| 1 |
330 |
jeremybenn |
/* Evaluate expressions for GDB.
|
| 2 |
|
|
|
| 3 |
|
|
Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
|
| 4 |
|
|
1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2005, 2006, 2007, 2008,
|
| 5 |
|
|
2009, 2010 Free Software Foundation, Inc.
|
| 6 |
|
|
|
| 7 |
|
|
This file is part of GDB.
|
| 8 |
|
|
|
| 9 |
|
|
This program is free software; you can redistribute it and/or modify
|
| 10 |
|
|
it under the terms of the GNU General Public License as published by
|
| 11 |
|
|
the Free Software Foundation; either version 3 of the License, or
|
| 12 |
|
|
(at your option) any later version.
|
| 13 |
|
|
|
| 14 |
|
|
This program is distributed in the hope that it will be useful,
|
| 15 |
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
| 16 |
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
| 17 |
|
|
GNU General Public License for more details.
|
| 18 |
|
|
|
| 19 |
|
|
You should have received a copy of the GNU General Public License
|
| 20 |
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>. */
|
| 21 |
|
|
|
| 22 |
|
|
#include "defs.h"
|
| 23 |
|
|
#include "gdb_string.h"
|
| 24 |
|
|
#include "symtab.h"
|
| 25 |
|
|
#include "gdbtypes.h"
|
| 26 |
|
|
#include "value.h"
|
| 27 |
|
|
#include "expression.h"
|
| 28 |
|
|
#include "target.h"
|
| 29 |
|
|
#include "frame.h"
|
| 30 |
|
|
#include "language.h" /* For CAST_IS_CONVERSION */
|
| 31 |
|
|
#include "f-lang.h" /* for array bound stuff */
|
| 32 |
|
|
#include "cp-abi.h"
|
| 33 |
|
|
#include "infcall.h"
|
| 34 |
|
|
#include "objc-lang.h"
|
| 35 |
|
|
#include "block.h"
|
| 36 |
|
|
#include "parser-defs.h"
|
| 37 |
|
|
#include "cp-support.h"
|
| 38 |
|
|
#include "ui-out.h"
|
| 39 |
|
|
#include "exceptions.h"
|
| 40 |
|
|
#include "regcache.h"
|
| 41 |
|
|
#include "user-regs.h"
|
| 42 |
|
|
#include "valprint.h"
|
| 43 |
|
|
#include "gdb_obstack.h"
|
| 44 |
|
|
#include "objfiles.h"
|
| 45 |
|
|
#include "python/python.h"
|
| 46 |
|
|
#include "wrapper.h"
|
| 47 |
|
|
|
| 48 |
|
|
#include "gdb_assert.h"
|
| 49 |
|
|
|
| 50 |
|
|
#include <ctype.h>
|
| 51 |
|
|
|
| 52 |
|
|
/* This is defined in valops.c */
|
| 53 |
|
|
extern int overload_resolution;
|
| 54 |
|
|
|
| 55 |
|
|
/* Prototypes for local functions. */
|
| 56 |
|
|
|
| 57 |
|
|
static struct value *evaluate_subexp_for_sizeof (struct expression *, int *);
|
| 58 |
|
|
|
| 59 |
|
|
static struct value *evaluate_subexp_for_address (struct expression *,
|
| 60 |
|
|
int *, enum noside);
|
| 61 |
|
|
|
| 62 |
|
|
static char *get_label (struct expression *, int *);
|
| 63 |
|
|
|
| 64 |
|
|
static struct value *evaluate_struct_tuple (struct value *,
|
| 65 |
|
|
struct expression *, int *,
|
| 66 |
|
|
enum noside, int);
|
| 67 |
|
|
|
| 68 |
|
|
static LONGEST init_array_element (struct value *, struct value *,
|
| 69 |
|
|
struct expression *, int *, enum noside,
|
| 70 |
|
|
LONGEST, LONGEST);
|
| 71 |
|
|
|
| 72 |
|
|
struct value *
|
| 73 |
|
|
evaluate_subexp (struct type *expect_type, struct expression *exp,
|
| 74 |
|
|
int *pos, enum noside noside)
|
| 75 |
|
|
{
|
| 76 |
|
|
return (*exp->language_defn->la_exp_desc->evaluate_exp)
|
| 77 |
|
|
(expect_type, exp, pos, noside);
|
| 78 |
|
|
}
|
| 79 |
|
|
|
| 80 |
|
|
/* Parse the string EXP as a C expression, evaluate it,
|
| 81 |
|
|
and return the result as a number. */
|
| 82 |
|
|
|
| 83 |
|
|
CORE_ADDR
|
| 84 |
|
|
parse_and_eval_address (char *exp)
|
| 85 |
|
|
{
|
| 86 |
|
|
struct expression *expr = parse_expression (exp);
|
| 87 |
|
|
CORE_ADDR addr;
|
| 88 |
|
|
struct cleanup *old_chain =
|
| 89 |
|
|
make_cleanup (free_current_contents, &expr);
|
| 90 |
|
|
|
| 91 |
|
|
addr = value_as_address (evaluate_expression (expr));
|
| 92 |
|
|
do_cleanups (old_chain);
|
| 93 |
|
|
return addr;
|
| 94 |
|
|
}
|
| 95 |
|
|
|
| 96 |
|
|
/* Like parse_and_eval_address but takes a pointer to a char * variable
|
| 97 |
|
|
and advanced that variable across the characters parsed. */
|
| 98 |
|
|
|
| 99 |
|
|
CORE_ADDR
|
| 100 |
|
|
parse_and_eval_address_1 (char **expptr)
|
| 101 |
|
|
{
|
| 102 |
|
|
struct expression *expr = parse_exp_1 (expptr, (struct block *) 0, 0);
|
| 103 |
|
|
CORE_ADDR addr;
|
| 104 |
|
|
struct cleanup *old_chain =
|
| 105 |
|
|
make_cleanup (free_current_contents, &expr);
|
| 106 |
|
|
|
| 107 |
|
|
addr = value_as_address (evaluate_expression (expr));
|
| 108 |
|
|
do_cleanups (old_chain);
|
| 109 |
|
|
return addr;
|
| 110 |
|
|
}
|
| 111 |
|
|
|
| 112 |
|
|
/* Like parse_and_eval_address, but treats the value of the expression
|
| 113 |
|
|
as an integer, not an address, returns a LONGEST, not a CORE_ADDR */
|
| 114 |
|
|
LONGEST
|
| 115 |
|
|
parse_and_eval_long (char *exp)
|
| 116 |
|
|
{
|
| 117 |
|
|
struct expression *expr = parse_expression (exp);
|
| 118 |
|
|
LONGEST retval;
|
| 119 |
|
|
struct cleanup *old_chain =
|
| 120 |
|
|
make_cleanup (free_current_contents, &expr);
|
| 121 |
|
|
|
| 122 |
|
|
retval = value_as_long (evaluate_expression (expr));
|
| 123 |
|
|
do_cleanups (old_chain);
|
| 124 |
|
|
return (retval);
|
| 125 |
|
|
}
|
| 126 |
|
|
|
| 127 |
|
|
struct value *
|
| 128 |
|
|
parse_and_eval (char *exp)
|
| 129 |
|
|
{
|
| 130 |
|
|
struct expression *expr = parse_expression (exp);
|
| 131 |
|
|
struct value *val;
|
| 132 |
|
|
struct cleanup *old_chain =
|
| 133 |
|
|
make_cleanup (free_current_contents, &expr);
|
| 134 |
|
|
|
| 135 |
|
|
val = evaluate_expression (expr);
|
| 136 |
|
|
do_cleanups (old_chain);
|
| 137 |
|
|
return val;
|
| 138 |
|
|
}
|
| 139 |
|
|
|
| 140 |
|
|
/* Parse up to a comma (or to a closeparen)
|
| 141 |
|
|
in the string EXPP as an expression, evaluate it, and return the value.
|
| 142 |
|
|
EXPP is advanced to point to the comma. */
|
| 143 |
|
|
|
| 144 |
|
|
struct value *
|
| 145 |
|
|
parse_to_comma_and_eval (char **expp)
|
| 146 |
|
|
{
|
| 147 |
|
|
struct expression *expr = parse_exp_1 (expp, (struct block *) 0, 1);
|
| 148 |
|
|
struct value *val;
|
| 149 |
|
|
struct cleanup *old_chain =
|
| 150 |
|
|
make_cleanup (free_current_contents, &expr);
|
| 151 |
|
|
|
| 152 |
|
|
val = evaluate_expression (expr);
|
| 153 |
|
|
do_cleanups (old_chain);
|
| 154 |
|
|
return val;
|
| 155 |
|
|
}
|
| 156 |
|
|
|
| 157 |
|
|
/* Evaluate an expression in internal prefix form
|
| 158 |
|
|
such as is constructed by parse.y.
|
| 159 |
|
|
|
| 160 |
|
|
See expression.h for info on the format of an expression. */
|
| 161 |
|
|
|
| 162 |
|
|
struct value *
|
| 163 |
|
|
evaluate_expression (struct expression *exp)
|
| 164 |
|
|
{
|
| 165 |
|
|
int pc = 0;
|
| 166 |
|
|
|
| 167 |
|
|
return evaluate_subexp (NULL_TYPE, exp, &pc, EVAL_NORMAL);
|
| 168 |
|
|
}
|
| 169 |
|
|
|
| 170 |
|
|
/* Evaluate an expression, avoiding all memory references
|
| 171 |
|
|
and getting a value whose type alone is correct. */
|
| 172 |
|
|
|
| 173 |
|
|
struct value *
|
| 174 |
|
|
evaluate_type (struct expression *exp)
|
| 175 |
|
|
{
|
| 176 |
|
|
int pc = 0;
|
| 177 |
|
|
|
| 178 |
|
|
return evaluate_subexp (NULL_TYPE, exp, &pc, EVAL_AVOID_SIDE_EFFECTS);
|
| 179 |
|
|
}
|
| 180 |
|
|
|
| 181 |
|
|
/* Evaluate a subexpression, avoiding all memory references and
|
| 182 |
|
|
getting a value whose type alone is correct. */
|
| 183 |
|
|
|
| 184 |
|
|
struct value *
|
| 185 |
|
|
evaluate_subexpression_type (struct expression *exp, int subexp)
|
| 186 |
|
|
{
|
| 187 |
|
|
return evaluate_subexp (NULL_TYPE, exp, &subexp, EVAL_AVOID_SIDE_EFFECTS);
|
| 188 |
|
|
}
|
| 189 |
|
|
|
| 190 |
|
|
/* Find the current value of a watchpoint on EXP. Return the value in
|
| 191 |
|
|
*VALP and *RESULTP and the chain of intermediate and final values
|
| 192 |
|
|
in *VAL_CHAIN. RESULTP and VAL_CHAIN may be NULL if the caller does
|
| 193 |
|
|
not need them.
|
| 194 |
|
|
|
| 195 |
|
|
If a memory error occurs while evaluating the expression, *RESULTP will
|
| 196 |
|
|
be set to NULL. *RESULTP may be a lazy value, if the result could
|
| 197 |
|
|
not be read from memory. It is used to determine whether a value
|
| 198 |
|
|
is user-specified (we should watch the whole value) or intermediate
|
| 199 |
|
|
(we should watch only the bit used to locate the final value).
|
| 200 |
|
|
|
| 201 |
|
|
If the final value, or any intermediate value, could not be read
|
| 202 |
|
|
from memory, *VALP will be set to NULL. *VAL_CHAIN will still be
|
| 203 |
|
|
set to any referenced values. *VALP will never be a lazy value.
|
| 204 |
|
|
This is the value which we store in struct breakpoint.
|
| 205 |
|
|
|
| 206 |
|
|
If VAL_CHAIN is non-NULL, *VAL_CHAIN will be released from the
|
| 207 |
|
|
value chain. The caller must free the values individually. If
|
| 208 |
|
|
VAL_CHAIN is NULL, all generated values will be left on the value
|
| 209 |
|
|
chain. */
|
| 210 |
|
|
|
| 211 |
|
|
void
|
| 212 |
|
|
fetch_subexp_value (struct expression *exp, int *pc, struct value **valp,
|
| 213 |
|
|
struct value **resultp, struct value **val_chain)
|
| 214 |
|
|
{
|
| 215 |
|
|
struct value *mark, *new_mark, *result;
|
| 216 |
|
|
volatile struct gdb_exception ex;
|
| 217 |
|
|
|
| 218 |
|
|
*valp = NULL;
|
| 219 |
|
|
if (resultp)
|
| 220 |
|
|
*resultp = NULL;
|
| 221 |
|
|
if (val_chain)
|
| 222 |
|
|
*val_chain = NULL;
|
| 223 |
|
|
|
| 224 |
|
|
/* Evaluate the expression. */
|
| 225 |
|
|
mark = value_mark ();
|
| 226 |
|
|
result = NULL;
|
| 227 |
|
|
|
| 228 |
|
|
TRY_CATCH (ex, RETURN_MASK_ALL)
|
| 229 |
|
|
{
|
| 230 |
|
|
result = evaluate_subexp (NULL_TYPE, exp, pc, EVAL_NORMAL);
|
| 231 |
|
|
}
|
| 232 |
|
|
if (ex.reason < 0)
|
| 233 |
|
|
{
|
| 234 |
|
|
/* Ignore memory errors, we want watchpoints pointing at
|
| 235 |
|
|
inaccessible memory to still be created; otherwise, throw the
|
| 236 |
|
|
error to some higher catcher. */
|
| 237 |
|
|
switch (ex.error)
|
| 238 |
|
|
{
|
| 239 |
|
|
case MEMORY_ERROR:
|
| 240 |
|
|
break;
|
| 241 |
|
|
default:
|
| 242 |
|
|
throw_exception (ex);
|
| 243 |
|
|
break;
|
| 244 |
|
|
}
|
| 245 |
|
|
}
|
| 246 |
|
|
|
| 247 |
|
|
new_mark = value_mark ();
|
| 248 |
|
|
if (mark == new_mark)
|
| 249 |
|
|
return;
|
| 250 |
|
|
if (resultp)
|
| 251 |
|
|
*resultp = result;
|
| 252 |
|
|
|
| 253 |
|
|
/* Make sure it's not lazy, so that after the target stops again we
|
| 254 |
|
|
have a non-lazy previous value to compare with. */
|
| 255 |
|
|
if (result != NULL
|
| 256 |
|
|
&& (!value_lazy (result) || gdb_value_fetch_lazy (result)))
|
| 257 |
|
|
*valp = result;
|
| 258 |
|
|
|
| 259 |
|
|
if (val_chain)
|
| 260 |
|
|
{
|
| 261 |
|
|
/* Return the chain of intermediate values. We use this to
|
| 262 |
|
|
decide which addresses to watch. */
|
| 263 |
|
|
*val_chain = new_mark;
|
| 264 |
|
|
value_release_to_mark (mark);
|
| 265 |
|
|
}
|
| 266 |
|
|
}
|
| 267 |
|
|
|
| 268 |
|
|
/* Extract a field operation from an expression. If the subexpression
|
| 269 |
|
|
of EXP starting at *SUBEXP is not a structure dereference
|
| 270 |
|
|
operation, return NULL. Otherwise, return the name of the
|
| 271 |
|
|
dereferenced field, and advance *SUBEXP to point to the
|
| 272 |
|
|
subexpression of the left-hand-side of the dereference. This is
|
| 273 |
|
|
used when completing field names. */
|
| 274 |
|
|
|
| 275 |
|
|
char *
|
| 276 |
|
|
extract_field_op (struct expression *exp, int *subexp)
|
| 277 |
|
|
{
|
| 278 |
|
|
int tem;
|
| 279 |
|
|
char *result;
|
| 280 |
|
|
|
| 281 |
|
|
if (exp->elts[*subexp].opcode != STRUCTOP_STRUCT
|
| 282 |
|
|
&& exp->elts[*subexp].opcode != STRUCTOP_PTR)
|
| 283 |
|
|
return NULL;
|
| 284 |
|
|
tem = longest_to_int (exp->elts[*subexp + 1].longconst);
|
| 285 |
|
|
result = &exp->elts[*subexp + 2].string;
|
| 286 |
|
|
(*subexp) += 1 + 3 + BYTES_TO_EXP_ELEM (tem + 1);
|
| 287 |
|
|
return result;
|
| 288 |
|
|
}
|
| 289 |
|
|
|
| 290 |
|
|
/* If the next expression is an OP_LABELED, skips past it,
|
| 291 |
|
|
returning the label. Otherwise, does nothing and returns NULL. */
|
| 292 |
|
|
|
| 293 |
|
|
static char *
|
| 294 |
|
|
get_label (struct expression *exp, int *pos)
|
| 295 |
|
|
{
|
| 296 |
|
|
if (exp->elts[*pos].opcode == OP_LABELED)
|
| 297 |
|
|
{
|
| 298 |
|
|
int pc = (*pos)++;
|
| 299 |
|
|
char *name = &exp->elts[pc + 2].string;
|
| 300 |
|
|
int tem = longest_to_int (exp->elts[pc + 1].longconst);
|
| 301 |
|
|
|
| 302 |
|
|
(*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
|
| 303 |
|
|
return name;
|
| 304 |
|
|
}
|
| 305 |
|
|
else
|
| 306 |
|
|
return NULL;
|
| 307 |
|
|
}
|
| 308 |
|
|
|
| 309 |
|
|
/* This function evaluates tuples (in (the deleted) Chill) or
|
| 310 |
|
|
brace-initializers (in C/C++) for structure types. */
|
| 311 |
|
|
|
| 312 |
|
|
static struct value *
|
| 313 |
|
|
evaluate_struct_tuple (struct value *struct_val,
|
| 314 |
|
|
struct expression *exp,
|
| 315 |
|
|
int *pos, enum noside noside, int nargs)
|
| 316 |
|
|
{
|
| 317 |
|
|
struct type *struct_type = check_typedef (value_type (struct_val));
|
| 318 |
|
|
struct type *substruct_type = struct_type;
|
| 319 |
|
|
struct type *field_type;
|
| 320 |
|
|
int fieldno = -1;
|
| 321 |
|
|
int variantno = -1;
|
| 322 |
|
|
int subfieldno = -1;
|
| 323 |
|
|
|
| 324 |
|
|
while (--nargs >= 0)
|
| 325 |
|
|
{
|
| 326 |
|
|
int pc = *pos;
|
| 327 |
|
|
struct value *val = NULL;
|
| 328 |
|
|
int nlabels = 0;
|
| 329 |
|
|
int bitpos, bitsize;
|
| 330 |
|
|
bfd_byte *addr;
|
| 331 |
|
|
|
| 332 |
|
|
/* Skip past the labels, and count them. */
|
| 333 |
|
|
while (get_label (exp, pos) != NULL)
|
| 334 |
|
|
nlabels++;
|
| 335 |
|
|
|
| 336 |
|
|
do
|
| 337 |
|
|
{
|
| 338 |
|
|
char *label = get_label (exp, &pc);
|
| 339 |
|
|
|
| 340 |
|
|
if (label)
|
| 341 |
|
|
{
|
| 342 |
|
|
for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type);
|
| 343 |
|
|
fieldno++)
|
| 344 |
|
|
{
|
| 345 |
|
|
char *field_name = TYPE_FIELD_NAME (struct_type, fieldno);
|
| 346 |
|
|
|
| 347 |
|
|
if (field_name != NULL && strcmp (field_name, label) == 0)
|
| 348 |
|
|
{
|
| 349 |
|
|
variantno = -1;
|
| 350 |
|
|
subfieldno = fieldno;
|
| 351 |
|
|
substruct_type = struct_type;
|
| 352 |
|
|
goto found;
|
| 353 |
|
|
}
|
| 354 |
|
|
}
|
| 355 |
|
|
for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type);
|
| 356 |
|
|
fieldno++)
|
| 357 |
|
|
{
|
| 358 |
|
|
char *field_name = TYPE_FIELD_NAME (struct_type, fieldno);
|
| 359 |
|
|
|
| 360 |
|
|
field_type = TYPE_FIELD_TYPE (struct_type, fieldno);
|
| 361 |
|
|
if ((field_name == 0 || *field_name == '\0')
|
| 362 |
|
|
&& TYPE_CODE (field_type) == TYPE_CODE_UNION)
|
| 363 |
|
|
{
|
| 364 |
|
|
variantno = 0;
|
| 365 |
|
|
for (; variantno < TYPE_NFIELDS (field_type);
|
| 366 |
|
|
variantno++)
|
| 367 |
|
|
{
|
| 368 |
|
|
substruct_type
|
| 369 |
|
|
= TYPE_FIELD_TYPE (field_type, variantno);
|
| 370 |
|
|
if (TYPE_CODE (substruct_type) == TYPE_CODE_STRUCT)
|
| 371 |
|
|
{
|
| 372 |
|
|
for (subfieldno = 0;
|
| 373 |
|
|
subfieldno < TYPE_NFIELDS (substruct_type);
|
| 374 |
|
|
subfieldno++)
|
| 375 |
|
|
{
|
| 376 |
|
|
if (strcmp(TYPE_FIELD_NAME (substruct_type,
|
| 377 |
|
|
subfieldno),
|
| 378 |
|
|
label) == 0)
|
| 379 |
|
|
{
|
| 380 |
|
|
goto found;
|
| 381 |
|
|
}
|
| 382 |
|
|
}
|
| 383 |
|
|
}
|
| 384 |
|
|
}
|
| 385 |
|
|
}
|
| 386 |
|
|
}
|
| 387 |
|
|
error (_("there is no field named %s"), label);
|
| 388 |
|
|
found:
|
| 389 |
|
|
;
|
| 390 |
|
|
}
|
| 391 |
|
|
else
|
| 392 |
|
|
{
|
| 393 |
|
|
/* Unlabelled tuple element - go to next field. */
|
| 394 |
|
|
if (variantno >= 0)
|
| 395 |
|
|
{
|
| 396 |
|
|
subfieldno++;
|
| 397 |
|
|
if (subfieldno >= TYPE_NFIELDS (substruct_type))
|
| 398 |
|
|
{
|
| 399 |
|
|
variantno = -1;
|
| 400 |
|
|
substruct_type = struct_type;
|
| 401 |
|
|
}
|
| 402 |
|
|
}
|
| 403 |
|
|
if (variantno < 0)
|
| 404 |
|
|
{
|
| 405 |
|
|
fieldno++;
|
| 406 |
|
|
/* Skip static fields. */
|
| 407 |
|
|
while (fieldno < TYPE_NFIELDS (struct_type)
|
| 408 |
|
|
&& field_is_static (&TYPE_FIELD (struct_type,
|
| 409 |
|
|
fieldno)))
|
| 410 |
|
|
fieldno++;
|
| 411 |
|
|
subfieldno = fieldno;
|
| 412 |
|
|
if (fieldno >= TYPE_NFIELDS (struct_type))
|
| 413 |
|
|
error (_("too many initializers"));
|
| 414 |
|
|
field_type = TYPE_FIELD_TYPE (struct_type, fieldno);
|
| 415 |
|
|
if (TYPE_CODE (field_type) == TYPE_CODE_UNION
|
| 416 |
|
|
&& TYPE_FIELD_NAME (struct_type, fieldno)[0] == '0')
|
| 417 |
|
|
error (_("don't know which variant you want to set"));
|
| 418 |
|
|
}
|
| 419 |
|
|
}
|
| 420 |
|
|
|
| 421 |
|
|
/* Here, struct_type is the type of the inner struct,
|
| 422 |
|
|
while substruct_type is the type of the inner struct.
