OpenCores
URL https://opencores.org/ocsvn/openrisc_2011-10-31/openrisc_2011-10-31/trunk

Subversion Repositories openrisc_2011-10-31

[/] [openrisc/] [trunk/] [gnu-src/] [gdb-7.2/] [gdb/] [i386-tdep.c] - Blame information for rev 517

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 330 jeremybenn
/* Intel 386 target-dependent stuff.
2
 
3
   Copyright (C) 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
4
   1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009,
5
   2010 Free Software Foundation, Inc.
6
 
7
   This file is part of GDB.
8
 
9
   This program is free software; you can redistribute it and/or modify
10
   it under the terms of the GNU General Public License as published by
11
   the Free Software Foundation; either version 3 of the License, or
12
   (at your option) any later version.
13
 
14
   This program is distributed in the hope that it will be useful,
15
   but WITHOUT ANY WARRANTY; without even the implied warranty of
16
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17
   GNU General Public License for more details.
18
 
19
   You should have received a copy of the GNU General Public License
20
   along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
21
 
22
#include "defs.h"
23
#include "opcode/i386.h"
24
#include "arch-utils.h"
25
#include "command.h"
26
#include "dummy-frame.h"
27
#include "dwarf2-frame.h"
28
#include "doublest.h"
29
#include "frame.h"
30
#include "frame-base.h"
31
#include "frame-unwind.h"
32
#include "inferior.h"
33
#include "gdbcmd.h"
34
#include "gdbcore.h"
35
#include "gdbtypes.h"
36
#include "objfiles.h"
37
#include "osabi.h"
38
#include "regcache.h"
39
#include "reggroups.h"
40
#include "regset.h"
41
#include "symfile.h"
42
#include "symtab.h"
43
#include "target.h"
44
#include "value.h"
45
#include "dis-asm.h"
46
#include "disasm.h"
47
#include "remote.h"
48
 
49
#include "gdb_assert.h"
50
#include "gdb_string.h"
51
 
52
#include "i386-tdep.h"
53
#include "i387-tdep.h"
54
#include "i386-xstate.h"
55
 
56
#include "record.h"
57
#include <stdint.h>
58
 
59
#include "features/i386/i386.c"
60
#include "features/i386/i386-avx.c"
61
#include "features/i386/i386-mmx.c"
62
 
63
/* Register names.  */
64
 
65
static const char *i386_register_names[] =
66
{
67
  "eax",   "ecx",    "edx",   "ebx",
68
  "esp",   "ebp",    "esi",   "edi",
69
  "eip",   "eflags", "cs",    "ss",
70
  "ds",    "es",     "fs",    "gs",
71
  "st0",   "st1",    "st2",   "st3",
72
  "st4",   "st5",    "st6",   "st7",
73
  "fctrl", "fstat",  "ftag",  "fiseg",
74
  "fioff", "foseg",  "fooff", "fop",
75
  "xmm0",  "xmm1",   "xmm2",  "xmm3",
76
  "xmm4",  "xmm5",   "xmm6",  "xmm7",
77
  "mxcsr"
78
};
79
 
80
static const char *i386_ymm_names[] =
81
{
82
  "ymm0",  "ymm1",   "ymm2",  "ymm3",
83
  "ymm4",  "ymm5",   "ymm6",  "ymm7",
84
};
85
 
86
static const char *i386_ymmh_names[] =
87
{
88
  "ymm0h",  "ymm1h",   "ymm2h",  "ymm3h",
89
  "ymm4h",  "ymm5h",   "ymm6h",  "ymm7h",
90
};
91
 
92
/* Register names for MMX pseudo-registers.  */
93
 
94
static const char *i386_mmx_names[] =
95
{
96
  "mm0", "mm1", "mm2", "mm3",
97
  "mm4", "mm5", "mm6", "mm7"
98
};
99
 
100
/* Register names for byte pseudo-registers.  */
101
 
102
static const char *i386_byte_names[] =
103
{
104
  "al", "cl", "dl", "bl",
105
  "ah", "ch", "dh", "bh"
106
};
107
 
108
/* Register names for word pseudo-registers.  */
109
 
110
static const char *i386_word_names[] =
111
{
112
  "ax", "cx", "dx", "bx",
113
  "", "bp", "si", "di"
114
};
115
 
116
/* MMX register?  */
117
 
118
static int
119
i386_mmx_regnum_p (struct gdbarch *gdbarch, int regnum)
120
{
121
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
122
  int mm0_regnum = tdep->mm0_regnum;
123
 
124
  if (mm0_regnum < 0)
125
    return 0;
126
 
127
  regnum -= mm0_regnum;
128
  return regnum >= 0 && regnum < tdep->num_mmx_regs;
129
}
130
 
131
/* Byte register?  */
132
 
133
int
134
i386_byte_regnum_p (struct gdbarch *gdbarch, int regnum)
135
{
136
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
137
 
138
  regnum -= tdep->al_regnum;
139
  return regnum >= 0 && regnum < tdep->num_byte_regs;
140
}
141
 
142
/* Word register?  */
143
 
144
int
145
i386_word_regnum_p (struct gdbarch *gdbarch, int regnum)
146
{
147
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
148
 
149
  regnum -= tdep->ax_regnum;
150
  return regnum >= 0 && regnum < tdep->num_word_regs;
151
}
152
 
153
/* Dword register?  */
154
 
155
int
156
i386_dword_regnum_p (struct gdbarch *gdbarch, int regnum)
157
{
158
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
159
  int eax_regnum = tdep->eax_regnum;
160
 
161
  if (eax_regnum < 0)
162
    return 0;
163
 
164
  regnum -= eax_regnum;
165
  return regnum >= 0 && regnum < tdep->num_dword_regs;
166
}
167
 
168
int
169
i386_ymmh_regnum_p (struct gdbarch *gdbarch, int regnum)
170
{
171
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
172
  int ymm0h_regnum = tdep->ymm0h_regnum;
173
 
174
  if (ymm0h_regnum < 0)
175
    return 0;
176
 
177
  regnum -= ymm0h_regnum;
178
  return regnum >= 0 && regnum < tdep->num_ymm_regs;
179
}
180
 
181
/* AVX register?  */
182
 
183
int
184
i386_ymm_regnum_p (struct gdbarch *gdbarch, int regnum)
185
{
186
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
187
  int ymm0_regnum = tdep->ymm0_regnum;
188
 
189
  if (ymm0_regnum < 0)
190
    return 0;
191
 
192
  regnum -= ymm0_regnum;
193
  return regnum >= 0 && regnum < tdep->num_ymm_regs;
194
}
195
 
196
/* SSE register?  */
197
 
198
int
199
i386_xmm_regnum_p (struct gdbarch *gdbarch, int regnum)
200
{
201
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
202
  int num_xmm_regs = I387_NUM_XMM_REGS (tdep);
203
 
204
  if (num_xmm_regs == 0)
205
    return 0;
206
 
207
  regnum -= I387_XMM0_REGNUM (tdep);
208
  return regnum >= 0 && regnum < num_xmm_regs;
209
}
210
 
211
static int
212
i386_mxcsr_regnum_p (struct gdbarch *gdbarch, int regnum)
213
{
214
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
215
 
216
  if (I387_NUM_XMM_REGS (tdep) == 0)
217
    return 0;
218
 
219
  return (regnum == I387_MXCSR_REGNUM (tdep));
220
}
221
 
222
/* FP register?  */
223
 
224
int
225
i386_fp_regnum_p (struct gdbarch *gdbarch, int regnum)
226
{
227
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
228
 
229
  if (I387_ST0_REGNUM (tdep) < 0)
230
    return 0;
231
 
232
  return (I387_ST0_REGNUM (tdep) <= regnum
233
          && regnum < I387_FCTRL_REGNUM (tdep));
234
}
235
 
236
int
237
i386_fpc_regnum_p (struct gdbarch *gdbarch, int regnum)
238
{
239
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
240
 
241
  if (I387_ST0_REGNUM (tdep) < 0)
242
    return 0;
243
 
244
  return (I387_FCTRL_REGNUM (tdep) <= regnum
245
          && regnum < I387_XMM0_REGNUM (tdep));
246
}
247
 
248
/* Return the name of register REGNUM, or the empty string if it is
249
   an anonymous register.  */
250
 
251
static const char *
252
i386_register_name (struct gdbarch *gdbarch, int regnum)
253
{
254
  /* Hide the upper YMM registers.  */
255
  if (i386_ymmh_regnum_p (gdbarch, regnum))
256
    return "";
257
 
258
  return tdesc_register_name (gdbarch, regnum);
259
}
260
 
261
/* Return the name of register REGNUM.  */
262
 
263
const char *
264
i386_pseudo_register_name (struct gdbarch *gdbarch, int regnum)
265
{
266
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
267
  if (i386_mmx_regnum_p (gdbarch, regnum))
268
    return i386_mmx_names[regnum - I387_MM0_REGNUM (tdep)];
269
  else if (i386_ymm_regnum_p (gdbarch, regnum))
270
    return i386_ymm_names[regnum - tdep->ymm0_regnum];
271
  else if (i386_byte_regnum_p (gdbarch, regnum))
272
    return i386_byte_names[regnum - tdep->al_regnum];
273
  else if (i386_word_regnum_p (gdbarch, regnum))
274
    return i386_word_names[regnum - tdep->ax_regnum];
275
 
276
  internal_error (__FILE__, __LINE__, _("invalid regnum"));
277
}
278
 
279
/* Convert a dbx register number REG to the appropriate register
280
   number used by GDB.  */
281
 
282
static int
283
i386_dbx_reg_to_regnum (struct gdbarch *gdbarch, int reg)
284
{
285
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
286
 
287
  /* This implements what GCC calls the "default" register map
288
     (dbx_register_map[]).  */
289
 
290
  if (reg >= 0 && reg <= 7)
291
    {
292
      /* General-purpose registers.  The debug info calls %ebp
293
         register 4, and %esp register 5.  */
294
      if (reg == 4)
295
        return 5;
296
      else if (reg == 5)
297
        return 4;
298
      else return reg;
299
    }
300
  else if (reg >= 12 && reg <= 19)
301
    {
302
      /* Floating-point registers.  */
303
      return reg - 12 + I387_ST0_REGNUM (tdep);
304
    }
305
  else if (reg >= 21 && reg <= 28)
306
    {
307
      /* SSE registers.  */
308
      int ymm0_regnum = tdep->ymm0_regnum;
309
 
310
      if (ymm0_regnum >= 0
311
          && i386_xmm_regnum_p (gdbarch, reg))
312
        return reg - 21 + ymm0_regnum;
313
      else
314
        return reg - 21 + I387_XMM0_REGNUM (tdep);
315
    }
316
  else if (reg >= 29 && reg <= 36)
317
    {
318
      /* MMX registers.  */
319
      return reg - 29 + I387_MM0_REGNUM (tdep);
320
    }
321
 
322
  /* This will hopefully provoke a warning.  */
323
  return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
324
}
325
 
326
/* Convert SVR4 register number REG to the appropriate register number
327
   used by GDB.  */
328
 
329
static int
330
i386_svr4_reg_to_regnum (struct gdbarch *gdbarch, int reg)
331
{
332
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
333
 
334
  /* This implements the GCC register map that tries to be compatible
335
     with the SVR4 C compiler for DWARF (svr4_dbx_register_map[]).  */
336
 
337
  /* The SVR4 register numbering includes %eip and %eflags, and
338
     numbers the floating point registers differently.  */
339
  if (reg >= 0 && reg <= 9)
340
    {
341
      /* General-purpose registers.  */
342
      return reg;
343
    }
344
  else if (reg >= 11 && reg <= 18)
345
    {
346
      /* Floating-point registers.  */
347
      return reg - 11 + I387_ST0_REGNUM (tdep);
348
    }
349
  else if (reg >= 21 && reg <= 36)
350
    {
351
      /* The SSE and MMX registers have the same numbers as with dbx.  */
352
      return i386_dbx_reg_to_regnum (gdbarch, reg);
353
    }
354
 
355
  switch (reg)
356
    {
357
    case 37: return I387_FCTRL_REGNUM (tdep);
358
    case 38: return I387_FSTAT_REGNUM (tdep);
359
    case 39: return I387_MXCSR_REGNUM (tdep);
360
    case 40: return I386_ES_REGNUM;
361
    case 41: return I386_CS_REGNUM;
362
    case 42: return I386_SS_REGNUM;
363
    case 43: return I386_DS_REGNUM;
364
    case 44: return I386_FS_REGNUM;
365
    case 45: return I386_GS_REGNUM;
366
    }
367
 
368
  /* This will hopefully provoke a warning.  */
369
  return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
370
}
371
 
372
 
373
 
374
/* This is the variable that is set with "set disassembly-flavor", and
375
   its legitimate values.  */
376
static const char att_flavor[] = "att";
377
static const char intel_flavor[] = "intel";
378
static const char *valid_flavors[] =
379
{
380
  att_flavor,
381
  intel_flavor,
382
  NULL
383
};
384
static const char *disassembly_flavor = att_flavor;
385
 
386
 
387
/* Use the program counter to determine the contents and size of a
388
   breakpoint instruction.  Return a pointer to a string of bytes that
389
   encode a breakpoint instruction, store the length of the string in
390
   *LEN and optionally adjust *PC to point to the correct memory
391
   location for inserting the breakpoint.
392
 
393
   On the i386 we have a single breakpoint that fits in a single byte
394
   and can be inserted anywhere.
395
 
396
   This function is 64-bit safe.  */
397
 
398
static const gdb_byte *
399
i386_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pc, int *len)
400
{
401
  static gdb_byte break_insn[] = { 0xcc }; /* int 3 */
402
 
403
  *len = sizeof (break_insn);
404
  return break_insn;
405
}
406
 
407
/* Displaced instruction handling.  */
408
 
409
/* Skip the legacy instruction prefixes in INSN.
410
   Not all prefixes are valid for any particular insn
411
   but we needn't care, the insn will fault if it's invalid.
412
   The result is a pointer to the first opcode byte,
413
   or NULL if we run off the end of the buffer.  */
414
 
415
static gdb_byte *
416
i386_skip_prefixes (gdb_byte *insn, size_t max_len)
417
{
418
  gdb_byte *end = insn + max_len;
419
 
420
  while (insn < end)
421
    {
422
      switch (*insn)
423
        {
424
        case DATA_PREFIX_OPCODE:
425
        case ADDR_PREFIX_OPCODE:
426
        case CS_PREFIX_OPCODE:
427
        case DS_PREFIX_OPCODE:
428
        case ES_PREFIX_OPCODE:
429
        case FS_PREFIX_OPCODE:
430
        case GS_PREFIX_OPCODE:
431
        case SS_PREFIX_OPCODE:
432
        case LOCK_PREFIX_OPCODE:
433
        case REPE_PREFIX_OPCODE:
434
        case REPNE_PREFIX_OPCODE:
435
          ++insn;
436
          continue;
437
        default:
438
          return insn;
439
        }
440
    }
441
 
442
  return NULL;
443
}
444
 
445
static int
446
i386_absolute_jmp_p (const gdb_byte *insn)
447
{
448
  /* jmp far (absolute address in operand) */
449
  if (insn[0] == 0xea)
450
    return 1;
451
 
452
  if (insn[0] == 0xff)
453
    {
454
      /* jump near, absolute indirect (/4) */
455
      if ((insn[1] & 0x38) == 0x20)
456
        return 1;
457
 
458
      /* jump far, absolute indirect (/5) */
459
      if ((insn[1] & 0x38) == 0x28)
460
        return 1;
461
    }
462
 
463
  return 0;
464
}
465
 
466
static int
467
i386_absolute_call_p (const gdb_byte *insn)
468
{
469
  /* call far, absolute */
470
  if (insn[0] == 0x9a)
471
    return 1;
472
 
473
  if (insn[0] == 0xff)
474
    {
475
      /* Call near, absolute indirect (/2) */
476
      if ((insn[1] & 0x38) == 0x10)
477
        return 1;
478
 
479
      /* Call far, absolute indirect (/3) */
480
      if ((insn[1] & 0x38) == 0x18)
481
        return 1;
482
    }
483
 
484
  return 0;
485
}
486
 
487
static int
488
i386_ret_p (const gdb_byte *insn)
489
{
490
  switch (insn[0])
491
    {
492
    case 0xc2: /* ret near, pop N bytes */
493
    case 0xc3: /* ret near */
494
    case 0xca: /* ret far, pop N bytes */
495
    case 0xcb: /* ret far */
496
    case 0xcf: /* iret */
497
      return 1;
498
 
499
    default:
500
      return 0;
501
    }
502
}
503
 
504
static int
505
i386_call_p (const gdb_byte *insn)
506
{
507
  if (i386_absolute_call_p (insn))
508
    return 1;
509
 
510
  /* call near, relative */
511
  if (insn[0] == 0xe8)
512
    return 1;
513
 
514
  return 0;
515
}
516
 
517
/* Return non-zero if INSN is a system call, and set *LENGTHP to its
518
   length in bytes.  Otherwise, return zero.  */
519
 
520
static int
521
i386_syscall_p (const gdb_byte *insn, int *lengthp)
522
{
523
  if (insn[0] == 0xcd)
524
    {
525
      *lengthp = 2;
526
      return 1;
527
    }
528
 
529
  return 0;
530
}
531
 
532
/* Some kernels may run one past a syscall insn, so we have to cope.
533
   Otherwise this is just simple_displaced_step_copy_insn.  */
534
 
535
struct displaced_step_closure *
536
i386_displaced_step_copy_insn (struct gdbarch *gdbarch,
537
                               CORE_ADDR from, CORE_ADDR to,
538
                               struct regcache *regs)
539
{
540
  size_t len = gdbarch_max_insn_length (gdbarch);
541
  gdb_byte *buf = xmalloc (len);
542
 
543
  read_memory (from, buf, len);
544
 
545
  /* GDB may get control back after the insn after the syscall.
546
     Presumably this is a kernel bug.
547
     If this is a syscall, make sure there's a nop afterwards.  */
548
  {
549
    int syscall_length;
550
    gdb_byte *insn;
551
 
552
    insn = i386_skip_prefixes (buf, len);
553
    if (insn != NULL && i386_syscall_p (insn, &syscall_length))
554
      insn[syscall_length] = NOP_OPCODE;
555
  }
556
 
557
  write_memory (to, buf, len);
558
 
559
  if (debug_displaced)
560
    {
561
      fprintf_unfiltered (gdb_stdlog, "displaced: copy %s->%s: ",
562
                          paddress (gdbarch, from), paddress (gdbarch, to));
563
      displaced_step_dump_bytes (gdb_stdlog, buf, len);
564
    }
565
 
566
  return (struct displaced_step_closure *) buf;
567
}
568
 
569
/* Fix up the state of registers and memory after having single-stepped
570
   a displaced instruction.  */
571
 
572
void
573
i386_displaced_step_fixup (struct gdbarch *gdbarch,
574
                           struct displaced_step_closure *closure,
575
                           CORE_ADDR from, CORE_ADDR to,
576
                           struct regcache *regs)
577
{
578
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
579
 
580
  /* The offset we applied to the instruction's address.
581
     This could well be negative (when viewed as a signed 32-bit
582
     value), but ULONGEST won't reflect that, so take care when
583
     applying it.  */
584
  ULONGEST insn_offset = to - from;
585
 
586
  /* Since we use simple_displaced_step_copy_insn, our closure is a
587
     copy of the instruction.  */
588
  gdb_byte *insn = (gdb_byte *) closure;
589
  /* The start of the insn, needed in case we see some prefixes.  */
590
  gdb_byte *insn_start = insn;
591
 
592
  if (debug_displaced)
593
    fprintf_unfiltered (gdb_stdlog,
594
                        "displaced: fixup (%s, %s), "
595
                        "insn = 0x%02x 0x%02x ...\n",
596
                        paddress (gdbarch, from), paddress (gdbarch, to),
597
                        insn[0], insn[1]);
598
 
599
  /* The list of issues to contend with here is taken from
600
     resume_execution in arch/i386/kernel/kprobes.c, Linux 2.6.20.
601
     Yay for Free Software!  */
602
 
603
  /* Relocate the %eip, if necessary.  */
604
 
605
  /* The instruction recognizers we use assume any leading prefixes
606
     have been skipped.  */
607
  {
608
    /* This is the size of the buffer in closure.  */
609
    size_t max_insn_len = gdbarch_max_insn_length (gdbarch);
610
    gdb_byte *opcode = i386_skip_prefixes (insn, max_insn_len);
611
    /* If there are too many prefixes, just ignore the insn.
612
       It will fault when run.  */
613
    if (opcode != NULL)
614
      insn = opcode;
615
  }
616
 
617
  /* Except in the case of absolute or indirect jump or call
618
     instructions, or a return instruction, the new eip is relative to
619
     the displaced instruction; make it relative.  Well, signal
620
     handler returns don't need relocation either, but we use the
621
     value of %eip to recognize those; see below.  */
622
  if (! i386_absolute_jmp_p (insn)
623
      && ! i386_absolute_call_p (insn)
624
      && ! i386_ret_p (insn))
625
    {
626
      ULONGEST orig_eip;
627
      int insn_len;
628
 
629
      regcache_cooked_read_unsigned (regs, I386_EIP_REGNUM, &orig_eip);
630
 
631
      /* A signal trampoline system call changes the %eip, resuming
632
         execution of the main program after the signal handler has
633
         returned.  That makes them like 'return' instructions; we
634
         shouldn't relocate %eip.
635
 
636
         But most system calls don't, and we do need to relocate %eip.
637
 
638
         Our heuristic for distinguishing these cases: if stepping
639
         over the system call instruction left control directly after
640
         the instruction, the we relocate --- control almost certainly
641
         doesn't belong in the displaced copy.  Otherwise, we assume
642
         the instruction has put control where it belongs, and leave
643
         it unrelocated.  Goodness help us if there are PC-relative
644
         system calls.  */
645
      if (i386_syscall_p (insn, &insn_len)
646
          && orig_eip != to + (insn - insn_start) + insn_len
647
          /* GDB can get control back after the insn after the syscall.
648
             Presumably this is a kernel bug.
649
             i386_displaced_step_copy_insn ensures its a nop,
650
             we add one to the length for it.  */
651
          && orig_eip != to + (insn - insn_start) + insn_len + 1)
652
        {
653
          if (debug_displaced)
654
            fprintf_unfiltered (gdb_stdlog,
655
                                "displaced: syscall changed %%eip; "
656
                                "not relocating\n");
657
        }
658
      else
659
        {
660
          ULONGEST eip = (orig_eip - insn_offset) & 0xffffffffUL;
661
 
662
          /* If we just stepped over a breakpoint insn, we don't backup
663
             the pc on purpose; this is to match behaviour without
664
             stepping.  */
665
 
666
          regcache_cooked_write_unsigned (regs, I386_EIP_REGNUM, eip);
667
 
668
          if (debug_displaced)
669
            fprintf_unfiltered (gdb_stdlog,
670
                                "displaced: "
671
                                "relocated %%eip from %s to %s\n",
672
                                paddress (gdbarch, orig_eip),
673
                                paddress (gdbarch, eip));
674
        }
675
    }
676
 
677
  /* If the instruction was PUSHFL, then the TF bit will be set in the
678
     pushed value, and should be cleared.  We'll leave this for later,
679
     since GDB already messes up the TF flag when stepping over a
680
     pushfl.  */
681
 
682
  /* If the instruction was a call, the return address now atop the
683
     stack is the address following the copied instruction.  We need
684
     to make it the address following the original instruction.  */
685
  if (i386_call_p (insn))
686
    {
687
      ULONGEST esp;
688
      ULONGEST retaddr;
689
      const ULONGEST retaddr_len = 4;
690
 
691
      regcache_cooked_read_unsigned (regs, I386_ESP_REGNUM, &esp);
692
      retaddr = read_memory_unsigned_integer (esp, retaddr_len, byte_order);
693
      retaddr = (retaddr - insn_offset) & 0xffffffffUL;
694
      write_memory_unsigned_integer (esp, retaddr_len, byte_order, retaddr);
695
 
696
      if (debug_displaced)
697
        fprintf_unfiltered (gdb_stdlog,
698
                            "displaced: relocated return addr at %s to %s\n",
699
                            paddress (gdbarch, esp),
700
                            paddress (gdbarch, retaddr));
701
    }
702
}
703
 
704
static void
705
append_insns (CORE_ADDR *to, ULONGEST len, const gdb_byte *buf)
706
{
707
  target_write_memory (*to, buf, len);
708
  *to += len;
709
}
710
 
711
static void
712
i386_relocate_instruction (struct gdbarch *gdbarch,
713
                           CORE_ADDR *to, CORE_ADDR oldloc)
714
{
715
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
716
  gdb_byte buf[I386_MAX_INSN_LEN];
717
  int offset = 0, rel32, newrel;
718
  int insn_length;
719
  gdb_byte *insn = buf;
720
 
721
  read_memory (oldloc, buf, I386_MAX_INSN_LEN);
722
 
723
  insn_length = gdb_buffered_insn_length (gdbarch, insn,
724
                                          I386_MAX_INSN_LEN, oldloc);
725
 
726
  /* Get past the prefixes.  */
727
  insn = i386_skip_prefixes (insn, I386_MAX_INSN_LEN);
728
 
729
  /* Adjust calls with 32-bit relative addresses as push/jump, with
730
     the address pushed being the location where the original call in
731
     the user program would return to.  */
732
  if (insn[0] == 0xe8)
733
    {
734
      gdb_byte push_buf[16];
735
      unsigned int ret_addr;
736
 
737
      /* Where "ret" in the original code will return to.  */
738
      ret_addr = oldloc + insn_length;
739
      push_buf[0] = 0x68; /* pushq $... */
740
      memcpy (&push_buf[1], &ret_addr, 4);
741
      /* Push the push.  */
742
      append_insns (to, 5, push_buf);
743
 
744
      /* Convert the relative call to a relative jump.  */
745
      insn[0] = 0xe9;
746
 
747
      /* Adjust the destination offset.  */
748
      rel32 = extract_signed_integer (insn + 1, 4, byte_order);
749
      newrel = (oldloc - *to) + rel32;
750
      store_signed_integer (insn + 1, 4, newrel, byte_order);
751
 
752
      /* Write the adjusted jump into its displaced location.  */
753
      append_insns (to, 5, insn);
754
      return;
755
    }
756
 
757
  /* Adjust jumps with 32-bit relative addresses.  Calls are already
758
     handled above.  */
759
  if (insn[0] == 0xe9)
760
    offset = 1;
761
  /* Adjust conditional jumps.  */
762
  else if (insn[0] == 0x0f && (insn[1] & 0xf0) == 0x80)
763
    offset = 2;
764
 
765
  if (offset)
766
    {
767
      rel32 = extract_signed_integer (insn + offset, 4, byte_order);
768
      newrel = (oldloc - *to) + rel32;
769
      store_signed_integer (insn + offset, 4, newrel, byte_order);
770
      if (debug_displaced)
771
        fprintf_unfiltered (gdb_stdlog,
772
                            "Adjusted insn rel32=0x%s at 0x%s to"
773
                            " rel32=0x%s at 0x%s\n",
774
                            hex_string (rel32), paddress (gdbarch, oldloc),
775
                            hex_string (newrel), paddress (gdbarch, *to));
776
    }
777
 
778
  /* Write the adjusted instructions into their displaced
779
     location.  */
780
  append_insns (to, insn_length, buf);
781
}
782
 
783
 
784
#ifdef I386_REGNO_TO_SYMMETRY
785
#error "The Sequent Symmetry is no longer supported."
786
#endif
787
 
788
/* According to the System V ABI, the registers %ebp, %ebx, %edi, %esi
789
   and %esp "belong" to the calling function.  Therefore these
790
   registers should be saved if they're going to be modified.  */
791
 
792
/* The maximum number of saved registers.  This should include all
793
   registers mentioned above, and %eip.  */
794
#define I386_NUM_SAVED_REGS     I386_NUM_GREGS
795
 
796
struct i386_frame_cache
797
{
798
  /* Base address.  */
799
  CORE_ADDR base;
800
  LONGEST sp_offset;
801
  CORE_ADDR pc;
802
 
803
  /* Saved registers.  */
804
  CORE_ADDR saved_regs[I386_NUM_SAVED_REGS];
805
  CORE_ADDR saved_sp;
806
  int saved_sp_reg;
807
  int pc_in_eax;
808
 
809
  /* Stack space reserved for local variables.  */
810
  long locals;
811
};
812
 
813
/* Allocate and initialize a frame cache.  */
814
 
815
static struct i386_frame_cache *
816
i386_alloc_frame_cache (void)
817
{
818
  struct i386_frame_cache *cache;
819
  int i;
820
 
821
  cache = FRAME_OBSTACK_ZALLOC (struct i386_frame_cache);
822
 
823
  /* Base address.  */
824
  cache->base = 0;
825
  cache->sp_offset = -4;
826
  cache->pc = 0;
827
 
828
  /* Saved registers.  We initialize these to -1 since zero is a valid
829
     offset (that's where %ebp is supposed to be stored).  */
830
  for (i = 0; i < I386_NUM_SAVED_REGS; i++)
831
    cache->saved_regs[i] = -1;
832
  cache->saved_sp = 0;
833
  cache->saved_sp_reg = -1;
834
  cache->pc_in_eax = 0;
835
 
836
  /* Frameless until proven otherwise.  */
837
  cache->locals = -1;
838
 
839
  return cache;
840
}
841
 
842
/* If the instruction at PC is a jump, return the address of its
843
   target.  Otherwise, return PC.  */
844
 
845
static CORE_ADDR
846
i386_follow_jump (struct gdbarch *gdbarch, CORE_ADDR pc)
847
{
848
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
849
  gdb_byte op;
850
  long delta = 0;
851
  int data16 = 0;
852
 
853
  target_read_memory (pc, &op, 1);
854
  if (op == 0x66)
855
    {
856
      data16 = 1;
857
      op = read_memory_unsigned_integer (pc + 1, 1, byte_order);
858
    }
859
 
860
  switch (op)
861
    {
862
    case 0xe9:
863
      /* Relative jump: if data16 == 0, disp32, else disp16.  */
864
      if (data16)
865
        {
866
          delta = read_memory_integer (pc + 2, 2, byte_order);
867
 
868
          /* Include the size of the jmp instruction (including the
869
             0x66 prefix).  */
870
          delta += 4;
871
        }
872
      else
873
        {
874
          delta = read_memory_integer (pc + 1, 4, byte_order);
875
 
876
          /* Include the size of the jmp instruction.  */
877
          delta += 5;
878
        }
879
      break;
880
    case 0xeb:
881
      /* Relative jump, disp8 (ignore data16).  */
882
      delta = read_memory_integer (pc + data16 + 1, 1, byte_order);
883
 
884
      delta += data16 + 2;
885
      break;
886
    }
887
 
888
  return pc + delta;
889
}
890
 
891
/* Check whether PC points at a prologue for a function returning a
892
   structure or union.  If so, it updates CACHE and returns the
893
   address of the first instruction after the code sequence that
894
   removes the "hidden" argument from the stack or CURRENT_PC,
895
   whichever is smaller.  Otherwise, return PC.  */
896
 
897
static CORE_ADDR
898
i386_analyze_struct_return (CORE_ADDR pc, CORE_ADDR current_pc,
899
                            struct i386_frame_cache *cache)
900
{
901
  /* Functions that return a structure or union start with:
902
 
903
        popl %eax             0x58
904
        xchgl %eax, (%esp)    0x87 0x04 0x24
905
     or xchgl %eax, 0(%esp)   0x87 0x44 0x24 0x00
906
 
907
     (the System V compiler puts out the second `xchg' instruction,
908
     and the assembler doesn't try to optimize it, so the 'sib' form
909
     gets generated).  This sequence is used to get the address of the
910
     return buffer for a function that returns a structure.  */
911
  static gdb_byte proto1[3] = { 0x87, 0x04, 0x24 };
912
  static gdb_byte proto2[4] = { 0x87, 0x44, 0x24, 0x00 };
913
  gdb_byte buf[4];
914
  gdb_byte op;
915
 
916
  if (current_pc <= pc)
917
    return pc;
918
 
919
  target_read_memory (pc, &op, 1);
920
 
921
  if (op != 0x58)               /* popl %eax */
922
    return pc;
923
 
924
  target_read_memory (pc + 1, buf, 4);
925
  if (memcmp (buf, proto1, 3) != 0 && memcmp (buf, proto2, 4) != 0)
926
    return pc;
927
 
928
  if (current_pc == pc)
929
    {
930
      cache->sp_offset += 4;
931
      return current_pc;
932
    }
933
 
934
  if (current_pc == pc + 1)
935
    {
936
      cache->pc_in_eax = 1;
937
      return current_pc;
938
    }
939
 
940
  if (buf[1] == proto1[1])
941
    return pc + 4;
942
  else
943
    return pc + 5;
944
}
945
 
946
static CORE_ADDR
947
i386_skip_probe (CORE_ADDR pc)
948
{
949
  /* A function may start with
950
 
951
        pushl constant
952
        call _probe
953
        addl $4, %esp
954
 
955
     followed by
956
 
957
        pushl %ebp
958
 
959
     etc.  */
960
  gdb_byte buf[8];
961
  gdb_byte op;
962
 
963
  target_read_memory (pc, &op, 1);
964
 
965
  if (op == 0x68 || op == 0x6a)
966
    {
967
      int delta;
968
 
969
      /* Skip past the `pushl' instruction; it has either a one-byte or a
970
         four-byte operand, depending on the opcode.  */
971
      if (op == 0x68)
972
        delta = 5;
973
      else
974
        delta = 2;
975
 
