,
|
1624 |
|
|
sizeof (fde_table->entries[0]), bsearch_fde_cmp);
|
1625 |
|
|
if (p_fde != NULL)
|
1626 |
|
|
{
|
1627 |
|
|
*pc = (*p_fde)->initial_location + offset;
|
1628 |
|
|
if (out_offset)
|
1629 |
|
|
*out_offset = offset;
|
1630 |
|
|
return *p_fde;
|
1631 |
|
|
}
|
1632 |
|
|
}
|
1633 |
|
|
return NULL;
|
1634 |
|
|
}
|
1635 |
|
|
|
1636 |
|
|
/* Add a pointer to new FDE to the FDE_TABLE, allocating space for it. */
|
1637 |
|
|
static void
|
1638 |
|
|
add_fde (struct dwarf2_fde_table *fde_table, struct dwarf2_fde *fde)
|
1639 |
|
|
{
|
1640 |
|
|
if (fde->address_range == 0)
|
1641 |
|
|
/* Discard useless FDEs. */
|
1642 |
|
|
return;
|
1643 |
|
|
|
1644 |
|
|
fde_table->num_entries += 1;
|
1645 |
|
|
fde_table->entries =
|
1646 |
|
|
xrealloc (fde_table->entries,
|
1647 |
|
|
fde_table->num_entries * sizeof (fde_table->entries[0]));
|
1648 |
|
|
fde_table->entries[fde_table->num_entries - 1] = fde;
|
1649 |
|
|
}
|
1650 |
|
|
|
1651 |
|
|
#ifdef CC_HAS_LONG_LONG
|
1652 |
|
|
#define DW64_CIE_ID 0xffffffffffffffffULL
|
1653 |
|
|
#else
|
1654 |
|
|
#define DW64_CIE_ID ~0
|
1655 |
|
|
#endif
|
1656 |
|
|
|
1657 |
|
|
static gdb_byte *decode_frame_entry (struct comp_unit *unit, gdb_byte *start,
|
1658 |
|
|
int eh_frame_p,
|
1659 |
|
|
struct dwarf2_cie_table *cie_table,
|
1660 |
|
|
struct dwarf2_fde_table *fde_table);
|
1661 |
|
|
|
1662 |
|
|
/* Decode the next CIE or FDE. Return NULL if invalid input, otherwise
|
1663 |
|
|
the next byte to be processed. */
|
1664 |
|
|
static gdb_byte *
|
1665 |
|
|
decode_frame_entry_1 (struct comp_unit *unit, gdb_byte *start, int eh_frame_p,
|
1666 |
|
|
struct dwarf2_cie_table *cie_table,
|
1667 |
|
|
struct dwarf2_fde_table *fde_table)
|
1668 |
|
|
{
|
1669 |
|
|
struct gdbarch *gdbarch = get_objfile_arch (unit->objfile);
|
1670 |
|
|
gdb_byte *buf, *end;
|
1671 |
|
|
LONGEST length;
|
1672 |
|
|
unsigned int bytes_read;
|
1673 |
|
|
int dwarf64_p;
|
1674 |
|
|
ULONGEST cie_id;
|
1675 |
|
|
ULONGEST cie_pointer;
|
1676 |
|
|
|
1677 |
|
|
buf = start;
|
1678 |
|
|
length = read_initial_length (unit->abfd, buf, &bytes_read);
|
1679 |
|
|
buf += bytes_read;
|
1680 |
|
|
end = buf + length;
|
1681 |
|
|
|
1682 |
|
|
/* Are we still within the section? */
|
1683 |
|
|
if (end > unit->dwarf_frame_buffer + unit->dwarf_frame_size)
|
1684 |
|
|
return NULL;
|
1685 |
|
|
|
1686 |
|
|
if (length == 0)
|
1687 |
|
|
return end;
|
1688 |
|
|
|
1689 |
|
|
/* Distinguish between 32 and 64-bit encoded frame info. */
|
1690 |
|
|
dwarf64_p = (bytes_read == 12);
|
1691 |
|
|
|
1692 |
|
|
/* In a .eh_frame section, zero is used to distinguish CIEs from FDEs. */
|
1693 |
|
|
if (eh_frame_p)
|
1694 |
|
|
cie_id = 0;
|
1695 |
|
|
else if (dwarf64_p)
|
1696 |
|
|
cie_id = DW64_CIE_ID;
|
1697 |
|
|
else
|
1698 |
|
|
cie_id = DW_CIE_ID;
|
1699 |
|
|
|
1700 |
|
|
if (dwarf64_p)
|
1701 |
|
|
{
|
1702 |
|
|
cie_pointer = read_8_bytes (unit->abfd, buf);
|
1703 |
|
|
buf += 8;
|
1704 |
|
|
}
|
1705 |
|
|
else
|
1706 |
|
|
{
|
1707 |
|
|
cie_pointer = read_4_bytes (unit->abfd, buf);
|