|
| 423 |
|
|
These are the same for normal structures, but a variant struct
|
| 424 |
|
|
contains anonymous union fields that contain substruct fields.
|
| 425 |
|
|
The value fieldno is the index of the top-level (normal or
|
| 426 |
|
|
anonymous union) field in struct_field, while the value
|
| 427 |
|
|
subfieldno is the index of the actual real (named inner) field
|
| 428 |
|
|
in substruct_type. */
|
| 429 |
|
|
|
| 430 |
|
|
field_type = TYPE_FIELD_TYPE (substruct_type, subfieldno);
|
| 431 |
|
|
if (val == 0)
|
| 432 |
|
|
val = evaluate_subexp (field_type, exp, pos, noside);
|
| 433 |
|
|
|
| 434 |
|
|
/* Now actually set the field in struct_val. */
|
| 435 |
|
|
|
| 436 |
|
|
/* Assign val to field fieldno. */
|
| 437 |
|
|
if (value_type (val) != field_type)
|
| 438 |
|
|
val = value_cast (field_type, val);
|
| 439 |
|
|
|
| 440 |
|
|
bitsize = TYPE_FIELD_BITSIZE (substruct_type, subfieldno);
|
| 441 |
|
|
bitpos = TYPE_FIELD_BITPOS (struct_type, fieldno);
|
| 442 |
|
|
if (variantno >= 0)
|
| 443 |
|
|
bitpos += TYPE_FIELD_BITPOS (substruct_type, subfieldno);
|
| 444 |
|
|
addr = value_contents_writeable (struct_val) + bitpos / 8;
|
| 445 |
|
|
if (bitsize)
|
| 446 |
|
|
modify_field (struct_type, addr,
|
| 447 |
|
|
value_as_long (val), bitpos % 8, bitsize);
|
| 448 |
|
|
else
|
| 449 |
|
|
memcpy (addr, value_contents (val),
|
| 450 |
|
|
TYPE_LENGTH (value_type (val)));
|
| 451 |
|
|
}
|
| 452 |
|
|
while (--nlabels > 0);
|
| 453 |
|
|
}
|
| 454 |
|
|
return struct_val;
|
| 455 |
|
|
}
|
| 456 |
|
|
|
| 457 |
|
|
/* Recursive helper function for setting elements of array tuples for
|
| 458 |
|
|
(the deleted) Chill. The target is ARRAY (which has bounds
|
| 459 |
|
|
LOW_BOUND to HIGH_BOUND); the element value is ELEMENT; EXP, POS
|
| 460 |
|
|
and NOSIDE are as usual. Evaluates index expresions and sets the
|
| 461 |
|
|
specified element(s) of ARRAY to ELEMENT. Returns last index
|
| 462 |
|
|
value. */
|
| 463 |
|
|
|
| 464 |
|
|
static LONGEST
|
| 465 |
|
|
init_array_element (struct value *array, struct value *element,
|
| 466 |
|
|
struct expression *exp, int *pos,
|
| 467 |
|
|
enum noside noside, LONGEST low_bound, LONGEST high_bound)
|
| 468 |
|
|
{
|
| 469 |
|
|
LONGEST index;
|
| 470 |
|
|
int element_size = TYPE_LENGTH (value_type (element));
|
| 471 |
|
|
|
| 472 |
|
|
if (exp->elts[*pos].opcode == BINOP_COMMA)
|
| 473 |
|
|
{
|
| 474 |
|
|
(*pos)++;
|
| 475 |
|
|
init_array_element (array, element, exp, pos, noside,
|
| 476 |
|
|
low_bound, high_bound);
|
| 477 |
|
|
return init_array_element (array, element,
|
| 478 |
|
|
exp, pos, noside, low_bound, high_bound);
|
| 479 |
|
|
}
|
| 480 |
|
|
else if (exp->elts[*pos].opcode == BINOP_RANGE)
|
| 481 |
|
|
{
|
| 482 |
|
|
LONGEST low, high;
|
| 483 |
|
|
|
| 484 |
|
|
(*pos)++;
|
| 485 |
|
|
low = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
|
| 486 |
|
|
high = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
|
| 487 |
|
|
if (low < low_bound || high > high_bound)
|
| 488 |
|
|
error (_("tuple range index out of range"));
|
| 489 |
|
|
for (index = low; index <= high; index++)
|
| 490 |
|
|
{
|
| 491 |
|
|
memcpy (value_contents_raw (array)
|
| 492 |
|
|
+ (index - low_bound) * element_size,
|
| 493 |
|
|
value_contents (element), element_size);
|
| 494 |
|
|
}
|
| 495 |
|
|
}
|
| 496 |
|
|
else
|
| 497 |
|
|
{
|
| 498 |
|
|
index = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
|
| 499 |
|
|
if (index < low_bound || index > high_bound)
|
| 500 |
|
|
error (_("tuple index out of range"));
|
| 501 |
|
|
memcpy (value_contents_raw (array) + (index - low_bound) * element_size,
|
| 502 |
|
|
value_contents (element), element_size);
|
| 503 |
|
|
}
|
| 504 |
|
|
return index;
|
| 505 |
|
|
}
|
| 506 |
|
|
|
| 507 |
|
|
static struct value *
|
| 508 |
|
|
value_f90_subarray (struct value *array,
|
| 509 |
|
|
struct expression *exp, int *pos, enum noside noside)
|
| 510 |
|
|
{
|
| 511 |
|
|
int pc = (*pos) + 1;
|
| 512 |
|
|
LONGEST low_bound, high_bound;
|
| 513 |
|
|
struct type *range = check_typedef (TYPE_INDEX_TYPE (value_type (array)));
|
| 514 |
|
|
enum f90_range_type range_type = longest_to_int (exp->elts[pc].longconst);
|
| 515 |
|
|
|
| 516 |
|
|
*pos += 3;
|
| 517 |
|
|
|
| 518 |
|
|
if (range_type == LOW_BOUND_DEFAULT || range_type == BOTH_BOUND_DEFAULT)
|
| 519 |
|
|
low_bound = TYPE_LOW_BOUND (range);
|
| 520 |
|
|
else
|
| 521 |
|
|
low_bound = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
|
| 522 |
|
|
|
| 523 |
|
|
if (range_type == HIGH_BOUND_DEFAULT || range_type == BOTH_BOUND_DEFAULT)
|
| 524 |
|
|
high_bound = TYPE_HIGH_BOUND (range);
|
| 525 |
|
|
else
|
| 526 |
|
|
high_bound = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
|
| 527 |
|
|
|
| 528 |
|
|
return value_slice (array, low_bound, high_bound - low_bound + 1);
|
| 529 |
|
|
}
|
| 530 |
|
|
|
| 531 |
|
|
|
| 532 |
|
|
/* Promote value ARG1 as appropriate before performing a unary operation
|
| 533 |
|
|
on this argument.
|
| 534 |
|
|
If the result is not appropriate for any particular language then it
|
| 535 |
|
|
needs to patch this function. */
|
| 536 |
|
|
|
| 537 |
|
|
void
|
| 538 |
|
|
unop_promote (const struct language_defn *language, struct gdbarch *gdbarch,
|
| 539 |
|
|
struct value **arg1)
|
| 540 |
|
|
{
|
| 541 |
|
|
struct type *type1;
|
| 542 |
|
|
|
| 543 |
|
|
*arg1 = coerce_ref (*arg1);
|
| 544 |
|
|
type1 = check_typedef (value_type (*arg1));
|
| 545 |
|
|
|
| 546 |
|
|
if (is_integral_type (type1))
|
| 547 |
|
|
{
|
| 548 |
|
|
switch (language->la_language)
|
| 549 |
|
|
{
|
| 550 |
|
|
default:
|
| 551 |
|
|
/* Perform integral promotion for ANSI C/C++.
|
| 552 |
|
|
If not appropropriate for any particular language
|
| 553 |
|
|
it needs to modify this function. */
|
| 554 |
|
|
{
|
| 555 |
|
|
struct type *builtin_int = builtin_type (gdbarch)->builtin_int;
|
| 556 |
|
|
|
| 557 |
|
|
if (TYPE_LENGTH (type1) < TYPE_LENGTH (builtin_int))
|
| 558 |
|
|
*arg1 = value_cast (builtin_int, *arg1);
|
| 559 |
|
|
}
|
| 560 |
|
|
break;
|
| 561 |
|
|
}
|
| 562 |
|
|
}
|
| 563 |
|
|
}
|
| 564 |
|
|
|
| 565 |
|
|
/* Promote values ARG1 and ARG2 as appropriate before performing a binary
|
| 566 |
|
|
operation on those two operands.
|
| 567 |
|
|
If the result is not appropriate for any particular language then it
|
| 568 |
|
|
needs to patch this function. */
|
| 569 |
|
|
|
| 570 |
|
|
void
|
| 571 |
|
|
binop_promote (const struct language_defn *language, struct gdbarch *gdbarch,
|
| 572 |
|
|
struct value **arg1, struct value **arg2)
|
| 573 |
|
|
{
|
| 574 |
|
|
struct type *promoted_type = NULL;
|
| 575 |
|
|
struct type *type1;
|
| 576 |
|
|
struct type *type2;
|
| 577 |
|
|
|
| 578 |
|
|
*arg1 = coerce_ref (*arg1);
|
| 579 |
|
|
*arg2 = coerce_ref (*arg2);
|
| 580 |
|
|
|
| 581 |
|
|
type1 = check_typedef (value_type (*arg1));
|
| 582 |
|
|
type2 = check_typedef (value_type (*arg2));
|
| 583 |
|
|
|
| 584 |
|
|
if ((TYPE_CODE (type1) != TYPE_CODE_FLT
|
| 585 |
|
|
&& TYPE_CODE (type1) != TYPE_CODE_DECFLOAT
|
| 586 |
|
|
&& !is_integral_type (type1))
|
| 587 |
|
|
|| (TYPE_CODE (type2) != TYPE_CODE_FLT
|
| 588 |
|
|
&& TYPE_CODE (type2) != TYPE_CODE_DECFLOAT
|
| 589 |
|
|
&& !is_integral_type (type2)))
|
| 590 |
|
|
return;
|
| 591 |
|
|
|
| 592 |
|
|
if (TYPE_CODE (type1) == TYPE_CODE_DECFLOAT
|
| 593 |
|
|
|| TYPE_CODE (type2) == TYPE_CODE_DECFLOAT)
|
| 594 |
|
|
{
|
| 595 |
|
|
/* No promotion required. */
|
| 596 |
|
|
}
|
| 597 |
|
|
else if (TYPE_CODE (type1) == TYPE_CODE_FLT
|
| 598 |
|
|
|| TYPE_CODE (type2) == TYPE_CODE_FLT)
|
| 599 |
|
|
{
|
| 600 |
|
|
switch (language->la_language)
|
| 601 |
|
|
{
|
| 602 |
|
|
case language_c:
|
| 603 |
|
|
case language_cplus:
|
| 604 |
|
|
case language_asm:
|
| 605 |
|
|
case language_objc:
|
| 606 |
|
|
/* No promotion required. */
|
| 607 |
|
|
break;
|
| 608 |
|
|
|
| 609 |
|
|
default:
|
| 610 |
|
|
/* For other languages the result type is unchanged from gdb
|
| 611 |
|
|
version 6.7 for backward compatibility.
|
| 612 |
|
|
If either arg was long double, make sure that value is also long
|
| 613 |
|
|
double. Otherwise use double. */
|
| 614 |
|
|
if (TYPE_LENGTH (type1) * 8 > gdbarch_double_bit (gdbarch)
|
| 615 |
|
|
|| TYPE_LENGTH (type2) * 8 > gdbarch_double_bit (gdbarch))
|
| 616 |
|
|
promoted_type = builtin_type (gdbarch)->builtin_long_double;
|
| 617 |
|
|
else
|
| 618 |
|
|
promoted_type = builtin_type (gdbarch)->builtin_double;
|
| 619 |
|
|
break;
|
| 620 |
|
|
}
|
| 621 |
|
|
}
|
| 622 |
|
|
else if (TYPE_CODE (type1) == TYPE_CODE_BOOL
|
| 623 |
|
|
&& TYPE_CODE (type2) == TYPE_CODE_BOOL)
|
| 624 |
|
|
{
|
| 625 |
|
|
/* No promotion required. */
|
| 626 |
|
|
}
|
| 627 |
|
|
else
|
| 628 |
|
|
/* Integral operations here. */
|
| 629 |
|
|
/* FIXME: Also mixed integral/booleans, with result an integer. */
|
| 630 |
|
|
{
|
| 631 |
|
|
const struct builtin_type *builtin = builtin_type (gdbarch);
|
| 632 |
|
|
unsigned int promoted_len1 = TYPE_LENGTH (type1);
|
| 633 |
|
|
unsigned int promoted_len2 = TYPE_LENGTH (type2);
|
| 634 |
|
|
int is_unsigned1 = TYPE_UNSIGNED (type1);
|
| 635 |
|
|
int is_unsigned2 = TYPE_UNSIGNED (type2);
|
| 636 |
|
|
unsigned int result_len;
|
| 637 |
|
|
int unsigned_operation;
|
| 638 |
|
|
|
| 639 |
|
|
/* Determine type length and signedness after promotion for
|
| 640 |
|
|
both operands. */
|
| 641 |
|
|
if (promoted_len1 < TYPE_LENGTH (builtin->builtin_int))
|
| 642 |
|
|
{
|
| 643 |
|
|
is_unsigned1 = 0;
|
| 644 |
|
|
promoted_len1 = TYPE_LENGTH (builtin->builtin_int);
|
| 645 |
|
|
}
|
| 646 |
|
|
if (promoted_len2 < TYPE_LENGTH (builtin->builtin_int))
|
| 647 |
|
|
{
|
| 648 |
|
|
is_unsigned2 = 0;
|
| 649 |
|
|
promoted_len2 = TYPE_LENGTH (builtin->builtin_int);
|
| 650 |
|
|
}
|
| 651 |
|
|
|
| 652 |
|
|
if (promoted_len1 > promoted_len2)
|
| 653 |
|
|
{
|
| 654 |
|
|
unsigned_operation = is_unsigned1;
|
| 655 |
|
|
result_len = promoted_len1;
|
| 656 |
|
|
}
|
| 657 |
|
|
else if (promoted_len2 > promoted_len1)
|
| 658 |
|
|
{
|
| 659 |
|
|
unsigned_operation = is_unsigned2;
|
| 660 |
|
|
result_len = promoted_len2;
|
| 661 |
|
|
}
|
| 662 |
|
|
else
|
| 663 |
|
|
{
|
| 664 |
|
|
unsigned_operation = is_unsigned1 || is_unsigned2;
|
| 665 |
|
|
result_len = promoted_len1;
|
| 666 |
|
|
}
|
| 667 |
|
|
|
| 668 |
|
|
switch (language->la_language)
|
| 669 |
|
|
{
|
| 670 |
|
|
case language_c:
|
| 671 |
|
|
case language_cplus:
|
| 672 |
|
|
case language_asm:
|
| 673 |
|
|
case language_objc:
|
| 674 |
|
|
if (result_len <= TYPE_LENGTH (builtin->builtin_int))
|
| 675 |
|
|
{
|
| 676 |
|
|
promoted_type = (unsigned_operation
|
| 677 |
|
|
? builtin->builtin_unsigned_int
|
| 678 |
|
|
: builtin->builtin_int);
|
| 679 |
|
|
}
|
| 680 |
|
|
else if (result_len <= TYPE_LENGTH (builtin->builtin_long))
|
| 681 |
|
|
{
|
| 682 |
|
|
promoted_type = (unsigned_operation
|
| 683 |
|
|
? builtin->builtin_unsigned_long
|
| 684 |
|
|
: builtin->builtin_long);
|
| 685 |
|
|
}
|
| 686 |
|
|
else
|
| 687 |
|
|
{
|
| 688 |
|
|
promoted_type = (unsigned_operation
|
| 689 |
|
|
? builtin->builtin_unsigned_long_long
|
| 690 |
|
|
: builtin->builtin_long_long);
|
| 691 |
|
|
}
|
| 692 |
|
|
break;
|
| 693 |
|
|
|
| 694 |
|
|
default:
|
| 695 |
|
|
/* For other languages the result type is unchanged from gdb
|
| 696 |
|
|
version 6.7 for backward compatibility.
|
| 697 |
|
|
If either arg was long long, make sure that value is also long
|
| 698 |
|
|
long. Otherwise use long. */
|
| 699 |
|
|
if (unsigned_operation)
|
| 700 |
|
|
{
|
| 701 |
|
|
if (result_len > gdbarch_long_bit (gdbarch) / HOST_CHAR_BIT)
|
| 702 |
|
|
promoted_type = builtin->builtin_unsigned_long_long;
|
| 703 |
|
|
else
|
| 704 |
|
|
promoted_type = builtin->builtin_unsigned_long;
|
| 705 |
|
|
}
|
| 706 |
|
|
else
|
| 707 |
|
|
{
|
| 708 |
|
|
if (result_len > gdbarch_long_bit (gdbarch) / HOST_CHAR_BIT)
|
| 709 |
|
|
promoted_type = builtin->builtin_long_long;
|
| 710 |
|
|
else
|
| 711 |
|
|
promoted_type = builtin->builtin_long;
|
| 712 |
|
|
}
|
| 713 |
|
|
break;
|
| 714 |
|
|
}
|
| 715 |
|
|
}
|
| 716 |
|
|
|
| 717 |
|
|
if (promoted_type)
|
| 718 |
|
|
{
|
| 719 |
|
|
/* Promote both operands to common type. */
|
| 720 |
|
|
*arg1 = value_cast (promoted_type, *arg1);
|
| 721 |
|
|
*arg2 = value_cast (promoted_type, *arg2);
|
| 722 |
|
|
}
|
| 723 |
|
|
}
|
| 724 |
|
|
|
| 725 |
|
|
static int
|
| 726 |
|
|
ptrmath_type_p (const struct language_defn *lang, struct type *type)
|
| 727 |
|
|
{
|
| 728 |
|
|
type = check_typedef (type);
|
| 729 |
|
|
if (TYPE_CODE (type) == TYPE_CODE_REF)
|
| 730 |
|
|
type = TYPE_TARGET_TYPE (type);
|
| 731 |
|
|
|
| 732 |
|
|
switch (TYPE_CODE (type))
|
| 733 |
|
|
{
|
| 734 |
|
|
case TYPE_CODE_PTR:
|
| 735 |
|
|
case TYPE_CODE_FUNC:
|
| 736 |
|
|
return 1;
|
| 737 |
|
|
|
| 738 |
|
|
case TYPE_CODE_ARRAY:
|
| 739 |
|
|
return lang->c_style_arrays;
|
| 740 |
|
|
|
| 741 |
|
|
default:
|
| 742 |
|
|
return 0;
|
| 743 |
|
|
}
|
| 744 |
|
|
}
|
| 745 |
|
|
|
| 746 |
|
|
/* Constructs a fake method with the given parameter types.
|
| 747 |
|
|
This function is used by the parser to construct an "expected"
|
| 748 |
|
|
type for method overload resolution. */
|
| 749 |
|
|
|
| 750 |
|
|
static struct type *
|
| 751 |
|
|
make_params (int num_types, struct type **param_types)
|
| 752 |
|
|
{
|
| 753 |
|
|
struct type *type = XZALLOC (struct type);
|
| 754 |
|
|
TYPE_MAIN_TYPE (type) = XZALLOC (struct main_type);
|
| 755 |
|
|
TYPE_LENGTH (type) = 1;
|
| 756 |
|
|
TYPE_CODE (type) = TYPE_CODE_METHOD;
|
| 757 |
|
|
TYPE_VPTR_FIELDNO (type) = -1;
|
| 758 |
|
|
TYPE_CHAIN (type) = type;
|
| 759 |
|
|
TYPE_NFIELDS (type) = num_types;
|
| 760 |
|
|
TYPE_FIELDS (type) = (struct field *)
|
| 761 |
|
|
TYPE_ZALLOC (type, sizeof (struct field) * num_types);
|
| 762 |
|
|
|
| 763 |
|
|
while (num_types-- > 0)
|
| 764 |
|
|
TYPE_FIELD_TYPE (type, num_types) = param_types[num_types];
|
| 765 |
|
|
|
| 766 |
|
|
return type;
|
| 767 |
|
|
}
|
| 768 |
|
|
|
| 769 |
|
|
struct value *
|
| 770 |
|
|
evaluate_subexp_standard (struct type *expect_type,
|
| 771 |
|
|
struct expression *exp, int *pos,
|
| 772 |
|
|
enum noside noside)
|
| 773 |
|
|
{
|
| 774 |
|
|
enum exp_opcode op;
|
| 775 |
|
|
int tem, tem2, tem3;
|
| 776 |
|
|
int pc, pc2 = 0, oldpos;
|
| 777 |
|
|
struct value *arg1 = NULL;
|
| 778 |
|
|
struct value *arg2 = NULL;
|
| 779 |
|
|
struct value *arg3;
|
| 780 |
|
|
struct type *type;
|
| 781 |
|
|
int nargs;
|
| 782 |
|
|
struct value **argvec;
|
| 783 |
|
|
int upper, lower;
|
| 784 |
|
|
int code;
|
| 785 |
|
|
int ix;
|
| 786 |
|
|
long mem_offset;
|
| 787 |
|
|
struct type **arg_types;
|
| 788 |
|
|
int save_pos1;
|
| 789 |
|
|
struct symbol *function = NULL;
|
| 790 |
|
|
char *function_name = NULL;
|
| 791 |
|
|
|
| 792 |
|
|
pc = (*pos)++;
|
| 793 |
|
|
op = exp->elts[pc].opcode;
|
| 794 |
|
|
|
| 795 |
|
|
switch (op)
|
| 796 |
|
|
{
|
| 797 |
|
|
case OP_SCOPE:
|
| 798 |
|
|
tem = longest_to_int (exp->elts[pc + 2].longconst);
|
| 799 |
|
|
(*pos) += 4 + BYTES_TO_EXP_ELEM (tem + 1);
|
| 800 |
|
|
if (noside == EVAL_SKIP)
|
| 801 |
|
|
goto nosideret;
|
| 802 |
|
|
arg1 = value_aggregate_elt (exp->elts[pc + 1].type,
|
| 803 |
|
|
&exp->elts[pc + 3].string,
|
| 804 |
|
|
expect_type, 0, noside);
|
| 805 |
|
|
if (arg1 == NULL)
|
| 806 |
|
|
error (_("There is no field named %s"), &exp->elts[pc + 3].string);
|
| 807 |
|
|
return arg1;
|
| 808 |
|
|
|
| 809 |
|
|
case OP_LONG:
|
| 810 |
|
|
(*pos) += 3;
|
| 811 |
|
|
return value_from_longest (exp->elts[pc + 1].type,
|
| 812 |
|
|
exp->elts[pc + 2].longconst);
|
| 813 |
|
|
|
| 814 |
|
|
case OP_DOUBLE:
|
| 815 |
|
|
(*pos) += 3;
|
| 816 |
|
|
return value_from_double (exp->elts[pc + 1].type,
|
| 817 |
|
|
exp->elts[pc + 2].doubleconst);
|
| 818 |
|
|
|
| 819 |
|
|
case OP_DECFLOAT:
|
| 820 |
|
|
(*pos) += 3;
|
| 821 |
|
|
return value_from_decfloat (exp->elts[pc + 1].type,
|
| 822 |
|
|
exp->elts[pc + 2].decfloatconst);
|
| 823 |
|
|
|
| 824 |
|
|
case OP_ADL_FUNC:
|
| 825 |
|
|
case OP_VAR_VALUE:
|
| 826 |
|
|
(*pos) += 3;
|
| 827 |
|
|
if (noside == EVAL_SKIP)
|
| 828 |
|
|
goto nosideret;
|
| 829 |
|
|
|
| 830 |
|
|
/* JYG: We used to just return value_zero of the symbol type
|
| 831 |
|
|
if we're asked to avoid side effects. Otherwise we return
|
| 832 |
|
|
value_of_variable (...). However I'm not sure if
|
| 833 |
|
|
value_of_variable () has any side effect.