976
      /* Read the following 8 bytes, which should be `call _probe' (6
977
         bytes) followed by `addl $4,%esp' (2 bytes).  */
978
      read_memory (pc + delta, buf, sizeof (buf));
979
      if (buf[0] == 0xe8 && buf[6] == 0xc4 && buf[7] == 0x4)
980
        pc += delta + sizeof (buf);
981
    }
982
 
983
  return pc;
984
}
985
 
986
/* GCC 4.1 and later, can put code in the prologue to realign the
987
   stack pointer.  Check whether PC points to such code, and update
988
   CACHE accordingly.  Return the first instruction after the code
989
   sequence or CURRENT_PC, whichever is smaller.  If we don't
990
   recognize the code, return PC.  */
991
 
992
static CORE_ADDR
993
i386_analyze_stack_align (CORE_ADDR pc, CORE_ADDR current_pc,
994
                          struct i386_frame_cache *cache)
995
{
996
  /* There are 2 code sequences to re-align stack before the frame
997
     gets set up:
998
 
999
        1. Use a caller-saved saved register:
1000
 
1001
                leal  4(%esp), %reg
1002
                andl  $-XXX, %esp
1003
                pushl -4(%reg)
1004
 
1005
        2. Use a callee-saved saved register:
1006
 
1007
                pushl %reg
1008
                leal  8(%esp), %reg
1009
                andl  $-XXX, %esp
1010
                pushl -4(%reg)
1011
 
1012
     "andl $-XXX, %esp" can be either 3 bytes or 6 bytes:
1013
 
1014
        0x83 0xe4 0xf0                  andl $-16, %esp
1015
        0x81 0xe4 0x00 0xff 0xff 0xff   andl $-256, %esp
1016
   */
1017
 
1018
  gdb_byte buf[14];
1019
  int reg;
1020
  int offset, offset_and;
1021
  static int regnums[8] = {
1022
    I386_EAX_REGNUM,            /* %eax */
1023
    I386_ECX_REGNUM,            /* %ecx */
1024
    I386_EDX_REGNUM,            /* %edx */
1025
    I386_EBX_REGNUM,            /* %ebx */
1026
    I386_ESP_REGNUM,            /* %esp */
1027
    I386_EBP_REGNUM,            /* %ebp */
1028
    I386_ESI_REGNUM,            /* %esi */
1029
    I386_EDI_REGNUM             /* %edi */
1030
  };
1031
 
1032
  if (target_read_memory (pc, buf, sizeof buf))
1033
    return pc;
1034
 
1035
  /* Check caller-saved saved register.  The first instruction has
1036
     to be "leal 4(%esp), %reg".  */
1037
  if (buf[0] == 0x8d && buf[2] == 0x24 && buf[3] == 0x4)
1038
    {
1039
      /* MOD must be binary 10 and R/M must be binary 100.  */
1040
      if ((buf[1] & 0xc7) != 0x44)
1041
        return pc;
1042
 
1043
      /* REG has register number.  */
1044
      reg = (buf[1] >> 3) & 7;
1045
      offset = 4;
1046
    }
1047
  else
1048
    {
1049
      /* Check callee-saved saved register.  The first instruction
1050
         has to be "pushl %reg".  */
1051
      if ((buf[0] & 0xf8) != 0x50)
1052
        return pc;
1053
 
1054
      /* Get register.  */
1055
      reg = buf[0] & 0x7;
1056
 
1057
      /* The next instruction has to be "leal 8(%esp), %reg".  */
1058
      if (buf[1] != 0x8d || buf[3] != 0x24 || buf[4] != 0x8)
1059
        return pc;
1060
 
1061
      /* MOD must be binary 10 and R/M must be binary 100.  */
1062
      if ((buf[2] & 0xc7) != 0x44)
1063
        return pc;
1064
 
1065
      /* REG has register number.  Registers in pushl and leal have to
1066
         be the same.  */
1067
      if (reg != ((buf[2] >> 3) & 7))
1068
        return pc;
1069
 
1070
      offset = 5;
1071
    }
1072
 
1073
  /* Rigister can't be %esp nor %ebp.  */
1074
  if (reg == 4 || reg == 5)
1075
    return pc;
1076
 
1077
  /* The next instruction has to be "andl $-XXX, %esp".  */
1078
  if (buf[offset + 1] != 0xe4
1079
      || (buf[offset] != 0x81 && buf[offset] != 0x83))
1080
    return pc;
1081
 
1082
  offset_and = offset;
1083
  offset += buf[offset] == 0x81 ? 6 : 3;
1084
 
1085
  /* The next instruction has to be "pushl -4(%reg)".  8bit -4 is
1086
     0xfc.  REG must be binary 110 and MOD must be binary 01.  */
1087
  if (buf[offset] != 0xff
1088
      || buf[offset + 2] != 0xfc
1089
      || (buf[offset + 1] & 0xf8) != 0x70)
1090
    return pc;
1091
 
1092
  /* R/M has register.  Registers in leal and pushl have to be the
1093
     same.  */
1094
  if (reg != (buf[offset + 1] & 7))
1095
    return pc;
1096
 
1097
  if (current_pc > pc + offset_and)
1098
    cache->saved_sp_reg = regnums[reg];
1099
 
1100
  return min (pc + offset + 3, current_pc);
1101
}
1102
 
1103
/* Maximum instruction length we need to handle.  */
1104
#define I386_MAX_MATCHED_INSN_LEN       6
1105
 
1106
/* Instruction description.  */
1107
struct i386_insn
1108
{
1109
  size_t len;
1110
  gdb_byte insn[I386_MAX_MATCHED_INSN_LEN];
1111
  gdb_byte mask[I386_MAX_MATCHED_INSN_LEN];
1112
};
1113
 
1114
/* Search for the instruction at PC in the list SKIP_INSNS.  Return
1115
   the first instruction description that matches.  Otherwise, return
1116
   NULL.  */
1117
 
1118
static struct i386_insn *
1119
i386_match_insn (CORE_ADDR pc, struct i386_insn *skip_insns)
1120
{
1121
  struct i386_insn *insn;
1122
  gdb_byte op;
1123
 
1124
  target_read_memory (pc, &op, 1);
1125
 
1126
  for (insn = skip_insns; insn->len > 0; insn++)
1127
    {
1128
      if ((op & insn->mask[0]) == insn->insn[0])
1129
        {
1130
          gdb_byte buf[I386_MAX_MATCHED_INSN_LEN - 1];
1131
          int insn_matched = 1;
1132
          size_t i;
1133
 
1134
          gdb_assert (insn->len > 1);
1135
          gdb_assert (insn->len <= I386_MAX_MATCHED_INSN_LEN);
1136
 
1137
          target_read_memory (pc + 1, buf, insn->len - 1);
1138
          for (i = 1; i < insn->len; i++)
1139
            {
1140
              if ((buf[i - 1] & insn->mask[i]) != insn->insn[i])
1141
                insn_matched = 0;
1142
            }
1143
 
1144
          if (insn_matched)
1145
            return insn;
1146
        }
1147
    }
1148
 
1149
  return NULL;
1150
}
1151
 
1152
/* Some special instructions that might be migrated by GCC into the
1153
   part of the prologue that sets up the new stack frame.  Because the
1154
   stack frame hasn't been setup yet, no registers have been saved
1155
   yet, and only the scratch registers %eax, %ecx and %edx can be
1156
   touched.  */
1157
 
1158
struct i386_insn i386_frame_setup_skip_insns[] =
1159
{
1160
  /* Check for `movb imm8, r' and `movl imm32, r'.
1161
 
1162
     ??? Should we handle 16-bit operand-sizes here?  */
1163
 
1164
  /* `movb imm8, %al' and `movb imm8, %ah' */
1165
  /* `movb imm8, %cl' and `movb imm8, %ch' */
1166
  { 2, { 0xb0, 0x00 }, { 0xfa, 0x00 } },
1167
  /* `movb imm8, %dl' and `movb imm8, %dh' */
1168
  { 2, { 0xb2, 0x00 }, { 0xfb, 0x00 } },
1169
  /* `movl imm32, %eax' and `movl imm32, %ecx' */
1170
  { 5, { 0xb8 }, { 0xfe } },
1171
  /* `movl imm32, %edx' */
1172
  { 5, { 0xba }, { 0xff } },
1173
 
1174
  /* Check for `mov imm32, r32'.  Note that there is an alternative
1175
     encoding for `mov m32, %eax'.
1176
 
1177
     ??? Should we handle SIB adressing here?
1178
     ??? Should we handle 16-bit operand-sizes here?  */
1179
 
1180
  /* `movl m32, %eax' */
1181
  { 5, { 0xa1 }, { 0xff } },
1182
  /* `movl m32, %eax' and `mov; m32, %ecx' */
1183
  { 6, { 0x89, 0x05 }, {0xff, 0xf7 } },
1184
  /* `movl m32, %edx' */
1185
  { 6, { 0x89, 0x15 }, {0xff, 0xff } },
1186
 
1187
  /* Check for `xorl r32, r32' and the equivalent `subl r32, r32'.
1188
     Because of the symmetry, there are actually two ways to encode
1189
     these instructions; opcode bytes 0x29 and 0x2b for `subl' and
1190
     opcode bytes 0x31 and 0x33 for `xorl'.  */
1191
 
1192
  /* `subl %eax, %eax' */
1193
  { 2, { 0x29, 0xc0 }, { 0xfd, 0xff } },
1194
  /* `subl %ecx, %ecx' */
1195
  { 2, { 0x29, 0xc9 }, { 0xfd, 0xff } },
1196
  /* `subl %edx, %edx' */
1197
  { 2, { 0x29, 0xd2 }, { 0xfd, 0xff } },
1198
  /* `xorl %eax, %eax' */
1199
  { 2, { 0x31, 0xc0 }, { 0xfd, 0xff } },
1200
  /* `xorl %ecx, %ecx' */
1201
  { 2, { 0x31, 0xc9 }, { 0xfd, 0xff } },
1202
  /* `xorl %edx, %edx' */
1203
  { 2, { 0x31, 0xd2 }, { 0xfd, 0xff } },
1204
  { 0 }
1205
};
1206
 
1207
 
1208
/* Check whether PC points to a no-op instruction.  */
1209
static CORE_ADDR
1210
i386_skip_noop (CORE_ADDR pc)
1211
{
1212
  gdb_byte op;
1213
  int check = 1;
1214
 
1215
  target_read_memory (pc, &op, 1);
1216
 
1217
  while (check)
1218
    {
1219
      check = 0;
1220
      /* Ignore `nop' instruction.  */
1221
      if (op == 0x90)
1222
        {
1223
          pc += 1;
1224
          target_read_memory (pc, &op, 1);
1225
          check = 1;
1226
        }
1227
      /* Ignore no-op instruction `mov %edi, %edi'.
1228
         Microsoft system dlls often start with
1229
         a `mov %edi,%edi' instruction.
1230
         The 5 bytes before the function start are
1231
         filled with `nop' instructions.
1232
         This pattern can be used for hot-patching:
1233
         The `mov %edi, %edi' instruction can be replaced by a
1234
         near jump to the location of the 5 `nop' instructions
1235
         which can be replaced by a 32-bit jump to anywhere
1236
         in the 32-bit address space.  */
1237
 
1238
      else if (op == 0x8b)
1239
        {
1240
          target_read_memory (pc + 1, &op, 1);
1241
          if (op == 0xff)
1242
            {
1243
              pc += 2;
1244
              target_read_memory (pc, &op, 1);
1245
              check = 1;
1246
            }
1247
        }
1248
    }
1249
  return pc;
1250
}
1251
 
1252
/* Check whether PC points at a code that sets up a new stack frame.
1253
   If so, it updates CACHE and returns the address of the first
1254
   instruction after the sequence that sets up the frame or LIMIT,
1255
   whichever is smaller.  If we don't recognize the code, return PC.  */
1256
 
1257
static CORE_ADDR
1258
i386_analyze_frame_setup (struct gdbarch *gdbarch,
1259
                          CORE_ADDR pc, CORE_ADDR limit,
1260
                          struct i386_frame_cache *cache)
1261
{
1262
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1263
  struct i386_insn *insn;
1264
  gdb_byte op;
1265
  int skip = 0;
1266
 
1267
  if (limit <= pc)
1268
    return limit;
1269
 
1270
  target_read_memory (pc, &op, 1);
1271
 
1272
  if (op == 0x55)               /* pushl %ebp */
1273
    {
1274
      /* Take into account that we've executed the `pushl %ebp' that
1275
         starts this instruction sequence.  */
1276
      cache->saved_regs[I386_EBP_REGNUM] = 0;
1277
      cache->sp_offset += 4;
1278
      pc++;
1279
 
1280
      /* If that's all, return now.  */
1281
      if (limit <= pc)
1282
        return limit;
1283
 
1284
      /* Check for some special instructions that might be migrated by
1285
         GCC into the prologue and skip them.  At this point in the
1286
         prologue, code should only touch the scratch registers %eax,
1287
         %ecx and %edx, so while the number of posibilities is sheer,
1288
         it is limited.
1289
 
1290
         Make sure we only skip these instructions if we later see the
1291
         `movl %esp, %ebp' that actually sets up the frame.  */
1292
      while (pc + skip < limit)
1293
        {
1294
          insn = i386_match_insn (pc + skip, i386_frame_setup_skip_insns);
1295
          if (insn == NULL)
1296
            break;
1297
 
1298
          skip += insn->len;
1299
        }
1300
 
1301
      /* If that's all, return now.  */
1302
      if (limit <= pc + skip)
1303
        return limit;
1304
 
1305
      target_read_memory (pc + skip, &op, 1);
1306
 
1307
      /* Check for `movl %esp, %ebp' -- can be written in two ways.  */
1308
      switch (op)
1309
        {
1310
        case 0x8b:
1311
          if (read_memory_unsigned_integer (pc + skip + 1, 1, byte_order)
1312
              != 0xec)
1313
            return pc;
1314
          break;
1315
        case 0x89:
1316
          if (read_memory_unsigned_integer (pc + skip + 1, 1, byte_order)
1317
              != 0xe5)
1318
            return pc;
1319
          break;
1320
        default:
1321
          return pc;
1322
        }
1323
 
1324
      /* OK, we actually have a frame.  We just don't know how large
1325
         it is yet.  Set its size to zero.  We'll adjust it if
1326
         necessary.  We also now commit to skipping the special
1327
         instructions mentioned before.  */
1328
      cache->locals = 0;
1329
      pc += (skip + 2);
1330
 
1331
      /* If that's all, return now.  */
1332
      if (limit <= pc)
1333
        return limit;
1334
 
1335
      /* Check for stack adjustment
1336
 
1337
            subl $XXX, %esp
1338
 
1339
         NOTE: You can't subtract a 16-bit immediate from a 32-bit
1340
         reg, so we don't have to worry about a data16 prefix.  */
1341
      target_read_memory (pc, &op, 1);
1342
      if (op == 0x83)
1343
        {
1344
          /* `subl' with 8-bit immediate.  */
1345
          if (read_memory_unsigned_integer (pc + 1, 1, byte_order) != 0xec)
1346
            /* Some instruction starting with 0x83 other than `subl'.  */
1347
            return pc;
1348
 
1349
          /* `subl' with signed 8-bit immediate (though it wouldn't
1350
             make sense to be negative).  */
1351
          cache->locals = read_memory_integer (pc + 2, 1, byte_order);
1352
          return pc + 3;
1353
        }
1354
      else if (op == 0x81)
1355
        {
1356
          /* Maybe it is `subl' with a 32-bit immediate.  */
1357
          if (read_memory_unsigned_integer (pc + 1, 1, byte_order) != 0xec)
1358
            /* Some instruction starting with 0x81 other than `subl'.  */
1359
            return pc;
1360
 
1361
          /* It is `subl' with a 32-bit immediate.  */
1362
          cache->locals = read_memory_integer (pc + 2, 4, byte_order);
1363
          return pc + 6;
1364
        }
1365
      else
1366
        {
1367
          /* Some instruction other than `subl'.  */
1368
          return pc;
1369
        }
1370
    }
1371
  else if (op == 0xc8)          /* enter */
1372
    {
1373
      cache->locals = read_memory_unsigned_integer (pc + 1, 2, byte_order);
1374
      return pc + 4;
1375
    }
1376
 
1377
  return pc;
1378
}
1379
 
1380
/* Check whether PC points at code that saves registers on the stack.
1381
   If so, it updates CACHE and returns the address of the first
1382
   instruction after the register saves or CURRENT_PC, whichever is
1383
   smaller.  Otherwise, return PC.  */
1384
 
1385
static CORE_ADDR
1386
i386_analyze_register_saves (CORE_ADDR pc, CORE_ADDR current_pc,
1387
                             struct i386_frame_cache *cache)
1388
{
1389
  CORE_ADDR offset = 0;
1390
  gdb_byte op;
1391
  int i;
1392
 
1393
  if (cache->locals > 0)
1394
    offset -= cache->locals;
1395
  for (i = 0; i < 8 && pc < current_pc; i++)
1396
    {
1397
      target_read_memory (pc, &op, 1);
1398
      if (op < 0x50 || op > 0x57)
1399
        break;
1400
 
1401
      offset -= 4;
1402
      cache->saved_regs[op - 0x50] = offset;
1403
      cache->sp_offset += 4;
1404
      pc++;
1405
    }
1406
 
1407
  return pc;
1408
}
1409
 
1410
/* Do a full analysis of the prologue at PC and update CACHE
1411
   accordingly.  Bail out early if CURRENT_PC is reached.  Return the
1412
   address where the analysis stopped.
1413
 
1414
   We handle these cases:
1415
 
1416
   The startup sequence can be at the start of the function, or the
1417
   function can start with a branch to startup code at the end.
1418
 
1419
   %ebp can be set up with either the 'enter' instruction, or "pushl
1420
   %ebp, movl %esp, %ebp" (`enter' is too slow to be useful, but was
1421
   once used in the System V compiler).
1422
 
1423
   Local space is allocated just below the saved %ebp by either the
1424
   'enter' instruction, or by "subl $<size>, %esp".  'enter' has a
1425
   16-bit unsigned argument for space to allocate, and the 'addl'
1426
   instruction could have either a signed byte, or 32-bit immediate.
1427
 
1428
   Next, the registers used by this function are pushed.  With the
1429
   System V compiler they will always be in the order: %edi, %esi,
1430
   %ebx (and sometimes a harmless bug causes it to also save but not
1431
   restore %eax); however, the code below is willing to see the pushes
1432
   in any order, and will handle up to 8 of them.
1433
 
1434
   If the setup sequence is at the end of the function, then the next
1435
   instruction will be a branch back to the start.  */
1436
 
1437
static CORE_ADDR
1438
i386_analyze_prologue (struct gdbarch *gdbarch,
1439
                       CORE_ADDR pc, CORE_ADDR current_pc,
1440
                       struct i386_frame_cache *cache)
1441
{
1442
  pc = i386_skip_noop (pc);
1443
  pc = i386_follow_jump (gdbarch, pc);
1444
  pc = i386_analyze_struct_return (pc, current_pc, cache);
1445
  pc = i386_skip_probe (pc);
1446
  pc = i386_analyze_stack_align (pc, current_pc, cache);
1447
  pc = i386_analyze_frame_setup (gdbarch, pc, current_pc, cache);
1448
  return i386_analyze_register_saves (pc, current_pc, cache);
1449
}
1450
 
1451
/* Return PC of first real instruction.  */
1452
 
1453
static CORE_ADDR
1454
i386_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
1455
{
1456
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1457
 
1458
  static gdb_byte pic_pat[6] =
1459
  {
1460
    0xe8, 0, 0, 0, 0,               /* call 0x0 */
1461
    0x5b,                       /* popl %ebx */
1462
  };
1463
  struct i386_frame_cache cache;
1464
  CORE_ADDR pc;
1465
  gdb_byte op;
1466
  int i;
1467
 
1468
  cache.locals = -1;
1469
  pc = i386_analyze_prologue (gdbarch, start_pc, 0xffffffff, &cache);
1470
  if (cache.locals < 0)
1471
    return start_pc;
1472
 
1473
  /* Found valid frame setup.  */
1474
 
1475
  /* The native cc on SVR4 in -K PIC mode inserts the following code
1476
     to get the address of the global offset table (GOT) into register
1477
     %ebx:
1478
 
1479
        call    0x0
1480
        popl    %ebx
1481
        movl    %ebx,x(%ebp)    (optional)
1482
        addl    y,%ebx
1483
 
1484
     This code is with the rest of the prologue (at the end of the
1485
     function), so we have to skip it to get to the first real
1486
     instruction at the start of the function.  */
1487
 
1488
  for (i = 0; i < 6; i++)
1489
    {
1490
      target_read_memory (pc + i, &op, 1);
1491
      if (pic_pat[i] != op)
1492
        break;
1493
    }
1494
  if (i == 6)
1495
    {
1496
      int delta = 6;
1497
 
1498
      target_read_memory (pc + delta, &op, 1);
1499
 
1500
      if (op == 0x89)           /* movl %ebx, x(%ebp) */
1501
        {
1502
          op = read_memory_unsigned_integer (pc + delta + 1, 1, byte_order);
1503
 
1504
          if (op == 0x5d)       /* One byte offset from %ebp.  */
1505
            delta += 3;
1506
          else if (op == 0x9d)  /* Four byte offset from %ebp.  */
1507
            delta += 6;
1508
          else                  /* Unexpected instruction.  */
1509
            delta = 0;
1510
 
1511
          target_read_memory (pc + delta, &op, 1);
1512
        }
1513
 
1514
      /* addl y,%ebx */
1515
      if (delta > 0 && op == 0x81
1516
          && read_memory_unsigned_integer (pc + delta + 1, 1, byte_order)
1517
             == 0xc3)
1518
        {
1519
          pc += delta + 6;
1520
        }
1521
    }
1522
 
1523
  /* If the function starts with a branch (to startup code at the end)
1524
     the last instruction should bring us back to the first
1525
     instruction of the real code.  */
1526
  if (i386_follow_jump (gdbarch, start_pc) != start_pc)
1527
    pc = i386_follow_jump (gdbarch, pc);
1528
 
1529
  return pc;
1530
}
1531
 
1532
/* Check that the code pointed to by PC corresponds to a call to
1533
   __main, skip it if so.  Return PC otherwise.  */
1534
 
1535
CORE_ADDR
1536
i386_skip_main_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
1537
{
1538
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1539
  gdb_byte op;
1540
 
1541
  target_read_memory (pc, &op, 1);
1542
  if (op == 0xe8)
1543
    {
1544
      gdb_byte buf[4];
1545
 
1546
      if (target_read_memory (pc + 1, buf, sizeof buf) == 0)
1547
        {
1548
          /* Make sure address is computed correctly as a 32bit
1549
             integer even if CORE_ADDR is 64 bit wide.  */
1550
          struct minimal_symbol *s;
1551
          CORE_ADDR call_dest;
1552
 
1553
          call_dest = pc + 5 + extract_signed_integer (buf, 4, byte_order);
1554
          call_dest = call_dest & 0xffffffffU;
1555
          s = lookup_minimal_symbol_by_pc (call_dest);
1556
          if (s != NULL
1557
              && SYMBOL_LINKAGE_NAME (s) != NULL
1558
              && strcmp (SYMBOL_LINKAGE_NAME (s), "__main") == 0)
1559
            pc += 5;
1560
        }
1561
    }
1562
 
1563
  return pc;
1564
}
1565
 
1566
/* This function is 64-bit safe.  */
1567
 
1568
static CORE_ADDR
1569
i386_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1570
{
1571
  gdb_byte buf[8];
1572
 
1573
  frame_unwind_register (next_frame, gdbarch_pc_regnum (gdbarch), buf);
1574
  return extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
1575
}
1576
 
1577
 
1578
/* Normal frames.  */
1579
 
1580
static struct i386_frame_cache *
1581
i386_frame_cache (struct frame_info *this_frame, void **this_cache)
1582
{
1583
  struct gdbarch *gdbarch = get_frame_arch (this_frame);
1584
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1585
  struct i386_frame_cache *cache;
1586
  gdb_byte buf[4];
1587
  int i;
1588
 
1589
  if (*this_cache)
1590
    return *this_cache;
1591
 
1592
  cache = i386_alloc_frame_cache ();
1593
  *this_cache = cache;
1594
 
1595
  /* In principle, for normal frames, %ebp holds the frame pointer,
1596
     which holds the base address for the current stack frame.
1597
     However, for functions that don't need it, the frame pointer is
1598
     optional.  For these "frameless" functions the frame pointer is
1599
     actually the frame pointer of the calling frame.  Signal
1600
     trampolines are just a special case of a "frameless" function.
1601
     They (usually) share their frame pointer with the frame that was
1602
     in progress when the signal occurred.  */
1603
 
1604
  get_frame_register (this_frame, I386_EBP_REGNUM, buf);
1605
  cache->base = extract_unsigned_integer (buf, 4, byte_order);
1606
  if (cache->base == 0)
1607
    return cache;
1608
 
1609
  /* For normal frames, %eip is stored at 4(%ebp).  */
1610
  cache->saved_regs[I386_EIP_REGNUM] = 4;
1611
 
1612
  cache->pc = get_frame_func (this_frame);
1613
  if (cache->pc != 0)
1614
    i386_analyze_prologue (gdbarch, cache->pc, get_frame_pc (this_frame),
1615
                           cache);
1616
 
1617
  if (cache->saved_sp_reg != -1)
1618
    {
1619
      /* Saved stack pointer has been saved.  */
1620
      get_frame_register (this_frame, cache->saved_sp_reg, buf);
1621
      cache->saved_sp = extract_unsigned_integer (buf, 4, byte_order);
1622
    }
1623
 
1624
  if (cache->locals < 0)
1625
    {
1626
      /* We didn't find a valid frame, which means that CACHE->base
1627
         currently holds the frame pointer for our calling frame.  If
1628
         we're at the start of a function, or somewhere half-way its
1629
         prologue, the function's frame probably hasn't been fully
1630
         setup yet.  Try to reconstruct the base address for the stack
1631
         frame by looking at the stack pointer.  For truly "frameless"
1632
         functions this might work too.  */
1633
 
1634
      if (cache->saved_sp_reg != -1)
1635
        {
1636
          /* We're halfway aligning the stack.  */
1637
          cache->base = ((cache->saved_sp - 4) & 0xfffffff0) - 4;
1638
          cache->saved_regs[I386_EIP_REGNUM] = cache->saved_sp - 4;
1639
 
1640
          /* This will be added back below.  */
1641
          cache->saved_regs[I386_EIP_REGNUM] -= cache->base;
1642
        }
1643
      else if (cache->pc != 0
1644
               || target_read_memory (get_frame_pc (this_frame), buf, 1))
1645
        {
1646
          /* We're in a known function, but did not find a frame
1647
             setup.  Assume that the function does not use %ebp.
1648
             Alternatively, we may have jumped to an invalid
1649
             address; in that case there is definitely no new
1650
             frame in %ebp.  */
1651
          get_frame_register (this_frame, I386_ESP_REGNUM, buf);
1652
          cache->base = extract_unsigned_integer (buf, 4, byte_order)
1653
                        + cache->sp_offset;
1654
        }
1655
      else
1656
        /* We're in an unknown function.  We could not find the start
1657
           of the function to analyze the prologue; our best option is
1658
           to assume a typical frame layout with the caller's %ebp
1659
           saved.  */
1660
        cache->saved_regs[I386_EBP_REGNUM] = 0;
1661
    }
1662
 
1663
  /* Now that we have the base address for the stack frame we can
1664
     calculate the value of %esp in the calling frame.  */
1665
  if (cache->saved_sp == 0)
1666
    cache->saved_sp = cache->base + 8;
1667
 
1668
  /* Adjust all the saved registers such that they contain addresses
1669
     instead of offsets.  */
1670
  for (i = 0; i < I386_NUM_SAVED_REGS; i++)
1671
    if (cache->saved_regs[i] != -1)
1672
      cache->saved_regs[i] += cache->base;
1673
 
1674
  return cache;
1675
}
1676
 
1677
static void
1678
i386_frame_this_id (struct frame_info *this_frame, void **this_cache,
1679
                    struct frame_id *this_id)
1680
{
1681
  struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
1682
 
1683
  /* This marks the outermost frame.  */
1684
  if (cache->base == 0)
1685
    return;
1686
 
1687
  /* See the end of i386_push_dummy_call.  */
1688
  (*this_id) = frame_id_build (cache->base + 8, cache->pc);
1689
}
1690
 
1691
static struct value *
1692
i386_frame_prev_register (struct frame_info *this_frame, void **this_cache,
1693
                          int regnum)
1694
{
1695
  struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
1696
 
1697
  gdb_assert (regnum >= 0);
1698
 
1699
  /* The System V ABI says that:
1700
 
1701
     "The flags register contains the system flags, such as the
1702
     direction flag and the carry flag.  The direction flag must be
1703
     set to the forward (that is, zero) direction before entry and
1704
     upon exit from a function.  Other user flags have no specified
1705
     role in the standard calling sequence and are not preserved."
1706
 
1707
     To guarantee the "upon exit" part of that statement we fake a
1708
     saved flags register that has its direction flag cleared.
1709
 
1710
     Note that GCC doesn't seem to rely on the fact that the direction
1711
     flag is cleared after a function return; it always explicitly
1712
     clears the flag before operations where it matters.
1713
 
1714
     FIXME: kettenis/20030316: I'm not quite sure whether this is the
1715
     right thing to do.  The way we fake the flags register here makes
1716
     it impossible to change it.  */
1717
 
1718
  if (regnum == I386_EFLAGS_REGNUM)
1719
    {
1720
      ULONGEST val;
1721
 
1722
      val = get_frame_register_unsigned (this_frame, regnum);
1723
      val &= ~(1 << 10);
1724
      return frame_unwind_got_constant (this_frame, regnum, val);
1725
    }
1726
 
1727
  if (regnum == I386_EIP_REGNUM && cache->pc_in_eax)
1728
    return frame_unwind_got_register (this_frame, regnum, I386_EAX_REGNUM);
1729
 
1730
  if (regnum == I386_ESP_REGNUM && cache->saved_sp)
1731
    return frame_unwind_got_constant (this_frame, regnum, cache->saved_sp);
1732
 
1733
  if (regnum < I386_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1)
1734
    return frame_unwind_got_memory (this_frame, regnum,
1735
                                    cache->saved_regs[regnum]);
1736
 
1737
  return frame_unwind_got_register (this_frame, regnum, regnum);
1738
}
1739
 
1740
static const struct frame_unwind i386_frame_unwind =
1741
{
1742
  NORMAL_FRAME,
1743
  i386_frame_this_id,
1744
  i386_frame_prev_register,
1745
  NULL,
1746
  default_frame_sniffer
1747
};
1748
 
1749
/* Normal frames, but in a function epilogue.  */
1750
 
1751
/* The epilogue is defined here as the 'ret' instruction, which will
1752
   follow any instruction such as 'leave' or 'pop %ebp' that destroys
1753
   the function's stack frame.  */
1754
 
1755
static int
1756
i386_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
1757
{
1758
  gdb_byte insn;
1759
 
1760
  if (target_read_memory (pc, &insn, 1))
1761
    return 0;    /* Can't read memory at pc.  */
1762
 
1763
  if (insn != 0xc3)     /* 'ret' instruction.  */
1764
    return 0;
1765
 
1766
  return 1;
1767
}
1768
 
1769
static int
1770
i386_epilogue_frame_sniffer (const struct frame_unwind *self,
1771
                             struct frame_info *this_frame,
1772
                             void **this_prologue_cache)
1773
{
1774
  if (frame_relative_level (this_frame) == 0)
1775
    return i386_in_function_epilogue_p (get_frame_arch (this_frame),
1776
                                        get_frame_pc (this_frame));
1777
  else
1778
    return 0;
1779
}
1780
 
1781
static struct i386_frame_cache *
1782
i386_epilogue_frame_cache (struct frame_info *this_frame, void **this_cache)
1783
{
1784
  struct gdbarch *gdbarch = get_frame_arch (this_frame);
1785
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1786
  struct i386_frame_cache *cache;
1787
  gdb_byte buf[4];
1788
 
1789
  if (*this_cache)
1790
    return *this_cache;
1791
 
1792
  cache = i386_alloc_frame_cache ();
1793
  *this_cache = cache;
1794
 
1795
  /* Cache base will be %esp plus cache->sp_offset (-4).  */
1796
  get_frame_register (this_frame, I386_ESP_REGNUM, buf);
1797
  cache->base = extract_unsigned_integer (buf, 4,
1798
                                          byte_order) + cache->sp_offset;
1799
 
1800
  /* Cache pc will be the frame func.  */
1801
  cache->pc = get_frame_pc (this_frame);
1802
 
1803
  /* The saved %esp will be at cache->base plus 8.  */
1804
  cache->saved_sp = cache->base + 8;
1805
 
1806
  /* The saved %eip will be at cache->base plus 4.  */
1807
  cache->saved_regs[I386_EIP_REGNUM] = cache->base + 4;
1808
 
1809
  return cache;
1810
}
1811
 
1812
static void
1813
i386_epilogue_frame_this_id (struct frame_info *this_frame,
1814
                             void **this_cache,
1815
                             struct frame_id *this_id)
1816
{
1817
  struct i386_frame_cache *cache = i386_epilogue_frame_cache (this_frame,
1818
                                                              this_cache);
1819
 
