1 |
330 |
jeremybenn |
/* Target-struct-independent code to start (run) and stop an inferior
|
2 |
|
|
process.
|
3 |
|
|
|
4 |
|
|
Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
|
5 |
|
|
1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
|
6 |
|
|
2008, 2009, 2010 Free Software Foundation, Inc.
|
7 |
|
|
|
8 |
|
|
This file is part of GDB.
|
9 |
|
|
|
10 |
|
|
This program is free software; you can redistribute it and/or modify
|
11 |
|
|
it under the terms of the GNU General Public License as published by
|
12 |
|
|
the Free Software Foundation; either version 3 of the License, or
|
13 |
|
|
(at your option) any later version.
|
14 |
|
|
|
15 |
|
|
This program is distributed in the hope that it will be useful,
|
16 |
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
17 |
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
18 |
|
|
GNU General Public License for more details.
|
19 |
|
|
|
20 |
|
|
You should have received a copy of the GNU General Public License
|
21 |
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>. */
|
22 |
|
|
|
23 |
|
|
#include "defs.h"
|
24 |
|
|
#include "gdb_string.h"
|
25 |
|
|
#include <ctype.h>
|
26 |
|
|
#include "symtab.h"
|
27 |
|
|
#include "frame.h"
|
28 |
|
|
#include "inferior.h"
|
29 |
|
|
#include "exceptions.h"
|
30 |
|
|
#include "breakpoint.h"
|
31 |
|
|
#include "gdb_wait.h"
|
32 |
|
|
#include "gdbcore.h"
|
33 |
|
|
#include "gdbcmd.h"
|
34 |
|
|
#include "cli/cli-script.h"
|
35 |
|
|
#include "target.h"
|
36 |
|
|
#include "gdbthread.h"
|
37 |
|
|
#include "annotate.h"
|
38 |
|
|
#include "symfile.h"
|
39 |
|
|
#include "top.h"
|
40 |
|
|
#include <signal.h>
|
41 |
|
|
#include "inf-loop.h"
|
42 |
|
|
#include "regcache.h"
|
43 |
|
|
#include "value.h"
|
44 |
|
|
#include "observer.h"
|
45 |
|
|
#include "language.h"
|
46 |
|
|
#include "solib.h"
|
47 |
|
|
#include "main.h"
|
48 |
|
|
#include "gdb_assert.h"
|
49 |
|
|
#include "mi/mi-common.h"
|
50 |
|
|
#include "event-top.h"
|
51 |
|
|
#include "record.h"
|
52 |
|
|
#include "inline-frame.h"
|
53 |
|
|
#include "jit.h"
|
54 |
|
|
#include "tracepoint.h"
|
55 |
|
|
|
56 |
|
|
/* Prototypes for local functions */
|
57 |
|
|
|
58 |
|
|
static void signals_info (char *, int);
|
59 |
|
|
|
60 |
|
|
static void handle_command (char *, int);
|
61 |
|
|
|
62 |
|
|
static void sig_print_info (enum target_signal);
|
63 |
|
|
|
64 |
|
|
static void sig_print_header (void);
|
65 |
|
|
|
66 |
|
|
static void resume_cleanups (void *);
|
67 |
|
|
|
68 |
|
|
static int hook_stop_stub (void *);
|
69 |
|
|
|
70 |
|
|
static int restore_selected_frame (void *);
|
71 |
|
|
|
72 |
|
|
static int follow_fork (void);
|
73 |
|
|
|
74 |
|
|
static void set_schedlock_func (char *args, int from_tty,
|
75 |
|
|
struct cmd_list_element *c);
|
76 |
|
|
|
77 |
|
|
static int currently_stepping (struct thread_info *tp);
|
78 |
|
|
|
79 |
|
|
static int currently_stepping_or_nexting_callback (struct thread_info *tp,
|
80 |
|
|
void *data);
|
81 |
|
|
|
82 |
|
|
static void xdb_handle_command (char *args, int from_tty);
|
83 |
|
|
|
84 |
|
|
static int prepare_to_proceed (int);
|
85 |
|
|
|
86 |
|
|
void _initialize_infrun (void);
|
87 |
|
|
|
88 |
|
|
void nullify_last_target_wait_ptid (void);
|
89 |
|
|
|
90 |
|
|
/* When set, stop the 'step' command if we enter a function which has
|
91 |
|
|
no line number information. The normal behavior is that we step
|
92 |
|
|
over such function. */
|
93 |
|
|
int step_stop_if_no_debug = 0;
|
94 |
|
|
static void
|
95 |
|
|
show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
|
96 |
|
|
struct cmd_list_element *c, const char *value)
|
97 |
|
|
{
|
98 |
|
|
fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
|
99 |
|
|
}
|
100 |
|
|
|
101 |
|
|
/* In asynchronous mode, but simulating synchronous execution. */
|
102 |
|
|
|
103 |
|
|
int sync_execution = 0;
|
104 |
|
|
|
105 |
|
|
/* wait_for_inferior and normal_stop use this to notify the user
|
106 |
|
|
when the inferior stopped in a different thread than it had been
|
107 |
|
|
running in. */
|
108 |
|
|
|
109 |
|
|
static ptid_t previous_inferior_ptid;
|
110 |
|
|
|
111 |
|
|
/* Default behavior is to detach newly forked processes (legacy). */
|
112 |
|
|
int detach_fork = 1;
|
113 |
|
|
|
114 |
|
|
int debug_displaced = 0;
|
115 |
|
|
static void
|
116 |
|
|
show_debug_displaced (struct ui_file *file, int from_tty,
|
117 |
|
|
struct cmd_list_element *c, const char *value)
|
118 |
|
|
{
|
119 |
|
|
fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
|
120 |
|
|
}
|
121 |
|
|
|
122 |
|
|
int debug_infrun = 0;
|
123 |
|
|
static void
|
124 |
|
|
show_debug_infrun (struct ui_file *file, int from_tty,
|
125 |
|
|
struct cmd_list_element *c, const char *value)
|
126 |
|
|
{
|
127 |
|
|
fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
|
128 |
|
|
}
|
129 |
|
|
|
130 |
|
|
/* If the program uses ELF-style shared libraries, then calls to
|
131 |
|
|
functions in shared libraries go through stubs, which live in a
|
132 |
|
|
table called the PLT (Procedure Linkage Table). The first time the
|
133 |
|
|
function is called, the stub sends control to the dynamic linker,
|
134 |
|
|
which looks up the function's real address, patches the stub so
|
135 |
|
|
that future calls will go directly to the function, and then passes
|
136 |
|
|
control to the function.
|
137 |
|
|
|
138 |
|
|
If we are stepping at the source level, we don't want to see any of
|
139 |
|
|
this --- we just want to skip over the stub and the dynamic linker.
|
140 |
|
|
The simple approach is to single-step until control leaves the
|
141 |
|
|
dynamic linker.
|
142 |
|
|
|
143 |
|
|
However, on some systems (e.g., Red Hat's 5.2 distribution) the
|
144 |
|
|
dynamic linker calls functions in the shared C library, so you
|
145 |
|
|
can't tell from the PC alone whether the dynamic linker is still
|
146 |
|
|
running. In this case, we use a step-resume breakpoint to get us
|
147 |
|
|
past the dynamic linker, as if we were using "next" to step over a
|
148 |
|
|
function call.
|
149 |
|
|
|
150 |
|
|
in_solib_dynsym_resolve_code() says whether we're in the dynamic
|
151 |
|
|
linker code or not. Normally, this means we single-step. However,
|
152 |
|
|
if SKIP_SOLIB_RESOLVER then returns non-zero, then its value is an
|
153 |
|
|
address where we can place a step-resume breakpoint to get past the
|
154 |
|
|
linker's symbol resolution function.
|
155 |
|
|
|
156 |
|
|
in_solib_dynsym_resolve_code() can generally be implemented in a
|
157 |
|
|
pretty portable way, by comparing the PC against the address ranges
|
158 |
|
|
of the dynamic linker's sections.
|
159 |
|
|
|
160 |
|
|
SKIP_SOLIB_RESOLVER is generally going to be system-specific, since
|
161 |
|
|
it depends on internal details of the dynamic linker. It's usually
|
162 |
|
|
not too hard to figure out where to put a breakpoint, but it
|
163 |
|
|
certainly isn't portable. SKIP_SOLIB_RESOLVER should do plenty of
|
164 |
|
|
sanity checking. If it can't figure things out, returning zero and
|
165 |
|
|
getting the (possibly confusing) stepping behavior is better than
|
166 |
|
|
signalling an error, which will obscure the change in the
|
167 |
|
|
inferior's state. */
|
168 |
|
|
|
169 |
|
|
/* This function returns TRUE if pc is the address of an instruction
|
170 |
|
|
that lies within the dynamic linker (such as the event hook, or the
|
171 |
|
|
dld itself).
|
172 |
|
|
|
173 |
|
|
This function must be used only when a dynamic linker event has
|
174 |
|
|
been caught, and the inferior is being stepped out of the hook, or
|
175 |
|
|
undefined results are guaranteed. */
|
176 |
|
|
|
177 |
|
|
#ifndef SOLIB_IN_DYNAMIC_LINKER
|
178 |
|
|
#define SOLIB_IN_DYNAMIC_LINKER(pid,pc) 0
|
179 |
|
|
#endif
|
180 |
|
|
|
181 |
|
|
/* "Observer mode" is somewhat like a more extreme version of
|
182 |
|
|
non-stop, in which all GDB operations that might affect the
|
183 |
|
|
target's execution have been disabled. */
|
184 |
|
|
|
185 |
|
|
static int non_stop_1 = 0;
|
186 |
|
|
|
187 |
|
|
int observer_mode = 0;
|
188 |
|
|
static int observer_mode_1 = 0;
|
189 |
|
|
|
190 |
|
|
static void
|
191 |
|
|
set_observer_mode (char *args, int from_tty,
|
192 |
|
|
struct cmd_list_element *c)
|
193 |
|
|
{
|
194 |
|
|
extern int pagination_enabled;
|
195 |
|
|
|
196 |
|
|
if (target_has_execution)
|
197 |
|
|
{
|
198 |
|
|
observer_mode_1 = observer_mode;
|
199 |
|
|
error (_("Cannot change this setting while the inferior is running."));
|
200 |
|
|
}
|
201 |
|
|
|
202 |
|
|
observer_mode = observer_mode_1;
|
203 |
|
|
|
204 |
|
|
may_write_registers = !observer_mode;
|
205 |
|
|
may_write_memory = !observer_mode;
|
206 |
|
|
may_insert_breakpoints = !observer_mode;
|
207 |
|
|
may_insert_tracepoints = !observer_mode;
|
208 |
|
|
/* We can insert fast tracepoints in or out of observer mode,
|
209 |
|
|
but enable them if we're going into this mode. */
|
210 |
|
|
if (observer_mode)
|
211 |
|
|
may_insert_fast_tracepoints = 1;
|
212 |
|
|
may_stop = !observer_mode;
|
213 |
|
|
update_target_permissions ();
|
214 |
|
|
|
215 |
|
|
/* Going *into* observer mode we must force non-stop, then
|
216 |
|
|
going out we leave it that way. */
|
217 |
|
|
if (observer_mode)
|
218 |
|
|
{
|
219 |
|
|
target_async_permitted = 1;
|
220 |
|
|
pagination_enabled = 0;
|
221 |
|
|
non_stop = non_stop_1 = 1;
|
222 |
|
|
}
|
223 |
|
|
|
224 |
|
|
if (from_tty)
|
225 |
|
|
printf_filtered (_("Observer mode is now %s.\n"),
|
226 |
|
|
(observer_mode ? "on" : "off"));
|
227 |
|
|
}
|
228 |
|
|
|
229 |
|
|
static void
|
230 |
|
|
show_observer_mode (struct ui_file *file, int from_tty,
|
231 |
|
|
struct cmd_list_element *c, const char *value)
|
232 |
|
|
{
|
233 |
|
|
fprintf_filtered (file, _("Observer mode is %s.\n"), value);
|
234 |
|
|
}
|
235 |
|
|
|
236 |
|
|
/* This updates the value of observer mode based on changes in
|
237 |
|
|
permissions. Note that we are deliberately ignoring the values of
|
238 |
|
|
may-write-registers and may-write-memory, since the user may have
|
239 |
|
|
reason to enable these during a session, for instance to turn on a
|
240 |
|
|
debugging-related global. */
|
241 |
|
|
|
242 |
|
|
void
|
243 |
|
|
update_observer_mode (void)
|
244 |
|
|
{
|
245 |
|
|
int newval;
|
246 |
|
|
|
247 |
|
|
newval = (!may_insert_breakpoints
|
248 |
|
|
&& !may_insert_tracepoints
|
249 |
|
|
&& may_insert_fast_tracepoints
|
250 |
|
|
&& !may_stop
|
251 |
|
|
&& non_stop);
|
252 |
|
|
|
253 |
|
|
/* Let the user know if things change. */
|
254 |
|
|
if (newval != observer_mode)
|
255 |
|
|
printf_filtered (_("Observer mode is now %s.\n"),
|
256 |
|
|
(newval ? "on" : "off"));
|
257 |
|
|
|
258 |
|
|
observer_mode = observer_mode_1 = newval;
|
259 |
|
|
}
|
260 |
|
|
|
261 |
|
|
/* Tables of how to react to signals; the user sets them. */
|
262 |
|
|
|
263 |
|
|
static unsigned char *signal_stop;
|
264 |
|
|
static unsigned char *signal_print;
|
265 |
|
|
static unsigned char *signal_program;
|
266 |
|
|
|
267 |
|
|
#define SET_SIGS(nsigs,sigs,flags) \
|
268 |
|
|
do { \
|
269 |
|
|
int signum = (nsigs); \
|
270 |
|
|
while (signum-- > 0) \
|
271 |
|
|
if ((sigs)[signum]) \
|
272 |
|
|
(flags)[signum] = 1; \
|
273 |
|
|
} while (0)
|
274 |
|
|
|
275 |
|
|
#define UNSET_SIGS(nsigs,sigs,flags) \
|
276 |
|
|
do { \
|
277 |
|
|
int signum = (nsigs); \
|
278 |
|
|
while (signum-- > 0) \
|
279 |
|
|
if ((sigs)[signum]) \
|
280 |
|
|
(flags)[signum] = 0; \
|
281 |
|
|
} while (0)
|
282 |
|
|
|
283 |
|
|
/* Value to pass to target_resume() to cause all threads to resume */
|
284 |
|
|
|
285 |
|
|
#define RESUME_ALL minus_one_ptid
|
286 |
|
|
|
287 |
|
|
/* Command list pointer for the "stop" placeholder. */
|
288 |
|
|
|
289 |
|
|
static struct cmd_list_element *stop_command;
|
290 |
|
|
|
291 |
|
|
/* Function inferior was in as of last step command. */
|
292 |
|
|
|
293 |
|
|
static struct symbol *step_start_function;
|
294 |
|
|
|
295 |
|
|
/* Nonzero if we want to give control to the user when we're notified
|
296 |
|
|
of shared library events by the dynamic linker. */
|
297 |
|
|
int stop_on_solib_events;
|
298 |
|
|
static void
|
299 |
|
|
show_stop_on_solib_events (struct ui_file *file, int from_tty,
|
300 |
|
|
struct cmd_list_element *c, const char *value)
|
301 |
|
|
{
|
302 |
|
|
fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
|
303 |
|
|
value);
|
304 |
|
|
}
|
305 |
|
|
|
306 |
|
|
/* Nonzero means expecting a trace trap
|
307 |
|
|
and should stop the inferior and return silently when it happens. */
|
308 |
|
|
|
309 |
|
|
int stop_after_trap;
|
310 |
|
|
|
311 |
|
|
/* Save register contents here when executing a "finish" command or are
|
312 |
|
|
about to pop a stack dummy frame, if-and-only-if proceed_to_finish is set.
|
313 |
|
|
Thus this contains the return value from the called function (assuming
|
314 |
|
|
values are returned in a register). */
|
315 |
|
|
|
316 |
|
|
struct regcache *stop_registers;
|
317 |
|
|
|
318 |
|
|
/* Nonzero after stop if current stack frame should be printed. */
|
319 |
|
|
|
320 |
|
|
static int stop_print_frame;
|
321 |
|
|
|
322 |
|
|
/* This is a cached copy of the pid/waitstatus of the last event
|
323 |
|
|
returned by target_wait()/deprecated_target_wait_hook(). This
|
324 |
|
|
information is returned by get_last_target_status(). */
|
325 |
|
|
static ptid_t target_last_wait_ptid;
|
326 |
|
|
static struct target_waitstatus target_last_waitstatus;
|
327 |
|
|
|
328 |
|
|
static void context_switch (ptid_t ptid);
|
329 |
|
|
|
330 |
|
|
void init_thread_stepping_state (struct thread_info *tss);
|
331 |
|
|
|
332 |
|
|
void init_infwait_state (void);
|
333 |
|
|
|
334 |
|
|
static const char follow_fork_mode_child[] = "child";
|
335 |
|
|
static const char follow_fork_mode_parent[] = "parent";
|
336 |
|
|
|
337 |
|
|
static const char *follow_fork_mode_kind_names[] = {
|
338 |
|
|
follow_fork_mode_child,
|
339 |
|
|
follow_fork_mode_parent,
|
340 |
|
|
NULL
|
341 |
|
|
};
|
342 |
|
|
|
343 |
|
|
static const char *follow_fork_mode_string = follow_fork_mode_parent;
|
344 |
|
|
static void
|
345 |
|
|
show_follow_fork_mode_string (struct ui_file *file, int from_tty,
|
346 |
|
|
struct cmd_list_element *c, const char *value)
|
347 |
|
|
{
|
348 |
|
|
fprintf_filtered (file, _("\
|
349 |
|
|
Debugger response to a program call of fork or vfork is \"%s\".\n"),
|
350 |
|
|
value);
|
351 |
|
|
}
|
352 |
|
|
|
353 |
|
|
|
354 |
|
|
/* Tell the target to follow the fork we're stopped at. Returns true
|
355 |
|
|
if the inferior should be resumed; false, if the target for some
|
356 |
|
|
reason decided it's best not to resume. */
|
357 |
|
|
|
358 |
|
|
static int
|
359 |
|
|
follow_fork (void)
|
360 |
|
|
{
|
361 |
|
|
int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
|
362 |
|
|
int should_resume = 1;
|
363 |
|
|
struct thread_info *tp;
|
364 |
|
|
|
365 |
|
|
/* Copy user stepping state to the new inferior thread. FIXME: the
|
366 |
|
|
followed fork child thread should have a copy of most of the
|
367 |
|
|
parent thread structure's run control related fields, not just these.
|
368 |
|
|
Initialized to avoid "may be used uninitialized" warnings from gcc. */
|
369 |
|
|
struct breakpoint *step_resume_breakpoint = NULL;
|
370 |
|
|
CORE_ADDR step_range_start = 0;
|
371 |
|
|
CORE_ADDR step_range_end = 0;
|
372 |
|
|
struct frame_id step_frame_id = { 0 };
|
373 |
|
|
|
374 |
|
|
if (!non_stop)
|
375 |
|
|
{
|
376 |
|
|
ptid_t wait_ptid;
|
377 |
|
|
struct target_waitstatus wait_status;
|
378 |
|
|
|
379 |
|
|
/* Get the last target status returned by target_wait(). */
|
380 |
|
|
get_last_target_status (&wait_ptid, &wait_status);
|
381 |
|
|
|
382 |
|
|
/* If not stopped at a fork event, then there's nothing else to
|
383 |
|
|
do. */
|
384 |
|
|
if (wait_status.kind != TARGET_WAITKIND_FORKED
|
385 |
|
|
&& wait_status.kind != TARGET_WAITKIND_VFORKED)
|
386 |
|
|
return 1;
|
387 |
|
|
|
388 |
|
|
/* Check if we switched over from WAIT_PTID, since the event was
|
389 |
|
|
reported. */
|
390 |
|
|
if (!ptid_equal (wait_ptid, minus_one_ptid)
|
391 |
|
|
&& !ptid_equal (inferior_ptid, wait_ptid))
|
392 |
|
|
{
|
393 |
|
|
/* We did. Switch back to WAIT_PTID thread, to tell the
|
394 |
|
|
target to follow it (in either direction). We'll
|
395 |
|
|
afterwards refuse to resume, and inform the user what
|
396 |
|
|
happened. */
|
397 |
|
|
switch_to_thread (wait_ptid);
|
398 |
|
|
should_resume = 0;
|
399 |
|
|
}
|
400 |
|
|
}
|
401 |
|
|
|
402 |
|
|
tp = inferior_thread ();
|
403 |
|
|
|
404 |
|
|
/* If there were any forks/vforks that were caught and are now to be
|
405 |
|
|
followed, then do so now. */
|
406 |
|
|
switch (tp->pending_follow.kind)
|
407 |
|
|
{
|
408 |
|
|
case TARGET_WAITKIND_FORKED:
|
409 |
|
|
case TARGET_WAITKIND_VFORKED:
|
410 |
|
|
{
|
411 |
|
|
ptid_t parent, child;
|
412 |
|
|
|
413 |
|
|
/* If the user did a next/step, etc, over a fork call,
|
414 |
|
|
preserve the stepping state in the fork child. */
|
415 |
|
|
if (follow_child && should_resume)
|
416 |
|
|
{
|
417 |
|
|
step_resume_breakpoint
|
418 |
|
|
= clone_momentary_breakpoint (tp->step_resume_breakpoint);
|
419 |
|
|
step_range_start = tp->step_range_start;
|
420 |
|
|
step_range_end = tp->step_range_end;
|
421 |
|
|
step_frame_id = tp->step_frame_id;
|
422 |
|
|
|
423 |
|
|
/* For now, delete the parent's sr breakpoint, otherwise,
|
424 |
|
|
parent/child sr breakpoints are considered duplicates,
|
425 |
|
|
and the child version will not be installed. Remove
|
426 |
|
|
this when the breakpoints module becomes aware of
|
427 |
|
|
inferiors and address spaces. */
|
428 |
|
|
delete_step_resume_breakpoint (tp);
|
429 |
|
|
tp->step_range_start = 0;
|
430 |
|
|
tp->step_range_end = 0;
|
431 |
|
|
tp->step_frame_id = null_frame_id;
|
432 |
|
|
}
|
433 |
|
|
|
434 |
|
|
parent = inferior_ptid;
|
435 |
|
|
child = tp->pending_follow.value.related_pid;
|
436 |
|
|
|
437 |
|
|
/* Tell the target to do whatever is necessary to follow
|
438 |
|
|
either parent or child. */
|
439 |
|
|
if (target_follow_fork (follow_child))
|
440 |
|
|
{
|
441 |
|
|
/* Target refused to follow, or there's some other reason
|
442 |
|
|
we shouldn't resume. */
|
443 |
|
|
should_resume = 0;
|
444 |
|
|
}
|
445 |
|
|
else
|
446 |
|
|
{
|
447 |
|
|
/* This pending follow fork event is now handled, one way
|
448 |
|
|
or another. The previous selected thread may be gone
|
449 |
|
|
from the lists by now, but if it is still around, need
|
450 |
|
|
to clear the pending follow request. */
|
451 |
|
|
tp = find_thread_ptid (parent);
|
452 |
|
|
if (tp)
|
453 |
|
|
tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
|
454 |
|
|
|
455 |
|
|
/* This makes sure we don't try to apply the "Switched
|
456 |
|
|
over from WAIT_PID" logic above. */
|
457 |
|
|
nullify_last_target_wait_ptid ();
|
458 |
|
|
|
459 |
|
|
/* If we followed the child, switch to it... */
|
460 |
|
|
if (follow_child)
|
461 |
|
|
{
|
462 |
|
|
switch_to_thread (child);
|
463 |
|
|
|
464 |
|
|
/* ... and preserve the stepping state, in case the
|
465 |
|
|
user was stepping over the fork call. */
|
466 |
|
|
if (should_resume)
|
467 |
|
|
{
|
468 |
|
|
tp = inferior_thread ();
|
469 |
|
|
tp->step_resume_breakpoint = step_resume_breakpoint;
|
470 |
|
|
tp->step_range_start = step_range_start;
|
471 |
|
|
tp->step_range_end = step_range_end;
|
472 |
|
|
tp->step_frame_id = step_frame_id;
|
473 |
|
|
}
|
474 |
|
|
else
|
475 |
|
|
{
|
476 |
|
|
/* If we get here, it was because we're trying to
|
477 |
|
|
resume from a fork catchpoint, but, the user
|
478 |
|
|
has switched threads away from the thread that
|
479 |
|
|
forked. In that case, the resume command
|
480 |
|
|
issued is most likely not applicable to the
|
481 |
|
|
child, so just warn, and refuse to resume. */
|
482 |
|
|
warning (_("\
|
483 |
|
|
Not resuming: switched threads before following fork child.\n"));
|
484 |
|
|
}
|
485 |
|
|
|
486 |
|
|
/* Reset breakpoints in the child as appropriate. */
|
487 |
|
|
follow_inferior_reset_breakpoints ();
|
488 |
|
|
}
|
489 |
|
|
else
|
490 |
|
|
switch_to_thread (parent);
|
491 |
|
|
}
|
492 |
|
|
}
|
493 |
|
|
break;
|
494 |
|
|
case TARGET_WAITKIND_SPURIOUS:
|
495 |
|
|
/* Nothing to follow. */
|
496 |
|
|
break;
|
497 |
|
|
default:
|
498 |
|
|
internal_error (__FILE__, __LINE__,
|
499 |
|
|
"Unexpected pending_follow.kind %d\n",
|
500 |
|
|
tp->pending_follow.kind);
|
501 |
|
|
break;
|
502 |
|
|
}
|
503 |
|
|
|
504 |
|
|
return should_resume;
|
505 |
|
|
}
|
506 |
|
|
|
507 |
|
|
void
|
508 |
|
|
follow_inferior_reset_breakpoints (void)
|
509 |
|
|
{
|
510 |
|
|
struct thread_info *tp = inferior_thread ();
|
511 |
|
|
|
512 |
|
|
/* Was there a step_resume breakpoint? (There was if the user
|
513 |
|
|
did a "next" at the fork() call.) If so, explicitly reset its
|
514 |
|
|
thread number.
|
515 |
|
|
|
516 |
|
|
step_resumes are a form of bp that are made to be per-thread.
|
517 |
|
|
Since we created the step_resume bp when the parent process
|
518 |
|
|
was being debugged, and now are switching to the child process,
|
519 |
|
|
from the breakpoint package's viewpoint, that's a switch of
|
520 |
|
|
"threads". We must update the bp's notion of which thread
|
521 |
|
|
it is for, or it'll be ignored when it triggers. */
|
522 |
|
|
|
523 |
|
|
if (tp->step_resume_breakpoint)
|
524 |
|
|
breakpoint_re_set_thread (tp->step_resume_breakpoint);
|
525 |
|
|
|
526 |
|
|
/* Reinsert all breakpoints in the child. The user may have set
|
527 |
|
|
breakpoints after catching the fork, in which case those
|
528 |
|
|
were never set in the child, but only in the parent. This makes
|
529 |
|
|
sure the inserted breakpoints match the breakpoint list. */
|
530 |
|
|
|
531 |
|
|
breakpoint_re_set ();
|
532 |
|
|
insert_breakpoints ();
|
533 |
|
|
}
|
534 |
|
|
|
535 |
|
|
/* The child has exited or execed: resume threads of the parent the
|
536 |
|
|
user wanted to be executing. */
|
537 |
|
|
|
538 |
|
|
static int
|
539 |
|
|
proceed_after_vfork_done (struct thread_info *thread,
|
540 |
|
|
void *arg)
|
541 |
|
|
{
|
542 |
|
|
int pid = * (int *) arg;
|
543 |
|
|
|
544 |
|
|
if (ptid_get_pid (thread->ptid) == pid
|
545 |
|
|
&& is_running (thread->ptid)
|
546 |
|
|
&& !is_executing (thread->ptid)
|
547 |
|
|
&& !thread->stop_requested
|
548 |
|
|
&& thread->stop_signal == TARGET_SIGNAL_0)
|
549 |
|
|
{
|
550 |
|
|
if (debug_infrun)
|
551 |
|
|
fprintf_unfiltered (gdb_stdlog,
|
552 |
|
|
"infrun: resuming vfork parent thread %s\n",
|
553 |
|
|
target_pid_to_str (thread->ptid));
|
554 |
|
|
|
555 |
|
|
switch_to_thread (thread->ptid);
|
556 |
|
|
clear_proceed_status ();
|
557 |
|
|
proceed ((CORE_ADDR) -1, TARGET_SIGNAL_DEFAULT, 0);
|
558 |
|
|
}
|
559 |
|
|
|
560 |
|
|
return 0;
|
561 |
|
|
}
|
562 |
|
|
|
563 |
|
|
/* Called whenever we notice an exec or exit event, to handle
|
564 |
|
|
detaching or resuming a vfork parent. */
|
565 |
|
|
|
566 |
|
|
static void
|
567 |
|
|
handle_vfork_child_exec_or_exit (int exec)
|
568 |
|
|
{
|
569 |
|
|
struct inferior *inf = current_inferior ();
|
570 |
|
|
|
571 |
|
|
if (inf->vfork_parent)
|
572 |
|
|
{
|
573 |
|
|
int resume_parent = -1;
|
574 |
|
|
|
575 |
|
|
/* This exec or exit marks the end of the shared memory region
|
576 |
|
|
between the parent and the child. If the user wanted to
|
577 |
|
|
detach from the parent, now is the time. */
|
578 |
|
|
|
579 |
|
|
if (inf->vfork_parent->pending_detach)
|
580 |
|
|
{
|
581 |
|
|
struct thread_info *tp;
|
582 |
|
|
struct cleanup *old_chain;
|
583 |
|
|
struct program_space *pspace;
|
584 |
|
|
struct address_space *aspace;
|
585 |
|
|
|
586 |
|
|
/* follow-fork child, detach-on-fork on */
|
587 |
|
|
|
588 |
|
|
old_chain = make_cleanup_restore_current_thread ();
|
589 |
|
|
|
590 |
|
|
/* We're letting loose of the parent. */
|
591 |
|
|
tp = any_live_thread_of_process (inf->vfork_parent->pid);
|
592 |
|
|
switch_to_thread (tp->ptid);
|
593 |
|
|
|
594 |
|
|
/* We're about to detach from the parent, which implicitly
|
595 |
|
|
removes breakpoints from its address space. There's a
|
596 |
|
|
catch here: we want to reuse the spaces for the child,
|
597 |
|
|
but, parent/child are still sharing the pspace at this
|
598 |
|
|
point, although the exec in reality makes the kernel give
|
599 |
|
|
the child a fresh set of new pages. The problem here is
|
600 |
|
|
that the breakpoints module being unaware of this, would
|
601 |
|
|
likely chose the child process to write to the parent
|
602 |
|
|
address space. Swapping the child temporarily away from
|
603 |
|
|
the spaces has the desired effect. Yes, this is "sort
|
604 |
|
|
of" a hack. */
|
605 |
|
|
|
606 |
|
|
pspace = inf->pspace;
|
607 |
|
|
aspace = inf->aspace;
|
608 |
|
|
inf->aspace = NULL;
|
609 |
|
|
inf->pspace = NULL;
|
610 |
|
|
|
611 |
|
|
if (debug_infrun || info_verbose)
|
612 |
|
|
{
|
613 |
|
|
target_terminal_ours ();
|
614 |
|
|
|
615 |
|
|
if (exec)
|
616 |
|
|
fprintf_filtered (gdb_stdlog,
|
617 |
|
|
"Detaching vfork parent process %d after child exec.\n",
|
618 |
|
|
inf->vfork_parent->pid);
|
619 |
|
|
else
|
620 |
|
|
fprintf_filtered (gdb_stdlog,
|
621 |
|
|
"Detaching vfork parent process %d after child exit.\n",
|
622 |
|
|
inf->vfork_parent->pid);
|
623 |
|
|
}
|
624 |
|
|
|
625 |
|
|
target_detach (NULL, 0);
|
626 |
|
|
|
627 |
|
|
/* Put it back. */
|
628 |
|
|
inf->pspace = pspace;
|
629 |
|
|
inf->aspace = aspace;
|
630 |
|
|
|
631 |
|
|
do_cleanups (old_chain);
|
632 |
|
|
}
|
633 |
|
|
else if (exec)
|
634 |
|
|
{
|
635 |
|
|
/* We're staying attached to the parent, so, really give the
|
636 |
|
|
child a new address space. */
|
637 |
|
|
inf->pspace = add_program_space (maybe_new_address_space ());
|
638 |
|
|
inf->aspace = inf->pspace->aspace;
|
639 |
|
|
inf->removable = 1;
|
640 |
|
|
set_current_program_space (inf->pspace);
|
641 |
|
|
|
642 |
|
|
resume_parent = inf->vfork_parent->pid;
|
643 |
|
|
|
644 |
|
|
/* Break the bonds. */
|
645 |
|
|
inf->vfork_parent->vfork_child = NULL;
|
646 |
|
|
}
|
647 |
|
|
else
|
648 |
|
|
{
|
649 |
|
|
struct cleanup *old_chain;
|
650 |
|
|
struct program_space *pspace;
|
651 |
|
|
|
652 |
|
|
/* If this is a vfork child exiting, then the pspace and
|
653 |
|
|
aspaces were shared with the parent. Since we're
|
654 |
|
|
reporting the process exit, we'll be mourning all that is
|
655 |
|
|
found in the address space, and switching to null_ptid,
|
656 |
|
|
preparing to start a new inferior. But, since we don't
|
657 |
|
|
want to clobber the parent's address/program spaces, we
|
658 |
|
|
go ahead and create a new one for this exiting
|
659 |
|
|
inferior. */
|
660 |
|
|
|
661 |
|
|
/* Switch to null_ptid, so that clone_program_space doesn't want
|
662 |
|
|
to read the selected frame of a dead process. */
|
663 |
|
|
old_chain = save_inferior_ptid ();
|
664 |
|
|
inferior_ptid = null_ptid;
|
665 |
|
|
|
666 |
|
|
/* This inferior is dead, so avoid giving the breakpoints
|
667 |
|
|
module the option to write through to it (cloning a
|
668 |
|
|
program space resets breakpoints). */
|
669 |
|
|
inf->aspace = NULL;
|
670 |
|
|
inf->pspace = NULL;
|
671 |
|
|
pspace = add_program_space (maybe_new_address_space ());
|
672 |
|
|
set_current_program_space (pspace);
|
673 |
|
|
inf->removable = 1;
|
674 |
|
|
clone_program_space (pspace, inf->vfork_parent->pspace);
|
675 |
|
|
inf->pspace = pspace;
|
676 |
|
|
inf->aspace = pspace->aspace;
|
677 |
|
|
|
678 |
|
|
/* Put back inferior_ptid. We'll continue mourning this
|
679 |
|
|
inferior. */
|
680 |
|
|
do_cleanups (old_chain);
|
681 |
|
|
|
682 |
|
|
resume_parent = inf->vfork_parent->pid;
|
683 |
|
|
/* Break the bonds. */
|
684 |
|
|
inf->vfork_parent->vfork_child = NULL;
|
685 |
|
|
}
|
686 |
|
|
|
687 |
|
|
inf->vfork_parent = NULL;
|
688 |
|
|
|
689 |
|
|
gdb_assert (current_program_space == inf->pspace);
|
690 |
|
|
|
691 |
|
|
if (non_stop && resume_parent != -1)
|
692 |
|
|
{
|
693 |
|
|
/* If the user wanted the parent to be running, let it go
|
694 |
|
|
free now. */
|
695 |
|
|
struct cleanup *old_chain = make_cleanup_restore_current_thread ();
|
696 |
|
|
|
697 |
|
|
if (debug_infrun)
|
698 |
|
|
fprintf_unfiltered (gdb_stdlog, "infrun: resuming vfork parent process %d\n",
|
699 |
|
|
resume_parent);
|
700 |
|
|
|
701 |
|
|
iterate_over_threads (proceed_after_vfork_done, &resume_parent);
|
702 |
|
|
|
703 |
|
|
do_cleanups (old_chain);
|
704 |
|
|
}
|
705 |
|
|
}
|
706 |
|
|
}
|
707 |
|
|
|
708 |
|
|
/* Enum strings for "set|show displaced-stepping". */
|
709 |
|
|
|
710 |
|
|
static const char follow_exec_mode_new[] = "new";
|
711 |
|
|
static const char follow_exec_mode_same[] = "same";
|
712 |
|
|
static const char *follow_exec_mode_names[] =
|
713 |
|
|
{
|
714 |
|
|
follow_exec_mode_new,
|
715 |
|
|
follow_exec_mode_same,
|
716 |
|
|
NULL,
|
717 |
|
|
};
|
718 |
|
|
|
719 |
|
|
static const char *follow_exec_mode_string = follow_exec_mode_same;
|
720 |
|
|
static void
|
721 |
|
|
show_follow_exec_mode_string (struct ui_file *file, int from_tty,
|
722 |
|
|
struct cmd_list_element *c, const char *value)
|
723 |
|
|
{
|
724 |
|
|
fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"), value);
|
725 |
|
|
}
|
726 |
|
|
|
727 |
|
|
/* EXECD_PATHNAME is assumed to be non-NULL. */
|
728 |
|
|
|
729 |
|
|
static void
|
730 |
|
|
follow_exec (ptid_t pid, char *execd_pathname)
|
731 |
|
|
{
|
732 |
|
|
struct thread_info *th = inferior_thread ();
|
733 |
|
|
struct inferior *inf = current_inferior ();
|
734 |
|
|
|
735 |
|
|
/* This is an exec event that we actually wish to pay attention to.
|
736 |
|
|
Refresh our symbol table to the newly exec'd program, remove any
|
737 |
|
|
momentary bp's, etc.
|
738 |
|
|
|
739 |
|
|
If there are breakpoints, they aren't really inserted now,
|
740 |
|
|
since the exec() transformed our inferior into a fresh set
|
741 |
|
|
of instructions.
|
742 |
|
|
|
743 |
|
|
We want to preserve symbolic breakpoints on the list, since
|
744 |
|
|
we have hopes that they can be reset after the new a.out's
|
745 |
|
|
symbol table is read.
|
746 |
|
|
|
747 |
|
|
However, any "raw" breakpoints must be removed from the list
|
748 |
|
|
(e.g., the solib bp's), since their address is probably invalid
|
749 |
|
|
now.
|
750 |
|
|
|
751 |
|
|
And, we DON'T want to call delete_breakpoints() here, since
|
752 |
|
|
that may write the bp's "shadow contents" (the instruction
|
753 |
|
|
value that was overwritten witha TRAP instruction). Since
|
754 |
|
|
we now have a new a.out, those shadow contents aren't valid. */
|
755 |
|
|
|
756 |
|
|
mark_breakpoints_out ();
|
757 |
|
|
|
758 |
|
|
update_breakpoints_after_exec ();
|
759 |
|
|
|
760 |
|
|
/* If there was one, it's gone now. We cannot truly step-to-next
|
761 |
|
|
statement through an exec(). */
|
762 |
|
|
th->step_resume_breakpoint = NULL;
|
763 |
|
|
th->step_range_start = 0;
|
764 |
|
|
th->step_range_end = 0;
|
765 |
|
|
|
766 |
|
|
/* The target reports the exec event to the main thread, even if
|
767 |
|
|
some other thread does the exec, and even if the main thread was
|
768 |
|
|
already stopped --- if debugging in non-stop mode, it's possible
|
769 |
|
|
the user had the main thread held stopped in the previous image
|
770 |
|
|
--- release it now. This is the same behavior as step-over-exec
|
771 |
|
|
with scheduler-locking on in all-stop mode. */
|
772 |
|
|
th->stop_requested = 0;
|
773 |
|
|
|
774 |
|
|
/* What is this a.out's name? */
|
775 |
|
|
printf_unfiltered (_("%s is executing new program: %s\n"),
|
776 |
|
|
target_pid_to_str (inferior_ptid),
|
777 |
|
|
execd_pathname);
|
778 |
|
|
|
779 |
|
|
/* We've followed the inferior through an exec. Therefore, the
|
780 |
|
|
inferior has essentially been killed & reborn. */
|
781 |
|
|
|
782 |
|
|
gdb_flush (gdb_stdout);
|
783 |
|
|
|
784 |
|
|
breakpoint_init_inferior (inf_execd);
|
785 |
|
|
|
786 |
|
|
if (gdb_sysroot && *gdb_sysroot)
|
787 |
|
|
{
|
788 |
|
|
char *name = alloca (strlen (gdb_sysroot)
|
789 |
|
|
+ strlen (execd_pathname)
|
790 |
|
|
+ 1);
|
791 |
|
|
|
792 |
|
|
strcpy (name, gdb_sysroot);
|
793 |
|
|
strcat (name, execd_pathname);
|
794 |
|
|
execd_pathname = name;
|
795 |
|
|
}
|
796 |
|
|
|
797 |
|
|
/* Reset the shared library package. This ensures that we get a
|
798 |
|
|
shlib event when the child reaches "_start", at which point the
|
799 |
|
|
dld will have had a chance to initialize the child. */
|
800 |
|
|
/* Also, loading a symbol file below may trigger symbol lookups, and
|
801 |
|
|
we don't want those to be satisfied by the libraries of the
|
802 |
|
|
previous incarnation of this process. */
|
803 |
|
|
no_shared_libraries (NULL, 0);
|
804 |
|
|
|
805 |
|
|
if (follow_exec_mode_string == follow_exec_mode_new)
|
806 |
|
|
{
|
807 |
|
|
struct program_space *pspace;
|
808 |
|
|
|
809 |
|
|
/* The user wants to keep the old inferior and program spaces
|
810 |
|
|
around. Create a new fresh one, and switch to it. */
|
811 |
|
|
|
812 |
|
|
inf = add_inferior (current_inferior ()->pid);
|
813 |
|
|
pspace = add_program_space (maybe_new_address_space ());
|
814 |
|
|
inf->pspace = pspace;
|
815 |
|
|
inf->aspace = pspace->aspace;
|
816 |
|
|
|
817 |
|
|
exit_inferior_num_silent (current_inferior ()->num);
|
818 |
|
|
|
819 |
|
|
set_current_inferior (inf);
|
820 |
|
|
set_current_program_space (pspace);
|
821 |
|
|
}
|
822 |
|
|
|
823 |
|
|
gdb_assert (current_program_space == inf->pspace);
|
824 |
|
|
|
825 |
|
|
/* That a.out is now the one to use. */
|
826 |
|
|
exec_file_attach (execd_pathname, 0);
|
827 |
|
|
|
828 |
|
|
/* Load the main file's symbols. */
|
829 |
|
|
symbol_file_add_main (execd_pathname, 0);
|
830 |
|
|
|
831 |
|
|
#ifdef SOLIB_CREATE_INFERIOR_HOOK
|
832 |
|
|
SOLIB_CREATE_INFERIOR_HOOK (PIDGET (inferior_ptid));
|
833 |
|
|
#else
|
834 |
|
|
solib_create_inferior_hook (0);
|
835 |
|
|
#endif
|
836 |
|
|
|
837 |
|
|
jit_inferior_created_hook ();
|
838 |
|
|
|
839 |
|
|
/* Reinsert all breakpoints. (Those which were symbolic have
|
840 |
|
|
been reset to the proper address in the new a.out, thanks
|
841 |
|
|
to symbol_file_command...) */
|
842 |
|
|
insert_breakpoints ();
|
843 |
|
|
|
844 |
|
|
/* The next resume of this inferior should bring it to the shlib
|
845 |
|
|
startup breakpoints. (If the user had also set bp's on
|
846 |
|
|
"main" from the old (parent) process, then they'll auto-
|
847 |
|
|
matically get reset there in the new process.) */
|
848 |
|
|
}
|
849 |
|
|
|
850 |
|
|
/* Non-zero if we just simulating a single-step. This is needed
|
851 |
|
|
because we cannot remove the breakpoints in the inferior process
|
852 |
|
|
until after the `wait' in `wait_for_inferior'. */
|
853 |
|
|
static int singlestep_breakpoints_inserted_p = 0;
|
854 |
|
|
|
855 |
|
|
/* The thread we inserted single-step breakpoints for. */
|
856 |
|
|
static ptid_t singlestep_ptid;
|
857 |
|
|
|
858 |
|
|
/* PC when we started this single-step. */
|
859 |
|
|
static CORE_ADDR singlestep_pc;
|
860 |
|
|
|
861 |
|
|
/* If another thread hit the singlestep breakpoint, we save the original
|
862 |
|
|
thread here so that we can resume single-stepping it later. */
|
863 |
|
|
static ptid_t saved_singlestep_ptid;
|
864 |
|
|
static int stepping_past_singlestep_breakpoint;
|
865 |
|
|
|
866 |
|
|
/* If not equal to null_ptid, this means that after stepping over breakpoint
|
867 |
|
|
is finished, we need to switch to deferred_step_ptid, and step it.