|
| 834 |
|
|
We need a full value object returned here for whatis_exp ()
|
| 835 |
|
|
to call evaluate_type () and then pass the full value to
|
| 836 |
|
|
value_rtti_target_type () if we are dealing with a pointer
|
| 837 |
|
|
or reference to a base class and print object is on. */
|
| 838 |
|
|
|
| 839 |
|
|
{
|
| 840 |
|
|
volatile struct gdb_exception except;
|
| 841 |
|
|
struct value *ret = NULL;
|
| 842 |
|
|
|
| 843 |
|
|
TRY_CATCH (except, RETURN_MASK_ERROR)
|
| 844 |
|
|
{
|
| 845 |
|
|
ret = value_of_variable (exp->elts[pc + 2].symbol,
|
| 846 |
|
|
exp->elts[pc + 1].block);
|
| 847 |
|
|
}
|
| 848 |
|
|
|
| 849 |
|
|
if (except.reason < 0)
|
| 850 |
|
|
{
|
| 851 |
|
|
if (noside == EVAL_AVOID_SIDE_EFFECTS)
|
| 852 |
|
|
ret = value_zero (SYMBOL_TYPE (exp->elts[pc + 2].symbol), not_lval);
|
| 853 |
|
|
else
|
| 854 |
|
|
throw_exception (except);
|
| 855 |
|
|
}
|
| 856 |
|
|
|
| 857 |
|
|
return ret;
|
| 858 |
|
|
}
|
| 859 |
|
|
|
| 860 |
|
|
case OP_LAST:
|
| 861 |
|
|
(*pos) += 2;
|
| 862 |
|
|
return
|
| 863 |
|
|
access_value_history (longest_to_int (exp->elts[pc + 1].longconst));
|
| 864 |
|
|
|
| 865 |
|
|
case OP_REGISTER:
|
| 866 |
|
|
{
|
| 867 |
|
|
const char *name = &exp->elts[pc + 2].string;
|
| 868 |
|
|
int regno;
|
| 869 |
|
|
struct value *val;
|
| 870 |
|
|
|
| 871 |
|
|
(*pos) += 3 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
|
| 872 |
|
|
regno = user_reg_map_name_to_regnum (exp->gdbarch,
|
| 873 |
|
|
name, strlen (name));
|
| 874 |
|
|
if (regno == -1)
|
| 875 |
|
|
error (_("Register $%s not available."), name);
|
| 876 |
|
|
|
| 877 |
|
|
/* In EVAL_AVOID_SIDE_EFFECTS mode, we only need to return
|
| 878 |
|
|
a value with the appropriate register type. Unfortunately,
|
| 879 |
|
|
we don't have easy access to the type of user registers.
|
| 880 |
|
|
So for these registers, we fetch the register value regardless
|
| 881 |
|
|
of the evaluation mode. */
|
| 882 |
|
|
if (noside == EVAL_AVOID_SIDE_EFFECTS
|
| 883 |
|
|
&& regno < gdbarch_num_regs (exp->gdbarch)
|
| 884 |
|
|
+ gdbarch_num_pseudo_regs (exp->gdbarch))
|
| 885 |
|
|
val = value_zero (register_type (exp->gdbarch, regno), not_lval);
|
| 886 |
|
|
else
|
| 887 |
|
|
val = value_of_register (regno, get_selected_frame (NULL));
|
| 888 |
|
|
if (val == NULL)
|
| 889 |
|
|
error (_("Value of register %s not available."), name);
|
| 890 |
|
|
else
|
| 891 |
|
|
return val;
|
| 892 |
|
|
}
|
| 893 |
|
|
case OP_BOOL:
|
| 894 |
|
|
(*pos) += 2;
|
| 895 |
|
|
type = language_bool_type (exp->language_defn, exp->gdbarch);
|
| 896 |
|
|
return value_from_longest (type, exp->elts[pc + 1].longconst);
|
| 897 |
|
|
|
| 898 |
|
|
case OP_INTERNALVAR:
|
| 899 |
|
|
(*pos) += 2;
|
| 900 |
|
|
return value_of_internalvar (exp->gdbarch,
|
| 901 |
|
|
exp->elts[pc + 1].internalvar);
|
| 902 |
|
|
|
| 903 |
|
|
case OP_STRING:
|
| 904 |
|
|
tem = longest_to_int (exp->elts[pc + 1].longconst);
|
| 905 |
|
|
(*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
|
| 906 |
|
|
if (noside == EVAL_SKIP)
|
| 907 |
|
|
goto nosideret;
|
| 908 |
|
|
type = language_string_char_type (exp->language_defn, exp->gdbarch);
|
| 909 |
|
|
return value_string (&exp->elts[pc + 2].string, tem, type);
|
| 910 |
|
|
|
| 911 |
|
|
case OP_OBJC_NSSTRING: /* Objective C Foundation Class NSString constant. */
|
| 912 |
|
|
tem = longest_to_int (exp->elts[pc + 1].longconst);
|
| 913 |
|
|
(*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
|
| 914 |
|
|
if (noside == EVAL_SKIP)
|
| 915 |
|
|
{
|
| 916 |
|
|
goto nosideret;
|
| 917 |
|
|
}
|
| 918 |
|
|
return value_nsstring (exp->gdbarch, &exp->elts[pc + 2].string, tem + 1);
|
| 919 |
|
|
|
| 920 |
|
|
case OP_BITSTRING:
|
| 921 |
|
|
tem = longest_to_int (exp->elts[pc + 1].longconst);
|
| 922 |
|
|
(*pos)
|
| 923 |
|
|
+= 3 + BYTES_TO_EXP_ELEM ((tem + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT);
|
| 924 |
|
|
if (noside == EVAL_SKIP)
|
| 925 |
|
|
goto nosideret;
|
| 926 |
|
|
return value_bitstring (&exp->elts[pc + 2].string, tem,
|
| 927 |
|
|
builtin_type (exp->gdbarch)->builtin_int);
|
| 928 |
|
|
break;
|
| 929 |
|
|
|
| 930 |
|
|
case OP_ARRAY:
|
| 931 |
|
|
(*pos) += 3;
|
| 932 |
|
|
tem2 = longest_to_int (exp->elts[pc + 1].longconst);
|
| 933 |
|
|
tem3 = longest_to_int (exp->elts[pc + 2].longconst);
|
| 934 |
|
|
nargs = tem3 - tem2 + 1;
|
| 935 |
|
|
type = expect_type ? check_typedef (expect_type) : NULL_TYPE;
|
| 936 |
|
|
|
| 937 |
|
|
if (expect_type != NULL_TYPE && noside != EVAL_SKIP
|
| 938 |
|
|
&& TYPE_CODE (type) == TYPE_CODE_STRUCT)
|
| 939 |
|
|
{
|
| 940 |
|
|
struct value *rec = allocate_value (expect_type);
|
| 941 |
|
|
|
| 942 |
|
|
memset (value_contents_raw (rec), '\0', TYPE_LENGTH (type));
|
| 943 |
|
|
return evaluate_struct_tuple (rec, exp, pos, noside, nargs);
|
| 944 |
|
|
}
|
| 945 |
|
|
|
| 946 |
|
|
if (expect_type != NULL_TYPE && noside != EVAL_SKIP
|
| 947 |
|
|
&& TYPE_CODE (type) == TYPE_CODE_ARRAY)
|
| 948 |
|
|
{
|
| 949 |
|
|
struct type *range_type = TYPE_INDEX_TYPE (type);
|
| 950 |
|
|
struct type *element_type = TYPE_TARGET_TYPE (type);
|
| 951 |
|
|
struct value *array = allocate_value (expect_type);
|
| 952 |
|
|
int element_size = TYPE_LENGTH (check_typedef (element_type));
|
| 953 |
|
|
LONGEST low_bound, high_bound, index;
|
| 954 |
|
|
|
| 955 |
|
|
if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
|
| 956 |
|
|
{
|
| 957 |
|
|
low_bound = 0;
|
| 958 |
|
|
high_bound = (TYPE_LENGTH (type) / element_size) - 1;
|
| 959 |
|
|
}
|
| 960 |
|
|
index = low_bound;
|
| 961 |
|
|
memset (value_contents_raw (array), 0, TYPE_LENGTH (expect_type));
|
| 962 |
|
|
for (tem = nargs; --nargs >= 0;)
|
| 963 |
|
|
{
|
| 964 |
|
|
struct value *element;
|
| 965 |
|
|
int index_pc = 0;
|
| 966 |
|
|
|
| 967 |
|
|
if (exp->elts[*pos].opcode == BINOP_RANGE)
|
| 968 |
|
|
{
|
| 969 |
|
|
index_pc = ++(*pos);
|
| 970 |
|
|
evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
|
| 971 |
|
|
}
|
| 972 |
|
|
element = evaluate_subexp (element_type, exp, pos, noside);
|
| 973 |
|
|
if (value_type (element) != element_type)
|
| 974 |
|
|
element = value_cast (element_type, element);
|
| 975 |
|
|
if (index_pc)
|
| 976 |
|
|
{
|
| 977 |
|
|
int continue_pc = *pos;
|
| 978 |
|
|
|
| 979 |
|
|
*pos = index_pc;
|
| 980 |
|
|
index = init_array_element (array, element, exp, pos, noside,
|
| 981 |
|
|
low_bound, high_bound);
|
| 982 |
|
|
*pos = continue_pc;
|
| 983 |
|
|
}
|
| 984 |
|
|
else
|
| 985 |
|
|
{
|
| 986 |
|
|
if (index > high_bound)
|
| 987 |
|
|
/* to avoid memory corruption */
|
| 988 |
|
|
error (_("Too many array elements"));
|
| 989 |
|
|
memcpy (value_contents_raw (array)
|
| 990 |
|
|
+ (index - low_bound) * element_size,
|
| 991 |
|
|
value_contents (element),
|
| 992 |
|
|
element_size);
|
| 993 |
|
|
}
|
| 994 |
|
|
index++;
|
| 995 |
|
|
}
|
| 996 |
|
|
return array;
|
| 997 |
|
|
}
|
| 998 |
|
|
|
| 999 |
|
|
if (expect_type != NULL_TYPE && noside != EVAL_SKIP
|
| 1000 |
|
|
&& TYPE_CODE (type) == TYPE_CODE_SET)
|
| 1001 |
|
|
{
|
| 1002 |
|
|
struct value *set = allocate_value (expect_type);
|
| 1003 |
|
|
gdb_byte *valaddr = value_contents_raw (set);
|
| 1004 |
|
|
struct type *element_type = TYPE_INDEX_TYPE (type);
|
| 1005 |
|
|
struct type *check_type = element_type;
|
| 1006 |
|
|
LONGEST low_bound, high_bound;
|
| 1007 |
|
|
|
| 1008 |
|
|
/* get targettype of elementtype */
|
| 1009 |
|
|
while (TYPE_CODE (check_type) == TYPE_CODE_RANGE
|
| 1010 |
|
|
|| TYPE_CODE (check_type) == TYPE_CODE_TYPEDEF)
|
| 1011 |
|
|
check_type = TYPE_TARGET_TYPE (check_type);
|
| 1012 |
|
|
|
| 1013 |
|
|
if (get_discrete_bounds (element_type, &low_bound, &high_bound) < 0)
|
| 1014 |
|
|
error (_("(power)set type with unknown size"));
|
| 1015 |
|
|
memset (valaddr, '\0', TYPE_LENGTH (type));
|
| 1016 |
|
|
for (tem = 0; tem < nargs; tem++)
|
| 1017 |
|
|
{
|
| 1018 |
|
|
LONGEST range_low, range_high;
|
| 1019 |
|
|
struct type *range_low_type, *range_high_type;
|
| 1020 |
|
|
struct value *elem_val;
|
| 1021 |
|
|
|
| 1022 |
|
|
if (exp->elts[*pos].opcode == BINOP_RANGE)
|
| 1023 |
|
|
{
|
| 1024 |
|
|
(*pos)++;
|
| 1025 |
|
|
elem_val = evaluate_subexp (element_type, exp, pos, noside);
|
| 1026 |
|
|
range_low_type = value_type (elem_val);
|
| 1027 |
|
|
range_low = value_as_long (elem_val);
|
| 1028 |
|
|
elem_val = evaluate_subexp (element_type, exp, pos, noside);
|
| 1029 |
|
|
range_high_type = value_type (elem_val);
|
| 1030 |
|
|
range_high = value_as_long (elem_val);
|
| 1031 |
|
|
}
|
| 1032 |
|
|
else
|
| 1033 |
|
|
{
|
| 1034 |
|
|
elem_val = evaluate_subexp (element_type, exp, pos, noside);
|
| 1035 |
|
|
range_low_type = range_high_type = value_type (elem_val);
|
| 1036 |
|
|
range_low = range_high = value_as_long (elem_val);
|
| 1037 |
|
|
}
|
| 1038 |
|
|
/* check types of elements to avoid mixture of elements from
|
| 1039 |
|
|
different types. Also check if type of element is "compatible"
|
| 1040 |
|
|
with element type of powerset */
|
| 1041 |
|
|
if (TYPE_CODE (range_low_type) == TYPE_CODE_RANGE)
|
| 1042 |
|
|
range_low_type = TYPE_TARGET_TYPE (range_low_type);
|
| 1043 |
|
|
if (TYPE_CODE (range_high_type) == TYPE_CODE_RANGE)
|
| 1044 |
|
|
range_high_type = TYPE_TARGET_TYPE (range_high_type);
|
| 1045 |
|
|
if ((TYPE_CODE (range_low_type) != TYPE_CODE (range_high_type))
|
| 1046 |
|
|
|| (TYPE_CODE (range_low_type) == TYPE_CODE_ENUM
|
| 1047 |
|
|
&& (range_low_type != range_high_type)))
|
| 1048 |
|
|
/* different element modes */
|
| 1049 |
|
|
error (_("POWERSET tuple elements of different mode"));
|
| 1050 |
|
|
if ((TYPE_CODE (check_type) != TYPE_CODE (range_low_type))
|
| 1051 |
|
|
|| (TYPE_CODE (check_type) == TYPE_CODE_ENUM
|
| 1052 |
|
|
&& range_low_type != check_type))
|
| 1053 |
|
|
error (_("incompatible POWERSET tuple elements"));
|
| 1054 |
|
|
if (range_low > range_high)
|
| 1055 |
|
|
{
|
| 1056 |
|
|
warning (_("empty POWERSET tuple range"));
|
| 1057 |
|
|
continue;
|
| 1058 |
|
|
}
|
| 1059 |
|
|
if (range_low < low_bound || range_high > high_bound)
|
| 1060 |
|
|
error (_("POWERSET tuple element out of range"));
|
| 1061 |
|
|
range_low -= low_bound;
|
| 1062 |
|
|
range_high -= low_bound;
|
| 1063 |
|
|
for (; range_low <= range_high; range_low++)
|
| 1064 |
|
|
{
|
| 1065 |
|
|
int bit_index = (unsigned) range_low % TARGET_CHAR_BIT;
|
| 1066 |
|
|
|
| 1067 |
|
|
if (gdbarch_bits_big_endian (exp->gdbarch))
|
| 1068 |
|
|
bit_index = TARGET_CHAR_BIT - 1 - bit_index;
|
| 1069 |
|
|
valaddr[(unsigned) range_low / TARGET_CHAR_BIT]
|
| 1070 |
|
|
|= 1 << bit_index;
|
| 1071 |
|
|
}
|
| 1072 |
|
|
}
|
| 1073 |
|
|
return set;
|
| 1074 |
|
|
}
|
| 1075 |
|
|
|
| 1076 |
|
|
argvec = (struct value **) alloca (sizeof (struct value *) * nargs);
|
| 1077 |
|
|
for (tem = 0; tem < nargs; tem++)
|
| 1078 |
|
|
{
|
| 1079 |
|
|
/* Ensure that array expressions are coerced into pointer objects. */
|
| 1080 |
|
|
argvec[tem] = evaluate_subexp_with_coercion (exp, pos, noside);
|
| 1081 |
|
|
}
|
| 1082 |
|
|
if (noside == EVAL_SKIP)
|
| 1083 |
|
|
goto nosideret;
|
| 1084 |
|
|
return value_array (tem2, tem3, argvec);
|
| 1085 |
|
|
|
| 1086 |
|
|
case TERNOP_SLICE:
|
| 1087 |
|
|
{
|
| 1088 |
|
|
struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
| 1089 |
|
|
int lowbound
|
| 1090 |
|
|
= value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
|
| 1091 |
|
|
int upper
|
| 1092 |
|
|
= value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
|
| 1093 |
|
|
|
| 1094 |
|
|
if (noside == EVAL_SKIP)
|
| 1095 |
|
|
goto nosideret;
|
| 1096 |
|
|
return value_slice (array, lowbound, upper - lowbound + 1);
|
| 1097 |
|
|
}
|
| 1098 |
|
|
|
| 1099 |
|
|
case TERNOP_SLICE_COUNT:
|
| 1100 |
|
|
{
|
| 1101 |
|
|
struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
| 1102 |
|
|
int lowbound
|
| 1103 |
|
|
= value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
|
| 1104 |
|
|
int length
|
| 1105 |
|
|
= value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
|
| 1106 |
|
|
|
| 1107 |
|
|
return value_slice (array, lowbound, length);
|
| 1108 |
|
|
}
|
| 1109 |
|
|
|
| 1110 |
|
|
case TERNOP_COND:
|
| 1111 |
|
|
/* Skip third and second args to evaluate the first one. */
|
| 1112 |
|
|
arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
| 1113 |
|
|
if (value_logical_not (arg1))
|
| 1114 |
|
|
{
|
| 1115 |
|
|
evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
|
| 1116 |
|
|
return evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
| 1117 |
|
|
}
|
| 1118 |
|
|
else
|
| 1119 |
|
|
{
|
| 1120 |
|
|
arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
| 1121 |
|
|
evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
|
| 1122 |
|
|
return arg2;
|
| 1123 |
|
|
}
|
| 1124 |
|
|
|
| 1125 |
|
|
case OP_OBJC_SELECTOR:
|
| 1126 |
|
|
{ /* Objective C @selector operator. */
|
| 1127 |
|
|
char *sel = &exp->elts[pc + 2].string;
|
| 1128 |
|
|
int len = longest_to_int (exp->elts[pc + 1].longconst);
|
| 1129 |
|
|
struct type *selector_type;
|
| 1130 |
|
|
|
| 1131 |
|
|
(*pos) += 3 + BYTES_TO_EXP_ELEM (len + 1);
|
| 1132 |
|
|
if (noside == EVAL_SKIP)
|
| 1133 |
|
|
goto nosideret;
|
| 1134 |
|
|
|
| 1135 |
|
|
if (sel[len] != 0)
|
| 1136 |
|
|
sel[len] = 0; /* Make sure it's terminated. */
|
| 1137 |
|
|
|
| 1138 |
|
|
selector_type = builtin_type (exp->gdbarch)->builtin_data_ptr;
|
| 1139 |
|
|
return value_from_longest (selector_type,
|
| 1140 |
|
|
lookup_child_selector (exp->gdbarch, sel));
|
| 1141 |
|
|
}
|
| 1142 |
|
|
|
| 1143 |
|
|
case OP_OBJC_MSGCALL:
|
| 1144 |
|
|
{ /* Objective C message (method) call. */
|
| 1145 |
|
|
|
| 1146 |
|
|
CORE_ADDR responds_selector = 0;
|
| 1147 |
|
|
CORE_ADDR method_selector = 0;
|
| 1148 |
|
|
|
| 1149 |
|
|
CORE_ADDR selector = 0;
|
| 1150 |
|
|
|
| 1151 |
|
|
int struct_return = 0;
|
| 1152 |
|
|
int sub_no_side = 0;
|
| 1153 |
|
|
|
| 1154 |
|
|
struct value *msg_send = NULL;
|
| 1155 |
|
|
struct value *msg_send_stret = NULL;
|
| 1156 |
|
|
int gnu_runtime = 0;
|
| 1157 |
|
|
|
| 1158 |
|
|
struct value *target = NULL;
|
| 1159 |
|
|
struct value *method = NULL;
|
| 1160 |
|
|
struct value *called_method = NULL;
|
| 1161 |
|
|
|
| 1162 |
|
|
struct type *selector_type = NULL;
|
| 1163 |
|
|
struct type *long_type;
|
| 1164 |
|
|
|
| 1165 |
|
|
struct value *ret = NULL;
|
| 1166 |
|
|
CORE_ADDR addr = 0;
|
| 1167 |
|
|
|
| 1168 |
|
|
selector = exp->elts[pc + 1].longconst;
|
| 1169 |
|
|