1820
  (*this_id) = frame_id_build (cache->base + 8, cache->pc);
1821
}
1822
 
1823
static const struct frame_unwind i386_epilogue_frame_unwind =
1824
{
1825
  NORMAL_FRAME,
1826
  i386_epilogue_frame_this_id,
1827
  i386_frame_prev_register,
1828
  NULL,
1829
  i386_epilogue_frame_sniffer
1830
};
1831
 
1832
 
1833
/* Signal trampolines.  */
1834
 
1835
static struct i386_frame_cache *
1836
i386_sigtramp_frame_cache (struct frame_info *this_frame, void **this_cache)
1837
{
1838
  struct gdbarch *gdbarch = get_frame_arch (this_frame);
1839
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1840
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1841
  struct i386_frame_cache *cache;
1842
  CORE_ADDR addr;
1843
  gdb_byte buf[4];
1844
 
1845
  if (*this_cache)
1846
    return *this_cache;
1847
 
1848
  cache = i386_alloc_frame_cache ();
1849
 
1850
  get_frame_register (this_frame, I386_ESP_REGNUM, buf);
1851
  cache->base = extract_unsigned_integer (buf, 4, byte_order) - 4;
1852
 
1853
  addr = tdep->sigcontext_addr (this_frame);
1854
  if (tdep->sc_reg_offset)
1855
    {
1856
      int i;
1857
 
1858
      gdb_assert (tdep->sc_num_regs <= I386_NUM_SAVED_REGS);
1859
 
1860
      for (i = 0; i < tdep->sc_num_regs; i++)
1861
        if (tdep->sc_reg_offset[i] != -1)
1862
          cache->saved_regs[i] = addr + tdep->sc_reg_offset[i];
1863
    }
1864
  else
1865
    {
1866
      cache->saved_regs[I386_EIP_REGNUM] = addr + tdep->sc_pc_offset;
1867
      cache->saved_regs[I386_ESP_REGNUM] = addr + tdep->sc_sp_offset;
1868
    }
1869
 
1870
  *this_cache = cache;
1871
  return cache;
1872
}
1873
 
1874
static void
1875
i386_sigtramp_frame_this_id (struct frame_info *this_frame, void **this_cache,
1876
                             struct frame_id *this_id)
1877
{
1878
  struct i386_frame_cache *cache =
1879
    i386_sigtramp_frame_cache (this_frame, this_cache);
1880
 
1881
  /* See the end of i386_push_dummy_call.  */
1882
  (*this_id) = frame_id_build (cache->base + 8, get_frame_pc (this_frame));
1883
}
1884
 
1885
static struct value *
1886
i386_sigtramp_frame_prev_register (struct frame_info *this_frame,
1887
                                   void **this_cache, int regnum)
1888
{
1889
  /* Make sure we've initialized the cache.  */
1890
  i386_sigtramp_frame_cache (this_frame, this_cache);
1891
 
1892
  return i386_frame_prev_register (this_frame, this_cache, regnum);
1893
}
1894
 
1895
static int
1896
i386_sigtramp_frame_sniffer (const struct frame_unwind *self,
1897
                             struct frame_info *this_frame,
1898
                             void **this_prologue_cache)
1899
{
1900
  struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
1901
 
1902
  /* We shouldn't even bother if we don't have a sigcontext_addr
1903
     handler.  */
1904
  if (tdep->sigcontext_addr == NULL)
1905
    return 0;
1906
 
1907
  if (tdep->sigtramp_p != NULL)
1908
    {
1909
      if (tdep->sigtramp_p (this_frame))
1910
        return 1;
1911
    }
1912
 
1913
  if (tdep->sigtramp_start != 0)
1914
    {
1915
      CORE_ADDR pc = get_frame_pc (this_frame);
1916
 
1917
      gdb_assert (tdep->sigtramp_end != 0);
1918
      if (pc >= tdep->sigtramp_start && pc < tdep->sigtramp_end)
1919
        return 1;
1920
    }
1921
 
1922
  return 0;
1923
}
1924
 
1925
static const struct frame_unwind i386_sigtramp_frame_unwind =
1926
{
1927
  SIGTRAMP_FRAME,
1928
  i386_sigtramp_frame_this_id,
1929
  i386_sigtramp_frame_prev_register,
1930
  NULL,
1931
  i386_sigtramp_frame_sniffer
1932
};
1933
 
1934
 
1935
static CORE_ADDR
1936
i386_frame_base_address (struct frame_info *this_frame, void **this_cache)
1937
{
1938
  struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
1939
 
1940
  return cache->base;
1941
}
1942
 
1943
static const struct frame_base i386_frame_base =
1944
{
1945
  &i386_frame_unwind,
1946
  i386_frame_base_address,
1947
  i386_frame_base_address,
1948
  i386_frame_base_address
1949
};
1950
 
1951
static struct frame_id
1952
i386_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
1953
{
1954
  CORE_ADDR fp;
1955
 
1956
  fp = get_frame_register_unsigned (this_frame, I386_EBP_REGNUM);
1957
 
1958
  /* See the end of i386_push_dummy_call.  */
1959
  return frame_id_build (fp + 8, get_frame_pc (this_frame));
1960
}
1961
 
1962
 
1963
/* Figure out where the longjmp will land.  Slurp the args out of the
1964
   stack.  We expect the first arg to be a pointer to the jmp_buf
1965
   structure from which we extract the address that we will land at.
1966
   This address is copied into PC.  This routine returns non-zero on
1967
   success.  */
1968
 
1969
static int
1970
i386_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
1971
{
1972
  gdb_byte buf[4];
1973
  CORE_ADDR sp, jb_addr;
1974
  struct gdbarch *gdbarch = get_frame_arch (frame);
1975
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1976
  int jb_pc_offset = gdbarch_tdep (gdbarch)->jb_pc_offset;
1977
 
1978
  /* If JB_PC_OFFSET is -1, we have no way to find out where the
1979
     longjmp will land.  */
1980
  if (jb_pc_offset == -1)
1981
    return 0;
1982
 
1983
  get_frame_register (frame, I386_ESP_REGNUM, buf);
1984
  sp = extract_unsigned_integer (buf, 4, byte_order);
1985
  if (target_read_memory (sp + 4, buf, 4))
1986
    return 0;
1987
 
1988
  jb_addr = extract_unsigned_integer (buf, 4, byte_order);
1989
  if (target_read_memory (jb_addr + jb_pc_offset, buf, 4))
1990
    return 0;
1991
 
1992
  *pc = extract_unsigned_integer (buf, 4, byte_order);
1993
  return 1;
1994
}
1995
 
1996
 
1997
/* Check whether TYPE must be 16-byte-aligned when passed as a
1998
   function argument.  16-byte vectors, _Decimal128 and structures or
1999
   unions containing such types must be 16-byte-aligned; other
2000
   arguments are 4-byte-aligned.  */
2001
 
2002
static int
2003
i386_16_byte_align_p (struct type *type)
2004
{
2005
  type = check_typedef (type);
2006
  if ((TYPE_CODE (type) == TYPE_CODE_DECFLOAT
2007
       || (TYPE_CODE (type) == TYPE_CODE_ARRAY && TYPE_VECTOR (type)))
2008
      && TYPE_LENGTH (type) == 16)
2009
    return 1;
2010
  if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2011
    return i386_16_byte_align_p (TYPE_TARGET_TYPE (type));
2012
  if (TYPE_CODE (type) == TYPE_CODE_STRUCT
2013
      || TYPE_CODE (type) == TYPE_CODE_UNION)
2014
    {
2015
      int i;
2016
      for (i = 0; i < TYPE_NFIELDS (type); i++)
2017
        {
2018
          if (i386_16_byte_align_p (TYPE_FIELD_TYPE (type, i)))
2019
            return 1;
2020
        }
2021
    }
2022
  return 0;
2023
}
2024
 
2025
static CORE_ADDR
2026
i386_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
2027
                      struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
2028
                      struct value **args, CORE_ADDR sp, int struct_return,
2029
                      CORE_ADDR struct_addr)
2030
{
2031
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2032
  gdb_byte buf[4];
2033
  int i;
2034
  int write_pass;
2035
  int args_space = 0;
2036
 
2037
  /* Determine the total space required for arguments and struct
2038
     return address in a first pass (allowing for 16-byte-aligned
2039
     arguments), then push arguments in a second pass.  */
2040
 
2041
  for (write_pass = 0; write_pass < 2; write_pass++)
2042
    {
2043
      int args_space_used = 0;
2044
      int have_16_byte_aligned_arg = 0;
2045
 
2046
      if (struct_return)
2047
        {
2048
          if (write_pass)
2049
            {
2050
              /* Push value address.  */
2051
              store_unsigned_integer (buf, 4, byte_order, struct_addr);
2052
              write_memory (sp, buf, 4);
2053
              args_space_used += 4;
2054
            }
2055
          else
2056
            args_space += 4;
2057
        }
2058
 
2059
      for (i = 0; i < nargs; i++)
2060
        {
2061
          int len = TYPE_LENGTH (value_enclosing_type (args[i]));
2062
 
2063
          if (write_pass)
2064
            {
2065
              if (i386_16_byte_align_p (value_enclosing_type (args[i])))
2066
                args_space_used = align_up (args_space_used, 16);
2067
 
2068
              write_memory (sp + args_space_used,
2069
                            value_contents_all (args[i]), len);
2070
              /* The System V ABI says that:
2071
 
2072
              "An argument's size is increased, if necessary, to make it a
2073
              multiple of [32-bit] words.  This may require tail padding,
2074
              depending on the size of the argument."
2075
 
2076
              This makes sure the stack stays word-aligned.  */
2077
              args_space_used += align_up (len, 4);
2078
            }
2079
          else
2080
            {
2081
              if (i386_16_byte_align_p (value_enclosing_type (args[i])))
2082
                {
2083
                  args_space = align_up (args_space, 16);
2084
                  have_16_byte_aligned_arg = 1;
2085
                }
2086
              args_space += align_up (len, 4);
2087
            }
2088
        }
2089
 
2090
      if (!write_pass)
2091
        {
2092
          if (have_16_byte_aligned_arg)
2093
            args_space = align_up (args_space, 16);
2094
          sp -= args_space;
2095
        }
2096
    }
2097
 
2098
  /* Store return address.  */
2099
  sp -= 4;
2100
  store_unsigned_integer (buf, 4, byte_order, bp_addr);
2101
  write_memory (sp, buf, 4);
2102
 
2103
  /* Finally, update the stack pointer...  */
2104
  store_unsigned_integer (buf, 4, byte_order, sp);
2105
  regcache_cooked_write (regcache, I386_ESP_REGNUM, buf);
2106
 
2107
  /* ...and fake a frame pointer.  */
2108
  regcache_cooked_write (regcache, I386_EBP_REGNUM, buf);
2109
 
2110
  /* MarkK wrote: This "+ 8" is all over the place:
2111
     (i386_frame_this_id, i386_sigtramp_frame_this_id,
2112
     i386_dummy_id).  It's there, since all frame unwinders for
2113
     a given target have to agree (within a certain margin) on the
2114
     definition of the stack address of a frame.  Otherwise frame id
2115
     comparison might not work correctly.  Since DWARF2/GCC uses the
2116
     stack address *before* the function call as a frame's CFA.  On
2117
     the i386, when %ebp is used as a frame pointer, the offset
2118
     between the contents %ebp and the CFA as defined by GCC.  */
2119
  return sp + 8;
2120
}
2121
 
2122
/* These registers are used for returning integers (and on some
2123
   targets also for returning `struct' and `union' values when their
2124
   size and alignment match an integer type).  */
2125
#define LOW_RETURN_REGNUM       I386_EAX_REGNUM /* %eax */
2126
#define HIGH_RETURN_REGNUM      I386_EDX_REGNUM /* %edx */
2127
 
2128
/* Read, for architecture GDBARCH, a function return value of TYPE
2129
   from REGCACHE, and copy that into VALBUF.  */
2130
 
2131
static void
2132
i386_extract_return_value (struct gdbarch *gdbarch, struct type *type,
2133
                           struct regcache *regcache, gdb_byte *valbuf)
2134
{
2135
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2136
  int len = TYPE_LENGTH (type);
2137
  gdb_byte buf[I386_MAX_REGISTER_SIZE];
2138
 
2139
  if (TYPE_CODE (type) == TYPE_CODE_FLT)
2140
    {
2141
      if (tdep->st0_regnum < 0)
2142
        {
2143
          warning (_("Cannot find floating-point return value."));
2144
          memset (valbuf, 0, len);
2145
          return;
2146
        }
2147
 
2148
      /* Floating-point return values can be found in %st(0).  Convert
2149
         its contents to the desired type.  This is probably not
2150
         exactly how it would happen on the target itself, but it is
2151
         the best we can do.  */
2152
      regcache_raw_read (regcache, I386_ST0_REGNUM, buf);
2153
      convert_typed_floating (buf, i387_ext_type (gdbarch), valbuf, type);
2154
    }
2155
  else
2156
    {
2157
      int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
2158
      int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
2159
 
2160
      if (len <= low_size)
2161
        {
2162
          regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
2163
          memcpy (valbuf, buf, len);
2164
        }
2165
      else if (len <= (low_size + high_size))
2166
        {
2167
          regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
2168
          memcpy (valbuf, buf, low_size);
2169
          regcache_raw_read (regcache, HIGH_RETURN_REGNUM, buf);
2170
          memcpy (valbuf + low_size, buf, len - low_size);
2171
        }
2172
      else
2173
        internal_error (__FILE__, __LINE__,
2174
                        _("Cannot extract return value of %d bytes long."), len);
2175
    }
2176
}
2177
 
2178
/* Write, for architecture GDBARCH, a function return value of TYPE
2179
   from VALBUF into REGCACHE.  */
2180
 
2181
static void
2182
i386_store_return_value (struct gdbarch *gdbarch, struct type *type,
2183
                         struct regcache *regcache, const gdb_byte *valbuf)
2184
{
2185
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2186
  int len = TYPE_LENGTH (type);
2187
 
2188
  if (TYPE_CODE (type) == TYPE_CODE_FLT)
2189
    {
2190
      ULONGEST fstat;
2191
      gdb_byte buf[I386_MAX_REGISTER_SIZE];
2192
 
2193
      if (tdep->st0_regnum < 0)
2194
        {
2195
          warning (_("Cannot set floating-point return value."));
2196
          return;
2197
        }
2198
 
2199
      /* Returning floating-point values is a bit tricky.  Apart from
2200
         storing the return value in %st(0), we have to simulate the
2201
         state of the FPU at function return point.  */
2202
 
2203
      /* Convert the value found in VALBUF to the extended
2204
         floating-point format used by the FPU.  This is probably
2205
         not exactly how it would happen on the target itself, but
2206
         it is the best we can do.  */
2207
      convert_typed_floating (valbuf, type, buf, i387_ext_type (gdbarch));
2208
      regcache_raw_write (regcache, I386_ST0_REGNUM, buf);
2209
 
2210
      /* Set the top of the floating-point register stack to 7.  The
2211
         actual value doesn't really matter, but 7 is what a normal
2212
         function return would end up with if the program started out
2213
         with a freshly initialized FPU.  */
2214
      regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM (tdep), &fstat);
2215
      fstat |= (7 << 11);
2216
      regcache_raw_write_unsigned (regcache, I387_FSTAT_REGNUM (tdep), fstat);
2217
 
2218
      /* Mark %st(1) through %st(7) as empty.  Since we set the top of
2219
         the floating-point register stack to 7, the appropriate value
2220
         for the tag word is 0x3fff.  */
2221
      regcache_raw_write_unsigned (regcache, I387_FTAG_REGNUM (tdep), 0x3fff);
2222
    }
2223
  else
2224
    {
2225
      int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
2226
      int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
2227
 
2228
      if (len <= low_size)
2229
        regcache_raw_write_part (regcache, LOW_RETURN_REGNUM, 0, len, valbuf);
2230
      else if (len <= (low_size + high_size))
2231
        {
2232
          regcache_raw_write (regcache, LOW_RETURN_REGNUM, valbuf);
2233
          regcache_raw_write_part (regcache, HIGH_RETURN_REGNUM, 0,
2234
                                   len - low_size, valbuf + low_size);
2235
        }
2236
      else
2237
        internal_error (__FILE__, __LINE__,
2238
                        _("Cannot store return value of %d bytes long."), len);
2239
    }
2240
}
2241
 
2242
 
2243
/* This is the variable that is set with "set struct-convention", and
2244
   its legitimate values.  */
2245
static const char default_struct_convention[] = "default";
2246
static const char pcc_struct_convention[] = "pcc";
2247
static const char reg_struct_convention[] = "reg";
2248
static const char *valid_conventions[] =
2249
{
2250
  default_struct_convention,
2251
  pcc_struct_convention,
2252
  reg_struct_convention,
2253
  NULL
2254
};
2255
static const char *struct_convention = default_struct_convention;
2256
 
2257
/* Return non-zero if TYPE, which is assumed to be a structure,
2258
   a union type, or an array type, should be returned in registers
2259
   for architecture GDBARCH.  */
2260
 
2261
static int
2262
i386_reg_struct_return_p (struct gdbarch *gdbarch, struct type *type)
2263
{
2264
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2265
  enum type_code code = TYPE_CODE (type);
2266
  int len = TYPE_LENGTH (type);
2267
 
2268
  gdb_assert (code == TYPE_CODE_STRUCT
2269
              || code == TYPE_CODE_UNION
2270
              || code == TYPE_CODE_ARRAY);
2271
 
2272
  if (struct_convention == pcc_struct_convention
2273
      || (struct_convention == default_struct_convention
2274
          && tdep->struct_return == pcc_struct_return))
2275
    return 0;
2276
 
2277
  /* Structures consisting of a single `float', `double' or 'long
2278
     double' member are returned in %st(0).  */
2279
  if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
2280
    {
2281
      type = check_typedef (TYPE_FIELD_TYPE (type, 0));
2282
      if (TYPE_CODE (type) == TYPE_CODE_FLT)
2283
        return (len == 4 || len == 8 || len == 12);
2284
    }
2285
 
2286
  return (len == 1 || len == 2 || len == 4 || len == 8);
2287
}
2288
 
2289
/* Determine, for architecture GDBARCH, how a return value of TYPE
2290
   should be returned.  If it is supposed to be returned in registers,
2291
   and READBUF is non-zero, read the appropriate value from REGCACHE,
2292
   and copy it into READBUF.  If WRITEBUF is non-zero, write the value
2293
   from WRITEBUF into REGCACHE.  */
2294
 
2295
static enum return_value_convention
2296
i386_return_value (struct gdbarch *gdbarch, struct type *func_type,
2297
                   struct type *type, struct regcache *regcache,
2298
                   gdb_byte *readbuf, const gdb_byte *writebuf)
2299
{
2300
  enum type_code code = TYPE_CODE (type);
2301
 
2302
  if (((code == TYPE_CODE_STRUCT
2303
        || code == TYPE_CODE_UNION
2304
        || code == TYPE_CODE_ARRAY)
2305
       && !i386_reg_struct_return_p (gdbarch, type))
2306
      /* 128-bit decimal float uses the struct return convention.  */
2307
      || (code == TYPE_CODE_DECFLOAT && TYPE_LENGTH (type) == 16))
2308
    {
2309
      /* The System V ABI says that:
2310
 
2311
         "A function that returns a structure or union also sets %eax
2312
         to the value of the original address of the caller's area
2313
         before it returns.  Thus when the caller receives control
2314
         again, the address of the returned object resides in register
2315
         %eax and can be used to access the object."
2316
 
2317
         So the ABI guarantees that we can always find the return
2318
         value just after the function has returned.  */
2319
 
2320
      /* Note that the ABI doesn't mention functions returning arrays,
2321
         which is something possible in certain languages such as Ada.
2322
         In this case, the value is returned as if it was wrapped in
2323
         a record, so the convention applied to records also applies
2324
         to arrays.  */
2325
 
2326
      if (readbuf)
2327
        {
2328
          ULONGEST addr;
2329
 
2330
          regcache_raw_read_unsigned (regcache, I386_EAX_REGNUM, &addr);
2331
          read_memory (addr, readbuf, TYPE_LENGTH (type));
2332
        }
2333
 
2334
      return RETURN_VALUE_ABI_RETURNS_ADDRESS;
2335
    }
2336
 
2337
  /* This special case is for structures consisting of a single
2338
     `float', `double' or 'long double' member.  These structures are
2339
     returned in %st(0).  For these structures, we call ourselves
2340
     recursively, changing TYPE into the type of the first member of
2341
     the structure.  Since that should work for all structures that
2342
     have only one member, we don't bother to check the member's type
2343
     here.  */
2344
  if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
2345
    {
2346
      type = check_typedef (TYPE_FIELD_TYPE (type, 0));
2347
      return i386_return_value (gdbarch, func_type, type, regcache,
2348
                                readbuf, writebuf);
2349
    }
2350
 
2351
  if (readbuf)
2352
    i386_extract_return_value (gdbarch, type, regcache, readbuf);
2353
  if (writebuf)
2354
    i386_store_return_value (gdbarch, type, regcache, writebuf);
2355
 
2356
  return RETURN_VALUE_REGISTER_CONVENTION;
2357
}
2358
 
2359
 
2360
struct type *
2361
i387_ext_type (struct gdbarch *gdbarch)
2362
{
2363
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2364
 
2365
  if (!tdep->i387_ext_type)
2366
    {
2367
      tdep->i387_ext_type = tdesc_find_type (gdbarch, "i387_ext");
2368
      gdb_assert (tdep->i387_ext_type != NULL);
2369
    }
2370
 
2371
  return tdep->i387_ext_type;
2372
}
2373
 
2374
/* Construct vector type for pseudo YMM registers.  We can't use
2375
   tdesc_find_type since YMM isn't described in target description.  */
2376
 
2377
static struct type *
2378
i386_ymm_type (struct gdbarch *gdbarch)
2379
{
2380
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2381
 
2382
  if (!tdep->i386_ymm_type)
2383
    {
2384
      const struct builtin_type *bt = builtin_type (gdbarch);
2385
 
2386
      /* The type we're building is this: */
2387
#if 0
2388
      union __gdb_builtin_type_vec256i
2389
      {
2390
        int128_t uint128[2];
2391
        int64_t v2_int64[4];
2392
        int32_t v4_int32[8];
2393
        int16_t v8_int16[16];
2394
        int8_t v16_int8[32];
2395
        double v2_double[4];
2396
        float v4_float[8];
2397
      };
2398
#endif
2399
 
2400
      struct type *t;
2401
 
2402
      t = arch_composite_type (gdbarch,
2403
                               "__gdb_builtin_type_vec256i", TYPE_CODE_UNION);
2404
      append_composite_type_field (t, "v8_float",
2405
                                   init_vector_type (bt->builtin_float, 8));
2406
      append_composite_type_field (t, "v4_double",
2407
                                   init_vector_type (bt->builtin_double, 4));
2408
      append_composite_type_field (t, "v32_int8",
2409
                                   init_vector_type (bt->builtin_int8, 32));
2410
      append_composite_type_field (t, "v16_int16",
2411
                                   init_vector_type (bt->builtin_int16, 16));
2412
      append_composite_type_field (t, "v8_int32",
2413
                                   init_vector_type (bt->builtin_int32, 8));
2414
      append_composite_type_field (t, "v4_int64",
2415
                                   init_vector_type (bt->builtin_int64, 4));
2416
      append_composite_type_field (t, "v2_int128",
2417
                                   init_vector_type (bt->builtin_int128, 2));
2418
 
2419
      TYPE_VECTOR (t) = 1;
2420
      TYPE_NAME (t) = "builtin_type_vec128i";
2421
      tdep->i386_ymm_type = t;
2422
    }
2423
 
2424
  return tdep->i386_ymm_type;
2425
}
2426
 
2427
/* Construct vector type for MMX registers.  */
2428
static struct type *
2429
i386_mmx_type (struct gdbarch *gdbarch)
2430
{
2431
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2432
 
2433
  if (!tdep->i386_mmx_type)
2434
    {
2435
      const struct builtin_type *bt = builtin_type (gdbarch);
2436
 
2437
      /* The type we're building is this: */
2438
#if 0
2439
      union __gdb_builtin_type_vec64i
2440
      {
2441
        int64_t uint64;
2442
        int32_t v2_int32[2];
2443
        int16_t v4_int16[4];
2444
        int8_t v8_int8[8];
2445
      };
2446
#endif
2447
 
2448
      struct type *t;
2449
 
2450
      t = arch_composite_type (gdbarch,
2451
                               "__gdb_builtin_type_vec64i", TYPE_CODE_UNION);
2452
 
2453
      append_composite_type_field (t, "uint64", bt->builtin_int64);
2454
      append_composite_type_field (t, "v2_int32",
2455
                                   init_vector_type (bt->builtin_int32, 2));
2456
      append_composite_type_field (t, "v4_int16",
2457
                                   init_vector_type (bt->builtin_int16, 4));
2458
      append_composite_type_field (t, "v8_int8",
2459
                                   init_vector_type (bt->builtin_int8, 8));
2460
 
2461
      TYPE_VECTOR (t) = 1;
2462
      TYPE_NAME (t) = "builtin_type_vec64i";
2463
      tdep->i386_mmx_type = t;
2464
    }
2465
 
2466
  return tdep->i386_mmx_type;
2467
}
2468
 
2469
/* Return the GDB type object for the "standard" data type of data in
2470
   register REGNUM. */
2471
 
2472
static struct type *
2473
i386_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
2474
{
2475
  if (i386_mmx_regnum_p (gdbarch, regnum))
2476
    return i386_mmx_type (gdbarch);
2477
  else if (i386_ymm_regnum_p (gdbarch, regnum))
2478
    return i386_ymm_type (gdbarch);
2479
  else
2480
    {
2481
      const struct builtin_type *bt = builtin_type (gdbarch);
2482
      if (i386_byte_regnum_p (gdbarch, regnum))
2483
        return bt->builtin_int8;
2484
      else if (i386_word_regnum_p (gdbarch, regnum))
2485
        return bt->builtin_int16;
2486
      else if (i386_dword_regnum_p (gdbarch, regnum))
2487
        return bt->builtin_int32;
2488
    }
2489
 
2490
  internal_error (__FILE__, __LINE__, _("invalid regnum"));
2491
}
2492
 
2493
/* Map a cooked register onto a raw register or memory.  For the i386,
2494
   the MMX registers need to be mapped onto floating point registers.  */
2495
 
2496
static int
2497
i386_mmx_regnum_to_fp_regnum (struct regcache *regcache, int regnum)
2498
{
2499
  struct gdbarch_tdep *tdep = gdbarch_tdep (get_regcache_arch (regcache));
2500
  int mmxreg, fpreg;
2501
  ULONGEST fstat;
2502
  int tos;
2503
 
2504
  mmxreg = regnum - tdep->mm0_regnum;
2505
  regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM (tdep), &fstat);
2506
  tos = (fstat >> 11) & 0x7;
2507
  fpreg = (mmxreg + tos) % 8;
2508
 
2509
  return (I387_ST0_REGNUM (tdep) + fpreg);
2510
}
2511
 
2512
void
2513
i386_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
2514
                           int regnum, gdb_byte *buf)
2515
{
2516
  gdb_byte raw_buf[MAX_REGISTER_SIZE];
2517
 
2518
  if (i386_mmx_regnum_p (gdbarch, regnum))
2519
    {
2520
      int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
2521
 
2522
      /* Extract (always little endian).  */
2523
      regcache_raw_read (regcache, fpnum, raw_buf);
2524
      memcpy (buf, raw_buf, register_size (gdbarch, regnum));
2525
    }
2526
  else
2527
    {
2528
      struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2529
 
2530
      if (i386_ymm_regnum_p (gdbarch, regnum))
2531
        {
2532
          regnum -= tdep->ymm0_regnum;
2533
 
2534
          /* Extract (always little endian).  Read lower 128bits. */
2535
          regcache_raw_read (regcache,
2536
                             I387_XMM0_REGNUM (tdep) + regnum,
2537
                             raw_buf);
2538
          memcpy (buf, raw_buf, 16);
2539
          /* Read upper 128bits.  */
2540
          regcache_raw_read (regcache,
2541
                             tdep->ymm0h_regnum + regnum,
2542
                             raw_buf);
2543
          memcpy (buf + 16, raw_buf, 16);
2544
        }
2545
      else if (i386_word_regnum_p (gdbarch, regnum))
2546
        {
2547
          int gpnum = regnum - tdep->ax_regnum;
2548
 
2549
          /* Extract (always little endian).  */
2550
          regcache_raw_read (regcache, gpnum, raw_buf);
2551
          memcpy (buf, raw_buf, 2);
2552
        }
2553
      else if (i386_byte_regnum_p (gdbarch, regnum))
2554
        {
2555
          /* Check byte pseudo registers last since this function will
2556
             be called from amd64_pseudo_register_read, which handles
2557
             byte pseudo registers differently.  */
2558
          int gpnum = regnum - tdep->al_regnum;
2559
 
2560
          /* Extract (always little endian).  We read both lower and
2561
             upper registers.  */
2562
          regcache_raw_read (regcache, gpnum % 4, raw_buf);
2563
          if (gpnum >= 4)
2564
            memcpy (buf, raw_buf + 1, 1);
2565
          else
2566
            memcpy (buf, raw_buf, 1);
2567
        }
2568
      else
2569
        internal_error (__FILE__, __LINE__, _("invalid regnum"));
2570
    }
2571
}
2572
 
2573
void
2574
i386_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
2575
                            int regnum, const gdb_byte *buf)
2576
{
2577
  gdb_byte raw_buf[MAX_REGISTER_SIZE];
2578
 
2579
  if (i386_mmx_regnum_p (gdbarch, regnum))
2580
    {
2581
      int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
2582
 
2583
      /* Read ...  */
2584
      regcache_raw_read (regcache, fpnum, raw_buf);
2585
      /* ... Modify ... (always little endian).  */
2586
      memcpy (raw_buf, buf, register_size (gdbarch, regnum));
2587
      /* ... Write.  */
2588
      regcache_raw_write (regcache, fpnum, raw_buf);
2589
    }
2590
  else
2591
    {
2592
      struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2593
 
2594
      if (i386_ymm_regnum_p (gdbarch, regnum))
2595
        {
2596
          regnum -= tdep->ymm0_regnum;
2597
 
2598
          /* ... Write lower 128bits.  */
2599
          regcache_raw_write (regcache,
2600
                             I387_XMM0_REGNUM (tdep) + regnum,
2601
                             buf);
2602
          /* ... Write upper 128bits.  */
2603
          regcache_raw_write (regcache,
2604
                             tdep->ymm0h_regnum + regnum,
2605
                             buf + 16);
2606
        }
2607
      else if (i386_word_regnum_p (gdbarch, regnum))
2608
        {
2609
          int gpnum = regnum - tdep->ax_regnum;
2610
 
2611
          /* Read ...  */
2612
          regcache_raw_read (regcache, gpnum, raw_buf);
2613
          /* ... Modify ... (always little endian).  */
2614
          memcpy (raw_buf, buf, 2);
2615
          /* ... Write.  */
2616
          regcache_raw_write (regcache, gpnum, raw_buf);
2617
        }
2618
      else if (i386_byte_regnum_p (gdbarch, regnum))
2619
        {
2620
          /* Check byte pseudo registers last since this function will
2621
             be called from amd64_pseudo_register_read, which handles
2622
             byte pseudo registers differently.  */
2623
          int gpnum = regnum - tdep->al_regnum;
2624
 
2625
          /* Read ...  We read both lower and upper registers.  */
2626
          regcache_raw_read (regcache, gpnum % 4, raw_buf);
2627
          /* ... Modify ... (always little endian).  */
2628
          if (gpnum >= 4)
2629
            memcpy (raw_buf + 1, buf, 1);
2630
          else
2631
            memcpy (raw_buf, buf, 1);
2632
          /* ... Write.  */
2633
          regcache_raw_write (regcache, gpnum % 4, raw_buf);
2634
        }
2635
      else
2636
        internal_error (__FILE__, __LINE__, _("invalid regnum"));
2637
    }
2638
}
2639
 
2640
 
2641
/* Return the register number of the register allocated by GCC after
2642
   REGNUM, or -1 if there is no such register.  */
2643
 
2644
static int
2645
i386_next_regnum (int regnum)
2646
{
2647
  /* GCC allocates the registers in the order:
2648
 
2649
     %eax, %edx, %ecx, %ebx, %esi, %edi, %ebp, %esp, ...
2650
 
2651
     Since storing a variable in %esp doesn't make any sense we return
2652
     -1 for %ebp and for %esp itself.  */
2653
  static int next_regnum[] =
2654
  {
2655
    I386_EDX_REGNUM,            /* Slot for %eax.  */
2656
    I386_EBX_REGNUM,            /* Slot for %ecx.  */
2657
    I386_ECX_REGNUM,            /* Slot for %edx.  */
2658
    I386_ESI_REGNUM,            /* Slot for %ebx.  */
2659
    -1, -1,                     /* Slots for %esp and %ebp.  */
2660
    I386_EDI_REGNUM,            /* Slot for %esi.  */
2661
    I386_EBP_REGNUM             /* Slot for %edi.  */
2662
  };
2663
 
2664
  if (regnum >= 0 && regnum < sizeof (next_regnum) / sizeof (next_regnum[0]))
2665
    return next_regnum[regnum];
2666
 
2667
  return -1;
2668
}
2669
 
2670
/* Return nonzero if a value of type TYPE stored in register REGNUM
2671
   needs any special handling.  */
2672
 
2673
static int
2674
i386_convert_register_p (struct gdbarch *gdbarch, int regnum, struct type *type)
2675
{
2676
  int len = TYPE_LENGTH (type);
2677
 