1708 |
|
|
buf += 4;
|
1709 |
|
|
}
|
1710 |
|
|
|
1711 |
|
|
if (cie_pointer == cie_id)
|
1712 |
|
|
{
|
1713 |
|
|
/* This is a CIE. */
|
1714 |
|
|
struct dwarf2_cie *cie;
|
1715 |
|
|
char *augmentation;
|
1716 |
|
|
unsigned int cie_version;
|
1717 |
|
|
|
1718 |
|
|
/* Record the offset into the .debug_frame section of this CIE. */
|
1719 |
|
|
cie_pointer = start - unit->dwarf_frame_buffer;
|
1720 |
|
|
|
1721 |
|
|
/* Check whether we've already read it. */
|
1722 |
|
|
if (find_cie (cie_table, cie_pointer))
|
1723 |
|
|
return end;
|
1724 |
|
|
|
1725 |
|
|
cie = (struct dwarf2_cie *)
|
1726 |
|
|
obstack_alloc (&unit->objfile->objfile_obstack,
|
1727 |
|
|
sizeof (struct dwarf2_cie));
|
1728 |
|
|
cie->initial_instructions = NULL;
|
1729 |
|
|
cie->cie_pointer = cie_pointer;
|
1730 |
|
|
|
1731 |
|
|
/* The encoding for FDE's in a normal .debug_frame section
|
1732 |
|
|
depends on the target address size. */
|
1733 |
|
|
cie->encoding = DW_EH_PE_absptr;
|
1734 |
|
|
|
1735 |
|
|
/* The target address size. For .eh_frame FDEs this is considered
|
1736 |
|
|
equal to the size of a target pointer. For .dwarf_frame FDEs,
|
1737 |
|
|
this is supposed to be the target address size from the associated
|
1738 |
|
|
CU header. FIXME: We do not have a good way to determine the
|
1739 |
|
|
latter. Always use the target pointer size for now. */
|
1740 |
|
|
cie->addr_size = gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT;
|
1741 |
|
|
|
1742 |
|
|
/* We'll determine the final value later, but we need to
|
1743 |
|
|
initialize it conservatively. */
|
1744 |
|
|
cie->signal_frame = 0;
|
1745 |
|
|
|
1746 |
|
|
/* Check version number. */
|
1747 |
|
|
cie_version = read_1_byte (unit->abfd, buf);
|
1748 |
|
|
if (cie_version != 1 && cie_version != 3 && cie_version != 4)
|
1749 |
|
|
return NULL;
|
1750 |
|
|
cie->version = cie_version;
|
1751 |
|
|
buf += 1;
|
1752 |
|
|
|
1753 |
|
|
/* Interpret the interesting bits of the augmentation. */
|
1754 |
|
|
cie->augmentation = augmentation = (char *) buf;
|
1755 |
|
|
buf += (strlen (augmentation) + 1);
|
1756 |
|
|
|
1757 |
|
|
/* Ignore armcc augmentations. We only use them for quirks,
|
1758 |
|
|
and that doesn't happen until later. */
|
1759 |
|
|
if (strncmp (augmentation, "armcc", 5) == 0)
|
1760 |
|
|
augmentation += strlen (augmentation);
|
1761 |
|
|
|
1762 |
|
|
/* The GCC 2.x "eh" augmentation has a pointer immediately
|
1763 |
|
|
following the augmentation string, so it must be handled
|
1764 |
|
|
first. */
|
1765 |
|
|
if (augmentation[0] == 'e' && augmentation[1] == 'h')
|
1766 |
|
|
{
|
1767 |
|
|
/* Skip. */
|
1768 |
|
|
buf += gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT;
|
1769 |
|
|
augmentation += 2;
|
1770 |
|
|
}
|
1771 |
|
|
|
1772 |
|
|
if (cie->version >= 4)
|
1773 |
|
|
{
|
1774 |
|
|
/* FIXME: check that this is the same as from the CU header. */
|
1775 |
|
|
cie->addr_size = read_1_byte (unit->abfd, buf);
|
1776 |
|
|
++buf;
|
1777 |
|
|
cie->segment_size = read_1_byte (unit->abfd, buf);
|
1778 |
|
|
++buf;
|
1779 |
|