nargs = exp->elts[pc + 2].longconst;
|
| 1170 |
|
|
argvec = (struct value **) alloca (sizeof (struct value *)
|
| 1171 |
|
|
* (nargs + 5));
|
| 1172 |
|
|
|
| 1173 |
|
|
(*pos) += 3;
|
| 1174 |
|
|
|
| 1175 |
|
|
long_type = builtin_type (exp->gdbarch)->builtin_long;
|
| 1176 |
|
|
selector_type = builtin_type (exp->gdbarch)->builtin_data_ptr;
|
| 1177 |
|
|
|
| 1178 |
|
|
if (noside == EVAL_AVOID_SIDE_EFFECTS)
|
| 1179 |
|
|
sub_no_side = EVAL_NORMAL;
|
| 1180 |
|
|
else
|
| 1181 |
|
|
sub_no_side = noside;
|
| 1182 |
|
|
|
| 1183 |
|
|
target = evaluate_subexp (selector_type, exp, pos, sub_no_side);
|
| 1184 |
|
|
|
| 1185 |
|
|
if (value_as_long (target) == 0)
|
| 1186 |
|
|
return value_from_longest (long_type, 0);
|
| 1187 |
|
|
|
| 1188 |
|
|
if (lookup_minimal_symbol ("objc_msg_lookup", 0, 0))
|
| 1189 |
|
|
gnu_runtime = 1;
|
| 1190 |
|
|
|
| 1191 |
|
|
/* Find the method dispatch (Apple runtime) or method lookup
|
| 1192 |
|
|
(GNU runtime) function for Objective-C. These will be used
|
| 1193 |
|
|
to lookup the symbol information for the method. If we
|
| 1194 |
|
|
can't find any symbol information, then we'll use these to
|
| 1195 |
|
|
call the method, otherwise we can call the method
|
| 1196 |
|
|
directly. The msg_send_stret function is used in the special
|
| 1197 |
|
|
case of a method that returns a structure (Apple runtime
|
| 1198 |
|
|
only). */
|
| 1199 |
|
|
if (gnu_runtime)
|
| 1200 |
|
|
{
|
| 1201 |
|
|
struct type *type = selector_type;
|
| 1202 |
|
|
|
| 1203 |
|
|
type = lookup_function_type (type);
|
| 1204 |
|
|
type = lookup_pointer_type (type);
|
| 1205 |
|
|
type = lookup_function_type (type);
|
| 1206 |
|
|
type = lookup_pointer_type (type);
|
| 1207 |
|
|
|
| 1208 |
|
|
msg_send = find_function_in_inferior ("objc_msg_lookup", NULL);
|
| 1209 |
|
|
msg_send_stret
|
| 1210 |
|
|
= find_function_in_inferior ("objc_msg_lookup", NULL);
|
| 1211 |
|
|
|
| 1212 |
|
|
msg_send = value_from_pointer (type, value_as_address (msg_send));
|
| 1213 |
|
|
msg_send_stret = value_from_pointer (type,
|
| 1214 |
|
|
value_as_address (msg_send_stret));
|
| 1215 |
|
|
}
|
| 1216 |
|
|
else
|
| 1217 |
|
|
{
|
| 1218 |
|
|
msg_send = find_function_in_inferior ("objc_msgSend", NULL);
|
| 1219 |
|
|
/* Special dispatcher for methods returning structs */
|
| 1220 |
|
|
msg_send_stret
|
| 1221 |
|
|
= find_function_in_inferior ("objc_msgSend_stret", NULL);
|
| 1222 |
|
|
}
|
| 1223 |
|
|
|
| 1224 |
|
|
/* Verify the target object responds to this method. The
|
| 1225 |
|
|
standard top-level 'Object' class uses a different name for
|
| 1226 |
|
|
the verification method than the non-standard, but more
|
| 1227 |
|
|
often used, 'NSObject' class. Make sure we check for both. */
|
| 1228 |
|
|
|
| 1229 |
|
|
responds_selector
|
| 1230 |
|
|
= lookup_child_selector (exp->gdbarch, "respondsToSelector:");
|
| 1231 |
|
|
if (responds_selector == 0)
|
| 1232 |
|
|
responds_selector
|
| 1233 |
|
|
= lookup_child_selector (exp->gdbarch, "respondsTo:");
|
| 1234 |
|
|
|
| 1235 |
|
|
if (responds_selector == 0)
|
| 1236 |
|
|
error (_("no 'respondsTo:' or 'respondsToSelector:' method"));
|
| 1237 |
|
|
|
| 1238 |
|
|
method_selector
|
| 1239 |
|
|
= lookup_child_selector (exp->gdbarch, "methodForSelector:");
|
| 1240 |
|
|
if (method_selector == 0)
|
| 1241 |
|
|
method_selector
|
| 1242 |
|
|
= lookup_child_selector (exp->gdbarch, "methodFor:");
|
| 1243 |
|
|
|
| 1244 |
|
|
if (method_selector == 0)
|
| 1245 |
|
|
error (_("no 'methodFor:' or 'methodForSelector:' method"));
|
| 1246 |
|
|
|
| 1247 |
|
|
/* Call the verification method, to make sure that the target
|
| 1248 |
|
|
class implements the desired method. */
|
| 1249 |
|
|
|
| 1250 |
|
|
argvec[0] = msg_send;
|
| 1251 |
|
|
argvec[1] = target;
|
| 1252 |
|
|
argvec[2] = value_from_longest (long_type, responds_selector);
|
| 1253 |
|
|
argvec[3] = value_from_longest (long_type, selector);
|
| 1254 |
|
|
argvec[4] = 0;
|
| 1255 |
|
|
|
| 1256 |
|
|
ret = call_function_by_hand (argvec[0], 3, argvec + 1);
|
| 1257 |
|
|
if (gnu_runtime)
|
| 1258 |
|
|
{
|
| 1259 |
|
|
/* Function objc_msg_lookup returns a pointer. */
|
| 1260 |
|
|
argvec[0] = ret;
|
| 1261 |
|
|
ret = call_function_by_hand (argvec[0], 3, argvec + 1);
|
| 1262 |
|
|
}
|
| 1263 |
|
|
if (value_as_long (ret) == 0)
|
| 1264 |
|
|
error (_("Target does not respond to this message selector."));
|
| 1265 |
|
|
|
| 1266 |
|
|
/* Call "methodForSelector:" method, to get the address of a
|
| 1267 |
|
|
function method that implements this selector for this
|
| 1268 |
|
|
class. If we can find a symbol at that address, then we
|
| 1269 |
|
|
know the return type, parameter types etc. (that's a good
|
| 1270 |
|
|
thing). */
|
| 1271 |
|
|
|
| 1272 |
|
|
argvec[0] = msg_send;
|
| 1273 |
|
|
argvec[1] = target;
|
| 1274 |
|
|
argvec[2] = value_from_longest (long_type, method_selector);
|
| 1275 |
|
|
argvec[3] = value_from_longest (long_type, selector);
|
| 1276 |
|
|
argvec[4] = 0;
|
| 1277 |
|
|
|
| 1278 |
|
|
ret = call_function_by_hand (argvec[0], 3, argvec + 1);
|
| 1279 |
|
|
if (gnu_runtime)
|
| 1280 |
|
|
{
|
| 1281 |
|
|
argvec[0] = ret;
|
| 1282 |
|
|
ret = call_function_by_hand (argvec[0], 3, argvec + 1);
|
| 1283 |
|
|
}
|
| 1284 |
|
|
|
| 1285 |
|
|
/* ret should now be the selector. */
|
| 1286 |
|
|
|
| 1287 |
|
|
addr = value_as_long (ret);
|
| 1288 |
|
|
if (addr)
|
| 1289 |
|
|
{
|
| 1290 |
|
|
struct symbol *sym = NULL;
|
| 1291 |
|
|
|
| 1292 |
|
|
/* The address might point to a function descriptor;
|
| 1293 |
|
|
resolve it to the actual code address instead. */
|
| 1294 |
|
|
addr = gdbarch_convert_from_func_ptr_addr (exp->gdbarch, addr,
|
| 1295 |
|
|
¤t_target);
|
| 1296 |
|
|
|
| 1297 |
|
|
/* Is it a high_level symbol? */
|
| 1298 |
|
|
sym = find_pc_function (addr);
|
| 1299 |
|
|
if (sym != NULL)
|
| 1300 |
|
|
method = value_of_variable (sym, 0);
|
| 1301 |
|
|
}
|
| 1302 |
|
|
|
| 1303 |
|
|
/* If we found a method with symbol information, check to see
|
| 1304 |
|
|
if it returns a struct. Otherwise assume it doesn't. */
|
| 1305 |
|
|
|
| 1306 |
|
|
if (method)
|
| 1307 |
|
|
{
|
| 1308 |
|
|
struct block *b;
|
| 1309 |
|
|
CORE_ADDR funaddr;
|
| 1310 |
|
|
struct type *val_type;
|
| 1311 |
|
|
|
| 1312 |
|
|
funaddr = find_function_addr (method, &val_type);
|
| 1313 |
|
|
|
| 1314 |
|
|
b = block_for_pc (funaddr);
|
| 1315 |
|
|
|
| 1316 |
|
|
CHECK_TYPEDEF (val_type);
|
| 1317 |
|
|
|
| 1318 |
|
|
if ((val_type == NULL)
|
| 1319 |
|
|
|| (TYPE_CODE(val_type) == TYPE_CODE_ERROR))
|
| 1320 |
|
|
{
|
| 1321 |
|
|
if (expect_type != NULL)
|
| 1322 |
|
|
val_type = expect_type;
|
| 1323 |
|
|
}
|
| 1324 |
|
|
|
| 1325 |
|
|
struct_return = using_struct_return (exp->gdbarch,
|
| 1326 |
|
|
value_type (method), val_type);
|
| 1327 |
|
|
}
|
| 1328 |
|
|
else if (expect_type != NULL)
|
| 1329 |
|
|
{
|
| 1330 |
|
|
struct_return = using_struct_return (exp->gdbarch, NULL,
|
| 1331 |
|
|
check_typedef (expect_type));
|
| 1332 |
|
|
}
|
| 1333 |
|
|
|
| 1334 |
|
|
/* Found a function symbol. Now we will substitute its
|
| 1335 |
|
|
value in place of the message dispatcher (obj_msgSend),
|
| 1336 |
|
|
so that we call the method directly instead of thru
|
| 1337 |
|
|
the dispatcher. The main reason for doing this is that
|
| 1338 |
|
|
we can now evaluate the return value and parameter values
|
| 1339 |
|
|
according to their known data types, in case we need to
|
| 1340 |
|
|
do things like promotion, dereferencing, special handling
|
| 1341 |
|
|
of structs and doubles, etc.
|
| 1342 |
|
|
|
| 1343 |
|
|
We want to use the type signature of 'method', but still
|
| 1344 |
|
|
jump to objc_msgSend() or objc_msgSend_stret() to better
|
| 1345 |
|
|
mimic the behavior of the runtime. */
|
| 1346 |
|
|
|
| 1347 |
|
|
if (method)
|
| 1348 |
|
|
{
|
| 1349 |
|
|
if (TYPE_CODE (value_type (method)) != TYPE_CODE_FUNC)
|
| 1350 |
|
|
error (_("method address has symbol information with non-function type; skipping"));
|
| 1351 |
|
|
|
| 1352 |
|
|
/* Create a function pointer of the appropriate type, and replace
|
| 1353 |
|
|
its value with the value of msg_send or msg_send_stret. We must
|
| 1354 |
|
|
use a pointer here, as msg_send and msg_send_stret are of pointer
|
| 1355 |
|
|
type, and the representation may be different on systems that use
|
| 1356 |
|
|
function descriptors. */
|
| 1357 |
|
|
if (struct_return)
|
| 1358 |
|
|
called_method
|
| 1359 |
|
|
= value_from_pointer (lookup_pointer_type (value_type (method)),
|
| 1360 |
|
|
value_as_address (msg_send_stret));
|
| 1361 |
|
|
else
|
| 1362 |
|
|
called_method
|
| 1363 |
|
|
= value_from_pointer (lookup_pointer_type (value_type (method)),
|
| 1364 |
|
|
value_as_address (msg_send));
|
| 1365 |
|
|
}
|
| 1366 |
|
|
else
|
| 1367 |
|
|
{
|
| 1368 |
|
|
if (struct_return)
|
| 1369 |
|
|
called_method = msg_send_stret;
|
| 1370 |
|
|
else
|
| 1371 |
|
|
called_method = msg_send;
|
| 1372 |
|
|
}
|
| 1373 |
|
|
|
| 1374 |
|
|
if (noside == EVAL_SKIP)
|
| 1375 |
|
|
goto nosideret;
|
| 1376 |
|
|
|
| 1377 |
|
|
if (noside == EVAL_AVOID_SIDE_EFFECTS)
|
| 1378 |
|
|
{
|
| 1379 |
|
|
/* If the return type doesn't look like a function type,
|
| 1380 |
|
|
call an error. This can happen if somebody tries to
|
| 1381 |
|
|
turn a variable into a function call. This is here
|
| 1382 |
|
|
because people often want to call, eg, strcmp, which
|
| 1383 |
|
|
gdb doesn't know is a function. If gdb isn't asked for
|
| 1384 |
|
|
it's opinion (ie. through "whatis"), it won't offer
|
| 1385 |
|
|
it. */
|
| 1386 |
|
|
|
| 1387 |
|
|
struct type *type = value_type (called_method);
|
| 1388 |
|
|
|
| 1389 |
|
|
if (type && TYPE_CODE (type) == TYPE_CODE_PTR)
|
| 1390 |
|
|
type = TYPE_TARGET_TYPE (type);
|
| 1391 |
|
|
type = TYPE_TARGET_TYPE (type);
|
| 1392 |
|
|
|
| 1393 |
|
|
if (type)
|
| 1394 |
|
|
{
|
| 1395 |
|
|
if ((TYPE_CODE (type) == TYPE_CODE_ERROR) && expect_type)
|
| 1396 |
|
|
return allocate_value (expect_type);
|
| 1397 |
|
|
else
|
| 1398 |
|
|
return allocate_value (type);
|
| 1399 |
|
|
}
|
| 1400 |
|
|
else
|
| 1401 |
|
|
error (_("Expression of type other than \"method returning ...\" used as a method"));
|
| 1402 |
|
|
}
|
| 1403 |
|
|
|
| 1404 |
|
|
/* Now depending on whether we found a symbol for the method,
|
| 1405 |
|
|
we will either call the runtime dispatcher or the method
|
| 1406 |
|
|
directly. */
|
| 1407 |
|
|
|
| 1408 |
|
|
argvec[0] = called_method;
|
| 1409 |
|
|
argvec[1] = target;
|
| 1410 |
|
|
argvec[2] = value_from_longest (long_type, selector);
|
| 1411 |
|
|
/* User-supplied arguments. */
|
| 1412 |
|
|
for (tem = 0; tem < nargs; tem++)
|
| 1413 |
|
|
argvec[tem + 3] = evaluate_subexp_with_coercion (exp, pos, noside);
|
| 1414 |
|
|
argvec[tem + 3] = 0;
|
| 1415 |
|
|
|
| 1416 |
|
|
if (gnu_runtime && (method != NULL))
|
| 1417 |
|
|
{
|
| 1418 |
|
|
/* Function objc_msg_lookup returns a pointer. */
|
| 1419 |
|
|
deprecated_set_value_type (argvec[0],
|
| 1420 |
|
|
lookup_pointer_type (lookup_function_type (value_type (argvec[0]))));
|
| 1421 |
|
|
argvec[0] = call_function_by_hand (argvec[0], nargs + 2, argvec + 1);
|
| 1422 |
|
|
}
|
| 1423 |
|
|
|
| 1424 |
|
|
ret = call_function_by_hand (argvec[0], nargs + 2, argvec + 1);
|
| 1425 |
|
|
return ret;
|
| 1426 |
|
|
}
|
| 1427 |
|
|
break;
|
| 1428 |
|
|
|
| 1429 |
|
|
case OP_FUNCALL:
|
| 1430 |
|
|
(*pos) += 2;
|
| 1431 |
|
|
op = exp->elts[*pos].opcode;
|
| 1432 |
|
|
nargs = longest_to_int (exp->elts[pc + 1].longconst);
|
| 1433 |
|
|
/* Allocate arg vector, including space for the function to be
|
| 1434 |
|
|
called in argvec[0] and a terminating NULL */
|
| 1435 |
|
|
argvec = (struct value **) alloca (sizeof (struct value *) * (nargs + 3));
|
| 1436 |
|
|
if (op == STRUCTOP_MEMBER || op == STRUCTOP_MPTR)
|
| 1437 |
|
|
{
|
| 1438 |
|
|
nargs++;
|
| 1439 |
|
|
/* First, evaluate the structure into arg2 */
|
| 1440 |
|
|
pc2 = (*pos)++;
|
| 1441 |
|
|
|
| 1442 |
|
|
if (noside == EVAL_SKIP)
|
| 1443 |
|
|
goto nosideret;
|
| 1444 |
|
|
|
| 1445 |
|
|
if (op == STRUCTOP_MEMBER)
|
| 1446 |
|
|
{
|
| 1447 |
|
|
arg2 = evaluate_subexp_for_address (exp, pos, noside);
|
| 1448 |
|
|
}
|
| 1449 |
|
|
else
|
| 1450 |
|
|
{
|
| 1451 |
|
|
arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
| 1452 |
|
|
}
|
| 1453 |
|
|
|
| 1454 |
|
|
/* If the function is a virtual function, then the
|
| 1455 |
|
|
aggregate value (providing the structure) plays
|
| 1456 |
|
|
its part by providing the vtable. Otherwise,
|
| 1457 |
|
|
it is just along for the ride: call the function
|
| 1458 |
|
|
directly. */
|
| 1459 |
|
|
|
| 1460 |
|
|
arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
| 1461 |
|
|
|
| 1462 |
|
|
if (TYPE_CODE (check_typedef (value_type (arg1)))
|
| 1463 |
|
|
!= TYPE_CODE_METHODPTR)
|
| 1464 |
|
|
error (_("Non-pointer-to-member value used in pointer-to-member "
|
| 1465 |
|
|
"construct"));
|
| 1466 |
|
|
|
| 1467 |
|
|
if (noside == EVAL_AVOID_SIDE_EFFECTS)
|
| 1468 |
|
|
{
|
| 1469 |
|
|
struct type *method_type = check_typedef (value_type (arg1));
|
| 1470 |
|
|
|
| 1471 |
|
|
arg1 = value_zero (method_type, not_lval);
|
| 1472 |
|
|
}
|
| 1473 |
|
|
else
|
| 1474 |
|
|
arg1 = cplus_method_ptr_to_value (&arg2, arg1);
|
| 1475 |
|
|
|
| 1476 |
|
|
/* Now, say which argument to start evaluating from */
|
| 1477 |
|
|
tem = 2;
|
| 1478 |
|
|
}
|
| 1479 |
|
|
else if (op == STRUCTOP_STRUCT || op == STRUCTOP_PTR)
|
| 1480 |
|
|
{
|
| 1481 |
|
|
/* Hair for method invocations */
|
| 1482 |
|
|
int tem2;
|
| 1483 |
|
|
|
| 1484 |
|
|
nargs++;
|
| 1485 |
|
|
/* First, evaluate the structure into arg2 */
|
| 1486 |
|
|
pc2 = (*pos)++;
|
| 1487 |
|
|
tem2 = longest_to_int (exp->elts[pc2 + 1].longconst);
|
| 1488 |
|
|
*pos += 3 + BYTES_TO_EXP_ELEM (tem2 + 1);
|
| 1489 |
|
|
if (noside == EVAL_SKIP)
|
| 1490 |
|
|
goto nosideret;
|
| 1491 |
|
|
|
| 1492 |
|
|
if (op == STRUCTOP_STRUCT)
|
| 1493 |
|
|
{
|
| 1494 |
|
|
/* If v is a variable in a register, and the user types
|
| 1495 |
|
|
v.method (), this will produce an error, because v has
|
| 1496 |
|
|
no address.
|
| 1497 |
|
|
|
| 1498 |
|
|
A possible way around this would be to allocate a
|
| 1499 |
|
|
copy of the variable on the stack, copy in the
|
| 1500 |
|
|
contents, call the function, and copy out the
|
| 1501 |
|
|
contents. I.e. convert this from call by reference
|
| 1502 |
|
|
to call by copy-return (or whatever it's called).