2678
  /* Values may be spread across multiple registers.  Most debugging
2679
     formats aren't expressive enough to specify the locations, so
2680
     some heuristics is involved.  Right now we only handle types that
2681
     have a length that is a multiple of the word size, since GCC
2682
     doesn't seem to put any other types into registers.  */
2683
  if (len > 4 && len % 4 == 0)
2684
    {
2685
      int last_regnum = regnum;
2686
 
2687
      while (len > 4)
2688
        {
2689
          last_regnum = i386_next_regnum (last_regnum);
2690
          len -= 4;
2691
        }
2692
 
2693
      if (last_regnum != -1)
2694
        return 1;
2695
    }
2696
 
2697
  return i387_convert_register_p (gdbarch, regnum, type);
2698
}
2699
 
2700
/* Read a value of type TYPE from register REGNUM in frame FRAME, and
2701
   return its contents in TO.  */
2702
 
2703
static void
2704
i386_register_to_value (struct frame_info *frame, int regnum,
2705
                        struct type *type, gdb_byte *to)
2706
{
2707
  struct gdbarch *gdbarch = get_frame_arch (frame);
2708
  int len = TYPE_LENGTH (type);
2709
 
2710
  /* FIXME: kettenis/20030609: What should we do if REGNUM isn't
2711
     available in FRAME (i.e. if it wasn't saved)?  */
2712
 
2713
  if (i386_fp_regnum_p (gdbarch, regnum))
2714
    {
2715
      i387_register_to_value (frame, regnum, type, to);
2716
      return;
2717
    }
2718
 
2719
  /* Read a value spread across multiple registers.  */
2720
 
2721
  gdb_assert (len > 4 && len % 4 == 0);
2722
 
2723
  while (len > 0)
2724
    {
2725
      gdb_assert (regnum != -1);
2726
      gdb_assert (register_size (gdbarch, regnum) == 4);
2727
 
2728
      get_frame_register (frame, regnum, to);
2729
      regnum = i386_next_regnum (regnum);
2730
      len -= 4;
2731
      to += 4;
2732
    }
2733
}
2734
 
2735
/* Write the contents FROM of a value of type TYPE into register
2736
   REGNUM in frame FRAME.  */
2737
 
2738
static void
2739
i386_value_to_register (struct frame_info *frame, int regnum,
2740
                        struct type *type, const gdb_byte *from)
2741
{
2742
  int len = TYPE_LENGTH (type);
2743
 
2744
  if (i386_fp_regnum_p (get_frame_arch (frame), regnum))
2745
    {
2746
      i387_value_to_register (frame, regnum, type, from);
2747
      return;
2748
    }
2749
 
2750
  /* Write a value spread across multiple registers.  */
2751
 
2752
  gdb_assert (len > 4 && len % 4 == 0);
2753
 
2754
  while (len > 0)
2755
    {
2756
      gdb_assert (regnum != -1);
2757
      gdb_assert (register_size (get_frame_arch (frame), regnum) == 4);
2758
 
2759
      put_frame_register (frame, regnum, from);
2760
      regnum = i386_next_regnum (regnum);
2761
      len -= 4;
2762
      from += 4;
2763
    }
2764
}
2765
 
2766
/* Supply register REGNUM from the buffer specified by GREGS and LEN
2767
   in the general-purpose register set REGSET to register cache
2768
   REGCACHE.  If REGNUM is -1, do this for all registers in REGSET.  */
2769
 
2770
void
2771
i386_supply_gregset (const struct regset *regset, struct regcache *regcache,
2772
                     int regnum, const void *gregs, size_t len)
2773
{
2774
  const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
2775
  const gdb_byte *regs = gregs;
2776
  int i;
2777
 
2778
  gdb_assert (len == tdep->sizeof_gregset);
2779
 
2780
  for (i = 0; i < tdep->gregset_num_regs; i++)
2781
    {
2782
      if ((regnum == i || regnum == -1)
2783
          && tdep->gregset_reg_offset[i] != -1)
2784
        regcache_raw_supply (regcache, i, regs + tdep->gregset_reg_offset[i]);
2785
    }
2786
}
2787
 
2788
/* Collect register REGNUM from the register cache REGCACHE and store
2789
   it in the buffer specified by GREGS and LEN as described by the
2790
   general-purpose register set REGSET.  If REGNUM is -1, do this for
2791
   all registers in REGSET.  */
2792
 
2793
void
2794
i386_collect_gregset (const struct regset *regset,
2795
                      const struct regcache *regcache,
2796
                      int regnum, void *gregs, size_t len)
2797
{
2798
  const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
2799
  gdb_byte *regs = gregs;
2800
  int i;
2801
 
2802
  gdb_assert (len == tdep->sizeof_gregset);
2803
 
2804
  for (i = 0; i < tdep->gregset_num_regs; i++)
2805
    {
2806
      if ((regnum == i || regnum == -1)
2807
          && tdep->gregset_reg_offset[i] != -1)
2808
        regcache_raw_collect (regcache, i, regs + tdep->gregset_reg_offset[i]);
2809
    }
2810
}
2811
 
2812
/* Supply register REGNUM from the buffer specified by FPREGS and LEN
2813
   in the floating-point register set REGSET to register cache
2814
   REGCACHE.  If REGNUM is -1, do this for all registers in REGSET.  */
2815
 
2816
static void
2817
i386_supply_fpregset (const struct regset *regset, struct regcache *regcache,
2818
                      int regnum, const void *fpregs, size_t len)
2819
{
2820
  const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
2821
 
2822
  if (len == I387_SIZEOF_FXSAVE)
2823
    {
2824
      i387_supply_fxsave (regcache, regnum, fpregs);
2825
      return;
2826
    }
2827
 
2828
  gdb_assert (len == tdep->sizeof_fpregset);
2829
  i387_supply_fsave (regcache, regnum, fpregs);
2830
}
2831
 
2832
/* Collect register REGNUM from the register cache REGCACHE and store
2833
   it in the buffer specified by FPREGS and LEN as described by the
2834
   floating-point register set REGSET.  If REGNUM is -1, do this for
2835
   all registers in REGSET.  */
2836
 
2837
static void
2838
i386_collect_fpregset (const struct regset *regset,
2839
                       const struct regcache *regcache,
2840
                       int regnum, void *fpregs, size_t len)
2841
{
2842
  const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
2843
 
2844
  if (len == I387_SIZEOF_FXSAVE)
2845
    {
2846
      i387_collect_fxsave (regcache, regnum, fpregs);
2847
      return;
2848
    }
2849
 
2850
  gdb_assert (len == tdep->sizeof_fpregset);
2851
  i387_collect_fsave (regcache, regnum, fpregs);
2852
}
2853
 
2854
/* Similar to i386_supply_fpregset, but use XSAVE extended state.  */
2855
 
2856
static void
2857
i386_supply_xstateregset (const struct regset *regset,
2858
                          struct regcache *regcache, int regnum,
2859
                          const void *xstateregs, size_t len)
2860
{
2861
  i387_supply_xsave (regcache, regnum, xstateregs);
2862
}
2863
 
2864
/* Similar to i386_collect_fpregset , but use XSAVE extended state.  */
2865
 
2866
static void
2867
i386_collect_xstateregset (const struct regset *regset,
2868
                           const struct regcache *regcache,
2869
                           int regnum, void *xstateregs, size_t len)
2870
{
2871
  i387_collect_xsave (regcache, regnum, xstateregs, 1);
2872
}
2873
 
2874
/* Return the appropriate register set for the core section identified
2875
   by SECT_NAME and SECT_SIZE.  */
2876
 
2877
const struct regset *
2878
i386_regset_from_core_section (struct gdbarch *gdbarch,
2879
                               const char *sect_name, size_t sect_size)
2880
{
2881
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2882
 
2883
  if (strcmp (sect_name, ".reg") == 0 && sect_size == tdep->sizeof_gregset)
2884
    {
2885
      if (tdep->gregset == NULL)
2886
        tdep->gregset = regset_alloc (gdbarch, i386_supply_gregset,
2887
                                      i386_collect_gregset);
2888
      return tdep->gregset;
2889
    }
2890
 
2891
  if ((strcmp (sect_name, ".reg2") == 0 && sect_size == tdep->sizeof_fpregset)
2892
      || (strcmp (sect_name, ".reg-xfp") == 0
2893
          && sect_size == I387_SIZEOF_FXSAVE))
2894
    {
2895
      if (tdep->fpregset == NULL)
2896
        tdep->fpregset = regset_alloc (gdbarch, i386_supply_fpregset,
2897
                                       i386_collect_fpregset);
2898
      return tdep->fpregset;
2899
    }
2900
 
2901
  if (strcmp (sect_name, ".reg-xstate") == 0)
2902
    {
2903
      if (tdep->xstateregset == NULL)
2904
        tdep->xstateregset = regset_alloc (gdbarch,
2905
                                           i386_supply_xstateregset,
2906
                                           i386_collect_xstateregset);
2907
 
2908
      return tdep->xstateregset;
2909
    }
2910
 
2911
  return NULL;
2912
}
2913
 
2914
 
2915
/* Stuff for WIN32 PE style DLL's but is pretty generic really.  */
2916
 
2917
CORE_ADDR
2918
i386_pe_skip_trampoline_code (struct frame_info *frame,
2919
                              CORE_ADDR pc, char *name)
2920
{
2921
  struct gdbarch *gdbarch = get_frame_arch (frame);
2922
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2923
 
2924
  /* jmp *(dest) */
2925
  if (pc && read_memory_unsigned_integer (pc, 2, byte_order) == 0x25ff)
2926
    {
2927
      unsigned long indirect =
2928
        read_memory_unsigned_integer (pc + 2, 4, byte_order);
2929
      struct minimal_symbol *indsym =
2930
        indirect ? lookup_minimal_symbol_by_pc (indirect) : 0;
2931
      char *symname = indsym ? SYMBOL_LINKAGE_NAME (indsym) : 0;
2932
 
2933
      if (symname)
2934
        {
2935
          if (strncmp (symname, "__imp_", 6) == 0
2936
              || strncmp (symname, "_imp_", 5) == 0)
2937
            return name ? 1 :
2938
                   read_memory_unsigned_integer (indirect, 4, byte_order);
2939
        }
2940
    }
2941
  return 0;                      /* Not a trampoline.  */
2942
}
2943
 
2944
 
2945
/* Return whether the THIS_FRAME corresponds to a sigtramp
2946
   routine.  */
2947
 
2948
int
2949
i386_sigtramp_p (struct frame_info *this_frame)
2950
{
2951
  CORE_ADDR pc = get_frame_pc (this_frame);
2952
  char *name;
2953
 
2954
  find_pc_partial_function (pc, &name, NULL, NULL);
2955
  return (name && strcmp ("_sigtramp", name) == 0);
2956
}
2957
 
2958
 
2959
/* We have two flavours of disassembly.  The machinery on this page
2960
   deals with switching between those.  */
2961
 
2962
static int
2963
i386_print_insn (bfd_vma pc, struct disassemble_info *info)
2964
{
2965
  gdb_assert (disassembly_flavor == att_flavor
2966
              || disassembly_flavor == intel_flavor);
2967
 
2968
  /* FIXME: kettenis/20020915: Until disassembler_options is properly
2969
     constified, cast to prevent a compiler warning.  */
2970
  info->disassembler_options = (char *) disassembly_flavor;
2971
 
2972
  return print_insn_i386 (pc, info);
2973
}
2974
 
2975
 
2976
/* There are a few i386 architecture variants that differ only
2977
   slightly from the generic i386 target.  For now, we don't give them
2978
   their own source file, but include them here.  As a consequence,
2979
   they'll always be included.  */
2980
 
2981
/* System V Release 4 (SVR4).  */
2982
 
2983
/* Return whether THIS_FRAME corresponds to a SVR4 sigtramp
2984
   routine.  */
2985
 
2986
static int
2987
i386_svr4_sigtramp_p (struct frame_info *this_frame)
2988
{
2989
  CORE_ADDR pc = get_frame_pc (this_frame);
2990
  char *name;
2991
 
2992
  /* UnixWare uses _sigacthandler.  The origin of the other symbols is
2993
     currently unknown.  */
2994
  find_pc_partial_function (pc, &name, NULL, NULL);
2995
  return (name && (strcmp ("_sigreturn", name) == 0
2996
                   || strcmp ("_sigacthandler", name) == 0
2997
                   || strcmp ("sigvechandler", name) == 0));
2998
}
2999
 
3000
/* Assuming THIS_FRAME is for a SVR4 sigtramp routine, return the
3001
   address of the associated sigcontext (ucontext) structure.  */
3002
 
3003
static CORE_ADDR
3004
i386_svr4_sigcontext_addr (struct frame_info *this_frame)
3005
{
3006
  struct gdbarch *gdbarch = get_frame_arch (this_frame);
3007
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3008
  gdb_byte buf[4];
3009
  CORE_ADDR sp;
3010
 
3011
  get_frame_register (this_frame, I386_ESP_REGNUM, buf);
3012
  sp = extract_unsigned_integer (buf, 4, byte_order);
3013
 
3014
  return read_memory_unsigned_integer (sp + 8, 4, byte_order);
3015
}
3016
 
3017
 
3018
/* Generic ELF.  */
3019
 
3020
void
3021
i386_elf_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
3022
{
3023
  /* We typically use stabs-in-ELF with the SVR4 register numbering.  */
3024
  set_gdbarch_stab_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
3025
}
3026
 
3027
/* System V Release 4 (SVR4).  */
3028
 
3029
void
3030
i386_svr4_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
3031
{
3032
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3033
 
3034
  /* System V Release 4 uses ELF.  */
3035
  i386_elf_init_abi (info, gdbarch);
3036
 
3037
  /* System V Release 4 has shared libraries.  */
3038
  set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
3039
 
3040
  tdep->sigtramp_p = i386_svr4_sigtramp_p;
3041
  tdep->sigcontext_addr = i386_svr4_sigcontext_addr;
3042
  tdep->sc_pc_offset = 36 + 14 * 4;
3043
  tdep->sc_sp_offset = 36 + 17 * 4;
3044
 
3045
  tdep->jb_pc_offset = 20;
3046
}
3047
 
3048
/* DJGPP.  */
3049
 
3050
static void
3051
i386_go32_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
3052
{
3053
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3054
 
3055
  /* DJGPP doesn't have any special frames for signal handlers.  */
3056
  tdep->sigtramp_p = NULL;
3057
 
3058
  tdep->jb_pc_offset = 36;
3059
 
3060
  /* DJGPP does not support the SSE registers.  */
3061
  if (! tdesc_has_registers (info.target_desc))
3062
    tdep->tdesc = tdesc_i386_mmx;
3063
 
3064
  /* Native compiler is GCC, which uses the SVR4 register numbering
3065
     even in COFF and STABS.  See the comment in i386_gdbarch_init,
3066
     before the calls to set_gdbarch_stab_reg_to_regnum and
3067
     set_gdbarch_sdb_reg_to_regnum.  */
3068
  set_gdbarch_stab_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
3069
  set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
3070
 
3071
  set_gdbarch_has_dos_based_file_system (gdbarch, 1);
3072
}
3073
 
3074
 
3075
/* i386 register groups.  In addition to the normal groups, add "mmx"
3076
   and "sse".  */
3077
 
3078
static struct reggroup *i386_sse_reggroup;
3079
static struct reggroup *i386_mmx_reggroup;
3080
 
3081
static void
3082
i386_init_reggroups (void)
3083
{
3084
  i386_sse_reggroup = reggroup_new ("sse", USER_REGGROUP);
3085
  i386_mmx_reggroup = reggroup_new ("mmx", USER_REGGROUP);
3086
}
3087
 
3088
static void
3089
i386_add_reggroups (struct gdbarch *gdbarch)
3090
{
3091
  reggroup_add (gdbarch, i386_sse_reggroup);
3092
  reggroup_add (gdbarch, i386_mmx_reggroup);
3093
  reggroup_add (gdbarch, general_reggroup);
3094
  reggroup_add (gdbarch, float_reggroup);
3095
  reggroup_add (gdbarch, all_reggroup);
3096
  reggroup_add (gdbarch, save_reggroup);
3097
  reggroup_add (gdbarch, restore_reggroup);
3098
  reggroup_add (gdbarch, vector_reggroup);
3099
  reggroup_add (gdbarch, system_reggroup);
3100
}
3101
 
3102
int
3103
i386_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
3104
                          struct reggroup *group)
3105
{
3106
  const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3107
  int fp_regnum_p, mmx_regnum_p, xmm_regnum_p, mxcsr_regnum_p,
3108
      ymm_regnum_p, ymmh_regnum_p;
3109
 
3110
  /* Don't include pseudo registers, except for MMX, in any register
3111
     groups.  */
3112
  if (i386_byte_regnum_p (gdbarch, regnum))
3113
    return 0;
3114
 
3115
  if (i386_word_regnum_p (gdbarch, regnum))
3116
    return 0;
3117
 
3118
  if (i386_dword_regnum_p (gdbarch, regnum))
3119
    return 0;
3120
 
3121
  mmx_regnum_p = i386_mmx_regnum_p (gdbarch, regnum);
3122
  if (group == i386_mmx_reggroup)
3123
    return mmx_regnum_p;
3124
 
3125
  xmm_regnum_p = i386_xmm_regnum_p (gdbarch, regnum);
3126
  mxcsr_regnum_p = i386_mxcsr_regnum_p (gdbarch, regnum);
3127
  if (group == i386_sse_reggroup)
3128
    return xmm_regnum_p || mxcsr_regnum_p;
3129
 
3130
  ymm_regnum_p = i386_ymm_regnum_p (gdbarch, regnum);
3131
  if (group == vector_reggroup)
3132
    return (mmx_regnum_p
3133
            || ymm_regnum_p
3134
            || mxcsr_regnum_p
3135
            || (xmm_regnum_p
3136
                && ((tdep->xcr0 & I386_XSTATE_AVX_MASK)
3137
                    == I386_XSTATE_SSE_MASK)));
3138
 
3139
  fp_regnum_p = (i386_fp_regnum_p (gdbarch, regnum)
3140
                 || i386_fpc_regnum_p (gdbarch, regnum));
3141
  if (group == float_reggroup)
3142
    return fp_regnum_p;
3143
 
3144
  /* For "info reg all", don't include upper YMM registers nor XMM
3145
     registers when AVX is supported.  */
3146
  ymmh_regnum_p = i386_ymmh_regnum_p (gdbarch, regnum);
3147
  if (group == all_reggroup
3148
      && ((xmm_regnum_p
3149
           && (tdep->xcr0 & I386_XSTATE_AVX))
3150
          || ymmh_regnum_p))
3151
    return 0;
3152
 
3153
  if (group == general_reggroup)
3154
    return (!fp_regnum_p
3155
            && !mmx_regnum_p
3156
            && !mxcsr_regnum_p
3157
            && !xmm_regnum_p
3158
            && !ymm_regnum_p
3159
            && !ymmh_regnum_p);
3160
 
3161
  return default_register_reggroup_p (gdbarch, regnum, group);
3162
}
3163
 
3164
 
3165
/* Get the ARGIth function argument for the current function.  */
3166
 
3167
static CORE_ADDR
3168
i386_fetch_pointer_argument (struct frame_info *frame, int argi,
3169
                             struct type *type)
3170
{
3171
  struct gdbarch *gdbarch = get_frame_arch (frame);
3172
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3173
  CORE_ADDR sp = get_frame_register_unsigned  (frame, I386_ESP_REGNUM);
3174
  return read_memory_unsigned_integer (sp + (4 * (argi + 1)), 4, byte_order);
3175
}
3176
 
3177
static void
3178
i386_skip_permanent_breakpoint (struct regcache *regcache)
3179
{
3180
  CORE_ADDR current_pc = regcache_read_pc (regcache);
3181
 
3182
 /* On i386, breakpoint is exactly 1 byte long, so we just
3183
    adjust the PC in the regcache.  */
3184
  current_pc += 1;
3185
  regcache_write_pc (regcache, current_pc);
3186
}
3187
 
3188
 
3189
#define PREFIX_REPZ     0x01
3190
#define PREFIX_REPNZ    0x02
3191
#define PREFIX_LOCK     0x04
3192
#define PREFIX_DATA     0x08
3193
#define PREFIX_ADDR     0x10
3194
 
3195
/* operand size */
3196
enum
3197
{
3198
  OT_BYTE = 0,
3199
  OT_WORD,
3200
  OT_LONG,
3201
  OT_QUAD,
3202
  OT_DQUAD,
3203
};
3204
 
3205
/* i386 arith/logic operations */
3206
enum
3207
{
3208
  OP_ADDL,
3209
  OP_ORL,
3210
  OP_ADCL,
3211
  OP_SBBL,
3212
  OP_ANDL,
3213
  OP_SUBL,
3214
  OP_XORL,
3215
  OP_CMPL,
3216
};
3217
 
3218
struct i386_record_s
3219
{
3220
  struct gdbarch *gdbarch;
3221
  struct regcache *regcache;
3222
  CORE_ADDR orig_addr;
3223
  CORE_ADDR addr;
3224
  int aflag;
3225
  int dflag;
3226
  int override;
3227
  uint8_t modrm;
3228
  uint8_t mod, reg, rm;
3229
  int ot;
3230
  uint8_t rex_x;
3231
  uint8_t rex_b;
3232
  int rip_offset;
3233
  int popl_esp_hack;
3234
  const int *regmap;
3235
};
3236
 
3237
/* Parse "modrm" part in current memory address that irp->addr point to
3238
   Return -1 if something wrong. */
3239
 
3240
static int
3241
i386_record_modrm (struct i386_record_s *irp)
3242
{
3243
  struct gdbarch *gdbarch = irp->gdbarch;
3244
 
3245
  if (target_read_memory (irp->addr, &irp->modrm, 1))
3246
    {
3247
      if (record_debug)
3248
        printf_unfiltered (_("Process record: error reading memory at "
3249
                             "addr %s len = 1.\n"),
3250
                           paddress (gdbarch, irp->addr));
3251
      return -1;
3252
    }
3253
  irp->addr++;
3254
  irp->mod = (irp->modrm >> 6) & 3;
3255
  irp->reg = (irp->modrm >> 3) & 7;
3256
  irp->rm = irp->modrm & 7;
3257
 
3258
  return 0;
3259
}
3260
 
3261
/* Get the memory address that current instruction  write to and set it to
3262
   the argument "addr".
3263
   Return -1 if something wrong. */
3264
 
3265
static int
3266
i386_record_lea_modrm_addr (struct i386_record_s *irp, uint64_t *addr)
3267
{
3268
  struct gdbarch *gdbarch = irp->gdbarch;
3269
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3270
  gdb_byte buf[4];
3271
  ULONGEST offset64;
3272
 
3273
  *addr = 0;
3274
  if (irp->aflag)
3275
    {
3276
      /* 32 bits */
3277
      int havesib = 0;
3278
      uint8_t scale = 0;
3279
      uint8_t byte;
3280
      uint8_t index = 0;
3281
      uint8_t base = irp->rm;
3282
 
3283
      if (base == 4)
3284
        {
3285
          havesib = 1;
3286
          if (target_read_memory (irp->addr, &byte, 1))
3287
            {
3288
              if (record_debug)
3289
                printf_unfiltered (_("Process record: error reading memory "
3290
                                     "at addr %s len = 1.\n"),
3291
                                   paddress (gdbarch, irp->addr));
3292
              return -1;
3293
            }
3294
          irp->addr++;
3295
          scale = (byte >> 6) & 3;
3296
          index = ((byte >> 3) & 7) | irp->rex_x;
3297
          base = (byte & 7);
3298
        }
3299
      base |= irp->rex_b;
3300
 
3301
      switch (irp->mod)
3302
        {
3303
        case 0:
3304
          if ((base & 7) == 5)
3305
            {
3306
              base = 0xff;
3307
              if (target_read_memory (irp->addr, buf, 4))
3308
                {
3309
                  if (record_debug)
3310
                    printf_unfiltered (_("Process record: error reading "
3311
                                         "memory at addr %s len = 4.\n"),
3312
                                       paddress (gdbarch, irp->addr));
3313
                  return -1;
3314
                }
3315
              irp->addr += 4;
3316
              *addr = extract_signed_integer (buf, 4, byte_order);
3317
              if (irp->regmap[X86_RECORD_R8_REGNUM] && !havesib)
3318
                *addr += irp->addr + irp->rip_offset;
3319
            }
3320
          break;
3321
        case 1:
3322
          if (target_read_memory (irp->addr, buf, 1))
3323
            {
3324
              if (record_debug)
3325
                printf_unfiltered (_("Process record: error reading memory "
3326
                                     "at addr %s len = 1.\n"),
3327
                                   paddress (gdbarch, irp->addr));
3328
              return -1;
3329
            }
3330
          irp->addr++;
3331
          *addr = (int8_t) buf[0];
3332
          break;
3333
        case 2:
3334
          if (target_read_memory (irp->addr, buf, 4))
3335
            {
3336
              if (record_debug)
3337
                printf_unfiltered (_("Process record: error reading memory "
3338
                                     "at addr %s len = 4.\n"),
3339
                                   paddress (gdbarch, irp->addr));
3340
              return -1;
3341
            }
3342
          *addr = extract_signed_integer (buf, 4, byte_order);
3343
          irp->addr += 4;
3344
          break;
3345
        }
3346
 
3347
      offset64 = 0;
3348
      if (base != 0xff)
3349
        {
3350
          if (base == 4 && irp->popl_esp_hack)
3351
            *addr += irp->popl_esp_hack;
3352
          regcache_raw_read_unsigned (irp->regcache, irp->regmap[base],
3353
                                      &offset64);
3354
        }
3355
      if (irp->aflag == 2)
3356
        {
3357
          *addr += offset64;
3358
        }
3359
      else
3360
        *addr = (uint32_t) (offset64 + *addr);
3361
 
3362
      if (havesib && (index != 4 || scale != 0))
3363
        {
3364
          regcache_raw_read_unsigned (irp->regcache, irp->regmap[index],
3365
                                      &offset64);
3366
          if (irp->aflag == 2)
3367
            *addr += offset64 << scale;
3368
          else
3369
            *addr = (uint32_t) (*addr + (offset64 << scale));
3370
        }
3371
    }
3372
  else
3373
    {
3374
      /* 16 bits */
3375
      switch (irp->mod)
3376
        {
3377
        case 0:
3378
          if (irp->rm == 6)
3379
            {
3380
              if (target_read_memory (irp->addr, buf, 2))
3381
                {
3382
                  if (record_debug)
3383
                    printf_unfiltered (_("Process record: error reading "
3384
                                         "memory at addr %s len = 2.\n"),
3385
                                       paddress (gdbarch, irp->addr));
3386
                  return -1;
3387
                }
3388
              irp->addr += 2;
3389
              *addr = extract_signed_integer (buf, 2, byte_order);
3390
              irp->rm = 0;
3391
              goto no_rm;
3392
            }
3393
          break;
3394
        case 1:
3395
          if (target_read_memory (irp->addr, buf, 1))
3396
            {
3397
              if (record_debug)
3398
                printf_unfiltered (_("Process record: error reading memory "
3399
                                     "at addr %s len = 1.\n"),
3400
                                   paddress (gdbarch, irp->addr));
3401
              return -1;
3402
            }
3403
          irp->addr++;
3404
          *addr = (int8_t) buf[0];
3405
          break;
3406
        case 2:
3407
          if (target_read_memory (irp->addr, buf, 2))
3408
            {
3409
              if (record_debug)
3410
                printf_unfiltered (_("Process record: error reading memory "
3411
                                     "at addr %s len = 2.\n"),
3412
                                   paddress (gdbarch, irp->addr));
3413
              return -1;
3414
            }
3415
          irp->addr += 2;
3416
          *addr = extract_signed_integer (buf, 2, byte_order);
3417
          break;
3418
        }
3419
 
3420
      switch (irp->rm)
3421
        {
3422
        case 0:
3423
          regcache_raw_read_unsigned (irp->regcache,
3424
                                      irp->regmap[X86_RECORD_REBX_REGNUM],
3425
                                      &offset64);
3426
          *addr = (uint32_t) (*addr + offset64);
3427
          regcache_raw_read_unsigned (irp->regcache,
3428
                                      irp->regmap[X86_RECORD_RESI_REGNUM],
3429
                                      &offset64);
3430
          *addr = (uint32_t) (*addr + offset64);
3431
          break;
3432
        case 1:
3433
          regcache_raw_read_unsigned (irp->regcache,
3434
                                      irp->regmap[X86_RECORD_REBX_REGNUM],
3435
                                      &offset64);
3436
          *addr = (uint32_t) (*addr + offset64);
3437
          regcache_raw_read_unsigned (irp->regcache,
3438
                                      irp->regmap[X86_RECORD_REDI_REGNUM],
3439
                                      &offset64);
3440
          *addr = (uint32_t) (*addr + offset64);
3441
          break;
3442
        case 2:
3443
          regcache_raw_read_unsigned (irp->regcache,
3444
                                      irp->regmap[X86_RECORD_REBP_REGNUM],
3445
                                      &offset64);
3446
          *addr = (uint32_t) (*addr + offset64);
3447
          regcache_raw_read_unsigned (irp->regcache,
3448
                                      irp->regmap[X86_RECORD_RESI_REGNUM],
3449
                                      &offset64);
3450
          *addr = (uint32_t) (*addr + offset64);
3451
          break;
3452
        case 3:
3453
          regcache_raw_read_unsigned (irp->regcache,
3454
                                      irp->regmap[X86_RECORD_REBP_REGNUM],
3455
                                      &offset64);
3456
          *addr = (uint32_t) (*addr + offset64);
3457
          regcache_raw_read_unsigned (irp->regcache,
3458
                                      irp->regmap[X86_RECORD_REDI_REGNUM],
3459
                                      &offset64);
3460
          *addr = (uint32_t) (*addr + offset64);
3461
          break;
3462
        case 4:
3463
          regcache_raw_read_unsigned (irp->regcache,
3464
                                      irp->regmap[X86_RECORD_RESI_REGNUM],
3465
                                      &offset64);
3466
          *addr = (uint32_t) (*addr + offset64);
3467
          break;
3468
        case 5:
3469
          regcache_raw_read_unsigned (irp->regcache,
3470
                                      irp->regmap[X86_RECORD_REDI_REGNUM],
3471
                                      &offset64);
3472
          *addr = (uint32_t) (*addr + offset64);
3473
          break;
3474
        case 6:
3475
          regcache_raw_read_unsigned (irp->regcache,
3476
                                      irp->regmap[X86_RECORD_REBP_REGNUM],
3477
                                      &offset64);
3478
          *addr = (uint32_t) (*addr + offset64);
3479
          break;
3480
        case 7:
3481
          regcache_raw_read_unsigned (irp->regcache,
3482
                                      irp->regmap[X86_RECORD_REBX_REGNUM],
3483
                                      &offset64);
3484
          *addr = (uint32_t) (*addr + offset64);
3485
          break;
3486
        }
3487
      *addr &= 0xffff;
3488
    }
3489
 
3490
 no_rm:
3491
  return 0;
3492
}
3493
 
3494
/* Record the value of the memory that willbe changed in current instruction
3495
   to "record_arch_list".
3496
   Return -1 if something wrong. */
3497
 
3498
static int
3499
i386_record_lea_modrm (struct i386_record_s *irp)
3500
{
3501
  struct gdbarch *gdbarch = irp->gdbarch;
3502
  uint64_t addr;
3503
 
3504
  if (irp->override >= 0)
3505
    {
3506
      if (record_memory_query)
3507
        {
3508
          int q;
3509
 
3510
          target_terminal_ours ();
3511
          q = yquery (_("\
3512
Process record ignores the memory change of instruction at address %s\n\
3513
because it can't get the value of the segment register.\n\
3514
Do you want to stop the program?"),
3515
                      paddress (gdbarch, irp->orig_addr));
3516
            target_terminal_inferior ();
3517
            if (q)
3518
              return -1;
3519
        }
3520
 
3521
      return 0;
3522
    }
3523
 
3524
  if (i386_record_lea_modrm_addr (irp, &addr))
3525
    return -1;
3526
 
3527
  if (record_arch_list_add_mem (addr, 1 << irp->ot))
3528
    return -1;
3529
 
3530
  return 0;
3531
}
3532
 
3533
/* Record the push operation to "record_arch_list".
3534
   Return -1 if something wrong. */
3535
 
3536
static int
3537
i386_record_push (struct i386_record_s *irp, int size)
3538
{
3539
  ULONGEST addr;
3540
 
3541
  if (record_arch_list_add_reg (irp->regcache,
3542
                                irp->regmap[X86_RECORD_RESP_REGNUM]))
3543
    return -1;
3544
  regcache_raw_read_unsigned (irp->regcache,
3545
                              irp->regmap[X86_RECORD_RESP_REGNUM],
3546
                              &addr);
3547
  if (record_arch_list_add_mem ((CORE_ADDR) addr - size, size))
3548
    return -1;
3549
 
3550
  return 0;
3551
}
3552
 
3553
 
3554
/* Defines contents to record.  */
3555
#define I386_SAVE_FPU_REGS              0xfffd
3556
#define I386_SAVE_FPU_ENV               0xfffe
3557
#define I386_SAVE_FPU_ENV_REG_STACK     0xffff
3558
 
3559
/* Record the value of floating point registers which will be changed by the
3560
   current instruction to "record_arch_list".  Return -1 if something is wrong.
3561
*/
3562
 
3563
static int i386_record_floats (struct gdbarch *gdbarch,
3564
                               struct i386_record_s *ir,
3565
                               uint32_t iregnum)
3566
{
3567
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3568
  int i;
3569
 