|
}
|
1780 |
|
|
else
|
1781 |
|
|
{
|
1782 |
|
|
cie->addr_size = gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT;
|
1783 |
|
|
cie->segment_size = 0;
|
1784 |
|
|
}
|
1785 |
|
|
|
1786 |
|
|
cie->code_alignment_factor =
|
1787 |
|
|
read_unsigned_leb128 (unit->abfd, buf, &bytes_read);
|
1788 |
|
|
buf += bytes_read;
|
1789 |
|
|
|
1790 |
|
|
cie->data_alignment_factor =
|
1791 |
|
|
read_signed_leb128 (unit->abfd, buf, &bytes_read);
|
1792 |
|
|
buf += bytes_read;
|
1793 |
|
|
|
1794 |
|
|
if (cie_version == 1)
|
1795 |
|
|
{
|
1796 |
|
|
cie->return_address_register = read_1_byte (unit->abfd, buf);
|
1797 |
|
|
bytes_read = 1;
|
1798 |
|
|
}
|
1799 |
|
|
else
|
1800 |
|
|
cie->return_address_register = read_unsigned_leb128 (unit->abfd, buf,
|
1801 |
|
|
&bytes_read);
|
1802 |
|
|
cie->return_address_register
|
1803 |
|
|
= dwarf2_frame_adjust_regnum (gdbarch,
|
1804 |
|
|
cie->return_address_register,
|
1805 |
|
|
eh_frame_p);
|
1806 |
|
|
|
1807 |
|
|
buf += bytes_read;
|
1808 |
|
|
|
1809 |
|
|
cie->saw_z_augmentation = (*augmentation == 'z');
|
1810 |
|
|
if (cie->saw_z_augmentation)
|
1811 |
|
|
{
|
1812 |
|
|
ULONGEST length;
|
1813 |
|
|
|
1814 |
|
|
length = read_unsigned_leb128 (unit->abfd, buf, &bytes_read);
|
1815 |
|
|
buf += bytes_read;
|
1816 |
|
|
if (buf > end)
|
1817 |
|
|
return NULL;
|
1818 |
|
|
cie->initial_instructions = buf + length;
|
1819 |
|
|
augmentation++;
|
1820 |
|
|
}
|
1821 |
|
|
|
1822 |
|
|
while (*augmentation)
|
1823 |
|
|
{
|
1824 |
|
|
/* "L" indicates a byte showing how the LSDA pointer is encoded. */
|
1825 |
|
|
if (*augmentation == 'L')
|
1826 |
|
|
{
|
1827 |
|
|
/* Skip. */
|
1828 |
|
|
buf++;
|
1829 |
|
|
augmentation++;
|
1830 |
|
|
}
|
1831 |
|
|
|
1832 |
|
|
/* "R" indicates a byte indicating how FDE addresses are encoded. */
|
1833 |
|
|
else if (*augmentation == 'R')
|
1834 |
|
|
{
|
1835 |
|
|
cie->encoding = *buf++;
|
1836 |
|
|
augmentation++;
|
1837 |
|
|
}
|
1838 |
|
|
|
1839 |
|
|
/* "P" indicates a personality routine in the CIE augmentation. */
|
1840 |
|
|
else if (*augmentation == 'P')
|
1841 |
|
|
{
|
1842 |
|
|
/* Skip. Avoid indirection since we throw away the result. */
|
1843 |
|
|
gdb_byte encoding = (*buf++) & ~DW_EH_PE_indirect;
|
1844 |
|
|
read_encoded_value (unit, encoding, cie->addr_size,
|
1845 |
|
|
buf, &bytes_read, 0);
|
1846 |
|
|
buf += bytes_read;
|
1847 |
|
|
augmentation++;
|
1848 |
|
|
}
|
1849 |
|
|
|
1850 |
|
|
/* "S" indicates a signal frame, such that the return
|
1851 |
|
|
address must not be decremented to locate the call frame
|
1852 |
|
|
info for the previous frame; it might even be the first
|
1853 |
|
|
instruction of a function, so decrementing it would take
|
1854 |
|
|
us to a different function. */
|
1855 |
|
|
else if (*augmentation == 'S')
|
1856 |
|
|
{
|
1857 |
|
|
cie->signal_frame = 1;
|
1858 |
|
|
augmentation++;
|
1859 |
|
|
}
|
1860 |
|
|
|
1861 |
|
|
/* Otherwise we have an unknown augmentation. Assume that either
|
1862 |
|
|
there is no augmentation data, or we saw a 'z' prefix. */
|
1863 |