|
| 1503 |
|
|
However, this does not work because it is not the
|
| 1504 |
|
|
same: the method being called could stash a copy of
|
| 1505 |
|
|
the address, and then future uses through that address
|
| 1506 |
|
|
(after the method returns) would be expected to
|
| 1507 |
|
|
use the variable itself, not some copy of it. */
|
| 1508 |
|
|
arg2 = evaluate_subexp_for_address (exp, pos, noside);
|
| 1509 |
|
|
}
|
| 1510 |
|
|
else
|
| 1511 |
|
|
{
|
| 1512 |
|
|
arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
| 1513 |
|
|
}
|
| 1514 |
|
|
/* Now, say which argument to start evaluating from */
|
| 1515 |
|
|
tem = 2;
|
| 1516 |
|
|
}
|
| 1517 |
|
|
else if (op == OP_SCOPE
|
| 1518 |
|
|
&& overload_resolution
|
| 1519 |
|
|
&& (exp->language_defn->la_language == language_cplus))
|
| 1520 |
|
|
{
|
| 1521 |
|
|
/* Unpack it locally so we can properly handle overload
|
| 1522 |
|
|
resolution. */
|
| 1523 |
|
|
char *name;
|
| 1524 |
|
|
int local_tem;
|
| 1525 |
|
|
|
| 1526 |
|
|
pc2 = (*pos)++;
|
| 1527 |
|
|
local_tem = longest_to_int (exp->elts[pc2 + 2].longconst);
|
| 1528 |
|
|
(*pos) += 4 + BYTES_TO_EXP_ELEM (local_tem + 1);
|
| 1529 |
|
|
type = exp->elts[pc2 + 1].type;
|
| 1530 |
|
|
name = &exp->elts[pc2 + 3].string;
|
| 1531 |
|
|
|
| 1532 |
|
|
function = NULL;
|
| 1533 |
|
|
function_name = NULL;
|
| 1534 |
|
|
if (TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
|
| 1535 |
|
|
{
|
| 1536 |
|
|
function = cp_lookup_symbol_namespace (TYPE_TAG_NAME (type),
|
| 1537 |
|
|
name,
|
| 1538 |
|
|
get_selected_block (0),
|
| 1539 |
|
|
VAR_DOMAIN);
|
| 1540 |
|
|
if (function == NULL)
|
| 1541 |
|
|
error (_("No symbol \"%s\" in namespace \"%s\"."),
|
| 1542 |
|
|
name, TYPE_TAG_NAME (type));
|
| 1543 |
|
|
|
| 1544 |
|
|
tem = 1;
|
| 1545 |
|
|
}
|
| 1546 |
|
|
else
|
| 1547 |
|
|
{
|
| 1548 |
|
|
gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
|
| 1549 |
|
|
|| TYPE_CODE (type) == TYPE_CODE_UNION);
|
| 1550 |
|
|
function_name = name;
|
| 1551 |
|
|
|
| 1552 |
|
|
arg2 = value_zero (type, lval_memory);
|
| 1553 |
|
|
++nargs;
|
| 1554 |
|
|
tem = 2;
|
| 1555 |
|
|
}
|
| 1556 |
|
|
}
|
| 1557 |
|
|
else if (op == OP_ADL_FUNC)
|
| 1558 |
|
|
{
|
| 1559 |
|
|
/* Save the function position and move pos so that the arguments
|
| 1560 |
|
|
can be evaluated. */
|
| 1561 |
|
|
int func_name_len;
|
| 1562 |
|
|
|
| 1563 |
|
|
save_pos1 = *pos;
|
| 1564 |
|
|
tem = 1;
|
| 1565 |
|
|
|
| 1566 |
|
|
func_name_len = longest_to_int (exp->elts[save_pos1 + 3].longconst);
|
| 1567 |
|
|
(*pos) += 6 + BYTES_TO_EXP_ELEM (func_name_len + 1);
|
| 1568 |
|
|
}
|
| 1569 |
|
|
else
|
| 1570 |
|
|
{
|
| 1571 |
|
|
/* Non-method function call */
|
| 1572 |
|
|
save_pos1 = *pos;
|
| 1573 |
|
|
argvec[0] = evaluate_subexp_with_coercion (exp, pos, noside);
|
| 1574 |
|
|
tem = 1;
|
| 1575 |
|
|
type = value_type (argvec[0]);
|
| 1576 |
|
|
if (type && TYPE_CODE (type) == TYPE_CODE_PTR)
|
| 1577 |
|
|
type = TYPE_TARGET_TYPE (type);
|
| 1578 |
|
|
if (type && TYPE_CODE (type) == TYPE_CODE_FUNC)
|
| 1579 |
|
|
{
|
| 1580 |
|
|
for (; tem <= nargs && tem <= TYPE_NFIELDS (type); tem++)
|
| 1581 |
|
|
{
|
| 1582 |
|
|
/* pai: FIXME This seems to be coercing arguments before
|
| 1583 |
|
|
* overload resolution has been done! */
|
| 1584 |
|
|
argvec[tem] = evaluate_subexp (TYPE_FIELD_TYPE (type, tem - 1),
|
| 1585 |
|
|
exp, pos, noside);
|
| 1586 |
|
|
}
|
| 1587 |
|
|
}
|
| 1588 |
|
|
}
|
| 1589 |
|
|
|
| 1590 |
|
|
/* Evaluate arguments */
|
| 1591 |
|
|
for (; tem <= nargs; tem++)
|
| 1592 |
|
|
{
|
| 1593 |
|
|
/* Ensure that array expressions are coerced into pointer objects. */
|
| 1594 |
|
|
argvec[tem] = evaluate_subexp_with_coercion (exp, pos, noside);
|
| 1595 |
|
|
}
|
| 1596 |
|
|
|
| 1597 |
|
|
/* signal end of arglist */
|
| 1598 |
|
|
argvec[tem] = 0;
|
| 1599 |
|
|
if (op == OP_ADL_FUNC)
|
| 1600 |
|
|
{
|
| 1601 |
|
|
struct symbol *symp;
|
| 1602 |
|
|
char *func_name;
|
| 1603 |
|
|
int name_len;
|
| 1604 |
|
|
int string_pc = save_pos1 + 3;
|
| 1605 |
|
|
|
| 1606 |
|
|
/* Extract the function name. */
|
| 1607 |
|
|
name_len = longest_to_int (exp->elts[string_pc].longconst);
|
| 1608 |
|
|
func_name = (char *) alloca (name_len + 1);
|
| 1609 |
|
|
strcpy (func_name, &exp->elts[string_pc + 1].string);
|
| 1610 |
|
|
|
| 1611 |
|
|
/* Prepare list of argument types for overload resolution */
|
| 1612 |
|
|
arg_types = (struct type **) alloca (nargs * (sizeof (struct type *)));
|
| 1613 |
|
|
for (ix = 1; ix <= nargs; ix++)
|
| 1614 |
|
|
arg_types[ix - 1] = value_type (argvec[ix]);
|
| 1615 |
|
|
|
| 1616 |
|
|
find_overload_match (arg_types, nargs, func_name,
|
| 1617 |
|
|
NON_METHOD /* not method */ , 0 /* strict match */ ,
|
| 1618 |
|
|
NULL, NULL /* pass NULL symbol since symbol is unknown */ ,
|
| 1619 |
|
|
NULL, &symp, NULL, 0);
|
| 1620 |
|
|
|
| 1621 |
|
|
/* Now fix the expression being evaluated. */
|
| 1622 |
|
|
exp->elts[save_pos1 + 2].symbol = symp;
|
| 1623 |
|
|
argvec[0] = evaluate_subexp_with_coercion (exp, &save_pos1, noside);
|
| 1624 |
|
|
}
|
| 1625 |
|
|
|
| 1626 |
|
|
if (op == STRUCTOP_STRUCT || op == STRUCTOP_PTR
|
| 1627 |
|
|
|| (op == OP_SCOPE && function_name != NULL))
|
| 1628 |
|
|
{
|
| 1629 |
|
|
int static_memfuncp;
|
| 1630 |
|
|
char *tstr;
|
| 1631 |
|
|
|
| 1632 |
|
|
/* Method invocation : stuff "this" as first parameter */
|
| 1633 |
|
|
argvec[1] = arg2;
|
| 1634 |
|
|
|
| 1635 |
|
|
if (op != OP_SCOPE)
|
| 1636 |
|
|
{
|
| 1637 |
|
|
/* Name of method from expression */
|
| 1638 |
|
|
tstr = &exp->elts[pc2 + 2].string;
|
| 1639 |
|
|
}
|
| 1640 |
|
|
else
|
| 1641 |
|
|
tstr = function_name;
|
| 1642 |
|
|
|
| 1643 |
|
|
if (overload_resolution && (exp->language_defn->la_language == language_cplus))
|
| 1644 |
|
|
{
|
| 1645 |
|
|
/* Language is C++, do some overload resolution before evaluation */
|
| 1646 |
|
|
struct value *valp = NULL;
|
| 1647 |
|
|
|
| 1648 |
|
|
/* Prepare list of argument types for overload resolution */
|
| 1649 |
|
|
arg_types = (struct type **) alloca (nargs * (sizeof (struct type *)));
|
| 1650 |
|
|
for (ix = 1; ix <= nargs; ix++)
|
| 1651 |
|
|
arg_types[ix - 1] = value_type (argvec[ix]);
|
| 1652 |
|
|
|
| 1653 |
|
|
(void) find_overload_match (arg_types, nargs, tstr,
|
| 1654 |
|
|
METHOD /* method */ , 0 /* strict match */ ,
|
| 1655 |
|
|
&arg2 /* the object */ , NULL,
|
| 1656 |
|
|
&valp, NULL, &static_memfuncp, 0);
|
| 1657 |
|
|
|
| 1658 |
|
|
if (op == OP_SCOPE && !static_memfuncp)
|
| 1659 |
|
|
{
|
| 1660 |
|
|
/* For the time being, we don't handle this. */
|
| 1661 |
|
|
error (_("Call to overloaded function %s requires "
|
| 1662 |
|
|
"`this' pointer"),
|
| 1663 |
|
|
function_name);
|
| 1664 |
|
|
}
|
| 1665 |
|
|
argvec[1] = arg2; /* the ``this'' pointer */
|
| 1666 |
|
|
argvec[0] = valp; /* use the method found after overload resolution */
|
| 1667 |
|
|
}
|
| 1668 |
|
|
else
|
| 1669 |
|
|
/* Non-C++ case -- or no overload resolution */
|
| 1670 |
|
|
{
|
| 1671 |
|
|
struct value *temp = arg2;
|
| 1672 |
|
|
|
| 1673 |
|
|
argvec[0] = value_struct_elt (&temp, argvec + 1, tstr,
|
| 1674 |
|
|
&static_memfuncp,
|
| 1675 |
|
|
op == STRUCTOP_STRUCT
|
| 1676 |
|
|
? "structure" : "structure pointer");
|
| 1677 |
|
|
/* value_struct_elt updates temp with the correct value
|
| 1678 |
|
|
of the ``this'' pointer if necessary, so modify argvec[1] to
|
| 1679 |
|
|
reflect any ``this'' changes. */
|
| 1680 |
|
|
arg2 = value_from_longest (lookup_pointer_type(value_type (temp)),
|
| 1681 |
|
|
value_address (temp)
|
| 1682 |
|
|
+ value_embedded_offset (temp));
|
| 1683 |
|
|
argvec[1] = arg2; /* the ``this'' pointer */
|
| 1684 |
|
|
}
|
| 1685 |
|
|
|
| 1686 |
|
|
if (static_memfuncp)
|
| 1687 |
|
|
{
|
| 1688 |
|
|
argvec[1] = argvec[0];
|
| 1689 |
|
|
nargs--;
|
| 1690 |
|
|
argvec++;
|
| 1691 |
|
|
}
|
| 1692 |
|
|
}
|
| 1693 |
|
|
else if (op == STRUCTOP_MEMBER || op == STRUCTOP_MPTR)
|
| 1694 |
|
|
{
|
| 1695 |
|
|
argvec[1] = arg2;
|
| 1696 |
|
|
argvec[0] = arg1;
|
| 1697 |
|
|
}
|
| 1698 |
|
|
else if (op == OP_VAR_VALUE || (op == OP_SCOPE && function != NULL))
|
| 1699 |
|
|
{
|
| 1700 |
|
|
/* Non-member function being called */
|
| 1701 |
|
|
/* fn: This can only be done for C++ functions. A C-style function
|
| 1702 |
|
|
in a C++ program, for instance, does not have the fields that
|
| 1703 |
|
|
are expected here */
|
| 1704 |
|
|
|
| 1705 |
|
|
if (overload_resolution && (exp->language_defn->la_language == language_cplus))
|
| 1706 |
|
|
{
|
| 1707 |
|
|
/* Language is C++, do some overload resolution before evaluation */
|
| 1708 |
|
|
struct symbol *symp;
|
| 1709 |
|
|
int no_adl = 0;
|
| 1710 |
|
|
|
| 1711 |
|
|
/* If a scope has been specified disable ADL. */
|
| 1712 |
|
|
if (op == OP_SCOPE)
|
| 1713 |
|
|
no_adl = 1;
|
| 1714 |
|
|
|
| 1715 |
|
|
if (op == OP_VAR_VALUE)
|
| 1716 |
|
|
function = exp->elts[save_pos1+2].symbol;
|
| 1717 |
|
|
|
| 1718 |
|
|
/* Prepare list of argument types for overload resolution */
|
| 1719 |
|
|
arg_types = (struct type **) alloca (nargs * (sizeof (struct type *)));
|
| 1720 |
|
|
for (ix = 1; ix <= nargs; ix++)
|
| 1721 |
|
|
arg_types[ix - 1] = value_type (argvec[ix]);
|
| 1722 |
|
|
|
| 1723 |
|
|
(void) find_overload_match (arg_types, nargs, NULL /* no need for name */ ,
|
| 1724 |
|
|
NON_METHOD /* not method */ , 0 /* strict match */ ,
|
| 1725 |
|
|
NULL, function /* the function */ ,
|
| 1726 |
|
|
NULL, &symp, NULL, no_adl);
|
| 1727 |
|
|
|
| 1728 |
|
|
if (op == OP_VAR_VALUE)
|
| 1729 |
|
|
{
|
| 1730 |
|
|
/* Now fix the expression being evaluated */
|
| 1731 |
|
|
exp->elts[save_pos1+2].symbol = symp;
|
| 1732 |
|
|
argvec[0] = evaluate_subexp_with_coercion (exp, &save_pos1,
|
| 1733 |
|
|
noside);
|
| 1734 |
|
|
}
|
| 1735 |
|
|
else
|
| 1736 |
|
|
argvec[0] = value_of_variable (symp, get_selected_block (0));
|
| 1737 |
|
|
}
|
| 1738 |
|
|
else
|
| 1739 |
|
|
{
|
| 1740 |
|
|
/* Not C++, or no overload resolution allowed */
|
| 1741 |
|
|
/* nothing to be done; argvec already correctly set up */
|
| 1742 |
|
|
}
|
| 1743 |
|
|
}
|
| 1744 |
|
|
else
|
| 1745 |
|
|
{
|
| 1746 |
|
|
/* It is probably a C-style function */
|
| 1747 |
|
|
/* nothing to be done; argvec already correctly set up */
|
| 1748 |
|
|
}
|
| 1749 |
|
|
|
| 1750 |
|
|
do_call_it:
|
| 1751 |
|
|
|
| 1752 |
|
|
if (noside == EVAL_SKIP)
|
| 1753 |
|
|
goto nosideret;
|
| 1754 |
|
|
if (argvec[0] == NULL)
|
| 1755 |
|
|
error (_("Cannot evaluate function -- may be inlined"));
|
| 1756 |
|
|
if (noside == EVAL_AVOID_SIDE_EFFECTS)
|
| 1757 |
|
|
{
|
| 1758 |
|
|
/* If the return type doesn't look like a function type, call an
|
| 1759 |
|
|
error. This can happen if somebody tries to turn a variable into
|
| 1760 |
|
|
a function call. This is here because people often want to
|
| 1761 |
|
|
call, eg, strcmp, which gdb doesn't know is a function. If
|
| 1762 |
|
|
gdb isn't asked for it's opinion (ie. through "whatis"),
|
| 1763 |
|
|
it won't offer it. */
|
| 1764 |
|
|
|
| 1765 |
|
|
struct type *ftype = value_type (argvec[0]);
|
| 1766 |
|
|
|
| 1767 |
|
|
if (TYPE_CODE (ftype) == TYPE_CODE_INTERNAL_FUNCTION)
|
| 1768 |
|
|
{
|
| 1769 |
|
|
/* We don't know anything about what the internal
|
| 1770 |
|
|
function might return, but we have to return
|
| 1771 |
|
|
something. */
|
| 1772 |
|
|
return value_zero (builtin_type (exp->gdbarch)->builtin_int,
|
| 1773 |
|
|
not_lval);
|
| 1774 |
|
|
}
|
| 1775 |
|
|
else if (TYPE_TARGET_TYPE (ftype))
|
| 1776 |
|
|
return allocate_value (TYPE_TARGET_TYPE (ftype));
|
| 1777 |
|
|
else
|
| 1778 |
|
|
error (_("Expression of type other than \"Function returning ...\" used as function"));
|
| 1779 |
|
|
}
|
| 1780 |
|
|
if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_INTERNAL_FUNCTION)
|
| 1781 |
|
|
return call_internal_function (exp->gdbarch, exp->language_defn,
|
| 1782 |
|
|
argvec[0], nargs, argvec + 1);
|
| 1783 |
|
|
|
| 1784 |
|
|
return call_function_by_hand (argvec[0], nargs, argvec + 1);
|
| 1785 |
|
|
/* pai: FIXME save value from call_function_by_hand, then adjust pc by adjust_fn_pc if +ve */
|
| 1786 |
|
|
|
| 1787 |
|
|
case OP_F77_UNDETERMINED_ARGLIST:
|
| 1788 |
|
|
|
| 1789 |
|
|
/* Remember that in F77, functions, substring ops and
|
| 1790 |
|
|
array subscript operations cannot be disambiguated
|
| 1791 |
|
|
at parse time. We have made all array subscript operations,
|
| 1792 |
|
|
substring operations as well as function calls come here
|
| 1793 |
|
|
and we now have to discover what the heck this thing actually was.
|
| 1794 |
|
|
If it is a function, we process just as if we got an OP_FUNCALL. */
|
| 1795 |
|
|
|
| 1796 |
|
|
nargs = longest_to_int (exp->elts[pc + 1].longconst);
|
| 1797 |
|
|
(*pos) += 2;
|
| 1798 |
|
|
|
| 1799 |
|
|
/* First determine the type code we are dealing with. */
|
| 1800 |
|
|
arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
| 1801 |
|
|
type = check_typedef (value_type (arg1));
|
| 1802 |
|
|
code = TYPE_CODE (type);
|
| 1803 |
|
|
|
| 1804 |
|
|
if (code == TYPE_CODE_PTR)
|
| 1805 |
|
|
{
|
| 1806 |
|
|
/* Fortran always passes variable to subroutines as pointer.