|
868 |
|
|
|
869 |
|
|
The use case is when one thread has hit a breakpoint, and then the user
|
870 |
|
|
has switched to another thread and issued 'step'. We need to step over
|
871 |
|
|
breakpoint in the thread which hit the breakpoint, but then continue
|
872 |
|
|
stepping the thread user has selected. */
|
873 |
|
|
static ptid_t deferred_step_ptid;
|
874 |
|
|
|
875 |
|
|
/* Displaced stepping. */
|
876 |
|
|
|
877 |
|
|
/* In non-stop debugging mode, we must take special care to manage
|
878 |
|
|
breakpoints properly; in particular, the traditional strategy for
|
879 |
|
|
stepping a thread past a breakpoint it has hit is unsuitable.
|
880 |
|
|
'Displaced stepping' is a tactic for stepping one thread past a
|
881 |
|
|
breakpoint it has hit while ensuring that other threads running
|
882 |
|
|
concurrently will hit the breakpoint as they should.
|
883 |
|
|
|
884 |
|
|
The traditional way to step a thread T off a breakpoint in a
|
885 |
|
|
multi-threaded program in all-stop mode is as follows:
|
886 |
|
|
|
887 |
|
|
a0) Initially, all threads are stopped, and breakpoints are not
|
888 |
|
|
inserted.
|
889 |
|
|
a1) We single-step T, leaving breakpoints uninserted.
|
890 |
|
|
a2) We insert breakpoints, and resume all threads.
|
891 |
|
|
|
892 |
|
|
In non-stop debugging, however, this strategy is unsuitable: we
|
893 |
|
|
don't want to have to stop all threads in the system in order to
|
894 |
|
|
continue or step T past a breakpoint. Instead, we use displaced
|
895 |
|
|
stepping:
|
896 |
|
|
|
897 |
|
|
n0) Initially, T is stopped, other threads are running, and
|
898 |
|
|
breakpoints are inserted.
|
899 |
|
|
n1) We copy the instruction "under" the breakpoint to a separate
|
900 |
|
|
location, outside the main code stream, making any adjustments
|
901 |
|
|
to the instruction, register, and memory state as directed by
|
902 |
|
|
T's architecture.
|
903 |
|
|
n2) We single-step T over the instruction at its new location.
|
904 |
|
|
n3) We adjust the resulting register and memory state as directed
|
905 |
|
|
by T's architecture. This includes resetting T's PC to point
|
906 |
|
|
back into the main instruction stream.
|
907 |
|
|
n4) We resume T.
|
908 |
|
|
|
909 |
|
|
This approach depends on the following gdbarch methods:
|
910 |
|
|
|
911 |
|
|
- gdbarch_max_insn_length and gdbarch_displaced_step_location
|
912 |
|
|
indicate where to copy the instruction, and how much space must
|
913 |
|
|
be reserved there. We use these in step n1.
|
914 |
|
|
|
915 |
|
|
- gdbarch_displaced_step_copy_insn copies a instruction to a new
|
916 |
|
|
address, and makes any necessary adjustments to the instruction,
|
917 |
|
|
register contents, and memory. We use this in step n1.
|
918 |
|
|
|
919 |
|
|
- gdbarch_displaced_step_fixup adjusts registers and memory after
|
920 |
|
|
we have successfuly single-stepped the instruction, to yield the
|
921 |
|
|
same effect the instruction would have had if we had executed it
|
922 |
|
|
at its original address. We use this in step n3.
|
923 |
|
|
|
924 |
|
|
- gdbarch_displaced_step_free_closure provides cleanup.
|
925 |
|
|
|
926 |
|
|
The gdbarch_displaced_step_copy_insn and
|
927 |
|
|
gdbarch_displaced_step_fixup functions must be written so that
|
928 |
|
|
copying an instruction with gdbarch_displaced_step_copy_insn,
|
929 |
|
|
single-stepping across the copied instruction, and then applying
|
930 |
|
|
gdbarch_displaced_insn_fixup should have the same effects on the
|
931 |
|
|
thread's memory and registers as stepping the instruction in place
|
932 |
|
|
would have. Exactly which responsibilities fall to the copy and
|
933 |
|
|
which fall to the fixup is up to the author of those functions.
|
934 |
|
|
|
935 |
|
|
See the comments in gdbarch.sh for details.
|
936 |
|
|
|
937 |
|
|
Note that displaced stepping and software single-step cannot
|
938 |
|
|
currently be used in combination, although with some care I think
|
939 |
|
|
they could be made to. Software single-step works by placing
|
940 |
|
|
breakpoints on all possible subsequent instructions; if the
|
941 |
|
|
displaced instruction is a PC-relative jump, those breakpoints
|
942 |
|
|
could fall in very strange places --- on pages that aren't
|
943 |
|
|
executable, or at addresses that are not proper instruction
|
944 |
|
|
boundaries. (We do generally let other threads run while we wait
|
945 |
|
|
to hit the software single-step breakpoint, and they might
|
946 |
|
|
encounter such a corrupted instruction.) One way to work around
|
947 |
|
|
this would be to have gdbarch_displaced_step_copy_insn fully
|
948 |
|
|
simulate the effect of PC-relative instructions (and return NULL)
|
949 |
|
|
on architectures that use software single-stepping.
|
950 |
|
|
|
951 |
|
|
In non-stop mode, we can have independent and simultaneous step
|
952 |
|
|
requests, so more than one thread may need to simultaneously step
|
953 |
|
|
over a breakpoint. The current implementation assumes there is
|
954 |
|
|
only one scratch space per process. In this case, we have to
|
955 |
|
|
serialize access to the scratch space. If thread A wants to step
|
956 |
|
|
over a breakpoint, but we are currently waiting for some other
|
957 |
|
|
thread to complete a displaced step, we leave thread A stopped and
|
958 |
|
|
place it in the displaced_step_request_queue. Whenever a displaced
|
959 |
|
|
step finishes, we pick the next thread in the queue and start a new
|
960 |
|
|
displaced step operation on it. See displaced_step_prepare and
|
961 |
|
|
displaced_step_fixup for details. */
|
962 |
|
|
|
963 |
|
|
struct displaced_step_request
|
964 |
|
|
{
|
965 |
|
|
ptid_t ptid;
|
966 |
|
|
struct displaced_step_request *next;
|
967 |
|
|
};
|
968 |
|
|
|
969 |
|
|
/* Per-inferior displaced stepping state. */
|
970 |
|
|
struct displaced_step_inferior_state
|
971 |
|
|
{
|
972 |
|
|
/* Pointer to next in linked list. */
|
973 |
|
|
struct displaced_step_inferior_state *next;
|
974 |
|
|
|
975 |
|
|
/* The process this displaced step state refers to. */
|
976 |
|
|
int pid;
|
977 |
|
|
|
978 |
|
|
/* A queue of pending displaced stepping requests. One entry per
|
979 |
|
|
thread that needs to do a displaced step. */
|
980 |
|
|
struct displaced_step_request *step_request_queue;
|
981 |
|
|
|
982 |
|
|
/* If this is not null_ptid, this is the thread carrying out a
|
983 |
|
|
displaced single-step in process PID. This thread's state will
|
984 |
|
|
require fixing up once it has completed its step. */
|
985 |
|
|
ptid_t step_ptid;
|
986 |
|
|
|
987 |
|
|
/* The architecture the thread had when we stepped it. */
|
988 |
|
|
struct gdbarch *step_gdbarch;
|
989 |
|
|
|
990 |
|
|
/* The closure provided gdbarch_displaced_step_copy_insn, to be used
|
991 |
|
|
for post-step cleanup. */
|
992 |
|
|
struct displaced_step_closure *step_closure;
|
993 |
|
|
|
994 |
|
|
/* The address of the original instruction, and the copy we
|
995 |
|
|
made. */
|
996 |
|
|
CORE_ADDR step_original, step_copy;
|
997 |
|
|
|
998 |
|
|
/* Saved contents of copy area. */
|
999 |
|
|
gdb_byte *step_saved_copy;
|
1000 |
|
|
};
|
1001 |
|
|
|
1002 |
|
|
/* The list of states of processes involved in displaced stepping
|
1003 |
|
|
presently. */
|
1004 |
|
|
static struct displaced_step_inferior_state *displaced_step_inferior_states;
|
1005 |
|
|
|
1006 |
|
|
/* Get the displaced stepping state of process PID. */
|
1007 |
|
|
|
1008 |
|
|
static struct displaced_step_inferior_state *
|
1009 |
|
|
get_displaced_stepping_state (int pid)
|
1010 |
|
|
{
|
1011 |
|
|
struct displaced_step_inferior_state *state;
|
1012 |
|
|
|
1013 |
|
|
for (state = displaced_step_inferior_states;
|
1014 |
|
|
state != NULL;
|
1015 |
|
|
state = state->next)
|
1016 |
|
|
if (state->pid == pid)
|
1017 |
|
|
return state;
|
1018 |
|
|
|
1019 |
|
|
return NULL;
|
1020 |
|
|
}
|
1021 |
|
|
|
1022 |
|
|
/* Add a new displaced stepping state for process PID to the displaced
|
1023 |
|
|
stepping state list, or return a pointer to an already existing
|
1024 |
|
|
entry, if it already exists. Never returns NULL. */
|
1025 |
|
|
|
1026 |
|
|
static struct displaced_step_inferior_state *
|
1027 |
|
|
add_displaced_stepping_state (int pid)
|
1028 |
|
|
{
|
1029 |
|
|
struct displaced_step_inferior_state *state;
|
1030 |
|
|
|
1031 |
|
|
for (state = displaced_step_inferior_states;
|
1032 |
|
|
state != NULL;
|
1033 |
|
|
state = state->next)
|
1034 |
|
|
if (state->pid == pid)
|
1035 |
|
|
return state;
|
1036 |
|
|
|
1037 |
|
|
state = xcalloc (1, sizeof (*state));
|
1038 |
|
|
state->pid = pid;
|
1039 |
|
|
state->next = displaced_step_inferior_states;
|
1040 |
|
|
displaced_step_inferior_states = state;
|
1041 |
|
|
|
1042 |
|
|
return state;
|
1043 |
|
|
}
|
1044 |
|
|
|
1045 |
|
|
/* Remove the displaced stepping state of process PID. */
|
1046 |
|
|
|
1047 |
|
|
static void
|
1048 |
|
|
remove_displaced_stepping_state (int pid)
|
1049 |
|
|
{
|
1050 |
|
|
struct displaced_step_inferior_state *it, **prev_next_p;
|
1051 |
|
|
|
1052 |
|
|
gdb_assert (pid != 0);
|
1053 |
|
|
|
1054 |
|
|
it = displaced_step_inferior_states;
|
1055 |
|
|
prev_next_p = &displaced_step_inferior_states;
|
1056 |
|
|
while (it)
|
1057 |
|
|
{
|
1058 |
|
|
if (it->pid == pid)
|
1059 |
|
|
{
|
1060 |
|
|
*prev_next_p = it->next;
|
1061 |
|
|
xfree (it);
|
1062 |
|
|
return;
|
1063 |
|
|
}
|
1064 |
|
|
|
1065 |
|
|
prev_next_p = &it->next;
|
1066 |
|
|
it = *prev_next_p;
|
1067 |
|
|
}
|
1068 |
|
|
}
|
1069 |
|
|
|
1070 |
|
|
static void
|
1071 |
|
|
infrun_inferior_exit (struct inferior *inf)
|
1072 |
|
|
{
|
1073 |
|
|
remove_displaced_stepping_state (inf->pid);
|
1074 |
|
|
}
|
1075 |
|
|
|
1076 |
|
|
/* Enum strings for "set|show displaced-stepping". */
|
1077 |
|
|
|
1078 |
|
|
static const char can_use_displaced_stepping_auto[] = "auto";
|
1079 |
|
|
static const char can_use_displaced_stepping_on[] = "on";
|
1080 |
|
|
static const char can_use_displaced_stepping_off[] = "off";
|
1081 |
|
|
static const char *can_use_displaced_stepping_enum[] =
|
1082 |
|
|
{
|
1083 |
|
|
can_use_displaced_stepping_auto,
|
1084 |
|
|
can_use_displaced_stepping_on,
|
1085 |
|
|
can_use_displaced_stepping_off,
|
1086 |
|
|
NULL,
|
1087 |
|
|
};
|
1088 |
|
|
|
1089 |
|
|
/* If ON, and the architecture supports it, GDB will use displaced
|
1090 |
|
|
stepping to step over breakpoints. If OFF, or if the architecture
|
1091 |
|
|
doesn't support it, GDB will instead use the traditional
|
1092 |
|
|
hold-and-step approach. If AUTO (which is the default), GDB will
|
1093 |
|
|
decide which technique to use to step over breakpoints depending on
|
1094 |
|
|
which of all-stop or non-stop mode is active --- displaced stepping
|
1095 |
|
|
in non-stop mode; hold-and-step in all-stop mode. */
|
1096 |
|
|
|
1097 |
|
|
static const char *can_use_displaced_stepping =
|
1098 |
|
|
can_use_displaced_stepping_auto;
|
1099 |
|
|
|
1100 |
|
|
static void
|
1101 |
|
|
show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
|
1102 |
|
|
struct cmd_list_element *c,
|
1103 |
|
|
const char *value)
|
1104 |
|
|
{
|
1105 |
|
|
if (can_use_displaced_stepping == can_use_displaced_stepping_auto)
|
1106 |
|
|
fprintf_filtered (file, _("\
|
1107 |
|
|
Debugger's willingness to use displaced stepping to step over \
|
1108 |
|
|
breakpoints is %s (currently %s).\n"),
|
1109 |
|
|
value, non_stop ? "on" : "off");
|
1110 |
|
|
else
|
1111 |
|
|
fprintf_filtered (file, _("\
|
1112 |
|
|
Debugger's willingness to use displaced stepping to step over \
|
1113 |
|
|
breakpoints is %s.\n"), value);
|
1114 |
|
|
}
|
1115 |
|
|
|
1116 |
|
|
/* Return non-zero if displaced stepping can/should be used to step
|
1117 |
|
|
over breakpoints. */
|
1118 |
|
|
|
1119 |
|
|
static int
|
1120 |
|
|
use_displaced_stepping (struct gdbarch *gdbarch)
|
1121 |
|
|
{
|
1122 |
|
|
return (((can_use_displaced_stepping == can_use_displaced_stepping_auto
|
1123 |
|
|
&& non_stop)
|
1124 |
|
|
|| can_use_displaced_stepping == can_use_displaced_stepping_on)
|
1125 |
|
|
&& gdbarch_displaced_step_copy_insn_p (gdbarch)
|
1126 |
|
|
&& !RECORD_IS_USED);
|
1127 |
|
|
}
|
1128 |
|
|
|
1129 |
|
|
/* Clean out any stray displaced stepping state. */
|
1130 |
|
|
static void
|
1131 |
|
|
displaced_step_clear (struct displaced_step_inferior_state *displaced)
|
1132 |
|
|
{
|
1133 |
|
|
/* Indicate that there is no cleanup pending. */
|
1134 |
|
|
displaced->step_ptid = null_ptid;
|
1135 |
|
|
|
1136 |
|
|
if (displaced->step_closure)
|
1137 |
|
|
{
|
1138 |
|
|
gdbarch_displaced_step_free_closure (displaced->step_gdbarch,
|
1139 |
|
|
displaced->step_closure);
|
1140 |
|
|
displaced->step_closure = NULL;
|
1141 |
|
|
}
|
1142 |
|
|
}
|
1143 |
|
|
|
1144 |
|
|
static void
|
1145 |
|
|
displaced_step_clear_cleanup (void *arg)
|
1146 |
|
|
{
|
1147 |
|
|
struct displaced_step_inferior_state *state = arg;
|
1148 |
|
|
|
1149 |
|
|
displaced_step_clear (state);
|
1150 |
|
|
}
|
1151 |
|
|
|
1152 |
|
|
/* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
|
1153 |
|
|
void
|
1154 |
|
|
displaced_step_dump_bytes (struct ui_file *file,
|
1155 |
|
|
const gdb_byte *buf,
|
1156 |
|
|
size_t len)
|
1157 |
|
|
{
|
1158 |
|
|
int i;
|
1159 |
|
|
|
1160 |
|
|
for (i = 0; i < len; i++)
|
1161 |
|
|
fprintf_unfiltered (file, "%02x ", buf[i]);
|
1162 |
|
|
fputs_unfiltered ("\n", file);
|
1163 |
|
|
}
|
1164 |
|
|
|
1165 |
|
|
/* Prepare to single-step, using displaced stepping.
|
1166 |
|
|
|
1167 |
|
|
Note that we cannot use displaced stepping when we have a signal to
|
1168 |
|
|
deliver. If we have a signal to deliver and an instruction to step
|
1169 |
|
|
over, then after the step, there will be no indication from the
|
1170 |
|
|
target whether the thread entered a signal handler or ignored the
|
1171 |
|
|
signal and stepped over the instruction successfully --- both cases
|
1172 |
|
|
result in a simple SIGTRAP. In the first case we mustn't do a
|
1173 |
|
|
fixup, and in the second case we must --- but we can't tell which.
|
1174 |
|
|
Comments in the code for 'random signals' in handle_inferior_event
|
1175 |
|
|
explain how we handle this case instead.
|
1176 |
|
|
|
1177 |
|
|
Returns 1 if preparing was successful -- this thread is going to be
|
1178 |
|
|
stepped now; or 0 if displaced stepping this thread got queued. */
|
1179 |
|
|
static int
|
1180 |
|
|
displaced_step_prepare (ptid_t ptid)
|
1181 |
|
|
{
|
1182 |
|
|
struct cleanup *old_cleanups, *ignore_cleanups;
|
1183 |
|
|
struct regcache *regcache = get_thread_regcache (ptid);
|
1184 |
|
|
struct gdbarch *gdbarch = get_regcache_arch (regcache);
|
1185 |
|
|
CORE_ADDR original, copy;
|
1186 |
|
|
ULONGEST len;
|
1187 |
|
|
struct displaced_step_closure *closure;
|
1188 |
|
|
struct displaced_step_inferior_state *displaced;
|
1189 |
|
|
|
1190 |
|
|
/* We should never reach this function if the architecture does not
|
1191 |
|
|
support displaced stepping. */
|
1192 |
|
|
gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch));
|
1193 |
|
|
|
1194 |
|
|
/* We have to displaced step one thread at a time, as we only have
|
1195 |
|
|
access to a single scratch space per inferior. */
|
1196 |
|
|
|
1197 |
|
|
displaced = add_displaced_stepping_state (ptid_get_pid (ptid));
|
1198 |
|
|
|
1199 |
|
|
if (!ptid_equal (displaced->step_ptid, null_ptid))
|
1200 |
|
|
{
|
1201 |
|
|
/* Already waiting for a displaced step to finish. Defer this
|
1202 |
|
|
request and place in queue. */
|
1203 |
|
|
struct displaced_step_request *req, *new_req;
|
1204 |
|
|
|
1205 |
|
|
if (debug_displaced)
|
1206 |
|
|
fprintf_unfiltered (gdb_stdlog,
|
1207 |
|
|
"displaced: defering step of %s\n",
|
1208 |
|
|
target_pid_to_str (ptid));
|
1209 |
|
|
|
1210 |
|
|
new_req = xmalloc (sizeof (*new_req));
|
1211 |
|
|
new_req->ptid = ptid;
|
1212 |
|
|
new_req->next = NULL;
|
1213 |
|
|
|
1214 |
|
|
if (displaced->step_request_queue)
|
1215 |
|
|
{
|
1216 |
|
|
for (req = displaced->step_request_queue;
|
1217 |
|
|
req && req->next;
|
1218 |
|
|
req = req->next)
|
1219 |
|
|
;
|
1220 |
|
|
req->next = new_req;
|
1221 |
|
|
}
|
1222 |
|
|
else
|
1223 |
|
|
displaced->step_request_queue = new_req;
|
1224 |
|
|
|
1225 |
|
|
return 0;
|
1226 |
|
|
}
|
1227 |
|
|
else
|
1228 |
|
|
{
|
1229 |
|
|
if (debug_displaced)
|
1230 |
|
|
fprintf_unfiltered (gdb_stdlog,
|
1231 |
|
|
"displaced: stepping %s now\n",
|
1232 |
|
|
target_pid_to_str (ptid));
|
1233 |
|
|
}
|
1234 |
|
|
|
1235 |
|
|
displaced_step_clear (displaced);
|
1236 |
|
|
|
1237 |
|
|
old_cleanups = save_inferior_ptid ();
|
1238 |
|
|
inferior_ptid = ptid;
|
1239 |
|
|
|
1240 |
|
|
original = regcache_read_pc (regcache);
|
1241 |
|
|
|
1242 |
|
|
copy = gdbarch_displaced_step_location (gdbarch);
|
1243 |
|
|
len = gdbarch_max_insn_length (gdbarch);
|
1244 |
|
|
|
1245 |
|
|
/* Save the original contents of the copy area. */
|
1246 |
|
|
displaced->step_saved_copy = xmalloc (len);
|
1247 |
|
|
ignore_cleanups = make_cleanup (free_current_contents,
|
1248 |
|
|
&displaced->step_saved_copy);
|
1249 |
|
|
read_memory (copy, displaced->step_saved_copy, len);
|
1250 |
|
|
if (debug_displaced)
|
1251 |
|
|
{
|
1252 |
|
|
fprintf_unfiltered (gdb_stdlog, "displaced: saved %s: ",
|
1253 |
|
|
paddress (gdbarch, copy));
|
1254 |
|
|
displaced_step_dump_bytes (gdb_stdlog,
|
1255 |
|
|
displaced->step_saved_copy,
|
1256 |
|
|
len);
|
1257 |
|
|
};
|
1258 |
|
|
|
1259 |
|
|
closure = gdbarch_displaced_step_copy_insn (gdbarch,
|
1260 |
|
|
original, copy, regcache);
|
1261 |
|
|
|
1262 |
|
|
/* We don't support the fully-simulated case at present. */
|
1263 |
|
|
gdb_assert (closure);
|
1264 |
|
|
|
1265 |
|
|
/* Save the information we need to fix things up if the step
|
1266 |
|
|
succeeds. */
|
1267 |
|
|
displaced->step_ptid = ptid;
|
1268 |
|
|
displaced->step_gdbarch = gdbarch;
|
1269 |
|
|
displaced->step_closure = closure;
|
1270 |
|
|
displaced->step_original = original;
|
1271 |
|
|
displaced->step_copy = copy;
|
1272 |
|
|
|
1273 |
|
|
make_cleanup (displaced_step_clear_cleanup, displaced);
|
1274 |
|
|
|
1275 |
|
|
/* Resume execution at the copy. */
|
1276 |
|
|
regcache_write_pc (regcache, copy);
|
1277 |
|
|
|
1278 |
|
|
discard_cleanups (ignore_cleanups);
|
1279 |
|
|
|
1280 |
|
|
do_cleanups (old_cleanups);
|
1281 |
|
|
|
1282 |
|
|
if (debug_displaced)
|
1283 |
|
|
fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to %s\n",
|
1284 |
|
|
paddress (gdbarch, copy));
|
1285 |
|
|
|
1286 |
|
|
return 1;
|
1287 |
|
|
}
|
1288 |
|
|
|
1289 |
|
|
static void
|
1290 |
|
|
write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr, const gdb_byte *myaddr, int len)
|
1291 |
|
|
{
|
1292 |
|
|
struct cleanup *ptid_cleanup = save_inferior_ptid ();
|
1293 |
|
|
|
1294 |
|
|
inferior_ptid = ptid;
|
1295 |
|
|
write_memory (memaddr, myaddr, len);
|
1296 |
|
|
do_cleanups (ptid_cleanup);
|
1297 |
|
|
}
|
1298 |
|
|
|
1299 |
|
|
static void
|
1300 |
|
|
displaced_step_fixup (ptid_t event_ptid, enum target_signal signal)
|
1301 |
|
|
{
|
1302 |
|
|
struct cleanup *old_cleanups;
|
1303 |
|
|
struct displaced_step_inferior_state *displaced
|
1304 |
|
|
= get_displaced_stepping_state (ptid_get_pid (event_ptid));
|
1305 |
|
|
|
1306 |
|
|
/* Was any thread of this process doing a displaced step? */
|
1307 |
|
|
if (displaced == NULL)
|
1308 |
|
|
return;
|
1309 |
|
|
|
1310 |
|
|
/* Was this event for the pid we displaced? */
|
1311 |
|
|
if (ptid_equal (displaced->step_ptid, null_ptid)
|
1312 |
|
|
|| ! ptid_equal (displaced->step_ptid, event_ptid))
|
1313 |
|
|
return;
|
1314 |
|
|
|
1315 |
|
|
old_cleanups = make_cleanup (displaced_step_clear_cleanup, displaced);
|
1316 |
|
|
|
1317 |
|
|
/* Restore the contents of the copy area. */
|
1318 |
|
|
{
|
1319 |
|
|
ULONGEST len = gdbarch_max_insn_length (displaced->step_gdbarch);
|
1320 |
|
|
|
1321 |
|
|
write_memory_ptid (displaced->step_ptid, displaced->step_copy,
|
1322 |
|
|
displaced->step_saved_copy, len);
|
1323 |
|
|
if (debug_displaced)
|
1324 |
|
|
fprintf_unfiltered (gdb_stdlog, "displaced: restored %s\n",
|
1325 |
|
|
paddress (displaced->step_gdbarch,
|
1326 |
|
|
displaced->step_copy));
|
1327 |
|
|
}
|
1328 |
|
|
|
1329 |
|
|
/* Did the instruction complete successfully? */
|
1330 |
|
|
if (signal == TARGET_SIGNAL_TRAP)
|
1331 |
|
|
{
|
1332 |
|
|
/* Fix up the resulting state. */
|
1333 |
|
|
gdbarch_displaced_step_fixup (displaced->step_gdbarch,
|
1334 |
|
|
displaced->step_closure,
|
1335 |
|
|
displaced->step_original,
|
1336 |
|
|
displaced->step_copy,
|
1337 |
|
|
get_thread_regcache (displaced->step_ptid));
|
1338 |
|
|
}
|
1339 |
|
|
else
|
1340 |
|
|
{
|
1341 |
|
|
/* Since the instruction didn't complete, all we can do is
|
1342 |
|
|
relocate the PC. */
|
1343 |
|
|
struct regcache *regcache = get_thread_regcache (event_ptid);
|
1344 |
|
|
CORE_ADDR pc = regcache_read_pc (regcache);
|
1345 |
|
|
|
1346 |
|
|
pc = displaced->step_original + (pc - displaced->step_copy);
|
1347 |
|
|
regcache_write_pc (regcache, pc);
|
1348 |
|
|
}
|
1349 |
|
|
|
1350 |
|
|
do_cleanups (old_cleanups);
|
1351 |
|
|
|
1352 |
|
|
displaced->step_ptid = null_ptid;
|
1353 |
|
|
|
1354 |
|
|
/* Are there any pending displaced stepping requests? If so, run
|
1355 |
|
|
one now. Leave the state object around, since we're likely to
|
1356 |
|
|
need it again soon. */
|
1357 |
|
|
while (displaced->step_request_queue)
|
1358 |
|
|
{
|
1359 |
|
|
struct displaced_step_request *head;
|
1360 |
|
|
ptid_t ptid;
|
1361 |
|
|
struct regcache *regcache;
|
1362 |
|
|
struct gdbarch *gdbarch;
|
1363 |
|
|
CORE_ADDR actual_pc;
|
1364 |
|
|
struct address_space *aspace;
|
1365 |
|
|
|
1366 |
|
|
head = displaced->step_request_queue;
|
1367 |
|
|
ptid = head->ptid;
|
1368 |
|
|
displaced->step_request_queue = head->next;
|
1369 |
|
|
xfree (head);
|
1370 |
|
|
|
1371 |
|
|
context_switch (ptid);
|
1372 |
|
|
|
1373 |
|
|
regcache = get_thread_regcache (ptid);
|
1374 |
|
|
actual_pc = regcache_read_pc (regcache);
|
1375 |
|
|
aspace = get_regcache_aspace (regcache);
|
1376 |
|
|
|
1377 |
|
|
if (breakpoint_here_p (aspace, actual_pc))
|
1378 |
|
|
{
|
1379 |
|
|
if (debug_displaced)
|
1380 |
|
|
fprintf_unfiltered (gdb_stdlog,
|
1381 |
|
|
"displaced: stepping queued %s now\n",
|
1382 |
|
|
target_pid_to_str (ptid));
|
1383 |
|
|
|
1384 |
|
|
displaced_step_prepare (ptid);
|
1385 |
|
|
|
1386 |
|
|
gdbarch = get_regcache_arch (regcache);
|
1387 |
|
|
|
1388 |
|
|
if (debug_displaced)
|
1389 |
|
|
{
|
1390 |
|
|
CORE_ADDR actual_pc = regcache_read_pc (regcache);
|
1391 |
|
|
gdb_byte buf[4];
|
1392 |
|
|
|
1393 |
|
|
fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
|
1394 |
|
|
paddress (gdbarch, actual_pc));
|
1395 |
|
|
read_memory (actual_pc, buf, sizeof (buf));
|
1396 |
|
|
displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
|
1397 |
|
|
}
|
1398 |
|
|
|
1399 |
|
|
if (gdbarch_displaced_step_hw_singlestep (gdbarch,
|
1400 |
|
|
displaced->step_closure))
|
1401 |
|
|
target_resume (ptid, 1, TARGET_SIGNAL_0);
|
1402 |
|
|
else
|
1403 |
|
|
target_resume (ptid, 0, TARGET_SIGNAL_0);
|
1404 |
|
|
|
1405 |
|
|
/* Done, we're stepping a thread. */
|
1406 |
|
|
break;
|
1407 |
|
|
}
|
1408 |
|
|
else
|
1409 |
|
|
{
|
1410 |
|
|
int step;
|
1411 |
|
|
struct thread_info *tp = inferior_thread ();
|
1412 |
|
|
|
1413 |
|
|
/* The breakpoint we were sitting under has since been
|
1414 |
|
|
removed. */
|
1415 |
|
|
tp->trap_expected = 0;
|
1416 |
|
|
|
1417 |
|
|
/* Go back to what we were trying to do. */
|
1418 |
|
|
step = currently_stepping (tp);
|
1419 |
|
|
|
1420 |
|
|
if (debug_displaced)
|
1421 |
|
|
fprintf_unfiltered (gdb_stdlog, "breakpoint is gone %s: step(%d)\n",
|
1422 |
|
|
target_pid_to_str (tp->ptid), step);
|
1423 |
|
|
|
1424 |
|
|
target_resume (ptid, step, TARGET_SIGNAL_0);
|
1425 |
|
|
tp->stop_signal = TARGET_SIGNAL_0;
|
1426 |
|
|
|
1427 |
|
|
/* This request was discarded. See if there's any other
|
1428 |
|
|
thread waiting for its turn. */
|
1429 |
|
|
}
|
1430 |
|
|
}
|
1431 |
|
|
}
|
1432 |
|
|
|
1433 |
|
|
/* Update global variables holding ptids to hold NEW_PTID if they were
|
1434 |
|
|
holding OLD_PTID. */
|
1435 |
|
|
static void
|
1436 |
|
|
infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
|
1437 |
|
|
{
|
1438 |
|
|
struct displaced_step_request *it;
|
1439 |
|
|
struct displaced_step_inferior_state *displaced;
|
1440 |
|
|
|
1441 |
|
|
if (ptid_equal (inferior_ptid, old_ptid))
|
1442 |
|
|
inferior_ptid = new_ptid;
|
1443 |
|
|
|
1444 |
|
|
if (ptid_equal (singlestep_ptid, old_ptid))
|
1445 |
|
|
singlestep_ptid = new_ptid;
|
1446 |
|
|
|
1447 |
|
|
if (ptid_equal (deferred_step_ptid, old_ptid))
|
1448 |
|
|
deferred_step_ptid = new_ptid;
|
1449 |
|
|
|
1450 |
|
|
for (displaced = displaced_step_inferior_states;
|
1451 |
|
|
displaced;
|
1452 |
|
|
displaced = displaced->next)
|
1453 |
|
|
{
|
1454 |
|
|
if (ptid_equal (displaced->step_ptid, old_ptid))
|
1455 |
|
|
displaced->step_ptid = new_ptid;
|
1456 |
|
|
|
1457 |
|
|
for (it = displaced->step_request_queue; it; it = it->next)
|
1458 |
|
|
if (ptid_equal (it->ptid, old_ptid))
|
1459 |
|
|
it->ptid = new_ptid;
|
1460 |
|
|
}
|
1461 |
|
|
}
|
1462 |
|
|
|
1463 |
|
|
|
1464 |
|
|
/* Resuming. */
|
1465 |
|
|
|
1466 |
|
|
/* Things to clean up if we QUIT out of resume (). */
|
1467 |
|
|
static void
|
1468 |
|
|
resume_cleanups (void *ignore)
|
1469 |
|
|
{
|
1470 |
|
|
normal_stop ();
|
1471 |
|
|
}
|
1472 |
|
|
|
1473 |
|
|
static const char schedlock_off[] = "off";
|
1474 |
|
|
static const char schedlock_on[] = "on";
|
1475 |
|
|
static const char schedlock_step[] = "step";
|
1476 |
|
|
static const char *scheduler_enums[] = {
|
1477 |
|
|
schedlock_off,
|
1478 |
|
|
schedlock_on,
|
1479 |
|
|
schedlock_step,
|
1480 |
|
|
NULL
|
1481 |
|
|
};
|
1482 |
|
|
static const char *scheduler_mode = schedlock_off;
|
1483 |
|
|
static void
|
1484 |
|
|
show_scheduler_mode (struct ui_file *file, int from_tty,
|
1485 |
|
|
struct cmd_list_element *c, const char *value)
|
1486 |
|
|
{
|
1487 |
|
|
fprintf_filtered (file, _("\
|
1488 |
|
|
Mode for locking scheduler during execution is \"%s\".\n"),
|
1489 |
|
|
value);
|
1490 |
|
|
}
|
1491 |
|
|
|
1492 |
|
|
static void
|
1493 |
|
|
set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
|
1494 |
|
|
{
|
1495 |
|
|
if (!target_can_lock_scheduler)
|
1496 |
|
|
{
|
1497 |
|
|
scheduler_mode = schedlock_off;
|
1498 |
|
|
error (_("Target '%s' cannot support this command."), target_shortname);
|
1499 |
|
|
}
|
1500 |
|
|
}
|
1501 |
|
|
|
1502 |
|
|
/* True if execution commands resume all threads of all processes by
|
1503 |
|
|
default; otherwise, resume only threads of the current inferior
|
1504 |
|
|
process. */
|
1505 |
|
|
int sched_multi = 0;
|
1506 |
|
|
|
1507 |
|
|
/* Try to setup for software single stepping over the specified location.
|
1508 |
|
|
Return 1 if target_resume() should use hardware single step.
|
1509 |
|
|
|
1510 |
|
|
GDBARCH the current gdbarch.
|
1511 |
|
|
PC the location to step over. */
|
1512 |
|
|
|
1513 |
|
|
static int
|
1514 |
|
|
maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
|
1515 |
|
|
{
|
1516 |
|
|
int hw_step = 1;
|
1517 |
|
|
|
1518 |
|
|
if (gdbarch_software_single_step_p (gdbarch)
|
1519 |
|
|
&& gdbarch_software_single_step (gdbarch, get_current_frame ()))
|
1520 |
|
|
{
|
1521 |
|
|
hw_step = 0;
|
1522 |
|
|
/* Do not pull these breakpoints until after a `wait' in
|
1523 |
|
|
`wait_for_inferior' */
|
1524 |
|
|
singlestep_breakpoints_inserted_p = 1;
|
1525 |
|
|
singlestep_ptid = inferior_ptid;
|
1526 |
|
|
singlestep_pc = pc;
|
1527 |
|
|
}
|
1528 |
|
|
return hw_step;
|
1529 |
|
|
}
|
1530 |
|
|
|
1531 |
|
|
/* Resume the inferior, but allow a QUIT. This is useful if the user
|
1532 |
|
|
wants to interrupt some lengthy single-stepping operation
|
1533 |
|
|
(for child processes, the SIGINT goes to the inferior, and so
|
1534 |
|
|
we get a SIGINT random_signal, but for remote debugging and perhaps
|
1535 |
|
|
other targets, that's not true).
|
1536 |
|
|
|
1537 |
|
|
STEP nonzero if we should step (zero to continue instead).
|
1538 |
|
|
SIG is the signal to give the inferior (zero for none). */
|
1539 |
|
|
void
|
1540 |
|
|
resume (int step, enum target_signal sig)
|
1541 |
|
|
{
|
1542 |
|
|
int should_resume = 1;
|
1543 |
|
|
struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
|
1544 |
|
|
struct regcache *regcache = get_current_regcache ();
|
1545 |
|
|
struct gdbarch *gdbarch = get_regcache_arch (regcache);
|
1546 |
|
|
struct thread_info *tp = inferior_thread ();
|
1547 |
|
|
CORE_ADDR pc = regcache_read_pc (regcache);
|
1548 |
|
|
struct address_space *aspace = get_regcache_aspace (regcache);
|
1549 |
|
|
|
1550 |
|
|
QUIT;
|
1551 |
|
|
|
1552 |
|
|
if (debug_infrun)
|
1553 |
|
|
fprintf_unfiltered (gdb_stdlog,
|
1554 |
|
|
"infrun: resume (step=%d, signal=%d), "
|
1555 |
|
|
"trap_expected=%d\n",
|
1556 |
|
|
step, sig, tp->trap_expected);
|
1557 |
|
|
|
1558 |
|
|
/* Normally, by the time we reach `resume', the breakpoints are either
|
1559 |
|
|
removed or inserted, as appropriate. The exception is if we're sitting
|
1560 |
|
|
at a permanent breakpoint; we need to step over it, but permanent
|
1561 |
|
|
breakpoints can't be removed. So we have to test for it here. */
|
1562 |
|
|
if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here)
|
1563 |
|
|
{
|
1564 |
|
|
if (gdbarch_skip_permanent_breakpoint_p (gdbarch))
|
1565 |
|
|
gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
|
1566 |
|
|
else
|
1567 |
|
|
error (_("\
|
1568 |
|
|
The program is stopped at a permanent breakpoint, but GDB does not know\n\
|
1569 |
|
|
how to step past a permanent breakpoint on this architecture. Try using\n\
|
1570 |
|
|
a command like `return' or `jump' to continue execution."));
|
1571 |
|
|
}
|
1572 |
|
|
|
1573 |
|
|
/* If enabled, step over breakpoints by executing a copy of the
|
1574 |
|
|
instruction at a different address.