|
|
else
|
1864 |
|
|
{
|
1865 |
|
|
if (cie->initial_instructions)
|
1866 |
|
|
buf = cie->initial_instructions;
|
1867 |
|
|
break;
|
1868 |
|
|
}
|
1869 |
|
|
}
|
1870 |
|
|
|
1871 |
|
|
cie->initial_instructions = buf;
|
1872 |
|
|
cie->end = end;
|
1873 |
|
|
cie->unit = unit;
|
1874 |
|
|
|
1875 |
|
|
add_cie (cie_table, cie);
|
1876 |
|
|
}
|
1877 |
|
|
else
|
1878 |
|
|
{
|
1879 |
|
|
/* This is a FDE. */
|
1880 |
|
|
struct dwarf2_fde *fde;
|
1881 |
|
|
|
1882 |
|
|
/* In an .eh_frame section, the CIE pointer is the delta between the
|
1883 |
|
|
address within the FDE where the CIE pointer is stored and the
|
1884 |
|
|
address of the CIE. Convert it to an offset into the .eh_frame
|
1885 |
|
|
section. */
|
1886 |
|
|
if (eh_frame_p)
|
1887 |
|
|
{
|
1888 |
|
|
cie_pointer = buf - unit->dwarf_frame_buffer - cie_pointer;
|
1889 |
|
|
cie_pointer -= (dwarf64_p ? 8 : 4);
|
1890 |
|
|
}
|
1891 |
|
|
|
1892 |
|
|
/* In either case, validate the result is still within the section. */
|
1893 |
|
|
if (cie_pointer >= unit->dwarf_frame_size)
|
1894 |
|
|
return NULL;
|
1895 |
|
|
|
1896 |
|
|
fde = (struct dwarf2_fde *)
|
1897 |
|
|
obstack_alloc (&unit->objfile->objfile_obstack,
|
1898 |
|
|
sizeof (struct dwarf2_fde));
|
1899 |
|
|
fde->cie = find_cie (cie_table, cie_pointer);
|
1900 |
|
|
if (fde->cie == NULL)
|
1901 |
|
|
{
|
1902 |
|
|
decode_frame_entry (unit, unit->dwarf_frame_buffer + cie_pointer,
|
1903 |
|
|
eh_frame_p, cie_table, fde_table);
|
1904 |
|
|
fde->cie = find_cie (cie_table, cie_pointer);
|
1905 |
|
|
}
|
1906 |
|
|
|
1907 |
|
|
gdb_assert (fde->cie != NULL);
|
1908 |
|
|
|
1909 |
|
|
fde->initial_location =
|
1910 |
|
|
read_encoded_value (unit, fde->cie->encoding, fde->cie->addr_size,
|
1911 |
|
|
buf, &bytes_read, 0);
|
1912 |
|
|
buf += bytes_read;
|
1913 |
|
|
|
1914 |
|
|
fde->address_range =
|
1915 |
|
|
read_encoded_value (unit, fde->cie->encoding & 0x0f,
|
1916 |
|
|
fde->cie->addr_size, buf, &bytes_read, 0);
|
1917 |
|
|
buf += bytes_read;
|
1918 |
|
|
|
1919 |
|
|
/* A 'z' augmentation in the CIE implies the presence of an
|
1920 |
|
|
augmentation field in the FDE as well. The only thing known
|
1921 |
|
|
to be in here at present is the LSDA entry for EH. So we
|
1922 |
|
|
can skip the whole thing. */
|
1923 |
|
|
if (fde->cie->saw_z_augmentation)
|
1924 |
|
|
{
|
1925 |
|
|
ULONGEST length;
|
1926 |
|
|
|
1927 |
|
|
length = read_unsigned_leb128 (unit->abfd, buf, &bytes_read);
|
1928 |
|
|
buf += bytes_read + length;
|
1929 |
|
|
if (buf > end)
|
1930 |
|
|
return NULL;
|
1931 |
|
|
}
|
1932 |
|
|
|
1933 |
|
|
fde->instructions = buf;
|
1934 |
|
|
fde->end = end;
|
1935 |
|
|
|
1936 |
|
|
fde->eh_frame_p = eh_frame_p;
|
1937 |
|
|
|
1938 |
|
|
add_fde (fde_table, fde);
|
1939 |
|
|
}
|
1940 |
|
|
|
1941 |
|
|
return end;
|
1942 |
|
|
}
|
1943 |
|
|
|
1944 |
|
|
/* Read a CIE or FDE in BUF and decode it. */
|
1945 |
|
|
static gdb_byte *
|
1946 |
|
|
decode_frame_entry (struct comp_unit *unit, gdb_byte *start, int eh_frame_p,
|
1947 |
|
|
struct dwarf2_cie_table *cie_table,