|
| 1807 |
|
|
So we need to look into its target type to see if it is
|
| 1808 |
|
|
array, string or function. If it is, we need to switch
|
| 1809 |
|
|
to the target value the original one points to. */
|
| 1810 |
|
|
struct type *target_type = check_typedef (TYPE_TARGET_TYPE (type));
|
| 1811 |
|
|
|
| 1812 |
|
|
if (TYPE_CODE (target_type) == TYPE_CODE_ARRAY
|
| 1813 |
|
|
|| TYPE_CODE (target_type) == TYPE_CODE_STRING
|
| 1814 |
|
|
|| TYPE_CODE (target_type) == TYPE_CODE_FUNC)
|
| 1815 |
|
|
{
|
| 1816 |
|
|
arg1 = value_ind (arg1);
|
| 1817 |
|
|
type = check_typedef (value_type (arg1));
|
| 1818 |
|
|
code = TYPE_CODE (type);
|
| 1819 |
|
|
}
|
| 1820 |
|
|
}
|
| 1821 |
|
|
|
| 1822 |
|
|
switch (code)
|
| 1823 |
|
|
{
|
| 1824 |
|
|
case TYPE_CODE_ARRAY:
|
| 1825 |
|
|
if (exp->elts[*pos].opcode == OP_F90_RANGE)
|
| 1826 |
|
|
return value_f90_subarray (arg1, exp, pos, noside);
|
| 1827 |
|
|
else
|
| 1828 |
|
|
goto multi_f77_subscript;
|
| 1829 |
|
|
|
| 1830 |
|
|
case TYPE_CODE_STRING:
|
| 1831 |
|
|
if (exp->elts[*pos].opcode == OP_F90_RANGE)
|
| 1832 |
|
|
return value_f90_subarray (arg1, exp, pos, noside);
|
| 1833 |
|
|
else
|
| 1834 |
|
|
{
|
| 1835 |
|
|
arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
|
| 1836 |
|
|
return value_subscript (arg1, value_as_long (arg2));
|
| 1837 |
|
|
}
|
| 1838 |
|
|
|
| 1839 |
|
|
case TYPE_CODE_PTR:
|
| 1840 |
|
|
case TYPE_CODE_FUNC:
|
| 1841 |
|
|
/* It's a function call. */
|
| 1842 |
|
|
/* Allocate arg vector, including space for the function to be
|
| 1843 |
|
|
called in argvec[0] and a terminating NULL */
|
| 1844 |
|
|
argvec = (struct value **) alloca (sizeof (struct value *) * (nargs + 2));
|
| 1845 |
|
|
argvec[0] = arg1;
|
| 1846 |
|
|
tem = 1;
|
| 1847 |
|
|
for (; tem <= nargs; tem++)
|
| 1848 |
|
|
argvec[tem] = evaluate_subexp_with_coercion (exp, pos, noside);
|
| 1849 |
|
|
argvec[tem] = 0; /* signal end of arglist */
|
| 1850 |
|
|
goto do_call_it;
|
| 1851 |
|
|
|
| 1852 |
|
|
default:
|
| 1853 |
|
|
error (_("Cannot perform substring on this type"));
|
| 1854 |
|
|
}
|
| 1855 |
|
|
|
| 1856 |
|
|
case OP_COMPLEX:
|
| 1857 |
|
|
/* We have a complex number, There should be 2 floating
|
| 1858 |
|
|
point numbers that compose it */
|
| 1859 |
|
|
(*pos) += 2;
|
| 1860 |
|
|
arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
| 1861 |
|
|
arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
| 1862 |
|
|
|
| 1863 |
|
|
return value_literal_complex (arg1, arg2, exp->elts[pc + 1].type);
|
| 1864 |
|
|
|
| 1865 |
|
|
case STRUCTOP_STRUCT:
|
| 1866 |
|
|
tem = longest_to_int (exp->elts[pc + 1].longconst);
|
| 1867 |
|
|
(*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
|
| 1868 |
|
|
arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
| 1869 |
|
|
if (noside == EVAL_SKIP)
|
| 1870 |
|
|
goto nosideret;
|
| 1871 |
|
|
if (noside == EVAL_AVOID_SIDE_EFFECTS)
|
| 1872 |
|
|
return value_zero (lookup_struct_elt_type (value_type (arg1),
|
| 1873 |
|
|
&exp->elts[pc + 2].string,
|
| 1874 |
|
|
0),
|
| 1875 |
|
|
lval_memory);
|
| 1876 |
|
|
else
|
| 1877 |
|
|
{
|
| 1878 |
|
|
struct value *temp = arg1;
|
| 1879 |
|
|
|
| 1880 |
|
|
return value_struct_elt (&temp, NULL, &exp->elts[pc + 2].string,
|
| 1881 |
|
|
NULL, "structure");
|
| 1882 |
|
|
}
|
| 1883 |
|
|
|
| 1884 |
|
|
case STRUCTOP_PTR:
|
| 1885 |
|
|
tem = longest_to_int (exp->elts[pc + 1].longconst);
|
| 1886 |
|
|
(*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
|
| 1887 |
|
|
arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
| 1888 |
|
|
if (noside == EVAL_SKIP)
|
| 1889 |
|
|
goto nosideret;
|
| 1890 |
|
|
|
| 1891 |
|
|
/* JYG: if print object is on we need to replace the base type
|
| 1892 |
|
|
with rtti type in order to continue on with successful
|
| 1893 |
|
|
lookup of member / method only available in the rtti type. */
|
| 1894 |
|
|
{
|
| 1895 |
|
|
struct type *type = value_type (arg1);
|
| 1896 |
|
|
struct type *real_type;
|
| 1897 |
|
|
int full, top, using_enc;
|
| 1898 |
|
|
struct value_print_options opts;
|
| 1899 |
|
|
|
| 1900 |
|
|
get_user_print_options (&opts);
|
| 1901 |
|
|
if (opts.objectprint && TYPE_TARGET_TYPE(type)
|
| 1902 |
|
|
&& (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_CLASS))
|
| 1903 |
|
|
{
|
| 1904 |
|
|
real_type = value_rtti_target_type (arg1, &full, &top, &using_enc);
|
| 1905 |
|
|
if (real_type)
|
| 1906 |
|
|
{
|
| 1907 |
|
|
if (TYPE_CODE (type) == TYPE_CODE_PTR)
|
| 1908 |
|
|
real_type = lookup_pointer_type (real_type);
|
| 1909 |
|
|
else
|
| 1910 |
|
|
real_type = lookup_reference_type (real_type);
|
| 1911 |
|
|
|
| 1912 |
|
|
arg1 = value_cast (real_type, arg1);
|
| 1913 |
|
|
}
|
| 1914 |
|
|
}
|
| 1915 |
|
|
}
|
| 1916 |
|
|
|
| 1917 |
|
|
if (noside == EVAL_AVOID_SIDE_EFFECTS)
|
| 1918 |
|
|
return value_zero (lookup_struct_elt_type (value_type (arg1),
|
| 1919 |
|
|
&exp->elts[pc + 2].string,
|
| 1920 |
|
|
0),
|
| 1921 |
|
|
lval_memory);
|
| 1922 |
|
|
else
|
| 1923 |
|
|
{
|
| 1924 |
|
|
struct value *temp = arg1;
|
| 1925 |
|
|
|
| 1926 |
|
|
return value_struct_elt (&temp, NULL, &exp->elts[pc + 2].string,
|
| 1927 |
|
|
NULL, "structure pointer");
|
| 1928 |
|
|
}
|
| 1929 |
|
|
|
| 1930 |
|
|
case STRUCTOP_MEMBER:
|
| 1931 |
|
|
case STRUCTOP_MPTR:
|
| 1932 |
|
|
if (op == STRUCTOP_MEMBER)
|
| 1933 |
|
|
arg1 = evaluate_subexp_for_address (exp, pos, noside);
|
| 1934 |
|
|
else
|
| 1935 |
|
|
arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
| 1936 |
|
|
|
| 1937 |
|
|
arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
| 1938 |
|
|
|
| 1939 |
|
|
if (noside == EVAL_SKIP)
|
| 1940 |
|
|
goto nosideret;
|
| 1941 |
|
|
|
| 1942 |
|
|
type = check_typedef (value_type (arg2));
|
| 1943 |
|
|
switch (TYPE_CODE (type))
|
| 1944 |
|
|
{
|
| 1945 |
|
|
case TYPE_CODE_METHODPTR:
|
| 1946 |
|
|
if (noside == EVAL_AVOID_SIDE_EFFECTS)
|
| 1947 |
|
|
return value_zero (TYPE_TARGET_TYPE (type), not_lval);
|
| 1948 |
|
|
else
|
| 1949 |
|
|
{
|
| 1950 |
|
|
arg2 = cplus_method_ptr_to_value (&arg1, arg2);
|
| 1951 |
|
|
gdb_assert (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR);
|
| 1952 |
|
|
return value_ind (arg2);
|
| 1953 |
|
|
}
|
| 1954 |
|
|
|
| 1955 |
|
|
case TYPE_CODE_MEMBERPTR:
|
| 1956 |
|
|
/* Now, convert these values to an address. */
|
| 1957 |
|
|
arg1 = value_cast (lookup_pointer_type (TYPE_DOMAIN_TYPE (type)),
|
| 1958 |
|
|
arg1);
|
| 1959 |
|
|
|
| 1960 |
|
|
mem_offset = value_as_long (arg2);
|
| 1961 |
|
|
|
| 1962 |
|
|
arg3 = value_from_pointer (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
|
| 1963 |
|
|
value_as_long (arg1) + mem_offset);
|
| 1964 |
|
|
return value_ind (arg3);
|
| 1965 |
|
|
|
| 1966 |
|
|
default:
|
| 1967 |
|
|
error (_("non-pointer-to-member value used in pointer-to-member construct"));
|
| 1968 |
|
|
}
|
| 1969 |
|
|
|
| 1970 |
|
|
case TYPE_INSTANCE:
|
| 1971 |
|
|
nargs = longest_to_int (exp->elts[pc + 1].longconst);
|
| 1972 |
|
|
arg_types = (struct type **) alloca (nargs * sizeof (struct type *));
|
| 1973 |
|
|
for (ix = 0; ix < nargs; ++ix)
|
| 1974 |
|
|
arg_types[ix] = exp->elts[pc + 1 + ix + 1].type;
|
| 1975 |
|
|
|
| 1976 |
|
|
expect_type = make_params (nargs, arg_types);
|
| 1977 |
|
|
*(pos) += 3 + nargs;
|
| 1978 |
|
|
arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
|
| 1979 |
|
|
xfree (TYPE_FIELDS (expect_type));
|
| 1980 |
|
|
xfree (TYPE_MAIN_TYPE (expect_type));
|
| 1981 |
|
|
xfree (expect_type);
|
| 1982 |
|
|
return arg1;
|
| 1983 |
|
|
|
| 1984 |
|
|
case BINOP_CONCAT:
|
| 1985 |
|
|
arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
|
| 1986 |
|
|
arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
|
| 1987 |
|
|
if (noside == EVAL_SKIP)
|
| 1988 |
|
|
goto nosideret;
|
| 1989 |
|
|
if (binop_user_defined_p (op, arg1, arg2))
|
| 1990 |
|
|
return value_x_binop (arg1, arg2, op, OP_NULL, noside);
|
| 1991 |
|
|
else
|
| 1992 |
|
|
return value_concat (arg1, arg2);
|
| 1993 |
|
|
|
| 1994 |
|
|
case BINOP_ASSIGN:
|
| 1995 |
|
|
arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
| 1996 |
|
|
arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
|
| 1997 |
|
|
|
| 1998 |
|
|
if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
|
| 1999 |
|
|
return arg1;
|
| 2000 |
|
|
if (binop_user_defined_p (op, arg1, arg2))
|
| 2001 |
|
|
return value_x_binop (arg1, arg2, op, OP_NULL, noside);
|
| 2002 |
|
|
else
|
| 2003 |
|
|
return value_assign (arg1, arg2);
|
| 2004 |
|
|
|
| 2005 |
|
|
case BINOP_ASSIGN_MODIFY:
|
| 2006 |
|
|
(*pos) += 2;
|
| 2007 |
|
|
arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
| 2008 |
|
|
arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
|
| 2009 |
|
|
if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
|
| 2010 |
|
|
return arg1;
|
| 2011 |
|
|
op = exp->elts[pc + 1].opcode;
|
| 2012 |
|
|
if (binop_user_defined_p (op, arg1, arg2))
|
| 2013 |
|
|
return value_x_binop (arg1, arg2, BINOP_ASSIGN_MODIFY, op, noside);
|
| 2014 |
|
|
else if (op == BINOP_ADD && ptrmath_type_p (exp->language_defn,
|
| 2015 |
|
|
value_type (arg1))
|
| 2016 |
|
|
&& is_integral_type (value_type (arg2)))
|
| 2017 |
|
|
arg2 = value_ptradd (arg1, value_as_long (arg2));
|
| 2018 |
|
|
else if (op == BINOP_SUB && ptrmath_type_p (exp->language_defn,
|
| 2019 |
|
|
value_type (arg1))
|
| 2020 |
|
|
&& is_integral_type (value_type (arg2)))
|
| 2021 |
|
|
arg2 = value_ptradd (arg1, - value_as_long (arg2));
|
| 2022 |
|
|
else
|
| 2023 |
|
|
{
|
| 2024 |
|
|
struct value *tmp = arg1;
|
| 2025 |
|
|
|
| 2026 |
|
|
/* For shift and integer exponentiation operations,
|
| 2027 |
|
|
only promote the first argument. */
|
| 2028 |
|
|
if ((op == BINOP_LSH || op == BINOP_RSH || op == BINOP_EXP)
|
| 2029 |
|
|
&& is_integral_type (value_type (arg2)))
|
| 2030 |
|
|
unop_promote (exp->language_defn, exp->gdbarch, &tmp);
|
| 2031 |
|
|
else
|
| 2032 |
|
|
binop_promote (exp->language_defn, exp->gdbarch, &tmp, &arg2);
|
| 2033 |
|
|
|
| 2034 |
|
|
arg2 = value_binop (tmp, arg2, op);
|
| 2035 |
|
|
}
|
| 2036 |
|
|
return value_assign (arg1, arg2);
|
| 2037 |
|
|
|
| 2038 |
|
|
case BINOP_ADD:
|
| 2039 |
|
|
arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
|
| 2040 |
|
|
arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
|
| 2041 |
|
|
if (noside == EVAL_SKIP)
|
| 2042 |
|
|
goto nosideret;
|
| 2043 |
|
|
if (binop_user_defined_p (op, arg1, arg2))
|
| 2044 |
|
|
return value_x_binop (arg1, arg2, op, OP_NULL, noside);
|
| 2045 |
|
|
else if (ptrmath_type_p (exp->language_defn, value_type (arg1))
|
| 2046 |
|
|
&& is_integral_type (value_type (arg2)))
|
| 2047 |
|
|
return value_ptradd (arg1, value_as_long (arg2));
|
| 2048 |
|
|
else if (ptrmath_type_p (exp->language_defn, value_type (arg2))
|
| 2049 |
|
|
&& is_integral_type (value_type (arg1)))
|
| 2050 |
|
|
return value_ptradd (arg2, value_as_long (arg1));
|
| 2051 |
|
|
else
|
| 2052 |
|
|
{
|
| 2053 |
|
|
binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
|
| 2054 |
|
|
return value_binop (arg1, arg2, BINOP_ADD);
|
| 2055 |
|
|
}
|
| 2056 |
|
|
|
| 2057 |
|
|
case BINOP_SUB:
|
| 2058 |
|
|
arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
|
| 2059 |
|
|
arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
|
| 2060 |
|
|
if (noside == EVAL_SKIP)
|
| 2061 |
|
|
goto nosideret;
|
| 2062 |
|
|
if (binop_user_defined_p (op, arg1, arg2))
|
| 2063 |
|
|
return value_x_binop (arg1, arg2, op, OP_NULL, noside);
|
| 2064 |
|
|
else if (ptrmath_type_p (exp->language_defn, value_type (arg1))
|
| 2065 |
|
|
&& ptrmath_type_p (exp->language_defn, value_type (arg2)))
|
| 2066 |
|
|
{
|
| 2067 |
|
|
/* FIXME -- should be ptrdiff_t */
|
| 2068 |
|
|
type = builtin_type (exp->gdbarch)->builtin_long;
|
| 2069 |
|
|
return value_from_longest (type, value_ptrdiff (arg1, arg2));
|
| 2070 |
|
|
}
|
| 2071 |
|
|
else if (ptrmath_type_p (exp->language_defn, value_type (arg1))
|
| 2072 |
|
|
&& is_integral_type (value_type (arg2)))
|
| 2073 |
|
|
return value_ptradd (arg1, - value_as_long (arg2));
|
| 2074 |
|
|
else
|
| 2075 |
|
|
{
|
| 2076 |
|
|
binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
|
| 2077 |
|
|
return value_binop (arg1, arg2, BINOP_SUB);
|
| 2078 |
|
|
}
|
| 2079 |
|
|
|
| 2080 |
|
|
case BINOP_EXP:
|
| 2081 |
|
|
case BINOP_MUL:
|
| 2082 |
|
|
case BINOP_DIV:
|
| 2083 |
|
|
case BINOP_INTDIV:
|
| 2084 |
|
|
case BINOP_REM:
|
| 2085 |
|
|
case BINOP_MOD:
|
| 2086 |
|
|
case BINOP_LSH:
|
| 2087 |
|
|
case BINOP_RSH:
|
| 2088 |
|
|
case BINOP_BITWISE_AND:
|
| 2089 |
|
|
case BINOP_BITWISE_IOR:
|
| 2090 |
|
|
case BINOP_BITWISE_XOR:
|
| 2091 |
|
|
arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
| 2092 |
|
|
arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
| 2093 |
|
|
if (noside == EVAL_SKIP)
|
| 2094 |
|
|
goto nosideret;
|
| 2095 |
|
|
if (binop_user_defined_p (op, arg1, arg2))
|
| 2096 |
|
|
return value_x_binop (arg1, arg2, op, OP_NULL, noside);
|
| 2097 |
|
|
else
|
| 2098 |
|
|
{
|
| 2099 |
|
|
/* If EVAL_AVOID_SIDE_EFFECTS and we're dividing by zero,
|
| 2100 |
|
|
fudge arg2 to avoid division-by-zero, the caller is
|
| 2101 |
|
|
(theoretically) only looking for the type of the result. */
|
| 2102 |
|
|
if (noside == EVAL_AVOID_SIDE_EFFECTS
|
| 2103 |
|
|
/* ??? Do we really want to test for BINOP_MOD here?
|
| 2104 |
|
|
The implementation of value_binop gives it a well-defined
|
| 2105 |
|
|
value. */
|
| 2106 |
|
|
&& (op == BINOP_DIV
|
| 2107 |
|
|
|| op == BINOP_INTDIV
|
| 2108 |
|
|
|| op == BINOP_REM
|
| 2109 |
|
|
|| op == BINOP_MOD)
|
| 2110 |
|
|
&& value_logical_not (arg2))
|
| 2111 |
|
|
{
|
| 2112 |
|
|
struct value *v_one, *retval;
|
| 2113 |
|
|
|
| 2114 |
|
|
v_one = value_one (value_type (arg2), not_lval);
|
| 2115 |
|
|
binop_promote (exp->language_defn, exp->gdbarch, &arg1, &v_one);
|
| 2116 |
|
|
retval = value_binop (arg1, v_one, op);
|
| 2117 |
|
|
return retval;
|
| 2118 |
|
|
}
|
| 2119 |
|
|
else
|
| 2120 |
|
|
{
|
| 2121 |
|
|
/* For shift and integer exponentiation operations,
|
| 2122 |
|
|
only promote the first argument. */
|
| 2123 |
|
|
if ((op == BINOP_LSH || op == BINOP_RSH || op == BINOP_EXP)
|
| 2124 |
|
|
&& is_integral_type (value_type (arg2)))
|
| 2125 |
|
|
unop_promote (exp->language_defn, exp->gdbarch, &arg1);
|
| 2126 |
|
|
else
|
| 2127 |
|
|
binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
|
| 2128 |
|
|
|
| 2129 |
|
|
return value_binop (arg1, arg2, op);
|
| 2130 |
|
|
}
|
| 2131 |
|
|
}
|
| 2132 |
|
|
|
| 2133 |
|
|
case BINOP_RANGE:
|
| 2134 |
|
|
arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
| 2135 |
|
|
arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
| 2136 |
|
|
if (noside == EVAL_SKIP)
|
| 2137 |
|
|
goto nosideret;
|
| 2138 |
|
|
error (_("':' operator used in invalid context"));
|
| 2139 |
|
|
|
| 2140 |
|
|
case BINOP_SUBSCRIPT:
|
| 2141 |
|
|
arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
| 2142 |
|
|
arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
| 2143 |
|
|
if (noside == EVAL_SKIP)
|
| 2144 |
|
|
goto nosideret;
|
| 2145 |
|
|
if (binop_user_defined_p (op, arg1, arg2))
|
| 2146 |
|
|
return value_x_binop (arg1, arg2, op, OP_NULL, noside);
|
| 2147 |
|
|
else
|
| 2148 |
|
|
{
|
| 2149 |
|
|
/* If the user attempts to subscript something that is not an
|
| 2150 |
|
|
array or pointer type (like a plain int variable for example),
|
| 2151 |
|
|
then report this as an error. */
|
| 2152 |
|
|
|
| 2153 |
|
|
arg1 = coerce_ref (arg1);
|
| 2154 |
|
|
type = check_typedef (value_type (arg1));
|
| 2155 |
|
|
if (TYPE_CODE (type) != TYPE_CODE_ARRAY
|
| 2156 |
|
|
&& TYPE_CODE (type) != TYPE_CODE_PTR)
|
| 2157 |
|
|
{
|
| 2158 |
|
|
if (TYPE_NAME (type))
|
| 2159 |
|
|
error (_("cannot subscript something of type `%s'"),
|
| 2160 |
|
|
TYPE_NAME (type));
|
| 2161 |
|
|
else
|
| 2162 |
|
|
error (_("cannot subscript requested type"));
|
| 2163 |
|
|
}
|
| 2164 |
|
|
|
| 2165 |
|
|
if (noside == EVAL_AVOID_SIDE_EFFECTS)
|
| 2166 |
|
|
return value_zero (TYPE_TARGET_TYPE (type), VALUE_LVAL (arg1));
|
| 2167 |
|
|
else
|
| 2168 |
|
|
return value_subscript (arg1, value_as_long (arg2));
|
| 2169 |
|
|
}
|
| 2170 |
|
|
|
| 2171 |
|
|
case BINOP_IN:
|
| 2172 |
|
|
arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
|
| 2173 |
|
|
arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
|
| 2174 |
|
|
if (noside == EVAL_SKIP)
|
| 2175 |
|
|
goto nosideret;
|
| 2176 |
|
|
type = language_bool_type (exp->language_defn, exp->gdbarch);
|
| 2177 |
|
|
return value_from_longest (type, (LONGEST) value_in (arg1, arg2));
|
| 2178 |
|
|
|
| 2179 |
|
|
case MULTI_SUBSCRIPT:
|
| 2180 |
|
|
(*pos) += 2;
|
| 2181 |
|
|
nargs = longest_to_int (exp->elts[pc + 1].longconst);
|
| 2182 |
|
|
arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
|
| 2183 |
|
|
while (nargs-- > 0)
|
| 2184 |
|
|
{
|
| 2185 |
|
|
arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
|
| 2186 |
|