3570
  /* Oza: Because of floating point insn push/pop of fpu stack is going to
3571
     happen.  Currently we store st0-st7 registers, but we need not store all
3572
     registers all the time, in future we use ftag register and record only
3573
     those who are not marked as an empty.  */
3574
 
3575
  if (I386_SAVE_FPU_REGS == iregnum)
3576
    {
3577
      for (i = I387_ST0_REGNUM (tdep); i <= I387_ST0_REGNUM (tdep) + 7; i++)
3578
        {
3579
          if (record_arch_list_add_reg (ir->regcache, i))
3580
            return -1;
3581
        }
3582
    }
3583
  else if (I386_SAVE_FPU_ENV == iregnum)
3584
    {
3585
      for (i = I387_FCTRL_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
3586
              {
3587
              if (record_arch_list_add_reg (ir->regcache, i))
3588
                return -1;
3589
              }
3590
    }
3591
  else if (I386_SAVE_FPU_ENV_REG_STACK == iregnum)
3592
    {
3593
      for (i = I387_ST0_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
3594
      {
3595
        if (record_arch_list_add_reg (ir->regcache, i))
3596
          return -1;
3597
      }
3598
    }
3599
  else if ((iregnum >= I387_ST0_REGNUM (tdep)) &&
3600
           (iregnum <= I387_FOP_REGNUM (tdep)))
3601
    {
3602
      if (record_arch_list_add_reg (ir->regcache,iregnum))
3603
        return -1;
3604
    }
3605
  else
3606
    {
3607
      /* Parameter error.  */
3608
      return -1;
3609
    }
3610
  if(I386_SAVE_FPU_ENV != iregnum)
3611
    {
3612
    for (i = I387_FCTRL_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
3613
      {
3614
      if (record_arch_list_add_reg (ir->regcache, i))
3615
        return -1;
3616
      }
3617
    }
3618
  return 0;
3619
}
3620
 
3621
/* Parse the current instruction and record the values of the registers and
3622
   memory that will be changed in current instruction to "record_arch_list".
3623
   Return -1 if something wrong. */
3624
 
3625
#define I386_RECORD_ARCH_LIST_ADD_REG(regnum) \
3626
    record_arch_list_add_reg (ir.regcache, ir.regmap[(regnum)])
3627
 
3628
int
3629
i386_process_record (struct gdbarch *gdbarch, struct regcache *regcache,
3630
                     CORE_ADDR input_addr)
3631
{
3632
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3633
  int prefixes = 0;
3634
  int regnum = 0;
3635
  uint32_t opcode;
3636
  uint8_t  opcode8;
3637
  ULONGEST addr;
3638
  gdb_byte buf[MAX_REGISTER_SIZE];
3639
  struct i386_record_s ir;
3640
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3641
  int rex = 0;
3642
  uint8_t rex_w = -1;
3643
  uint8_t rex_r = 0;
3644
 
3645
  memset (&ir, 0, sizeof (struct i386_record_s));
3646
  ir.regcache = regcache;
3647
  ir.addr = input_addr;
3648
  ir.orig_addr = input_addr;
3649
  ir.aflag = 1;
3650
  ir.dflag = 1;
3651
  ir.override = -1;
3652
  ir.popl_esp_hack = 0;
3653
  ir.regmap = tdep->record_regmap;
3654
  ir.gdbarch = gdbarch;
3655
 
3656
  if (record_debug > 1)
3657
    fprintf_unfiltered (gdb_stdlog, "Process record: i386_process_record "
3658
                                    "addr = %s\n",
3659
                        paddress (gdbarch, ir.addr));
3660
 
3661
  /* prefixes */
3662
  while (1)
3663
    {
3664
      if (target_read_memory (ir.addr, &opcode8, 1))
3665
        {
3666
          if (record_debug)
3667
            printf_unfiltered (_("Process record: error reading memory at "
3668
                                 "addr %s len = 1.\n"),
3669
                               paddress (gdbarch, ir.addr));
3670
          return -1;
3671
        }
3672
      ir.addr++;
3673
      switch (opcode8)  /* Instruction prefixes */
3674
        {
3675
        case REPE_PREFIX_OPCODE:
3676
          prefixes |= PREFIX_REPZ;
3677
          break;
3678
        case REPNE_PREFIX_OPCODE:
3679
          prefixes |= PREFIX_REPNZ;
3680
          break;
3681
        case LOCK_PREFIX_OPCODE:
3682
          prefixes |= PREFIX_LOCK;
3683
          break;
3684
        case CS_PREFIX_OPCODE:
3685
          ir.override = X86_RECORD_CS_REGNUM;
3686
          break;
3687
        case SS_PREFIX_OPCODE:
3688
          ir.override = X86_RECORD_SS_REGNUM;
3689
          break;
3690
        case DS_PREFIX_OPCODE:
3691
          ir.override = X86_RECORD_DS_REGNUM;
3692
          break;
3693
        case ES_PREFIX_OPCODE:
3694
          ir.override = X86_RECORD_ES_REGNUM;
3695
          break;
3696
        case FS_PREFIX_OPCODE:
3697
          ir.override = X86_RECORD_FS_REGNUM;
3698
          break;
3699
        case GS_PREFIX_OPCODE:
3700
          ir.override = X86_RECORD_GS_REGNUM;
3701
          break;
3702
        case DATA_PREFIX_OPCODE:
3703
          prefixes |= PREFIX_DATA;
3704
          break;
3705
        case ADDR_PREFIX_OPCODE:
3706
          prefixes |= PREFIX_ADDR;
3707
          break;
3708
        case 0x40:      /* i386 inc %eax */
3709
        case 0x41:      /* i386 inc %ecx */
3710
        case 0x42:      /* i386 inc %edx */
3711
        case 0x43:      /* i386 inc %ebx */
3712
        case 0x44:      /* i386 inc %esp */
3713
        case 0x45:      /* i386 inc %ebp */
3714
        case 0x46:      /* i386 inc %esi */
3715
        case 0x47:      /* i386 inc %edi */
3716
        case 0x48:      /* i386 dec %eax */
3717
        case 0x49:      /* i386 dec %ecx */
3718
        case 0x4a:      /* i386 dec %edx */
3719
        case 0x4b:      /* i386 dec %ebx */
3720
        case 0x4c:      /* i386 dec %esp */
3721
        case 0x4d:      /* i386 dec %ebp */
3722
        case 0x4e:      /* i386 dec %esi */
3723
        case 0x4f:      /* i386 dec %edi */
3724
          if (ir.regmap[X86_RECORD_R8_REGNUM])  /* 64 bit target */
3725
            {
3726
               /* REX */
3727
               rex = 1;
3728
               rex_w = (opcode8 >> 3) & 1;
3729
               rex_r = (opcode8 & 0x4) << 1;
3730
               ir.rex_x = (opcode8 & 0x2) << 2;
3731
               ir.rex_b = (opcode8 & 0x1) << 3;
3732
            }
3733
          else                                  /* 32 bit target */
3734
            goto out_prefixes;
3735
          break;
3736
        default:
3737
          goto out_prefixes;
3738
          break;
3739
        }
3740
    }
3741
 out_prefixes:
3742
  if (ir.regmap[X86_RECORD_R8_REGNUM] && rex_w == 1)
3743
    {
3744
      ir.dflag = 2;
3745
    }
3746
  else
3747
    {
3748
      if (prefixes & PREFIX_DATA)
3749
        ir.dflag ^= 1;
3750
    }
3751
  if (prefixes & PREFIX_ADDR)
3752
    ir.aflag ^= 1;
3753
  else if (ir.regmap[X86_RECORD_R8_REGNUM])
3754
    ir.aflag = 2;
3755
 
3756
  /* now check op code */
3757
  opcode = (uint32_t) opcode8;
3758
 reswitch:
3759
  switch (opcode)
3760
    {
3761
    case 0x0f:
3762
      if (target_read_memory (ir.addr, &opcode8, 1))
3763
        {
3764
          if (record_debug)
3765
            printf_unfiltered (_("Process record: error reading memory at "
3766
                                 "addr %s len = 1.\n"),
3767
                               paddress (gdbarch, ir.addr));
3768
          return -1;
3769
        }
3770
      ir.addr++;
3771
      opcode = (uint32_t) opcode8 | 0x0f00;
3772
      goto reswitch;
3773
      break;
3774
 
3775
    case 0x00:    /* arith & logic */
3776
    case 0x01:
3777
    case 0x02:
3778
    case 0x03:
3779
    case 0x04:
3780
    case 0x05:
3781
    case 0x08:
3782
    case 0x09:
3783
    case 0x0a:
3784
    case 0x0b:
3785
    case 0x0c:
3786
    case 0x0d:
3787
    case 0x10:
3788
    case 0x11:
3789
    case 0x12:
3790
    case 0x13:
3791
    case 0x14:
3792
    case 0x15:
3793
    case 0x18:
3794
    case 0x19:
3795
    case 0x1a:
3796
    case 0x1b:
3797
    case 0x1c:
3798
    case 0x1d:
3799
    case 0x20:
3800
    case 0x21:
3801
    case 0x22:
3802
    case 0x23:
3803
    case 0x24:
3804
    case 0x25:
3805
    case 0x28:
3806
    case 0x29:
3807
    case 0x2a:
3808
    case 0x2b:
3809
    case 0x2c:
3810
    case 0x2d:
3811
    case 0x30:
3812
    case 0x31:
3813
    case 0x32:
3814
    case 0x33:
3815
    case 0x34:
3816
    case 0x35:
3817
    case 0x38:
3818
    case 0x39:
3819
    case 0x3a:
3820
    case 0x3b:
3821
    case 0x3c:
3822
    case 0x3d:
3823
      if (((opcode >> 3) & 7) != OP_CMPL)
3824
        {
3825
          if ((opcode & 1) == 0)
3826
            ir.ot = OT_BYTE;
3827
          else
3828
            ir.ot = ir.dflag + OT_WORD;
3829
 
3830
          switch ((opcode >> 1) & 3)
3831
            {
3832
            case 0:    /* OP Ev, Gv */
3833
              if (i386_record_modrm (&ir))
3834
                return -1;
3835
              if (ir.mod != 3)
3836
                {
3837
                  if (i386_record_lea_modrm (&ir))
3838
                    return -1;
3839
                }
3840
              else
3841
                {
3842
                  ir.rm |= ir.rex_b;
3843
                  if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
3844
                    ir.rm &= 0x3;
3845
                  I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
3846
                }
3847
              break;
3848
            case 1:    /* OP Gv, Ev */
3849
              if (i386_record_modrm (&ir))
3850
                return -1;
3851
              ir.reg |= rex_r;
3852
              if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
3853
                ir.reg &= 0x3;
3854
              I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
3855
              break;
3856
            case 2:    /* OP A, Iv */
3857
              I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
3858
              break;
3859
            }
3860
        }
3861
      I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
3862
      break;
3863
 
3864
    case 0x80:    /* GRP1 */
3865
    case 0x81:
3866
    case 0x82:
3867
    case 0x83:
3868
      if (i386_record_modrm (&ir))
3869
        return -1;
3870
 
3871
      if (ir.reg != OP_CMPL)
3872
        {
3873
          if ((opcode & 1) == 0)
3874
            ir.ot = OT_BYTE;
3875
          else
3876
            ir.ot = ir.dflag + OT_WORD;
3877
 
3878
          if (ir.mod != 3)
3879
            {
3880
              if (opcode == 0x83)
3881
                ir.rip_offset = 1;
3882
              else
3883
                ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
3884
              if (i386_record_lea_modrm (&ir))
3885
                return -1;
3886
            }
3887
          else
3888
            I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
3889
        }
3890
      I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
3891
      break;
3892
 
3893
    case 0x40:      /* inc */
3894
    case 0x41:
3895
    case 0x42:
3896
    case 0x43:
3897
    case 0x44:
3898
    case 0x45:
3899
    case 0x46:
3900
    case 0x47:
3901
 
3902
    case 0x48:      /* dec */
3903
    case 0x49:
3904
    case 0x4a:
3905
    case 0x4b:
3906
    case 0x4c:
3907
    case 0x4d:
3908
    case 0x4e:
3909
    case 0x4f:
3910
 
3911
      I386_RECORD_ARCH_LIST_ADD_REG (opcode & 7);
3912
      I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
3913
      break;
3914
 
3915
    case 0xf6:    /* GRP3 */
3916
    case 0xf7:
3917
      if ((opcode & 1) == 0)
3918
        ir.ot = OT_BYTE;
3919
      else
3920
        ir.ot = ir.dflag + OT_WORD;
3921
      if (i386_record_modrm (&ir))
3922
        return -1;
3923
 
3924
      if (ir.mod != 3 && ir.reg == 0)
3925
        ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
3926
 
3927
      switch (ir.reg)
3928
        {
3929
        case 0:    /* test */
3930
          I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
3931
          break;
3932
        case 2:    /* not */
3933
        case 3:    /* neg */
3934
          if (ir.mod != 3)
3935
            {
3936
              if (i386_record_lea_modrm (&ir))
3937
                return -1;
3938
            }
3939
          else
3940
            {
3941
              ir.rm |= ir.rex_b;
3942
              if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
3943
                ir.rm &= 0x3;
3944
              I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
3945
            }
3946
          if (ir.reg == 3)  /* neg */
3947
            I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
3948
          break;
3949
        case 4:    /* mul  */
3950
        case 5:    /* imul */
3951
        case 6:    /* div  */
3952
        case 7:    /* idiv */
3953
          I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
3954
          if (ir.ot != OT_BYTE)
3955
            I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
3956
          I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
3957
          break;
3958
        default:
3959
          ir.addr -= 2;
3960
          opcode = opcode << 8 | ir.modrm;
3961
          goto no_support;
3962
          break;
3963
        }
3964
      break;
3965
 
3966
    case 0xfe:    /* GRP4 */
3967
    case 0xff:    /* GRP5 */
3968
      if (i386_record_modrm (&ir))
3969
        return -1;
3970
      if (ir.reg >= 2 && opcode == 0xfe)
3971
        {
3972
          ir.addr -= 2;
3973
          opcode = opcode << 8 | ir.modrm;
3974
          goto no_support;
3975
        }
3976
      switch (ir.reg)
3977
        {
3978
        case 0:    /* inc */
3979
        case 1:    /* dec */
3980
          if ((opcode & 1) == 0)
3981
            ir.ot = OT_BYTE;
3982
          else
3983
            ir.ot = ir.dflag + OT_WORD;
3984
          if (ir.mod != 3)
3985
            {
3986
              if (i386_record_lea_modrm (&ir))
3987
                return -1;
3988
            }
3989
          else
3990
            {
3991
              ir.rm |= ir.rex_b;
3992
              if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
3993
                ir.rm &= 0x3;
3994
              I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
3995
            }
3996
          I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
3997
          break;
3998
        case 2:    /* call */
3999
          if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
4000
            ir.dflag = 2;
4001
          if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
4002
            return -1;
4003
          I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4004
          break;
4005
        case 3:    /* lcall */
4006
          I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
4007
          if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
4008
            return -1;
4009
          I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4010
          break;
4011
        case 4:    /* jmp  */
4012
        case 5:    /* ljmp */
4013
          I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4014
          break;
4015
        case 6:    /* push */
4016
          if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
4017
            ir.dflag = 2;
4018
          if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
4019
            return -1;
4020
          break;
4021
        default:
4022
          ir.addr -= 2;
4023
          opcode = opcode << 8 | ir.modrm;
4024
          goto no_support;
4025
          break;
4026
        }
4027
      break;
4028
 
4029
    case 0x84:    /* test */
4030
    case 0x85:
4031
    case 0xa8:
4032
    case 0xa9:
4033
      I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4034
      break;
4035
 
4036
    case 0x98:    /* CWDE/CBW */
4037
      I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4038
      break;
4039
 
4040
    case 0x99:    /* CDQ/CWD */
4041
      I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4042
      I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
4043
      break;
4044
 
4045
    case 0x0faf:  /* imul */
4046
    case 0x69:
4047
    case 0x6b:
4048
      ir.ot = ir.dflag + OT_WORD;
4049
      if (i386_record_modrm (&ir))
4050
        return -1;
4051
      if (opcode == 0x69)
4052
        ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
4053
      else if (opcode == 0x6b)
4054
        ir.rip_offset = 1;
4055
      ir.reg |= rex_r;
4056
      if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4057
        ir.reg &= 0x3;
4058
      I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
4059
      I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4060
      break;
4061
 
4062
    case 0x0fc0:  /* xadd */
4063
    case 0x0fc1:
4064
      if ((opcode & 1) == 0)
4065
        ir.ot = OT_BYTE;
4066
      else
4067
        ir.ot = ir.dflag + OT_WORD;
4068
      if (i386_record_modrm (&ir))
4069
        return -1;
4070
      ir.reg |= rex_r;
4071
      if (ir.mod == 3)
4072
        {
4073
          if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4074
            ir.reg &= 0x3;
4075
          I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
4076
          if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4077
            ir.rm &= 0x3;
4078
          I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
4079
        }
4080
      else
4081
        {
4082
          if (i386_record_lea_modrm (&ir))
4083
            return -1;
4084
          if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4085
            ir.reg &= 0x3;
4086
          I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
4087
        }
4088
      I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4089
      break;
4090
 
4091
    case 0x0fb0:  /* cmpxchg */
4092
    case 0x0fb1:
4093
      if ((opcode & 1) == 0)
4094
        ir.ot = OT_BYTE;
4095
      else
4096
        ir.ot = ir.dflag + OT_WORD;
4097
      if (i386_record_modrm (&ir))
4098
        return -1;
4099
      if (ir.mod == 3)
4100
        {
4101
          ir.reg |= rex_r;
4102
          I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4103
          if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4104
            ir.reg &= 0x3;
4105
          I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
4106
        }
4107
      else
4108
        {
4109
          I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4110
          if (i386_record_lea_modrm (&ir))
4111
            return -1;
4112
        }
4113
      I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4114
      break;
4115
 
4116
    case 0x0fc7:    /* cmpxchg8b */
4117
      if (i386_record_modrm (&ir))
4118
        return -1;
4119
      if (ir.mod == 3)
4120
        {
4121
          ir.addr -= 2;
4122
          opcode = opcode << 8 | ir.modrm;
4123
          goto no_support;
4124
        }
4125
      I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4126
      I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
4127
      if (i386_record_lea_modrm (&ir))
4128
        return -1;
4129
      I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4130
      break;
4131
 
4132
    case 0x50:    /* push */
4133
    case 0x51:
4134
    case 0x52:
4135
    case 0x53:
4136
    case 0x54:
4137
    case 0x55:
4138
    case 0x56:
4139
    case 0x57:
4140
    case 0x68:
4141
    case 0x6a:
4142
      if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
4143
        ir.dflag = 2;
4144
      if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
4145
        return -1;
4146
      break;
4147
 
4148
    case 0x06:    /* push es */
4149
    case 0x0e:    /* push cs */
4150
    case 0x16:    /* push ss */
4151
    case 0x1e:    /* push ds */
4152
      if (ir.regmap[X86_RECORD_R8_REGNUM])
4153
        {
4154
          ir.addr -= 1;
4155
          goto no_support;
4156
        }
4157
      if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
4158
        return -1;
4159
      break;
4160
 
4161
    case 0x0fa0:    /* push fs */
4162
    case 0x0fa8:    /* push gs */
4163
      if (ir.regmap[X86_RECORD_R8_REGNUM])
4164
        {
4165
          ir.addr -= 2;
4166
          goto no_support;
4167
        }
4168
      if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
4169
        return -1;
4170
      break;
4171
 
4172
    case 0x60:    /* pusha */
4173
      if (ir.regmap[X86_RECORD_R8_REGNUM])
4174
        {
4175
          ir.addr -= 1;
4176
          goto no_support;
4177
        }
4178
      if (i386_record_push (&ir, 1 << (ir.dflag + 4)))
4179
        return -1;
4180
      break;
4181
 
4182
    case 0x58:    /* pop */
4183
    case 0x59:
4184
    case 0x5a:
4185
    case 0x5b:
4186
    case 0x5c:
4187
    case 0x5d:
4188
    case 0x5e:
4189
    case 0x5f:
4190
      I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4191
      I386_RECORD_ARCH_LIST_ADD_REG ((opcode & 0x7) | ir.rex_b);
4192
      break;
4193
 
4194
    case 0x61:    /* popa */
4195
      if (ir.regmap[X86_RECORD_R8_REGNUM])
4196
        {
4197
          ir.addr -= 1;
4198
          goto no_support;
4199
        }
4200
      for (regnum = X86_RECORD_REAX_REGNUM;
4201
           regnum <= X86_RECORD_REDI_REGNUM;
4202
           regnum++)
4203
        I386_RECORD_ARCH_LIST_ADD_REG (regnum);
4204
      break;
4205
 
4206
    case 0x8f:    /* pop */
4207
      if (ir.regmap[X86_RECORD_R8_REGNUM])
4208
        ir.ot = ir.dflag ? OT_QUAD : OT_WORD;
4209
      else
4210
        ir.ot = ir.dflag + OT_WORD;
4211
      if (i386_record_modrm (&ir))
4212
        return -1;
4213
      if (ir.mod == 3)
4214
        I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
4215
      else
4216
        {
4217
          ir.popl_esp_hack = 1 << ir.ot;
4218
          if (i386_record_lea_modrm (&ir))
4219
            return -1;
4220
        }
4221
      I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4222
      break;
4223
 
4224
    case 0xc8:    /* enter */
4225
      I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
4226
      if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
4227
        ir.dflag = 2;
4228
      if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
4229
        return -1;
4230
      break;
4231
 
4232
    case 0xc9:    /* leave */
4233
      I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4234
      I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
4235
      break;
4236
 
4237
    case 0x07:    /* pop es */
4238
      if (ir.regmap[X86_RECORD_R8_REGNUM])
4239
        {
4240
          ir.addr -= 1;
4241
          goto no_support;
4242
        }
4243
      I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4244
      I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_ES_REGNUM);
4245
      I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4246
      break;
4247
 
4248
    case 0x17:    /* pop ss */
4249
      if (ir.regmap[X86_RECORD_R8_REGNUM])
4250
        {
4251
          ir.addr -= 1;
4252
          goto no_support;
4253
        }
4254
      I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4255
      I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_SS_REGNUM);
4256
      I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4257
      break;
4258
 
4259
    case 0x1f:    /* pop ds */
4260
      if (ir.regmap[X86_RECORD_R8_REGNUM])
4261
        {
4262
          ir.addr -= 1;
4263
          goto no_support;
4264
        }
4265
      I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4266
      I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_DS_REGNUM);
4267
      I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4268
      break;
4269
 
4270
    case 0x0fa1:    /* pop fs */
4271
      I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4272
      I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_FS_REGNUM);
4273
      I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4274
      break;
4275
 
4276
    case 0x0fa9:    /* pop gs */
4277
      I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4278
      I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_GS_REGNUM);
4279
      I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4280
      break;
4281
 
4282
    case 0x88:    /* mov */
4283
    case 0x89:
4284
    case 0xc6:
4285
    case 0xc7:
4286
      if ((opcode & 1) == 0)
4287
        ir.ot = OT_BYTE;
4288
      else
4289
        ir.ot = ir.dflag + OT_WORD;
4290
 
4291
      if (i386_record_modrm (&ir))
4292
        return -1;
4293
 
4294
      if (ir.mod != 3)
4295
        {
4296
          if (opcode == 0xc6 || opcode == 0xc7)
4297
            ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
4298
          if (i386_record_lea_modrm (&ir))
4299
            return -1;
4300
        }
4301
      else
4302
        {
4303
          if (opcode == 0xc6 || opcode == 0xc7)
4304
            ir.rm |= ir.rex_b;
4305
          if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4306
            ir.rm &= 0x3;
4307
          I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
4308
        }
4309
      break;
4310
 
4311
    case 0x8a:    /* mov */
4312
    case 0x8b:
4313
      if ((opcode & 1) == 0)
4314
        ir.ot = OT_BYTE;
4315
      else
4316
        ir.ot = ir.dflag + OT_WORD;
4317
      if (i386_record_modrm (&ir))
4318
        return -1;
4319
      ir.reg |= rex_r;
4320
      if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4321
        ir.reg &= 0x3;
4322
      I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
4323
      break;
4324
 
4325
    case 0x8c:    /* mov seg */
4326
      if (i386_record_modrm (&ir))
4327
        return -1;
4328
      if (ir.reg > 5)
4329
        {
4330
          ir.addr -= 2;
4331
          opcode = opcode << 8 | ir.modrm;
4332
          goto no_support;
4333
        }
4334
 
4335
      if (ir.mod == 3)
4336
        I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
4337
      else
4338
        {
4339
          ir.ot = OT_WORD;
4340
          if (i386_record_lea_modrm (&ir))
4341
            return -1;
4342
        }
4343
      break;
4344
 
4345
    case 0x8e:    /* mov seg */
4346
      if (i386_record_modrm (&ir))
4347
        return -1;
4348
      switch (ir.reg)
4349
        {
4350
        case 0:
4351
          regnum = X86_RECORD_ES_REGNUM;
4352
          break;
4353
        case 2:
4354
          regnum = X86_RECORD_SS_REGNUM;
4355
          break;
4356
        case 3:
4357
          regnum = X86_RECORD_DS_REGNUM;
4358
          break;
4359
        case 4:
4360
          regnum = X86_RECORD_FS_REGNUM;
4361
          break;
4362
        case 5:
4363
          regnum = X86_RECORD_GS_REGNUM;
4364
          break;
4365
        default:
4366
          ir.addr -= 2;
4367
          opcode = opcode << 8 | ir.modrm;
4368
          goto no_support;
4369
          break;
4370
        }
4371
      I386_RECORD_ARCH_LIST_ADD_REG (regnum);
4372
      I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4373
      break;
4374
 
4375
    case 0x0fb6:    /* movzbS */
4376
    case 0x0fb7:    /* movzwS */
4377
    case 0x0fbe:    /* movsbS */
4378
    case 0x0fbf:    /* movswS */
4379
      if (i386_record_modrm (&ir))
4380
        return -1;
4381
      I386_RECORD_ARCH_LIST_ADD_REG (ir.reg | rex_r);
4382
      break;
4383
 
4384
    case 0x8d:      /* lea */
4385
      if (i386_record_modrm (&ir))
4386
        return -1;
4387
      if (ir.mod == 3)
4388
        {
4389
          ir.addr -= 2;
4390
          opcode = opcode << 8 | ir.modrm;
4391
          goto no_support;
4392
        }
4393
      ir.ot = ir.dflag;
4394
      ir.reg |= rex_r;
4395
      if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4396
        ir.reg &= 0x3;
4397
      I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
4398
      break;
4399
 
4400
    case 0xa0:    /* mov EAX */
4401
    case 0xa1:
4402
 
4403
    case 0xd7:    /* xlat */
4404
      I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4405
      break;
4406
 
4407
    case 0xa2:    /* mov EAX */
4408
    case 0xa3:
4409
      if (ir.override >= 0)
4410
        {
4411
          if (record_memory_query)
4412
            {
4413
              int q;
4414
 
4415
              target_terminal_ours ();
4416
              q = yquery (_("\
4417
Process record ignores the memory change of instruction at address %s\n\
4418
because it can't get the value of the segment register.\n\
4419
Do you want to stop the program?"),
4420
                          paddress (gdbarch, ir.orig_addr));
4421
              target_terminal_inferior ();
4422
              if (q)
4423
                return -1;
4424
            }
4425
        }
4426
      else
4427
        {
4428
          if ((opcode & 1) == 0)
4429
            ir.ot = OT_BYTE;
4430
          else
4431
            ir.ot = ir.dflag + OT_WORD;
4432
          if (ir.aflag == 2)
4433
            {
4434
              if (target_read_memory (ir.addr, buf, 8))
4435
                {
4436
                  if (record_debug)
4437
                    printf_unfiltered (_("Process record: error reading "
4438
                                         "memory at addr 0x%s len = 8.\n"),
4439
                                       paddress (gdbarch, ir.addr));
4440
                  return -1;
4441
                }
4442
              ir.addr += 8;
4443
              addr = extract_unsigned_integer (buf, 8, byte_order);
4444
            }
4445
          else if (ir.aflag)
4446
            {
4447
              if (target_read_memory (ir.addr, buf, 4))
4448
                {
4449
                  if (record_debug)
4450
                    printf_unfiltered (_("Process record: error reading "
4451
                                         "memory at addr 0x%s len = 4.\n"),
4452
                                       paddress (gdbarch, ir.addr));
4453
                  return -1;
4454
                }
4455
              ir.addr += 4;
4456
              addr = extract_unsigned_integer (buf, 4, byte_order);
4457
            }
4458
          else
4459
            {
4460
              if (target_read_memory (ir.addr, buf, 2))
4461
                {
4462
                  if (record_debug)
4463
                    printf_unfiltered (_("Process record: error reading "
4464
                                         "memory at addr 0x%s len = 2.\n"),
4465
                                       paddress (gdbarch, ir.addr));
4466
                  return -1;
4467
                }
4468
              ir.addr += 2;
4469
              addr = extract_unsigned_integer (buf, 2, byte_order);
4470
            }
4471
          if (record_arch_list_add_mem (addr, 1 << ir.ot))
4472
            return -1;
4473
        }
4474
      break;
4475
 
4476
    case 0xb0:    /* mov R, Ib */
4477
    case 0xb1:
4478
    case 0xb2:
4479
    case 0xb3:
4480
    case 0xb4:
4481
    case 0xb5:
4482
    case 0xb6:
4483
    case 0xb7:
4484
      I386_RECORD_ARCH_LIST_ADD_REG ((ir.regmap[X86_RECORD_R8_REGNUM])
4485
                                        ? ((opcode & 0x7) | ir.rex_b)
4486
                                        : ((opcode & 0x7) & 0x3));
4487
      break;
4488
 
4489
    case 0xb8:    /* mov R, Iv */
4490
    case 0xb9:
4491
    case 0xba:
4492
    case 0xbb:
4493
    case 0xbc:
4494
    case 0xbd:
4495
    case 0xbe:
4496
    case 0xbf:
4497
      I386_RECORD_ARCH_LIST_ADD_REG ((opcode & 0x7) | ir.rex_b);
4498
      break;
4499
 
4500
    case 0x91:    /* xchg R, EAX */
4501
    case 0x92:
4502
    case 0x93:
4503
    case 0x94:
4504
    case 0x95:
4505
    case 0x96:
4506
    case 0x97:
4507
      I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4508
      I386_RECORD_ARCH_LIST_ADD_REG (opcode & 0x7);
4509
      break;
4510
 
4511
    case 0x86:    /* xchg Ev, Gv */
4512
    case 0x87:
4513
      if ((opcode & 1) == 0)
4514
        ir.ot = OT_BYTE;
4515
      else
4516
        ir.ot = ir.dflag + OT_WORD;
4517
      if (i386_record_modrm (&ir))
4518
        return -1;
4519
      if (ir.mod == 3)
4520
        {
4521
          ir.rm |= ir.rex_b;
4522
          if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4523
            ir.rm &= 0x3;
4524
          I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
4525
        }
4526
      else
4527
        {
4528
          if (i386_record_lea_modrm (&ir))
4529
            return -1;
4530
        }
4531
      ir.reg |= rex_r;
4532
      if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4533
        ir.reg &= 0x3;
4534
      I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
4535
      break;
4536
 
4537
    case 0xc4:    /* les Gv */
4538
    case 0xc5:    /* lds Gv */
4539
      if (ir.regmap[X86_RECORD_R8_REGNUM])
4540
        {
4541
          ir.addr -= 1;
4542
          goto no_support;
4543
        }
4544
    case 0x0fb2:    /* lss Gv */
4545
    case 0x0fb4:    /* lfs Gv */
4546
    case 0x0fb5:    /* lgs Gv */
4547
      if (i386_record_modrm (&ir))
4548
        return -1;
4549
      if (ir.mod == 3)
4550
        {
4551
          if (opcode > 0xff)
4552
            ir.addr -= 3;
4553
          else
4554
            ir.addr -= 2;
4555
          opcode = opcode << 8 | ir.modrm;
4556
          goto no_support;
4557
        }
4558
      switch (opcode)
4559
        {
4560
        case 0xc4:    /* les Gv */
4561
          regnum = X86_RECORD_ES_REGNUM;
4562
          break;
4563
        case 0xc5:    /* lds Gv */
4564
          regnum = X86_RECORD_DS_REGNUM;
4565
          break;
4566
        case 0x0fb2:  /* lss Gv */
4567
          regnum = X86_RECORD_SS_REGNUM;
4568
          break;
4569
        case 0x0fb4:  /* lfs Gv */
4570
          regnum = X86_RECORD_FS_REGNUM;
4571
          break;
4572
        case 0x0fb5:  /* lgs Gv */
4573
          regnum = X86_RECORD_GS_REGNUM;
4574
          break;
4575
        }
4576
      I386_RECORD_ARCH_LIST_ADD_REG (regnum);
4577
      I386_RECORD_ARCH_LIST_ADD_REG (ir.reg | rex_r);
4578
      I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4579
      break;
4580
 
4581
    case 0xc0:    /* shifts */
4582
    case 0xc1:
4583
    case 0xd0:
4584
    case 0xd1:
4585
    case 0xd2:
4586
    case 0xd3:
4587
      if ((opcode & 1) == 0)
4588
        ir.ot = OT_BYTE;
4589
      else
4590
        ir.ot = ir.dflag + OT_WORD;
4591
      if (i386_record_modrm (&ir))
4592
        return -1;
4593
      if (ir.mod != 3 && (opcode == 0xd2 || opcode == 0xd3))
4594
        {
4595
          if (i386_record_lea_modrm (&ir))
4596
            return -1;
4597
        }
4598
      else
4599
        {
4600
          ir.rm |= ir.rex_b;
4601
          if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4602
            ir.rm &= 0x3;
4603
          I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
4604
        }
4605
      I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4606
      break;
4607
 