|
1948 |
|
|
struct dwarf2_fde_table *fde_table)
|
1949 |
|
|
{
|
1950 |
|
|
enum { NONE, ALIGN4, ALIGN8, FAIL } workaround = NONE;
|
1951 |
|
|
gdb_byte *ret;
|
1952 |
|
|
ptrdiff_t start_offset;
|
1953 |
|
|
|
1954 |
|
|
while (1)
|
1955 |
|
|
{
|
1956 |
|
|
ret = decode_frame_entry_1 (unit, start, eh_frame_p,
|
1957 |
|
|
cie_table, fde_table);
|
1958 |
|
|
if (ret != NULL)
|
1959 |
|
|
break;
|
1960 |
|
|
|
1961 |
|
|
/* We have corrupt input data of some form. */
|
1962 |
|
|
|
1963 |
|
|
/* ??? Try, weakly, to work around compiler/assembler/linker bugs
|
1964 |
|
|
and mismatches wrt padding and alignment of debug sections. */
|
1965 |
|
|
/* Note that there is no requirement in the standard for any
|
1966 |
|
|
alignment at all in the frame unwind sections. Testing for
|
1967 |
|
|
alignment before trying to interpret data would be incorrect.
|
1968 |
|
|
|
1969 |
|
|
However, GCC traditionally arranged for frame sections to be
|
1970 |
|
|
sized such that the FDE length and CIE fields happen to be
|
1971 |
|
|
aligned (in theory, for performance). This, unfortunately,
|
1972 |
|
|
was done with .align directives, which had the side effect of
|
1973 |
|
|
forcing the section to be aligned by the linker.
|
1974 |
|
|
|
1975 |
|
|
This becomes a problem when you have some other producer that
|
1976 |
|
|
creates frame sections that are not as strictly aligned. That
|
1977 |
|
|
produces a hole in the frame info that gets filled by the
|
1978 |
|
|
linker with zeros.
|
1979 |
|
|
|
1980 |
|
|
The GCC behaviour is arguably a bug, but it's effectively now
|
1981 |
|
|
part of the ABI, so we're now stuck with it, at least at the
|
1982 |
|
|
object file level. A smart linker may decide, in the process
|
1983 |
|
|
of compressing duplicate CIE information, that it can rewrite
|
1984 |
|
|
the entire output section without this extra padding. */
|
1985 |
|
|
|
1986 |
|
|
start_offset = start - unit->dwarf_frame_buffer;
|
1987 |
|
|
if (workaround < ALIGN4 && (start_offset & 3) != 0)
|
1988 |
|
|
{
|
1989 |
|
|
start += 4 - (start_offset & 3);
|
1990 |
|
|
workaround = ALIGN4;
|
1991 |
|
|
continue;
|
1992 |
|
|
}
|
1993 |
|
|
if (workaround < ALIGN8 && (start_offset & 7) != 0)
|
1994 |
|
|
{
|
1995 |
|
|
start += 8 - (start_offset & 7);
|
1996 |
|
|
workaround = ALIGN8;
|
1997 |
|
|
continue;
|
1998 |
|
|
}
|
1999 |
|
|
|
2000 |
|
|
/* Nothing left to try. Arrange to return as if we've consumed
|
2001 |
|
|
the entire input section. Hopefully we'll get valid info from
|
2002 |
|
|
the other of .debug_frame/.eh_frame. */
|
2003 |
|
|
workaround = FAIL;
|
2004 |
|
|
ret = unit->dwarf_frame_buffer + unit->dwarf_frame_size;
|
2005 |
|
|
break;
|
2006 |
|
|
}
|
2007 |
|
|
|
2008 |
|
|
switch (workaround)
|
2009 |
|
|
{
|
2010 |
|
|
case NONE:
|
2011 |
|
|
break;
|
2012 |
|
|
|
2013 |
|
|
case ALIGN4:
|
2014 |
|
|
complaint (&symfile_complaints,
|
2015 |
|
|
_("Corrupt data in %s:%s; align 4 workaround apparently succeeded"),
|
2016 |
|
|
unit->dwarf_frame_section->owner->filename,
|
2017 |
|
|
unit->dwarf_frame_section->name);