|
1575 |
|
|
|
1576 |
|
|
We can't use displaced stepping when we have a signal to deliver;
|
1577 |
|
|
the comments for displaced_step_prepare explain why. The
|
1578 |
|
|
comments in the handle_inferior event for dealing with 'random
|
1579 |
|
|
signals' explain what we do instead. */
|
1580 |
|
|
if (use_displaced_stepping (gdbarch)
|
1581 |
|
|
&& (tp->trap_expected
|
1582 |
|
|
|| (step && gdbarch_software_single_step_p (gdbarch)))
|
1583 |
|
|
&& sig == TARGET_SIGNAL_0)
|
1584 |
|
|
{
|
1585 |
|
|
struct displaced_step_inferior_state *displaced;
|
1586 |
|
|
|
1587 |
|
|
if (!displaced_step_prepare (inferior_ptid))
|
1588 |
|
|
{
|
1589 |
|
|
/* Got placed in displaced stepping queue. Will be resumed
|
1590 |
|
|
later when all the currently queued displaced stepping
|
1591 |
|
|
requests finish. The thread is not executing at this point,
|
1592 |
|
|
and the call to set_executing will be made later. But we
|
1593 |
|
|
need to call set_running here, since from frontend point of view,
|
1594 |
|
|
the thread is running. */
|
1595 |
|
|
set_running (inferior_ptid, 1);
|
1596 |
|
|
discard_cleanups (old_cleanups);
|
1597 |
|
|
return;
|
1598 |
|
|
}
|
1599 |
|
|
|
1600 |
|
|
displaced = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
|
1601 |
|
|
step = gdbarch_displaced_step_hw_singlestep (gdbarch,
|
1602 |
|
|
displaced->step_closure);
|
1603 |
|
|
}
|
1604 |
|
|
|
1605 |
|
|
/* Do we need to do it the hard way, w/temp breakpoints? */
|
1606 |
|
|
else if (step)
|
1607 |
|
|
step = maybe_software_singlestep (gdbarch, pc);
|
1608 |
|
|
|
1609 |
|
|
if (should_resume)
|
1610 |
|
|
{
|
1611 |
|
|
ptid_t resume_ptid;
|
1612 |
|
|
|
1613 |
|
|
/* If STEP is set, it's a request to use hardware stepping
|
1614 |
|
|
facilities. But in that case, we should never
|
1615 |
|
|
use singlestep breakpoint. */
|
1616 |
|
|
gdb_assert (!(singlestep_breakpoints_inserted_p && step));
|
1617 |
|
|
|
1618 |
|
|
/* Decide the set of threads to ask the target to resume. Start
|
1619 |
|
|
by assuming everything will be resumed, than narrow the set
|
1620 |
|
|
by applying increasingly restricting conditions. */
|
1621 |
|
|
|
1622 |
|
|
/* By default, resume all threads of all processes. */
|
1623 |
|
|
resume_ptid = RESUME_ALL;
|
1624 |
|
|
|
1625 |
|
|
/* Maybe resume only all threads of the current process. */
|
1626 |
|
|
if (!sched_multi && target_supports_multi_process ())
|
1627 |
|
|
{
|
1628 |
|
|
resume_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
|
1629 |
|
|
}
|
1630 |
|
|
|
1631 |
|
|
/* Maybe resume a single thread after all. */
|
1632 |
|
|
if (singlestep_breakpoints_inserted_p
|
1633 |
|
|
&& stepping_past_singlestep_breakpoint)
|
1634 |
|
|
{
|
1635 |
|
|
/* The situation here is as follows. In thread T1 we wanted to
|
1636 |
|
|
single-step. Lacking hardware single-stepping we've
|
1637 |
|
|
set breakpoint at the PC of the next instruction -- call it
|
1638 |
|
|
P. After resuming, we've hit that breakpoint in thread T2.
|
1639 |
|
|
Now we've removed original breakpoint, inserted breakpoint
|
1640 |
|
|
at P+1, and try to step to advance T2 past breakpoint.
|
1641 |
|
|
We need to step only T2, as if T1 is allowed to freely run,
|
1642 |
|
|
it can run past P, and if other threads are allowed to run,
|
1643 |
|
|
they can hit breakpoint at P+1, and nested hits of single-step
|
1644 |
|
|
breakpoints is not something we'd want -- that's complicated
|
1645 |
|
|
to support, and has no value. */
|
1646 |
|
|
resume_ptid = inferior_ptid;
|
1647 |
|
|
}
|
1648 |
|
|
else if ((step || singlestep_breakpoints_inserted_p)
|
1649 |
|
|
&& tp->trap_expected)
|
1650 |
|
|
{
|
1651 |
|
|
/* We're allowing a thread to run past a breakpoint it has
|
1652 |
|
|
hit, by single-stepping the thread with the breakpoint
|
1653 |
|
|
removed. In which case, we need to single-step only this
|
1654 |
|
|
thread, and keep others stopped, as they can miss this
|
1655 |
|
|
breakpoint if allowed to run.
|
1656 |
|
|
|
1657 |
|
|
The current code actually removes all breakpoints when
|
1658 |
|
|
doing this, not just the one being stepped over, so if we
|
1659 |
|
|
let other threads run, we can actually miss any
|
1660 |
|
|
breakpoint, not just the one at PC. */
|
1661 |
|
|
resume_ptid = inferior_ptid;
|
1662 |
|
|
}
|
1663 |
|
|
else if (non_stop)
|
1664 |
|
|
{
|
1665 |
|
|
/* With non-stop mode on, threads are always handled
|
1666 |
|
|
individually. */
|
1667 |
|
|
resume_ptid = inferior_ptid;
|
1668 |
|
|
}
|
1669 |
|
|
else if ((scheduler_mode == schedlock_on)
|
1670 |
|
|
|| (scheduler_mode == schedlock_step
|
1671 |
|
|
&& (step || singlestep_breakpoints_inserted_p)))
|
1672 |
|
|
{
|
1673 |
|
|
/* User-settable 'scheduler' mode requires solo thread resume. */
|
1674 |
|
|
resume_ptid = inferior_ptid;
|
1675 |
|
|
}
|
1676 |
|
|
|
1677 |
|
|
if (gdbarch_cannot_step_breakpoint (gdbarch))
|
1678 |
|
|
{
|
1679 |
|
|
/* Most targets can step a breakpoint instruction, thus
|
1680 |
|
|
executing it normally. But if this one cannot, just
|
1681 |
|
|
continue and we will hit it anyway. */
|
1682 |
|
|
if (step && breakpoint_inserted_here_p (aspace, pc))
|
1683 |
|
|
step = 0;
|
1684 |
|
|
}
|
1685 |
|
|
|
1686 |
|
|
if (debug_displaced
|
1687 |
|
|
&& use_displaced_stepping (gdbarch)
|
1688 |
|
|
&& tp->trap_expected)
|
1689 |
|
|
{
|
1690 |
|
|
struct regcache *resume_regcache = get_thread_regcache (resume_ptid);
|
1691 |
|
|
struct gdbarch *resume_gdbarch = get_regcache_arch (resume_regcache);
|
1692 |
|
|
CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
|
1693 |
|
|
gdb_byte buf[4];
|
1694 |
|
|
|
1695 |
|
|
fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
|
1696 |
|
|
paddress (resume_gdbarch, actual_pc));
|
1697 |
|
|
read_memory (actual_pc, buf, sizeof (buf));
|
1698 |
|
|
displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
|
1699 |
|
|
}
|
1700 |
|
|
|
1701 |
|
|
/* Install inferior's terminal modes. */
|
1702 |
|
|
target_terminal_inferior ();
|
1703 |
|
|
|
1704 |
|
|
/* Avoid confusing the next resume, if the next stop/resume
|
1705 |
|
|
happens to apply to another thread. */
|
1706 |
|
|
tp->stop_signal = TARGET_SIGNAL_0;
|
1707 |
|
|
|
1708 |
|
|
target_resume (resume_ptid, step, sig);
|
1709 |
|
|
}
|
1710 |
|
|
|
1711 |
|
|
discard_cleanups (old_cleanups);
|
1712 |
|
|
}
|
1713 |
|
|
|
1714 |
|
|
/* Proceeding. */
|
1715 |
|
|
|
1716 |
|
|
/* Clear out all variables saying what to do when inferior is continued.
|
1717 |
|
|
First do this, then set the ones you want, then call `proceed'. */
|
1718 |
|
|
|
1719 |
|
|
static void
|
1720 |
|
|
clear_proceed_status_thread (struct thread_info *tp)
|
1721 |
|
|
{
|
1722 |
|
|
if (debug_infrun)
|
1723 |
|
|
fprintf_unfiltered (gdb_stdlog,
|
1724 |
|
|
"infrun: clear_proceed_status_thread (%s)\n",
|
1725 |
|
|
target_pid_to_str (tp->ptid));
|
1726 |
|
|
|
1727 |
|
|
tp->trap_expected = 0;
|
1728 |
|
|
tp->step_range_start = 0;
|
1729 |
|
|
tp->step_range_end = 0;
|
1730 |
|
|
tp->step_frame_id = null_frame_id;
|
1731 |
|
|
tp->step_stack_frame_id = null_frame_id;
|
1732 |
|
|
tp->step_over_calls = STEP_OVER_UNDEBUGGABLE;
|
1733 |
|
|
tp->stop_requested = 0;
|
1734 |
|
|
|
1735 |
|
|
tp->stop_step = 0;
|
1736 |
|
|
|
1737 |
|
|
tp->proceed_to_finish = 0;
|
1738 |
|
|
|
1739 |
|
|
/* Discard any remaining commands or status from previous stop. */
|
1740 |
|
|
bpstat_clear (&tp->stop_bpstat);
|
1741 |
|
|
}
|
1742 |
|
|
|
1743 |
|
|
static int
|
1744 |
|
|
clear_proceed_status_callback (struct thread_info *tp, void *data)
|
1745 |
|
|
{
|
1746 |
|
|
if (is_exited (tp->ptid))
|
1747 |
|
|
return 0;
|
1748 |
|
|
|
1749 |
|
|
clear_proceed_status_thread (tp);
|
1750 |
|
|
return 0;
|
1751 |
|
|
}
|
1752 |
|
|
|
1753 |
|
|
void
|
1754 |
|
|
clear_proceed_status (void)
|
1755 |
|
|
{
|
1756 |
|
|
if (!non_stop)
|
1757 |
|
|
{
|
1758 |
|
|
/* In all-stop mode, delete the per-thread status of all
|
1759 |
|
|
threads, even if inferior_ptid is null_ptid, there may be
|
1760 |
|
|
threads on the list. E.g., we may be launching a new
|
1761 |
|
|
process, while selecting the executable. */
|
1762 |
|
|
iterate_over_threads (clear_proceed_status_callback, NULL);
|
1763 |
|
|
}
|
1764 |
|
|
|
1765 |
|
|
if (!ptid_equal (inferior_ptid, null_ptid))
|
1766 |
|
|
{
|
1767 |
|
|
struct inferior *inferior;
|
1768 |
|
|
|
1769 |
|
|
if (non_stop)
|
1770 |
|
|
{
|
1771 |
|
|
/* If in non-stop mode, only delete the per-thread status of
|
1772 |
|
|
the current thread. */
|
1773 |
|
|
clear_proceed_status_thread (inferior_thread ());
|
1774 |
|
|
}
|
1775 |
|
|
|
1776 |
|
|
inferior = current_inferior ();
|
1777 |
|
|
inferior->stop_soon = NO_STOP_QUIETLY;
|
1778 |
|
|
}
|
1779 |
|
|
|
1780 |
|
|
stop_after_trap = 0;
|
1781 |
|
|
|
1782 |
|
|
observer_notify_about_to_proceed ();
|
1783 |
|
|
|
1784 |
|
|
if (stop_registers)
|
1785 |
|
|
{
|
1786 |
|
|
regcache_xfree (stop_registers);
|
1787 |
|
|
stop_registers = NULL;
|
1788 |
|
|
}
|
1789 |
|
|
}
|
1790 |
|
|
|
1791 |
|
|
/* Check the current thread against the thread that reported the most recent
|
1792 |
|
|
event. If a step-over is required return TRUE and set the current thread
|
1793 |
|
|
to the old thread. Otherwise return FALSE.
|
1794 |
|
|
|
1795 |
|
|
This should be suitable for any targets that support threads. */
|
1796 |
|
|
|
1797 |
|
|
static int
|
1798 |
|
|
prepare_to_proceed (int step)
|
1799 |
|
|
{
|
1800 |
|
|
ptid_t wait_ptid;
|
1801 |
|
|
struct target_waitstatus wait_status;
|
1802 |
|
|
int schedlock_enabled;
|
1803 |
|
|
|
1804 |
|
|
/* With non-stop mode on, threads are always handled individually. */
|
1805 |
|
|
gdb_assert (! non_stop);
|
1806 |
|
|
|
1807 |
|
|
/* Get the last target status returned by target_wait(). */
|
1808 |
|
|
get_last_target_status (&wait_ptid, &wait_status);
|
1809 |
|
|
|
1810 |
|
|
/* Make sure we were stopped at a breakpoint. */
|
1811 |
|
|
if (wait_status.kind != TARGET_WAITKIND_STOPPED
|
1812 |
|
|
|| (wait_status.value.sig != TARGET_SIGNAL_TRAP
|
1813 |
|
|
&& wait_status.value.sig != TARGET_SIGNAL_ILL
|
1814 |
|
|
&& wait_status.value.sig != TARGET_SIGNAL_SEGV
|
1815 |
|
|
&& wait_status.value.sig != TARGET_SIGNAL_EMT))
|
1816 |
|
|
{
|
1817 |
|
|
return 0;
|
1818 |
|
|
}
|
1819 |
|
|
|
1820 |
|
|
schedlock_enabled = (scheduler_mode == schedlock_on
|
1821 |
|
|
|| (scheduler_mode == schedlock_step
|
1822 |
|
|
&& step));
|
1823 |
|
|
|
1824 |
|
|
/* Don't switch over to WAIT_PTID if scheduler locking is on. */
|
1825 |
|
|
if (schedlock_enabled)
|
1826 |
|
|
return 0;
|
1827 |
|
|
|
1828 |
|
|
/* Don't switch over if we're about to resume some other process
|
1829 |
|
|
other than WAIT_PTID's, and schedule-multiple is off. */
|
1830 |
|
|
if (!sched_multi
|
1831 |
|
|
&& ptid_get_pid (wait_ptid) != ptid_get_pid (inferior_ptid))
|
1832 |
|
|
return 0;
|
1833 |
|
|
|
1834 |
|
|
/* Switched over from WAIT_PID. */
|
1835 |
|
|
if (!ptid_equal (wait_ptid, minus_one_ptid)
|
1836 |
|
|
&& !ptid_equal (inferior_ptid, wait_ptid))
|
1837 |
|
|
{
|
1838 |
|
|
struct regcache *regcache = get_thread_regcache (wait_ptid);
|
1839 |
|
|
|
1840 |
|
|
if (breakpoint_here_p (get_regcache_aspace (regcache),
|
1841 |
|
|
regcache_read_pc (regcache)))
|
1842 |
|
|
{
|
1843 |
|
|
/* If stepping, remember current thread to switch back to. */
|
1844 |
|
|
if (step)
|
1845 |
|
|
deferred_step_ptid = inferior_ptid;
|
1846 |
|
|
|
1847 |
|
|
/* Switch back to WAIT_PID thread. */
|
1848 |
|
|
switch_to_thread (wait_ptid);
|
1849 |
|
|
|
1850 |
|
|
/* We return 1 to indicate that there is a breakpoint here,
|
1851 |
|
|
so we need to step over it before continuing to avoid
|
1852 |
|
|
hitting it straight away. */
|
1853 |
|
|
return 1;
|
1854 |
|
|
}
|
1855 |
|
|
}
|
1856 |
|
|
|
1857 |
|
|
return 0;
|
1858 |
|
|
}
|
1859 |
|
|
|
1860 |
|
|
/* Basic routine for continuing the program in various fashions.
|
1861 |
|
|
|
1862 |
|
|
ADDR is the address to resume at, or -1 for resume where stopped.
|
1863 |
|
|
SIGGNAL is the signal to give it, or 0 for none,
|
1864 |
|
|
or -1 for act according to how it stopped.
|
1865 |
|
|
STEP is nonzero if should trap after one instruction.
|
1866 |
|
|
-1 means return after that and print nothing.
|
1867 |
|
|
You should probably set various step_... variables
|
1868 |
|
|
before calling here, if you are stepping.
|
1869 |
|
|
|
1870 |
|
|
You should call clear_proceed_status before calling proceed. */
|
1871 |
|
|
|
1872 |
|
|
void
|
1873 |
|
|
proceed (CORE_ADDR addr, enum target_signal siggnal, int step)
|
1874 |
|
|
{
|
1875 |
|
|
struct regcache *regcache;
|
1876 |
|
|
struct gdbarch *gdbarch;
|
1877 |
|
|
struct thread_info *tp;
|
1878 |
|
|
CORE_ADDR pc;
|
1879 |
|
|
struct address_space *aspace;
|
1880 |
|
|
int oneproc = 0;
|
1881 |
|
|
|
1882 |
|
|
/* If we're stopped at a fork/vfork, follow the branch set by the
|
1883 |
|
|
"set follow-fork-mode" command; otherwise, we'll just proceed
|
1884 |
|
|
resuming the current thread. */
|
1885 |
|
|
if (!follow_fork ())
|
1886 |
|
|
{
|
1887 |
|
|
/* The target for some reason decided not to resume. */
|
1888 |
|
|
normal_stop ();
|
1889 |
|
|
return;
|
1890 |
|
|
}
|
1891 |
|
|
|
1892 |
|
|
regcache = get_current_regcache ();
|
1893 |
|
|
gdbarch = get_regcache_arch (regcache);
|
1894 |
|
|
aspace = get_regcache_aspace (regcache);
|
1895 |
|
|
pc = regcache_read_pc (regcache);
|
1896 |
|
|
|
1897 |
|
|
if (step > 0)
|
1898 |
|
|
step_start_function = find_pc_function (pc);
|
1899 |
|
|
if (step < 0)
|
1900 |
|
|
stop_after_trap = 1;
|
1901 |
|
|
|
1902 |
|
|
if (addr == (CORE_ADDR) -1)
|
1903 |
|
|
{
|
1904 |
|
|
if (pc == stop_pc && breakpoint_here_p (aspace, pc)
|
1905 |
|
|
&& execution_direction != EXEC_REVERSE)
|
1906 |
|
|
/* There is a breakpoint at the address we will resume at,
|
1907 |
|
|
step one instruction before inserting breakpoints so that
|
1908 |
|
|
we do not stop right away (and report a second hit at this
|
1909 |
|
|
breakpoint).
|
1910 |
|
|
|
1911 |
|
|
Note, we don't do this in reverse, because we won't
|
1912 |
|
|
actually be executing the breakpoint insn anyway.
|
1913 |
|
|
We'll be (un-)executing the previous instruction. */
|
1914 |
|
|
|
1915 |
|
|
oneproc = 1;
|
1916 |
|
|
else if (gdbarch_single_step_through_delay_p (gdbarch)
|
1917 |
|
|
&& gdbarch_single_step_through_delay (gdbarch,
|
1918 |
|
|
get_current_frame ()))
|
1919 |
|
|
/* We stepped onto an instruction that needs to be stepped
|
1920 |
|
|
again before re-inserting the breakpoint, do so. */
|
1921 |
|
|
oneproc = 1;
|
1922 |
|
|
}
|
1923 |
|
|
else
|
1924 |
|
|
{
|
1925 |
|
|
regcache_write_pc (regcache, addr);
|
1926 |
|
|
}
|
1927 |
|
|
|
1928 |
|
|
if (debug_infrun)
|
1929 |
|
|
fprintf_unfiltered (gdb_stdlog,
|
1930 |
|
|
"infrun: proceed (addr=%s, signal=%d, step=%d)\n",
|
1931 |
|
|
paddress (gdbarch, addr), siggnal, step);
|
1932 |
|
|
|
1933 |
|
|
/* We're handling a live event, so make sure we're doing live
|
1934 |
|
|
debugging. If we're looking at traceframes while the target is
|
1935 |
|
|
running, we're going to need to get back to that mode after
|
1936 |
|
|
handling the event. */
|
1937 |
|
|
if (non_stop)
|
1938 |
|
|
{
|
1939 |
|
|
make_cleanup_restore_current_traceframe ();
|
1940 |
|
|
set_traceframe_number (-1);
|
1941 |
|
|
}
|
1942 |
|
|
|
1943 |
|
|
if (non_stop)
|
1944 |
|
|
/* In non-stop, each thread is handled individually. The context
|
1945 |
|
|
must already be set to the right thread here. */
|
1946 |
|
|
;
|
1947 |
|
|
else
|
1948 |
|
|
{
|
1949 |
|
|
/* In a multi-threaded task we may select another thread and
|
1950 |
|
|
then continue or step.
|
1951 |
|
|
|
1952 |
|
|
But if the old thread was stopped at a breakpoint, it will
|
1953 |
|
|
immediately cause another breakpoint stop without any
|
1954 |
|
|
execution (i.e. it will report a breakpoint hit incorrectly).
|
1955 |
|
|
So we must step over it first.
|
1956 |
|
|
|
1957 |
|
|
prepare_to_proceed checks the current thread against the
|
1958 |
|
|
thread that reported the most recent event. If a step-over
|
1959 |
|
|
is required it returns TRUE and sets the current thread to
|
1960 |
|
|
the old thread. */
|
1961 |
|
|
if (prepare_to_proceed (step))
|
1962 |
|
|
oneproc = 1;
|
1963 |
|
|
}
|
1964 |
|
|
|
1965 |
|
|
/* prepare_to_proceed may change the current thread. */
|
1966 |
|
|
tp = inferior_thread ();
|
1967 |
|
|
|
1968 |
|
|
if (oneproc)
|
1969 |
|
|
{
|
1970 |
|
|
tp->trap_expected = 1;
|
1971 |
|
|
/* If displaced stepping is enabled, we can step over the
|
1972 |
|
|
breakpoint without hitting it, so leave all breakpoints
|
1973 |
|
|
inserted. Otherwise we need to disable all breakpoints, step
|
1974 |
|
|
one instruction, and then re-add them when that step is
|
1975 |
|
|
finished. */
|
1976 |
|
|
if (!use_displaced_stepping (gdbarch))
|
1977 |
|
|
remove_breakpoints ();
|
1978 |
|
|
}
|
1979 |
|
|
|
1980 |
|
|
/* We can insert breakpoints if we're not trying to step over one,
|
1981 |
|
|
or if we are stepping over one but we're using displaced stepping
|
1982 |
|
|
to do so. */
|
1983 |
|
|
if (! tp->trap_expected || use_displaced_stepping (gdbarch))
|
1984 |
|
|
insert_breakpoints ();
|
1985 |
|
|
|
1986 |
|
|
if (!non_stop)
|
1987 |
|
|
{
|
1988 |
|
|
/* Pass the last stop signal to the thread we're resuming,
|
1989 |
|
|
irrespective of whether the current thread is the thread that
|
1990 |
|
|
got the last event or not. This was historically GDB's
|
1991 |
|
|
behaviour before keeping a stop_signal per thread. */
|
1992 |
|
|
|
1993 |
|
|
struct thread_info *last_thread;
|
1994 |
|
|
ptid_t last_ptid;
|
1995 |
|
|
struct target_waitstatus last_status;
|
1996 |
|
|
|
1997 |
|
|
get_last_target_status (&last_ptid, &last_status);
|
1998 |
|
|
if (!ptid_equal (inferior_ptid, last_ptid)
|
1999 |
|
|
&& !ptid_equal (last_ptid, null_ptid)
|
2000 |
|
|
&& !ptid_equal (last_ptid, minus_one_ptid))
|
2001 |
|
|
{
|
2002 |
|
|
last_thread = find_thread_ptid (last_ptid);
|
2003 |
|
|
if (last_thread)
|
2004 |
|
|
{
|
2005 |
|
|
tp->stop_signal = last_thread->stop_signal;
|
2006 |
|
|
last_thread->stop_signal = TARGET_SIGNAL_0;
|
2007 |
|
|
}
|
2008 |
|
|
}
|
2009 |
|
|
}
|
2010 |
|
|
|
2011 |
|
|
if (siggnal != TARGET_SIGNAL_DEFAULT)
|
2012 |
|
|
tp->stop_signal = siggnal;
|
2013 |
|
|
/* If this signal should not be seen by program,
|
2014 |
|
|
give it zero. Used for debugging signals. */
|
2015 |
|
|
else if (!signal_program[tp->stop_signal])
|
2016 |
|
|
tp->stop_signal = TARGET_SIGNAL_0;
|
2017 |
|
|
|
2018 |
|
|
annotate_starting ();
|
2019 |
|
|
|
2020 |
|
|
/* Make sure that output from GDB appears before output from the
|
2021 |
|
|
inferior. */
|
2022 |
|
|
gdb_flush (gdb_stdout);
|
2023 |
|
|
|
2024 |
|
|
/* Refresh prev_pc value just prior to resuming. This used to be
|
2025 |
|
|
done in stop_stepping, however, setting prev_pc there did not handle
|
2026 |
|
|
scenarios such as inferior function calls or returning from
|
2027 |
|
|
a function via the return command. In those cases, the prev_pc
|
2028 |
|
|
value was not set properly for subsequent commands. The prev_pc value
|
2029 |
|
|
is used to initialize the starting line number in the ecs. With an
|
2030 |
|
|
invalid value, the gdb next command ends up stopping at the position
|
2031 |
|
|
represented by the next line table entry past our start position.
|
2032 |
|
|
On platforms that generate one line table entry per line, this
|
2033 |
|
|
is not a problem. However, on the ia64, the compiler generates
|
2034 |
|
|
extraneous line table entries that do not increase the line number.
|
2035 |
|
|
When we issue the gdb next command on the ia64 after an inferior call
|
2036 |
|
|
or a return command, we often end up a few instructions forward, still
|
2037 |
|
|
within the original line we started.
|
2038 |
|
|
|
2039 |
|
|
An attempt was made to refresh the prev_pc at the same time the
|
2040 |
|
|
execution_control_state is initialized (for instance, just before
|
2041 |
|
|
waiting for an inferior event). But this approach did not work
|
2042 |
|
|
because of platforms that use ptrace, where the pc register cannot
|
2043 |
|
|
be read unless the inferior is stopped. At that point, we are not
|
2044 |
|
|
guaranteed the inferior is stopped and so the regcache_read_pc() call
|
2045 |
|
|
can fail. Setting the prev_pc value here ensures the value is updated
|
2046 |
|
|
correctly when the inferior is stopped. */
|
2047 |
|
|
tp->prev_pc = regcache_read_pc (get_current_regcache ());
|
2048 |
|
|
|
2049 |
|
|
/* Fill in with reasonable starting values. */
|
2050 |
|
|
init_thread_stepping_state (tp);
|
2051 |
|
|
|
2052 |
|
|
/* Reset to normal state. */
|
2053 |
|
|
init_infwait_state ();
|
2054 |
|
|
|
2055 |
|
|
/* Resume inferior. */
|
2056 |
|
|
resume (oneproc || step || bpstat_should_step (), tp->stop_signal);
|
2057 |
|
|
|
2058 |
|
|
/* Wait for it to stop (if not standalone)
|
2059 |
|
|
and in any case decode why it stopped, and act accordingly. */
|
2060 |
|
|
/* Do this only if we are not using the event loop, or if the target
|
2061 |
|
|
does not support asynchronous execution. */
|
2062 |
|
|
if (!target_can_async_p ())
|
2063 |
|
|
{
|
2064 |
|
|
wait_for_inferior (0);
|
2065 |
|
|
normal_stop ();
|
2066 |
|
|
}
|
2067 |
|
|
}
|
2068 |
|
|
|
2069 |
|
|
|
2070 |
|
|
/* Start remote-debugging of a machine over a serial link. */
|
2071 |
|
|
|
2072 |
|
|
void
|
2073 |
|
|
start_remote (int from_tty)
|
2074 |
|
|
{
|
2075 |
|
|
struct inferior *inferior;
|
2076 |
|
|
|
2077 |
|
|
init_wait_for_inferior ();
|
2078 |
|
|
inferior = current_inferior ();
|
2079 |
|
|
inferior->stop_soon = STOP_QUIETLY_REMOTE;
|
2080 |
|
|
|
2081 |
|
|
/* Always go on waiting for the target, regardless of the mode. */
|
2082 |
|
|
/* FIXME: cagney/1999-09-23: At present it isn't possible to
|
2083 |
|
|
indicate to wait_for_inferior that a target should timeout if
|
2084 |
|
|
nothing is returned (instead of just blocking). Because of this,
|
2085 |
|
|
targets expecting an immediate response need to, internally, set
|
2086 |
|
|
things up so that the target_wait() is forced to eventually
|
2087 |
|
|
timeout. */
|
2088 |
|
|
/* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
|
2089 |
|
|
differentiate to its caller what the state of the target is after
|
2090 |
|
|
the initial open has been performed. Here we're assuming that
|
2091 |
|
|
the target has stopped. It should be possible to eventually have
|
2092 |
|
|
target_open() return to the caller an indication that the target
|
2093 |
|
|
is currently running and GDB state should be set to the same as
|
2094 |
|
|
for an async run. */
|
2095 |
|
|
wait_for_inferior (0);
|
2096 |
|
|
|
2097 |
|
|
/* Now that the inferior has stopped, do any bookkeeping like
|
2098 |
|
|
loading shared libraries. We want to do this before normal_stop,
|
2099 |
|
|
so that the displayed frame is up to date. */
|
2100 |
|
|
post_create_inferior (¤t_target, from_tty);
|
2101 |
|
|
|
2102 |
|
|
normal_stop ();
|
2103 |
|
|
}
|
2104 |
|
|
|
2105 |
|
|
/* Initialize static vars when a new inferior begins. */
|
2106 |
|
|
|
2107 |
|
|
void
|
2108 |
|
|
init_wait_for_inferior (void)
|
2109 |
|
|
{
|
2110 |
|
|
/* These are meaningless until the first time through wait_for_inferior. */
|
2111 |
|
|
|
2112 |
|
|
breakpoint_init_inferior (inf_starting);
|
2113 |
|
|
|
2114 |
|
|
clear_proceed_status ();
|
2115 |
|
|
|
2116 |
|
|
stepping_past_singlestep_breakpoint = 0;
|
2117 |
|
|
deferred_step_ptid = null_ptid;
|
2118 |
|
|
|
2119 |
|
|
target_last_wait_ptid = minus_one_ptid;
|
2120 |
|
|
|
2121 |
|
|
previous_inferior_ptid = null_ptid;
|
2122 |
|
|
init_infwait_state ();
|
2123 |
|
|
|
2124 |
|
|
/* Discard any skipped inlined frames. */
|
2125 |
|
|
clear_inline_frame_state (minus_one_ptid);
|
2126 |
|
|
}
|
2127 |
|
|
|
2128 |
|
|
|
2129 |
|
|
/* This enum encodes possible reasons for doing a target_wait, so that
|
2130 |
|
|
wfi can call target_wait in one place. (Ultimately the call will be
|
2131 |
|
|
moved out of the infinite loop entirely.) */
|
2132 |
|
|
|
2133 |
|
|
enum infwait_states
|
2134 |
|
|
{
|
2135 |
|
|
infwait_normal_state,
|
2136 |
|
|
infwait_thread_hop_state,
|
2137 |
|
|
infwait_step_watch_state,
|
2138 |
|
|
infwait_nonstep_watch_state
|
2139 |
|
|
};
|
2140 |
|
|
|
2141 |
|
|
/* Why did the inferior stop? Used to print the appropriate messages
|
2142 |
|
|
to the interface from within handle_inferior_event(). */
|
2143 |
|
|
enum inferior_stop_reason
|
2144 |
|
|
{
|
2145 |
|
|
/* Step, next, nexti, stepi finished. */
|
2146 |
|
|
END_STEPPING_RANGE,
|
2147 |
|
|
/* Inferior terminated by signal. */
|
2148 |
|
|
SIGNAL_EXITED,
|
2149 |
|
|
/* Inferior exited. */
|
2150 |
|
|
EXITED,
|
2151 |
|
|
/* Inferior received signal, and user asked to be notified. */
|
2152 |
|
|
SIGNAL_RECEIVED,
|
2153 |
|
|
/* Reverse execution -- target ran out of history info. */
|
2154 |
|
|
NO_HISTORY
|
2155 |
|
|
};
|
2156 |
|
|
|
2157 |
|
|
/* The PTID we'll do a target_wait on.*/
|
2158 |
|
|
ptid_t waiton_ptid;
|
2159 |
|
|
|
2160 |
|
|
/* Current inferior wait state. */
|
2161 |
|
|
enum infwait_states infwait_state;
|
2162 |
|
|
|
2163 |
|
|
/* Data to be passed around while handling an event. This data is
|
2164 |
|
|
discarded between events. */
|
2165 |
|
|
struct execution_control_state
|
2166 |
|
|
{
|
2167 |
|
|
ptid_t ptid;
|
2168 |
|
|
/* The thread that got the event, if this was a thread event; NULL
|
2169 |
|
|
otherwise. */
|
2170 |
|
|
struct thread_info *event_thread;
|
2171 |
|
|
|
2172 |
|
|
struct target_waitstatus ws;
|
2173 |
|
|
int random_signal;
|
2174 |
|
|
CORE_ADDR stop_func_start;
|
2175 |
|
|
CORE_ADDR stop_func_end;
|
2176 |
|
|
char *stop_func_name;
|
2177 |
|
|
int new_thread_event;
|
2178 |
|
|
int wait_some_more;
|
2179 |
|
|
};
|
2180 |
|
|
|
2181 |
|
|
static void handle_inferior_event (struct execution_control_state *ecs);
|
2182 |
|
|
|
2183 |
|
|
static void handle_step_into_function (struct gdbarch *gdbarch,
|
2184 |
|
|
struct execution_control_state *ecs);
|
2185 |
|
|
static void handle_step_into_function_backward (struct gdbarch *gdbarch,
|
2186 |
|
|
struct execution_control_state *ecs);
|
2187 |
|
|
static void insert_step_resume_breakpoint_at_frame (struct frame_info *step_frame);
|
2188 |
|
|
static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
|
2189 |
|
|
static void insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
|
2190 |
|
|
struct symtab_and_line sr_sal,
|
2191 |
|
|
struct frame_id sr_id);
|
2192 |
|
|
static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);
|
2193 |
|
|
|
2194 |
|
|
static void stop_stepping (struct execution_control_state *ecs);
|
2195 |
|
|
static void prepare_to_wait (struct execution_control_state *ecs);
|
2196 |
|
|
static void keep_going (struct execution_control_state *ecs);
|
2197 |
|
|
static void print_stop_reason (enum inferior_stop_reason stop_reason,
|
2198 |
|
|
int stop_info);
|
2199 |
|
|
|
2200 |
|
|
/* Callback for iterate over threads. If the thread is stopped, but
|
2201 |
|
|
the user/frontend doesn't know about that yet, go through
|
2202 |
|
|
normal_stop, as if the thread had just stopped now. ARG points at
|
2203 |
|
|
a ptid. If PTID is MINUS_ONE_PTID, applies to all threads. If
|
2204 |
|
|
ptid_is_pid(PTID) is true, applies to all threads of the process
|
2205 |
|
|
pointed at by PTID. Otherwise, apply only to the thread pointed by
|
2206 |
|
|
PTID. */
|
2207 |
|
|
|
2208 |
|
|
static int
|
2209 |
|
|
infrun_thread_stop_requested_callback (struct thread_info *info, void *arg)
|
2210 |
|
|
{
|
2211 |
|
|
ptid_t ptid = * (ptid_t *) arg;
|
2212 |
|
|
|
2213 |
|
|
if ((ptid_equal (info->ptid, ptid)
|
2214 |
|
|
|| ptid_equal (minus_one_ptid, ptid)
|
2215 |
|
|
|| (ptid_is_pid (ptid)
|
2216 |
|
|
&& ptid_get_pid (ptid) == ptid_get_pid (info->ptid)))
|
2217 |
|
|
&& is_running (info->ptid)
|
2218 |
|
|
&& !is_executing (info->ptid))
|
2219 |
|
|
{
|
2220 |
|
|
struct cleanup *old_chain;
|
2221 |
|
|
struct execution_control_state ecss;
|
2222 |
|
|
struct execution_control_state *ecs = &ecss;
|
2223 |
|
|
|
2224 |
|
|
memset (ecs, 0, sizeof (*ecs));
|
2225 |
|
|
|
2226 |
|
|
old_chain = make_cleanup_restore_current_thread ();
|
2227 |
|
|
|
2228 |
|
|
switch_to_thread (info->ptid);
|
2229 |
|
|
|
2230 |
|
|
/* Go through handle_inferior_event/normal_stop, so we always
|
2231 |
|
|
have consistent output as if the stop event had been
|
2232 |
|
|
reported. */
|
2233 |
|
|
ecs->ptid = info->ptid;
|
2234 |
|
|
ecs->event_thread = find_thread_ptid (info->ptid);
|
2235 |
|
|
ecs->ws.kind = TARGET_WAITKIND_STOPPED;
|
2236 |
|
|
ecs->ws.value.sig = TARGET_SIGNAL_0;
|
2237 |
|
|
|
2238 |
|
|
handle_inferior_event (ecs);
|
2239 |
|
|
|
2240 |
|
|
if (!ecs->wait_some_more)
|
2241 |
|
|
{
|
2242 |
|
|
struct thread_info *tp;
|
2243 |
|
|
|
2244 |
|
|
normal_stop ();
|
2245 |
|
|
|
2246 |
|
|
/* Finish off the continuations. The continations
|
2247 |
|
|
themselves are responsible for realising the thread
|
2248 |
|
|
didn't finish what it was supposed to do. */
|
2249 |
|
|
tp = inferior_thread ();
|
2250 |
|
|
do_all_intermediate_continuations_thread (tp);
|
2251 |
|
|
do_all_continuations_thread (tp);
|
2252 |
|
|
}
|
2253 |
|
|
|
2254 |
|
|
do_cleanups (old_chain);
|
2255 |
|
|
}
|
2256 |
|
|
|
2257 |
|
|
return 0;
|
2258 |
|
|
}
|
2259 |
|
|
|
2260 |
|
|
/* This function is attached as a "thread_stop_requested" observer.
|
2261 |
|
|
Cleanup local state that assumed the PTID was to be resumed, and
|
2262 |
|
|
report the stop to the frontend. */
|
2263 |
|
|
|
2264 |
|
|
static void
|
2265 |
|
|
infrun_thread_stop_requested (ptid_t ptid)
|
2266 |
|
|
{
|
2267 |
|
|
struct displaced_step_inferior_state *displaced;
|
2268 |
|
|
|
2269 |
|
|
/* PTID was requested to stop. Remove it from the displaced
|
2270 |
|
|
stepping queue, so we don't try to resume it automatically. */
|
2271 |
|
|
|
2272 |
|
|
for (displaced = displaced_step_inferior_states;
|
2273 |
|
|
displaced;
|
2274 |
|
|
displaced = displaced->next)
|
2275 |
|
|
{
|
2276 |
|
|
struct displaced_step_request *it, **prev_next_p;
|
2277 |
|
|
|
2278 |
|
|
it = displaced->step_request_queue;
|
2279 |
|
|
prev_next_p = &displaced->step_request_queue;
|
2280 |
|
|
while (it)
|
2281 |
|
|
{
|
2282 |
|
|
if (ptid_match (it->ptid, ptid))
|
2283 |
|
|
{
|
2284 |
|
|
*prev_next_p = it->next;
|
2285 |
|
|
it->next = NULL;
|
2286 |
|
|
xfree (it);
|
2287 |
|
|
}
|
2288 |
|
|
else
|
2289 |
|
|
{
|
2290 |
|
|
prev_next_p = &it->next;
|
2291 |
|
|
}
|
2292 |
|
|
|
2293 |
|
|
it = *prev_next_p;
|
2294 |
|
|
}
|
2295 |
|
|
}
|
2296 |
|
|
|
2297 |
|
|
iterate_over_threads (infrun_thread_stop_requested_callback, &ptid);
|
2298 |
|
|
}
|
2299 |
|
|
|
2300 |
|
|
static void
|
2301 |
|
|
infrun_thread_thread_exit (struct thread_info *tp, int silent)
|
2302 |
|
|
{
|
2303 |
|
|
if (ptid_equal (target_last_wait_ptid, tp->ptid))
|
2304 |
|
|
nullify_last_target_wait_ptid ();
|
2305 |
|
|
}
|
2306 |
|
|
|
2307 |
|
|
/* Callback for iterate_over_threads. */
|
2308 |
|
|
|
2309 |
|
|
static int
|
2310 |
|
|
delete_step_resume_breakpoint_callback (struct thread_info *info, void *data)
|
2311 |
|
|
{
|
2312 |
|
|
if (is_exited (info->ptid))
|
2313 |
|
|
return 0;
|
2314 |
|
|
|
2315 |
|
|
delete_step_resume_breakpoint (info);
|
2316 |
|
|
return 0;
|
2317 |
|
|
}
|
2318 |
|
|
|
2319 |
|
|
/* In all-stop, delete the step resume breakpoint of any thread that
|
2320 |
|
|
had one. In non-stop, delete the step resume breakpoint of the
|
2321 |
|
|
thread that just stopped. */
|
2322 |
|
|
|
2323 |
|
|
static void
|
2324 |
|
|
delete_step_thread_step_resume_breakpoint (void)
|
2325 |
|
|
{
|
2326 |
|
|
if (!target_has_execution
|
2327 |
|
|
|| ptid_equal (inferior_ptid, null_ptid))
|
2328 |
|
|
/* If the inferior has exited, we have already deleted the step
|
2329 |
|
|
resume breakpoints out of GDB's lists. */
|
2330 |
|
|
return;
|
2331 |
|
|
|
2332 |
|
|
if (non_stop)
|
2333 |
|
|
{
|
2334 |
|
|
/* If in non-stop mode, only delete the step-resume or
|
2335 |
|
|
longjmp-resume breakpoint of the thread that just stopped
|
2336 |
|
|
stepping. */
|
2337 |
|
|
struct thread_info *tp = inferior_thread ();
|
2338 |
|
|
|
2339 |
|
|
delete_step_resume_breakpoint (tp);
|
2340 |
|
|
}
|
2341 |
|
|
else
|
2342 |
|
|
/* In all-stop mode, delete all step-resume and longjmp-resume
|
2343 |
|
|
breakpoints of any thread that had them. */
|
2344 |
|
|
iterate_over_threads (delete_step_resume_breakpoint_callback, NULL);
|
2345 |
|
|
}
|
2346 |
|
|
|
2347 |
|
|
/* A cleanup wrapper. */
|
2348 |
|
|
|
2349 |
|
|
static void
|
2350 |
|
|
delete_step_thread_step_resume_breakpoint_cleanup (void *arg)
|
2351 |
|
|
{
|
2352 |
|
|
delete_step_thread_step_resume_breakpoint ();
|
2353 |
|
|
}
|
2354 |
|
|
|
2355 |
|
|
/* Pretty print the results of target_wait, for debugging purposes. */
|
2356 |
|
|
|
2357 |
|
|
static void
|
2358 |
|
|
print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
|
2359 |
|
|
const struct target_waitstatus *ws)
|
2360 |
|
|
{
|
2361 |
|
|
char *status_string = target_waitstatus_to_string (ws);
|
2362 |
|
|
struct ui_file *tmp_stream = mem_fileopen ();
|
2363 |
|
|
char *text;
|
2364 |
|
|
|
2365 |
|
|
/* The text is split over several lines because it was getting too long.