|
/* FIXME: EVAL_SKIP handling may not be correct. */
|
| 2187 |
|
|
if (noside == EVAL_SKIP)
|
| 2188 |
|
|
{
|
| 2189 |
|
|
if (nargs > 0)
|
| 2190 |
|
|
{
|
| 2191 |
|
|
continue;
|
| 2192 |
|
|
}
|
| 2193 |
|
|
else
|
| 2194 |
|
|
{
|
| 2195 |
|
|
goto nosideret;
|
| 2196 |
|
|
}
|
| 2197 |
|
|
}
|
| 2198 |
|
|
/* FIXME: EVAL_AVOID_SIDE_EFFECTS handling may not be correct. */
|
| 2199 |
|
|
if (noside == EVAL_AVOID_SIDE_EFFECTS)
|
| 2200 |
|
|
{
|
| 2201 |
|
|
/* If the user attempts to subscript something that has no target
|
| 2202 |
|
|
type (like a plain int variable for example), then report this
|
| 2203 |
|
|
as an error. */
|
| 2204 |
|
|
|
| 2205 |
|
|
type = TYPE_TARGET_TYPE (check_typedef (value_type (arg1)));
|
| 2206 |
|
|
if (type != NULL)
|
| 2207 |
|
|
{
|
| 2208 |
|
|
arg1 = value_zero (type, VALUE_LVAL (arg1));
|
| 2209 |
|
|
noside = EVAL_SKIP;
|
| 2210 |
|
|
continue;
|
| 2211 |
|
|
}
|
| 2212 |
|
|
else
|
| 2213 |
|
|
{
|
| 2214 |
|
|
error (_("cannot subscript something of type `%s'"),
|
| 2215 |
|
|
TYPE_NAME (value_type (arg1)));
|
| 2216 |
|
|
}
|
| 2217 |
|
|
}
|
| 2218 |
|
|
|
| 2219 |
|
|
if (binop_user_defined_p (op, arg1, arg2))
|
| 2220 |
|
|
{
|
| 2221 |
|
|
arg1 = value_x_binop (arg1, arg2, op, OP_NULL, noside);
|
| 2222 |
|
|
}
|
| 2223 |
|
|
else
|
| 2224 |
|
|
{
|
| 2225 |
|
|
arg1 = coerce_ref (arg1);
|
| 2226 |
|
|
type = check_typedef (value_type (arg1));
|
| 2227 |
|
|
|
| 2228 |
|
|
switch (TYPE_CODE (type))
|
| 2229 |
|
|
{
|
| 2230 |
|
|
case TYPE_CODE_PTR:
|
| 2231 |
|
|
case TYPE_CODE_ARRAY:
|
| 2232 |
|
|
case TYPE_CODE_STRING:
|
| 2233 |
|
|
arg1 = value_subscript (arg1, value_as_long (arg2));
|
| 2234 |
|
|
break;
|
| 2235 |
|
|
|
| 2236 |
|
|
case TYPE_CODE_BITSTRING:
|
| 2237 |
|
|
type = language_bool_type (exp->language_defn, exp->gdbarch);
|
| 2238 |
|
|
arg1 = value_bitstring_subscript (type, arg1,
|
| 2239 |
|
|
value_as_long (arg2));
|
| 2240 |
|
|
break;
|
| 2241 |
|
|
|
| 2242 |
|
|
default:
|
| 2243 |
|
|
if (TYPE_NAME (type))
|
| 2244 |
|
|
error (_("cannot subscript something of type `%s'"),
|
| 2245 |
|
|
TYPE_NAME (type));
|
| 2246 |
|
|
else
|
| 2247 |
|
|
error (_("cannot subscript requested type"));
|
| 2248 |
|
|
}
|
| 2249 |
|
|
}
|
| 2250 |
|
|
}
|
| 2251 |
|
|
return (arg1);
|
| 2252 |
|
|
|
| 2253 |
|
|
multi_f77_subscript:
|
| 2254 |
|
|
{
|
| 2255 |
|
|
int subscript_array[MAX_FORTRAN_DIMS];
|
| 2256 |
|
|
int array_size_array[MAX_FORTRAN_DIMS];
|
| 2257 |
|
|
int ndimensions = 1, i;
|
| 2258 |
|
|
struct type *tmp_type;
|
| 2259 |
|
|
int offset_item; /* The array offset where the item lives */
|
| 2260 |
|
|
|
| 2261 |
|
|
if (nargs > MAX_FORTRAN_DIMS)
|
| 2262 |
|
|
error (_("Too many subscripts for F77 (%d Max)"), MAX_FORTRAN_DIMS);
|
| 2263 |
|
|
|
| 2264 |
|
|
tmp_type = check_typedef (value_type (arg1));
|
| 2265 |
|
|
ndimensions = calc_f77_array_dims (type);
|
| 2266 |
|
|
|
| 2267 |
|
|
if (nargs != ndimensions)
|
| 2268 |
|
|
error (_("Wrong number of subscripts"));
|
| 2269 |
|
|
|
| 2270 |
|
|
gdb_assert (nargs > 0);
|
| 2271 |
|
|
|
| 2272 |
|
|
/* Now that we know we have a legal array subscript expression
|
| 2273 |
|
|
let us actually find out where this element exists in the array. */
|
| 2274 |
|
|
|
| 2275 |
|
|
offset_item = 0;
|
| 2276 |
|
|
/* Take array indices left to right */
|
| 2277 |
|
|
for (i = 0; i < nargs; i++)
|
| 2278 |
|
|
{
|
| 2279 |
|
|
/* Evaluate each subscript, It must be a legal integer in F77 */
|
| 2280 |
|
|
arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
|
| 2281 |
|
|
|
| 2282 |
|
|
/* Fill in the subscript and array size arrays */
|
| 2283 |
|
|
|
| 2284 |
|
|
subscript_array[i] = value_as_long (arg2);
|
| 2285 |
|
|
}
|
| 2286 |
|
|
|
| 2287 |
|
|
/* Internal type of array is arranged right to left */
|
| 2288 |
|
|
for (i = 0; i < nargs; i++)
|
| 2289 |
|
|
{
|
| 2290 |
|
|
upper = f77_get_upperbound (tmp_type);
|
| 2291 |
|
|
lower = f77_get_lowerbound (tmp_type);
|
| 2292 |
|
|
|
| 2293 |
|
|
array_size_array[nargs - i - 1] = upper - lower + 1;
|
| 2294 |
|
|
|
| 2295 |
|
|
/* Zero-normalize subscripts so that offsetting will work. */
|
| 2296 |
|
|
|
| 2297 |
|
|
subscript_array[nargs - i - 1] -= lower;
|
| 2298 |
|
|
|
| 2299 |
|
|
/* If we are at the bottom of a multidimensional
|
| 2300 |
|
|
array type then keep a ptr to the last ARRAY
|
| 2301 |
|
|
type around for use when calling value_subscript()
|
| 2302 |
|
|
below. This is done because we pretend to value_subscript
|
| 2303 |
|
|
that we actually have a one-dimensional array
|
| 2304 |
|
|
of base element type that we apply a simple
|
| 2305 |
|
|
offset to. */
|
| 2306 |
|
|
|
| 2307 |
|
|
if (i < nargs - 1)
|
| 2308 |
|
|
tmp_type = check_typedef (TYPE_TARGET_TYPE (tmp_type));
|
| 2309 |
|
|
}
|
| 2310 |
|
|
|
| 2311 |
|
|
/* Now let us calculate the offset for this item */
|
| 2312 |
|
|
|
| 2313 |
|
|
offset_item = subscript_array[ndimensions - 1];
|
| 2314 |
|
|
|
| 2315 |
|
|
for (i = ndimensions - 1; i > 0; --i)
|
| 2316 |
|
|
offset_item =
|
| 2317 |
|
|
array_size_array[i - 1] * offset_item + subscript_array[i - 1];
|
| 2318 |
|
|
|
| 2319 |
|
|
/* Let us now play a dirty trick: we will take arg1
|
| 2320 |
|
|
which is a value node pointing to the topmost level
|
| 2321 |
|
|
of the multidimensional array-set and pretend
|
| 2322 |
|
|
that it is actually a array of the final element
|
| 2323 |
|
|
type, this will ensure that value_subscript()
|
| 2324 |
|
|
returns the correct type value */
|
| 2325 |
|
|
|
| 2326 |
|
|
deprecated_set_value_type (arg1, tmp_type);
|
| 2327 |
|
|
return value_subscripted_rvalue (arg1, offset_item, 0);
|
| 2328 |
|
|
}
|
| 2329 |
|
|
|
| 2330 |
|
|
case BINOP_LOGICAL_AND:
|
| 2331 |
|
|
arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
| 2332 |
|
|
if (noside == EVAL_SKIP)
|
| 2333 |
|
|
{
|
| 2334 |
|
|
arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
| 2335 |
|
|
goto nosideret;
|
| 2336 |
|
|
}
|
| 2337 |
|
|
|
| 2338 |
|
|
oldpos = *pos;
|
| 2339 |
|
|
arg2 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
|
| 2340 |
|
|
*pos = oldpos;
|
| 2341 |
|
|
|
| 2342 |
|
|
if (binop_user_defined_p (op, arg1, arg2))
|
| 2343 |
|
|
{
|
| 2344 |
|
|
arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
| 2345 |
|
|
return value_x_binop (arg1, arg2, op, OP_NULL, noside);
|
| 2346 |
|
|
}
|
| 2347 |
|
|
else
|
| 2348 |
|
|
{
|
| 2349 |
|
|
tem = value_logical_not (arg1);
|
| 2350 |
|
|
arg2 = evaluate_subexp (NULL_TYPE, exp, pos,
|
| 2351 |
|
|
(tem ? EVAL_SKIP : noside));
|
| 2352 |
|
|
type = language_bool_type (exp->language_defn, exp->gdbarch);
|
| 2353 |
|
|
return value_from_longest (type,
|
| 2354 |
|
|
(LONGEST) (!tem && !value_logical_not (arg2)));
|
| 2355 |
|
|
}
|
| 2356 |
|
|
|
| 2357 |
|
|
case BINOP_LOGICAL_OR:
|
| 2358 |
|
|
arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
| 2359 |
|
|
if (noside == EVAL_SKIP)
|
| 2360 |
|
|
{
|
| 2361 |
|
|
arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
| 2362 |
|
|
goto nosideret;
|
| 2363 |
|
|
}
|
| 2364 |
|
|
|
| 2365 |
|
|
oldpos = *pos;
|
| 2366 |
|
|
arg2 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
|
| 2367 |
|
|
*pos = oldpos;
|
| 2368 |
|
|
|
| 2369 |
|
|
if (binop_user_defined_p (op, arg1, arg2))
|
| 2370 |
|
|
{
|
| 2371 |
|
|
arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
| 2372 |
|
|
return value_x_binop (arg1, arg2, op, OP_NULL, noside);
|
| 2373 |
|
|
}
|
| 2374 |
|
|
else
|
| 2375 |
|
|
{
|
| 2376 |
|
|
tem = value_logical_not (arg1);
|
| 2377 |
|
|
arg2 = evaluate_subexp (NULL_TYPE, exp, pos,
|
| 2378 |
|
|
(!tem ? EVAL_SKIP : noside));
|
| 2379 |
|
|
type = language_bool_type (exp->language_defn, exp->gdbarch);
|
| 2380 |
|
|
return value_from_longest (type,
|
| 2381 |
|
|
(LONGEST) (!tem || !value_logical_not (arg2)));
|
| 2382 |
|
|
}
|
| 2383 |
|
|
|
| 2384 |
|
|
case BINOP_EQUAL:
|
| 2385 |
|
|
arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
| 2386 |
|
|
arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
|
| 2387 |
|
|
if (noside == EVAL_SKIP)
|
| 2388 |
|
|
goto nosideret;
|
| 2389 |
|
|
if (binop_user_defined_p (op, arg1, arg2))
|
| 2390 |
|
|
{
|
| 2391 |
|
|
return value_x_binop (arg1, arg2, op, OP_NULL, noside);
|
| 2392 |
|
|
}
|
| 2393 |
|
|
else
|
| 2394 |
|
|
{
|
| 2395 |
|
|
binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
|
| 2396 |
|
|
tem = value_equal (arg1, arg2);
|
| 2397 |
|
|
type = language_bool_type (exp->language_defn, exp->gdbarch);
|
| 2398 |
|
|
return value_from_longest (type, (LONGEST) tem);
|
| 2399 |
|
|
}
|
| 2400 |
|
|
|
| 2401 |
|
|
case BINOP_NOTEQUAL:
|
| 2402 |
|
|
arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
| 2403 |
|
|
arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
|
| 2404 |
|
|
if (noside == EVAL_SKIP)
|
| 2405 |
|
|
goto nosideret;
|
| 2406 |
|
|
if (binop_user_defined_p (op, arg1, arg2))
|
| 2407 |
|
|
{
|
| 2408 |
|
|
return value_x_binop (arg1, arg2, op, OP_NULL, noside);
|
| 2409 |
|
|
}
|
| 2410 |
|
|
else
|
| 2411 |
|
|
{
|
| 2412 |
|
|
binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
|
| 2413 |
|
|
tem = value_equal (arg1, arg2);
|
| 2414 |
|
|
type = language_bool_type (exp->language_defn, exp->gdbarch);
|
| 2415 |
|
|
return value_from_longest (type, (LONGEST) ! tem);
|
| 2416 |
|
|
}
|
| 2417 |
|
|
|
| 2418 |
|
|
case BINOP_LESS:
|
| 2419 |
|
|
arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
| 2420 |
|
|
arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
|
| 2421 |
|
|
if (noside == EVAL_SKIP)
|
| 2422 |
|
|
goto nosideret;
|
| 2423 |
|
|
if (binop_user_defined_p (op, arg1, arg2))
|
| 2424 |
|
|
{
|
| 2425 |
|
|
return value_x_binop (arg1, arg2, op, OP_NULL, noside);
|
| 2426 |
|
|
}
|
| 2427 |
|
|
else
|
| 2428 |
|
|
{
|
| 2429 |
|
|
binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
|
| 2430 |
|
|
tem = value_less (arg1, arg2);
|
| 2431 |
|
|
type = language_bool_type (exp->language_defn, exp->gdbarch);
|
| 2432 |
|
|
return value_from_longest (type, (LONGEST) tem);
|
| 2433 |
|
|
}
|
| 2434 |
|
|
|
| 2435 |
|
|
case BINOP_GTR:
|
| 2436 |
|
|
arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
| 2437 |
|
|
arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
|
| 2438 |
|
|
if (noside == EVAL_SKIP)
|
| 2439 |
|
|
goto nosideret;
|
| 2440 |
|
|
if (binop_user_defined_p (op, arg1, arg2))
|
| 2441 |
|
|
{
|
| 2442 |
|
|
return value_x_binop (arg1, arg2, op, OP_NULL, noside);
|
| 2443 |
|
|
}
|
| 2444 |
|
|
else
|
| 2445 |
|
|
{
|
| 2446 |
|
|
binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
|
| 2447 |
|
|
tem = value_less (arg2, arg1);
|
| 2448 |
|
|
type = language_bool_type (exp->language_defn, exp->gdbarch);
|
| 2449 |
|
|
return value_from_longest (type, (LONGEST) tem);
|
| 2450 |
|
|
}
|
| 2451 |
|
|
|
| 2452 |
|
|
case BINOP_GEQ:
|
| 2453 |
|
|
arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
| 2454 |
|
|
arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
|
| 2455 |
|
|
if (noside == EVAL_SKIP)
|
| 2456 |
|
|
goto nosideret;
|
| 2457 |
|
|
if (binop_user_defined_p (op, arg1, arg2))
|
| 2458 |
|
|
{
|
| 2459 |
|
|
return value_x_binop (arg1, arg2, op, OP_NULL, noside);
|
| 2460 |
|
|
}
|
| 2461 |
|
|
else
|
| 2462 |
|
|
{
|
| 2463 |
|
|
binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
|
| 2464 |
|
|
tem = value_less (arg2, arg1) || value_equal (arg1, arg2);
|
| 2465 |
|
|
type = language_bool_type (exp->language_defn, exp->gdbarch);
|
| 2466 |
|
|
return value_from_longest (type, (LONGEST) tem);
|
| 2467 |
|
|
}
|
| 2468 |
|
|
|
| 2469 |
|
|
case BINOP_LEQ:
|
| 2470 |
|
|
arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
| 2471 |
|
|
arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
|
| 2472 |
|
|
if (noside == EVAL_SKIP)
|
| 2473 |
|
|
goto nosideret;
|
| 2474 |
|
|
if (binop_user_defined_p (op, arg1, arg2))
|
| 2475 |
|
|
{
|
| 2476 |
|
|
return value_x_binop (arg1, arg2, op, OP_NULL, noside);
|
| 2477 |
|
|
}
|
| 2478 |
|
|
else
|
| 2479 |
|
|
{
|
| 2480 |
|
|
binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
|
| 2481 |
|
|
tem = value_less (arg1, arg2) || value_equal (arg1, arg2);
|
| 2482 |
|
|
type = language_bool_type (exp->language_defn, exp->gdbarch);
|
| 2483 |
|
|
return value_from_longest (type, (LONGEST) tem);
|
| 2484 |
|
|
}
|
| 2485 |
|
|
|
| 2486 |
|
|
case BINOP_REPEAT:
|
| 2487 |
|
|
arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
| 2488 |
|
|
arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
| 2489 |
|
|
if (noside == EVAL_SKIP)
|
| 2490 |
|
|
goto nosideret;
|
| 2491 |
|
|
type = check_typedef (value_type (arg2));
|
| 2492 |
|
|
if (TYPE_CODE (type) != TYPE_CODE_INT)
|
| 2493 |
|
|
error (_("Non-integral right operand for \"@\" operator."));
|
| 2494 |
|
|
if (noside == EVAL_AVOID_SIDE_EFFECTS)
|
| 2495 |
|
|
{
|
| 2496 |
|
|
return allocate_repeat_value (value_type (arg1),
|
| 2497 |
|
|
longest_to_int (value_as_long (arg2)));
|
| 2498 |
|
|
}
|
| 2499 |
|
|
else
|
| 2500 |
|
|
return value_repeat (arg1, longest_to_int (value_as_long (arg2)));
|
| 2501 |
|
|
|
| 2502 |
|
|
case BINOP_COMMA:
|
| 2503 |
|
|
evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
| 2504 |
|
|
return evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
| 2505 |
|
|
|
| 2506 |
|
|
case UNOP_PLUS:
|
| 2507 |
|
|
arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
| 2508 |
|
|
if (noside == EVAL_SKIP)
|
| 2509 |
|
|
goto nosideret;
|
| 2510 |
|
|
if (unop_user_defined_p (op, arg1))
|
| 2511 |
|
|
return value_x_unop (arg1, op, noside);
|
| 2512 |
|
|
else
|
| 2513 |
|
|
{
|
| 2514 |
|
|
unop_promote (exp->language_defn, exp->gdbarch, &arg1);
|
| 2515 |
|
|
return value_pos (arg1);
|
| 2516 |
|
|
}
|
| 2517 |
|
|
|
| 2518 |
|
|
case UNOP_NEG:
|
| 2519 |
|
|
arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
| 2520 |
|
|
if (noside == EVAL_SKIP)
|
| 2521 |
|
|
goto nosideret;
|
| 2522 |
|
|
if (unop_user_defined_p (op, arg1))
|
| 2523 |
|
|
return value_x_unop (arg1, op, noside);
|
| 2524 |
|
|
else
|
| 2525 |
|
|
{
|
| 2526 |
|
|
unop_promote (exp->language_defn, exp->gdbarch, &arg1);
|
| 2527 |
|
|
return value_neg (arg1);
|
| 2528 |
|
|
}
|
| 2529 |
|
|
|
| 2530 |
|
|
case UNOP_COMPLEMENT:
|
| 2531 |
|
|
/* C++: check for and handle destructor names. */
|
| 2532 |
|
|
op = exp->elts[*pos].opcode;
|
| 2533 |
|
|
|
| 2534 |
|
|
arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
| 2535 |
|
|
if (noside == EVAL_SKIP)
|
| 2536 |
|
|
goto nosideret;
|
| 2537 |
|
|
if (unop_user_defined_p (UNOP_COMPLEMENT, arg1))
|
| 2538 |
|
|
return value_x_unop (arg1, UNOP_COMPLEMENT, noside);
|
| 2539 |
|
|
else
|
| 2540 |
|
|
{
|
| 2541 |
|
|
unop_promote (exp->language_defn, exp->gdbarch, &arg1);
|
| 2542 |
|
|
return value_complement (arg1);
|
| 2543 |
|
|
}
|
| 2544 |
|
|
|
| 2545 |
|
|
case UNOP_LOGICAL_NOT:
|
| 2546 |
|
|
arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
| 2547 |
|
|
if (noside == EVAL_SKIP)
|
| 2548 |
|
|
goto nosideret;
|
| 2549 |
|
|
if (unop_user_defined_p (op, arg1))
|
| 2550 |
|
|
return value_x_unop (arg1, op, noside);
|
| 2551 |
|
|
else
|
| 2552 |
|
|
{
|
| 2553 |
|
|
type = language_bool_type (exp->language_defn, exp->gdbarch);
|
| 2554 |
|
|
return value_from_longest (type, (LONGEST) value_logical_not (arg1));
|
| 2555 |
|
|
}
|
| 2556 |
|
|
|
| 2557 |
|
|
case UNOP_IND:
|
| 2558 |
|
|
if (expect_type && TYPE_CODE (expect_type) == TYPE_CODE_PTR)
|
| 2559 |
|
|
expect_type = TYPE_TARGET_TYPE (check_typedef (expect_type));
|
| 2560 |
|
|
arg1 = evaluate_subexp (expect_type, exp, pos, noside);
|
| 2561 |
|
|
type = check_typedef (value_type (arg1));
|
| 2562 |
|
|
if (TYPE_CODE (type) == TYPE_CODE_METHODPTR
|
| 2563 |
|
|
|| TYPE_CODE (type) == TYPE_CODE_MEMBERPTR)
|
| 2564 |
|
|
error (_("Attempt to dereference pointer to member without an object"));
|
| 2565 |
|
|
if (noside == EVAL_SKIP)
|
| 2566 |
|
|
goto nosideret;
|
| 2567 |
|
|
if (unop_user_defined_p (op, arg1))
|
| 2568 |
|
|
return value_x_unop (arg1, op, noside);
|
| 2569 |
|
|
else if (noside == EVAL_AVOID_SIDE_EFFECTS)
|
| 2570 |
|
|
{
|
| 2571 |
|
|
type = check_typedef (value_type (arg1));
|
| 2572 |
|
|
if (TYPE_CODE (type) == TYPE_CODE_PTR
|
| 2573 |
|
|
|| TYPE_CODE (type) == TYPE_CODE_REF
|
| 2574 |
|
|
/* In C you can dereference an array to get the 1st elt. */
|
| 2575 |
|
|
|| TYPE_CODE (type) == TYPE_CODE_ARRAY
|
| 2576 |
|
|
)
|
| 2577 |
|
|
return value_zero (TYPE_TARGET_TYPE (type),
|
| 2578 |
|
|
lval_memory);
|
| 2579 |
|
|
else if (TYPE_CODE (type) == TYPE_CODE_INT)
|
| 2580 |
|
|
/* GDB allows dereferencing an int. */
|
| 2581 |
|
|
return value_zero (builtin_type (exp->gdbarch)->builtin_int,
|
| 2582 |
|
|
lval_memory);
|
| 2583 |
|
|
else
|
| 2584 |
|
|
error (_("Attempt to take contents of a non-pointer value."));
|
| 2585 |
|
|
}
|
| 2586 |
|
|
|
| 2587 |
|
|
/* Allow * on an integer so we can cast it to whatever we want.