|
2018 |
|
|
break;
|
2019 |
|
|
|
2020 |
|
|
case ALIGN8:
|
2021 |
|
|
complaint (&symfile_complaints,
|
2022 |
|
|
_("Corrupt data in %s:%s; align 8 workaround apparently succeeded"),
|
2023 |
|
|
unit->dwarf_frame_section->owner->filename,
|
2024 |
|
|
unit->dwarf_frame_section->name);
|
2025 |
|
|
break;
|
2026 |
|
|
|
2027 |
|
|
default:
|
2028 |
|
|
complaint (&symfile_complaints,
|
2029 |
|
|
_("Corrupt data in %s:%s"),
|
2030 |
|
|
unit->dwarf_frame_section->owner->filename,
|
2031 |
|
|
unit->dwarf_frame_section->name);
|
2032 |
|
|
break;
|
2033 |
|
|
}
|
2034 |
|
|
|
2035 |
|
|
return ret;
|
2036 |
|
|
}
|
2037 |
|
|
|
2038 |
|
|
|
2039 |
|
|
/* Imported from dwarf2read.c. */
|
2040 |
|
|
extern void dwarf2_get_section_info (struct objfile *, const char *, asection **,
|
2041 |
|
|
gdb_byte **, bfd_size_type *);
|
2042 |
|
|
|
2043 |
|
|
static int
|
2044 |
|
|
qsort_fde_cmp (const void *a, const void *b)
|
2045 |
|
|
{
|
2046 |
|
|
struct dwarf2_fde *aa = *(struct dwarf2_fde **)a;
|
2047 |
|
|
struct dwarf2_fde *bb = *(struct dwarf2_fde **)b;
|
2048 |
|
|
|
2049 |
|
|
if (aa->initial_location == bb->initial_location)
|
2050 |
|
|
{
|
2051 |
|
|
if (aa->address_range != bb->address_range
|
2052 |
|
|
&& aa->eh_frame_p == 0 && bb->eh_frame_p == 0)
|
2053 |
|
|
/* Linker bug, e.g. gold/10400.
|
2054 |
|
|
Work around it by keeping stable sort order. */
|
2055 |
|
|
return (a < b) ? -1 : 1;
|
2056 |
|
|
else
|
2057 |
|
|
/* Put eh_frame entries after debug_frame ones. */
|
2058 |
|
|
return aa->eh_frame_p - bb->eh_frame_p;
|
2059 |
|
|
}
|
2060 |
|
|
|
2061 |
|
|
return (aa->initial_location < bb->initial_location) ? -1 : 1;
|
2062 |
|
|
}
|
2063 |
|
|
|
2064 |
|
|
void
|
2065 |
|
|
dwarf2_build_frame_info (struct objfile *objfile)
|
2066 |
|
|
{
|
2067 |
|
|
struct comp_unit *unit;
|
2068 |
|
|
gdb_byte *frame_ptr;
|
2069 |
|
|
struct dwarf2_cie_table cie_table;
|
2070 |
|
|
struct dwarf2_fde_table fde_table;
|
2071 |
|
|
struct dwarf2_fde_table *fde_table2;
|
2072 |
|
|
|
2073 |
|
|
cie_table.num_entries = 0;
|
2074 |
|
|
cie_table.entries = NULL;
|
2075 |
|
|
|
2076 |
|
|
fde_table.num_entries = 0;
|
2077 |
|
|
fde_table.entries = NULL;
|
2078 |
|
|
|
2079 |
|
|
/* Build a minimal decoding of the DWARF2 compilation unit. */
|
2080 |
|
|
unit = (struct comp_unit *) obstack_alloc (&objfile->objfile_obstack,
|
2081 |
|
|
sizeof (struct comp_unit));
|
2082 |
|
|
unit->abfd = objfile->obfd;
|
2083 |
|
|
unit->objfile = objfile;
|
2084 |
|
|
unit->dbase = 0;
|
2085 |
|
|
unit->tbase = 0;
|
2086 |
|
|
|
2087 |
|
|
dwarf2_get_section_info (objfile, ".eh_frame",
|
2088 |
|
|
&unit->dwarf_frame_section,
|
2089 |
|
|
&unit->dwarf_frame_buffer,
|
2090 |
|
|
&unit->dwarf_frame_size);
|
2091 |
|
|
if (unit->dwarf_frame_size)
|
2092 |
|
|
{
|
2093 |
|
|
asection *got, *txt;
|
2094 |
|
|
|
2095 |
|
|
/* FIXME: kettenis/20030602: This is the DW_EH_PE_datarel base
|
2096 |
|
|
that is used for the i386/amd64 target, which currently is
|
2097 |
|
|
the only target in GCC that supports/uses the
|
2098 |
|