4608
    case 0x0fa4:
4609
    case 0x0fa5:
4610
    case 0x0fac:
4611
    case 0x0fad:
4612
      if (i386_record_modrm (&ir))
4613
        return -1;
4614
      if (ir.mod == 3)
4615
        {
4616
          if (record_arch_list_add_reg (ir.regcache, ir.rm))
4617
            return -1;
4618
        }
4619
      else
4620
        {
4621
          if (i386_record_lea_modrm (&ir))
4622
            return -1;
4623
        }
4624
      break;
4625
 
4626
    case 0xd8:    /* Floats.  */
4627
    case 0xd9:
4628
    case 0xda:
4629
    case 0xdb:
4630
    case 0xdc:
4631
    case 0xdd:
4632
    case 0xde:
4633
    case 0xdf:
4634
      if (i386_record_modrm (&ir))
4635
        return -1;
4636
      ir.reg |= ((opcode & 7) << 3);
4637
      if (ir.mod != 3)
4638
        {
4639
          /* Memory. */
4640
          uint64_t addr64;
4641
 
4642
          if (i386_record_lea_modrm_addr (&ir, &addr64))
4643
            return -1;
4644
          switch (ir.reg)
4645
            {
4646
            case 0x02:
4647
            case 0x12:
4648
            case 0x22:
4649
            case 0x32:
4650
              /* For fcom, ficom nothing to do.  */
4651
              break;
4652
            case 0x03:
4653
            case 0x13:
4654
            case 0x23:
4655
            case 0x33:
4656
              /* For fcomp, ficomp pop FPU stack, store all.  */
4657
              if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
4658
                return -1;
4659
              break;
4660
            case 0x00:
4661
            case 0x01:
4662
            case 0x04:
4663
            case 0x05:
4664
            case 0x06:
4665
            case 0x07:
4666
            case 0x10:
4667
            case 0x11:
4668
            case 0x14:
4669
            case 0x15:
4670
            case 0x16:
4671
            case 0x17:
4672
            case 0x20:
4673
            case 0x21:
4674
            case 0x24:
4675
            case 0x25:
4676
            case 0x26:
4677
            case 0x27:
4678
            case 0x30:
4679
            case 0x31:
4680
            case 0x34:
4681
            case 0x35:
4682
            case 0x36:
4683
            case 0x37:
4684
              /* For fadd, fmul, fsub, fsubr, fdiv, fdivr, fiadd, fimul,
4685
                 fisub, fisubr, fidiv, fidivr, modR/M.reg is an extension
4686
                 of code,  always affects st(0) register.  */
4687
              if (i386_record_floats (gdbarch, &ir, I387_ST0_REGNUM (tdep)))
4688
                return -1;
4689
              break;
4690
            case 0x08:
4691
            case 0x0a:
4692
            case 0x0b:
4693
            case 0x18:
4694
            case 0x19:
4695
            case 0x1a:
4696
            case 0x1b:
4697
            case 0x1d:
4698
            case 0x28:
4699
            case 0x29:
4700
            case 0x2a:
4701
            case 0x2b:
4702
            case 0x38:
4703
            case 0x39:
4704
            case 0x3a:
4705
            case 0x3b:
4706
            case 0x3c:
4707
            case 0x3d:
4708
              switch (ir.reg & 7)
4709
                {
4710
                case 0:
4711
                  /* Handling fld, fild.  */
4712
                  if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
4713
                    return -1;
4714
                  break;
4715
                case 1:
4716
                  switch (ir.reg >> 4)
4717
                    {
4718
                    case 0:
4719
                      if (record_arch_list_add_mem (addr64, 4))
4720
                        return -1;
4721
                      break;
4722
                    case 2:
4723
                      if (record_arch_list_add_mem (addr64, 8))
4724
                        return -1;
4725
                      break;
4726
                    case 3:
4727
                      break;
4728
                    default:
4729
                      if (record_arch_list_add_mem (addr64, 2))
4730
                        return -1;
4731
                      break;
4732
                    }
4733
                  break;
4734
                default:
4735
                  switch (ir.reg >> 4)
4736
                    {
4737
                    case 0:
4738
                      if (record_arch_list_add_mem (addr64, 4))
4739
                        return -1;
4740
                      if (3 == (ir.reg & 7))
4741
                        {
4742
                          /* For fstp m32fp.  */
4743
                          if (i386_record_floats (gdbarch, &ir,
4744
                                                  I386_SAVE_FPU_REGS))
4745
                            return -1;
4746
                        }
4747
                      break;
4748
                    case 1:
4749
                      if (record_arch_list_add_mem (addr64, 4))
4750
                        return -1;
4751
                      if ((3 == (ir.reg & 7))
4752
                          || (5 == (ir.reg & 7))
4753
                          || (7 == (ir.reg & 7)))
4754
                        {
4755
                          /* For fstp insn.  */
4756
                          if (i386_record_floats (gdbarch, &ir,
4757
                                                  I386_SAVE_FPU_REGS))
4758
                            return -1;
4759
                        }
4760
                      break;
4761
                    case 2:
4762
                      if (record_arch_list_add_mem (addr64, 8))
4763
                        return -1;
4764
                      if (3 == (ir.reg & 7))
4765
                        {
4766
                          /* For fstp m64fp.  */
4767
                          if (i386_record_floats (gdbarch, &ir,
4768
                                                  I386_SAVE_FPU_REGS))
4769
                            return -1;
4770
                        }
4771
                      break;
4772
                    case 3:
4773
                      if ((3 <= (ir.reg & 7)) && (6 <= (ir.reg & 7)))
4774
                        {
4775
                          /* For fistp, fbld, fild, fbstp.  */
4776
                          if (i386_record_floats (gdbarch, &ir,
4777
                                                  I386_SAVE_FPU_REGS))
4778
                            return -1;
4779
                        }
4780
                      /* Fall through */
4781
                    default:
4782
                      if (record_arch_list_add_mem (addr64, 2))
4783
                        return -1;
4784
                      break;
4785
                    }
4786
                  break;
4787
                }
4788
              break;
4789
            case 0x0c:
4790
              /* Insn fldenv.  */
4791
              if (i386_record_floats (gdbarch, &ir,
4792
                                      I386_SAVE_FPU_ENV_REG_STACK))
4793
                return -1;
4794
              break;
4795
            case 0x0d:
4796
              /* Insn fldcw.  */
4797
              if (i386_record_floats (gdbarch, &ir, I387_FCTRL_REGNUM (tdep)))
4798
                return -1;
4799
              break;
4800
            case 0x2c:
4801
              /* Insn frstor.  */
4802
              if (i386_record_floats (gdbarch, &ir,
4803
                                      I386_SAVE_FPU_ENV_REG_STACK))
4804
                return -1;
4805
              break;
4806
            case 0x0e:
4807
              if (ir.dflag)
4808
                {
4809
                  if (record_arch_list_add_mem (addr64, 28))
4810
                    return -1;
4811
                }
4812
              else
4813
                {
4814
                  if (record_arch_list_add_mem (addr64, 14))
4815
                    return -1;
4816
                }
4817
              break;
4818
            case 0x0f:
4819
            case 0x2f:
4820
              if (record_arch_list_add_mem (addr64, 2))
4821
                return -1;
4822
              /* Insn fstp, fbstp.  */
4823
              if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
4824
                return -1;
4825
              break;
4826
            case 0x1f:
4827
            case 0x3e:
4828
              if (record_arch_list_add_mem (addr64, 10))
4829
                return -1;
4830
              break;
4831
            case 0x2e:
4832
              if (ir.dflag)
4833
                {
4834
                  if (record_arch_list_add_mem (addr64, 28))
4835
                    return -1;
4836
                  addr64 += 28;
4837
                }
4838
              else
4839
                {
4840
                  if (record_arch_list_add_mem (addr64, 14))
4841
                    return -1;
4842
                  addr64 += 14;
4843
                }
4844
              if (record_arch_list_add_mem (addr64, 80))
4845
                return -1;
4846
              /* Insn fsave.  */
4847
              if (i386_record_floats (gdbarch, &ir,
4848
                                      I386_SAVE_FPU_ENV_REG_STACK))
4849
                return -1;
4850
              break;
4851
            case 0x3f:
4852
              if (record_arch_list_add_mem (addr64, 8))
4853
                return -1;
4854
              /* Insn fistp.  */
4855
              if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
4856
                return -1;
4857
              break;
4858
            default:
4859
              ir.addr -= 2;
4860
              opcode = opcode << 8 | ir.modrm;
4861
              goto no_support;
4862
              break;
4863
            }
4864
        }
4865
      /* Opcode is an extension of modR/M byte.  */
4866
      else
4867
        {
4868
          switch (opcode)
4869
            {
4870
            case 0xd8:
4871
              if (i386_record_floats (gdbarch, &ir, I387_ST0_REGNUM (tdep)))
4872
                return -1;
4873
              break;
4874
            case 0xd9:
4875
              if (0x0c == (ir.modrm >> 4))
4876
                {
4877
                  if ((ir.modrm & 0x0f) <= 7)
4878
                    {
4879
                      if (i386_record_floats (gdbarch, &ir,
4880
                                              I386_SAVE_FPU_REGS))
4881
                        return -1;
4882
                    }
4883
                  else
4884
                    {
4885
                      if (i386_record_floats (gdbarch, &ir,
4886
                                              I387_ST0_REGNUM (tdep)))
4887
                        return -1;
4888
                      /* If only st(0) is changing, then we have already
4889
                         recorded.  */
4890
                      if ((ir.modrm & 0x0f) - 0x08)
4891
                        {
4892
                          if (i386_record_floats (gdbarch, &ir,
4893
                                                  I387_ST0_REGNUM (tdep) +
4894
                                                  ((ir.modrm & 0x0f) - 0x08)))
4895
                            return -1;
4896
                        }
4897
                    }
4898
                }
4899
              else
4900
                {
4901
                  switch (ir.modrm)
4902
                    {
4903
                    case 0xe0:
4904
                    case 0xe1:
4905
                    case 0xf0:
4906
                    case 0xf5:
4907
                    case 0xf8:
4908
                    case 0xfa:
4909
                    case 0xfc:
4910
                    case 0xfe:
4911
                    case 0xff:
4912
                      if (i386_record_floats (gdbarch, &ir,
4913
                                              I387_ST0_REGNUM (tdep)))
4914
                        return -1;
4915
                      break;
4916
                    case 0xf1:
4917
                    case 0xf2:
4918
                    case 0xf3:
4919
                    case 0xf4:
4920
                    case 0xf6:
4921
                    case 0xf7:
4922
                    case 0xe8:
4923
                    case 0xe9:
4924
                    case 0xea:
4925
                    case 0xeb:
4926
                    case 0xec:
4927
                    case 0xed:
4928
                    case 0xee:
4929
                    case 0xf9:
4930
                    case 0xfb:
4931
                      if (i386_record_floats (gdbarch, &ir,
4932
                                              I386_SAVE_FPU_REGS))
4933
                        return -1;
4934
                      break;
4935
                    case 0xfd:
4936
                      if (i386_record_floats (gdbarch, &ir,
4937
                                              I387_ST0_REGNUM (tdep)))
4938
                        return -1;
4939
                      if (i386_record_floats (gdbarch, &ir,
4940
                                              I387_ST0_REGNUM (tdep) + 1))
4941
                        return -1;
4942
                      break;
4943
                    }
4944
                }
4945
              break;
4946
            case 0xda:
4947
              if (0xe9 == ir.modrm)
4948
                {
4949
                  if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
4950
                    return -1;
4951
                }
4952
              else if ((0x0c == ir.modrm >> 4) || (0x0d == ir.modrm >> 4))
4953
                {
4954
                  if (i386_record_floats (gdbarch, &ir,
4955
                                          I387_ST0_REGNUM (tdep)))
4956
                    return -1;
4957
                  if (((ir.modrm & 0x0f) > 0) && ((ir.modrm & 0x0f) <= 7))
4958
                    {
4959
                      if (i386_record_floats (gdbarch, &ir,
4960
                                              I387_ST0_REGNUM (tdep) +
4961
                                              (ir.modrm & 0x0f)))
4962
                        return -1;
4963
                    }
4964
                  else if ((ir.modrm & 0x0f) - 0x08)
4965
                    {
4966
                      if (i386_record_floats (gdbarch, &ir,
4967
                                              I387_ST0_REGNUM (tdep) +
4968
                                              ((ir.modrm & 0x0f) - 0x08)))
4969
                        return -1;
4970
                    }
4971
                }
4972
              break;
4973
            case 0xdb:
4974
              if (0xe3 == ir.modrm)
4975
                {
4976
                  if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_ENV))
4977
                    return -1;
4978
                }
4979
              else if ((0x0c == ir.modrm >> 4) || (0x0d == ir.modrm >> 4))
4980
                {
4981
                  if (i386_record_floats (gdbarch, &ir,
4982
                                          I387_ST0_REGNUM (tdep)))
4983
                    return -1;
4984
                  if (((ir.modrm & 0x0f) > 0) && ((ir.modrm & 0x0f) <= 7))
4985
                    {
4986
                      if (i386_record_floats (gdbarch, &ir,
4987
                                              I387_ST0_REGNUM (tdep) +
4988
                                              (ir.modrm & 0x0f)))
4989
                        return -1;
4990
                    }
4991
                  else if ((ir.modrm & 0x0f) - 0x08)
4992
                    {
4993
                      if (i386_record_floats (gdbarch, &ir,
4994
                                              I387_ST0_REGNUM (tdep) +
4995
                                              ((ir.modrm & 0x0f) - 0x08)))
4996
                        return -1;
4997
                    }
4998
                }
4999
              break;
5000
            case 0xdc:
5001
              if ((0x0c == ir.modrm >> 4)
5002
                  || (0x0d == ir.modrm >> 4)
5003
                  || (0x0f == ir.modrm >> 4))
5004
                {
5005
                  if ((ir.modrm & 0x0f) <= 7)
5006
                    {
5007
                      if (i386_record_floats (gdbarch, &ir,
5008
                                              I387_ST0_REGNUM (tdep) +
5009
                                              (ir.modrm & 0x0f)))
5010
                        return -1;
5011
                    }
5012
                  else
5013
                    {
5014
                      if (i386_record_floats (gdbarch, &ir,
5015
                                              I387_ST0_REGNUM (tdep) +
5016
                                              ((ir.modrm & 0x0f) - 0x08)))
5017
                        return -1;
5018
                    }
5019
                }
5020
              break;
5021
            case 0xdd:
5022
              if (0x0c == ir.modrm >> 4)
5023
                {
5024
                  if (i386_record_floats (gdbarch, &ir,
5025
                                          I387_FTAG_REGNUM (tdep)))
5026
                    return -1;
5027
                }
5028
              else if ((0x0d == ir.modrm >> 4) || (0x0e == ir.modrm >> 4))
5029
                {
5030
                  if ((ir.modrm & 0x0f) <= 7)
5031
                    {
5032
                      if (i386_record_floats (gdbarch, &ir,
5033
                                              I387_ST0_REGNUM (tdep) +
5034
                                              (ir.modrm & 0x0f)))
5035
                        return -1;
5036
                    }
5037
                  else
5038
                    {
5039
                      if (i386_record_floats (gdbarch, &ir,
5040
                                              I386_SAVE_FPU_REGS))
5041
                        return -1;
5042
                    }
5043
                }
5044
              break;
5045
            case 0xde:
5046
              if ((0x0c == ir.modrm >> 4)
5047
                  || (0x0e == ir.modrm >> 4)
5048
                  || (0x0f == ir.modrm >> 4)
5049
                  || (0xd9 == ir.modrm))
5050
                {
5051
                  if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5052
                    return -1;
5053
                }
5054
              break;
5055
            case 0xdf:
5056
              if (0xe0 == ir.modrm)
5057
                {
5058
                  if (record_arch_list_add_reg (ir.regcache, I386_EAX_REGNUM))
5059
                    return -1;
5060
                }
5061
              else if ((0x0f == ir.modrm >> 4) || (0x0e == ir.modrm >> 4))
5062
                {
5063
                  if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5064
                    return -1;
5065
                }
5066
              break;
5067
            }
5068
        }
5069
      break;
5070
      /* string ops */
5071
    case 0xa4:    /* movsS */
5072
    case 0xa5:
5073
    case 0xaa:    /* stosS */
5074
    case 0xab:
5075
    case 0x6c:    /* insS */
5076
    case 0x6d:
5077
      regcache_raw_read_unsigned (ir.regcache,
5078
                                  ir.regmap[X86_RECORD_RECX_REGNUM],
5079
                                  &addr);
5080
      if (addr)
5081
        {
5082
          ULONGEST es, ds;
5083
 
5084
          if ((opcode & 1) == 0)
5085
            ir.ot = OT_BYTE;
5086
          else
5087
            ir.ot = ir.dflag + OT_WORD;
5088
          regcache_raw_read_unsigned (ir.regcache,
5089
                                      ir.regmap[X86_RECORD_REDI_REGNUM],
5090
                                      &addr);
5091
 
5092
          regcache_raw_read_unsigned (ir.regcache,
5093
                                      ir.regmap[X86_RECORD_ES_REGNUM],
5094
                                      &es);
5095
          regcache_raw_read_unsigned (ir.regcache,
5096
                                      ir.regmap[X86_RECORD_DS_REGNUM],
5097
                                      &ds);
5098
          if (ir.aflag && (es != ds))
5099
            {
5100
              /* addr += ((uint32_t) read_register (I386_ES_REGNUM)) << 4; */
5101
              if (record_memory_query)
5102
                {
5103
                  int q;
5104
 
5105
                  target_terminal_ours ();
5106
                  q = yquery (_("\
5107
Process record ignores the memory change of instruction at address %s\n\
5108
because it can't get the value of the segment register.\n\
5109
Do you want to stop the program?"),
5110
                              paddress (gdbarch, ir.orig_addr));
5111
                  target_terminal_inferior ();
5112
                  if (q)
5113
                    return -1;
5114
                }
5115
            }
5116
          else
5117
            {
5118
              if (record_arch_list_add_mem (addr, 1 << ir.ot))
5119
                return -1;
5120
            }
5121
 
5122
          if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
5123
            I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
5124
          if (opcode == 0xa4 || opcode == 0xa5)
5125
            I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
5126
          I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
5127
          I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5128
        }
5129
      break;
5130
 
5131
    case 0xa6:    /* cmpsS */
5132
    case 0xa7:
5133
      I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
5134
      I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
5135
      if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
5136
        I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
5137
      I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5138
      break;
5139
 
5140
    case 0xac:    /* lodsS */
5141
    case 0xad:
5142
      I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5143
      I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
5144
      if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
5145
        I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
5146
      I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5147
      break;
5148
 
5149
    case 0xae:    /* scasS */
5150
    case 0xaf:
5151
      I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
5152
      if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
5153
        I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
5154
      I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5155
      break;
5156
 
5157
    case 0x6e:    /* outsS */
5158
    case 0x6f:
5159
      I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
5160
      if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
5161
        I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
5162
      I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5163
      break;
5164
 
5165
    case 0xe4:    /* port I/O */
5166
    case 0xe5:
5167
    case 0xec:
5168
    case 0xed:
5169
      I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5170
      I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5171
      break;
5172
 
5173
    case 0xe6:
5174
    case 0xe7:
5175
    case 0xee:
5176
    case 0xef:
5177
      break;
5178
 
5179
      /* control */
5180
    case 0xc2:    /* ret im */
5181
    case 0xc3:    /* ret */
5182
      I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5183
      I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5184
      break;
5185
 
5186
    case 0xca:    /* lret im */
5187
    case 0xcb:    /* lret */
5188
    case 0xcf:    /* iret */
5189
      I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
5190
      I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5191
      I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5192
      break;
5193
 
5194
    case 0xe8:    /* call im */
5195
      if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5196
        ir.dflag = 2;
5197
      if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5198
        return -1;
5199
      break;
5200
 
5201
    case 0x9a:    /* lcall im */
5202
      if (ir.regmap[X86_RECORD_R8_REGNUM])
5203
        {
5204
          ir.addr -= 1;
5205
          goto no_support;
5206
        }
5207
      I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
5208
      if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5209
        return -1;
5210
      break;
5211
 
5212
    case 0xe9:    /* jmp im */
5213
    case 0xea:    /* ljmp im */
5214
    case 0xeb:    /* jmp Jb */
5215
    case 0x70:    /* jcc Jb */
5216
    case 0x71:
5217
    case 0x72:
5218
    case 0x73:
5219
    case 0x74:
5220
    case 0x75:
5221
    case 0x76:
5222
    case 0x77:
5223
    case 0x78:
5224
    case 0x79:
5225
    case 0x7a:
5226
    case 0x7b:
5227
    case 0x7c:
5228
    case 0x7d:
5229
    case 0x7e:
5230
    case 0x7f:
5231
    case 0x0f80:  /* jcc Jv */
5232
    case 0x0f81:
5233
    case 0x0f82:
5234
    case 0x0f83:
5235
    case 0x0f84:
5236
    case 0x0f85:
5237
    case 0x0f86:
5238
    case 0x0f87:
5239
    case 0x0f88:
5240
    case 0x0f89:
5241
    case 0x0f8a:
5242
    case 0x0f8b:
5243
    case 0x0f8c:
5244
    case 0x0f8d:
5245
    case 0x0f8e:
5246
    case 0x0f8f:
5247
      break;
5248
 
5249
    case 0x0f90:  /* setcc Gv */
5250
    case 0x0f91:
5251
    case 0x0f92:
5252
    case 0x0f93:
5253
    case 0x0f94:
5254
    case 0x0f95:
5255
    case 0x0f96:
5256
    case 0x0f97:
5257
    case 0x0f98:
5258
    case 0x0f99:
5259
    case 0x0f9a:
5260
    case 0x0f9b:
5261
    case 0x0f9c:
5262
    case 0x0f9d:
5263
    case 0x0f9e:
5264
    case 0x0f9f:
5265
      I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5266
      ir.ot = OT_BYTE;
5267
      if (i386_record_modrm (&ir))
5268
        return -1;
5269
      if (ir.mod == 3)
5270
        I386_RECORD_ARCH_LIST_ADD_REG (ir.rex_b ? (ir.rm | ir.rex_b)
5271
                                                : (ir.rm & 0x3));
5272
      else
5273
        {
5274
          if (i386_record_lea_modrm (&ir))
5275
            return -1;
5276
        }
5277
      break;
5278
 
5279
    case 0x0f40:    /* cmov Gv, Ev */
5280
    case 0x0f41:
5281
    case 0x0f42:
5282
    case 0x0f43:
5283
    case 0x0f44:
5284
    case 0x0f45:
5285
    case 0x0f46:
5286
    case 0x0f47:
5287
    case 0x0f48:
5288
    case 0x0f49:
5289
    case 0x0f4a:
5290
    case 0x0f4b:
5291
    case 0x0f4c:
5292
    case 0x0f4d:
5293
    case 0x0f4e:
5294
    case 0x0f4f:
5295
      if (i386_record_modrm (&ir))
5296
        return -1;
5297
      ir.reg |= rex_r;
5298
      if (ir.dflag == OT_BYTE)
5299
        ir.reg &= 0x3;
5300
      I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
5301
      break;
5302
 
5303
      /* flags */
5304
    case 0x9c:    /* pushf */
5305
      I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5306
      if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5307
        ir.dflag = 2;
5308
      if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5309
        return -1;
5310
      break;
5311
 
5312
    case 0x9d:    /* popf */
5313
      I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5314
      I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5315
      break;
5316
 
5317
    case 0x9e:    /* sahf */
5318
      if (ir.regmap[X86_RECORD_R8_REGNUM])
5319
        {
5320
          ir.addr -= 1;
5321
          goto no_support;
5322
        }
5323
    case 0xf5:    /* cmc */
5324
    case 0xf8:    /* clc */
5325
    case 0xf9:    /* stc */
5326
    case 0xfc:    /* cld */
5327
    case 0xfd:    /* std */
5328
      I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5329
      break;
5330
 
5331
    case 0x9f:    /* lahf */
5332
      if (ir.regmap[X86_RECORD_R8_REGNUM])
5333
        {
5334
          ir.addr -= 1;
5335
          goto no_support;
5336
        }
5337
      I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5338
      I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5339
      break;
5340
 
5341
      /* bit operations */
5342
    case 0x0fba:    /* bt/bts/btr/btc Gv, im */
5343
      ir.ot = ir.dflag + OT_WORD;
5344
      if (i386_record_modrm (&ir))
5345
        return -1;
5346
      if (ir.reg < 4)
5347
        {
5348
          ir.addr -= 2;
5349
          opcode = opcode << 8 | ir.modrm;
5350
          goto no_support;
5351
        }
5352
      if (ir.reg != 4)
5353
        {
5354
          if (ir.mod == 3)
5355
            I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
5356
          else
5357
            {
5358
              if (i386_record_lea_modrm (&ir))
5359
                return -1;
5360
            }
5361
        }
5362
      I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5363
      break;
5364
 
5365
    case 0x0fa3:    /* bt Gv, Ev */
5366
      I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5367
      break;
5368
 
5369
    case 0x0fab:    /* bts */
5370
    case 0x0fb3:    /* btr */
5371
    case 0x0fbb:    /* btc */
5372
      ir.ot = ir.dflag + OT_WORD;
5373
      if (i386_record_modrm (&ir))
5374
        return -1;
5375
      if (ir.mod == 3)
5376
        I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
5377
      else
5378
        {
5379
          uint64_t addr64;
5380
          if (i386_record_lea_modrm_addr (&ir, &addr64))
5381
            return -1;
5382
          regcache_raw_read_unsigned (ir.regcache,
5383
                                      ir.regmap[ir.reg | rex_r],
5384
                                      &addr);
5385
          switch (ir.dflag)
5386
            {
5387
            case 0:
5388
              addr64 += ((int16_t) addr >> 4) << 4;
5389
              break;
5390
            case 1:
5391
              addr64 += ((int32_t) addr >> 5) << 5;
5392
              break;
5393
            case 2:
5394
              addr64 += ((int64_t) addr >> 6) << 6;
5395
              break;
5396
            }
5397
          if (record_arch_list_add_mem (addr64, 1 << ir.ot))
5398
            return -1;
5399
          if (i386_record_lea_modrm (&ir))
5400
            return -1;
5401
        }
5402
      I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5403
      break;
5404
 
5405
    case 0x0fbc:    /* bsf */
5406
    case 0x0fbd:    /* bsr */
5407
      I386_RECORD_ARCH_LIST_ADD_REG (ir.reg | rex_r);
5408
      I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5409
      break;
5410
 
5411
      /* bcd */
5412
    case 0x27:    /* daa */
5413
    case 0x2f:    /* das */
5414
    case 0x37:    /* aaa */
5415
    case 0x3f:    /* aas */
5416
    case 0xd4:    /* aam */
5417
    case 0xd5:    /* aad */
5418
      if (ir.regmap[X86_RECORD_R8_REGNUM])
5419
        {
5420
          ir.addr -= 1;
5421
          goto no_support;
5422
        }
5423
      I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5424
      I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5425
      break;
5426
 
5427
      /* misc */
5428
    case 0x90:    /* nop */
5429
      if (prefixes & PREFIX_LOCK)
5430
        {
5431
          ir.addr -= 1;
5432
          goto no_support;
5433
        }
5434
      break;
5435
 
5436
    case 0x9b:    /* fwait */
5437
      if (target_read_memory (ir.addr, &opcode8, 1))
5438
        {
5439
          if (record_debug)
5440
            printf_unfiltered (_("Process record: error reading memory at "
5441
                                 "addr 0x%s len = 1.\n"),
5442
                               paddress (gdbarch, ir.addr));
5443
          return -1;
5444
        }
5445
      opcode = (uint32_t) opcode8;
5446
      ir.addr++;
5447
      goto reswitch;
5448
      break;
5449
 
5450
      /* XXX */
5451
    case 0xcc:    /* int3 */
5452
      printf_unfiltered (_("Process record does not support instruction "
5453
                           "int3.\n"));
5454
      ir.addr -= 1;
5455
      goto no_support;
5456
      break;
5457
 
5458
      /* XXX */
5459
    case 0xcd:    /* int */
5460
      {
5461
        int ret;
5462
        uint8_t interrupt;
5463
        if (target_read_memory (ir.addr, &interrupt, 1))
5464
          {
5465
            if (record_debug)
5466
              printf_unfiltered (_("Process record: error reading memory "
5467
                                   "at addr %s len = 1.\n"),
5468
                                 paddress (gdbarch, ir.addr));
5469
            return -1;
5470
          }
5471
        ir.addr++;
5472
        if (interrupt != 0x80
5473
            || tdep->i386_intx80_record == NULL)
5474
          {
5475
            printf_unfiltered (_("Process record does not support "
5476
                                 "instruction int 0x%02x.\n"),
5477
                               interrupt);
5478
            ir.addr -= 2;
5479
            goto no_support;
5480
          }
5481
        ret = tdep->i386_intx80_record (ir.regcache);
5482
        if (ret)
5483
          return ret;
5484
      }
5485
      break;
5486
 
5487
      /* XXX */
5488
    case 0xce:    /* into */
5489
      printf_unfiltered (_("Process record does not support "
5490
                           "instruction into.\n"));
5491
      ir.addr -= 1;
5492
      goto no_support;
5493
      break;
5494
 
5495
    case 0xfa:    /* cli */
5496
    case 0xfb:    /* sti */
5497
      break;
5498
 
5499
    case 0x62:    /* bound */
5500
      printf_unfiltered (_("Process record does not support "
5501
                           "instruction bound.\n"));
5502
      ir.addr -= 1;
5503
      goto no_support;
5504
      break;
5505
 
5506
    case 0x0fc8:    /* bswap reg */
5507
    case 0x0fc9:
5508
    case 0x0fca:
5509
    case 0x0fcb:
5510
    case 0x0fcc:
5511
    case 0x0fcd:
5512
    case 0x0fce:
5513
    case 0x0fcf:
5514
      I386_RECORD_ARCH_LIST_ADD_REG ((opcode & 7) | ir.rex_b);
5515
      break;
5516
 
5517
    case 0xd6:    /* salc */
5518
      if (ir.regmap[X86_RECORD_R8_REGNUM])
5519
        {
5520
          ir.addr -= 1;
5521
          goto no_support;
5522
        }
5523
      I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5524
      I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5525
      break;
5526
 
5527
    case 0xe0:    /* loopnz */
5528
    case 0xe1:    /* loopz */
5529
    case 0xe2:    /* loop */
5530
    case 0xe3:    /* jecxz */
5531
      I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
5532
      I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5533
      break;
5534
 
5535
    case 0x0f30:    /* wrmsr */
5536
      printf_unfiltered (_("Process record does not support "
5537
                           "instruction wrmsr.\n"));
5538
      ir.addr -= 2;
5539
      goto no_support;
5540
      break;
5541
 
5542
    case 0x0f32:    /* rdmsr */
5543
      printf_unfiltered (_("Process record does not support "
5544
                           "instruction rdmsr.\n"));
5545
      ir.addr -= 2;
5546
      goto no_support;
5547
      break;
5548
 
5549
    case 0x0f31:    /* rdtsc */
5550
      I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5551
      I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
5552
      break;
5553
 
5554
    case 0x0f34:    /* sysenter */
5555
      {
5556
        int ret;
5557
        if (ir.regmap[X86_RECORD_R8_REGNUM])
5558
          {
5559
            ir.addr -= 2;
5560
            goto no_support;
5561
          }
5562
        if (tdep->i386_sysenter_record == NULL)
5563
          {
5564
            printf_unfiltered (_("Process record does not support "
5565
                                 "instruction sysenter.\n"));
5566
            ir.addr -= 2;
5567
            goto no_support;
5568
          }
5569
        ret = tdep->i386_sysenter_record (ir.regcache);
5570
        if (ret)
5571
          return ret;
5572
      }
5573
      break;
5574
 
5575
    case 0x0f35:    /* sysexit */
5576
      printf_unfiltered (_("Process record does not support "
5577
                           "instruction sysexit.\n"));
5578
      ir.addr -= 2;
5579
      goto no_support;
5580
      break;
5581
 
5582
    case 0x0f05:    /* syscall */
5583
      {
5584
        int ret;
5585
        if (tdep->i386_syscall_record == NULL)
5586
          {
5587
            printf_unfiltered (_("Process record does not support "
5588
                                 "instruction syscall.\n"));
5589
            ir.addr -= 2;
5590
            goto no_support;
5591
          }
5592
        ret = tdep->i386_syscall_record (ir.regcache);
5593
        if (ret)
5594
          return ret;
5595
      }
5596
      break;
5597
 
5598
    case 0x0f07:    /* sysret */
5599
      printf_unfiltered (_("Process record does not support "
5600
                           "instruction sysret.\n"));
5601
      ir.addr -= 2;
5602
      goto no_support;
5603
      break;
5604
 
5605
    case 0x0fa2:    /* cpuid */
5606
      I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5607
      I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
5608
      I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
5609
      I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REBX_REGNUM);
5610
      break;
5611
 
5612
    case 0xf4:    /* hlt */
5613
      printf_unfiltered (_("Process record does not support "
5614
                           "instruction hlt.\n"));
5615
      ir.addr -= 1;
5616
      goto no_support;
5617
      break;
5618
 