|
| 2588 |
|
|
This returns an int, which seems like the most C-like thing to
|
| 2589 |
|
|
do. "long long" variables are rare enough that
|
| 2590 |
|
|
BUILTIN_TYPE_LONGEST would seem to be a mistake. */
|
| 2591 |
|
|
if (TYPE_CODE (type) == TYPE_CODE_INT)
|
| 2592 |
|
|
return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
|
| 2593 |
|
|
(CORE_ADDR) value_as_address (arg1));
|
| 2594 |
|
|
return value_ind (arg1);
|
| 2595 |
|
|
|
| 2596 |
|
|
case UNOP_ADDR:
|
| 2597 |
|
|
/* C++: check for and handle pointer to members. */
|
| 2598 |
|
|
|
| 2599 |
|
|
op = exp->elts[*pos].opcode;
|
| 2600 |
|
|
|
| 2601 |
|
|
if (noside == EVAL_SKIP)
|
| 2602 |
|
|
{
|
| 2603 |
|
|
evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
|
| 2604 |
|
|
goto nosideret;
|
| 2605 |
|
|
}
|
| 2606 |
|
|
else
|
| 2607 |
|
|
{
|
| 2608 |
|
|
struct value *retvalp = evaluate_subexp_for_address (exp, pos, noside);
|
| 2609 |
|
|
|
| 2610 |
|
|
return retvalp;
|
| 2611 |
|
|
}
|
| 2612 |
|
|
|
| 2613 |
|
|
case UNOP_SIZEOF:
|
| 2614 |
|
|
if (noside == EVAL_SKIP)
|
| 2615 |
|
|
{
|
| 2616 |
|
|
evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
|
| 2617 |
|
|
goto nosideret;
|
| 2618 |
|
|
}
|
| 2619 |
|
|
return evaluate_subexp_for_sizeof (exp, pos);
|
| 2620 |
|
|
|
| 2621 |
|
|
case UNOP_CAST:
|
| 2622 |
|
|
(*pos) += 2;
|
| 2623 |
|
|
type = exp->elts[pc + 1].type;
|
| 2624 |
|
|
arg1 = evaluate_subexp (type, exp, pos, noside);
|
| 2625 |
|
|
if (noside == EVAL_SKIP)
|
| 2626 |
|
|
goto nosideret;
|
| 2627 |
|
|
if (type != value_type (arg1))
|
| 2628 |
|
|
arg1 = value_cast (type, arg1);
|
| 2629 |
|
|
return arg1;
|
| 2630 |
|
|
|
| 2631 |
|
|
case UNOP_DYNAMIC_CAST:
|
| 2632 |
|
|
(*pos) += 2;
|
| 2633 |
|
|
type = exp->elts[pc + 1].type;
|
| 2634 |
|
|
arg1 = evaluate_subexp (type, exp, pos, noside);
|
| 2635 |
|
|
if (noside == EVAL_SKIP)
|
| 2636 |
|
|
goto nosideret;
|
| 2637 |
|
|
return value_dynamic_cast (type, arg1);
|
| 2638 |
|
|
|
| 2639 |
|
|
case UNOP_REINTERPRET_CAST:
|
| 2640 |
|
|
(*pos) += 2;
|
| 2641 |
|
|
type = exp->elts[pc + 1].type;
|
| 2642 |
|
|
arg1 = evaluate_subexp (type, exp, pos, noside);
|
| 2643 |
|
|
if (noside == EVAL_SKIP)
|
| 2644 |
|
|
goto nosideret;
|
| 2645 |
|
|
return value_reinterpret_cast (type, arg1);
|
| 2646 |
|
|
|
| 2647 |
|
|
case UNOP_MEMVAL:
|
| 2648 |
|
|
(*pos) += 2;
|
| 2649 |
|
|
arg1 = evaluate_subexp (expect_type, exp, pos, noside);
|
| 2650 |
|
|
if (noside == EVAL_SKIP)
|
| 2651 |
|
|
goto nosideret;
|
| 2652 |
|
|
if (noside == EVAL_AVOID_SIDE_EFFECTS)
|
| 2653 |
|
|
return value_zero (exp->elts[pc + 1].type, lval_memory);
|
| 2654 |
|
|
else
|
| 2655 |
|
|
return value_at_lazy (exp->elts[pc + 1].type,
|
| 2656 |
|
|
value_as_address (arg1));
|
| 2657 |
|
|
|
| 2658 |
|
|
case UNOP_MEMVAL_TLS:
|
| 2659 |
|
|
(*pos) += 3;
|
| 2660 |
|
|
arg1 = evaluate_subexp (expect_type, exp, pos, noside);
|
| 2661 |
|
|
if (noside == EVAL_SKIP)
|
| 2662 |
|
|
goto nosideret;
|
| 2663 |
|
|
if (noside == EVAL_AVOID_SIDE_EFFECTS)
|
| 2664 |
|
|
return value_zero (exp->elts[pc + 2].type, lval_memory);
|
| 2665 |
|
|
else
|
| 2666 |
|
|
{
|
| 2667 |
|
|
CORE_ADDR tls_addr;
|
| 2668 |
|
|
|
| 2669 |
|
|
tls_addr = target_translate_tls_address (exp->elts[pc + 1].objfile,
|
| 2670 |
|
|
value_as_address (arg1));
|
| 2671 |
|
|
return value_at_lazy (exp->elts[pc + 2].type, tls_addr);
|
| 2672 |
|
|
}
|
| 2673 |
|
|
|
| 2674 |
|
|
case UNOP_PREINCREMENT:
|
| 2675 |
|
|
arg1 = evaluate_subexp (expect_type, exp, pos, noside);
|
| 2676 |
|
|
if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
|
| 2677 |
|
|
return arg1;
|
| 2678 |
|
|
else if (unop_user_defined_p (op, arg1))
|
| 2679 |
|
|
{
|
| 2680 |
|
|
return value_x_unop (arg1, op, noside);
|
| 2681 |
|
|
}
|
| 2682 |
|
|
else
|
| 2683 |
|
|
{
|
| 2684 |
|
|
if (ptrmath_type_p (exp->language_defn, value_type (arg1)))
|
| 2685 |
|
|
arg2 = value_ptradd (arg1, 1);
|
| 2686 |
|
|
else
|
| 2687 |
|
|
{
|
| 2688 |
|
|
struct value *tmp = arg1;
|
| 2689 |
|
|
|
| 2690 |
|
|
arg2 = value_one (value_type (arg1), not_lval);
|
| 2691 |
|
|
binop_promote (exp->language_defn, exp->gdbarch, &tmp, &arg2);
|
| 2692 |
|
|
arg2 = value_binop (tmp, arg2, BINOP_ADD);
|
| 2693 |
|
|
}
|
| 2694 |
|
|
|
| 2695 |
|
|
return value_assign (arg1, arg2);
|
| 2696 |
|
|
}
|
| 2697 |
|
|
|
| 2698 |
|
|
case UNOP_PREDECREMENT:
|
| 2699 |
|
|
arg1 = evaluate_subexp (expect_type, exp, pos, noside);
|
| 2700 |
|
|
if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
|
| 2701 |
|
|
return arg1;
|
| 2702 |
|
|
else if (unop_user_defined_p (op, arg1))
|
| 2703 |
|
|
{
|
| 2704 |
|
|
return value_x_unop (arg1, op, noside);
|
| 2705 |
|
|
}
|
| 2706 |
|
|
else
|
| 2707 |
|
|
{
|
| 2708 |
|
|
if (ptrmath_type_p (exp->language_defn, value_type (arg1)))
|
| 2709 |
|
|
arg2 = value_ptradd (arg1, -1);
|
| 2710 |
|
|
else
|
| 2711 |
|
|
{
|
| 2712 |
|
|
struct value *tmp = arg1;
|
| 2713 |
|
|
|
| 2714 |
|
|
arg2 = value_one (value_type (arg1), not_lval);
|
| 2715 |
|
|
binop_promote (exp->language_defn, exp->gdbarch, &tmp, &arg2);
|
| 2716 |
|
|
arg2 = value_binop (tmp, arg2, BINOP_SUB);
|
| 2717 |
|
|
}
|
| 2718 |
|
|
|
| 2719 |
|
|
return value_assign (arg1, arg2);
|
| 2720 |
|
|
}
|
| 2721 |
|
|
|
| 2722 |
|
|
case UNOP_POSTINCREMENT:
|
| 2723 |
|
|
arg1 = evaluate_subexp (expect_type, exp, pos, noside);
|
| 2724 |
|
|
if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
|
| 2725 |
|
|
return arg1;
|
| 2726 |
|
|
else if (unop_user_defined_p (op, arg1))
|
| 2727 |
|
|
{
|
| 2728 |
|
|
return value_x_unop (arg1, op, noside);
|
| 2729 |
|
|
}
|
| 2730 |
|
|
else
|
| 2731 |
|
|
{
|
| 2732 |
|
|
if (ptrmath_type_p (exp->language_defn, value_type (arg1)))
|
| 2733 |
|
|
arg2 = value_ptradd (arg1, 1);
|
| 2734 |
|
|
else
|
| 2735 |
|
|
{
|
| 2736 |
|
|
struct value *tmp = arg1;
|
| 2737 |
|
|
|
| 2738 |
|
|
arg2 = value_one (value_type (arg1), not_lval);
|
| 2739 |
|
|
binop_promote (exp->language_defn, exp->gdbarch, &tmp, &arg2);
|
| 2740 |
|
|
arg2 = value_binop (tmp, arg2, BINOP_ADD);
|
| 2741 |
|
|
}
|
| 2742 |
|
|
|
| 2743 |
|
|
value_assign (arg1, arg2);
|
| 2744 |
|
|
return arg1;
|
| 2745 |
|
|
}
|
| 2746 |
|
|
|
| 2747 |
|
|
case UNOP_POSTDECREMENT:
|
| 2748 |
|
|
arg1 = evaluate_subexp (expect_type, exp, pos, noside);
|
| 2749 |
|
|
if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
|
| 2750 |
|
|
return arg1;
|
| 2751 |
|
|
else if (unop_user_defined_p (op, arg1))
|
| 2752 |
|
|
{
|
| 2753 |
|
|
return value_x_unop (arg1, op, noside);
|
| 2754 |
|
|
}
|
| 2755 |
|
|
else
|
| 2756 |
|
|
{
|
| 2757 |
|
|
if (ptrmath_type_p (exp->language_defn, value_type (arg1)))
|
| 2758 |
|
|
arg2 = value_ptradd (arg1, -1);
|
| 2759 |
|
|
else
|
| 2760 |
|
|
{
|
| 2761 |
|
|
struct value *tmp = arg1;
|
| 2762 |
|
|
|
| 2763 |
|
|
arg2 = value_one (value_type (arg1), not_lval);
|
| 2764 |
|
|
binop_promote (exp->language_defn, exp->gdbarch, &tmp, &arg2);
|
| 2765 |
|
|
arg2 = value_binop (tmp, arg2, BINOP_SUB);
|
| 2766 |
|
|
}
|
| 2767 |
|
|
|
| 2768 |
|
|
value_assign (arg1, arg2);
|
| 2769 |
|
|
return arg1;
|
| 2770 |
|
|
}
|
| 2771 |
|
|
|
| 2772 |
|
|
case OP_THIS:
|
| 2773 |
|
|
(*pos) += 1;
|
| 2774 |
|
|
return value_of_this (1);
|
| 2775 |
|
|
|
| 2776 |
|
|
case OP_OBJC_SELF:
|
| 2777 |
|
|
(*pos) += 1;
|
| 2778 |
|
|
return value_of_local ("self", 1);
|
| 2779 |
|
|
|
| 2780 |
|
|
case OP_TYPE:
|
| 2781 |
|
|
/* The value is not supposed to be used. This is here to make it
|
| 2782 |
|
|
easier to accommodate expressions that contain types. */
|
| 2783 |
|
|
(*pos) += 2;
|
| 2784 |
|
|
if (noside == EVAL_SKIP)
|
| 2785 |
|
|
goto nosideret;
|
| 2786 |
|
|
else if (noside == EVAL_AVOID_SIDE_EFFECTS)
|
| 2787 |
|
|
{
|
| 2788 |
|
|
struct type *type = exp->elts[pc + 1].type;
|
| 2789 |
|
|
|
| 2790 |
|
|
/* If this is a typedef, then find its immediate target. We
|
| 2791 |
|
|
use check_typedef to resolve stubs, but we ignore its
|
| 2792 |
|
|
result because we do not want to dig past all
|
| 2793 |
|
|
typedefs. */
|
| 2794 |
|
|
check_typedef (type);
|
| 2795 |
|
|
if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
|
| 2796 |
|
|
type = TYPE_TARGET_TYPE (type);
|
| 2797 |
|
|
return allocate_value (type);
|
| 2798 |
|
|
}
|
| 2799 |
|
|
else
|
| 2800 |
|
|
error (_("Attempt to use a type name as an expression"));
|
| 2801 |
|
|
|
| 2802 |
|
|
default:
|
| 2803 |
|
|
/* Removing this case and compiling with gcc -Wall reveals that
|
| 2804 |
|
|
a lot of cases are hitting this case. Some of these should
|
| 2805 |
|
|
probably be removed from expression.h; others are legitimate
|
| 2806 |
|
|
expressions which are (apparently) not fully implemented.
|
| 2807 |
|
|
|
| 2808 |
|
|
If there are any cases landing here which mean a user error,
|
| 2809 |
|
|
then they should be separate cases, with more descriptive
|
| 2810 |
|
|
error messages. */
|
| 2811 |
|
|
|
| 2812 |
|
|
error (_("\
|
| 2813 |
|
|
GDB does not (yet) know how to evaluate that kind of expression"));
|
| 2814 |
|
|
}
|
| 2815 |
|
|
|
| 2816 |
|
|
nosideret:
|
| 2817 |
|
|
return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, 1);
|
| 2818 |
|
|
}
|
| 2819 |
|
|
|
| 2820 |
|
|
/* Evaluate a subexpression of EXP, at index *POS,
|
| 2821 |
|
|
and return the address of that subexpression.
|
| 2822 |
|
|
Advance *POS over the subexpression.
|
| 2823 |
|
|
If the subexpression isn't an lvalue, get an error.
|
| 2824 |
|
|
NOSIDE may be EVAL_AVOID_SIDE_EFFECTS;
|
| 2825 |
|
|
then only the type of the result need be correct. */
|
| 2826 |
|
|
|
| 2827 |
|
|
static struct value *
|
| 2828 |
|
|
evaluate_subexp_for_address (struct expression *exp, int *pos,
|
| 2829 |
|
|
enum noside noside)
|
| 2830 |
|
|
{
|
| 2831 |
|
|
enum exp_opcode op;
|
| 2832 |
|
|
int pc;
|
| 2833 |
|
|
struct symbol *var;
|
| 2834 |
|
|
struct value *x;
|
| 2835 |
|
|
int tem;
|
| 2836 |
|
|
|
| 2837 |
|
|
pc = (*pos);
|
| 2838 |
|
|
op = exp->elts[pc].opcode;
|
| 2839 |
|
|
|
| 2840 |
|
|
switch (op)
|
| 2841 |
|
|
{
|
| 2842 |
|
|
case UNOP_IND:
|
| 2843 |
|
|
(*pos)++;
|
| 2844 |
|
|
x = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
| 2845 |
|
|
|
| 2846 |
|
|
/* We can't optimize out "&*" if there's a user-defined operator*. */
|
| 2847 |
|
|
if (unop_user_defined_p (op, x))
|
| 2848 |
|
|
{
|
| 2849 |
|
|
x = value_x_unop (x, op, noside);
|
| 2850 |
|
|
goto default_case_after_eval;
|
| 2851 |
|
|
}
|
| 2852 |
|
|
|
| 2853 |
|
|
return coerce_array (x);
|
| 2854 |
|
|
|
| 2855 |
|
|
case UNOP_MEMVAL:
|
| 2856 |
|
|
(*pos) += 3;
|
| 2857 |
|
|
return value_cast (lookup_pointer_type (exp->elts[pc + 1].type),
|
| 2858 |
|
|
evaluate_subexp (NULL_TYPE, exp, pos, noside));
|
| 2859 |
|
|
|
| 2860 |
|
|
case OP_VAR_VALUE:
|
| 2861 |
|
|
var = exp->elts[pc + 2].symbol;
|
| 2862 |
|
|
|
| 2863 |
|
|
/* C++: The "address" of a reference should yield the address
|
| 2864 |
|
|
* of the object pointed to. Let value_addr() deal with it. */
|
| 2865 |
|
|
if (TYPE_CODE (SYMBOL_TYPE (var)) == TYPE_CODE_REF)
|
| 2866 |
|
|
goto default_case;
|
| 2867 |
|
|
|
| 2868 |
|
|
(*pos) += 4;
|
| 2869 |
|
|
if (noside == EVAL_AVOID_SIDE_EFFECTS)
|
| 2870 |
|
|
{
|
| 2871 |
|
|
struct type *type =
|
| 2872 |
|
|
lookup_pointer_type (SYMBOL_TYPE (var));
|
| 2873 |
|
|
enum address_class sym_class = SYMBOL_CLASS (var);
|
| 2874 |
|
|
|
| 2875 |
|
|
if (sym_class == LOC_CONST
|
| 2876 |
|
|
|| sym_class == LOC_CONST_BYTES
|
| 2877 |
|
|
|| sym_class == LOC_REGISTER)
|
| 2878 |
|
|
error (_("Attempt to take address of register or constant."));
|
| 2879 |
|
|
|
| 2880 |
|
|
return
|
| 2881 |
|
|
value_zero (type, not_lval);
|
| 2882 |
|
|
}
|
| 2883 |
|
|
else
|
| 2884 |
|
|
return address_of_variable (var, exp->elts[pc + 1].block);
|
| 2885 |
|
|
|
| 2886 |
|
|
case OP_SCOPE:
|
| 2887 |
|
|
tem = longest_to_int (exp->elts[pc + 2].longconst);
|
| 2888 |
|
|
(*pos) += 5 + BYTES_TO_EXP_ELEM (tem + 1);
|
| 2889 |
|
|
x = value_aggregate_elt (exp->elts[pc + 1].type,
|
| 2890 |
|
|
&exp->elts[pc + 3].string,
|
| 2891 |
|
|
NULL, 1, noside);
|
| 2892 |
|
|
if (x == NULL)
|
| 2893 |
|
|
error (_("There is no field named %s"), &exp->elts[pc + 3].string);
|
| 2894 |
|
|
return x;
|
| 2895 |
|
|
|
| 2896 |
|
|
default:
|
| 2897 |
|
|
default_case:
|
| 2898 |
|
|
x = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
| 2899 |
|
|
default_case_after_eval:
|
| 2900 |
|
|
if (noside == EVAL_AVOID_SIDE_EFFECTS)
|
| 2901 |
|
|
{
|
| 2902 |
|
|
struct type *type = check_typedef (value_type (x));
|
| 2903 |
|
|
|
| 2904 |
|
|
if (VALUE_LVAL (x) == lval_memory || value_must_coerce_to_target (x))
|
| 2905 |
|
|
return value_zero (lookup_pointer_type (value_type (x)),
|
| 2906 |
|
|
not_lval);
|
| 2907 |
|
|
else if (TYPE_CODE (type) == TYPE_CODE_REF)
|
| 2908 |
|
|
return value_zero (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
|
| 2909 |
|
|
not_lval);
|
| 2910 |
|
|
else
|
| 2911 |
|
|
error (_("Attempt to take address of value not located in memory."));
|
| 2912 |
|
|
}
|
| 2913 |
|
|
return value_addr (x);
|
| 2914 |
|
|
}
|
| 2915 |
|
|
}
|
| 2916 |
|
|
|
| 2917 |
|
|
/* Evaluate like `evaluate_subexp' except coercing arrays to pointers.
|
| 2918 |
|
|
When used in contexts where arrays will be coerced anyway, this is
|
| 2919 |
|
|
equivalent to `evaluate_subexp' but much faster because it avoids
|
| 2920 |
|
|
actually fetching array contents (perhaps obsolete now that we have
|
| 2921 |
|
|
value_lazy()).
|
| 2922 |
|
|
|
| 2923 |
|
|
Note that we currently only do the coercion for C expressions, where
|
| 2924 |
|
|
arrays are zero based and the coercion is correct. For other languages,
|
| 2925 |
|
|
with nonzero based arrays, coercion loses. Use CAST_IS_CONVERSION
|
| 2926 |
|
|
to decide if coercion is appropriate.
|
| 2927 |
|
|
|
| 2928 |
|
|
*/
|
| 2929 |
|
|
|
| 2930 |
|
|
struct value *
|
| 2931 |
|
|
evaluate_subexp_with_coercion (struct expression *exp,
|
| 2932 |
|
|
int *pos, enum noside noside)
|
| 2933 |
|
|
{
|
| 2934 |
|
|
enum exp_opcode op;
|
| 2935 |
|
|
int pc;
|
| 2936 |
|
|
struct value *val;
|
| 2937 |
|
|
struct symbol *var;
|
| 2938 |
|
|
struct type *type;
|
| 2939 |
|
|
|
| 2940 |
|
|
pc = (*pos);
|
| 2941 |
|
|
op = exp->elts[pc].opcode;
|
| 2942 |
|
|
|
| 2943 |
|
|
switch (op)
|
| 2944 |
|
|
{
|
| 2945 |
|
|
case OP_VAR_VALUE:
|
| 2946 |
|
|
var = exp->elts[pc + 2].symbol;
|
| 2947 |
|
|
type = check_typedef (SYMBOL_TYPE (var));
|
| 2948 |
|
|
if (TYPE_CODE (type) == TYPE_CODE_ARRAY
|
| 2949 |
|
|
&& CAST_IS_CONVERSION (exp->language_defn))
|
| 2950 |
|
|
{
|
| 2951 |
|
|
(*pos) += 4;
|
| 2952 |
|
|
val = address_of_variable (var, exp->elts[pc + 1].block);
|
| 2953 |
|
|
return value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
|
| 2954 |
|
|
val);
|
| 2955 |
|
|
}
|
| 2956 |
|
|
/* FALLTHROUGH */
|
| 2957 |
|
|
|
| 2958 |
|
|
default:
|
| 2959 |
|
|
return evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
| 2960 |
|
|
}
|
| 2961 |
|
|
}
|
| 2962 |
|
|
|
| 2963 |
|
|
/* Evaluate a subexpression of EXP, at index *POS,
|
| 2964 |
|
|
and return a value for the size of that subexpression.
|
| 2965 |
|
|
Advance *POS over the subexpression. */
|
| 2966 |
|
|
|
| 2967 |
|
|
static struct value *
|
| 2968 |
|
|
evaluate_subexp_for_sizeof (struct expression *exp, int *pos)
|
| 2969 |
|
|
{
|
| 2970 |
|
|
/* FIXME: This should be size_t. */
|
| 2971 |
|
|
struct type *size_type = builtin_type (exp->gdbarch)->builtin_int;
|
| 2972 |
|
|
enum exp_opcode op;
|
| 2973 |
|
|
int pc;
|
| 2974 |
|
|
struct type *type;
|
| 2975 |
|
|
struct value *val;
|
| 2976 |
|
|
|
| 2977 |
|
|
pc = (*pos);
|
| 2978 |
|
|
op = exp->elts[pc].opcode;
|
| 2979 |
|
|
|
| 2980 |
|
|
switch (op)
|
| 2981 |
|
|
{
|
| 2982 |
|
|
/* This case is handled specially
|
| 2983 |
|
|
so that we avoid creating a value for the result type.
|
| 2984 |
|
|
If the result type is very big, it's desirable not to
|
| 2985 |
|
|
create a value unnecessarily. */
|
| 2986 |
|
|
case UNOP_IND:
|
| 2987 |
|
|
(*pos)++;
|
| 2988 |
|
|
val = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
|
| 2989 |
|
|
type = check_typedef (value_type (val));
|
| 2990 |
|
|
if (TYPE_CODE (type) != TYPE_CODE_PTR
|
| 2991 |
|
|
&& TYPE_CODE (type) != TYPE_CODE_REF
|
| 2992 |
|
|
&& TYPE_CODE (type) != TYPE_CODE_ARRAY)
|
| 2993 |
|
|
error (_("Attempt to take contents of a non-pointer value."));
|
| 2994 |
|
|
type = check_typedef (TYPE_TARGET_TYPE (type));
|
| 2995 |
|
|
return value_from_longest (size_type, (LONGEST) TYPE_LENGTH (type));
|
| 2996 |
|
|
|
| 2997 |
|
|
case UNOP_MEMVAL:
|
| 2998 |
|
|
(*pos) += 3;
|
| 2999 |
|
|
type = check_typedef (exp->elts[pc + 1].type);
|
| 3000 |
|
|
return value_from_longest (size_type, (LONGEST) TYPE_LENGTH (type));
|
| 3001 |
|
|
|
| 3002 |
|
|
case OP_VAR_VALUE:
|
| 3003 |
|
|
(*pos) += 4;
|
| 3004 |
|
|
type = check_typedef (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
|
| 3005 |
|
|
return
|
| 3006 |
|
|
value_from_longest (size_type, (LONGEST) TYPE_LENGTH (type));
|
| 3007 |
|
|
|
| 3008 |
|
|
default:
|
| 3009 |
|
|
val = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
|
| 3010 |
|
|
return value_from_longest (size_type,
|
| 3011 |
|
|
(LONGEST) TYPE_LENGTH (value_type (val)));
|
| 3012 |
|
|
}
|
| 3013 |
|
|
}
|
| 3014 |
|
|
|
| 3015 |
|
|
/* Parse a type expression in the string [P..P+LENGTH). */
|
| 3016 |
|
|
|
| 3017 |
|
|
struct type *
|
| 3018 |
|
|
parse_and_eval_type (char *p, int length)
|
| 3019 |
|
|
{
|
| 3020 |
|
|
char *tmp = (char *) alloca (length + 4);
|
| 3021 |
|
|
struct expression *expr;
|
| 3022 |
|
|
|
| 3023 |
|
|
tmp[0] = '(';
|
| 3024 |
|
|
memcpy (tmp + 1, p, length);
|
| 3025 |
|
|
tmp[length + 1] = ')';
|
| 3026 |
|
|
tmp[length + 2] = '0';
|
| 3027 |
|
|
tmp[length + 3] = '\0';
|
| 3028 |
|
|
expr = parse_expression (tmp);
|
| 3029 |
|
|
if (expr->elts[0].opcode != UNOP_CAST)
|
| 3030 |
|
|
error (_("Internal error in eval_type."));
|
| 3031 |
|
|
return expr->elts[1].type;
|
| 3032 |
|
|
}
|
| 3033 |
|
|
|
| 3034 |
|
|
int
|
| 3035 |
|
|
calc_f77_array_dims (struct type *array_type)
|
| 3036 |
|
|
{
|
| 3037 |
|
|
int ndimen = 1;
|
| 3038 |
|
|
struct type *tmp_type;
|
| 3039 |
|
|
|
| 3040 |
|
|
if ((TYPE_CODE (array_type) != TYPE_CODE_ARRAY))
|
| 3041 |
|
|
error (_("Can't get dimensions for a non-array type"));
|
| 3042 |
|
|
|
| 3043 |
|
|
tmp_type = array_type;
|
| 3044 |
|
|
|
| 3045 |
|
|
while ((tmp_type = TYPE_TARGET_TYPE (tmp_type)))
|
| 3046 |
|
|
{
|
| 3047 |
|
|
if (TYPE_CODE (tmp_type) == TYPE_CODE_ARRAY)
|
| 3048 |
|
|
++ndimen;
|
| 3049 |
|
|
}
|
| 3050 |
|
|
return ndimen;
|
| 3051 |
|
|
}
|