|
DW_EH_PE_datarel encoding. */
|
2099 |
|
|
got = bfd_get_section_by_name (unit->abfd, ".got");
|
2100 |
|
|
if (got)
|
2101 |
|
|
unit->dbase = got->vma;
|
2102 |
|
|
|
2103 |
|
|
/* GCC emits the DW_EH_PE_textrel encoding type on sh and ia64
|
2104 |
|
|
so far. */
|
2105 |
|
|
txt = bfd_get_section_by_name (unit->abfd, ".text");
|
2106 |
|
|
if (txt)
|
2107 |
|
|
unit->tbase = txt->vma;
|
2108 |
|
|
|
2109 |
|
|
frame_ptr = unit->dwarf_frame_buffer;
|
2110 |
|
|
while (frame_ptr < unit->dwarf_frame_buffer + unit->dwarf_frame_size)
|
2111 |
|
|
frame_ptr = decode_frame_entry (unit, frame_ptr, 1,
|
2112 |
|
|
&cie_table, &fde_table);
|
2113 |
|
|
|
2114 |
|
|
if (cie_table.num_entries != 0)
|
2115 |
|
|
{
|
2116 |
|
|
/* Reinit cie_table: debug_frame has different CIEs. */
|
2117 |
|
|
xfree (cie_table.entries);
|
2118 |
|
|
cie_table.num_entries = 0;
|
2119 |
|
|
cie_table.entries = NULL;
|
2120 |
|
|
}
|
2121 |
|
|
}
|
2122 |
|
|
|
2123 |
|
|
dwarf2_get_section_info (objfile, ".debug_frame",
|
2124 |
|
|
&unit->dwarf_frame_section,
|
2125 |
|
|
&unit->dwarf_frame_buffer,
|
2126 |
|
|
&unit->dwarf_frame_size);
|
2127 |
|
|
if (unit->dwarf_frame_size)
|
2128 |
|
|
{
|
2129 |
|
|
frame_ptr = unit->dwarf_frame_buffer;
|
2130 |
|
|
while (frame_ptr < unit->dwarf_frame_buffer + unit->dwarf_frame_size)
|
2131 |
|
|
frame_ptr = decode_frame_entry (unit, frame_ptr, 0,
|
2132 |
|
|
&cie_table, &fde_table);
|
2133 |
|
|
}
|
2134 |
|
|
|
2135 |
|
|
/* Discard the cie_table, it is no longer needed. */
|
2136 |
|
|
if (cie_table.num_entries != 0)
|
2137 |
|
|
{
|
2138 |
|
|
xfree (cie_table.entries);
|
2139 |
|
|
cie_table.entries = NULL; /* Paranoia. */
|
2140 |
|
|
cie_table.num_entries = 0; /* Paranoia. */
|
2141 |
|
|
}
|
2142 |
|
|
|
2143 |
|
|
/* Copy fde_table to obstack: it is needed at runtime. */
|
2144 |
|
|
fde_table2 = (struct dwarf2_fde_table *)
|
2145 |
|
|
obstack_alloc (&objfile->objfile_obstack, sizeof (*fde_table2));
|
2146 |
|
|
|
2147 |
|
|
if (fde_table.num_entries == 0)
|
2148 |
|
|
{
|
2149 |
|
|
fde_table2->entries = NULL;
|
2150 |
|
|
fde_table2->num_entries = 0;
|
2151 |
|
|
}
|
2152 |
|
|
else
|
2153 |
|
|
{
|
2154 |
|
|
struct dwarf2_fde *fde_prev = NULL;
|
2155 |
|
|
struct dwarf2_fde *first_non_zero_fde = NULL;
|
2156 |
|
|
int i;
|
2157 |
|
|
|
2158 |
|
|
/* Prepare FDE table for lookups. */
|
2159 |
|
|
qsort (fde_table.entries, fde_table.num_entries,
|
2160 |
|
|
sizeof (fde_table.entries[0]), qsort_fde_cmp);
|
2161 |
|
|
|
2162 |
|
|
/* Check for leftovers from --gc-sections. The GNU linker sets
|
2163 |
|
|
the relevant symbols to zero, but doesn't zero the FDE *end*
|
2164 |
|
|
ranges because there's no relocation there. It's (offset,
|
2165 |
|
|
length), not (start, end). On targets where address zero is
|
2166 |
|
|
just another valid address this can be a problem, since the
|
2167 |
|
|
FDEs appear to be non-empty in the output --- we could pick
|
2168 |
|
|
out the wrong FDE. To work around this, when overlaps are
|
2169 |
|
|
detected, we prefer FDEs that do not start at zero.