|
2366 |
|
|
Call fprintf_unfiltered (gdb_stdlog) once so that the text is still
|
2367 |
|
|
output as a unit; we want only one timestamp printed if debug_timestamp
|
2368 |
|
|
is set. */
|
2369 |
|
|
|
2370 |
|
|
fprintf_unfiltered (tmp_stream,
|
2371 |
|
|
"infrun: target_wait (%d", PIDGET (waiton_ptid));
|
2372 |
|
|
if (PIDGET (waiton_ptid) != -1)
|
2373 |
|
|
fprintf_unfiltered (tmp_stream,
|
2374 |
|
|
" [%s]", target_pid_to_str (waiton_ptid));
|
2375 |
|
|
fprintf_unfiltered (tmp_stream, ", status) =\n");
|
2376 |
|
|
fprintf_unfiltered (tmp_stream,
|
2377 |
|
|
"infrun: %d [%s],\n",
|
2378 |
|
|
PIDGET (result_ptid), target_pid_to_str (result_ptid));
|
2379 |
|
|
fprintf_unfiltered (tmp_stream,
|
2380 |
|
|
"infrun: %s\n",
|
2381 |
|
|
status_string);
|
2382 |
|
|
|
2383 |
|
|
text = ui_file_xstrdup (tmp_stream, NULL);
|
2384 |
|
|
|
2385 |
|
|
/* This uses %s in part to handle %'s in the text, but also to avoid
|
2386 |
|
|
a gcc error: the format attribute requires a string literal. */
|
2387 |
|
|
fprintf_unfiltered (gdb_stdlog, "%s", text);
|
2388 |
|
|
|
2389 |
|
|
xfree (status_string);
|
2390 |
|
|
xfree (text);
|
2391 |
|
|
ui_file_delete (tmp_stream);
|
2392 |
|
|
}
|
2393 |
|
|
|
2394 |
|
|
/* Prepare and stabilize the inferior for detaching it. E.g.,
|
2395 |
|
|
detaching while a thread is displaced stepping is a recipe for
|
2396 |
|
|
crashing it, as nothing would readjust the PC out of the scratch
|
2397 |
|
|
pad. */
|
2398 |
|
|
|
2399 |
|
|
void
|
2400 |
|
|
prepare_for_detach (void)
|
2401 |
|
|
{
|
2402 |
|
|
struct inferior *inf = current_inferior ();
|
2403 |
|
|
ptid_t pid_ptid = pid_to_ptid (inf->pid);
|
2404 |
|
|
struct cleanup *old_chain_1;
|
2405 |
|
|
struct displaced_step_inferior_state *displaced;
|
2406 |
|
|
|
2407 |
|
|
displaced = get_displaced_stepping_state (inf->pid);
|
2408 |
|
|
|
2409 |
|
|
/* Is any thread of this process displaced stepping? If not,
|
2410 |
|
|
there's nothing else to do. */
|
2411 |
|
|
if (displaced == NULL || ptid_equal (displaced->step_ptid, null_ptid))
|
2412 |
|
|
return;
|
2413 |
|
|
|
2414 |
|
|
if (debug_infrun)
|
2415 |
|
|
fprintf_unfiltered (gdb_stdlog,
|
2416 |
|
|
"displaced-stepping in-process while detaching");
|
2417 |
|
|
|
2418 |
|
|
old_chain_1 = make_cleanup_restore_integer (&inf->detaching);
|
2419 |
|
|
inf->detaching = 1;
|
2420 |
|
|
|
2421 |
|
|
while (!ptid_equal (displaced->step_ptid, null_ptid))
|
2422 |
|
|
{
|
2423 |
|
|
struct cleanup *old_chain_2;
|
2424 |
|
|
struct execution_control_state ecss;
|
2425 |
|
|
struct execution_control_state *ecs;
|
2426 |
|
|
|
2427 |
|
|
ecs = &ecss;
|
2428 |
|
|
memset (ecs, 0, sizeof (*ecs));
|
2429 |
|
|
|
2430 |
|
|
overlay_cache_invalid = 1;
|
2431 |
|
|
|
2432 |
|
|
/* We have to invalidate the registers BEFORE calling
|
2433 |
|
|
target_wait because they can be loaded from the target while
|
2434 |
|
|
in target_wait. This makes remote debugging a bit more
|
2435 |
|
|
efficient for those targets that provide critical registers
|
2436 |
|
|
as part of their normal status mechanism. */
|
2437 |
|
|
|
2438 |
|
|
registers_changed ();
|
2439 |
|
|
|
2440 |
|
|
if (deprecated_target_wait_hook)
|
2441 |
|
|
ecs->ptid = deprecated_target_wait_hook (pid_ptid, &ecs->ws, 0);
|
2442 |
|
|
else
|
2443 |
|
|
ecs->ptid = target_wait (pid_ptid, &ecs->ws, 0);
|
2444 |
|
|
|
2445 |
|
|
if (debug_infrun)
|
2446 |
|
|
print_target_wait_results (pid_ptid, ecs->ptid, &ecs->ws);
|
2447 |
|
|
|
2448 |
|
|
/* If an error happens while handling the event, propagate GDB's
|
2449 |
|
|
knowledge of the executing state to the frontend/user running
|
2450 |
|
|
state. */
|
2451 |
|
|
old_chain_2 = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
|
2452 |
|
|
|
2453 |
|
|
/* In non-stop mode, each thread is handled individually.
|
2454 |
|
|
Switch early, so the global state is set correctly for this
|
2455 |
|
|
thread. */
|
2456 |
|
|
if (non_stop
|
2457 |
|
|
&& ecs->ws.kind != TARGET_WAITKIND_EXITED
|
2458 |
|
|
&& ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
|
2459 |
|
|
context_switch (ecs->ptid);
|
2460 |
|
|
|
2461 |
|
|
/* Now figure out what to do with the result of the result. */
|
2462 |
|
|
handle_inferior_event (ecs);
|
2463 |
|
|
|
2464 |
|
|
/* No error, don't finish the state yet. */
|
2465 |
|
|
discard_cleanups (old_chain_2);
|
2466 |
|
|
|
2467 |
|
|
/* Breakpoints and watchpoints are not installed on the target
|
2468 |
|
|
at this point, and signals are passed directly to the
|
2469 |
|
|
inferior, so this must mean the process is gone. */
|
2470 |
|
|
if (!ecs->wait_some_more)
|
2471 |
|
|
{
|
2472 |
|
|
discard_cleanups (old_chain_1);
|
2473 |
|
|
error (_("Program exited while detaching"));
|
2474 |
|
|
}
|
2475 |
|
|
}
|
2476 |
|
|
|
2477 |
|
|
discard_cleanups (old_chain_1);
|
2478 |
|
|
}
|
2479 |
|
|
|
2480 |
|
|
/* Wait for control to return from inferior to debugger.
|
2481 |
|
|
|
2482 |
|
|
If TREAT_EXEC_AS_SIGTRAP is non-zero, then handle EXEC signals
|
2483 |
|
|
as if they were SIGTRAP signals. This can be useful during
|
2484 |
|
|
the startup sequence on some targets such as HP/UX, where
|
2485 |
|
|
we receive an EXEC event instead of the expected SIGTRAP.
|
2486 |
|
|
|
2487 |
|
|
If inferior gets a signal, we may decide to start it up again
|
2488 |
|
|
instead of returning. That is why there is a loop in this function.
|
2489 |
|
|
When this function actually returns it means the inferior
|
2490 |
|
|
should be left stopped and GDB should read more commands. */
|
2491 |
|
|
|
2492 |
|
|
void
|
2493 |
|
|
wait_for_inferior (int treat_exec_as_sigtrap)
|
2494 |
|
|
{
|
2495 |
|
|
struct cleanup *old_cleanups;
|
2496 |
|
|
struct execution_control_state ecss;
|
2497 |
|
|
struct execution_control_state *ecs;
|
2498 |
|
|
|
2499 |
|
|
if (debug_infrun)
|
2500 |
|
|
fprintf_unfiltered
|
2501 |
|
|
(gdb_stdlog, "infrun: wait_for_inferior (treat_exec_as_sigtrap=%d)\n",
|
2502 |
|
|
treat_exec_as_sigtrap);
|
2503 |
|
|
|
2504 |
|
|
old_cleanups =
|
2505 |
|
|
make_cleanup (delete_step_thread_step_resume_breakpoint_cleanup, NULL);
|
2506 |
|
|
|
2507 |
|
|
ecs = &ecss;
|
2508 |
|
|
memset (ecs, 0, sizeof (*ecs));
|
2509 |
|
|
|
2510 |
|
|
/* We'll update this if & when we switch to a new thread. */
|
2511 |
|
|
previous_inferior_ptid = inferior_ptid;
|
2512 |
|
|
|
2513 |
|
|
while (1)
|
2514 |
|
|
{
|
2515 |
|
|
struct cleanup *old_chain;
|
2516 |
|
|
|
2517 |
|
|
/* We have to invalidate the registers BEFORE calling target_wait
|
2518 |
|
|
because they can be loaded from the target while in target_wait.
|
2519 |
|
|
This makes remote debugging a bit more efficient for those
|
2520 |
|
|
targets that provide critical registers as part of their normal
|
2521 |
|
|
status mechanism. */
|
2522 |
|
|
|
2523 |
|
|
overlay_cache_invalid = 1;
|
2524 |
|
|
registers_changed ();
|
2525 |
|
|
|
2526 |
|
|
if (deprecated_target_wait_hook)
|
2527 |
|
|
ecs->ptid = deprecated_target_wait_hook (waiton_ptid, &ecs->ws, 0);
|
2528 |
|
|
else
|
2529 |
|
|
ecs->ptid = target_wait (waiton_ptid, &ecs->ws, 0);
|
2530 |
|
|
|
2531 |
|
|
if (debug_infrun)
|
2532 |
|
|
print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
|
2533 |
|
|
|
2534 |
|
|
if (treat_exec_as_sigtrap && ecs->ws.kind == TARGET_WAITKIND_EXECD)
|
2535 |
|
|
{
|
2536 |
|
|
xfree (ecs->ws.value.execd_pathname);
|
2537 |
|
|
ecs->ws.kind = TARGET_WAITKIND_STOPPED;
|
2538 |
|
|
ecs->ws.value.sig = TARGET_SIGNAL_TRAP;
|
2539 |
|
|
}
|
2540 |
|
|
|
2541 |
|
|
/* If an error happens while handling the event, propagate GDB's
|
2542 |
|
|
knowledge of the executing state to the frontend/user running
|
2543 |
|
|
state. */
|
2544 |
|
|
old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
|
2545 |
|
|
|
2546 |
|
|
if (ecs->ws.kind == TARGET_WAITKIND_SYSCALL_ENTRY
|
2547 |
|
|
|| ecs->ws.kind == TARGET_WAITKIND_SYSCALL_RETURN)
|
2548 |
|
|
ecs->ws.value.syscall_number = UNKNOWN_SYSCALL;
|
2549 |
|
|
|
2550 |
|
|
/* Now figure out what to do with the result of the result. */
|
2551 |
|
|
handle_inferior_event (ecs);
|
2552 |
|
|
|
2553 |
|
|
/* No error, don't finish the state yet. */
|
2554 |
|
|
discard_cleanups (old_chain);
|
2555 |
|
|
|
2556 |
|
|
if (!ecs->wait_some_more)
|
2557 |
|
|
break;
|
2558 |
|
|
}
|
2559 |
|
|
|
2560 |
|
|
do_cleanups (old_cleanups);
|
2561 |
|
|
}
|
2562 |
|
|
|
2563 |
|
|
/* Asynchronous version of wait_for_inferior. It is called by the
|
2564 |
|
|
event loop whenever a change of state is detected on the file
|
2565 |
|
|
descriptor corresponding to the target. It can be called more than
|
2566 |
|
|
once to complete a single execution command. In such cases we need
|
2567 |
|
|
to keep the state in a global variable ECSS. If it is the last time
|
2568 |
|
|
that this function is called for a single execution command, then
|
2569 |
|
|
report to the user that the inferior has stopped, and do the
|
2570 |
|
|
necessary cleanups. */
|
2571 |
|
|
|
2572 |
|
|
void
|
2573 |
|
|
fetch_inferior_event (void *client_data)
|
2574 |
|
|
{
|
2575 |
|
|
struct execution_control_state ecss;
|
2576 |
|
|
struct execution_control_state *ecs = &ecss;
|
2577 |
|
|
struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
|
2578 |
|
|
struct cleanup *ts_old_chain;
|
2579 |
|
|
int was_sync = sync_execution;
|
2580 |
|
|
|
2581 |
|
|
memset (ecs, 0, sizeof (*ecs));
|
2582 |
|
|
|
2583 |
|
|
/* We'll update this if & when we switch to a new thread. */
|
2584 |
|
|
previous_inferior_ptid = inferior_ptid;
|
2585 |
|
|
|
2586 |
|
|
if (non_stop)
|
2587 |
|
|
/* In non-stop mode, the user/frontend should not notice a thread
|
2588 |
|
|
switch due to internal events. Make sure we reverse to the
|
2589 |
|
|
user selected thread and frame after handling the event and
|
2590 |
|
|
running any breakpoint commands. */
|
2591 |
|
|
make_cleanup_restore_current_thread ();
|
2592 |
|
|
|
2593 |
|
|
/* We have to invalidate the registers BEFORE calling target_wait
|
2594 |
|
|
because they can be loaded from the target while in target_wait.
|
2595 |
|
|
This makes remote debugging a bit more efficient for those
|
2596 |
|
|
targets that provide critical registers as part of their normal
|
2597 |
|
|
status mechanism. */
|
2598 |
|
|
|
2599 |
|
|
overlay_cache_invalid = 1;
|
2600 |
|
|
registers_changed ();
|
2601 |
|
|
|
2602 |
|
|
if (deprecated_target_wait_hook)
|
2603 |
|
|
ecs->ptid =
|
2604 |
|
|
deprecated_target_wait_hook (waiton_ptid, &ecs->ws, TARGET_WNOHANG);
|
2605 |
|
|
else
|
2606 |
|
|
ecs->ptid = target_wait (waiton_ptid, &ecs->ws, TARGET_WNOHANG);
|
2607 |
|
|
|
2608 |
|
|
if (debug_infrun)
|
2609 |
|
|
print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
|
2610 |
|
|
|
2611 |
|
|
if (non_stop
|
2612 |
|
|
&& ecs->ws.kind != TARGET_WAITKIND_IGNORE
|
2613 |
|
|
&& ecs->ws.kind != TARGET_WAITKIND_EXITED
|
2614 |
|
|
&& ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
|
2615 |
|
|
/* In non-stop mode, each thread is handled individually. Switch
|
2616 |
|
|
early, so the global state is set correctly for this
|
2617 |
|
|
thread. */
|
2618 |
|
|
context_switch (ecs->ptid);
|
2619 |
|
|
|
2620 |
|
|
/* If an error happens while handling the event, propagate GDB's
|
2621 |
|
|
knowledge of the executing state to the frontend/user running
|
2622 |
|
|
state. */
|
2623 |
|
|
if (!non_stop)
|
2624 |
|
|
ts_old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
|
2625 |
|
|
else
|
2626 |
|
|
ts_old_chain = make_cleanup (finish_thread_state_cleanup, &ecs->ptid);
|
2627 |
|
|
|
2628 |
|
|
/* Now figure out what to do with the result of the result. */
|
2629 |
|
|
handle_inferior_event (ecs);
|
2630 |
|
|
|
2631 |
|
|
if (!ecs->wait_some_more)
|
2632 |
|
|
{
|
2633 |
|
|
struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
|
2634 |
|
|
|
2635 |
|
|
delete_step_thread_step_resume_breakpoint ();
|
2636 |
|
|
|
2637 |
|
|
/* We may not find an inferior if this was a process exit. */
|
2638 |
|
|
if (inf == NULL || inf->stop_soon == NO_STOP_QUIETLY)
|
2639 |
|
|
normal_stop ();
|
2640 |
|
|
|
2641 |
|
|
if (target_has_execution
|
2642 |
|
|
&& ecs->ws.kind != TARGET_WAITKIND_EXITED
|
2643 |
|
|
&& ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
|
2644 |
|
|
&& ecs->event_thread->step_multi
|
2645 |
|
|
&& ecs->event_thread->stop_step)
|
2646 |
|
|
inferior_event_handler (INF_EXEC_CONTINUE, NULL);
|
2647 |
|
|
else
|
2648 |
|
|
inferior_event_handler (INF_EXEC_COMPLETE, NULL);
|
2649 |
|
|
}
|
2650 |
|
|
|
2651 |
|
|
/* No error, don't finish the thread states yet. */
|
2652 |
|
|
discard_cleanups (ts_old_chain);
|
2653 |
|
|
|
2654 |
|
|
/* Revert thread and frame. */
|
2655 |
|
|
do_cleanups (old_chain);
|
2656 |
|
|
|
2657 |
|
|
/* If the inferior was in sync execution mode, and now isn't,
|
2658 |
|
|
restore the prompt. */
|
2659 |
|
|
if (was_sync && !sync_execution)
|
2660 |
|
|
display_gdb_prompt (0);
|
2661 |
|
|
}
|
2662 |
|
|
|
2663 |
|
|
/* Record the frame and location we're currently stepping through. */
|
2664 |
|
|
void
|
2665 |
|
|
set_step_info (struct frame_info *frame, struct symtab_and_line sal)
|
2666 |
|
|
{
|
2667 |
|
|
struct thread_info *tp = inferior_thread ();
|
2668 |
|
|
|
2669 |
|
|
tp->step_frame_id = get_frame_id (frame);
|
2670 |
|
|
tp->step_stack_frame_id = get_stack_frame_id (frame);
|
2671 |
|
|
|
2672 |
|
|
tp->current_symtab = sal.symtab;
|
2673 |
|
|
tp->current_line = sal.line;
|
2674 |
|
|
}
|
2675 |
|
|
|
2676 |
|
|
/* Clear context switchable stepping state. */
|
2677 |
|
|
|
2678 |
|
|
void
|
2679 |
|
|
init_thread_stepping_state (struct thread_info *tss)
|
2680 |
|
|
{
|
2681 |
|
|
tss->stepping_over_breakpoint = 0;
|
2682 |
|
|
tss->step_after_step_resume_breakpoint = 0;
|
2683 |
|
|
tss->stepping_through_solib_after_catch = 0;
|
2684 |
|
|
tss->stepping_through_solib_catchpoints = NULL;
|
2685 |
|
|
}
|
2686 |
|
|
|
2687 |
|
|
/* Return the cached copy of the last pid/waitstatus returned by
|
2688 |
|
|
target_wait()/deprecated_target_wait_hook(). The data is actually
|
2689 |
|
|
cached by handle_inferior_event(), which gets called immediately
|
2690 |
|
|
after target_wait()/deprecated_target_wait_hook(). */
|
2691 |
|
|
|
2692 |
|
|
void
|
2693 |
|
|
get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
|
2694 |
|
|
{
|
2695 |
|
|
*ptidp = target_last_wait_ptid;
|
2696 |
|
|
*status = target_last_waitstatus;
|
2697 |
|
|
}
|
2698 |
|
|
|
2699 |
|
|
void
|
2700 |
|
|
nullify_last_target_wait_ptid (void)
|
2701 |
|
|
{
|
2702 |
|
|
target_last_wait_ptid = minus_one_ptid;
|
2703 |
|
|
}
|
2704 |
|
|
|
2705 |
|
|
/* Switch thread contexts. */
|
2706 |
|
|
|
2707 |
|
|
static void
|
2708 |
|
|
context_switch (ptid_t ptid)
|
2709 |
|
|
{
|
2710 |
|
|
if (debug_infrun)
|
2711 |
|
|
{
|
2712 |
|
|
fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
|
2713 |
|
|
target_pid_to_str (inferior_ptid));
|
2714 |
|
|
fprintf_unfiltered (gdb_stdlog, "to %s\n",
|
2715 |
|
|
target_pid_to_str (ptid));
|
2716 |
|
|
}
|
2717 |
|
|
|
2718 |
|
|
switch_to_thread (ptid);
|
2719 |
|
|
}
|
2720 |
|
|
|
2721 |
|
|
static void
|
2722 |
|
|
adjust_pc_after_break (struct execution_control_state *ecs)
|
2723 |
|
|
{
|
2724 |
|
|
struct regcache *regcache;
|
2725 |
|
|
struct gdbarch *gdbarch;
|
2726 |
|
|
struct address_space *aspace;
|
2727 |
|
|
CORE_ADDR breakpoint_pc;
|
2728 |
|
|
|
2729 |
|
|
/* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
|
2730 |
|
|
we aren't, just return.
|
2731 |
|
|
|
2732 |
|
|
We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
|
2733 |
|
|
affected by gdbarch_decr_pc_after_break. Other waitkinds which are
|
2734 |
|
|
implemented by software breakpoints should be handled through the normal
|
2735 |
|
|
breakpoint layer.
|
2736 |
|
|
|
2737 |
|
|
NOTE drow/2004-01-31: On some targets, breakpoints may generate
|
2738 |
|
|
different signals (SIGILL or SIGEMT for instance), but it is less
|
2739 |
|
|
clear where the PC is pointing afterwards. It may not match
|
2740 |
|
|
gdbarch_decr_pc_after_break. I don't know any specific target that
|
2741 |
|
|
generates these signals at breakpoints (the code has been in GDB since at
|
2742 |
|
|
least 1992) so I can not guess how to handle them here.
|
2743 |
|
|
|
2744 |
|
|
In earlier versions of GDB, a target with
|
2745 |
|
|
gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
|
2746 |
|
|
watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
|
2747 |
|
|
target with both of these set in GDB history, and it seems unlikely to be
|
2748 |
|
|
correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
|
2749 |
|
|
|
2750 |
|
|
if (ecs->ws.kind != TARGET_WAITKIND_STOPPED)
|
2751 |
|
|
return;
|
2752 |
|
|
|
2753 |
|
|
if (ecs->ws.value.sig != TARGET_SIGNAL_TRAP)
|
2754 |
|
|
return;
|
2755 |
|
|
|
2756 |
|
|
/* In reverse execution, when a breakpoint is hit, the instruction
|
2757 |
|
|
under it has already been de-executed. The reported PC always
|
2758 |
|
|
points at the breakpoint address, so adjusting it further would
|
2759 |
|
|
be wrong. E.g., consider this case on a decr_pc_after_break == 1
|
2760 |
|
|
architecture:
|
2761 |
|
|
|
2762 |
|
|
B1 0x08000000 : INSN1
|
2763 |
|
|
B2 0x08000001 : INSN2
|
2764 |
|
|
0x08000002 : INSN3
|
2765 |
|
|
PC -> 0x08000003 : INSN4
|
2766 |
|
|
|
2767 |
|
|
Say you're stopped at 0x08000003 as above. Reverse continuing
|
2768 |
|
|
from that point should hit B2 as below. Reading the PC when the
|
2769 |
|
|
SIGTRAP is reported should read 0x08000001 and INSN2 should have
|
2770 |
|
|
been de-executed already.
|
2771 |
|
|
|
2772 |
|
|
B1 0x08000000 : INSN1
|
2773 |
|
|
B2 PC -> 0x08000001 : INSN2
|
2774 |
|
|
0x08000002 : INSN3
|
2775 |
|
|
0x08000003 : INSN4
|
2776 |
|
|
|
2777 |
|
|
We can't apply the same logic as for forward execution, because
|
2778 |
|
|
we would wrongly adjust the PC to 0x08000000, since there's a
|
2779 |
|
|
breakpoint at PC - 1. We'd then report a hit on B1, although
|
2780 |
|
|
INSN1 hadn't been de-executed yet. Doing nothing is the correct
|
2781 |
|
|
behaviour. */
|
2782 |
|
|
if (execution_direction == EXEC_REVERSE)
|
2783 |
|
|
return;
|
2784 |
|
|
|
2785 |
|
|
/* If this target does not decrement the PC after breakpoints, then
|
2786 |
|
|
we have nothing to do. */
|
2787 |
|
|
regcache = get_thread_regcache (ecs->ptid);
|
2788 |
|
|
gdbarch = get_regcache_arch (regcache);
|
2789 |
|
|
if (gdbarch_decr_pc_after_break (gdbarch) == 0)
|
2790 |
|
|
return;
|
2791 |
|
|
|
2792 |
|
|
aspace = get_regcache_aspace (regcache);
|
2793 |
|
|
|
2794 |
|
|
/* Find the location where (if we've hit a breakpoint) the
|
2795 |
|
|
breakpoint would be. */
|
2796 |
|
|
breakpoint_pc = regcache_read_pc (regcache)
|
2797 |
|
|
- gdbarch_decr_pc_after_break (gdbarch);
|
2798 |
|
|
|
2799 |
|
|
/* Check whether there actually is a software breakpoint inserted at
|
2800 |
|
|
that location.
|
2801 |
|
|
|
2802 |
|
|
If in non-stop mode, a race condition is possible where we've
|
2803 |
|
|
removed a breakpoint, but stop events for that breakpoint were
|
2804 |
|
|
already queued and arrive later. To suppress those spurious
|
2805 |
|
|
SIGTRAPs, we keep a list of such breakpoint locations for a bit,
|
2806 |
|
|
and retire them after a number of stop events are reported. */
|
2807 |
|
|
if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc)
|
2808 |
|
|
|| (non_stop && moribund_breakpoint_here_p (aspace, breakpoint_pc)))
|
2809 |
|
|
{
|
2810 |
|
|
struct cleanup *old_cleanups = NULL;
|
2811 |
|
|
|
2812 |
|
|
if (RECORD_IS_USED)
|
2813 |
|
|
old_cleanups = record_gdb_operation_disable_set ();
|
2814 |
|
|
|
2815 |
|
|
/* When using hardware single-step, a SIGTRAP is reported for both
|
2816 |
|
|
a completed single-step and a software breakpoint. Need to
|
2817 |
|
|
differentiate between the two, as the latter needs adjusting
|
2818 |
|
|
but the former does not.
|
2819 |
|
|
|
2820 |
|
|
The SIGTRAP can be due to a completed hardware single-step only if
|
2821 |
|
|
- we didn't insert software single-step breakpoints
|
2822 |
|
|
- the thread to be examined is still the current thread
|
2823 |
|
|
- this thread is currently being stepped
|
2824 |
|
|
|
2825 |
|
|
If any of these events did not occur, we must have stopped due
|
2826 |
|
|
to hitting a software breakpoint, and have to back up to the
|
2827 |
|
|
breakpoint address.
|
2828 |
|
|
|
2829 |
|
|
As a special case, we could have hardware single-stepped a
|
2830 |
|
|
software breakpoint. In this case (prev_pc == breakpoint_pc),
|
2831 |
|
|
we also need to back up to the breakpoint address. */
|
2832 |
|
|
|
2833 |
|
|
if (singlestep_breakpoints_inserted_p
|
2834 |
|
|
|| !ptid_equal (ecs->ptid, inferior_ptid)
|
2835 |
|
|
|| !currently_stepping (ecs->event_thread)
|
2836 |
|
|
|| ecs->event_thread->prev_pc == breakpoint_pc)
|
2837 |
|
|
regcache_write_pc (regcache, breakpoint_pc);
|
2838 |
|
|
|
2839 |
|
|
if (RECORD_IS_USED)
|
2840 |
|
|
do_cleanups (old_cleanups);
|
2841 |
|
|
}
|
2842 |
|
|
}
|
2843 |
|
|
|
2844 |
|
|
void
|
2845 |
|
|
init_infwait_state (void)
|
2846 |
|
|
{
|
2847 |
|
|
waiton_ptid = pid_to_ptid (-1);
|
2848 |
|
|
infwait_state = infwait_normal_state;
|
2849 |
|
|
}
|
2850 |
|
|
|
2851 |
|
|
void
|
2852 |
|
|
error_is_running (void)
|
2853 |
|
|
{
|
2854 |
|
|
error (_("\
|
2855 |
|
|
Cannot execute this command while the selected thread is running."));
|
2856 |
|
|
}
|
2857 |
|
|
|
2858 |
|
|
void
|
2859 |
|
|
ensure_not_running (void)
|
2860 |
|
|
{
|
2861 |
|
|
if (is_running (inferior_ptid))
|
2862 |
|
|
error_is_running ();
|
2863 |
|
|
}
|
2864 |
|
|
|
2865 |
|
|
static int
|
2866 |
|
|
stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
|
2867 |
|
|
{
|
2868 |
|
|
for (frame = get_prev_frame (frame);
|
2869 |
|
|
frame != NULL;
|
2870 |
|
|
frame = get_prev_frame (frame))
|
2871 |
|
|
{
|
2872 |
|
|
if (frame_id_eq (get_frame_id (frame), step_frame_id))
|
2873 |
|
|
return 1;
|
2874 |
|
|
if (get_frame_type (frame) != INLINE_FRAME)
|
2875 |
|
|
break;
|
2876 |
|
|
}
|
2877 |
|
|
|
2878 |
|
|
return 0;
|
2879 |
|
|
}
|
2880 |
|
|
|
2881 |
|
|
/* Auxiliary function that handles syscall entry/return events.
|
2882 |
|
|
It returns 1 if the inferior should keep going (and GDB
|
2883 |
|
|
should ignore the event), or 0 if the event deserves to be
|
2884 |
|
|
processed. */
|
2885 |
|
|
|
2886 |
|
|
static int
|
2887 |
|
|
handle_syscall_event (struct execution_control_state *ecs)
|
2888 |
|
|
{
|
2889 |
|
|
struct regcache *regcache;
|
2890 |
|
|
struct gdbarch *gdbarch;
|
2891 |
|
|
int syscall_number;
|
2892 |
|
|
|
2893 |
|
|
if (!ptid_equal (ecs->ptid, inferior_ptid))
|
2894 |
|
|
context_switch (ecs->ptid);
|
2895 |
|
|
|
2896 |
|
|
regcache = get_thread_regcache (ecs->ptid);
|
2897 |
|
|
gdbarch = get_regcache_arch (regcache);
|
2898 |
|
|
syscall_number = gdbarch_get_syscall_number (gdbarch, ecs->ptid);
|
2899 |
|
|
stop_pc = regcache_read_pc (regcache);
|
2900 |
|
|
|
2901 |
|
|
target_last_waitstatus.value.syscall_number = syscall_number;
|
2902 |
|
|
|
2903 |
|
|
if (catch_syscall_enabled () > 0
|
2904 |
|
|
&& catching_syscall_number (syscall_number) > 0)
|
2905 |
|
|
{
|
2906 |
|
|
if (debug_infrun)
|
2907 |
|
|
fprintf_unfiltered (gdb_stdlog, "infrun: syscall number = '%d'\n",
|
2908 |
|
|
syscall_number);
|
2909 |
|
|
|
2910 |
|
|
ecs->event_thread->stop_bpstat
|
2911 |
|
|
= bpstat_stop_status (get_regcache_aspace (regcache),
|
2912 |
|
|
stop_pc, ecs->ptid);
|
2913 |
|
|
ecs->random_signal = !bpstat_explains_signal (ecs->event_thread->stop_bpstat);
|
2914 |
|
|
|
2915 |
|
|
if (!ecs->random_signal)
|
2916 |
|
|
{
|
2917 |
|
|
/* Catchpoint hit. */
|
2918 |
|
|
ecs->event_thread->stop_signal = TARGET_SIGNAL_TRAP;
|
2919 |
|
|
return 0;
|
2920 |
|
|
}
|
2921 |
|
|
}
|
2922 |
|
|
|
2923 |
|
|
/* If no catchpoint triggered for this, then keep going. */
|
2924 |
|
|
ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
|
2925 |
|
|
keep_going (ecs);
|
2926 |
|
|
return 1;
|
2927 |
|
|
}
|
2928 |
|
|
|
2929 |
|
|
/* Given an execution control state that has been freshly filled in
|
2930 |
|
|
by an event from the inferior, figure out what it means and take
|
2931 |
|
|
appropriate action. */
|
2932 |
|
|
|
2933 |
|
|
static void
|
2934 |
|
|
handle_inferior_event (struct execution_control_state *ecs)
|
2935 |
|
|
{
|
2936 |
|
|
struct frame_info *frame;
|
2937 |
|
|
struct gdbarch *gdbarch;
|
2938 |
|
|
int sw_single_step_trap_p = 0;
|
2939 |
|
|
int stopped_by_watchpoint;
|
2940 |
|
|
int stepped_after_stopped_by_watchpoint = 0;
|
2941 |
|
|
struct symtab_and_line stop_pc_sal;
|
2942 |
|
|
enum stop_kind stop_soon;
|
2943 |
|
|
|
2944 |
|
|
if (ecs->ws.kind == TARGET_WAITKIND_IGNORE)
|
2945 |
|
|
{
|
2946 |
|
|
/* We had an event in the inferior, but we are not interested in
|
2947 |
|
|
handling it at this level. The lower layers have already
|
2948 |
|
|
done what needs to be done, if anything.