5619
    case 0x0f00:
5620
      if (i386_record_modrm (&ir))
5621
        return -1;
5622
      switch (ir.reg)
5623
        {
5624
        case 0:  /* sldt */
5625
        case 1:  /* str  */
5626
          if (ir.mod == 3)
5627
            I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
5628
          else
5629
            {
5630
              ir.ot = OT_WORD;
5631
              if (i386_record_lea_modrm (&ir))
5632
                return -1;
5633
            }
5634
          break;
5635
        case 2:  /* lldt */
5636
        case 3:  /* ltr */
5637
          break;
5638
        case 4:  /* verr */
5639
        case 5:  /* verw */
5640
          I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5641
          break;
5642
        default:
5643
          ir.addr -= 3;
5644
          opcode = opcode << 8 | ir.modrm;
5645
          goto no_support;
5646
          break;
5647
        }
5648
      break;
5649
 
5650
    case 0x0f01:
5651
      if (i386_record_modrm (&ir))
5652
        return -1;
5653
      switch (ir.reg)
5654
        {
5655
        case 0:  /* sgdt */
5656
          {
5657
            uint64_t addr64;
5658
 
5659
            if (ir.mod == 3)
5660
              {
5661
                ir.addr -= 3;
5662
                opcode = opcode << 8 | ir.modrm;
5663
                goto no_support;
5664
              }
5665
            if (ir.override >= 0)
5666
              {
5667
                if (record_memory_query)
5668
                  {
5669
                    int q;
5670
 
5671
                    target_terminal_ours ();
5672
                    q = yquery (_("\
5673
Process record ignores the memory change of instruction at address %s\n\
5674
because it can't get the value of the segment register.\n\
5675
Do you want to stop the program?"),
5676
                                paddress (gdbarch, ir.orig_addr));
5677
                    target_terminal_inferior ();
5678
                    if (q)
5679
                      return -1;
5680
                  }
5681
              }
5682
            else
5683
              {
5684
                if (i386_record_lea_modrm_addr (&ir, &addr64))
5685
                  return -1;
5686
                if (record_arch_list_add_mem (addr64, 2))
5687
                  return -1;
5688
                addr64 += 2;
5689
                if (ir.regmap[X86_RECORD_R8_REGNUM])
5690
                  {
5691
                    if (record_arch_list_add_mem (addr64, 8))
5692
                      return -1;
5693
                  }
5694
                else
5695
                  {
5696
                    if (record_arch_list_add_mem (addr64, 4))
5697
                      return -1;
5698
                  }
5699
              }
5700
          }
5701
          break;
5702
        case 1:
5703
          if (ir.mod == 3)
5704
            {
5705
              switch (ir.rm)
5706
                {
5707
                case 0:  /* monitor */
5708
                  break;
5709
                case 1:  /* mwait */
5710
                  I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5711
                  break;
5712
                default:
5713
                  ir.addr -= 3;
5714
                  opcode = opcode << 8 | ir.modrm;
5715
                  goto no_support;
5716
                  break;
5717
                }
5718
            }
5719
          else
5720
            {
5721
              /* sidt */
5722
              if (ir.override >= 0)
5723
                {
5724
                  if (record_memory_query)
5725
                    {
5726
                      int q;
5727
 
5728
                      target_terminal_ours ();
5729
                      q = yquery (_("\
5730
Process record ignores the memory change of instruction at address %s\n\
5731
because it can't get the value of the segment register.\n\
5732
Do you want to stop the program?"),
5733
                                  paddress (gdbarch, ir.orig_addr));
5734
                      target_terminal_inferior ();
5735
                      if (q)
5736
                        return -1;
5737
                    }
5738
                }
5739
              else
5740
                {
5741
                  uint64_t addr64;
5742
 
5743
                  if (i386_record_lea_modrm_addr (&ir, &addr64))
5744
                    return -1;
5745
                  if (record_arch_list_add_mem (addr64, 2))
5746
                    return -1;
5747
                  addr64 += 2;
5748
                  if (ir.regmap[X86_RECORD_R8_REGNUM])
5749
                    {
5750
                      if (record_arch_list_add_mem (addr64, 8))
5751
                        return -1;
5752
                    }
5753
                  else
5754
                    {
5755
                      if (record_arch_list_add_mem (addr64, 4))
5756
                        return -1;
5757
                    }
5758
                }
5759
            }
5760
          break;
5761
        case 2:  /* lgdt */
5762
          if (ir.mod == 3)
5763
            {
5764
              /* xgetbv */
5765
              if (ir.rm == 0)
5766
                {
5767
                  I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5768
                  I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
5769
                  break;
5770
                }
5771
              /* xsetbv */
5772
              else if (ir.rm == 1)
5773
                break;
5774
            }
5775
        case 3:  /* lidt */
5776
          if (ir.mod == 3)
5777
            {
5778
              ir.addr -= 3;
5779
              opcode = opcode << 8 | ir.modrm;
5780
              goto no_support;
5781
            }
5782
          break;
5783
        case 4:  /* smsw */
5784
          if (ir.mod == 3)
5785
            {
5786
              if (record_arch_list_add_reg (ir.regcache, ir.rm | ir.rex_b))
5787
                return -1;
5788
            }
5789
          else
5790
            {
5791
              ir.ot = OT_WORD;
5792
              if (i386_record_lea_modrm (&ir))
5793
                return -1;
5794
            }
5795
          I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5796
          break;
5797
        case 6:  /* lmsw */
5798
          I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5799
          break;
5800
        case 7:  /* invlpg */
5801
          if (ir.mod == 3)
5802
            {
5803
              if (ir.rm == 0 && ir.regmap[X86_RECORD_R8_REGNUM])
5804
                I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_GS_REGNUM);
5805
              else
5806
                {
5807
                  ir.addr -= 3;
5808
                  opcode = opcode << 8 | ir.modrm;
5809
                  goto no_support;
5810
                }
5811
            }
5812
          else
5813
            I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5814
          break;
5815
        default:
5816
          ir.addr -= 3;
5817
          opcode = opcode << 8 | ir.modrm;
5818
          goto no_support;
5819
          break;
5820
        }
5821
      break;
5822
 
5823
    case 0x0f08:    /* invd */
5824
    case 0x0f09:    /* wbinvd */
5825
      break;
5826
 
5827
    case 0x63:    /* arpl */
5828
      if (i386_record_modrm (&ir))
5829
        return -1;
5830
      if (ir.mod == 3 || ir.regmap[X86_RECORD_R8_REGNUM])
5831
        {
5832
          I386_RECORD_ARCH_LIST_ADD_REG (ir.regmap[X86_RECORD_R8_REGNUM]
5833
                                           ? (ir.reg | rex_r) : ir.rm);
5834
        }
5835
      else
5836
        {
5837
          ir.ot = ir.dflag ? OT_LONG : OT_WORD;
5838
          if (i386_record_lea_modrm (&ir))
5839
            return -1;
5840
        }
5841
      if (!ir.regmap[X86_RECORD_R8_REGNUM])
5842
        I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5843
      break;
5844
 
5845
    case 0x0f02:    /* lar */
5846
    case 0x0f03:    /* lsl */
5847
      if (i386_record_modrm (&ir))
5848
        return -1;
5849
      I386_RECORD_ARCH_LIST_ADD_REG (ir.reg | rex_r);
5850
      I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5851
      break;
5852
 
5853
    case 0x0f18:
5854
      if (i386_record_modrm (&ir))
5855
        return -1;
5856
      if (ir.mod == 3 && ir.reg == 3)
5857
        {
5858
          ir.addr -= 3;
5859
          opcode = opcode << 8 | ir.modrm;
5860
          goto no_support;
5861
        }
5862
      break;
5863
 
5864
    case 0x0f19:
5865
    case 0x0f1a:
5866
    case 0x0f1b:
5867
    case 0x0f1c:
5868
    case 0x0f1d:
5869
    case 0x0f1e:
5870
    case 0x0f1f:
5871
      /* nop (multi byte) */
5872
      break;
5873
 
5874
    case 0x0f20:    /* mov reg, crN */
5875
    case 0x0f22:    /* mov crN, reg */
5876
      if (i386_record_modrm (&ir))
5877
        return -1;
5878
      if ((ir.modrm & 0xc0) != 0xc0)
5879
        {
5880
          ir.addr -= 3;
5881
          opcode = opcode << 8 | ir.modrm;
5882
          goto no_support;
5883
        }
5884
      switch (ir.reg)
5885
        {
5886
        case 0:
5887
        case 2:
5888
        case 3:
5889
        case 4:
5890
        case 8:
5891
          if (opcode & 2)
5892
            I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5893
          else
5894
            I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
5895
          break;
5896
        default:
5897
          ir.addr -= 3;
5898
          opcode = opcode << 8 | ir.modrm;
5899
          goto no_support;
5900
          break;
5901
        }
5902
      break;
5903
 
5904
    case 0x0f21:    /* mov reg, drN */
5905
    case 0x0f23:    /* mov drN, reg */
5906
      if (i386_record_modrm (&ir))
5907
        return -1;
5908
      if ((ir.modrm & 0xc0) != 0xc0 || ir.reg == 4
5909
          || ir.reg == 5 || ir.reg >= 8)
5910
        {
5911
          ir.addr -= 3;
5912
          opcode = opcode << 8 | ir.modrm;
5913
          goto no_support;
5914
        }
5915
      if (opcode & 2)
5916
        I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5917
      else
5918
        I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
5919
      break;
5920
 
5921
    case 0x0f06:    /* clts */
5922
      I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5923
      break;
5924
 
5925
    /* MMX 3DNow! SSE SSE2 SSE3 SSSE3 SSE4 */
5926
 
5927
    case 0x0f0d:    /* 3DNow! prefetch */
5928
      break;
5929
 
5930
    case 0x0f0e:    /* 3DNow! femms */
5931
    case 0x0f77:    /* emms */
5932
      if (i386_fpc_regnum_p (gdbarch, I387_FTAG_REGNUM(tdep)))
5933
        goto no_support;
5934
      record_arch_list_add_reg (ir.regcache, I387_FTAG_REGNUM(tdep));
5935
      break;
5936
 
5937
    case 0x0f0f:    /* 3DNow! data */
5938
      if (i386_record_modrm (&ir))
5939
        return -1;
5940
      if (target_read_memory (ir.addr, &opcode8, 1))
5941
        {
5942
          printf_unfiltered (_("Process record: error reading memory at "
5943
                               "addr %s len = 1.\n"),
5944
                             paddress (gdbarch, ir.addr));
5945
          return -1;
5946
        }
5947
      ir.addr++;
5948
      switch (opcode8)
5949
        {
5950
        case 0x0c:    /* 3DNow! pi2fw */
5951
        case 0x0d:    /* 3DNow! pi2fd */
5952
        case 0x1c:    /* 3DNow! pf2iw */
5953
        case 0x1d:    /* 3DNow! pf2id */
5954
        case 0x8a:    /* 3DNow! pfnacc */
5955
        case 0x8e:    /* 3DNow! pfpnacc */
5956
        case 0x90:    /* 3DNow! pfcmpge */
5957
        case 0x94:    /* 3DNow! pfmin */
5958
        case 0x96:    /* 3DNow! pfrcp */
5959
        case 0x97:    /* 3DNow! pfrsqrt */
5960
        case 0x9a:    /* 3DNow! pfsub */
5961
        case 0x9e:    /* 3DNow! pfadd */
5962
        case 0xa0:    /* 3DNow! pfcmpgt */
5963
        case 0xa4:    /* 3DNow! pfmax */
5964
        case 0xa6:    /* 3DNow! pfrcpit1 */
5965
        case 0xa7:    /* 3DNow! pfrsqit1 */
5966
        case 0xaa:    /* 3DNow! pfsubr */
5967
        case 0xae:    /* 3DNow! pfacc */
5968
        case 0xb0:    /* 3DNow! pfcmpeq */
5969
        case 0xb4:    /* 3DNow! pfmul */
5970
        case 0xb6:    /* 3DNow! pfrcpit2 */
5971
        case 0xb7:    /* 3DNow! pmulhrw */
5972
        case 0xbb:    /* 3DNow! pswapd */
5973
        case 0xbf:    /* 3DNow! pavgusb */
5974
          if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.reg))
5975
            goto no_support_3dnow_data;
5976
          record_arch_list_add_reg (ir.regcache, ir.reg);
5977
          break;
5978
 
5979
        default:
5980
no_support_3dnow_data:
5981
          opcode = (opcode << 8) | opcode8;
5982
          goto no_support;
5983
          break;
5984
        }
5985
      break;
5986
 
5987
    case 0x0faa:    /* rsm */
5988
      I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5989
      I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5990
      I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
5991
      I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
5992
      I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REBX_REGNUM);
5993
      I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5994
      I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
5995
      I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
5996
      I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
5997
      break;
5998
 
5999
    case 0x0fae:
6000
      if (i386_record_modrm (&ir))
6001
        return -1;
6002
      switch(ir.reg)
6003
        {
6004
        case 0:    /* fxsave */
6005
          {
6006
            uint64_t tmpu64;
6007
 
6008
            I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6009
            if (i386_record_lea_modrm_addr (&ir, &tmpu64))
6010
              return -1;
6011
            if (record_arch_list_add_mem (tmpu64, 512))
6012
              return -1;
6013
          }
6014
          break;
6015
 
6016
        case 1:    /* fxrstor */
6017
          {
6018
            int i;
6019
 
6020
            I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6021
 
6022
            for (i = I387_MM0_REGNUM (tdep);
6023
                 i386_mmx_regnum_p (gdbarch, i); i++)
6024
              record_arch_list_add_reg (ir.regcache, i);
6025
 
6026
            for (i = I387_XMM0_REGNUM (tdep);
6027
                 i386_xmm_regnum_p (gdbarch, i); i++)
6028
              record_arch_list_add_reg (ir.regcache, i);
6029
 
6030
            if (i386_mxcsr_regnum_p (gdbarch, I387_MXCSR_REGNUM(tdep)))
6031
              record_arch_list_add_reg (ir.regcache, I387_MXCSR_REGNUM(tdep));
6032
 
6033
            for (i = I387_ST0_REGNUM (tdep);
6034
                 i386_fp_regnum_p (gdbarch, i); i++)
6035
              record_arch_list_add_reg (ir.regcache, i);
6036
 
6037
            for (i = I387_FCTRL_REGNUM (tdep);
6038
                 i386_fpc_regnum_p (gdbarch, i); i++)
6039
              record_arch_list_add_reg (ir.regcache, i);
6040
          }
6041
          break;
6042
 
6043
        case 2:    /* ldmxcsr */
6044
          if (!i386_mxcsr_regnum_p (gdbarch, I387_MXCSR_REGNUM(tdep)))
6045
            goto no_support;
6046
          record_arch_list_add_reg (ir.regcache, I387_MXCSR_REGNUM(tdep));
6047
          break;
6048
 
6049
        case 3:    /* stmxcsr */
6050
          ir.ot = OT_LONG;
6051
          if (i386_record_lea_modrm (&ir))
6052
            return -1;
6053
          break;
6054
 
6055
        case 5:    /* lfence */
6056
        case 6:    /* mfence */
6057
        case 7:    /* sfence clflush */
6058
          break;
6059
 
6060
        default:
6061
          opcode = (opcode << 8) | ir.modrm;
6062
          goto no_support;
6063
          break;
6064
        }
6065
      break;
6066
 
6067
    case 0x0fc3:    /* movnti */
6068
      ir.ot = (ir.dflag == 2) ? OT_QUAD : OT_LONG;
6069
      if (i386_record_modrm (&ir))
6070
        return -1;
6071
      if (ir.mod == 3)
6072
        goto no_support;
6073
      ir.reg |= rex_r;
6074
      if (i386_record_lea_modrm (&ir))
6075
        return -1;
6076
      break;
6077
 
6078
    /* Add prefix to opcode.  */
6079
    case 0x0f10:
6080
    case 0x0f11:
6081
    case 0x0f12:
6082
    case 0x0f13:
6083
    case 0x0f14:
6084
    case 0x0f15:
6085
    case 0x0f16:
6086
    case 0x0f17:
6087
    case 0x0f28:
6088
    case 0x0f29:
6089
    case 0x0f2a:
6090
    case 0x0f2b:
6091
    case 0x0f2c:
6092
    case 0x0f2d:
6093
    case 0x0f2e:
6094
    case 0x0f2f:
6095
    case 0x0f38:
6096
    case 0x0f39:
6097
    case 0x0f3a:
6098
    case 0x0f50:
6099
    case 0x0f51:
6100
    case 0x0f52:
6101
    case 0x0f53:
6102
    case 0x0f54:
6103
    case 0x0f55:
6104
    case 0x0f56:
6105
    case 0x0f57:
6106
    case 0x0f58:
6107
    case 0x0f59:
6108
    case 0x0f5a:
6109
    case 0x0f5b:
6110
    case 0x0f5c:
6111
    case 0x0f5d:
6112
    case 0x0f5e:
6113
    case 0x0f5f:
6114
    case 0x0f60:
6115
    case 0x0f61:
6116
    case 0x0f62:
6117
    case 0x0f63:
6118
    case 0x0f64:
6119
    case 0x0f65:
6120
    case 0x0f66:
6121
    case 0x0f67:
6122
    case 0x0f68:
6123
    case 0x0f69:
6124
    case 0x0f6a:
6125
    case 0x0f6b:
6126
    case 0x0f6c:
6127
    case 0x0f6d:
6128
    case 0x0f6e:
6129
    case 0x0f6f:
6130
    case 0x0f70:
6131
    case 0x0f71:
6132
    case 0x0f72:
6133
    case 0x0f73:
6134
    case 0x0f74:
6135
    case 0x0f75:
6136
    case 0x0f76:
6137
    case 0x0f7c:
6138
    case 0x0f7d:
6139
    case 0x0f7e:
6140
    case 0x0f7f:
6141
    case 0x0fb8:
6142
    case 0x0fc2:
6143
    case 0x0fc4:
6144
    case 0x0fc5:
6145
    case 0x0fc6:
6146
    case 0x0fd0:
6147
    case 0x0fd1:
6148
    case 0x0fd2:
6149
    case 0x0fd3:
6150
    case 0x0fd4:
6151
    case 0x0fd5:
6152
    case 0x0fd6:
6153
    case 0x0fd7:
6154
    case 0x0fd8:
6155
    case 0x0fd9:
6156
    case 0x0fda:
6157
    case 0x0fdb:
6158
    case 0x0fdc:
6159
    case 0x0fdd:
6160
    case 0x0fde:
6161
    case 0x0fdf:
6162
    case 0x0fe0:
6163
    case 0x0fe1:
6164
    case 0x0fe2:
6165
    case 0x0fe3:
6166
    case 0x0fe4:
6167
    case 0x0fe5:
6168
    case 0x0fe6:
6169
    case 0x0fe7:
6170
    case 0x0fe8:
6171
    case 0x0fe9:
6172
    case 0x0fea:
6173
    case 0x0feb:
6174
    case 0x0fec:
6175
    case 0x0fed:
6176
    case 0x0fee:
6177
    case 0x0fef:
6178
    case 0x0ff0:
6179
    case 0x0ff1:
6180
    case 0x0ff2:
6181
    case 0x0ff3:
6182
    case 0x0ff4:
6183
    case 0x0ff5:
6184
    case 0x0ff6:
6185
    case 0x0ff7:
6186
    case 0x0ff8:
6187
    case 0x0ff9:
6188
    case 0x0ffa:
6189
    case 0x0ffb:
6190
    case 0x0ffc:
6191
    case 0x0ffd:
6192
    case 0x0ffe:
6193
      switch (prefixes)
6194
        {
6195
        case PREFIX_REPNZ:
6196
          opcode |= 0xf20000;
6197
          break;
6198
        case PREFIX_DATA:
6199
          opcode |= 0x660000;
6200
          break;
6201
        case PREFIX_REPZ:
6202
          opcode |= 0xf30000;
6203
          break;
6204
        }
6205
reswitch_prefix_add:
6206
      switch (opcode)
6207
        {
6208
        case 0x0f38:
6209
        case 0x660f38:
6210
        case 0xf20f38:
6211
        case 0x0f3a:
6212
        case 0x660f3a:
6213
          if (target_read_memory (ir.addr, &opcode8, 1))
6214
            {
6215
              printf_unfiltered (_("Process record: error reading memory at "
6216
                                   "addr %s len = 1.\n"),
6217
                                 paddress (gdbarch, ir.addr));
6218
              return -1;
6219
            }
6220
          ir.addr++;
6221
          opcode = (uint32_t) opcode8 | opcode << 8;
6222
          goto reswitch_prefix_add;
6223
          break;
6224
 
6225
        case 0x0f10:        /* movups */
6226
        case 0x660f10:      /* movupd */
6227
        case 0xf30f10:      /* movss */
6228
        case 0xf20f10:      /* movsd */
6229
        case 0x0f12:        /* movlps */
6230
        case 0x660f12:      /* movlpd */
6231
        case 0xf30f12:      /* movsldup */
6232
        case 0xf20f12:      /* movddup */
6233
        case 0x0f14:        /* unpcklps */
6234
        case 0x660f14:      /* unpcklpd */
6235
        case 0x0f15:        /* unpckhps */
6236
        case 0x660f15:      /* unpckhpd */
6237
        case 0x0f16:        /* movhps */
6238
        case 0x660f16:      /* movhpd */
6239
        case 0xf30f16:      /* movshdup */
6240
        case 0x0f28:        /* movaps */
6241
        case 0x660f28:      /* movapd */
6242
        case 0x0f2a:        /* cvtpi2ps */
6243
        case 0x660f2a:      /* cvtpi2pd */
6244
        case 0xf30f2a:      /* cvtsi2ss */
6245
        case 0xf20f2a:      /* cvtsi2sd */
6246
        case 0x0f2c:        /* cvttps2pi */
6247
        case 0x660f2c:      /* cvttpd2pi */
6248
        case 0x0f2d:        /* cvtps2pi */
6249
        case 0x660f2d:      /* cvtpd2pi */
6250
        case 0x660f3800:    /* pshufb */
6251
        case 0x660f3801:    /* phaddw */
6252
        case 0x660f3802:    /* phaddd */
6253
        case 0x660f3803:    /* phaddsw */
6254
        case 0x660f3804:    /* pmaddubsw */
6255
        case 0x660f3805:    /* phsubw */
6256
        case 0x660f3806:    /* phsubd */
6257
        case 0x660f3807:    /* phaddsw */
6258
        case 0x660f3808:    /* psignb */
6259
        case 0x660f3809:    /* psignw */
6260
        case 0x660f380a:    /* psignd */
6261
        case 0x660f380b:    /* pmulhrsw */
6262
        case 0x660f3810:    /* pblendvb */
6263
        case 0x660f3814:    /* blendvps */
6264
        case 0x660f3815:    /* blendvpd */
6265
        case 0x660f381c:    /* pabsb */
6266
        case 0x660f381d:    /* pabsw */
6267
        case 0x660f381e:    /* pabsd */
6268
        case 0x660f3820:    /* pmovsxbw */
6269
        case 0x660f3821:    /* pmovsxbd */
6270
        case 0x660f3822:    /* pmovsxbq */
6271
        case 0x660f3823:    /* pmovsxwd */
6272
        case 0x660f3824:    /* pmovsxwq */
6273
        case 0x660f3825:    /* pmovsxdq */
6274
        case 0x660f3828:    /* pmuldq */
6275
        case 0x660f3829:    /* pcmpeqq */
6276
        case 0x660f382a:    /* movntdqa */
6277
        case 0x660f3a08:    /* roundps */
6278
        case 0x660f3a09:    /* roundpd */
6279
        case 0x660f3a0a:    /* roundss */
6280
        case 0x660f3a0b:    /* roundsd */
6281
        case 0x660f3a0c:    /* blendps */
6282
        case 0x660f3a0d:    /* blendpd */
6283
        case 0x660f3a0e:    /* pblendw */
6284
        case 0x660f3a0f:    /* palignr */
6285
        case 0x660f3a20:    /* pinsrb */
6286
        case 0x660f3a21:    /* insertps */
6287
        case 0x660f3a22:    /* pinsrd pinsrq */
6288
        case 0x660f3a40:    /* dpps */
6289
        case 0x660f3a41:    /* dppd */
6290
        case 0x660f3a42:    /* mpsadbw */
6291
        case 0x660f3a60:    /* pcmpestrm */
6292
        case 0x660f3a61:    /* pcmpestri */
6293
        case 0x660f3a62:    /* pcmpistrm */
6294
        case 0x660f3a63:    /* pcmpistri */
6295
        case 0x0f51:        /* sqrtps */
6296
        case 0x660f51:      /* sqrtpd */
6297
        case 0xf20f51:      /* sqrtsd */
6298
        case 0xf30f51:      /* sqrtss */
6299
        case 0x0f52:        /* rsqrtps */
6300
        case 0xf30f52:      /* rsqrtss */
6301
        case 0x0f53:        /* rcpps */
6302
        case 0xf30f53:      /* rcpss */
6303
        case 0x0f54:        /* andps */
6304
        case 0x660f54:      /* andpd */
6305
        case 0x0f55:        /* andnps */
6306
        case 0x660f55:      /* andnpd */
6307
        case 0x0f56:        /* orps */
6308
        case 0x660f56:      /* orpd */
6309
        case 0x0f57:        /* xorps */
6310
        case 0x660f57:      /* xorpd */
6311
        case 0x0f58:        /* addps */
6312
        case 0x660f58:      /* addpd */
6313
        case 0xf20f58:      /* addsd */
6314
        case 0xf30f58:      /* addss */
6315
        case 0x0f59:        /* mulps */
6316
        case 0x660f59:      /* mulpd */
6317
        case 0xf20f59:      /* mulsd */
6318
        case 0xf30f59:      /* mulss */
6319
        case 0x0f5a:        /* cvtps2pd */
6320
        case 0x660f5a:      /* cvtpd2ps */
6321
        case 0xf20f5a:      /* cvtsd2ss */
6322
        case 0xf30f5a:      /* cvtss2sd */
6323
        case 0x0f5b:        /* cvtdq2ps */
6324
        case 0x660f5b:      /* cvtps2dq */
6325
        case 0xf30f5b:      /* cvttps2dq */
6326
        case 0x0f5c:        /* subps */
6327
        case 0x660f5c:      /* subpd */
6328
        case 0xf20f5c:      /* subsd */
6329
        case 0xf30f5c:      /* subss */
6330
        case 0x0f5d:        /* minps */
6331
        case 0x660f5d:      /* minpd */
6332
        case 0xf20f5d:      /* minsd */
6333
        case 0xf30f5d:      /* minss */
6334
        case 0x0f5e:        /* divps */
6335
        case 0x660f5e:      /* divpd */
6336
        case 0xf20f5e:      /* divsd */
6337
        case 0xf30f5e:      /* divss */
6338
        case 0x0f5f:        /* maxps */
6339
        case 0x660f5f:      /* maxpd */
6340
        case 0xf20f5f:      /* maxsd */
6341
        case 0xf30f5f:      /* maxss */
6342
        case 0x660f60:      /* punpcklbw */
6343
        case 0x660f61:      /* punpcklwd */
6344
        case 0x660f62:      /* punpckldq */
6345
        case 0x660f63:      /* packsswb */
6346
        case 0x660f64:      /* pcmpgtb */
6347
        case 0x660f65:      /* pcmpgtw */
6348
        case 0x660f66:      /* pcmpgtl */
6349
        case 0x660f67:      /* packuswb */
6350
        case 0x660f68:      /* punpckhbw */
6351
        case 0x660f69:      /* punpckhwd */
6352
        case 0x660f6a:      /* punpckhdq */
6353
        case 0x660f6b:      /* packssdw */
6354
        case 0x660f6c:      /* punpcklqdq */
6355
        case 0x660f6d:      /* punpckhqdq */
6356
        case 0x660f6e:      /* movd */
6357
        case 0x660f6f:      /* movdqa */
6358
        case 0xf30f6f:      /* movdqu */
6359
        case 0x660f70:      /* pshufd */
6360
        case 0xf20f70:      /* pshuflw */
6361
        case 0xf30f70:      /* pshufhw */
6362
        case 0x660f74:      /* pcmpeqb */
6363
        case 0x660f75:      /* pcmpeqw */
6364
        case 0x660f76:      /* pcmpeql */
6365
        case 0x660f7c:      /* haddpd */
6366
        case 0xf20f7c:      /* haddps */
6367
        case 0x660f7d:      /* hsubpd */
6368
        case 0xf20f7d:      /* hsubps */
6369
        case 0xf30f7e:      /* movq */
6370
        case 0x0fc2:        /* cmpps */
6371
        case 0x660fc2:      /* cmppd */
6372
        case 0xf20fc2:      /* cmpsd */
6373
        case 0xf30fc2:      /* cmpss */
6374
        case 0x660fc4:      /* pinsrw */
6375
        case 0x0fc6:        /* shufps */
6376
        case 0x660fc6:      /* shufpd */
6377
        case 0x660fd0:      /* addsubpd */
6378
        case 0xf20fd0:      /* addsubps */
6379
        case 0x660fd1:      /* psrlw */
6380
        case 0x660fd2:      /* psrld */
6381
        case 0x660fd3:      /* psrlq */
6382
        case 0x660fd4:      /* paddq */
6383
        case 0x660fd5:      /* pmullw */
6384
        case 0xf30fd6:      /* movq2dq */
6385
        case 0x660fd8:      /* psubusb */
6386
        case 0x660fd9:      /* psubusw */
6387
        case 0x660fda:      /* pminub */
6388
        case 0x660fdb:      /* pand */
6389
        case 0x660fdc:      /* paddusb */
6390
        case 0x660fdd:      /* paddusw */
6391
        case 0x660fde:      /* pmaxub */
6392
        case 0x660fdf:      /* pandn */
6393
        case 0x660fe0:      /* pavgb */
6394
        case 0x660fe1:      /* psraw */
6395
        case 0x660fe2:      /* psrad */
6396
        case 0x660fe3:      /* pavgw */
6397
        case 0x660fe4:      /* pmulhuw */
6398
        case 0x660fe5:      /* pmulhw */
6399
        case 0x660fe6:      /* cvttpd2dq */
6400
        case 0xf20fe6:      /* cvtpd2dq */
6401
        case 0xf30fe6:      /* cvtdq2pd */
6402
        case 0x660fe8:      /* psubsb */
6403
        case 0x660fe9:      /* psubsw */
6404
        case 0x660fea:      /* pminsw */
6405
        case 0x660feb:      /* por */
6406
        case 0x660fec:      /* paddsb */
6407
        case 0x660fed:      /* paddsw */
6408
        case 0x660fee:      /* pmaxsw */
6409
        case 0x660fef:      /* pxor */
6410
        case 0x660ff0:      /* lddqu */
6411
        case 0x660ff1:      /* psllw */
6412
        case 0x660ff2:      /* pslld */
6413
        case 0x660ff3:      /* psllq */
6414
        case 0x660ff4:      /* pmuludq */
6415
        case 0x660ff5:      /* pmaddwd */
6416
        case 0x660ff6:      /* psadbw */
6417
        case 0x660ff8:      /* psubb */
6418
        case 0x660ff9:      /* psubw */
6419
        case 0x660ffa:      /* psubl */
6420
        case 0x660ffb:      /* psubq */
6421
        case 0x660ffc:      /* paddb */
6422
        case 0x660ffd:      /* paddw */
6423
        case 0x660ffe:      /* paddl */
6424
          if (i386_record_modrm (&ir))
6425
            return -1;
6426
          ir.reg |= rex_r;
6427
          if (!i386_xmm_regnum_p (gdbarch, I387_XMM0_REGNUM (tdep) + ir.reg))
6428
            goto no_support;
6429
          record_arch_list_add_reg (ir.regcache,
6430
                                    I387_XMM0_REGNUM (tdep) + ir.reg);
6431
          if ((opcode & 0xfffffffc) == 0x660f3a60)
6432
            I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6433
          break;
6434
 
6435
        case 0x0f11:        /* movups */
6436
        case 0x660f11:      /* movupd */
6437
        case 0xf30f11:      /* movss */
6438
        case 0xf20f11:      /* movsd */
6439
        case 0x0f13:        /* movlps */
6440
        case 0x660f13:      /* movlpd */
6441
        case 0x0f17:        /* movhps */
6442
        case 0x660f17:      /* movhpd */
6443
        case 0x0f29:        /* movaps */
6444
        case 0x660f29:      /* movapd */
6445
        case 0x660f3a14:    /* pextrb */
6446
        case 0x660f3a15:    /* pextrw */
6447
        case 0x660f3a16:    /* pextrd pextrq */
6448
        case 0x660f3a17:    /* extractps */
6449
        case 0x660f7f:      /* movdqa */
6450
        case 0xf30f7f:      /* movdqu */
6451
          if (i386_record_modrm (&ir))
6452
            return -1;
6453
          if (ir.mod == 3)
6454
            {
6455
              if (opcode == 0x0f13 || opcode == 0x660f13
6456
                  || opcode == 0x0f17 || opcode == 0x660f17)
6457
                goto no_support;
6458
              ir.rm |= ir.rex_b;
6459
              if (!i386_xmm_regnum_p (gdbarch, I387_XMM0_REGNUM (tdep) + ir.rm))
6460
                goto no_support;
6461
              record_arch_list_add_reg (ir.regcache,
6462
                                        I387_XMM0_REGNUM (tdep) + ir.rm);
6463
            }
6464
          else
6465
            {
6466
              switch (opcode)
6467
                {
6468
                  case 0x660f3a14:
6469
                    ir.ot = OT_BYTE;
6470
                    break;
6471
                  case 0x660f3a15:
6472
                    ir.ot = OT_WORD;
6473
                    break;
6474
                  case 0x660f3a16:
6475
                    ir.ot = OT_LONG;
6476
                    break;
6477
                  case 0x660f3a17:
6478
                    ir.ot = OT_QUAD;
6479
                    break;
6480
                  default:
6481
                    ir.ot = OT_DQUAD;
6482
                    break;
6483
                }
6484
              if (i386_record_lea_modrm (&ir))
6485
                return -1;
6486
            }
6487
          break;
6488
 