|
2170 |
|
|
|
2171 |
|
|
Start by finding the first FDE with non-zero start. Below
|
2172 |
|
|
we'll discard all FDEs that start at zero and overlap this
|
2173 |
|
|
one. */
|
2174 |
|
|
for (i = 0; i < fde_table.num_entries; i++)
|
2175 |
|
|
{
|
2176 |
|
|
struct dwarf2_fde *fde = fde_table.entries[i];
|
2177 |
|
|
|
2178 |
|
|
if (fde->initial_location != 0)
|
2179 |
|
|
{
|
2180 |
|
|
first_non_zero_fde = fde;
|
2181 |
|
|
break;
|
2182 |
|
|
}
|
2183 |
|
|
}
|
2184 |
|
|
|
2185 |
|
|
/* Since we'll be doing bsearch, squeeze out identical (except
|
2186 |
|
|
for eh_frame_p) fde entries so bsearch result is predictable.
|
2187 |
|
|
Also discard leftovers from --gc-sections. */
|
2188 |
|
|
fde_table2->num_entries = 0;
|
2189 |
|
|
for (i = 0; i < fde_table.num_entries; i++)
|
2190 |
|
|
{
|
2191 |
|
|
struct dwarf2_fde *fde = fde_table.entries[i];
|
2192 |
|
|
|
2193 |
|
|
if (fde->initial_location == 0
|
2194 |
|
|
&& first_non_zero_fde != NULL
|
2195 |
|
|
&& (first_non_zero_fde->initial_location
|
2196 |
|
|
< fde->initial_location + fde->address_range))
|
2197 |
|
|
continue;
|
2198 |
|
|
|
2199 |
|
|
if (fde_prev != NULL
|
2200 |
|
|
&& fde_prev->initial_location == fde->initial_location)
|
2201 |
|
|
continue;
|
2202 |
|
|
|
2203 |
|
|
obstack_grow (&objfile->objfile_obstack, &fde_table.entries[i],
|
2204 |
|
|
sizeof (fde_table.entries[0]));
|
2205 |
|
|
++fde_table2->num_entries;
|
2206 |
|
|
fde_prev = fde;
|
2207 |
|
|
}
|
2208 |
|
|
fde_table2->entries = obstack_finish (&objfile->objfile_obstack);
|
2209 |
|
|
|
2210 |
|
|
/* Discard the original fde_table. */
|
2211 |
|
|
xfree (fde_table.entries);
|
2212 |
|
|
}
|
2213 |
|
|
|
2214 |
|
|
set_objfile_data (objfile, dwarf2_frame_objfile_data, fde_table2);
|
2215 |
|
|
}
|
2216 |
|
|
|
2217 |
|
|
/* Provide a prototype to silence -Wmissing-prototypes. */
|
2218 |
|
|
void _initialize_dwarf2_frame (void);
|
2219 |
|
|
|
2220 |
|
|
void
|
2221 |
|
|
_initialize_dwarf2_frame (void)
|
2222 |
|
|
{
|
2223 |
|
|
dwarf2_frame_data = gdbarch_data_register_pre_init (dwarf2_frame_init);
|
2224 |
|
|
dwarf2_frame_objfile_data = register_objfile_data ();
|
2225 |
|
|
}
|