|
2949 |
|
|
|
2950 |
|
|
One of the possible circumstances for this is when the
|
2951 |
|
|
inferior produces output for the console. The inferior has
|
2952 |
|
|
not stopped, and we are ignoring the event. Another possible
|
2953 |
|
|
circumstance is any event which the lower level knows will be
|
2954 |
|
|
reported multiple times without an intervening resume. */
|
2955 |
|
|
if (debug_infrun)
|
2956 |
|
|
fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
|
2957 |
|
|
prepare_to_wait (ecs);
|
2958 |
|
|
return;
|
2959 |
|
|
}
|
2960 |
|
|
|
2961 |
|
|
if (ecs->ws.kind != TARGET_WAITKIND_EXITED
|
2962 |
|
|
&& ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
|
2963 |
|
|
{
|
2964 |
|
|
struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
|
2965 |
|
|
|
2966 |
|
|
gdb_assert (inf);
|
2967 |
|
|
stop_soon = inf->stop_soon;
|
2968 |
|
|
}
|
2969 |
|
|
else
|
2970 |
|
|
stop_soon = NO_STOP_QUIETLY;
|
2971 |
|
|
|
2972 |
|
|
/* Cache the last pid/waitstatus. */
|
2973 |
|
|
target_last_wait_ptid = ecs->ptid;
|
2974 |
|
|
target_last_waitstatus = ecs->ws;
|
2975 |
|
|
|
2976 |
|
|
/* Always clear state belonging to the previous time we stopped. */
|
2977 |
|
|
stop_stack_dummy = STOP_NONE;
|
2978 |
|
|
|
2979 |
|
|
/* If it's a new process, add it to the thread database */
|
2980 |
|
|
|
2981 |
|
|
ecs->new_thread_event = (!ptid_equal (ecs->ptid, inferior_ptid)
|
2982 |
|
|
&& !ptid_equal (ecs->ptid, minus_one_ptid)
|
2983 |
|
|
&& !in_thread_list (ecs->ptid));
|
2984 |
|
|
|
2985 |
|
|
if (ecs->ws.kind != TARGET_WAITKIND_EXITED
|
2986 |
|
|
&& ecs->ws.kind != TARGET_WAITKIND_SIGNALLED && ecs->new_thread_event)
|
2987 |
|
|
add_thread (ecs->ptid);
|
2988 |
|
|
|
2989 |
|
|
ecs->event_thread = find_thread_ptid (ecs->ptid);
|
2990 |
|
|
|
2991 |
|
|
/* Dependent on valid ECS->EVENT_THREAD. */
|
2992 |
|
|
adjust_pc_after_break (ecs);
|
2993 |
|
|
|
2994 |
|
|
/* Dependent on the current PC value modified by adjust_pc_after_break. */
|
2995 |
|
|
reinit_frame_cache ();
|
2996 |
|
|
|
2997 |
|
|
breakpoint_retire_moribund ();
|
2998 |
|
|
|
2999 |
|
|
/* First, distinguish signals caused by the debugger from signals
|
3000 |
|
|
that have to do with the program's own actions. Note that
|
3001 |
|
|
breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
|
3002 |
|
|
on the operating system version. Here we detect when a SIGILL or
|
3003 |
|
|
SIGEMT is really a breakpoint and change it to SIGTRAP. We do
|
3004 |
|
|
something similar for SIGSEGV, since a SIGSEGV will be generated
|
3005 |
|
|
when we're trying to execute a breakpoint instruction on a
|
3006 |
|
|
non-executable stack. This happens for call dummy breakpoints
|
3007 |
|
|
for architectures like SPARC that place call dummies on the
|
3008 |
|
|
stack. */
|
3009 |
|
|
if (ecs->ws.kind == TARGET_WAITKIND_STOPPED
|
3010 |
|
|
&& (ecs->ws.value.sig == TARGET_SIGNAL_ILL
|
3011 |
|
|
|| ecs->ws.value.sig == TARGET_SIGNAL_SEGV
|
3012 |
|
|
|| ecs->ws.value.sig == TARGET_SIGNAL_EMT))
|
3013 |
|
|
{
|
3014 |
|
|
struct regcache *regcache = get_thread_regcache (ecs->ptid);
|
3015 |
|
|
|
3016 |
|
|
if (breakpoint_inserted_here_p (get_regcache_aspace (regcache),
|
3017 |
|
|
regcache_read_pc (regcache)))
|
3018 |
|
|
{
|
3019 |
|
|
if (debug_infrun)
|
3020 |
|
|
fprintf_unfiltered (gdb_stdlog,
|
3021 |
|
|
"infrun: Treating signal as SIGTRAP\n");
|
3022 |
|
|
ecs->ws.value.sig = TARGET_SIGNAL_TRAP;
|
3023 |
|
|
}
|
3024 |
|
|
}
|
3025 |
|
|
|
3026 |
|
|
/* Mark the non-executing threads accordingly. In all-stop, all
|
3027 |
|
|
threads of all processes are stopped when we get any event
|
3028 |
|
|
reported. In non-stop mode, only the event thread stops. If
|
3029 |
|
|
we're handling a process exit in non-stop mode, there's nothing
|
3030 |
|
|
to do, as threads of the dead process are gone, and threads of
|
3031 |
|
|
any other process were left running. */
|
3032 |
|
|
if (!non_stop)
|
3033 |
|
|
set_executing (minus_one_ptid, 0);
|
3034 |
|
|
else if (ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
|
3035 |
|
|
&& ecs->ws.kind != TARGET_WAITKIND_EXITED)
|
3036 |
|
|
set_executing (inferior_ptid, 0);
|
3037 |
|
|
|
3038 |
|
|
switch (infwait_state)
|
3039 |
|
|
{
|
3040 |
|
|
case infwait_thread_hop_state:
|
3041 |
|
|
if (debug_infrun)
|
3042 |
|
|
fprintf_unfiltered (gdb_stdlog, "infrun: infwait_thread_hop_state\n");
|
3043 |
|
|
break;
|
3044 |
|
|
|
3045 |
|
|
case infwait_normal_state:
|
3046 |
|
|
if (debug_infrun)
|
3047 |
|
|
fprintf_unfiltered (gdb_stdlog, "infrun: infwait_normal_state\n");
|
3048 |
|
|
break;
|
3049 |
|
|
|
3050 |
|
|
case infwait_step_watch_state:
|
3051 |
|
|
if (debug_infrun)
|
3052 |
|
|
fprintf_unfiltered (gdb_stdlog,
|
3053 |
|
|
"infrun: infwait_step_watch_state\n");
|
3054 |
|
|
|
3055 |
|
|
stepped_after_stopped_by_watchpoint = 1;
|
3056 |
|
|
break;
|
3057 |
|
|
|
3058 |
|
|
case infwait_nonstep_watch_state:
|
3059 |
|
|
if (debug_infrun)
|
3060 |
|
|
fprintf_unfiltered (gdb_stdlog,
|
3061 |
|
|
"infrun: infwait_nonstep_watch_state\n");
|
3062 |
|
|
insert_breakpoints ();
|
3063 |
|
|
|
3064 |
|
|
/* FIXME-maybe: is this cleaner than setting a flag? Does it
|
3065 |
|
|
handle things like signals arriving and other things happening
|
3066 |
|
|
in combination correctly? */
|
3067 |
|
|
stepped_after_stopped_by_watchpoint = 1;
|
3068 |
|
|
break;
|
3069 |
|
|
|
3070 |
|
|
default:
|
3071 |
|
|
internal_error (__FILE__, __LINE__, _("bad switch"));
|
3072 |
|
|
}
|
3073 |
|
|
|
3074 |
|
|
infwait_state = infwait_normal_state;
|
3075 |
|
|
waiton_ptid = pid_to_ptid (-1);
|
3076 |
|
|
|
3077 |
|
|
switch (ecs->ws.kind)
|
3078 |
|
|
{
|
3079 |
|
|
case TARGET_WAITKIND_LOADED:
|
3080 |
|
|
if (debug_infrun)
|
3081 |
|
|
fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
|
3082 |
|
|
/* Ignore gracefully during startup of the inferior, as it might
|
3083 |
|
|
be the shell which has just loaded some objects, otherwise
|
3084 |
|
|
add the symbols for the newly loaded objects. Also ignore at
|
3085 |
|
|
the beginning of an attach or remote session; we will query
|
3086 |
|
|
the full list of libraries once the connection is
|
3087 |
|
|
established. */
|
3088 |
|
|
if (stop_soon == NO_STOP_QUIETLY)
|
3089 |
|
|
{
|
3090 |
|
|
/* Check for any newly added shared libraries if we're
|
3091 |
|
|
supposed to be adding them automatically. Switch
|
3092 |
|
|
terminal for any messages produced by
|
3093 |
|
|
breakpoint_re_set. */
|
3094 |
|
|
target_terminal_ours_for_output ();
|
3095 |
|
|
/* NOTE: cagney/2003-11-25: Make certain that the target
|
3096 |
|
|
stack's section table is kept up-to-date. Architectures,
|
3097 |
|
|
(e.g., PPC64), use the section table to perform
|
3098 |
|
|
operations such as address => section name and hence
|
3099 |
|
|
require the table to contain all sections (including
|
3100 |
|
|
those found in shared libraries). */
|
3101 |
|
|
#ifdef SOLIB_ADD
|
3102 |
|
|
SOLIB_ADD (NULL, 0, ¤t_target, auto_solib_add);
|
3103 |
|
|
#else
|
3104 |
|
|
solib_add (NULL, 0, ¤t_target, auto_solib_add);
|
3105 |
|
|
#endif
|
3106 |
|
|
target_terminal_inferior ();
|
3107 |
|
|
|
3108 |
|
|
/* If requested, stop when the dynamic linker notifies
|
3109 |
|
|
gdb of events. This allows the user to get control
|
3110 |
|
|
and place breakpoints in initializer routines for
|
3111 |
|
|
dynamically loaded objects (among other things). */
|
3112 |
|
|
if (stop_on_solib_events)
|
3113 |
|
|
{
|
3114 |
|
|
/* Make sure we print "Stopped due to solib-event" in
|
3115 |
|
|
normal_stop. */
|
3116 |
|
|
stop_print_frame = 1;
|
3117 |
|
|
|
3118 |
|
|
stop_stepping (ecs);
|
3119 |
|
|
return;
|
3120 |
|
|
}
|
3121 |
|
|
|
3122 |
|
|
/* NOTE drow/2007-05-11: This might be a good place to check
|
3123 |
|
|
for "catch load". */
|
3124 |
|
|
}
|
3125 |
|
|
|
3126 |
|
|
/* If we are skipping through a shell, or through shared library
|
3127 |
|
|
loading that we aren't interested in, resume the program. If
|
3128 |
|
|
we're running the program normally, also resume. But stop if
|
3129 |
|
|
we're attaching or setting up a remote connection. */
|
3130 |
|
|
if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
|
3131 |
|
|
{
|
3132 |
|
|
/* Loading of shared libraries might have changed breakpoint
|
3133 |
|
|
addresses. Make sure new breakpoints are inserted. */
|
3134 |
|
|
if (stop_soon == NO_STOP_QUIETLY
|
3135 |
|
|
&& !breakpoints_always_inserted_mode ())
|
3136 |
|
|
insert_breakpoints ();
|
3137 |
|
|
resume (0, TARGET_SIGNAL_0);
|
3138 |
|
|
prepare_to_wait (ecs);
|
3139 |
|
|
return;
|
3140 |
|
|
}
|
3141 |
|
|
|
3142 |
|
|
break;
|
3143 |
|
|
|
3144 |
|
|
case TARGET_WAITKIND_SPURIOUS:
|
3145 |
|
|
if (debug_infrun)
|
3146 |
|
|
fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
|
3147 |
|
|
resume (0, TARGET_SIGNAL_0);
|
3148 |
|
|
prepare_to_wait (ecs);
|
3149 |
|
|
return;
|
3150 |
|
|
|
3151 |
|
|
case TARGET_WAITKIND_EXITED:
|
3152 |
|
|
if (debug_infrun)
|
3153 |
|
|
fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXITED\n");
|
3154 |
|
|
inferior_ptid = ecs->ptid;
|
3155 |
|
|
set_current_inferior (find_inferior_pid (ptid_get_pid (ecs->ptid)));
|
3156 |
|
|
set_current_program_space (current_inferior ()->pspace);
|
3157 |
|
|
handle_vfork_child_exec_or_exit (0);
|
3158 |
|
|
target_terminal_ours (); /* Must do this before mourn anyway */
|
3159 |
|
|
print_stop_reason (EXITED, ecs->ws.value.integer);
|
3160 |
|
|
|
3161 |
|
|
/* Record the exit code in the convenience variable $_exitcode, so
|
3162 |
|
|
that the user can inspect this again later. */
|
3163 |
|
|
set_internalvar_integer (lookup_internalvar ("_exitcode"),
|
3164 |
|
|
(LONGEST) ecs->ws.value.integer);
|
3165 |
|
|
gdb_flush (gdb_stdout);
|
3166 |
|
|
target_mourn_inferior ();
|
3167 |
|
|
singlestep_breakpoints_inserted_p = 0;
|
3168 |
|
|
cancel_single_step_breakpoints ();
|
3169 |
|
|
stop_print_frame = 0;
|
3170 |
|
|
stop_stepping (ecs);
|
3171 |
|
|
return;
|
3172 |
|
|
|
3173 |
|
|
case TARGET_WAITKIND_SIGNALLED:
|
3174 |
|
|
if (debug_infrun)
|
3175 |
|
|
fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SIGNALLED\n");
|
3176 |
|
|
inferior_ptid = ecs->ptid;
|
3177 |
|
|
set_current_inferior (find_inferior_pid (ptid_get_pid (ecs->ptid)));
|
3178 |
|
|
set_current_program_space (current_inferior ()->pspace);
|
3179 |
|
|
handle_vfork_child_exec_or_exit (0);
|
3180 |
|
|
stop_print_frame = 0;
|
3181 |
|
|
target_terminal_ours (); /* Must do this before mourn anyway */
|
3182 |
|
|
|
3183 |
|
|
/* Note: By definition of TARGET_WAITKIND_SIGNALLED, we shouldn't
|
3184 |
|
|
reach here unless the inferior is dead. However, for years
|
3185 |
|
|
target_kill() was called here, which hints that fatal signals aren't
|
3186 |
|
|
really fatal on some systems. If that's true, then some changes
|
3187 |
|
|
may be needed. */
|
3188 |
|
|
target_mourn_inferior ();
|
3189 |
|
|
|
3190 |
|
|
print_stop_reason (SIGNAL_EXITED, ecs->ws.value.sig);
|
3191 |
|
|
singlestep_breakpoints_inserted_p = 0;
|
3192 |
|
|
cancel_single_step_breakpoints ();
|
3193 |
|
|
stop_stepping (ecs);
|
3194 |
|
|
return;
|
3195 |
|
|
|
3196 |
|
|
/* The following are the only cases in which we keep going;
|
3197 |
|
|
the above cases end in a continue or goto. */
|
3198 |
|
|
case TARGET_WAITKIND_FORKED:
|
3199 |
|
|
case TARGET_WAITKIND_VFORKED:
|
3200 |
|
|
if (debug_infrun)
|
3201 |
|
|
fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
|
3202 |
|
|
|
3203 |
|
|
if (!ptid_equal (ecs->ptid, inferior_ptid))
|
3204 |
|
|
{
|
3205 |
|
|
context_switch (ecs->ptid);
|
3206 |
|
|
reinit_frame_cache ();
|
3207 |
|
|
}
|
3208 |
|
|
|
3209 |
|
|
/* Immediately detach breakpoints from the child before there's
|
3210 |
|
|
any chance of letting the user delete breakpoints from the
|
3211 |
|
|
breakpoint lists. If we don't do this early, it's easy to
|
3212 |
|
|
leave left over traps in the child, vis: "break foo; catch
|
3213 |
|
|
fork; c; <fork>; del; c; <child calls foo>". We only follow
|
3214 |
|
|
the fork on the last `continue', and by that time the
|
3215 |
|
|
breakpoint at "foo" is long gone from the breakpoint table.
|
3216 |
|
|
If we vforked, then we don't need to unpatch here, since both
|
3217 |
|
|
parent and child are sharing the same memory pages; we'll
|
3218 |
|
|
need to unpatch at follow/detach time instead to be certain
|
3219 |
|
|
that new breakpoints added between catchpoint hit time and
|
3220 |
|
|
vfork follow are detached. */
|
3221 |
|
|
if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
|
3222 |
|
|
{
|
3223 |
|
|
int child_pid = ptid_get_pid (ecs->ws.value.related_pid);
|
3224 |
|
|
|
3225 |
|
|
/* This won't actually modify the breakpoint list, but will
|
3226 |
|
|
physically remove the breakpoints from the child. */
|
3227 |
|
|
detach_breakpoints (child_pid);
|
3228 |
|
|
}
|
3229 |
|
|
|
3230 |
|
|
if (singlestep_breakpoints_inserted_p)
|
3231 |
|
|
{
|
3232 |
|
|
/* Pull the single step breakpoints out of the target. */
|
3233 |
|
|
remove_single_step_breakpoints ();
|
3234 |
|
|
singlestep_breakpoints_inserted_p = 0;
|
3235 |
|
|
}
|
3236 |
|
|
|
3237 |
|
|
/* In case the event is caught by a catchpoint, remember that
|
3238 |
|
|
the event is to be followed at the next resume of the thread,
|
3239 |
|
|
and not immediately. */
|
3240 |
|
|
ecs->event_thread->pending_follow = ecs->ws;
|
3241 |
|
|
|
3242 |
|
|
stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
|
3243 |
|
|
|
3244 |
|
|
ecs->event_thread->stop_bpstat
|
3245 |
|
|
= bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
|
3246 |
|
|
stop_pc, ecs->ptid);
|
3247 |
|
|
|
3248 |
|
|
/* Note that we're interested in knowing the bpstat actually
|
3249 |
|
|
causes a stop, not just if it may explain the signal.
|
3250 |
|
|
Software watchpoints, for example, always appear in the
|
3251 |
|
|
bpstat. */
|
3252 |
|
|
ecs->random_signal = !bpstat_causes_stop (ecs->event_thread->stop_bpstat);
|
3253 |
|
|
|
3254 |
|
|
/* If no catchpoint triggered for this, then keep going. */
|
3255 |
|
|
if (ecs->random_signal)
|
3256 |
|
|
{
|
3257 |
|
|
ptid_t parent;
|
3258 |
|
|
ptid_t child;
|
3259 |
|
|
int should_resume;
|
3260 |
|
|
int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
|
3261 |
|
|
|
3262 |
|
|
ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
|
3263 |
|
|
|
3264 |
|
|
should_resume = follow_fork ();
|
3265 |
|
|
|
3266 |
|
|
parent = ecs->ptid;
|
3267 |
|
|
child = ecs->ws.value.related_pid;
|
3268 |
|
|
|
3269 |
|
|
/* In non-stop mode, also resume the other branch. */
|
3270 |
|
|
if (non_stop && !detach_fork)
|
3271 |
|
|
{
|
3272 |
|
|
if (follow_child)
|
3273 |
|
|
switch_to_thread (parent);
|
3274 |
|
|
else
|
3275 |
|
|
switch_to_thread (child);
|
3276 |
|
|
|
3277 |
|
|
ecs->event_thread = inferior_thread ();
|
3278 |
|
|
ecs->ptid = inferior_ptid;
|
3279 |
|
|
keep_going (ecs);
|
3280 |
|
|
}
|
3281 |
|
|
|
3282 |
|
|
if (follow_child)
|
3283 |
|
|
switch_to_thread (child);
|
3284 |
|
|
else
|
3285 |
|
|
switch_to_thread (parent);
|
3286 |
|
|
|
3287 |
|
|
ecs->event_thread = inferior_thread ();
|
3288 |
|
|
ecs->ptid = inferior_ptid;
|
3289 |
|
|
|
3290 |
|
|
if (should_resume)
|
3291 |
|
|
keep_going (ecs);
|
3292 |
|
|
else
|
3293 |
|
|
stop_stepping (ecs);
|
3294 |
|
|
return;
|
3295 |
|
|
}
|
3296 |
|
|
ecs->event_thread->stop_signal = TARGET_SIGNAL_TRAP;
|
3297 |
|
|
goto process_event_stop_test;
|
3298 |
|
|
|
3299 |
|
|
case TARGET_WAITKIND_VFORK_DONE:
|
3300 |
|
|
/* Done with the shared memory region. Re-insert breakpoints in
|
3301 |
|
|
the parent, and keep going. */
|
3302 |
|
|
|
3303 |
|
|
if (debug_infrun)
|
3304 |
|
|
fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_VFORK_DONE\n");
|
3305 |
|
|
|
3306 |
|
|
if (!ptid_equal (ecs->ptid, inferior_ptid))
|
3307 |
|
|
context_switch (ecs->ptid);
|
3308 |
|
|
|
3309 |
|
|
current_inferior ()->waiting_for_vfork_done = 0;
|
3310 |
|
|
current_inferior ()->pspace->breakpoints_not_allowed = 0;
|
3311 |
|
|
/* This also takes care of reinserting breakpoints in the
|
3312 |
|
|
previously locked inferior. */
|
3313 |
|
|
keep_going (ecs);
|
3314 |
|
|
return;
|
3315 |
|
|
|
3316 |
|
|
case TARGET_WAITKIND_EXECD:
|
3317 |
|
|
if (debug_infrun)
|
3318 |
|
|
fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
|
3319 |
|
|
|
3320 |
|
|
if (!ptid_equal (ecs->ptid, inferior_ptid))
|
3321 |
|
|
{
|
3322 |
|
|
context_switch (ecs->ptid);
|
3323 |
|
|
reinit_frame_cache ();
|
3324 |
|
|
}
|
3325 |
|
|
|
3326 |
|
|
singlestep_breakpoints_inserted_p = 0;
|
3327 |
|
|
cancel_single_step_breakpoints ();
|
3328 |
|
|
|
3329 |
|
|
stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
|
3330 |
|
|
|
3331 |
|
|
/* Do whatever is necessary to the parent branch of the vfork. */
|
3332 |
|
|
handle_vfork_child_exec_or_exit (1);
|
3333 |
|
|
|
3334 |
|
|
/* This causes the eventpoints and symbol table to be reset.
|
3335 |
|
|
Must do this now, before trying to determine whether to
|
3336 |
|
|
stop. */
|
3337 |
|
|
follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
|
3338 |
|
|
|
3339 |
|
|
ecs->event_thread->stop_bpstat
|
3340 |
|
|
= bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
|
3341 |
|
|
stop_pc, ecs->ptid);
|
3342 |
|
|
ecs->random_signal = !bpstat_explains_signal (ecs->event_thread->stop_bpstat);
|
3343 |
|
|
|
3344 |
|
|
/* Note that this may be referenced from inside
|
3345 |
|
|
bpstat_stop_status above, through inferior_has_execd. */
|
3346 |
|
|
xfree (ecs->ws.value.execd_pathname);
|
3347 |
|
|
ecs->ws.value.execd_pathname = NULL;
|
3348 |
|
|
|
3349 |
|
|
/* If no catchpoint triggered for this, then keep going. */
|
3350 |
|
|
if (ecs->random_signal)
|
3351 |
|
|
{
|
3352 |
|
|
ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
|
3353 |
|
|
keep_going (ecs);
|
3354 |
|
|
return;
|
3355 |
|
|
}
|
3356 |
|
|
ecs->event_thread->stop_signal = TARGET_SIGNAL_TRAP;
|
3357 |
|
|
goto process_event_stop_test;
|
3358 |
|
|
|
3359 |
|
|
/* Be careful not to try to gather much state about a thread
|
3360 |
|
|
that's in a syscall. It's frequently a losing proposition. */
|
3361 |
|
|
case TARGET_WAITKIND_SYSCALL_ENTRY:
|
3362 |
|
|
if (debug_infrun)
|
3363 |
|
|
fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
|
3364 |
|
|
/* Getting the current syscall number */
|
3365 |
|
|
if (handle_syscall_event (ecs) != 0)
|
3366 |
|
|
return;
|
3367 |
|
|
goto process_event_stop_test;
|
3368 |
|
|
|
3369 |
|
|
/* Before examining the threads further, step this thread to
|
3370 |
|
|
get it entirely out of the syscall. (We get notice of the
|
3371 |
|
|
event when the thread is just on the verge of exiting a
|
3372 |
|
|
syscall. Stepping one instruction seems to get it back
|
3373 |
|
|
into user code.) */
|
3374 |
|
|
case TARGET_WAITKIND_SYSCALL_RETURN:
|
3375 |
|
|
if (debug_infrun)
|
3376 |
|
|
fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
|
3377 |
|
|
if (handle_syscall_event (ecs) != 0)
|
3378 |
|
|
return;
|
3379 |
|
|
goto process_event_stop_test;
|
3380 |
|
|
|
3381 |
|
|
case TARGET_WAITKIND_STOPPED:
|
3382 |
|
|
if (debug_infrun)
|
3383 |
|
|
fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
|
3384 |
|
|
ecs->event_thread->stop_signal = ecs->ws.value.sig;
|
3385 |
|
|
break;
|
3386 |
|
|
|
3387 |
|
|
case TARGET_WAITKIND_NO_HISTORY:
|
3388 |
|
|
/* Reverse execution: target ran out of history info. */
|
3389 |
|
|
stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
|
3390 |
|
|
print_stop_reason (NO_HISTORY, 0);
|
3391 |
|
|
stop_stepping (ecs);
|
3392 |
|
|
return;
|
3393 |
|
|
}
|
3394 |
|
|
|
3395 |
|
|
if (ecs->new_thread_event)
|
3396 |
|
|
{
|
3397 |
|
|
if (non_stop)
|
3398 |
|
|
/* Non-stop assumes that the target handles adding new threads
|
3399 |
|
|
to the thread list. */
|
3400 |
|
|
internal_error (__FILE__, __LINE__, "\
|
3401 |
|
|
targets should add new threads to the thread list themselves in non-stop mode.");
|
3402 |
|
|
|
3403 |
|
|
/* We may want to consider not doing a resume here in order to
|
3404 |
|
|
give the user a chance to play with the new thread. It might
|
3405 |
|
|
be good to make that a user-settable option. */
|
3406 |
|
|
|
3407 |
|
|
/* At this point, all threads are stopped (happens automatically
|
3408 |
|
|
in either the OS or the native code). Therefore we need to
|
3409 |
|
|
continue all threads in order to make progress. */
|
3410 |
|
|
|
3411 |
|
|
if (!ptid_equal (ecs->ptid, inferior_ptid))
|
3412 |
|
|
context_switch (ecs->ptid);
|
3413 |
|
|
target_resume (RESUME_ALL, 0, TARGET_SIGNAL_0);
|
3414 |
|
|
prepare_to_wait (ecs);
|
3415 |
|
|
return;
|
3416 |
|
|
}
|
3417 |
|
|
|
3418 |
|
|
if (ecs->ws.kind == TARGET_WAITKIND_STOPPED)
|
3419 |
|
|
{
|
3420 |
|
|
/* Do we need to clean up the state of a thread that has
|
3421 |
|
|
completed a displaced single-step? (Doing so usually affects
|
3422 |
|
|
the PC, so do it here, before we set stop_pc.) */
|
3423 |
|
|
displaced_step_fixup (ecs->ptid, ecs->event_thread->stop_signal);
|
3424 |
|
|
|
3425 |
|
|
/* If we either finished a single-step or hit a breakpoint, but
|
3426 |
|
|
the user wanted this thread to be stopped, pretend we got a
|
3427 |
|
|
SIG0 (generic unsignaled stop). */
|
3428 |
|
|
|
3429 |
|
|
if (ecs->event_thread->stop_requested
|
3430 |
|
|
&& ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP)
|
3431 |
|
|
ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
|
3432 |
|
|
}
|
3433 |
|
|
|
3434 |
|
|
stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
|
3435 |
|
|
|
3436 |
|
|
if (debug_infrun)
|
3437 |
|
|
{
|
3438 |
|
|
struct regcache *regcache = get_thread_regcache (ecs->ptid);
|
3439 |
|
|
struct gdbarch *gdbarch = get_regcache_arch (regcache);
|
3440 |
|
|
struct cleanup *old_chain = save_inferior_ptid ();
|
3441 |
|
|
|
3442 |
|
|
inferior_ptid = ecs->ptid;
|
3443 |
|
|
|
3444 |
|
|
fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = %s\n",
|
3445 |
|
|
paddress (gdbarch, stop_pc));
|
3446 |
|
|
if (target_stopped_by_watchpoint ())
|
3447 |
|
|
{
|
3448 |
|
|
CORE_ADDR addr;
|
3449 |
|
|
|
3450 |
|
|
fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
|
3451 |
|
|
|
3452 |
|
|
if (target_stopped_data_address (¤t_target, &addr))
|
3453 |
|
|
fprintf_unfiltered (gdb_stdlog,
|
3454 |
|
|
"infrun: stopped data address = %s\n",
|
3455 |
|
|
paddress (gdbarch, addr));
|
3456 |
|
|
else
|
3457 |
|
|
fprintf_unfiltered (gdb_stdlog,
|
3458 |
|
|
"infrun: (no data address available)\n");
|
3459 |
|
|
}
|
3460 |
|
|
|
3461 |
|
|
do_cleanups (old_chain);
|
3462 |
|
|
}
|
3463 |
|
|
|
3464 |
|
|
if (stepping_past_singlestep_breakpoint)
|
3465 |
|
|
{
|
3466 |
|
|
gdb_assert (singlestep_breakpoints_inserted_p);
|
3467 |
|
|
gdb_assert (ptid_equal (singlestep_ptid, ecs->ptid));
|
3468 |
|
|
gdb_assert (!ptid_equal (singlestep_ptid, saved_singlestep_ptid));
|
3469 |
|
|
|
3470 |
|
|
stepping_past_singlestep_breakpoint = 0;
|
3471 |
|
|
|
3472 |
|
|
/* We've either finished single-stepping past the single-step
|
3473 |
|
|
breakpoint, or stopped for some other reason. It would be nice if
|
3474 |
|
|
we could tell, but we can't reliably. */
|
3475 |
|
|
if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP)
|
3476 |
|
|
{
|
3477 |
|
|
if (debug_infrun)
|
3478 |
|
|
fprintf_unfiltered (gdb_stdlog, "infrun: stepping_past_singlestep_breakpoint\n");
|
3479 |
|
|
/* Pull the single step breakpoints out of the target. */
|
3480 |
|
|
remove_single_step_breakpoints ();
|
3481 |
|
|
singlestep_breakpoints_inserted_p = 0;
|
3482 |
|
|
|
3483 |
|
|
ecs->random_signal = 0;
|
3484 |
|
|
ecs->event_thread->trap_expected = 0;
|
3485 |
|
|
|
3486 |
|
|
context_switch (saved_singlestep_ptid);
|
3487 |
|
|
if (deprecated_context_hook)
|
3488 |
|
|
deprecated_context_hook (pid_to_thread_id (ecs->ptid));
|
3489 |
|
|
|
3490 |
|
|
resume (1, TARGET_SIGNAL_0);
|
3491 |
|
|
prepare_to_wait (ecs);
|
3492 |
|
|
return;
|
3493 |
|
|
}
|
3494 |
|
|
}
|
3495 |
|
|
|
3496 |
|
|
if (!ptid_equal (deferred_step_ptid, null_ptid))
|
3497 |
|
|
{
|
3498 |
|
|
/* In non-stop mode, there's never a deferred_step_ptid set. */
|
3499 |
|
|
gdb_assert (!non_stop);
|
3500 |
|
|
|
3501 |
|
|
/* If we stopped for some other reason than single-stepping, ignore
|
3502 |
|
|
the fact that we were supposed to switch back. */
|
3503 |
|
|
if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP)
|
3504 |
|
|
{
|
3505 |
|
|
if (debug_infrun)
|
3506 |
|
|
fprintf_unfiltered (gdb_stdlog,
|
3507 |
|
|
"infrun: handling deferred step\n");
|
3508 |
|
|
|
3509 |
|
|
/* Pull the single step breakpoints out of the target. */
|
3510 |
|
|
if (singlestep_breakpoints_inserted_p)
|
3511 |
|
|
{
|
3512 |
|
|
remove_single_step_breakpoints ();
|
3513 |
|
|
singlestep_breakpoints_inserted_p = 0;
|
3514 |
|
|
}
|
3515 |
|
|
|
3516 |
|
|
/* Note: We do not call context_switch at this point, as the
|
3517 |
|
|
context is already set up for stepping the original thread. */
|
3518 |
|
|
switch_to_thread (deferred_step_ptid);
|
3519 |
|
|
deferred_step_ptid = null_ptid;
|
3520 |
|
|
/* Suppress spurious "Switching to ..." message. */
|
3521 |
|
|
previous_inferior_ptid = inferior_ptid;
|
3522 |
|
|
|
3523 |
|
|
resume (1, TARGET_SIGNAL_0);
|
3524 |
|
|
prepare_to_wait (ecs);
|
3525 |
|
|
return;
|
3526 |
|
|
}
|
3527 |
|
|
|
3528 |
|
|
deferred_step_ptid = null_ptid;
|
3529 |
|
|
}
|
3530 |
|
|
|
3531 |
|
|
/* See if a thread hit a thread-specific breakpoint that was meant for
|
3532 |
|
|
another thread. If so, then step that thread past the breakpoint,
|
3533 |
|
|
and continue it. */
|
3534 |
|
|
|
3535 |
|
|
if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP)
|
3536 |
|
|
{
|
3537 |
|
|
int thread_hop_needed = 0;
|
3538 |
|
|
struct address_space *aspace =
|
3539 |
|
|
get_regcache_aspace (get_thread_regcache (ecs->ptid));
|
3540 |
|
|
|
3541 |
|
|
/* Check if a regular breakpoint has been hit before checking
|
3542 |
|
|
for a potential single step breakpoint. Otherwise, GDB will
|
3543 |
|
|
not see this breakpoint hit when stepping onto breakpoints. */
|
3544 |
|
|
if (regular_breakpoint_inserted_here_p (aspace, stop_pc))
|
3545 |
|
|
{
|
3546 |
|
|
ecs->random_signal = 0;
|
3547 |
|
|
if (!breakpoint_thread_match (aspace, stop_pc, ecs->ptid))
|
3548 |
|
|
thread_hop_needed = 1;
|
3549 |
|
|
}
|
3550 |
|
|
else if (singlestep_breakpoints_inserted_p)
|
3551 |
|
|
{
|
3552 |
|
|
/* We have not context switched yet, so this should be true
|
3553 |
|
|
no matter which thread hit the singlestep breakpoint. */
|
3554 |
|
|
gdb_assert (ptid_equal (inferior_ptid, singlestep_ptid));
|
3555 |
|
|
if (debug_infrun)
|
3556 |
|
|
fprintf_unfiltered (gdb_stdlog, "infrun: software single step "
|
3557 |
|
|
"trap for %s\n",
|
3558 |
|
|
target_pid_to_str (ecs->ptid));
|
3559 |
|
|
|
3560 |
|
|
ecs->random_signal = 0;
|
3561 |
|
|
/* The call to in_thread_list is necessary because PTIDs sometimes
|
3562 |
|
|
change when we go from single-threaded to multi-threaded. If
|
3563 |
|
|
the singlestep_ptid is still in the list, assume that it is
|
3564 |
|
|
really different from ecs->ptid. */
|
3565 |
|
|
if (!ptid_equal (singlestep_ptid, ecs->ptid)
|
3566 |
|
|
&& in_thread_list (singlestep_ptid))
|
3567 |
|
|
{
|
3568 |
|
|
/* If the PC of the thread we were trying to single-step
|
3569 |
|
|
has changed, discard this event (which we were going
|
3570 |
|
|
to ignore anyway), and pretend we saw that thread
|
3571 |
|
|
trap. This prevents us continuously moving the
|
3572 |
|
|
single-step breakpoint forward, one instruction at a
|
3573 |
|
|
time. If the PC has changed, then the thread we were
|
3574 |
|
|
trying to single-step has trapped or been signalled,
|
3575 |
|
|
but the event has not been reported to GDB yet.
|
3576 |
|
|
|
3577 |
|
|
There might be some cases where this loses signal
|
3578 |
|
|
information, if a signal has arrived at exactly the
|
3579 |
|
|
same time that the PC changed, but this is the best
|
3580 |
|
|
we can do with the information available. Perhaps we
|
3581 |
|
|
should arrange to report all events for all threads
|
3582 |
|
|
when they stop, or to re-poll the remote looking for
|
3583 |
|
|
this particular thread (i.e. temporarily enable
|
3584 |
|
|
schedlock). */
|
3585 |
|
|
|
3586 |
|
|
CORE_ADDR new_singlestep_pc
|
3587 |
|
|
= regcache_read_pc (get_thread_regcache (singlestep_ptid));
|
3588 |
|
|
|
3589 |
|
|
if (new_singlestep_pc != singlestep_pc)
|
3590 |
|
|
{
|
3591 |
|
|
enum target_signal stop_signal;
|
3592 |
|
|
|
3593 |
|
|
if (debug_infrun)
|
3594 |
|
|
fprintf_unfiltered (gdb_stdlog, "infrun: unexpected thread,"
|
3595 |
|
|
" but expected thread advanced also\n");
|
3596 |
|
|
|
3597 |
|
|
/* The current context still belongs to
|
3598 |
|
|
singlestep_ptid. Don't swap here, since that's
|
3599 |
|
|
the context we want to use. Just fudge our
|
3600 |
|
|
state and continue. */
|
3601 |
|
|
stop_signal = ecs->event_thread->stop_signal;
|
3602 |
|
|
ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
|
3603 |
|
|
ecs->ptid = singlestep_ptid;
|
3604 |
|
|
ecs->event_thread = find_thread_ptid (ecs->ptid);
|
3605 |
|
|
ecs->event_thread->stop_signal = stop_signal;
|
3606 |
|
|
stop_pc = new_singlestep_pc;
|
3607 |
|
|
}
|
3608 |
|
|
else
|
3609 |
|
|
{
|
3610 |
|
|
if (debug_infrun)
|
3611 |
|
|
fprintf_unfiltered (gdb_stdlog,
|
3612 |
|
|
"infrun: unexpected thread\n");
|
3613 |
|
|
|
3614 |
|
|
thread_hop_needed = 1;
|
3615 |
|
|
stepping_past_singlestep_breakpoint = 1;
|
3616 |
|
|
saved_singlestep_ptid = singlestep_ptid;
|
3617 |
|
|
}
|
3618 |
|
|
}
|
3619 |
|
|
}
|
3620 |
|
|
|
3621 |
|
|
if (thread_hop_needed)
|
3622 |
|
|
{
|
3623 |
|
|
struct regcache *thread_regcache;
|
3624 |
|
|
int remove_status = 0;
|
3625 |
|
|
|
3626 |
|
|
if (debug_infrun)
|
3627 |
|
|
fprintf_unfiltered (gdb_stdlog, "infrun: thread_hop_needed\n");
|
3628 |
|
|
|
3629 |
|
|
/* Switch context before touching inferior memory, the
|
3630 |
|
|
previous thread may have exited. */
|
3631 |
|
|
if (!ptid_equal (inferior_ptid, ecs->ptid))
|
3632 |
|
|
context_switch (ecs->ptid);
|
3633 |
|
|
|
3634 |
|
|
/* Saw a breakpoint, but it was hit by the wrong thread.
|
3635 |
|
|
Just continue. */
|
3636 |
|
|
|
3637 |
|
|
if (singlestep_breakpoints_inserted_p)
|
3638 |
|
|
{
|
3639 |
|
|
/* Pull the single step breakpoints out of the target. */
|
3640 |
|
|
remove_single_step_breakpoints ();
|
3641 |
|
|
singlestep_breakpoints_inserted_p = 0;
|
3642 |
|
|
}
|
3643 |
|
|
|
3644 |
|
|
/* If the arch can displace step, don't remove the
|
3645 |
|
|
breakpoints. */
|
3646 |
|
|
thread_regcache = get_thread_regcache (ecs->ptid);
|
3647 |
|
|
if (!use_displaced_stepping (get_regcache_arch (thread_regcache)))
|
3648 |
|
|
remove_status = remove_breakpoints ();
|
3649 |
|
|
|
3650 |
|
|
/* Did we fail to remove breakpoints? If so, try
|
3651 |
|
|
to set the PC past the bp. (There's at least
|
3652 |
|
|
one situation in which we can fail to remove
|
3653 |
|
|
the bp's: On HP-UX's that use ttrace, we can't
|
3654 |
|
|
change the address space of a vforking child
|
3655 |
|
|
process until the child exits (well, okay, not
|
3656 |
|
|
then either :-) or execs. */
|
3657 |
|
|
if (remove_status != 0)
|
3658 |
|
|
error (_("Cannot step over breakpoint hit in wrong thread"));
|
3659 |
|
|
else
|
3660 |
|
|
{ /* Single step */
|
3661 |
|
|
if (!non_stop)
|
3662 |
|
|
{
|
3663 |
|
|
/* Only need to require the next event from this
|
3664 |
|
|
thread in all-stop mode. */
|
3665 |
|
|
waiton_ptid = ecs->ptid;
|
3666 |
|
|
infwait_state = infwait_thread_hop_state;
|
3667 |
|
|
}
|
3668 |
|
|
|
3669 |
|
|
ecs->event_thread->stepping_over_breakpoint = 1;
|
3670 |
|
|
keep_going (ecs);
|
3671 |
|
|
return;
|
3672 |
|
|
}
|
3673 |
|
|
}
|
3674 |
|
|
else if (singlestep_breakpoints_inserted_p)
|
3675 |
|
|
{
|
3676 |
|
|
sw_single_step_trap_p = 1;
|
3677 |
|
|
ecs->random_signal = 0;
|
3678 |
|
|
}
|
3679 |
|
|
}
|
3680 |
|
|
else
|
3681 |
|
|
ecs->random_signal = 1;
|
3682 |
|
|
|
3683 |
|
|
/* See if something interesting happened to the non-current thread. If
|
3684 |
|
|
so, then switch to that thread. */
|
3685 |
|
|
if (!ptid_equal (ecs->ptid, inferior_ptid))
|
3686 |
|
|
{
|
3687 |
|
|
if (debug_infrun)
|
3688 |
|
|
fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
|
3689 |
|
|
|
3690 |
|
|
context_switch (ecs->ptid);
|
3691 |
|
|
|
3692 |
|
|
if (deprecated_context_hook)
|
3693 |
|
|
deprecated_context_hook (pid_to_thread_id (ecs->ptid));
|
3694 |
|
|
}
|
3695 |
|
|
|
3696 |
|
|
/* At this point, get hold of the now-current thread's frame. */
|
3697 |
|
|
frame = get_current_frame ();
|
3698 |
|
|
gdbarch = get_frame_arch (frame);
|
3699 |
|
|
|
3700 |
|
|
if (singlestep_breakpoints_inserted_p)
|
3701 |
|
|
{
|
3702 |
|
|
/* Pull the single step breakpoints out of the target. */
|
3703 |
|
|
remove_single_step_breakpoints ();
|
3704 |
|
|
singlestep_breakpoints_inserted_p = 0;
|
3705 |
|
|
}
|
3706 |
|
|
|
3707 |
|
|
if (stepped_after_stopped_by_watchpoint)
|
3708 |
|
|
stopped_by_watchpoint = 0;
|
3709 |
|
|
else
|
3710 |
|
|
stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
|
3711 |
|
|
|
3712 |
|
|
/* If necessary, step over this watchpoint. We'll be back to display
|
3713 |
|
|
it in a moment. */
|
3714 |
|
|
if (stopped_by_watchpoint
|
3715 |
|
|
&& (target_have_steppable_watchpoint
|
3716 |
|
|
|| gdbarch_have_nonsteppable_watchpoint (gdbarch)))
|
3717 |
|
|
{
|
3718 |
|
|
/* At this point, we are stopped at an instruction which has
|
3719 |
|
|
attempted to write to a piece of memory under control of
|
3720 |
|
|
a watchpoint. The instruction hasn't actually executed
|
3721 |
|
|
yet. If we were to evaluate the watchpoint expression
|
3722 |
|
|
now, we would get the old value, and therefore no change
|
3723 |
|
|
would seem to have occurred.
|
3724 |
|
|
|
3725 |
|
|
In order to make watchpoints work `right', we really need
|
3726 |
|
|
to complete the memory write, and then evaluate the
|
3727 |
|
|
watchpoint expression. We do this by single-stepping the
|
3728 |
|
|
target.
|
3729 |
|
|
|
3730 |
|
|
It may not be necessary to disable the watchpoint to stop over
|
3731 |
|
|
it. For example, the PA can (with some kernel cooperation)
|
3732 |
|
|
single step over a watchpoint without disabling the watchpoint.
|
3733 |
|
|
|
3734 |
|
|
It is far more common to need to disable a watchpoint to step
|
3735 |
|
|
the inferior over it. If we have non-steppable watchpoints,
|
3736 |
|
|
we must disable the current watchpoint; it's simplest to
|
3737 |
|
|
disable all watchpoints and breakpoints. */
|
3738 |
|
|
int hw_step = 1;
|
3739 |
|
|
|
3740 |
|
|
if (!target_have_steppable_watchpoint)
|
3741 |
|
|
remove_breakpoints ();
|
3742 |
|
|
/* Single step */
|
3743 |
|
|
hw_step = maybe_software_singlestep (gdbarch, stop_pc);
|
3744 |
|
|
target_resume (ecs->ptid, hw_step, TARGET_SIGNAL_0);
|
3745 |
|
|
waiton_ptid = ecs->ptid;
|
3746 |
|
|
if (target_have_steppable_watchpoint)
|
3747 |
|
|
infwait_state = infwait_step_watch_state;
|
3748 |
|
|
else
|
3749 |
|
|
infwait_state = infwait_nonstep_watch_state;
|
3750 |
|
|
prepare_to_wait (ecs);
|
3751 |
|
|
return;
|
3752 |
|
|
}
|
3753 |
|
|
|
3754 |
|
|
ecs->stop_func_start = 0;
|
3755 |
|
|
ecs->stop_func_end = 0;
|
3756 |
|
|
ecs->stop_func_name = 0;
|
3757 |
|
|
/* Don't care about return value; stop_func_start and stop_func_name
|
3758 |
|
|
will both be 0 if it doesn't work. */
|
3759 |
|
|
find_pc_partial_function (stop_pc, &ecs->stop_func_name,
|
3760 |
|
|
&ecs->stop_func_start, &ecs->stop_func_end);
|
3761 |
|
|
ecs->stop_func_start
|
3762 |
|
|
+= gdbarch_deprecated_function_start_offset (gdbarch);
|
3763 |
|
|
ecs->event_thread->stepping_over_breakpoint = 0;
|
3764 |
|
|
bpstat_clear (&ecs->event_thread->stop_bpstat);
|
3765 |
|
|
ecs->event_thread->stop_step = 0;
|
3766 |
|
|
stop_print_frame = 1;
|
3767 |
|
|
ecs->random_signal = 0;
|
3768 |
|
|
stopped_by_random_signal = 0;
|
3769 |
|
|
|
3770 |
|
|
/* Hide inlined functions starting here, unless we just performed stepi or
|
3771 |
|
|
nexti. After stepi and nexti, always show the innermost frame (not any
|
3772 |
|
|
inline function call sites). */
|
3773 |
|
|
if (ecs->event_thread->step_range_end != 1)
|
3774 |
|
|
skip_inline_frames (ecs->ptid);
|
3775 |
|
|
|
3776 |
|
|
if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP
|
3777 |
|
|
&& ecs->event_thread->trap_expected
|
3778 |
|
|
&& gdbarch_single_step_through_delay_p (gdbarch)
|
3779 |
|
|
&& currently_stepping (ecs->event_thread))
|
3780 |
|
|
{
|
3781 |
|
|
/* We're trying to step off a breakpoint. Turns out that we're
|
3782 |
|
|
also on an instruction that needs to be stepped multiple
|
3783 |
|
|
times before it's been fully executing. E.g., architectures
|
3784 |
|
|
with a delay slot. It needs to be stepped twice, once for
|
3785 |
|
|
the instruction and once for the delay slot. */
|
3786 |
|
|
int step_through_delay
|
3787 |
|
|
= gdbarch_single_step_through_delay (gdbarch, frame);
|
3788 |
|
|
|
3789 |
|
|
if (debug_infrun && step_through_delay)
|
3790 |
|
|
fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
|
3791 |
|
|
if (ecs->event_thread->step_range_end == 0 && step_through_delay)
|
3792 |
|
|
{
|
3793 |
|
|
/* The user issued a continue when stopped at a breakpoint.
|
3794 |
|
|
Set up for another trap and get out of here. */
|
3795 |
|
|
ecs->event_thread->stepping_over_breakpoint = 1;
|
3796 |
|
|
keep_going (ecs);
|
3797 |
|
|
return;
|
3798 |
|
|
}
|
3799 |
|
|
else if (step_through_delay)
|
3800 |
|
|
{
|
3801 |
|
|
/* The user issued a step when stopped at a breakpoint.
|
3802 |
|
|
Maybe we should stop, maybe we should not - the delay
|
3803 |
|
|
slot *might* correspond to a line of source. In any
|
3804 |
|
|
case, don't decide that here, just set
|
3805 |
|
|
ecs->stepping_over_breakpoint, making sure we
|
3806 |
|
|
single-step again before breakpoints are re-inserted. */
|
3807 |
|
|
ecs->event_thread->stepping_over_breakpoint = 1;
|
3808 |
|
|
}
|
3809 |
|
|
}
|
3810 |
|
|
|
3811 |
|
|
/* Look at the cause of the stop, and decide what to do.