6489
        case 0x0f2b:      /* movntps */
6490
        case 0x660f2b:    /* movntpd */
6491
        case 0x0fe7:      /* movntq */
6492
        case 0x660fe7:    /* movntdq */
6493
          if (ir.mod == 3)
6494
            goto no_support;
6495
          if (opcode == 0x0fe7)
6496
            ir.ot = OT_QUAD;
6497
          else
6498
            ir.ot = OT_DQUAD;
6499
          if (i386_record_lea_modrm (&ir))
6500
            return -1;
6501
          break;
6502
 
6503
        case 0xf30f2c:      /* cvttss2si */
6504
        case 0xf20f2c:      /* cvttsd2si */
6505
        case 0xf30f2d:      /* cvtss2si */
6506
        case 0xf20f2d:      /* cvtsd2si */
6507
        case 0xf20f38f0:    /* crc32 */
6508
        case 0xf20f38f1:    /* crc32 */
6509
        case 0x0f50:        /* movmskps */
6510
        case 0x660f50:      /* movmskpd */
6511
        case 0x0fc5:        /* pextrw */
6512
        case 0x660fc5:      /* pextrw */
6513
        case 0x0fd7:        /* pmovmskb */
6514
        case 0x660fd7:      /* pmovmskb */
6515
          I386_RECORD_ARCH_LIST_ADD_REG (ir.reg | rex_r);
6516
          break;
6517
 
6518
        case 0x0f3800:    /* pshufb */
6519
        case 0x0f3801:    /* phaddw */
6520
        case 0x0f3802:    /* phaddd */
6521
        case 0x0f3803:    /* phaddsw */
6522
        case 0x0f3804:    /* pmaddubsw */
6523
        case 0x0f3805:    /* phsubw */
6524
        case 0x0f3806:    /* phsubd */
6525
        case 0x0f3807:    /* phaddsw */
6526
        case 0x0f3808:    /* psignb */
6527
        case 0x0f3809:    /* psignw */
6528
        case 0x0f380a:    /* psignd */
6529
        case 0x0f380b:    /* pmulhrsw */
6530
        case 0x0f381c:    /* pabsb */
6531
        case 0x0f381d:    /* pabsw */
6532
        case 0x0f381e:    /* pabsd */
6533
        case 0x0f382b:    /* packusdw */
6534
        case 0x0f3830:    /* pmovzxbw */
6535
        case 0x0f3831:    /* pmovzxbd */
6536
        case 0x0f3832:    /* pmovzxbq */
6537
        case 0x0f3833:    /* pmovzxwd */
6538
        case 0x0f3834:    /* pmovzxwq */
6539
        case 0x0f3835:    /* pmovzxdq */
6540
        case 0x0f3837:    /* pcmpgtq */
6541
        case 0x0f3838:    /* pminsb */
6542
        case 0x0f3839:    /* pminsd */
6543
        case 0x0f383a:    /* pminuw */
6544
        case 0x0f383b:    /* pminud */
6545
        case 0x0f383c:    /* pmaxsb */
6546
        case 0x0f383d:    /* pmaxsd */
6547
        case 0x0f383e:    /* pmaxuw */
6548
        case 0x0f383f:    /* pmaxud */
6549
        case 0x0f3840:    /* pmulld */
6550
        case 0x0f3841:    /* phminposuw */
6551
        case 0x0f3a0f:    /* palignr */
6552
        case 0x0f60:      /* punpcklbw */
6553
        case 0x0f61:      /* punpcklwd */
6554
        case 0x0f62:      /* punpckldq */
6555
        case 0x0f63:      /* packsswb */
6556
        case 0x0f64:      /* pcmpgtb */
6557
        case 0x0f65:      /* pcmpgtw */
6558
        case 0x0f66:      /* pcmpgtl */
6559
        case 0x0f67:      /* packuswb */
6560
        case 0x0f68:      /* punpckhbw */
6561
        case 0x0f69:      /* punpckhwd */
6562
        case 0x0f6a:      /* punpckhdq */
6563
        case 0x0f6b:      /* packssdw */
6564
        case 0x0f6e:      /* movd */
6565
        case 0x0f6f:      /* movq */
6566
        case 0x0f70:      /* pshufw */
6567
        case 0x0f74:      /* pcmpeqb */
6568
        case 0x0f75:      /* pcmpeqw */
6569
        case 0x0f76:      /* pcmpeql */
6570
        case 0x0fc4:      /* pinsrw */
6571
        case 0x0fd1:      /* psrlw */
6572
        case 0x0fd2:      /* psrld */
6573
        case 0x0fd3:      /* psrlq */
6574
        case 0x0fd4:      /* paddq */
6575
        case 0x0fd5:      /* pmullw */
6576
        case 0xf20fd6:    /* movdq2q */
6577
        case 0x0fd8:      /* psubusb */
6578
        case 0x0fd9:      /* psubusw */
6579
        case 0x0fda:      /* pminub */
6580
        case 0x0fdb:      /* pand */
6581
        case 0x0fdc:      /* paddusb */
6582
        case 0x0fdd:      /* paddusw */
6583
        case 0x0fde:      /* pmaxub */
6584
        case 0x0fdf:      /* pandn */
6585
        case 0x0fe0:      /* pavgb */
6586
        case 0x0fe1:      /* psraw */
6587
        case 0x0fe2:      /* psrad */
6588
        case 0x0fe3:      /* pavgw */
6589
        case 0x0fe4:      /* pmulhuw */
6590
        case 0x0fe5:      /* pmulhw */
6591
        case 0x0fe8:      /* psubsb */
6592
        case 0x0fe9:      /* psubsw */
6593
        case 0x0fea:      /* pminsw */
6594
        case 0x0feb:      /* por */
6595
        case 0x0fec:      /* paddsb */
6596
        case 0x0fed:      /* paddsw */
6597
        case 0x0fee:      /* pmaxsw */
6598
        case 0x0fef:      /* pxor */
6599
        case 0x0ff1:      /* psllw */
6600
        case 0x0ff2:      /* pslld */
6601
        case 0x0ff3:      /* psllq */
6602
        case 0x0ff4:      /* pmuludq */
6603
        case 0x0ff5:      /* pmaddwd */
6604
        case 0x0ff6:      /* psadbw */
6605
        case 0x0ff8:      /* psubb */
6606
        case 0x0ff9:      /* psubw */
6607
        case 0x0ffa:      /* psubl */
6608
        case 0x0ffb:      /* psubq */
6609
        case 0x0ffc:      /* paddb */
6610
        case 0x0ffd:      /* paddw */
6611
        case 0x0ffe:      /* paddl */
6612
          if (i386_record_modrm (&ir))
6613
            return -1;
6614
          if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.reg))
6615
            goto no_support;
6616
          record_arch_list_add_reg (ir.regcache,
6617
                                    I387_MM0_REGNUM (tdep) + ir.reg);
6618
          break;
6619
 
6620
        case 0x0f71:    /* psllw */
6621
        case 0x0f72:    /* pslld */
6622
        case 0x0f73:    /* psllq */
6623
          if (i386_record_modrm (&ir))
6624
            return -1;
6625
          if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.rm))
6626
            goto no_support;
6627
          record_arch_list_add_reg (ir.regcache,
6628
                                    I387_MM0_REGNUM (tdep) + ir.rm);
6629
          break;
6630
 
6631
        case 0x660f71:    /* psllw */
6632
        case 0x660f72:    /* pslld */
6633
        case 0x660f73:    /* psllq */
6634
          if (i386_record_modrm (&ir))
6635
            return -1;
6636
          ir.rm |= ir.rex_b;
6637
          if (!i386_xmm_regnum_p (gdbarch, I387_XMM0_REGNUM (tdep) + ir.rm))
6638
            goto no_support;
6639
          record_arch_list_add_reg (ir.regcache,
6640
                                    I387_XMM0_REGNUM (tdep) + ir.rm);
6641
          break;
6642
 
6643
        case 0x0f7e:      /* movd */
6644
        case 0x660f7e:    /* movd */
6645
          if (i386_record_modrm (&ir))
6646
            return -1;
6647
          if (ir.mod == 3)
6648
            I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6649
          else
6650
            {
6651
              if (ir.dflag == 2)
6652
                ir.ot = OT_QUAD;
6653
              else
6654
                ir.ot = OT_LONG;
6655
              if (i386_record_lea_modrm (&ir))
6656
                return -1;
6657
            }
6658
          break;
6659
 
6660
        case 0x0f7f:    /* movq */
6661
          if (i386_record_modrm (&ir))
6662
            return -1;
6663
          if (ir.mod == 3)
6664
            {
6665
              if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.rm))
6666
                goto no_support;
6667
              record_arch_list_add_reg (ir.regcache,
6668
                                        I387_MM0_REGNUM (tdep) + ir.rm);
6669
            }
6670
          else
6671
            {
6672
              ir.ot = OT_QUAD;
6673
              if (i386_record_lea_modrm (&ir))
6674
                return -1;
6675
            }
6676
          break;
6677
 
6678
        case 0xf30fb8:    /* popcnt */
6679
          if (i386_record_modrm (&ir))
6680
            return -1;
6681
          I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
6682
          I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6683
          break;
6684
 
6685
        case 0x660fd6:    /* movq */
6686
          if (i386_record_modrm (&ir))
6687
            return -1;
6688
          if (ir.mod == 3)
6689
            {
6690
              ir.rm |= ir.rex_b;
6691
              if (!i386_xmm_regnum_p (gdbarch, I387_XMM0_REGNUM (tdep) + ir.rm))
6692
                goto no_support;
6693
              record_arch_list_add_reg (ir.regcache,
6694
                                        I387_XMM0_REGNUM (tdep) + ir.rm);
6695
            }
6696
          else
6697
            {
6698
              ir.ot = OT_QUAD;
6699
              if (i386_record_lea_modrm (&ir))
6700
                return -1;
6701
            }
6702
          break;
6703
 
6704
        case 0x660f3817:    /* ptest */
6705
        case 0x0f2e:        /* ucomiss */
6706
        case 0x660f2e:      /* ucomisd */
6707
        case 0x0f2f:        /* comiss */
6708
        case 0x660f2f:      /* comisd */
6709
          I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6710
          break;
6711
 
6712
        case 0x0ff7:    /* maskmovq */
6713
          regcache_raw_read_unsigned (ir.regcache,
6714
                                      ir.regmap[X86_RECORD_REDI_REGNUM],
6715
                                      &addr);
6716
          if (record_arch_list_add_mem (addr, 64))
6717
            return -1;
6718
          break;
6719
 
6720
        case 0x660ff7:    /* maskmovdqu */
6721
          regcache_raw_read_unsigned (ir.regcache,
6722
                                      ir.regmap[X86_RECORD_REDI_REGNUM],
6723
                                      &addr);
6724
          if (record_arch_list_add_mem (addr, 128))
6725
            return -1;
6726
          break;
6727
 
6728
        default:
6729
          goto no_support;
6730
          break;
6731
        }
6732
      break;
6733
 
6734
    default:
6735
      goto no_support;
6736
      break;
6737
    }
6738
 
6739
  /* In the future, maybe still need to deal with need_dasm.  */
6740
  I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REIP_REGNUM);
6741
  if (record_arch_list_add_end ())
6742
    return -1;
6743
 
6744
  return 0;
6745
 
6746
 no_support:
6747
  printf_unfiltered (_("Process record does not support instruction 0x%02x "
6748
                       "at address %s.\n"),
6749
                     (unsigned int) (opcode),
6750
                     paddress (gdbarch, ir.orig_addr));
6751
  return -1;
6752
}
6753
 
6754
static const int i386_record_regmap[] =
6755
{
6756
  I386_EAX_REGNUM, I386_ECX_REGNUM, I386_EDX_REGNUM, I386_EBX_REGNUM,
6757
  I386_ESP_REGNUM, I386_EBP_REGNUM, I386_ESI_REGNUM, I386_EDI_REGNUM,
6758
  0, 0, 0, 0, 0, 0, 0, 0,
6759
  I386_EIP_REGNUM, I386_EFLAGS_REGNUM, I386_CS_REGNUM, I386_SS_REGNUM,
6760
  I386_DS_REGNUM, I386_ES_REGNUM, I386_FS_REGNUM, I386_GS_REGNUM
6761
};
6762
 
6763
/* Check that the given address appears suitable for a fast
6764
   tracepoint, which on x86 means that we need an instruction of at
6765
   least 5 bytes, so that we can overwrite it with a 4-byte-offset
6766
   jump and not have to worry about program jumps to an address in the
6767
   middle of the tracepoint jump.  Returns 1 if OK, and writes a size
6768
   of instruction to replace, and 0 if not, plus an explanatory
6769
   string.  */
6770
 
6771
static int
6772
i386_fast_tracepoint_valid_at (struct gdbarch *gdbarch,
6773
                               CORE_ADDR addr, int *isize, char **msg)
6774
{
6775
  int len, jumplen;
6776
  static struct ui_file *gdb_null = NULL;
6777
 
6778
  /* This is based on the target agent using a 4-byte relative jump.
6779
     Alternate future possibilities include 8-byte offset for x86-84,
6780
     or 3-byte jumps if the program has trampoline space close by.  */
6781
  jumplen = 5;
6782
 
6783
  /* Dummy file descriptor for the disassembler.  */
6784
  if (!gdb_null)
6785
    gdb_null = ui_file_new ();
6786
 
6787
  /* Check for fit.  */
6788
  len = gdb_print_insn (gdbarch, addr, gdb_null, NULL);
6789
  if (len < jumplen)
6790
    {
6791
      /* Return a bit of target-specific detail to add to the caller's
6792
         generic failure message.  */
6793
      if (msg)
6794
        *msg = xstrprintf (_("; instruction is only %d bytes long, need at least %d bytes for the jump"),
6795
                           len, jumplen);
6796
      return 0;
6797
    }
6798
 
6799
  if (isize)
6800
    *isize = len;
6801
  if (msg)
6802
    *msg = NULL;
6803
  return 1;
6804
}
6805
 
6806
static int
6807
i386_validate_tdesc_p (struct gdbarch_tdep *tdep,
6808
                       struct tdesc_arch_data *tdesc_data)
6809
{
6810
  const struct target_desc *tdesc = tdep->tdesc;
6811
  const struct tdesc_feature *feature_core;
6812
  const struct tdesc_feature *feature_sse, *feature_avx;
6813
  int i, num_regs, valid_p;
6814
 
6815
  if (! tdesc_has_registers (tdesc))
6816
    return 0;
6817
 
6818
  /* Get core registers.  */
6819
  feature_core = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.core");
6820
  if (feature_core == NULL)
6821
    return 0;
6822
 
6823
  /* Get SSE registers.  */
6824
  feature_sse = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.sse");
6825
 
6826
  /* Try AVX registers.  */
6827
  feature_avx = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx");
6828
 
6829
  valid_p = 1;
6830
 
6831
  /* The XCR0 bits.  */
6832
  if (feature_avx)
6833
    {
6834
      /* AVX register description requires SSE register description.  */
6835
      if (!feature_sse)
6836
        return 0;
6837
 
6838
      tdep->xcr0 = I386_XSTATE_AVX_MASK;
6839
 
6840
      /* It may have been set by OSABI initialization function.  */
6841
      if (tdep->num_ymm_regs == 0)
6842
        {
6843
          tdep->ymmh_register_names = i386_ymmh_names;
6844
          tdep->num_ymm_regs = 8;
6845
          tdep->ymm0h_regnum = I386_YMM0H_REGNUM;
6846
        }
6847
 
6848
      for (i = 0; i < tdep->num_ymm_regs; i++)
6849
        valid_p &= tdesc_numbered_register (feature_avx, tdesc_data,
6850
                                            tdep->ymm0h_regnum + i,
6851
                                            tdep->ymmh_register_names[i]);
6852
    }
6853
  else if (feature_sse)
6854
    tdep->xcr0 = I386_XSTATE_SSE_MASK;
6855
  else
6856
    {
6857
      tdep->xcr0 = I386_XSTATE_X87_MASK;
6858
      tdep->num_xmm_regs = 0;
6859
    }
6860
 
6861
  num_regs = tdep->num_core_regs;
6862
  for (i = 0; i < num_regs; i++)
6863
    valid_p &= tdesc_numbered_register (feature_core, tdesc_data, i,
6864
                                        tdep->register_names[i]);
6865
 
6866
  if (feature_sse)
6867
    {
6868
      /* Need to include %mxcsr, so add one.  */
6869
      num_regs += tdep->num_xmm_regs + 1;
6870
      for (; i < num_regs; i++)
6871
        valid_p &= tdesc_numbered_register (feature_sse, tdesc_data, i,
6872
                                            tdep->register_names[i]);
6873
    }
6874
 
6875
  return valid_p;
6876
}
6877
 
6878
 
6879
static struct gdbarch *
6880
i386_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
6881
{
6882
  struct gdbarch_tdep *tdep;
6883
  struct gdbarch *gdbarch;
6884
  struct tdesc_arch_data *tdesc_data;
6885
  const struct target_desc *tdesc;
6886
  int mm0_regnum;
6887
  int ymm0_regnum;
6888
 
6889
  /* If there is already a candidate, use it.  */
6890
  arches = gdbarch_list_lookup_by_info (arches, &info);
6891
  if (arches != NULL)
6892
    return arches->gdbarch;
6893
 
6894
  /* Allocate space for the new architecture.  */
6895
  tdep = XCALLOC (1, struct gdbarch_tdep);
6896
  gdbarch = gdbarch_alloc (&info, tdep);
6897
 
6898
  /* General-purpose registers.  */
6899
  tdep->gregset = NULL;
6900
  tdep->gregset_reg_offset = NULL;
6901
  tdep->gregset_num_regs = I386_NUM_GREGS;
6902
  tdep->sizeof_gregset = 0;
6903
 
6904
  /* Floating-point registers.  */
6905
  tdep->fpregset = NULL;
6906
  tdep->sizeof_fpregset = I387_SIZEOF_FSAVE;
6907
 
6908
  tdep->xstateregset = NULL;
6909
 
6910
  /* The default settings include the FPU registers, the MMX registers
6911
     and the SSE registers.  This can be overridden for a specific ABI
6912
     by adjusting the members `st0_regnum', `mm0_regnum' and
6913
     `num_xmm_regs' of `struct gdbarch_tdep', otherwise the registers
6914
     will show up in the output of "info all-registers".  */
6915
 
6916
  tdep->st0_regnum = I386_ST0_REGNUM;
6917
 
6918
  /* I386_NUM_XREGS includes %mxcsr, so substract one.  */
6919
  tdep->num_xmm_regs = I386_NUM_XREGS - 1;
6920
 
6921
  tdep->jb_pc_offset = -1;
6922
  tdep->struct_return = pcc_struct_return;
6923
  tdep->sigtramp_start = 0;
6924
  tdep->sigtramp_end = 0;
6925
  tdep->sigtramp_p = i386_sigtramp_p;
6926
  tdep->sigcontext_addr = NULL;
6927
  tdep->sc_reg_offset = NULL;
6928
  tdep->sc_pc_offset = -1;
6929
  tdep->sc_sp_offset = -1;
6930
 
6931
  tdep->xsave_xcr0_offset = -1;
6932
 
6933
  tdep->record_regmap = i386_record_regmap;
6934
 
6935
  /* The format used for `long double' on almost all i386 targets is
6936
     the i387 extended floating-point format.  In fact, of all targets
6937
     in the GCC 2.95 tree, only OSF/1 does it different, and insists
6938
     on having a `long double' that's not `long' at all.  */
6939
  set_gdbarch_long_double_format (gdbarch, floatformats_i387_ext);
6940
 
6941
  /* Although the i387 extended floating-point has only 80 significant
6942
     bits, a `long double' actually takes up 96, probably to enforce
6943
     alignment.  */
6944
  set_gdbarch_long_double_bit (gdbarch, 96);
6945
 
6946
  /* Register numbers of various important registers.  */
6947
  set_gdbarch_sp_regnum (gdbarch, I386_ESP_REGNUM); /* %esp */
6948
  set_gdbarch_pc_regnum (gdbarch, I386_EIP_REGNUM); /* %eip */
6949
  set_gdbarch_ps_regnum (gdbarch, I386_EFLAGS_REGNUM); /* %eflags */
6950
  set_gdbarch_fp0_regnum (gdbarch, I386_ST0_REGNUM); /* %st(0) */
6951
 
6952
  /* NOTE: kettenis/20040418: GCC does have two possible register
6953
     numbering schemes on the i386: dbx and SVR4.  These schemes
6954
     differ in how they number %ebp, %esp, %eflags, and the
6955
     floating-point registers, and are implemented by the arrays
6956
     dbx_register_map[] and svr4_dbx_register_map in
6957
     gcc/config/i386.c.  GCC also defines a third numbering scheme in
6958
     gcc/config/i386.c, which it designates as the "default" register
6959
     map used in 64bit mode.  This last register numbering scheme is
6960
     implemented in dbx64_register_map, and is used for AMD64; see
6961
     amd64-tdep.c.
6962
 
6963
     Currently, each GCC i386 target always uses the same register
6964
     numbering scheme across all its supported debugging formats
6965
     i.e. SDB (COFF), stabs and DWARF 2.  This is because
6966
     gcc/sdbout.c, gcc/dbxout.c and gcc/dwarf2out.c all use the
6967
     DBX_REGISTER_NUMBER macro which is defined by each target's
6968
     respective config header in a manner independent of the requested
6969
     output debugging format.
6970
 
6971
     This does not match the arrangement below, which presumes that
6972
     the SDB and stabs numbering schemes differ from the DWARF and
6973
     DWARF 2 ones.  The reason for this arrangement is that it is
6974
     likely to get the numbering scheme for the target's
6975
     default/native debug format right.  For targets where GCC is the
6976
     native compiler (FreeBSD, NetBSD, OpenBSD, GNU/Linux) or for
6977
     targets where the native toolchain uses a different numbering
6978
     scheme for a particular debug format (stabs-in-ELF on Solaris)
6979
     the defaults below will have to be overridden, like
6980
     i386_elf_init_abi() does.  */
6981
 
6982
  /* Use the dbx register numbering scheme for stabs and COFF.  */
6983
  set_gdbarch_stab_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
6984
  set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
6985
 
6986
  /* Use the SVR4 register numbering scheme for DWARF 2.  */
6987
  set_gdbarch_dwarf2_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
6988
 
6989
  /* We don't set gdbarch_stab_reg_to_regnum, since ECOFF doesn't seem to
6990
     be in use on any of the supported i386 targets.  */
6991
 
6992
  set_gdbarch_print_float_info (gdbarch, i387_print_float_info);
6993
 
6994
  set_gdbarch_get_longjmp_target (gdbarch, i386_get_longjmp_target);
6995
 
6996
  /* Call dummy code.  */
6997
  set_gdbarch_push_dummy_call (gdbarch, i386_push_dummy_call);
6998
 
6999
  set_gdbarch_convert_register_p (gdbarch, i386_convert_register_p);
7000
  set_gdbarch_register_to_value (gdbarch,  i386_register_to_value);
7001
  set_gdbarch_value_to_register (gdbarch, i386_value_to_register);
7002
 
7003
  set_gdbarch_return_value (gdbarch, i386_return_value);
7004
 
7005
  set_gdbarch_skip_prologue (gdbarch, i386_skip_prologue);
7006
 
7007
  /* Stack grows downward.  */
7008
  set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
7009
 
7010
  set_gdbarch_breakpoint_from_pc (gdbarch, i386_breakpoint_from_pc);
7011
  set_gdbarch_decr_pc_after_break (gdbarch, 1);
7012
  set_gdbarch_max_insn_length (gdbarch, I386_MAX_INSN_LEN);
7013
 
7014
  set_gdbarch_frame_args_skip (gdbarch, 8);
7015
 
7016
  set_gdbarch_print_insn (gdbarch, i386_print_insn);
7017
 
7018
  set_gdbarch_dummy_id (gdbarch, i386_dummy_id);
7019
 
7020
  set_gdbarch_unwind_pc (gdbarch, i386_unwind_pc);
7021
 
7022
  /* Add the i386 register groups.  */
7023
  i386_add_reggroups (gdbarch);
7024
  tdep->register_reggroup_p = i386_register_reggroup_p;
7025
 
7026
  /* Helper for function argument information.  */
7027
  set_gdbarch_fetch_pointer_argument (gdbarch, i386_fetch_pointer_argument);
7028
 
7029
  /* Hook the function epilogue frame unwinder.  This unwinder is
7030
     appended to the list first, so that it supercedes the Dwarf
7031
     unwinder in function epilogues (where the Dwarf unwinder
7032
     currently fails).  */
7033
  frame_unwind_append_unwinder (gdbarch, &i386_epilogue_frame_unwind);
7034
 
7035
  /* Hook in the DWARF CFI frame unwinder.  This unwinder is appended
7036
     to the list before the prologue-based unwinders, so that Dwarf
7037
     CFI info will be used if it is available.  */
7038
  dwarf2_append_unwinders (gdbarch);
7039
 
7040
  frame_base_set_default (gdbarch, &i386_frame_base);
7041
 
7042
  /* Pseudo registers may be changed by amd64_init_abi.  */
7043
  set_gdbarch_pseudo_register_read (gdbarch, i386_pseudo_register_read);
7044
  set_gdbarch_pseudo_register_write (gdbarch, i386_pseudo_register_write);
7045
 
7046
  set_tdesc_pseudo_register_type (gdbarch, i386_pseudo_register_type);
7047
  set_tdesc_pseudo_register_name (gdbarch, i386_pseudo_register_name);
7048
 
7049
  /* Override the normal target description method to make the AVX
7050
     upper halves anonymous.  */
7051
  set_gdbarch_register_name (gdbarch, i386_register_name);
7052
 
7053
  /* Even though the default ABI only includes general-purpose registers,
7054
     floating-point registers and the SSE registers, we have to leave a
7055
     gap for the upper AVX registers.  */
7056
  set_gdbarch_num_regs (gdbarch, I386_AVX_NUM_REGS);
7057
 
7058
  /* Get the x86 target description from INFO.  */
7059
  tdesc = info.target_desc;
7060
  if (! tdesc_has_registers (tdesc))
7061
    tdesc = tdesc_i386;
7062
  tdep->tdesc = tdesc;
7063
 
7064
  tdep->num_core_regs = I386_NUM_GREGS + I387_NUM_REGS;
7065
  tdep->register_names = i386_register_names;
7066
 
7067
  /* No upper YMM registers.  */
7068
  tdep->ymmh_register_names = NULL;
7069
  tdep->ymm0h_regnum = -1;
7070
 
7071
  tdep->num_byte_regs = 8;
7072
  tdep->num_word_regs = 8;
7073
  tdep->num_dword_regs = 0;
7074
  tdep->num_mmx_regs = 8;
7075
  tdep->num_ymm_regs = 0;
7076
 
7077
  tdesc_data = tdesc_data_alloc ();
7078
 
7079
  set_gdbarch_relocate_instruction (gdbarch, i386_relocate_instruction);
7080
 
7081
  /* Hook in ABI-specific overrides, if they have been registered.  */
7082
  info.tdep_info = (void *) tdesc_data;
7083
  gdbarch_init_osabi (info, gdbarch);
7084
 
7085
  if (!i386_validate_tdesc_p (tdep, tdesc_data))
7086
    {
7087
      tdesc_data_cleanup (tdesc_data);
7088
      xfree (tdep);
7089
      gdbarch_free (gdbarch);
7090
      return NULL;
7091
    }
7092
 
7093
  /* Wire in pseudo registers.  Number of pseudo registers may be
7094
     changed.  */
7095
  set_gdbarch_num_pseudo_regs (gdbarch, (tdep->num_byte_regs
7096
                                         + tdep->num_word_regs
7097
                                         + tdep->num_dword_regs
7098
                                         + tdep->num_mmx_regs
7099
                                         + tdep->num_ymm_regs));
7100
 
7101
  /* Target description may be changed.  */
7102
  tdesc = tdep->tdesc;
7103
 
7104
  tdesc_use_registers (gdbarch, tdesc, tdesc_data);
7105
 
7106
  /* Override gdbarch_register_reggroup_p set in tdesc_use_registers.  */
7107
  set_gdbarch_register_reggroup_p (gdbarch, tdep->register_reggroup_p);
7108
 
7109
  /* Make %al the first pseudo-register.  */
7110
  tdep->al_regnum = gdbarch_num_regs (gdbarch);
7111
  tdep->ax_regnum = tdep->al_regnum + tdep->num_byte_regs;
7112
 
7113
  ymm0_regnum = tdep->ax_regnum + tdep->num_word_regs;
7114
  if (tdep->num_dword_regs)
7115
    {
7116
      /* Support dword pseudo-registesr if it hasn't been disabled,  */
7117
      tdep->eax_regnum = ymm0_regnum;
7118
      ymm0_regnum += tdep->num_dword_regs;
7119
    }
7120
  else
7121
    tdep->eax_regnum = -1;
7122
 
7123
  mm0_regnum = ymm0_regnum;
7124
  if (tdep->num_ymm_regs)
7125
    {
7126
      /* Support YMM pseudo-registesr if it is available,  */
7127
      tdep->ymm0_regnum = ymm0_regnum;
7128
      mm0_regnum += tdep->num_ymm_regs;
7129
    }
7130
  else
7131
    tdep->ymm0_regnum = -1;
7132
 
7133
  if (tdep->num_mmx_regs != 0)
7134
    {
7135
      /* Support MMX pseudo-registesr if MMX hasn't been disabled,  */
7136
      tdep->mm0_regnum = mm0_regnum;
7137
    }
7138
  else
7139
    tdep->mm0_regnum = -1;
7140
 
7141
  /* Hook in the legacy prologue-based unwinders last (fallback).  */
7142
  frame_unwind_append_unwinder (gdbarch, &i386_sigtramp_frame_unwind);
7143
  frame_unwind_append_unwinder (gdbarch, &i386_frame_unwind);
7144
 
7145
  /* If we have a register mapping, enable the generic core file
7146
     support, unless it has already been enabled.  */
7147
  if (tdep->gregset_reg_offset
7148
      && !gdbarch_regset_from_core_section_p (gdbarch))
7149
    set_gdbarch_regset_from_core_section (gdbarch,
7150
                                          i386_regset_from_core_section);
7151
 
7152
  set_gdbarch_skip_permanent_breakpoint (gdbarch,
7153
                                         i386_skip_permanent_breakpoint);
7154
 
7155
  set_gdbarch_fast_tracepoint_valid_at (gdbarch,
7156
                                        i386_fast_tracepoint_valid_at);
7157
 
7158
  return gdbarch;
7159
}
7160
 
7161
static enum gdb_osabi
7162
i386_coff_osabi_sniffer (bfd *abfd)
7163
{
7164
  if (strcmp (bfd_get_target (abfd), "coff-go32-exe") == 0
7165
      || strcmp (bfd_get_target (abfd), "coff-go32") == 0)
7166
    return GDB_OSABI_GO32;
7167
 
7168
  return GDB_OSABI_UNKNOWN;
7169
}
7170
 
7171
 
7172
/* Provide a prototype to silence -Wmissing-prototypes.  */
7173
void _initialize_i386_tdep (void);
7174
 
7175
void
7176
_initialize_i386_tdep (void)
7177
{
7178
  register_gdbarch_init (bfd_arch_i386, i386_gdbarch_init);
7179
 
7180
  /* Add the variable that controls the disassembly flavor.  */
7181
  add_setshow_enum_cmd ("disassembly-flavor", no_class, valid_flavors,
7182
                        &disassembly_flavor, _("\
7183
Set the disassembly flavor."), _("\
7184
Show the disassembly flavor."), _("\
7185
The valid values are \"att\" and \"intel\", and the default value is \"att\"."),
7186
                        NULL,
7187
                        NULL, /* FIXME: i18n: */
7188
                        &setlist, &showlist);
7189
 
7190
  /* Add the variable that controls the convention for returning
7191
     structs.  */
7192
  add_setshow_enum_cmd ("struct-convention", no_class, valid_conventions,
7193
                        &struct_convention, _("\
7194
Set the convention for returning small structs."), _("\
7195
Show the convention for returning small structs."), _("\
7196
Valid values are \"default\", \"pcc\" and \"reg\", and the default value\n\
7197
is \"default\"."),
7198
                        NULL,
7199
                        NULL, /* FIXME: i18n: */
7200
                        &setlist, &showlist);
7201
 
7202
  gdbarch_register_osabi_sniffer (bfd_arch_i386, bfd_target_coff_flavour,
7203
                                  i386_coff_osabi_sniffer);
7204
 
7205
  gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_SVR4,
7206
                          i386_svr4_init_abi);
7207
  gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_GO32,
7208
                          i386_go32_init_abi);
7209
 
7210
  /* Initialize the i386-specific register groups.  */
7211
  i386_init_reggroups ();
7212
 
7213
  /* Initialize the standard target descriptions.  */
7214
  initialize_tdesc_i386 ();
7215
  initialize_tdesc_i386_mmx ();
7216
  initialize_tdesc_i386_avx ();
7217
 
7218
  /* Tell remote stub that we support XML target description.  */
7219
  register_remote_support_xml ("i386");
7220
}

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.