|
3812 |
|
|
The alternatives are:
|
3813 |
|
|
1) stop_stepping and return; to really stop and return to the debugger,
|
3814 |
|
|
2) keep_going and return to start up again
|
3815 |
|
|
(set ecs->event_thread->stepping_over_breakpoint to 1 to single step once)
|
3816 |
|
|
3) set ecs->random_signal to 1, and the decision between 1 and 2
|
3817 |
|
|
will be made according to the signal handling tables. */
|
3818 |
|
|
|
3819 |
|
|
if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP
|
3820 |
|
|
|| stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_NO_SIGSTOP
|
3821 |
|
|
|| stop_soon == STOP_QUIETLY_REMOTE)
|
3822 |
|
|
{
|
3823 |
|
|
if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP && stop_after_trap)
|
3824 |
|
|
{
|
3825 |
|
|
if (debug_infrun)
|
3826 |
|
|
fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
|
3827 |
|
|
stop_print_frame = 0;
|
3828 |
|
|
stop_stepping (ecs);
|
3829 |
|
|
return;
|
3830 |
|
|
}
|
3831 |
|
|
|
3832 |
|
|
/* This is originated from start_remote(), start_inferior() and
|
3833 |
|
|
shared libraries hook functions. */
|
3834 |
|
|
if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
|
3835 |
|
|
{
|
3836 |
|
|
if (debug_infrun)
|
3837 |
|
|
fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
|
3838 |
|
|
stop_stepping (ecs);
|
3839 |
|
|
return;
|
3840 |
|
|
}
|
3841 |
|
|
|
3842 |
|
|
/* This originates from attach_command(). We need to overwrite
|
3843 |
|
|
the stop_signal here, because some kernels don't ignore a
|
3844 |
|
|
SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
|
3845 |
|
|
See more comments in inferior.h. On the other hand, if we
|
3846 |
|
|
get a non-SIGSTOP, report it to the user - assume the backend
|
3847 |
|
|
will handle the SIGSTOP if it should show up later.
|
3848 |
|
|
|
3849 |
|
|
Also consider that the attach is complete when we see a
|
3850 |
|
|
SIGTRAP. Some systems (e.g. Windows), and stubs supporting
|
3851 |
|
|
target extended-remote report it instead of a SIGSTOP
|
3852 |
|
|
(e.g. gdbserver). We already rely on SIGTRAP being our
|
3853 |
|
|
signal, so this is no exception.
|
3854 |
|
|
|
3855 |
|
|
Also consider that the attach is complete when we see a
|
3856 |
|
|
TARGET_SIGNAL_0. In non-stop mode, GDB will explicitly tell
|
3857 |
|
|
the target to stop all threads of the inferior, in case the
|
3858 |
|
|
low level attach operation doesn't stop them implicitly. If
|
3859 |
|
|
they weren't stopped implicitly, then the stub will report a
|
3860 |
|
|
TARGET_SIGNAL_0, meaning: stopped for no particular reason
|
3861 |
|
|
other than GDB's request. */
|
3862 |
|
|
if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
|
3863 |
|
|
&& (ecs->event_thread->stop_signal == TARGET_SIGNAL_STOP
|
3864 |
|
|
|| ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP
|
3865 |
|
|
|| ecs->event_thread->stop_signal == TARGET_SIGNAL_0))
|
3866 |
|
|
{
|
3867 |
|
|
stop_stepping (ecs);
|
3868 |
|
|
ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
|
3869 |
|
|
return;
|
3870 |
|
|
}
|
3871 |
|
|
|
3872 |
|
|
/* See if there is a breakpoint at the current PC. */
|
3873 |
|
|
ecs->event_thread->stop_bpstat
|
3874 |
|
|
= bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
|
3875 |
|
|
stop_pc, ecs->ptid);
|
3876 |
|
|
|
3877 |
|
|
/* Following in case break condition called a
|
3878 |
|
|
function. */
|
3879 |
|
|
stop_print_frame = 1;
|
3880 |
|
|
|
3881 |
|
|
/* This is where we handle "moribund" watchpoints. Unlike
|
3882 |
|
|
software breakpoints traps, hardware watchpoint traps are
|
3883 |
|
|
always distinguishable from random traps. If no high-level
|
3884 |
|
|
watchpoint is associated with the reported stop data address
|
3885 |
|
|
anymore, then the bpstat does not explain the signal ---
|
3886 |
|
|
simply make sure to ignore it if `stopped_by_watchpoint' is
|
3887 |
|
|
set. */
|
3888 |
|
|
|
3889 |
|
|
if (debug_infrun
|
3890 |
|
|
&& ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP
|
3891 |
|
|
&& !bpstat_explains_signal (ecs->event_thread->stop_bpstat)
|
3892 |
|
|
&& stopped_by_watchpoint)
|
3893 |
|
|
fprintf_unfiltered (gdb_stdlog, "\
|
3894 |
|
|
infrun: no user watchpoint explains watchpoint SIGTRAP, ignoring\n");
|
3895 |
|
|
|
3896 |
|
|
/* NOTE: cagney/2003-03-29: These two checks for a random signal
|
3897 |
|
|
at one stage in the past included checks for an inferior
|
3898 |
|
|
function call's call dummy's return breakpoint. The original
|
3899 |
|
|
comment, that went with the test, read:
|
3900 |
|
|
|
3901 |
|
|
``End of a stack dummy. Some systems (e.g. Sony news) give
|
3902 |
|
|
another signal besides SIGTRAP, so check here as well as
|
3903 |
|
|
above.''
|
3904 |
|
|
|
3905 |
|
|
If someone ever tries to get call dummys on a
|
3906 |
|
|
non-executable stack to work (where the target would stop
|
3907 |
|
|
with something like a SIGSEGV), then those tests might need
|
3908 |
|
|
to be re-instated. Given, however, that the tests were only
|
3909 |
|
|
enabled when momentary breakpoints were not being used, I
|
3910 |
|
|
suspect that it won't be the case.
|
3911 |
|
|
|
3912 |
|
|
NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
|
3913 |
|
|
be necessary for call dummies on a non-executable stack on
|
3914 |
|
|
SPARC. */
|
3915 |
|
|
|
3916 |
|
|
if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP)
|
3917 |
|
|
ecs->random_signal
|
3918 |
|
|
= !(bpstat_explains_signal (ecs->event_thread->stop_bpstat)
|
3919 |
|
|
|| stopped_by_watchpoint
|
3920 |
|
|
|| ecs->event_thread->trap_expected
|
3921 |
|
|
|| (ecs->event_thread->step_range_end
|
3922 |
|
|
&& ecs->event_thread->step_resume_breakpoint == NULL));
|
3923 |
|
|
else
|
3924 |
|
|
{
|
3925 |
|
|
ecs->random_signal = !bpstat_explains_signal (ecs->event_thread->stop_bpstat);
|
3926 |
|
|
if (!ecs->random_signal)
|
3927 |
|
|
ecs->event_thread->stop_signal = TARGET_SIGNAL_TRAP;
|
3928 |
|
|
}
|
3929 |
|
|
}
|
3930 |
|
|
|
3931 |
|
|
/* When we reach this point, we've pretty much decided
|
3932 |
|
|
that the reason for stopping must've been a random
|
3933 |
|
|
(unexpected) signal. */
|
3934 |
|
|
|
3935 |
|
|
else
|
3936 |
|
|
ecs->random_signal = 1;
|
3937 |
|
|
|
3938 |
|
|
process_event_stop_test:
|
3939 |
|
|
|
3940 |
|
|
/* Re-fetch current thread's frame in case we did a
|
3941 |
|
|
"goto process_event_stop_test" above. */
|
3942 |
|
|
frame = get_current_frame ();
|
3943 |
|
|
gdbarch = get_frame_arch (frame);
|
3944 |
|
|
|
3945 |
|
|
/* For the program's own signals, act according to
|
3946 |
|
|
the signal handling tables. */
|
3947 |
|
|
|
3948 |
|
|
if (ecs->random_signal)
|
3949 |
|
|
{
|
3950 |
|
|
/* Signal not for debugging purposes. */
|
3951 |
|
|
int printed = 0;
|
3952 |
|
|
struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
|
3953 |
|
|
|
3954 |
|
|
if (debug_infrun)
|
3955 |
|
|
fprintf_unfiltered (gdb_stdlog, "infrun: random signal %d\n",
|
3956 |
|
|
ecs->event_thread->stop_signal);
|
3957 |
|
|
|
3958 |
|
|
stopped_by_random_signal = 1;
|
3959 |
|
|
|
3960 |
|
|
if (signal_print[ecs->event_thread->stop_signal])
|
3961 |
|
|
{
|
3962 |
|
|
printed = 1;
|
3963 |
|
|
target_terminal_ours_for_output ();
|
3964 |
|
|
print_stop_reason (SIGNAL_RECEIVED, ecs->event_thread->stop_signal);
|
3965 |
|
|
}
|
3966 |
|
|
/* Always stop on signals if we're either just gaining control
|
3967 |
|
|
of the program, or the user explicitly requested this thread
|
3968 |
|
|
to remain stopped. */
|
3969 |
|
|
if (stop_soon != NO_STOP_QUIETLY
|
3970 |
|
|
|| ecs->event_thread->stop_requested
|
3971 |
|
|
|| (!inf->detaching
|
3972 |
|
|
&& signal_stop_state (ecs->event_thread->stop_signal)))
|
3973 |
|
|
{
|
3974 |
|
|
stop_stepping (ecs);
|
3975 |
|
|
return;
|
3976 |
|
|
}
|
3977 |
|
|
/* If not going to stop, give terminal back
|
3978 |
|
|
if we took it away. */
|
3979 |
|
|
else if (printed)
|
3980 |
|
|
target_terminal_inferior ();
|
3981 |
|
|
|
3982 |
|
|
/* Clear the signal if it should not be passed. */
|
3983 |
|
|
if (signal_program[ecs->event_thread->stop_signal] == 0)
|
3984 |
|
|
ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
|
3985 |
|
|
|
3986 |
|
|
if (ecs->event_thread->prev_pc == stop_pc
|
3987 |
|
|
&& ecs->event_thread->trap_expected
|
3988 |
|
|
&& ecs->event_thread->step_resume_breakpoint == NULL)
|
3989 |
|
|
{
|
3990 |
|
|
/* We were just starting a new sequence, attempting to
|
3991 |
|
|
single-step off of a breakpoint and expecting a SIGTRAP.
|
3992 |
|
|
Instead this signal arrives. This signal will take us out
|
3993 |
|
|
of the stepping range so GDB needs to remember to, when
|
3994 |
|
|
the signal handler returns, resume stepping off that
|
3995 |
|
|
breakpoint. */
|
3996 |
|
|
/* To simplify things, "continue" is forced to use the same
|
3997 |
|
|
code paths as single-step - set a breakpoint at the
|
3998 |
|
|
signal return address and then, once hit, step off that
|
3999 |
|
|
breakpoint. */
|
4000 |
|
|
if (debug_infrun)
|
4001 |
|
|
fprintf_unfiltered (gdb_stdlog,
|
4002 |
|
|
"infrun: signal arrived while stepping over "
|
4003 |
|
|
"breakpoint\n");
|
4004 |
|
|
|
4005 |
|
|
insert_step_resume_breakpoint_at_frame (frame);
|
4006 |
|
|
ecs->event_thread->step_after_step_resume_breakpoint = 1;
|
4007 |
|
|
keep_going (ecs);
|
4008 |
|
|
return;
|
4009 |
|
|
}
|
4010 |
|
|
|
4011 |
|
|
if (ecs->event_thread->step_range_end != 0
|
4012 |
|
|
&& ecs->event_thread->stop_signal != TARGET_SIGNAL_0
|
4013 |
|
|
&& (ecs->event_thread->step_range_start <= stop_pc
|
4014 |
|
|
&& stop_pc < ecs->event_thread->step_range_end)
|
4015 |
|
|
&& frame_id_eq (get_stack_frame_id (frame),
|
4016 |
|
|
ecs->event_thread->step_stack_frame_id)
|
4017 |
|
|
&& ecs->event_thread->step_resume_breakpoint == NULL)
|
4018 |
|
|
{
|
4019 |
|
|
/* The inferior is about to take a signal that will take it
|
4020 |
|
|
out of the single step range. Set a breakpoint at the
|
4021 |
|
|
current PC (which is presumably where the signal handler
|
4022 |
|
|
will eventually return) and then allow the inferior to
|
4023 |
|
|
run free.
|
4024 |
|
|
|
4025 |
|
|
Note that this is only needed for a signal delivered
|
4026 |
|
|
while in the single-step range. Nested signals aren't a
|
4027 |
|
|
problem as they eventually all return. */
|
4028 |
|
|
if (debug_infrun)
|
4029 |
|
|
fprintf_unfiltered (gdb_stdlog,
|
4030 |
|
|
"infrun: signal may take us out of "
|
4031 |
|
|
"single-step range\n");
|
4032 |
|
|
|
4033 |
|
|
insert_step_resume_breakpoint_at_frame (frame);
|
4034 |
|
|
keep_going (ecs);
|
4035 |
|
|
return;
|
4036 |
|
|
}
|
4037 |
|
|
|
4038 |
|
|
/* Note: step_resume_breakpoint may be non-NULL. This occures
|
4039 |
|
|
when either there's a nested signal, or when there's a
|
4040 |
|
|
pending signal enabled just as the signal handler returns
|
4041 |
|
|
(leaving the inferior at the step-resume-breakpoint without
|
4042 |
|
|
actually executing it). Either way continue until the
|
4043 |
|
|
breakpoint is really hit. */
|
4044 |
|
|
keep_going (ecs);
|
4045 |
|
|
return;
|
4046 |
|
|
}
|
4047 |
|
|
|
4048 |
|
|
/* Handle cases caused by hitting a breakpoint. */
|
4049 |
|
|
{
|
4050 |
|
|
CORE_ADDR jmp_buf_pc;
|
4051 |
|
|
struct bpstat_what what;
|
4052 |
|
|
|
4053 |
|
|
what = bpstat_what (ecs->event_thread->stop_bpstat);
|
4054 |
|
|
|
4055 |
|
|
if (what.call_dummy)
|
4056 |
|
|
{
|
4057 |
|
|
stop_stack_dummy = what.call_dummy;
|
4058 |
|
|
}
|
4059 |
|
|
|
4060 |
|
|
/* If we hit an internal event that triggers symbol changes, the
|
4061 |
|
|
current frame will be invalidated within bpstat_what (e.g., if
|
4062 |
|
|
we hit an internal solib event). Re-fetch it. */
|
4063 |
|
|
frame = get_current_frame ();
|
4064 |
|
|
gdbarch = get_frame_arch (frame);
|
4065 |
|
|
|
4066 |
|
|
switch (what.main_action)
|
4067 |
|
|
{
|
4068 |
|
|
case BPSTAT_WHAT_SET_LONGJMP_RESUME:
|
4069 |
|
|
/* If we hit the breakpoint at longjmp while stepping, we
|
4070 |
|
|
install a momentary breakpoint at the target of the
|
4071 |
|
|
jmp_buf. */
|
4072 |
|
|
|
4073 |
|
|
if (debug_infrun)
|
4074 |
|
|
fprintf_unfiltered (gdb_stdlog,
|
4075 |
|
|
"infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
|
4076 |
|
|
|
4077 |
|
|
ecs->event_thread->stepping_over_breakpoint = 1;
|
4078 |
|
|
|
4079 |
|
|
if (!gdbarch_get_longjmp_target_p (gdbarch)
|
4080 |
|
|
|| !gdbarch_get_longjmp_target (gdbarch, frame, &jmp_buf_pc))
|
4081 |
|
|
{
|
4082 |
|
|
if (debug_infrun)
|
4083 |
|
|
fprintf_unfiltered (gdb_stdlog, "\
|
4084 |
|
|
infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME (!gdbarch_get_longjmp_target)\n");
|
4085 |
|
|
keep_going (ecs);
|
4086 |
|
|
return;
|
4087 |
|
|
}
|
4088 |
|
|
|
4089 |
|
|
/* We're going to replace the current step-resume breakpoint
|
4090 |
|
|
with a longjmp-resume breakpoint. */
|
4091 |
|
|
delete_step_resume_breakpoint (ecs->event_thread);
|
4092 |
|
|
|
4093 |
|
|
/* Insert a breakpoint at resume address. */
|
4094 |
|
|
insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
|
4095 |
|
|
|
4096 |
|
|
keep_going (ecs);
|
4097 |
|
|
return;
|
4098 |
|
|
|
4099 |
|
|
case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
|
4100 |
|
|
if (debug_infrun)
|
4101 |
|
|
fprintf_unfiltered (gdb_stdlog,
|
4102 |
|
|
"infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
|
4103 |
|
|
|
4104 |
|
|
gdb_assert (ecs->event_thread->step_resume_breakpoint != NULL);
|
4105 |
|
|
delete_step_resume_breakpoint (ecs->event_thread);
|
4106 |
|
|
|
4107 |
|
|
ecs->event_thread->stop_step = 1;
|
4108 |
|
|
print_stop_reason (END_STEPPING_RANGE, 0);
|
4109 |
|
|
stop_stepping (ecs);
|
4110 |
|
|
return;
|
4111 |
|
|
|
4112 |
|
|
case BPSTAT_WHAT_SINGLE:
|
4113 |
|
|
if (debug_infrun)
|
4114 |
|
|
fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
|
4115 |
|
|
ecs->event_thread->stepping_over_breakpoint = 1;
|
4116 |
|
|
/* Still need to check other stuff, at least the case
|
4117 |
|
|
where we are stepping and step out of the right range. */
|
4118 |
|
|
break;
|
4119 |
|
|
|
4120 |
|
|
case BPSTAT_WHAT_STOP_NOISY:
|
4121 |
|
|
if (debug_infrun)
|
4122 |
|
|
fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
|
4123 |
|
|
stop_print_frame = 1;
|
4124 |
|
|
|
4125 |
|
|
/* We are about to nuke the step_resume_breakpointt via the
|
4126 |
|
|
cleanup chain, so no need to worry about it here. */
|
4127 |
|
|
|
4128 |
|
|
stop_stepping (ecs);
|
4129 |
|
|
return;
|
4130 |
|
|
|
4131 |
|
|
case BPSTAT_WHAT_STOP_SILENT:
|
4132 |
|
|
if (debug_infrun)
|
4133 |
|
|
fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
|
4134 |
|
|
stop_print_frame = 0;
|
4135 |
|
|
|
4136 |
|
|
/* We are about to nuke the step_resume_breakpoin via the
|
4137 |
|
|
cleanup chain, so no need to worry about it here. */
|
4138 |
|
|
|
4139 |
|
|
stop_stepping (ecs);
|
4140 |
|
|
return;
|
4141 |
|
|
|
4142 |
|
|
case BPSTAT_WHAT_STEP_RESUME:
|
4143 |
|
|
if (debug_infrun)
|
4144 |
|
|
fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
|
4145 |
|
|
|
4146 |
|
|
delete_step_resume_breakpoint (ecs->event_thread);
|
4147 |
|
|
if (ecs->event_thread->step_after_step_resume_breakpoint)
|
4148 |
|
|
{
|
4149 |
|
|
/* Back when the step-resume breakpoint was inserted, we
|
4150 |
|
|
were trying to single-step off a breakpoint. Go back
|
4151 |
|
|
to doing that. */
|
4152 |
|
|
ecs->event_thread->step_after_step_resume_breakpoint = 0;
|
4153 |
|
|
ecs->event_thread->stepping_over_breakpoint = 1;
|
4154 |
|
|
keep_going (ecs);
|
4155 |
|
|
return;
|
4156 |
|
|
}
|
4157 |
|
|
if (stop_pc == ecs->stop_func_start
|
4158 |
|
|
&& execution_direction == EXEC_REVERSE)
|
4159 |
|
|
{
|
4160 |
|
|
/* We are stepping over a function call in reverse, and
|
4161 |
|
|
just hit the step-resume breakpoint at the start
|
4162 |
|
|
address of the function. Go back to single-stepping,
|
4163 |
|
|
which should take us back to the function call. */
|
4164 |
|
|
ecs->event_thread->stepping_over_breakpoint = 1;
|
4165 |
|
|
keep_going (ecs);
|
4166 |
|
|
return;
|
4167 |
|
|
}
|
4168 |
|
|
break;
|
4169 |
|
|
|
4170 |
|
|
case BPSTAT_WHAT_KEEP_CHECKING:
|
4171 |
|
|
break;
|
4172 |
|
|
}
|
4173 |
|
|
}
|
4174 |
|
|
|
4175 |
|
|
/* We come here if we hit a breakpoint but should not
|
4176 |
|
|
stop for it. Possibly we also were stepping
|
4177 |
|
|
and should stop for that. So fall through and
|
4178 |
|
|
test for stepping. But, if not stepping,
|
4179 |
|
|
do not stop. */
|
4180 |
|
|
|
4181 |
|
|
/* In all-stop mode, if we're currently stepping but have stopped in
|
4182 |
|
|
some other thread, we need to switch back to the stepped thread. */
|
4183 |
|
|
if (!non_stop)
|
4184 |
|
|
{
|
4185 |
|
|
struct thread_info *tp;
|
4186 |
|
|
|
4187 |
|
|
tp = iterate_over_threads (currently_stepping_or_nexting_callback,
|
4188 |
|
|
ecs->event_thread);
|
4189 |
|
|
if (tp)
|
4190 |
|
|
{
|
4191 |
|
|
/* However, if the current thread is blocked on some internal
|
4192 |
|
|
breakpoint, and we simply need to step over that breakpoint
|
4193 |
|
|
to get it going again, do that first. */
|
4194 |
|
|
if ((ecs->event_thread->trap_expected
|
4195 |
|
|
&& ecs->event_thread->stop_signal != TARGET_SIGNAL_TRAP)
|
4196 |
|
|
|| ecs->event_thread->stepping_over_breakpoint)
|
4197 |
|
|
{
|
4198 |
|
|
keep_going (ecs);
|
4199 |
|
|
return;
|
4200 |
|
|
}
|
4201 |
|
|
|
4202 |
|
|
/* If the stepping thread exited, then don't try to switch
|
4203 |
|
|
back and resume it, which could fail in several different
|
4204 |
|
|
ways depending on the target. Instead, just keep going.
|
4205 |
|
|
|
4206 |
|
|
We can find a stepping dead thread in the thread list in
|
4207 |
|
|
two cases:
|
4208 |
|
|
|
4209 |
|
|
- The target supports thread exit events, and when the
|
4210 |
|
|
target tries to delete the thread from the thread list,
|
4211 |
|
|
inferior_ptid pointed at the exiting thread. In such
|
4212 |
|
|
case, calling delete_thread does not really remove the
|
4213 |
|
|
thread from the list; instead, the thread is left listed,
|
4214 |
|
|
with 'exited' state.
|
4215 |
|
|
|
4216 |
|
|
- The target's debug interface does not support thread
|
4217 |
|
|
exit events, and so we have no idea whatsoever if the
|
4218 |
|
|
previously stepping thread is still alive. For that
|
4219 |
|
|
reason, we need to synchronously query the target
|
4220 |
|
|
now. */
|
4221 |
|
|
if (is_exited (tp->ptid)
|
4222 |
|
|
|| !target_thread_alive (tp->ptid))
|
4223 |
|
|
{
|
4224 |
|
|
if (debug_infrun)
|
4225 |
|
|
fprintf_unfiltered (gdb_stdlog, "\
|
4226 |
|
|
infrun: not switching back to stepped thread, it has vanished\n");
|
4227 |
|
|
|
4228 |
|
|
delete_thread (tp->ptid);
|
4229 |
|
|
keep_going (ecs);
|
4230 |
|
|
return;
|
4231 |
|
|
}
|
4232 |
|
|
|
4233 |
|
|
/* Otherwise, we no longer expect a trap in the current thread.
|
4234 |
|
|
Clear the trap_expected flag before switching back -- this is
|
4235 |
|
|
what keep_going would do as well, if we called it. */
|
4236 |
|
|
ecs->event_thread->trap_expected = 0;
|
4237 |
|
|
|
4238 |
|
|
if (debug_infrun)
|
4239 |
|
|
fprintf_unfiltered (gdb_stdlog,
|
4240 |
|
|
"infrun: switching back to stepped thread\n");
|
4241 |
|
|
|
4242 |
|
|
ecs->event_thread = tp;
|
4243 |
|
|
ecs->ptid = tp->ptid;
|
4244 |
|
|
context_switch (ecs->ptid);
|
4245 |
|
|
keep_going (ecs);
|
4246 |
|
|
return;
|
4247 |
|
|
}
|
4248 |
|
|
}
|
4249 |
|
|
|
4250 |
|
|
/* Are we stepping to get the inferior out of the dynamic linker's
|
4251 |
|
|
hook (and possibly the dld itself) after catching a shlib
|
4252 |
|
|
event? */
|
4253 |
|
|
if (ecs->event_thread->stepping_through_solib_after_catch)
|
4254 |
|
|
{
|
4255 |
|
|
#if defined(SOLIB_ADD)
|
4256 |
|
|
/* Have we reached our destination? If not, keep going. */
|
4257 |
|
|
if (SOLIB_IN_DYNAMIC_LINKER (PIDGET (ecs->ptid), stop_pc))
|
4258 |
|
|
{
|
4259 |
|
|
if (debug_infrun)
|
4260 |
|
|
fprintf_unfiltered (gdb_stdlog, "infrun: stepping in dynamic linker\n");
|
4261 |
|
|
ecs->event_thread->stepping_over_breakpoint = 1;
|
4262 |
|
|
keep_going (ecs);
|
4263 |
|
|
return;
|
4264 |
|
|
}
|
4265 |
|
|
#endif
|
4266 |
|
|
if (debug_infrun)
|
4267 |
|
|
fprintf_unfiltered (gdb_stdlog, "infrun: step past dynamic linker\n");
|
4268 |
|
|
/* Else, stop and report the catchpoint(s) whose triggering
|
4269 |
|
|
caused us to begin stepping. */
|
4270 |
|
|
ecs->event_thread->stepping_through_solib_after_catch = 0;
|
4271 |
|
|
bpstat_clear (&ecs->event_thread->stop_bpstat);
|
4272 |
|
|
ecs->event_thread->stop_bpstat
|
4273 |
|
|
= bpstat_copy (ecs->event_thread->stepping_through_solib_catchpoints);
|
4274 |
|
|
bpstat_clear (&ecs->event_thread->stepping_through_solib_catchpoints);
|
4275 |
|
|
stop_print_frame = 1;
|
4276 |
|
|
stop_stepping (ecs);
|
4277 |
|
|
return;
|
4278 |
|
|
}
|
4279 |
|
|
|
4280 |
|
|
if (ecs->event_thread->step_resume_breakpoint)
|
4281 |
|
|
{
|
4282 |
|
|
if (debug_infrun)
|
4283 |
|
|
fprintf_unfiltered (gdb_stdlog,
|
4284 |
|
|
"infrun: step-resume breakpoint is inserted\n");
|
4285 |
|
|
|
4286 |
|
|
/* Having a step-resume breakpoint overrides anything
|
4287 |
|
|
else having to do with stepping commands until
|
4288 |
|
|
that breakpoint is reached. */
|
4289 |
|
|
keep_going (ecs);
|
4290 |
|
|
return;
|
4291 |
|
|
}
|
4292 |
|
|
|
4293 |
|
|
if (ecs->event_thread->step_range_end == 0)
|
4294 |
|
|
{
|
4295 |
|
|
if (debug_infrun)
|
4296 |
|
|
fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
|
4297 |
|
|
/* Likewise if we aren't even stepping. */
|
4298 |
|
|
keep_going (ecs);
|
4299 |
|
|
return;
|
4300 |
|
|
}
|
4301 |
|
|
|
4302 |
|
|
/* Re-fetch current thread's frame in case the code above caused
|
4303 |
|
|
the frame cache to be re-initialized, making our FRAME variable
|
4304 |
|
|
a dangling pointer. */
|
4305 |
|
|
frame = get_current_frame ();
|
4306 |
|
|
gdbarch = get_frame_arch (frame);
|
4307 |
|
|
|
4308 |
|
|
/* If stepping through a line, keep going if still within it.
|
4309 |
|
|
|
4310 |
|
|
Note that step_range_end is the address of the first instruction
|
4311 |
|
|
beyond the step range, and NOT the address of the last instruction
|
4312 |
|
|
within it!
|
4313 |
|
|
|
4314 |
|
|
Note also that during reverse execution, we may be stepping
|
4315 |
|
|
through a function epilogue and therefore must detect when
|
4316 |
|
|
the current-frame changes in the middle of a line. */
|
4317 |
|
|
|
4318 |
|
|
if (stop_pc >= ecs->event_thread->step_range_start
|
4319 |
|
|
&& stop_pc < ecs->event_thread->step_range_end
|
4320 |
|
|
&& (execution_direction != EXEC_REVERSE
|
4321 |
|
|
|| frame_id_eq (get_frame_id (frame),
|
4322 |
|
|
ecs->event_thread->step_frame_id)))
|
4323 |
|
|
{
|
4324 |
|
|
if (debug_infrun)
|
4325 |
|
|
fprintf_unfiltered
|
4326 |
|
|
(gdb_stdlog, "infrun: stepping inside range [%s-%s]\n",
|
4327 |
|
|
paddress (gdbarch, ecs->event_thread->step_range_start),
|
4328 |
|
|
paddress (gdbarch, ecs->event_thread->step_range_end));
|
4329 |
|
|
|
4330 |
|
|
/* When stepping backward, stop at beginning of line range
|
4331 |
|
|
(unless it's the function entry point, in which case
|
4332 |
|
|
keep going back to the call point). */
|
4333 |
|
|
if (stop_pc == ecs->event_thread->step_range_start
|
4334 |
|
|
&& stop_pc != ecs->stop_func_start
|
4335 |
|
|
&& execution_direction == EXEC_REVERSE)
|
4336 |
|
|
{
|
4337 |
|
|
ecs->event_thread->stop_step = 1;
|
4338 |
|
|
print_stop_reason (END_STEPPING_RANGE, 0);
|
4339 |
|
|
stop_stepping (ecs);
|
4340 |
|
|
}
|
4341 |
|
|
else
|
4342 |
|
|
keep_going (ecs);
|
4343 |
|
|
|
4344 |
|
|
return;
|
4345 |
|
|
}
|
4346 |
|
|
|
4347 |
|
|
/* We stepped out of the stepping range. */
|
4348 |
|
|
|
4349 |
|
|
/* If we are stepping at the source level and entered the runtime
|
4350 |
|
|
loader dynamic symbol resolution code...
|
4351 |
|
|
|
4352 |
|
|
EXEC_FORWARD: we keep on single stepping until we exit the run
|
4353 |
|
|
time loader code and reach the callee's address.
|
4354 |
|
|
|
4355 |
|
|
EXEC_REVERSE: we've already executed the callee (backward), and
|
4356 |
|
|
the runtime loader code is handled just like any other
|
4357 |
|
|
undebuggable function call. Now we need only keep stepping
|
4358 |
|
|
backward through the trampoline code, and that's handled further
|
4359 |
|
|
down, so there is nothing for us to do here. */
|
4360 |
|
|
|
4361 |
|
|
if (execution_direction != EXEC_REVERSE
|
4362 |
|
|
&& ecs->event_thread->step_over_calls == STEP_OVER_UNDEBUGGABLE
|
4363 |
|
|
&& in_solib_dynsym_resolve_code (stop_pc))
|
4364 |
|
|
{
|
4365 |
|
|
CORE_ADDR pc_after_resolver =
|
4366 |
|
|
gdbarch_skip_solib_resolver (gdbarch, stop_pc);
|
4367 |
|
|
|
4368 |
|
|
if (debug_infrun)
|
4369 |
|
|
fprintf_unfiltered (gdb_stdlog, "infrun: stepped into dynsym resolve code\n");
|
4370 |
|
|
|
4371 |
|
|
if (pc_after_resolver)
|
4372 |
|
|
{
|
4373 |
|
|
/* Set up a step-resume breakpoint at the address
|
4374 |
|
|
indicated by SKIP_SOLIB_RESOLVER. */
|
4375 |
|
|
struct symtab_and_line sr_sal;
|
4376 |
|
|
|
4377 |
|
|
init_sal (&sr_sal);
|
4378 |
|
|
sr_sal.pc = pc_after_resolver;
|
4379 |
|
|
sr_sal.pspace = get_frame_program_space (frame);
|
4380 |
|
|
|
4381 |
|
|
insert_step_resume_breakpoint_at_sal (gdbarch,
|
4382 |
|
|
sr_sal, null_frame_id);
|
4383 |
|
|
}
|
4384 |
|
|
|
4385 |
|
|
keep_going (ecs);
|
4386 |
|
|
return;
|
4387 |
|
|
}
|
4388 |
|
|
|
4389 |
|
|
if (ecs->event_thread->step_range_end != 1
|
4390 |
|
|
&& (ecs->event_thread->step_over_calls == STEP_OVER_UNDEBUGGABLE
|
4391 |
|
|
|| ecs->event_thread->step_over_calls == STEP_OVER_ALL)
|
4392 |
|
|
&& get_frame_type (frame) == SIGTRAMP_FRAME)
|
4393 |
|
|
{
|
4394 |
|
|
if (debug_infrun)
|
4395 |
|
|
fprintf_unfiltered (gdb_stdlog, "infrun: stepped into signal trampoline\n");
|
4396 |
|
|
/* The inferior, while doing a "step" or "next", has ended up in
|
4397 |
|
|
a signal trampoline (either by a signal being delivered or by
|
4398 |
|
|
the signal handler returning). Just single-step until the
|
4399 |
|
|
inferior leaves the trampoline (either by calling the handler
|
4400 |
|
|
or returning). */
|
4401 |
|
|
keep_going (ecs);
|
4402 |
|
|
return;
|
4403 |
|
|
}
|
4404 |
|
|
|
4405 |
|
|
/* Check for subroutine calls. The check for the current frame
|
4406 |
|
|
equalling the step ID is not necessary - the check of the
|
4407 |
|
|
previous frame's ID is sufficient - but it is a common case and
|
4408 |
|
|
cheaper than checking the previous frame's ID.
|
4409 |
|
|
|
4410 |
|
|
NOTE: frame_id_eq will never report two invalid frame IDs as
|
4411 |
|
|
being equal, so to get into this block, both the current and
|
4412 |
|
|
previous frame must have valid frame IDs. */
|
4413 |
|
|
/* The outer_frame_id check is a heuristic to detect stepping
|
4414 |
|
|
through startup code. If we step over an instruction which
|
4415 |
|
|
sets the stack pointer from an invalid value to a valid value,
|
4416 |
|
|
we may detect that as a subroutine call from the mythical
|
4417 |
|
|
"outermost" function. This could be fixed by marking
|
4418 |
|
|
outermost frames as !stack_p,code_p,special_p. Then the
|
4419 |
|
|
initial outermost frame, before sp was valid, would
|
4420 |
|
|
have code_addr == &_start. See the comment in frame_id_eq
|
4421 |
|
|
for more. */
|
4422 |
|
|
if (!frame_id_eq (get_stack_frame_id (frame),
|
4423 |
|
|
ecs->event_thread->step_stack_frame_id)
|
4424 |
|
|
&& (frame_id_eq (frame_unwind_caller_id (get_current_frame ()),
|
4425 |
|
|
ecs->event_thread->step_stack_frame_id)
|
4426 |
|
|
&& (!frame_id_eq (ecs->event_thread->step_stack_frame_id,
|
4427 |
|
|
outer_frame_id)
|
4428 |
|
|
|| step_start_function != find_pc_function (stop_pc))))
|
4429 |
|
|
{
|
4430 |
|
|
CORE_ADDR real_stop_pc;
|
4431 |
|
|
|
4432 |
|
|
if (debug_infrun)
|
4433 |
|
|
fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
|
4434 |
|
|
|
4435 |
|
|
if ((ecs->event_thread->step_over_calls == STEP_OVER_NONE)
|
4436 |
|
|
|| ((ecs->event_thread->step_range_end == 1)
|
4437 |
|
|
&& in_prologue (gdbarch, ecs->event_thread->prev_pc,
|
4438 |
|
|
ecs->stop_func_start)))
|
4439 |
|
|
{
|
4440 |
|
|
/* I presume that step_over_calls is only 0 when we're
|
4441 |
|
|
supposed to be stepping at the assembly language level
|
4442 |
|
|
("stepi"). Just stop. */
|
4443 |
|
|
/* Also, maybe we just did a "nexti" inside a prolog, so we
|
4444 |
|
|
thought it was a subroutine call but it was not. Stop as
|
4445 |
|
|
well. FENN */
|
4446 |
|
|
/* And this works the same backward as frontward. MVS */
|
4447 |
|
|
ecs->event_thread->stop_step = 1;
|
4448 |
|
|
print_stop_reason (END_STEPPING_RANGE, 0);
|
4449 |
|
|
stop_stepping (ecs);
|
4450 |
|
|
return;
|
4451 |
|
|
}
|
4452 |
|
|
|
4453 |
|
|
/* Reverse stepping through solib trampolines. */
|
4454 |
|
|
|
4455 |
|
|
if (execution_direction == EXEC_REVERSE
|
4456 |
|
|
&& ecs->event_thread->step_over_calls != STEP_OVER_NONE
|
4457 |
|
|
&& (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
|
4458 |
|
|
|| (ecs->stop_func_start == 0
|
4459 |
|
|
&& in_solib_dynsym_resolve_code (stop_pc))))
|
4460 |
|
|
{
|
4461 |
|
|
/* Any solib trampoline code can be handled in reverse
|
4462 |
|
|
by simply continuing to single-step. We have already
|
4463 |
|
|
executed the solib function (backwards), and a few
|
4464 |
|
|
steps will take us back through the trampoline to the
|
4465 |
|
|
caller. */
|
4466 |
|
|
keep_going (ecs);
|
4467 |
|
|
return;
|
4468 |
|
|
}
|
4469 |
|
|
|
4470 |
|
|
if (ecs->event_thread->step_over_calls == STEP_OVER_ALL)
|
4471 |
|
|
{
|
4472 |
|
|
/* We're doing a "next".
|
4473 |
|
|
|
4474 |
|
|
Normal (forward) execution: set a breakpoint at the
|
4475 |
|
|
callee's return address (the address at which the caller
|
4476 |
|
|
will resume).
|
4477 |
|
|
|
4478 |
|
|
Reverse (backward) execution. set the step-resume
|
4479 |
|
|
breakpoint at the start of the function that we just
|
4480 |
|
|
stepped into (backwards), and continue to there. When we
|
4481 |
|
|
get there, we'll need to single-step back to the caller. */
|
4482 |
|
|
|
4483 |
|
|
if (execution_direction == EXEC_REVERSE)
|
4484 |
|
|
{
|
4485 |
|
|
struct symtab_and_line sr_sal;
|
4486 |
|
|
|
4487 |
|
|
/* Normal function call return (static or dynamic). */
|
4488 |
|
|
init_sal (&sr_sal);
|
4489 |
|
|
sr_sal.pc = ecs->stop_func_start;
|
4490 |
|
|
sr_sal.pspace = get_frame_program_space (frame);
|
4491 |
|
|
insert_step_resume_breakpoint_at_sal (gdbarch,
|
4492 |
|
|
sr_sal, null_frame_id);
|
4493 |
|
|
}
|
4494 |
|
|
else
|
4495 |
|
|
insert_step_resume_breakpoint_at_caller (frame);
|
4496 |
|
|
|
4497 |
|
|
keep_going (ecs);
|
4498 |
|
|
return;
|
4499 |
|
|
}
|
4500 |
|
|
|
4501 |
|
|
/* If we are in a function call trampoline (a stub between the
|
4502 |
|
|
calling routine and the real function), locate the real
|
4503 |
|
|
function. That's what tells us (a) whether we want to step
|
4504 |
|
|
into it at all, and (b) what prologue we want to run to the
|
4505 |
|
|
end of, if we do step into it. */
|
4506 |
|
|
real_stop_pc = skip_language_trampoline (frame, stop_pc);
|
4507 |
|
|
if (real_stop_pc == 0)
|
4508 |
|
|
real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
|
4509 |
|
|
if (real_stop_pc != 0)
|
4510 |
|
|
ecs->stop_func_start = real_stop_pc;
|
4511 |
|
|
|
4512 |
|
|
if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
|
4513 |
|
|
{
|
4514 |
|
|
struct symtab_and_line sr_sal;
|
4515 |
|
|
|
4516 |
|
|
init_sal (&sr_sal);
|
4517 |
|
|
sr_sal.pc = ecs->stop_func_start;
|
4518 |
|
|
sr_sal.pspace = get_frame_program_space (frame);
|
4519 |
|
|
|
4520 |
|
|
insert_step_resume_breakpoint_at_sal (gdbarch,
|
4521 |
|
|
sr_sal, null_frame_id);
|
4522 |
|
|
keep_going (ecs);
|
4523 |
|
|
return;
|
4524 |
|
|
}
|
4525 |
|
|
|
4526 |
|
|
/* If we have line number information for the function we are
|
4527 |
|
|
thinking of stepping into, step into it.
|
4528 |
|
|
|
4529 |
|
|
If there are several symtabs at that PC (e.g. with include
|
4530 |
|
|
files), just want to know whether *any* of them have line
|
4531 |
|
|
numbers. find_pc_line handles this. */
|
4532 |
|
|
{
|
4533 |
|
|
struct symtab_and_line tmp_sal;
|
4534 |
|
|
|
4535 |
|
|
tmp_sal = find_pc_line (ecs->stop_func_start, 0);
|
4536 |
|
|
tmp_sal.pspace = get_frame_program_space (frame);
|
4537 |
|
|
if (tmp_sal.line != 0)
|
4538 |
|
|
{
|
4539 |
|
|
if (execution_direction == EXEC_REVERSE)
|
4540 |
|
|
handle_step_into_function_backward (gdbarch, ecs);
|
4541 |
|
|
else
|
4542 |
|
|
handle_step_into_function (gdbarch, ecs);
|
4543 |
|
|
return;
|
4544 |
|
|
}
|
4545 |
|
|
}
|
4546 |
|
|
|
4547 |
|
|
/* If we have no line number and the step-stop-if-no-debug is
|
4548 |
|
|
set, we stop the step so that the user has a chance to switch
|
4549 |
|
|
in assembly mode. */
|
4550 |
|
|
if (ecs->event_thread->step_over_calls == STEP_OVER_UNDEBUGGABLE
|
4551 |
|
|
&& step_stop_if_no_debug)
|
4552 |
|
|
{
|
4553 |
|
|
ecs->event_thread->stop_step = 1;
|
4554 |
|
|
print_stop_reason (END_STEPPING_RANGE, 0);
|
4555 |
|
|
stop_stepping (ecs);
|
4556 |
|
|
return;
|
4557 |
|
|
}
|
4558 |
|
|
|
4559 |
|
|
if (execution_direction == EXEC_REVERSE)
|
4560 |
|
|
{
|
4561 |
|
|
/* Set a breakpoint at callee's start address.
|
4562 |
|
|
From there we can step once and be back in the caller. */
|
4563 |
|
|
struct symtab_and_line sr_sal;
|
4564 |
|
|
|
4565 |
|
|
init_sal (&sr_sal);
|
4566 |
|
|
sr_sal.pc = ecs->stop_func_start;
|
4567 |
|
|
sr_sal.pspace = get_frame_program_space (frame);
|
4568 |
|
|
insert_step_resume_breakpoint_at_sal (gdbarch,
|
4569 |
|
|
sr_sal, null_frame_id);
|
4570 |
|
|
}
|
4571 |
|
|
else
|
4572 |
|
|
/* Set a breakpoint at callee's return address (the address
|
4573 |
|
|
at which the caller will resume). */
|
4574 |
|
|
insert_step_resume_breakpoint_at_caller (frame);
|
4575 |
|
|
|
4576 |
|
|
keep_going (ecs);
|
4577 |
|
|
return;
|
4578 |
|
|
}
|
4579 |
|
|
|
4580 |
|
|
/* Reverse stepping through solib trampolines. */
|
4581 |
|
|
|
4582 |
|
|
if (execution_direction == EXEC_REVERSE
|
4583 |
|
|
&& ecs->event_thread->step_over_calls != STEP_OVER_NONE)
|
4584 |
|
|
{
|
4585 |
|
|
if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
|
4586 |
|
|
|| (ecs->stop_func_start == 0
|
4587 |
|
|
&& in_solib_dynsym_resolve_code (stop_pc)))
|
4588 |
|
|
{
|
4589 |
|
|
/* Any solib trampoline code can be handled in reverse
|
4590 |
|
|
by simply continuing to single-step. We have already
|
4591 |
|
|
executed the solib function (backwards), and a few
|
4592 |
|
|
steps will take us back through the trampoline to the
|
4593 |
|
|
caller. */
|
4594 |
|
|
keep_going (ecs);
|
4595 |
|
|
return;
|
4596 |
|
|
}
|
4597 |
|
|
else if (in_solib_dynsym_resolve_code (stop_pc))
|
4598 |
|
|
{
|
4599 |
|
|
/* Stepped backward into the solib dynsym resolver.
|
4600 |
|
|
Set a breakpoint at its start and continue, then
|
4601 |
|
|
one more step will take us out. */
|
4602 |
|
|
struct symtab_and_line sr_sal;
|
4603 |
|
|
|
4604 |
|
|
init_sal (&sr_sal);
|
4605 |
|
|
sr_sal.pc = ecs->stop_func_start;
|
4606 |
|
|
sr_sal.pspace = get_frame_program_space (frame);
|
4607 |
|
|
insert_step_resume_breakpoint_at_sal (gdbarch,
|
4608 |
|
|
sr_sal, null_frame_id);
|
4609 |
|
|
keep_going (ecs);
|
4610 |
|
|
return;
|
4611 |
|
|
}
|
4612 |
|
|
}
|
4613 |
|
|
|
4614 |
|
|
/* If we're in the return path from a shared library trampoline,
|
4615 |
|
|
we want to proceed through the trampoline when stepping. */
|
4616 |
|
|
if (gdbarch_in_solib_return_trampoline (gdbarch,
|
4617 |
|
|
stop_pc, ecs->stop_func_name))
|
4618 |
|
|
{
|
4619 |
|
|
/* Determine where this trampoline returns. */
|
4620 |
|
|
CORE_ADDR real_stop_pc;
|
4621 |
|
|
|
4622 |
|
|
real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
|
4623 |
|
|
|
4624 |
|
|
if (debug_infrun)
|
4625 |
|
|
fprintf_unfiltered (gdb_stdlog, "infrun: stepped into solib return tramp\n");
|
4626 |
|
|
|
4627 |
|
|
/* Only proceed through if we know where it's going. */
|
4628 |
|
|
if (real_stop_pc)
|
4629 |
|
|
{
|
4630 |
|
|
/* And put the step-breakpoint there and go until there. */
|
4631 |
|
|
struct symtab_and_line sr_sal;
|
4632 |
|
|
|
4633 |
|
|
init_sal (&sr_sal); /* initialize to zeroes */
|
4634 |
|
|
sr_sal.pc = real_stop_pc;
|
4635 |
|
|
sr_sal.section = find_pc_overlay (sr_sal.pc);
|
4636 |
|
|
sr_sal.pspace = get_frame_program_space (frame);
|
4637 |
|
|
|
4638 |
|
|
/* Do not specify what the fp should be when we stop since
|
4639 |
|
|
on some machines the prologue is where the new fp value
|
4640 |
|
|
is established. */
|
4641 |
|
|
insert_step_resume_breakpoint_at_sal (gdbarch,
|
4642 |
|
|
sr_sal, null_frame_id);
|
4643 |
|
|
|
4644 |
|
|
/* Restart without fiddling with the step ranges or
|
4645 |
|
|
other state. */
|
4646 |
|
|
keep_going (ecs);
|
4647 |
|
|
return;
|
4648 |
|
|
}
|
4649 |
|
|
}
|
4650 |
|
|
|
4651 |
|
|
stop_pc_sal = find_pc_line (stop_pc, 0);
|
4652 |
|
|
|
4653 |
|
|
/* NOTE: tausq/2004-05-24: This if block used to be done before all
|
4654 |
|
|
the trampoline processing logic, however, there are some trampolines
|
4655 |
|
|
that have no names, so we should do trampoline handling first. */
|
4656 |
|
|
if (ecs->event_thread->step_over_calls == STEP_OVER_UNDEBUGGABLE
|
4657 |
|
|
&& ecs->stop_func_name == NULL
|
4658 |
|
|
&& stop_pc_sal.line == 0)
|
4659 |
|
|
{
|
4660 |
|
|
if (debug_infrun)
|
4661 |
|
|
fprintf_unfiltered (gdb_stdlog, "infrun: stepped into undebuggable function\n");
|
4662 |
|
|
|
4663 |
|
|
/* The inferior just stepped into, or returned to, an
|
4664 |
|
|
undebuggable function (where there is no debugging information
|
4665 |
|
|
and no line number corresponding to the address where the
|
4666 |
|
|
inferior stopped). Since we want to skip this kind of code,
|
4667 |
|
|
we keep going until the inferior returns from this
|
4668 |
|
|
function - unless the user has asked us not to (via
|
4669 |
|
|
set step-mode) or we no longer know how to get back
|
4670 |
|
|
to the call site. */
|
4671 |
|
|
if (step_stop_if_no_debug
|
4672 |
|
|
|| !frame_id_p (frame_unwind_caller_id (frame)))
|
4673 |
|
|
{
|
4674 |
|
|
/* If we have no line number and the step-stop-if-no-debug
|
4675 |
|
|
is set, we stop the step so that the user has a chance to
|
4676 |
|
|
switch in assembly mode. */
|
4677 |
|
|
ecs->event_thread->stop_step = 1;
|
4678 |
|
|
print_stop_reason (END_STEPPING_RANGE, 0);
|
4679 |
|
|
stop_stepping (ecs);
|
4680 |
|
|
return;
|
4681 |
|
|
}
|
4682 |
|
|
else
|
4683 |
|
|
{
|
4684 |
|
|
/* Set a breakpoint at callee's return address (the address
|
4685 |
|
|
at which the caller will resume). */
|
4686 |
|
|
insert_step_resume_breakpoint_at_caller (frame);
|
4687 |
|
|
keep_going (ecs);
|
4688 |
|
|
return;
|
4689 |
|
|
}
|
4690 |
|
|
}
|
4691 |
|
|
|
4692 |
|
|
if (ecs->event_thread->step_range_end == 1)
|
4693 |
|
|
{
|
4694 |
|
|
/* It is stepi or nexti. We always want to stop stepping after
|
4695 |
|
|
one instruction. */
|
4696 |
|
|
if (debug_infrun)
|
4697 |
|
|
fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
|
4698 |
|
|
ecs->event_thread->stop_step = 1;
|
4699 |
|
|
print_stop_reason (END_STEPPING_RANGE, 0);
|
4700 |
|
|
stop_stepping (ecs);
|
4701 |
|
|
return;
|
4702 |
|
|
}
|
4703 |
|
|
|
4704 |
|
|
if (stop_pc_sal.line == 0)
|
4705 |
|
|
{
|
4706 |
|
|
/* We have no line number information. That means to stop
|
4707 |
|
|
stepping (does this always happen right after one instruction,
|
4708 |
|
|
when we do "s" in a function with no line numbers,
|
4709 |
|
|
or can this happen as a result of a return or longjmp?). */
|
4710 |
|
|
if (debug_infrun)
|
4711 |
|
|
fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
|
4712 |
|
|
ecs->event_thread->stop_step = 1;
|
4713 |
|
|
print_stop_reason (END_STEPPING_RANGE, 0);
|
4714 |
|
|
stop_stepping (ecs);
|
4715 |
|
|
return;
|
4716 |
|
|
}
|
4717 |
|
|
|
4718 |
|
|
/* Look for "calls" to inlined functions, part one. If the inline
|
4719 |
|
|
frame machinery detected some skipped call sites, we have entered
|
4720 |
|
|
a new inline function. */
|
4721 |
|
|
|
4722 |
|
|
if (frame_id_eq (get_frame_id (get_current_frame ()),
|
4723 |
|
|
ecs->event_thread->step_frame_id)
|
4724 |
|
|
&& inline_skipped_frames (ecs->ptid))
|
4725 |
|
|
{
|
4726 |
|
|
struct symtab_and_line call_sal;
|
4727 |
|
|
|
4728 |
|
|
if (debug_infrun)
|
4729 |
|
|
fprintf_unfiltered (gdb_stdlog,
|
4730 |
|
|
"infrun: stepped into inlined function\n");
|
4731 |
|
|
|
4732 |
|
|
find_frame_sal (get_current_frame (), &call_sal);
|
4733 |
|
|
|
4734 |
|
|
if (ecs->event_thread->step_over_calls != STEP_OVER_ALL)
|
4735 |
|
|
{
|
4736 |
|
|
/* For "step", we're going to stop. But if the call site
|
4737 |
|
|
for this inlined function is on the same source line as
|
4738 |
|
|
we were previously stepping, go down into the function
|
4739 |
|
|
first. Otherwise stop at the call site. */
|
4740 |
|
|
|
4741 |
|
|
if (call_sal.line == ecs->event_thread->current_line
|
4742 |
|
|
&& call_sal.symtab == ecs->event_thread->current_symtab)
|
4743 |
|
|
step_into_inline_frame (ecs->ptid);
|
4744 |
|
|
|
4745 |
|
|
ecs->event_thread->stop_step = 1;
|
4746 |
|
|
print_stop_reason (END_STEPPING_RANGE, 0);
|
4747 |
|
|
stop_stepping (ecs);
|
4748 |
|
|
return;
|
4749 |
|
|
}
|
4750 |
|
|
else
|
4751 |
|
|
{
|
4752 |
|
|
/* For "next", we should stop at the call site if it is on a
|
4753 |
|
|
different source line. Otherwise continue through the
|
4754 |
|
|
inlined function. */
|
4755 |
|
|
if (call_sal.line == ecs->event_thread->current_line
|
4756 |
|
|
&& call_sal.symtab == ecs->event_thread->current_symtab)
|
4757 |
|
|
keep_going (ecs);
|
4758 |
|
|
else
|
4759 |
|
|
{
|
4760 |
|
|
ecs->event_thread->stop_step = 1;
|
4761 |
|
|
print_stop_reason (END_STEPPING_RANGE, 0);
|
4762 |
|
|
stop_stepping (ecs);
|
4763 |
|
|
}
|
4764 |
|
|
return;
|
4765 |
|
|
}
|
4766 |
|
|
}
|
4767 |
|
|
|
4768 |
|
|
/* Look for "calls" to inlined functions, part two. If we are still
|
4769 |
|
|
in the same real function we were stepping through, but we have
|
4770 |
|
|
to go further up to find the exact frame ID, we are stepping
|
4771 |
|
|
through a more inlined call beyond its call site. */
|
4772 |
|
|
|
4773 |
|
|
if (get_frame_type (get_current_frame ()) == INLINE_FRAME
|
4774 |
|
|
&& !frame_id_eq (get_frame_id (get_current_frame ()),
|
4775 |
|
|
ecs->event_thread->step_frame_id)
|
4776 |
|
|
&& stepped_in_from (get_current_frame (),
|
4777 |
|
|
ecs->event_thread->step_frame_id))
|
4778 |
|
|
{
|
4779 |
|
|
if (debug_infrun)
|
4780 |
|
|
fprintf_unfiltered (gdb_stdlog,
|
4781 |
|
|
"infrun: stepping through inlined function\n");
|
4782 |
|
|
|
4783 |
|
|
if (ecs->event_thread->step_over_calls == STEP_OVER_ALL)
|
4784 |
|
|
keep_going (ecs);
|
4785 |
|
|
else
|
4786 |
|
|
{
|
4787 |
|
|
ecs->event_thread->stop_step = 1;
|
4788 |
|
|
print_stop_reason (END_STEPPING_RANGE, 0);
|
4789 |
|
|
stop_stepping (ecs);
|
4790 |
|
|
}
|
4791 |
|
|
return;
|
4792 |
|
|
}
|
4793 |
|
|
|
4794 |
|
|
if ((stop_pc == stop_pc_sal.pc)
|
4795 |
|
|
&& (ecs->event_thread->current_line != stop_pc_sal.line
|
4796 |
|
|
|| ecs->event_thread->current_symtab != stop_pc_sal.symtab))
|
4797 |
|
|
{
|
4798 |
|
|
/* We are at the start of a different line. So stop. Note that
|
4799 |
|
|
we don't stop if we step into the middle of a different line.
|
4800 |
|
|
That is said to make things like for (;;) statements work
|
4801 |
|
|
better. */
|
4802 |
|
|
if (debug_infrun)
|
4803 |
|
|
fprintf_unfiltered (gdb_stdlog, "infrun: stepped to a different line\n");
|
4804 |
|
|
ecs->event_thread->stop_step = 1;
|
4805 |
|
|
print_stop_reason (END_STEPPING_RANGE, 0);
|
4806 |
|
|
stop_stepping (ecs);
|
4807 |
|
|
return;
|
4808 |
|
|
}
|
4809 |
|
|
|
4810 |
|
|
/* We aren't done stepping.
|
4811 |
|
|
|
4812 |
|
|
Optimize by setting the stepping range to the line.
|
4813 |
|
|
(We might not be in the original line, but if we entered a
|
4814 |
|
|
new line in mid-statement, we continue stepping. This makes
|
4815 |
|
|
things like for(;;) statements work better.) */
|
4816 |
|
|
|
4817 |
|
|
ecs->event_thread->step_range_start = stop_pc_sal.pc;
|
4818 |
|
|
ecs->event_thread->step_range_end = stop_pc_sal.end;
|
4819 |
|
|
set_step_info (frame, stop_pc_sal);
|
4820 |
|
|
|
4821 |
|
|
if (debug_infrun)
|
4822 |
|
|
fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
|
4823 |
|
|
keep_going (ecs);
|
4824 |
|
|
}
|
4825 |
|
|
|
4826 |
|
|
/* Is thread TP in the middle of single-stepping? */
|
4827 |
|
|
|
4828 |
|
|
static int
|
4829 |
|
|
currently_stepping (struct thread_info *tp)
|
4830 |
|
|
{
|
4831 |
|
|
return ((tp->step_range_end && tp->step_resume_breakpoint == NULL)
|
4832 |
|
|
|| tp->trap_expected
|
4833 |
|
|
|| tp->stepping_through_solib_after_catch
|
4834 |
|
|
|| bpstat_should_step ());
|
4835 |
|
|
}
|
4836 |
|
|
|
4837 |
|
|
/* Returns true if any thread *but* the one passed in "data" is in the
|
4838 |
|
|
middle of stepping or of handling a "next". */
|
4839 |
|
|
|
4840 |
|
|
static int
|
4841 |
|
|
currently_stepping_or_nexting_callback (struct thread_info *tp, void *data)
|
4842 |
|
|
{
|
4843 |
|
|
if (tp == data)
|
4844 |
|
|
return 0;
|
4845 |
|
|
|
4846 |
|
|
return (tp->step_range_end
|
4847 |
|
|
|| tp->trap_expected
|
4848 |
|
|
|| tp->stepping_through_solib_after_catch);
|
4849 |
|
|
}
|
4850 |
|
|
|
4851 |
|
|
/* Inferior has stepped into a subroutine call with source code that
|
4852 |
|
|
we should not step over. Do step to the first line of code in
|
4853 |
|
|
it. */
|
4854 |
|
|
|
4855 |
|
|
static void
|
4856 |
|
|
handle_step_into_function (struct gdbarch *gdbarch,
|
4857 |
|
|
struct execution_control_state *ecs)
|
4858 |
|
|
{
|
4859 |
|
|
struct symtab *s;
|
4860 |
|
|
struct symtab_and_line stop_func_sal, sr_sal;
|
4861 |
|
|
|
4862 |
|
|
s = find_pc_symtab (stop_pc);
|
4863 |
|
|
if (s && s->language != language_asm)
|
4864 |
|
|
ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
|
4865 |
|
|
ecs->stop_func_start);
|
4866 |
|
|
|
4867 |
|
|
stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
|
4868 |
|
|
/* Use the step_resume_break to step until the end of the prologue,
|
4869 |
|
|
even if that involves jumps (as it seems to on the vax under
|
4870 |
|
|
4.2). */
|
4871 |
|
|
/* If the prologue ends in the middle of a source line, continue to
|
4872 |
|
|
the end of that source line (if it is still within the function).
|
4873 |
|
|
Otherwise, just go to end of prologue. */
|
4874 |
|
|
if (stop_func_sal.end
|
4875 |
|
|
&& stop_func_sal.pc != ecs->stop_func_start
|
4876 |
|
|
&& stop_func_sal.end < ecs->stop_func_end)
|
4877 |
|
|
ecs->stop_func_start = stop_func_sal.end;
|
4878 |
|
|
|
4879 |
|
|
/* Architectures which require breakpoint adjustment might not be able
|
4880 |
|
|
to place a breakpoint at the computed address. If so, the test
|
4881 |
|
|
``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
|
4882 |
|
|
ecs->stop_func_start to an address at which a breakpoint may be
|
4883 |
|
|
legitimately placed.
|
4884 |
|
|
|
4885 |
|
|
Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
|
4886 |
|
|
made, GDB will enter an infinite loop when stepping through
|
4887 |
|
|
optimized code consisting of VLIW instructions which contain
|
4888 |
|
|
subinstructions corresponding to different source lines. On
|
4889 |
|
|
FR-V, it's not permitted to place a breakpoint on any but the
|
4890 |
|
|
first subinstruction of a VLIW instruction. When a breakpoint is
|
4891 |
|
|
set, GDB will adjust the breakpoint address to the beginning of
|
4892 |
|
|
the VLIW instruction. Thus, we need to make the corresponding
|
4893 |
|
|
adjustment here when computing the stop address. */
|
4894 |
|
|
|
4895 |
|
|
if (gdbarch_adjust_breakpoint_address_p (gdbarch))
|
4896 |
|
|
{
|
4897 |
|
|
ecs->stop_func_start
|
4898 |
|
|
= gdbarch_adjust_breakpoint_address (gdbarch,
|
4899 |
|
|
ecs->stop_func_start);
|
4900 |
|
|
}
|
4901 |
|
|
|
4902 |
|
|
if (ecs->stop_func_start == stop_pc)
|
4903 |
|
|
{
|
4904 |
|
|
/* We are already there: stop now. */
|
4905 |
|
|
ecs->event_thread->stop_step = 1;
|
4906 |
|
|
print_stop_reason (END_STEPPING_RANGE, 0);
|
4907 |
|
|
stop_stepping (ecs);
|
4908 |
|
|
return;
|
4909 |
|
|
}
|
4910 |
|
|
else
|
4911 |
|
|
{
|
4912 |
|
|
/* Put the step-breakpoint there and go until there. */
|
4913 |
|
|
init_sal (&sr_sal); /* initialize to zeroes */
|
4914 |
|
|
sr_sal.pc = ecs->stop_func_start;
|
4915 |
|
|
sr_sal.section = find_pc_overlay (ecs->stop_func_start);
|
4916 |
|
|
sr_sal.pspace = get_frame_program_space (get_current_frame ());
|
4917 |
|
|
|
4918 |
|
|
/* Do not specify what the fp should be when we stop since on
|
4919 |
|
|
some machines the prologue is where the new fp value is
|
4920 |
|
|
established. */
|
4921 |
|
|
insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);
|
4922 |
|
|
|
4923 |
|
|
/* And make sure stepping stops right away then. */
|
4924 |
|
|
ecs->event_thread->step_range_end = ecs->event_thread->step_range_start;
|
4925 |
|
|
}
|
4926 |
|
|
keep_going (ecs);
|
4927 |
|
|
}
|
4928 |
|
|
|
4929 |
|
|
/* Inferior has stepped backward into a subroutine call with source
|
4930 |
|
|
code that we should not step over. Do step to the beginning of the
|
4931 |
|
|
last line of code in it. */
|
4932 |
|
|
|
4933 |
|
|
static void
|
4934 |
|
|
handle_step_into_function_backward (struct gdbarch *gdbarch,
|
4935 |
|
|
struct execution_control_state *ecs)
|
4936 |
|
|
{
|
4937 |
|
|
struct symtab *s;
|
4938 |
|
|
struct symtab_and_line stop_func_sal;
|
4939 |
|
|
|
4940 |
|
|
s = find_pc_symtab (stop_pc);
|
4941 |
|
|
if (s && s->language != language_asm)
|
4942 |
|
|
ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
|
4943 |
|
|
ecs->stop_func_start);
|
4944 |
|
|
|
4945 |
|
|
stop_func_sal = find_pc_line (stop_pc, 0);
|
4946 |
|
|
|
4947 |
|
|
/* OK, we're just going to keep stepping here. */
|
4948 |
|
|
if (stop_func_sal.pc == stop_pc)
|
4949 |
|
|
{
|
4950 |
|
|
/* We're there already. Just stop stepping now. */
|
4951 |
|
|
ecs->event_thread->stop_step = 1;
|
4952 |
|
|
print_stop_reason (END_STEPPING_RANGE, 0);
|
4953 |
|
|
stop_stepping (ecs);
|
4954 |
|
|
}
|
4955 |
|
|
else
|
4956 |
|
|
{
|
4957 |
|
|
/* Else just reset the step range and keep going.
|
4958 |
|
|
No step-resume breakpoint, they don't work for
|
4959 |
|
|
epilogues, which can have multiple entry paths. */
|
4960 |
|
|
ecs->event_thread->step_range_start = stop_func_sal.pc;
|
4961 |
|
|
ecs->event_thread->step_range_end = stop_func_sal.end;
|
4962 |
|
|
keep_going (ecs);
|
4963 |
|
|
}
|
4964 |
|
|
return;
|
4965 |
|
|
}
|
4966 |
|
|
|
4967 |
|
|
/* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
|
4968 |
|
|
This is used to both functions and to skip over code. */
|
4969 |
|
|
|
4970 |
|
|
static void
|
4971 |
|
|
insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
|
4972 |
|
|
struct symtab_and_line sr_sal,
|
4973 |
|
|
struct frame_id sr_id)
|
4974 |
|
|
{
|
4975 |
|
|
/* There should never be more than one step-resume or longjmp-resume
|
4976 |
|
|
breakpoint per thread, so we should never be setting a new
|
4977 |
|
|
step_resume_breakpoint when one is already active. */
|
4978 |
|
|
gdb_assert (inferior_thread ()->step_resume_breakpoint == NULL);
|
4979 |
|
|
|
4980 |
|
|
if (debug_infrun)
|
4981 |
|
|
fprintf_unfiltered (gdb_stdlog,
|
4982 |
|
|
"infrun: inserting step-resume breakpoint at %s\n",
|
4983 |
|
|
paddress (gdbarch, sr_sal.pc));
|
4984 |
|
|
|
4985 |
|
|
inferior_thread ()->step_resume_breakpoint
|
4986 |
|
|
= set_momentary_breakpoint (gdbarch, sr_sal, sr_id, bp_step_resume);
|
4987 |
|
|
}
|
4988 |
|
|
|
4989 |
|
|
/* Insert a "step-resume breakpoint" at RETURN_FRAME.pc. This is used
|
4990 |
|
|
to skip a potential signal handler.
|
4991 |
|
|
|
4992 |
|
|
This is called with the interrupted function's frame. The signal
|
4993 |
|
|
handler, when it returns, will resume the interrupted function at
|
4994 |
|
|
RETURN_FRAME.pc. */
|
4995 |
|
|
|
4996 |
|
|
static void
|
4997 |
|
|
insert_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
|
4998 |
|
|
{
|
4999 |
|
|
struct symtab_and_line sr_sal;
|
5000 |
|
|
struct gdbarch *gdbarch;
|
5001 |
|
|
|
5002 |
|
|
gdb_assert (return_frame != NULL);
|
5003 |
|
|
init_sal (&sr_sal); /* initialize to zeros */
|
5004 |
|
|
|
5005 |
|
|
gdbarch = get_frame_arch (return_frame);
|
5006 |
|
|
sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
|
5007 |
|
|
sr_sal.section = find_pc_overlay (sr_sal.pc);
|
5008 |
|
|
sr_sal.pspace = get_frame_program_space (return_frame);
|
5009 |
|
|
|
5010 |
|
|
insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
|
5011 |
|
|
get_stack_frame_id (return_frame));
|
5012 |
|
|
}
|
5013 |
|
|
|
5014 |
|
|
/* Similar to insert_step_resume_breakpoint_at_frame, except
|
5015 |
|
|
but a breakpoint at the previous frame's PC. This is used to
|
5016 |
|
|
skip a function after stepping into it (for "next" or if the called
|
5017 |
|
|
function has no debugging information).
|
5018 |
|
|
|
5019 |
|
|
The current function has almost always been reached by single
|
5020 |
|
|
stepping a call or return instruction. NEXT_FRAME belongs to the
|
5021 |
|
|
current function, and the breakpoint will be set at the caller's
|
5022 |
|
|
resume address.
|
5023 |
|
|
|
5024 |
|
|
This is a separate function rather than reusing
|
5025 |
|
|
insert_step_resume_breakpoint_at_frame in order to avoid
|
5026 |
|
|
get_prev_frame, which may stop prematurely (see the implementation
|
5027 |
|
|
of frame_unwind_caller_id for an example). */
|
5028 |
|
|
|
5029 |
|
|
static void
|
5030 |
|
|
insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
|
5031 |
|
|
{
|
5032 |
|
|
struct symtab_and_line sr_sal;
|
5033 |
|
|
struct gdbarch *gdbarch;
|
5034 |
|
|
|
5035 |
|
|
/* We shouldn't have gotten here if we don't know where the call site
|
5036 |
|
|
is. */
|
5037 |
|
|
gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
|
5038 |
|
|
|
5039 |
|
|
init_sal (&sr_sal); /* initialize to zeros */
|
5040 |
|
|
|
5041 |
|
|
gdbarch = frame_unwind_caller_arch (next_frame);
|
5042 |
|
|
sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
|
5043 |
|
|
frame_unwind_caller_pc (next_frame));
|
5044 |
|
|
sr_sal.section = find_pc_overlay (sr_sal.pc);
|
5045 |
|
|
sr_sal.pspace = frame_unwind_program_space (next_frame);
|
5046 |
|
|
|
5047 |
|
|
insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
|
5048 |
|
|
frame_unwind_caller_id (next_frame));
|
5049 |
|
|
}
|
5050 |
|
|
|
5051 |
|
|
/* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
|
5052 |
|
|
new breakpoint at the target of a jmp_buf. The handling of
|
5053 |
|
|
longjmp-resume uses the same mechanisms used for handling
|
5054 |
|
|
"step-resume" breakpoints. */
|
5055 |
|
|
|
5056 |
|
|
static void
|
5057 |
|
|
insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
|
5058 |
|
|
{
|
5059 |
|
|
/* There should never be more than one step-resume or longjmp-resume
|
5060 |
|
|
breakpoint per thread, so we should never be setting a new
|
5061 |
|
|
longjmp_resume_breakpoint when one is already active. */
|
5062 |
|
|
gdb_assert (inferior_thread ()->step_resume_breakpoint == NULL);
|
5063 |
|
|
|
5064 |
|
|
if (debug_infrun)
|
5065 |
|
|
fprintf_unfiltered (gdb_stdlog,
|
5066 |
|
|
"infrun: inserting longjmp-resume breakpoint at %s\n",
|
5067 |
|
|
paddress (gdbarch, pc));
|
5068 |
|
|
|
5069 |
|
|
inferior_thread ()->step_resume_breakpoint =
|
5070 |
|
|
set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume);
|
5071 |
|
|
}
|
5072 |
|
|
|
5073 |
|
|
static void
|
5074 |
|
|
stop_stepping (struct execution_control_state *ecs)
|
5075 |
|
|
{
|
5076 |
|
|
if (debug_infrun)
|
5077 |
|
|
fprintf_unfiltered (gdb_stdlog, "infrun: stop_stepping\n");
|
5078 |
|
|
|
5079 |
|
|
/* Let callers know we don't want to wait for the inferior anymore. */
|
5080 |
|
|
ecs->wait_some_more = 0;
|
5081 |
|
|
}
|
5082 |
|
|
|
5083 |
|
|
/* This function handles various cases where we need to continue
|
5084 |
|
|
waiting for the inferior. */
|
5085 |
|
|
/* (Used to be the keep_going: label in the old wait_for_inferior) */
|
5086 |
|
|
|
5087 |
|
|
static void
|
5088 |
|
|
keep_going (struct execution_control_state *ecs)
|
5089 |
|
|
{
|
5090 |
|
|
/* Make sure normal_stop is called if we get a QUIT handled before
|
5091 |
|
|
reaching resume. */
|
5092 |
|
|
struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
|
5093 |
|
|
|
5094 |
|
|
/* Save the pc before execution, to compare with pc after stop. */
|
5095 |
|
|
ecs->event_thread->prev_pc
|
5096 |
|
|
= regcache_read_pc (get_thread_regcache (ecs->ptid));
|
5097 |
|
|
|
5098 |
|
|
/* If we did not do break;, it means we should keep running the
|
5099 |
|
|
inferior and not return to debugger. */
|
5100 |
|
|
|
5101 |
|
|
if (ecs->event_thread->trap_expected
|
5102 |
|
|
&& ecs->event_thread->stop_signal != TARGET_SIGNAL_TRAP)
|
5103 |
|
|
{
|
5104 |
|
|
/* We took a signal (which we are supposed to pass through to
|
5105 |
|
|
the inferior, else we'd not get here) and we haven't yet
|
5106 |
|
|
gotten our trap. Simply continue. */
|
5107 |
|
|
|
5108 |
|
|
discard_cleanups (old_cleanups);
|
5109 |
|
|
resume (currently_stepping (ecs->event_thread),
|
5110 |
|
|
ecs->event_thread->stop_signal);
|
5111 |
|
|
}
|
5112 |
|
|
else
|
5113 |
|
|
{
|
5114 |
|
|
/* Either the trap was not expected, but we are continuing
|
5115 |
|
|
anyway (the user asked that this signal be passed to the
|
5116 |
|
|
child)
|
5117 |
|
|
-- or --
|
5118 |
|
|
The signal was SIGTRAP, e.g. it was our signal, but we
|
5119 |
|
|
decided we should resume from it.
|
5120 |
|
|
|
5121 |
|
|
We're going to run this baby now!
|
5122 |
|
|
|
5123 |
|
|
Note that insert_breakpoints won't try to re-insert
|
5124 |
|
|
already inserted breakpoints. Therefore, we don't
|
5125 |
|
|
care if breakpoints were already inserted, or not. */
|
5126 |
|
|
|
5127 |
|
|
if (ecs->event_thread->stepping_over_breakpoint)
|
5128 |
|
|
{
|
5129 |
|
|
struct regcache *thread_regcache = get_thread_regcache (ecs->ptid);
|
5130 |
|
|
|
5131 |
|
|
if (!use_displaced_stepping (get_regcache_arch (thread_regcache)))
|
5132 |
|
|
/* Since we can't do a displaced step, we have to remove
|
5133 |
|
|
the breakpoint while we step it. To keep things
|
5134 |
|
|
simple, we remove them all. */
|
5135 |
|
|
remove_breakpoints ();
|
5136 |
|
|
}
|
5137 |
|
|
else
|
5138 |
|
|
{
|
5139 |
|
|
struct gdb_exception e;
|
5140 |
|
|
|
5141 |
|
|
/* Stop stepping when inserting breakpoints
|
5142 |
|
|
has failed. */
|
5143 |
|
|
TRY_CATCH (e, RETURN_MASK_ERROR)
|
5144 |
|
|
{
|
5145 |
|
|
insert_breakpoints ();
|
5146 |
|
|
}
|
5147 |
|
|
if (e.reason < 0)
|
5148 |
|
|
{
|
5149 |
|
|
exception_print (gdb_stderr, e);
|
5150 |
|
|
stop_stepping (ecs);
|
5151 |
|
|
return;
|
5152 |
|
|
}
|
5153 |
|
|
}
|
5154 |
|
|
|
5155 |
|
|
ecs->event_thread->trap_expected = ecs->event_thread->stepping_over_breakpoint;
|
5156 |
|
|
|
5157 |
|
|
/* Do not deliver SIGNAL_TRAP (except when the user explicitly
|
5158 |
|
|
specifies that such a signal should be delivered to the
|
5159 |
|
|
target program).
|
5160 |
|
|
|
5161 |
|
|
Typically, this would occure when a user is debugging a
|
5162 |
|
|
target monitor on a simulator: the target monitor sets a
|
5163 |
|
|
breakpoint; the simulator encounters this break-point and
|
5164 |
|
|
halts the simulation handing control to GDB; GDB, noteing
|
5165 |
|
|
that the break-point isn't valid, returns control back to the
|
5166 |
|
|
simulator; the simulator then delivers the hardware
|
5167 |
|
|
equivalent of a SIGNAL_TRAP to the program being debugged. */
|
5168 |
|
|
|
5169 |
|
|
if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP
|
5170 |
|
|
&& !signal_program[ecs->event_thread->stop_signal])
|
5171 |
|
|
ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
|
5172 |
|
|
|
5173 |
|
|
discard_cleanups (old_cleanups);
|
5174 |
|
|
resume (currently_stepping (ecs->event_thread),
|
5175 |
|
|
ecs->event_thread->stop_signal);
|
5176 |
|
|
}
|
5177 |
|
|
|
5178 |
|
|
prepare_to_wait (ecs);
|
5179 |
|
|
}
|
5180 |
|
|
|
5181 |
|
|
/* This function normally comes after a resume, before
|
5182 |
|
|
handle_inferior_event exits. It takes care of any last bits of
|
5183 |
|
|
housekeeping, and sets the all-important wait_some_more flag. */
|
5184 |
|
|
|
5185 |
|
|
static void
|
5186 |
|
|
prepare_to_wait (struct execution_control_state *ecs)
|
5187 |
|
|
{
|
5188 |
|
|
if (debug_infrun)
|
5189 |
|
|
fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
|
5190 |
|
|
|
5191 |
|
|
/* This is the old end of the while loop. Let everybody know we
|
5192 |
|
|
want to wait for the inferior some more and get called again
|
5193 |
|
|
soon. */
|
5194 |
|
|
ecs->wait_some_more = 1;
|
5195 |
|
|
}
|
5196 |
|
|
|
5197 |
|
|
/* Print why the inferior has stopped. We always print something when
|
5198 |
|
|
the inferior exits, or receives a signal. The rest of the cases are
|
5199 |
|
|
dealt with later on in normal_stop() and print_it_typical(). Ideally
|
5200 |
|
|
there should be a call to this function from handle_inferior_event()
|
5201 |
|
|
each time stop_stepping() is called.*/
|
5202 |
|
|
static void
|
5203 |
|
|
print_stop_reason (enum inferior_stop_reason stop_reason, int stop_info)
|
5204 |
|
|
{
|
5205 |
|
|
switch (stop_reason)
|
5206 |
|
|
{
|
5207 |
|
|
case END_STEPPING_RANGE:
|
5208 |
|
|
/* We are done with a step/next/si/ni command. */
|
5209 |
|
|
/* For now print nothing. */
|
5210 |
|
|
/* Print a message only if not in the middle of doing a "step n"
|
5211 |
|
|
operation for n > 1 */
|
5212 |
|
|
if (!inferior_thread ()->step_multi
|
5213 |
|
|
|| !inferior_thread ()->stop_step)
|
5214 |
|
|
if (ui_out_is_mi_like_p (uiout))
|
5215 |
|
|
ui_out_field_string
|
5216 |
|
|
(uiout, "reason",
|
5217 |
|
|
async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
|
5218 |
|
|
break;
|
5219 |
|
|
case SIGNAL_EXITED:
|
5220 |
|
|
/* The inferior was terminated by a signal. */
|
5221 |
|
|
annotate_signalled ();
|
5222 |
|
|
if (ui_out_is_mi_like_p (uiout))
|
5223 |
|
|
ui_out_field_string
|
5224 |
|
|
(uiout, "reason",
|
5225 |
|
|
async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
|
5226 |
|
|
ui_out_text (uiout, "\nProgram terminated with signal ");
|
5227 |
|
|
annotate_signal_name ();
|
5228 |
|
|
ui_out_field_string (uiout, "signal-name",
|
5229 |
|
|
target_signal_to_name (stop_info));
|
5230 |
|
|
annotate_signal_name_end ();
|
5231 |
|
|
ui_out_text (uiout, ", ");
|
5232 |
|
|
annotate_signal_string ();
|
5233 |
|
|
ui_out_field_string (uiout, "signal-meaning",
|
5234 |
|
|
target_signal_to_string (stop_info));
|
5235 |
|
|
annotate_signal_string_end ();
|
5236 |
|
|
ui_out_text (uiout, ".\n");
|
5237 |
|
|
ui_out_text (uiout, "The program no longer exists.\n");
|
5238 |
|
|
break;
|
5239 |
|
|
case EXITED:
|
5240 |
|
|
/* The inferior program is finished. */
|
5241 |
|
|
annotate_exited (stop_info);
|
5242 |
|
|
if (stop_info)
|
5243 |
|
|
{
|
5244 |
|
|
if (ui_out_is_mi_like_p (uiout))
|
5245 |
|
|
ui_out_field_string (uiout, "reason",
|
5246 |
|
|
async_reason_lookup (EXEC_ASYNC_EXITED));
|
5247 |
|
|
ui_out_text (uiout, "\nProgram exited with code ");
|
5248 |
|
|
ui_out_field_fmt (uiout, "exit-code", "0%o",
|
5249 |
|
|
(unsigned int) stop_info);
|
5250 |
|
|
ui_out_text (uiout, ".\n");
|
5251 |
|
|
}
|
5252 |
|
|
else
|
5253 |
|
|
{
|
5254 |
|
|
if (ui_out_is_mi_like_p (uiout))
|
5255 |
|
|
ui_out_field_string
|
5256 |
|
|
(uiout, "reason",
|
5257 |
|
|
async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
|
5258 |
|
|
ui_out_text (uiout, "\nProgram exited normally.\n");
|
5259 |
|
|
}
|
5260 |
|
|
/* Support the --return-child-result option. */
|
5261 |
|
|
return_child_result_value = stop_info;
|
5262 |
|
|
break;
|
5263 |
|
|
case SIGNAL_RECEIVED:
|
5264 |
|
|
/* Signal received. The signal table tells us to print about
|
5265 |
|
|
it. */
|
5266 |
|
|
annotate_signal ();
|
5267 |
|
|
|
5268 |
|
|
if (stop_info == TARGET_SIGNAL_0 && !ui_out_is_mi_like_p (uiout))
|
5269 |
|
|
{
|
5270 |
|
|
struct thread_info *t = inferior_thread ();
|
5271 |
|
|
|
5272 |
|
|
ui_out_text (uiout, "\n[");
|
5273 |
|
|
ui_out_field_string (uiout, "thread-name",
|
5274 |
|
|
target_pid_to_str (t->ptid));
|
5275 |
|
|
ui_out_field_fmt (uiout, "thread-id", "] #%d", t->num);
|
5276 |
|
|
ui_out_text (uiout, " stopped");
|
5277 |
|
|
}
|
5278 |
|
|
else
|
5279 |
|
|
{
|
5280 |
|
|
ui_out_text (uiout, "\nProgram received signal ");
|
5281 |
|
|
annotate_signal_name ();
|
5282 |
|
|
if (ui_out_is_mi_like_p (uiout))
|
5283 |
|
|
ui_out_field_string
|
5284 |
|
|
(uiout, "reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
|
5285 |
|
|
ui_out_field_string (uiout, "signal-name",
|
5286 |
|
|
target_signal_to_name (stop_info));
|
5287 |
|
|
annotate_signal_name_end ();
|
5288 |
|
|
ui_out_text (uiout, ", ");
|
5289 |
|
|
annotate_signal_string ();
|
5290 |
|
|
ui_out_field_string (uiout, "signal-meaning",
|
5291 |
|
|
target_signal_to_string (stop_info));
|
5292 |
|
|
annotate_signal_string_end ();
|
5293 |
|
|
}
|
5294 |
|
|
ui_out_text (uiout, ".\n");
|
5295 |
|
|
break;
|
5296 |
|
|
case NO_HISTORY:
|
5297 |
|
|
/* Reverse execution: target ran out of history info. */
|
5298 |
|
|
ui_out_text (uiout, "\nNo more reverse-execution history.\n");
|
5299 |
|
|
break;
|
5300 |
|
|
default:
|
5301 |
|
|
internal_error (__FILE__, __LINE__,
|
5302 |
|
|
_("print_stop_reason: unrecognized enum value"));
|
5303 |
|
|
break;
|
5304 |
|
|
}
|
5305 |
|
|
}
|
5306 |
|
|
|
5307 |
|
|
|
5308 |
|
|
/* Here to return control to GDB when the inferior stops for real.
|
5309 |
|
|
Print appropriate messages, remove breakpoints, give terminal our modes.
|
5310 |
|
|
|
5311 |
|
|
STOP_PRINT_FRAME nonzero means print the executing frame
|
5312 |
|
|
(pc, function, args, file, line number and line text).
|
5313 |
|
|
BREAKPOINTS_FAILED nonzero means stop was due to error
|
5314 |
|
|
attempting to insert breakpoints. */
|
5315 |
|
|
|
5316 |
|
|
void
|
5317 |
|
|
normal_stop (void)
|
5318 |
|
|
{
|
5319 |
|
|
struct target_waitstatus last;
|
5320 |
|
|
ptid_t last_ptid;
|
5321 |
|
|
struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
|
5322 |
|
|
|
5323 |
|
|
get_last_target_status (&last_ptid, &last);
|
5324 |
|
|
|
5325 |
|
|
/* If an exception is thrown from this point on, make sure to
|
5326 |
|
|
propagate GDB's knowledge of the executing state to the
|
5327 |
|
|
frontend/user running state. A QUIT is an easy exception to see
|
5328 |
|
|
here, so do this before any filtered output. */
|
5329 |
|
|
if (!non_stop)
|
5330 |
|
|
make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
|
5331 |
|
|
else if (last.kind != TARGET_WAITKIND_SIGNALLED
|
5332 |
|
|
&& last.kind != TARGET_WAITKIND_EXITED)
|
5333 |
|
|
make_cleanup (finish_thread_state_cleanup, &inferior_ptid);
|
5334 |
|
|
|
5335 |
|
|
/* In non-stop mode, we don't want GDB to switch threads behind the
|
5336 |
|
|
user's back, to avoid races where the user is typing a command to
|
5337 |
|
|
apply to thread x, but GDB switches to thread y before the user
|
5338 |
|
|
finishes entering the command. */
|
5339 |
|
|
|
5340 |
|
|
/* As with the notification of thread events, we want to delay
|
5341 |
|
|
notifying the user that we've switched thread context until
|
5342 |
|
|
the inferior actually stops.
|
5343 |
|
|
|
5344 |
|
|
There's no point in saying anything if the inferior has exited.
|
5345 |
|
|
Note that SIGNALLED here means "exited with a signal", not
|
5346 |
|
|
"received a signal". */
|
5347 |
|
|
if (!non_stop
|
5348 |
|
|
&& !ptid_equal (previous_inferior_ptid, inferior_ptid)
|
5349 |
|
|
&& target_has_execution
|
5350 |
|
|
&& last.kind != TARGET_WAITKIND_SIGNALLED
|
5351 |
|
|
&& last.kind != TARGET_WAITKIND_EXITED)
|
5352 |
|
|
{
|
5353 |
|
|
target_terminal_ours_for_output ();
|
5354 |
|
|
printf_filtered (_("[Switching to %s]\n"),
|
5355 |
|
|
target_pid_to_str (inferior_ptid));
|
5356 |
|
|
annotate_thread_changed ();
|
5357 |
|
|
previous_inferior_ptid = inferior_ptid;
|
5358 |
|
|
}
|
5359 |
|
|
|
5360 |
|
|
if (!breakpoints_always_inserted_mode () && target_has_execution)
|
5361 |
|
|
{
|
5362 |
|
|
if (remove_breakpoints ())
|
5363 |
|
|
{
|
5364 |
|
|
target_terminal_ours_for_output ();
|
5365 |
|
|
printf_filtered (_("\
|
5366 |
|
|
Cannot remove breakpoints because program is no longer writable.\n\
|
5367 |
|
|
Further execution is probably impossible.\n"));
|
5368 |
|
|
}
|
5369 |
|
|
}
|
5370 |
|
|
|
5371 |
|
|
/* If an auto-display called a function and that got a signal,
|
5372 |
|
|
delete that auto-display to avoid an infinite recursion. */
|
5373 |
|
|
|
5374 |
|
|
if (stopped_by_random_signal)
|
5375 |
|
|
disable_current_display ();
|
5376 |
|
|
|
5377 |
|
|
/* Don't print a message if in the middle of doing a "step n"
|
5378 |
|
|
operation for n > 1 */
|
5379 |
|
|
if (target_has_execution
|
5380 |
|
|
&& last.kind != TARGET_WAITKIND_SIGNALLED
|
5381 |
|
|
&& last.kind != TARGET_WAITKIND_EXITED
|
5382 |
|
|
&& inferior_thread ()->step_multi
|
5383 |
|
|
&& inferior_thread ()->stop_step)
|
5384 |
|
|
goto done;
|
5385 |
|
|
|
5386 |
|
|
target_terminal_ours ();
|
5387 |
|
|
|
5388 |
|
|
/* Set the current source location. This will also happen if we
|
5389 |
|
|
display the frame below, but the current SAL will be incorrect
|
5390 |
|
|
during a user hook-stop function. */
|
5391 |
|
|
if (has_stack_frames () && !stop_stack_dummy)
|
5392 |
|
|
set_current_sal_from_frame (get_current_frame (), 1);
|
5393 |
|
|
|
5394 |
|
|
/* Let the user/frontend see the threads as stopped. */
|
5395 |
|
|
do_cleanups (old_chain);
|
5396 |
|
|
|
5397 |
|
|
/* Look up the hook_stop and run it (CLI internally handles problem
|
5398 |
|
|
of stop_command's pre-hook not existing). */
|
5399 |
|
|
if (stop_command)
|
5400 |
|
|
catch_errors (hook_stop_stub, stop_command,
|
5401 |
|
|
"Error while running hook_stop:\n", RETURN_MASK_ALL);
|
5402 |
|
|
|
5403 |
|
|
if (!has_stack_frames ())
|
5404 |
|
|
goto done;
|
5405 |
|
|
|
5406 |
|
|
if (last.kind == TARGET_WAITKIND_SIGNALLED
|
5407 |
|
|
|| last.kind == TARGET_WAITKIND_EXITED)
|
5408 |
|
|
goto done;
|
5409 |
|
|
|
5410 |
|
|
/* Select innermost stack frame - i.e., current frame is frame 0,
|
5411 |
|
|
and current location is based on that.
|
5412 |
|
|
Don't do this on return from a stack dummy routine,
|
5413 |
|
|
or if the program has exited. */
|
5414 |
|
|
|
5415 |
|
|
if (!stop_stack_dummy)
|
5416 |
|
|
{
|
5417 |
|
|
select_frame (get_current_frame ());
|
5418 |
|
|
|
5419 |
|
|
/* Print current location without a level number, if
|
5420 |
|
|
we have changed functions or hit a breakpoint.
|
5421 |
|
|
Print source line if we have one.
|
5422 |
|
|
bpstat_print() contains the logic deciding in detail
|
5423 |
|
|
what to print, based on the event(s) that just occurred. */
|
5424 |
|
|
|
5425 |
|
|
/* If --batch-silent is enabled then there's no need to print the current
|
5426 |
|
|
source location, and to try risks causing an error message about
|
5427 |
|
|
missing source files. */
|
5428 |
|
|
if (stop_print_frame && !batch_silent)
|
5429 |
|
|
{
|
5430 |
|
|
int bpstat_ret;
|
5431 |
|
|
int source_flag;
|
5432 |
|
|
int do_frame_printing = 1;
|
5433 |
|
|
struct thread_info *tp = inferior_thread ();
|
5434 |
|
|
|
5435 |
|
|
bpstat_ret = bpstat_print (tp->stop_bpstat);
|
5436 |
|
|
switch (bpstat_ret)
|
5437 |
|
|
{
|
5438 |
|
|
case PRINT_UNKNOWN:
|
5439 |
|
|
/* If we had hit a shared library event breakpoint,
|
5440 |
|
|
bpstat_print would print out this message. If we hit
|
5441 |
|
|
an OS-level shared library event, do the same
|
5442 |
|
|
thing. */
|
5443 |
|
|
if (last.kind == TARGET_WAITKIND_LOADED)
|
5444 |
|
|
{
|
5445 |
|
|
printf_filtered (_("Stopped due to shared library event\n"));
|
5446 |
|
|
source_flag = SRC_LINE; /* something bogus */
|
5447 |
|
|
do_frame_printing = 0;
|
5448 |
|
|
break;
|
5449 |
|
|
}
|
5450 |
|
|
|
5451 |
|
|
/* FIXME: cagney/2002-12-01: Given that a frame ID does
|
5452 |
|
|
(or should) carry around the function and does (or
|
5453 |
|
|
should) use that when doing a frame comparison. */
|
5454 |
|
|
if (tp->stop_step
|
5455 |
|
|
&& frame_id_eq (tp->step_frame_id,
|
5456 |
|
|
get_frame_id (get_current_frame ()))
|
5457 |
|
|
&& step_start_function == find_pc_function (stop_pc))
|
5458 |
|
|
source_flag = SRC_LINE; /* finished step, just print source line */
|
5459 |
|
|
else
|
5460 |
|
|
source_flag = SRC_AND_LOC; /* print location and source line */
|
5461 |
|
|
break;
|
5462 |
|
|
case PRINT_SRC_AND_LOC:
|
5463 |
|
|
source_flag = SRC_AND_LOC; /* print location and source line */
|
5464 |
|
|
break;
|
5465 |
|
|
case PRINT_SRC_ONLY:
|
5466 |
|
|
source_flag = SRC_LINE;
|
5467 |
|
|
break;
|
5468 |
|
|
case PRINT_NOTHING:
|
5469 |
|
|
source_flag = SRC_LINE; /* something bogus */
|
5470 |
|
|
do_frame_printing = 0;
|
5471 |
|
|
break;
|
5472 |
|
|
default:
|
5473 |
|
|
internal_error (__FILE__, __LINE__, _("Unknown value."));
|
5474 |
|
|
}
|
5475 |
|
|
|
5476 |
|
|
/* The behavior of this routine with respect to the source
|
5477 |
|
|
flag is:
|
5478 |
|
|
SRC_LINE: Print only source line
|
5479 |
|
|
LOCATION: Print only location
|
5480 |
|
|
SRC_AND_LOC: Print location and source line */
|
5481 |
|
|
if (do_frame_printing)
|
5482 |
|
|
print_stack_frame (get_selected_frame (NULL), 0, source_flag);
|
5483 |
|
|
|
5484 |
|
|
/* Display the auto-display expressions. */
|
5485 |
|
|
do_displays ();
|
5486 |
|
|
}
|
5487 |
|
|
}
|
5488 |
|
|
|
5489 |
|
|
/* Save the function value return registers, if we care.
|
5490 |
|
|
We might be about to restore their previous contents. */
|
5491 |
|
|
if (inferior_thread ()->proceed_to_finish)
|
5492 |
|
|
{
|
5493 |
|
|
/* This should not be necessary. */
|
5494 |
|
|
if (stop_registers)
|
5495 |
|
|
regcache_xfree (stop_registers);
|
5496 |
|
|
|
5497 |
|
|
/* NB: The copy goes through to the target picking up the value of
|
5498 |
|
|
all the registers. */
|
5499 |
|
|
stop_registers = regcache_dup (get_current_regcache ());
|
5500 |
|
|
}
|
5501 |
|
|
|
5502 |
|
|
if (stop_stack_dummy == STOP_STACK_DUMMY)
|
5503 |
|
|
{
|
5504 |
|
|
/* Pop the empty frame that contains the stack dummy.
|
5505 |
|
|
This also restores inferior state prior to the call
|
5506 |
|
|
(struct inferior_thread_state). */
|
5507 |
|
|
struct frame_info *frame = get_current_frame ();
|
5508 |
|
|
|
5509 |
|
|
gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
|
5510 |
|
|
frame_pop (frame);
|
5511 |
|
|
/* frame_pop() calls reinit_frame_cache as the last thing it does
|
5512 |
|
|
which means there's currently no selected frame. We don't need
|
5513 |
|
|
to re-establish a selected frame if the dummy call returns normally,
|
5514 |
|
|
that will be done by restore_inferior_status. However, we do have
|
5515 |
|
|
to handle the case where the dummy call is returning after being
|
5516 |
|
|
stopped (e.g. the dummy call previously hit a breakpoint). We
|
5517 |
|
|
can't know which case we have so just always re-establish a
|
5518 |
|
|
selected frame here. */
|
5519 |
|
|
select_frame (get_current_frame ());
|
5520 |
|
|
}
|
5521 |
|
|
|
5522 |
|
|
done:
|
5523 |
|
|
annotate_stopped ();
|
5524 |
|
|
|
5525 |
|
|
/* Suppress the stop observer if we're in the middle of:
|
5526 |
|
|
|
5527 |
|
|
- a step n (n > 1), as there still more steps to be done.
|
5528 |
|
|
|
5529 |
|
|
- a "finish" command, as the observer will be called in
|
5530 |
|
|
finish_command_continuation, so it can include the inferior
|
5531 |
|
|
function's return value.
|
5532 |
|
|
|
5533 |
|
|
- calling an inferior function, as we pretend we inferior didn't
|
5534 |
|
|
run at all. The return value of the call is handled by the
|
5535 |
|
|
expression evaluator, through call_function_by_hand. */
|
5536 |
|
|
|
5537 |
|
|
if (!target_has_execution
|
5538 |
|
|
|| last.kind == TARGET_WAITKIND_SIGNALLED
|
5539 |
|
|
|| last.kind == TARGET_WAITKIND_EXITED
|
5540 |
|
|
|| (!inferior_thread ()->step_multi
|
5541 |
|
|
&& !(inferior_thread ()->stop_bpstat
|
5542 |
|
|
&& inferior_thread ()->proceed_to_finish)
|
5543 |
|
|
&& !inferior_thread ()->in_infcall))
|
5544 |
|
|
{
|
5545 |
|
|
if (!ptid_equal (inferior_ptid, null_ptid))
|
5546 |
|
|
observer_notify_normal_stop (inferior_thread ()->stop_bpstat,
|
5547 |
|
|
stop_print_frame);
|
5548 |
|
|
else
|
5549 |
|
|
observer_notify_normal_stop (NULL, stop_print_frame);
|
5550 |
|
|
}
|
5551 |
|
|
|
5552 |
|
|
if (target_has_execution)
|
5553 |
|
|
{
|
5554 |
|
|
if (last.kind != TARGET_WAITKIND_SIGNALLED
|
5555 |
|
|
&& last.kind != TARGET_WAITKIND_EXITED)
|
5556 |
|
|
/* Delete the breakpoint we stopped at, if it wants to be deleted.
|
5557 |
|
|
Delete any breakpoint that is to be deleted at the next stop. */
|
5558 |
|
|
breakpoint_auto_delete (inferior_thread ()->stop_bpstat);
|
5559 |
|
|
}
|
5560 |
|
|
|
5561 |
|
|
/* Try to get rid of automatically added inferiors that are no
|
5562 |
|
|
longer needed. Keeping those around slows down things linearly.
|
5563 |
|
|
Note that this never removes the current inferior. */
|
5564 |
|
|
prune_inferiors ();
|
5565 |
|
|
}
|
5566 |
|
|
|
5567 |
|
|
static int
|
5568 |
|
|
hook_stop_stub (void *cmd)
|
5569 |
|
|
{
|
5570 |
|
|
execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
|
5571 |
|
|
return (0);
|
5572 |
|
|
}
|
5573 |
|
|
|
5574 |
|
|
int
|
5575 |
|
|
signal_stop_state (int signo)
|
5576 |
|
|
{
|
5577 |
|
|
return signal_stop[signo];
|
5578 |
|
|
}
|
5579 |
|
|
|
5580 |
|
|
int
|
5581 |
|
|
signal_print_state (int signo)
|
5582 |
|
|
{
|
5583 |
|
|
return signal_print[signo];
|
5584 |
|
|
}
|
5585 |
|
|
|
5586 |
|
|
int
|
5587 |
|
|
signal_pass_state (int signo)
|
5588 |
|
|
{
|
5589 |
|
|
return signal_program[signo];
|
5590 |
|
|
}
|
5591 |
|
|
|
5592 |
|
|
int
|
5593 |
|
|
signal_stop_update (int signo, int state)
|
5594 |
|
|
{
|
5595 |
|
|
int ret = signal_stop[signo];
|
5596 |
|
|
|
5597 |
|
|
signal_stop[signo] = state;
|
5598 |
|
|
return ret;
|
5599 |
|
|
}
|
5600 |
|
|
|
5601 |
|
|
int
|
5602 |
|
|
signal_print_update (int signo, int state)
|
5603 |
|
|
{
|
5604 |
|
|
int ret = signal_print[signo];
|
5605 |
|
|
|
5606 |
|
|
signal_print[signo] = state;
|
5607 |
|
|
return ret;
|
5608 |
|
|
}
|
5609 |
|
|
|
5610 |
|
|
int
|
5611 |
|
|
signal_pass_update (int signo, int state)
|
5612 |
|
|
{
|
5613 |
|
|
int ret = signal_program[signo];
|
5614 |
|
|
|
5615 |
|
|
signal_program[signo] = state;
|
5616 |
|
|
return ret;
|
5617 |
|
|
}
|
5618 |
|
|
|
5619 |
|
|
static void
|
5620 |
|
|
sig_print_header (void)
|
5621 |
|
|
{
|
5622 |
|
|
printf_filtered (_("\
|
5623 |
|
|
Signal Stop\tPrint\tPass to program\tDescription\n"));
|
5624 |
|
|
}
|
5625 |
|
|
|
5626 |
|
|
static void
|
5627 |
|
|
sig_print_info (enum target_signal oursig)
|
5628 |
|
|
{
|
5629 |
|
|
const char *name = target_signal_to_name (oursig);
|
5630 |
|
|
int name_padding = 13 - strlen (name);
|
5631 |
|
|
|
5632 |
|
|
if (name_padding <= 0)
|
5633 |
|
|
name_padding = 0;
|
5634 |
|
|
|
5635 |
|
|
printf_filtered ("%s", name);
|
5636 |
|
|
printf_filtered ("%*.*s ", name_padding, name_padding, " ");
|
5637 |
|
|
printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
|
5638 |
|
|
printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
|
5639 |
|
|
printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
|
5640 |
|
|
printf_filtered ("%s\n", target_signal_to_string (oursig));
|
5641 |
|
|
}
|
5642 |
|
|
|
5643 |
|
|
/* Specify how various signals in the inferior should be handled. */
|
5644 |
|
|
|
5645 |
|
|
static void
|
5646 |
|
|
handle_command (char *args, int from_tty)
|
5647 |
|
|
{
|
5648 |
|
|
char **argv;
|
5649 |
|
|
int digits, wordlen;
|
5650 |
|
|
int sigfirst, signum, siglast;
|
5651 |
|
|
enum target_signal oursig;
|
5652 |
|
|
int allsigs;
|
5653 |
|
|
int nsigs;
|
5654 |
|
|
unsigned char *sigs;
|
5655 |
|
|
struct cleanup *old_chain;
|
5656 |
|
|
|
5657 |
|
|
if (args == NULL)
|
5658 |
|
|
{
|
5659 |
|
|
error_no_arg (_("signal to handle"));
|
5660 |
|
|
}
|
5661 |
|
|
|
5662 |
|
|
/* Allocate and zero an array of flags for which signals to handle. */
|
5663 |
|
|
|
5664 |
|
|
nsigs = (int) TARGET_SIGNAL_LAST;
|
5665 |
|
|
sigs = (unsigned char *) alloca (nsigs);
|
5666 |
|
|
memset (sigs, 0, nsigs);
|
5667 |
|
|
|
5668 |
|
|
/* Break the command line up into args. */
|
5669 |
|
|
|
5670 |
|
|
argv = gdb_buildargv (args);
|
5671 |
|
|
old_chain = make_cleanup_freeargv (argv);
|
5672 |
|
|
|
5673 |
|
|
/* Walk through the args, looking for signal oursigs, signal names, and
|
5674 |
|
|
actions. Signal numbers and signal names may be interspersed with
|
5675 |
|
|
actions, with the actions being performed for all signals cumulatively
|
5676 |
|
|
specified. Signal ranges can be specified as <LOW>-<HIGH>. */
|
5677 |
|
|
|
5678 |
|
|
while (*argv != NULL)
|
5679 |
|
|
{
|
5680 |
|
|
wordlen = strlen (*argv);
|
5681 |
|
|
for (digits = 0; isdigit ((*argv)[digits]); digits++)
|
5682 |
|
|
{;
|
5683 |
|
|
}
|
5684 |
|
|
allsigs = 0;
|
5685 |
|
|
sigfirst = siglast = -1;
|
5686 |
|
|
|
5687 |
|
|
if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
|
5688 |
|
|
{
|
5689 |
|
|
/* Apply action to all signals except those used by the
|
5690 |
|
|
debugger. Silently skip those. */
|
5691 |
|
|
allsigs = 1;
|
5692 |
|
|
sigfirst = 0;
|
5693 |
|
|
siglast = nsigs - 1;
|
5694 |
|
|
}
|
5695 |
|
|
else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
|
5696 |
|
|
{
|
5697 |
|
|
SET_SIGS (nsigs, sigs, signal_stop);
|
5698 |
|
|
SET_SIGS (nsigs, sigs, signal_print);
|
5699 |
|
|
}
|
5700 |
|
|
else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
|
5701 |
|
|
{
|
5702 |
|
|
UNSET_SIGS (nsigs, sigs, signal_program);
|
5703 |
|
|
}
|
5704 |
|
|
else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
|
5705 |
|
|
{
|
5706 |
|
|
SET_SIGS (nsigs, sigs, signal_print);
|
5707 |
|
|
}
|
5708 |
|
|
else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
|
5709 |
|
|
{
|
5710 |
|
|
SET_SIGS (nsigs, sigs, signal_program);
|
5711 |
|
|
}
|
5712 |
|
|
else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
|
5713 |
|
|
{
|
5714 |
|
|
UNSET_SIGS (nsigs, sigs, signal_stop);
|
5715 |
|
|
}
|
5716 |
|
|
else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
|
5717 |
|
|
{
|
5718 |
|
|
SET_SIGS (nsigs, sigs, signal_program);
|
5719 |
|
|
}
|
5720 |
|
|
else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
|
5721 |
|
|
{
|
5722 |
|
|
UNSET_SIGS (nsigs, sigs, signal_print);
|
5723 |
|
|
UNSET_SIGS (nsigs, sigs, signal_stop);
|
5724 |
|
|
}
|
5725 |
|
|
else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
|
5726 |
|
|
{
|
5727 |
|
|
UNSET_SIGS (nsigs, sigs, signal_program);
|
5728 |
|
|
}
|
5729 |
|
|
else if (digits > 0)
|
5730 |
|
|
{
|
5731 |
|
|
/* It is numeric. The numeric signal refers to our own
|
5732 |
|
|
internal signal numbering from target.h, not to host/target
|
5733 |
|
|
signal number. This is a feature; users really should be
|
5734 |
|
|
using symbolic names anyway, and the common ones like
|
5735 |
|
|
SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
|
5736 |
|
|
|
5737 |
|
|
sigfirst = siglast = (int)
|
5738 |
|
|
target_signal_from_command (atoi (*argv));
|
5739 |
|
|
if ((*argv)[digits] == '-')
|
5740 |
|
|
{
|
5741 |
|
|
siglast = (int)
|
5742 |
|
|
target_signal_from_command (atoi ((*argv) + digits + 1));
|
5743 |
|
|
}
|
5744 |
|
|
if (sigfirst > siglast)
|
5745 |
|
|
{
|
5746 |
|
|
/* Bet he didn't figure we'd think of this case... */
|
5747 |
|
|
signum = sigfirst;
|
5748 |
|
|
sigfirst = siglast;
|
5749 |
|
|
siglast = signum;
|
5750 |
|
|
}
|
5751 |
|
|
}
|
5752 |
|
|
else
|
5753 |
|
|
{
|
5754 |
|
|
oursig = target_signal_from_name (*argv);
|
5755 |
|
|
if (oursig != TARGET_SIGNAL_UNKNOWN)
|
5756 |
|
|
{
|
5757 |
|
|
sigfirst = siglast = (int) oursig;
|
5758 |
|
|
}
|
5759 |
|
|
else
|
5760 |
|
|
{
|
5761 |
|
|
/* Not a number and not a recognized flag word => complain. */
|
5762 |
|
|
error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv);
|
5763 |
|
|
}
|
5764 |
|
|
}
|
5765 |
|
|
|
5766 |
|
|
/* If any signal numbers or symbol names were found, set flags for
|
5767 |
|
|
which signals to apply actions to. */
|
5768 |
|
|
|
5769 |
|
|
for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
|
5770 |
|
|
{
|
5771 |
|
|
switch ((enum target_signal) signum)
|
5772 |
|
|
{
|
5773 |
|
|
case TARGET_SIGNAL_TRAP:
|
5774 |
|
|
case TARGET_SIGNAL_INT:
|
5775 |
|
|
if (!allsigs && !sigs[signum])
|
5776 |
|
|
{
|
5777 |
|
|
if (query (_("%s is used by the debugger.\n\
|
5778 |
|
|
Are you sure you want to change it? "), target_signal_to_name ((enum target_signal) signum)))
|
5779 |
|
|
{
|
5780 |
|
|
sigs[signum] = 1;
|
5781 |
|
|
}
|
5782 |
|
|
else
|
5783 |
|
|
{
|
5784 |
|
|
printf_unfiltered (_("Not confirmed, unchanged.\n"));
|
5785 |
|
|
gdb_flush (gdb_stdout);
|
5786 |
|
|
}
|
5787 |
|
|
}
|
5788 |
|
|
break;
|
5789 |
|
|
case TARGET_SIGNAL_0:
|
5790 |
|
|
case TARGET_SIGNAL_DEFAULT:
|
5791 |
|
|
case TARGET_SIGNAL_UNKNOWN:
|
5792 |
|
|
/* Make sure that "all" doesn't print these. */
|
5793 |
|
|
break;
|
5794 |
|
|
default:
|
5795 |
|
|
sigs[signum] = 1;
|
5796 |
|
|
break;
|
5797 |
|
|
}
|
5798 |
|
|
}
|
5799 |
|
|
|
5800 |
|
|
argv++;
|
5801 |
|
|
}
|
5802 |
|
|
|
5803 |
|
|
for (signum = 0; signum < nsigs; signum++)
|
5804 |
|
|
if (sigs[signum])
|
5805 |
|
|
{
|
5806 |
|
|
target_notice_signals (inferior_ptid);
|
5807 |
|
|
|
5808 |
|
|
if (from_tty)
|
5809 |
|
|
{
|
5810 |
|
|
/* Show the results. */
|
5811 |
|
|
sig_print_header ();
|
5812 |
|
|
for (; signum < nsigs; signum++)
|
5813 |
|
|
if (sigs[signum])
|
5814 |
|
|
sig_print_info (signum);
|
5815 |
|
|
}
|
5816 |
|
|
|
5817 |
|
|
break;
|
5818 |
|
|
}
|
5819 |
|
|
|
5820 |
|
|
do_cleanups (old_chain);
|
5821 |
|
|
}
|
5822 |
|
|
|
5823 |
|
|
static void
|
5824 |
|
|
xdb_handle_command (char *args, int from_tty)
|
5825 |
|
|
{
|
5826 |
|
|
char **argv;
|
5827 |
|
|
struct cleanup *old_chain;
|
5828 |
|
|
|
5829 |
|
|
if (args == NULL)
|
5830 |
|
|
error_no_arg (_("xdb command"));
|
5831 |
|
|
|
5832 |
|
|
/* Break the command line up into args. */
|
5833 |
|
|
|
5834 |
|
|
argv = gdb_buildargv (args);
|
5835 |
|
|
old_chain = make_cleanup_freeargv (argv);
|
5836 |
|
|
if (argv[1] != (char *) NULL)
|
5837 |
|
|
{
|
5838 |
|
|
char *argBuf;
|
5839 |
|
|
int bufLen;
|
5840 |
|
|
|
5841 |
|
|
bufLen = strlen (argv[0]) + 20;
|
5842 |
|
|
argBuf = (char *) xmalloc (bufLen);
|
5843 |
|
|
if (argBuf)
|
5844 |
|
|
{
|
5845 |
|
|
int validFlag = 1;
|
5846 |
|
|
enum target_signal oursig;
|
5847 |
|
|
|
5848 |
|
|
oursig = target_signal_from_name (argv[0]);
|
5849 |
|
|
memset (argBuf, 0, bufLen);
|
5850 |
|
|
if (strcmp (argv[1], "Q") == 0)
|
5851 |
|
|
sprintf (argBuf, "%s %s", argv[0], "noprint");
|
5852 |
|
|
else
|
5853 |
|
|
{
|
5854 |
|
|
if (strcmp (argv[1], "s") == 0)
|
5855 |
|
|
{
|
5856 |
|
|
if (!signal_stop[oursig])
|
5857 |
|
|
sprintf (argBuf, "%s %s", argv[0], "stop");
|
5858 |
|
|
else
|
5859 |
|
|
sprintf (argBuf, "%s %s", argv[0], "nostop");
|
5860 |
|
|
}
|
5861 |
|
|
else if (strcmp (argv[1], "i") == 0)
|
5862 |
|
|
{
|
5863 |
|
|
if (!signal_program[oursig])
|
5864 |
|
|
sprintf (argBuf, "%s %s", argv[0], "pass");
|
5865 |
|
|
else
|
5866 |
|
|
sprintf (argBuf, "%s %s", argv[0], "nopass");
|
5867 |
|
|
}
|
5868 |
|
|
else if (strcmp (argv[1], "r") == 0)
|
5869 |
|
|
{
|
5870 |
|
|
if (!signal_print[oursig])
|
5871 |
|
|
sprintf (argBuf, "%s %s", argv[0], "print");
|
5872 |
|
|
else
|
5873 |
|
|
sprintf (argBuf, "%s %s", argv[0], "noprint");
|
5874 |
|
|
}
|
5875 |
|
|
else
|
5876 |
|
|
validFlag = 0;
|
5877 |
|
|
}
|
5878 |
|
|
if (validFlag)
|
5879 |
|
|
handle_command (argBuf, from_tty);
|
5880 |
|
|
else
|
5881 |
|
|
printf_filtered (_("Invalid signal handling flag.\n"));
|
5882 |
|
|
if (argBuf)
|
5883 |
|
|
xfree (argBuf);
|
5884 |
|
|
}
|
5885 |
|
|
}
|
5886 |
|
|
do_cleanups (old_chain);
|
5887 |
|
|
}
|
5888 |
|
|
|
5889 |
|
|
/* Print current contents of the tables set by the handle command.
|
5890 |
|
|
It is possible we should just be printing signals actually used
|
5891 |
|
|
by the current target (but for things to work right when switching
|
5892 |
|
|
targets, all signals should be in the signal tables). */
|
5893 |
|
|
|
5894 |
|
|
static void
|
5895 |
|
|
signals_info (char *signum_exp, int from_tty)
|
5896 |
|
|
{
|
5897 |
|
|
enum target_signal oursig;
|
5898 |
|
|
|
5899 |
|
|
sig_print_header ();
|
5900 |
|
|
|
5901 |
|
|
if (signum_exp)
|
5902 |
|
|
{
|
5903 |
|
|
/* First see if this is a symbol name. */
|
5904 |
|
|
oursig = target_signal_from_name (signum_exp);
|
5905 |
|
|
if (oursig == TARGET_SIGNAL_UNKNOWN)
|
5906 |
|
|
{
|
5907 |
|
|
/* No, try numeric. */
|
5908 |
|
|
oursig =
|
5909 |
|
|
target_signal_from_command (parse_and_eval_long (signum_exp));
|
5910 |
|
|
}
|
5911 |
|
|
sig_print_info (oursig);
|
5912 |
|
|
return;
|
5913 |
|
|
}
|
5914 |
|
|
|
5915 |
|
|
printf_filtered ("\n");
|
5916 |
|
|
/* These ugly casts brought to you by the native VAX compiler. */
|
5917 |
|
|
for (oursig = TARGET_SIGNAL_FIRST;
|
5918 |
|
|
(int) oursig < (int) TARGET_SIGNAL_LAST;
|
5919 |
|
|
oursig = (enum target_signal) ((int) oursig + 1))
|
5920 |
|
|
{
|
5921 |
|
|
QUIT;
|
5922 |
|
|
|
5923 |
|
|
if (oursig != TARGET_SIGNAL_UNKNOWN
|
5924 |
|
|
&& oursig != TARGET_SIGNAL_DEFAULT && oursig != TARGET_SIGNAL_0)
|
5925 |
|
|
sig_print_info (oursig);
|
5926 |
|
|
}
|
5927 |
|
|
|
5928 |
|
|
printf_filtered (_("\nUse the \"handle\" command to change these tables.\n"));
|
5929 |
|
|
}
|
5930 |
|
|
|
5931 |
|
|
/* The $_siginfo convenience variable is a bit special. We don't know
|
5932 |
|
|
for sure the type of the value until we actually have a chance to
|
5933 |
|
|
fetch the data. The type can change depending on gdbarch, so it it
|
5934 |
|
|
also dependent on which thread you have selected.
|
5935 |
|
|
|
5936 |
|
|
1. making $_siginfo be an internalvar that creates a new value on
|
5937 |
|
|
access.
|
5938 |
|
|
|
5939 |
|
|
2. making the value of $_siginfo be an lval_computed value. */
|
5940 |
|
|
|
5941 |
|
|
/* This function implements the lval_computed support for reading a
|
5942 |
|
|
$_siginfo value. */
|
5943 |
|
|
|
5944 |
|
|
static void
|
5945 |
|
|
siginfo_value_read (struct value *v)
|
5946 |
|
|
{
|
5947 |
|
|
LONGEST transferred;
|
5948 |
|
|
|
5949 |
|
|
transferred =
|
5950 |
|
|
target_read (¤t_target, TARGET_OBJECT_SIGNAL_INFO,
|
5951 |
|
|
NULL,
|
5952 |
|
|
value_contents_all_raw (v),
|
5953 |
|
|
value_offset (v),
|
5954 |
|
|
TYPE_LENGTH (value_type (v)));
|
5955 |
|
|
|
5956 |
|
|
if (transferred != TYPE_LENGTH (value_type (v)))
|
5957 |
|
|
error (_("Unable to read siginfo"));
|
5958 |
|
|
}
|
5959 |
|
|
|
5960 |
|
|
/* This function implements the lval_computed support for writing a
|
5961 |
|
|
$_siginfo value. */
|
5962 |
|
|
|
5963 |
|
|
static void
|
5964 |
|
|
siginfo_value_write (struct value *v, struct value *fromval)
|
5965 |
|
|
{
|
5966 |
|
|
LONGEST transferred;
|
5967 |
|
|
|
5968 |
|
|
transferred = target_write (¤t_target,
|
5969 |
|
|
TARGET_OBJECT_SIGNAL_INFO,
|
5970 |
|
|
NULL,
|
5971 |
|
|
value_contents_all_raw (fromval),
|
5972 |
|
|
value_offset (v),
|
5973 |
|
|
TYPE_LENGTH (value_type (fromval)));
|
5974 |
|
|
|
5975 |
|
|
if (transferred != TYPE_LENGTH (value_type (fromval)))
|
5976 |
|
|
error (_("Unable to write siginfo"));
|
5977 |
|
|
}
|
5978 |
|
|
|
5979 |
|
|
static struct lval_funcs siginfo_value_funcs =
|
5980 |
|
|
{
|
5981 |
|
|
siginfo_value_read,
|
5982 |
|
|
siginfo_value_write
|
5983 |
|
|
};
|
5984 |
|
|
|
5985 |
|
|
/* Return a new value with the correct type for the siginfo object of
|
5986 |
|
|
the current thread using architecture GDBARCH. Return a void value
|
5987 |
|
|
if there's no object available. */
|
5988 |
|
|
|
5989 |
|
|
static struct value *
|
5990 |
|
|
siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var)
|
5991 |
|
|
{
|
5992 |
|
|
if (target_has_stack
|
5993 |
|
|
&& !ptid_equal (inferior_ptid, null_ptid)
|
5994 |
|
|
&& gdbarch_get_siginfo_type_p (gdbarch))
|
5995 |
|
|
{
|
5996 |
|
|
struct type *type = gdbarch_get_siginfo_type (gdbarch);
|
5997 |
|
|
|
5998 |
|
|
return allocate_computed_value (type, &siginfo_value_funcs, NULL);
|
5999 |
|
|
}
|
6000 |
|
|
|
6001 |
|
|
return allocate_value (builtin_type (gdbarch)->builtin_void);
|
6002 |
|
|
}
|
6003 |
|
|
|
6004 |
|
|
|
6005 |
|
|
/* Inferior thread state.
|
6006 |
|
|
These are details related to the inferior itself, and don't include
|
6007 |
|
|
things like what frame the user had selected or what gdb was doing
|
6008 |
|
|
with the target at the time.
|
6009 |
|
|
For inferior function calls these are things we want to restore
|
6010 |
|
|
regardless of whether the function call successfully completes
|
6011 |
|
|
or the dummy frame has to be manually popped. */
|
6012 |
|
|
|
6013 |
|
|
struct inferior_thread_state
|
6014 |
|
|
{
|
6015 |
|
|
enum target_signal stop_signal;
|
6016 |
|
|
CORE_ADDR stop_pc;
|
6017 |
|
|
struct regcache *registers;
|
6018 |
|
|
};
|
6019 |
|
|
|
6020 |
|
|
struct inferior_thread_state *
|
6021 |
|
|
save_inferior_thread_state (void)
|
6022 |
|
|
{
|
6023 |
|
|
struct inferior_thread_state *inf_state = XMALLOC (struct inferior_thread_state);
|
6024 |
|
|
struct thread_info *tp = inferior_thread ();
|
6025 |
|
|
|
6026 |
|
|
inf_state->stop_signal = tp->stop_signal;
|
6027 |
|
|
inf_state->stop_pc = stop_pc;
|
6028 |
|
|
|
6029 |
|
|
inf_state->registers = regcache_dup (get_current_regcache ());
|
6030 |
|
|
|
6031 |
|
|
return inf_state;
|
6032 |
|
|
}
|
6033 |
|
|
|
6034 |
|
|
/* Restore inferior session state to INF_STATE. */
|
6035 |
|
|
|
6036 |
|
|
void
|
6037 |
|
|
restore_inferior_thread_state (struct inferior_thread_state *inf_state)
|
6038 |
|
|
{
|
6039 |
|
|
struct thread_info *tp = inferior_thread ();
|
6040 |
|
|
|
6041 |
|
|
tp->stop_signal = inf_state->stop_signal;
|
6042 |
|
|
stop_pc = inf_state->stop_pc;
|
6043 |
|
|
|
6044 |
|
|
/* The inferior can be gone if the user types "print exit(0)"
|
6045 |
|
|
(and perhaps other times). */
|
6046 |
|
|
if (target_has_execution)
|
6047 |
|
|
/* NB: The register write goes through to the target. */
|
6048 |
|
|
regcache_cpy (get_current_regcache (), inf_state->registers);
|
6049 |
|
|
regcache_xfree (inf_state->registers);
|
6050 |
|
|
xfree (inf_state);
|
6051 |
|
|
}
|
6052 |
|
|
|
6053 |
|
|
static void
|
6054 |
|
|
do_restore_inferior_thread_state_cleanup (void *state)
|
6055 |
|
|
{
|
6056 |
|
|
restore_inferior_thread_state (state);
|
6057 |
|
|
}
|
6058 |
|
|
|
6059 |
|
|
struct cleanup *
|
6060 |
|
|
make_cleanup_restore_inferior_thread_state (struct inferior_thread_state *inf_state)
|
6061 |
|
|
{
|
6062 |
|
|
return make_cleanup (do_restore_inferior_thread_state_cleanup, inf_state);
|
6063 |
|
|
}
|
6064 |
|
|
|
6065 |
|
|
void
|
6066 |
|
|
discard_inferior_thread_state (struct inferior_thread_state *inf_state)
|
6067 |
|
|
{
|
6068 |
|
|
regcache_xfree (inf_state->registers);
|
6069 |
|
|
xfree (inf_state);
|
6070 |
|
|
}
|
6071 |
|
|
|
6072 |
|
|
struct regcache *
|
6073 |
|
|
get_inferior_thread_state_regcache (struct inferior_thread_state *inf_state)
|
6074 |
|
|
{
|
6075 |
|
|
return inf_state->registers;
|
6076 |
|
|
}
|
6077 |
|
|
|
6078 |
|
|
/* Session related state for inferior function calls.
|
6079 |
|
|
These are the additional bits of state that need to be restored
|
6080 |
|
|
when an inferior function call successfully completes. */
|
6081 |
|
|
|
6082 |
|
|
struct inferior_status
|
6083 |
|
|
{
|
6084 |
|
|
bpstat stop_bpstat;
|
6085 |
|
|
int stop_step;
|
6086 |
|
|
enum stop_stack_kind stop_stack_dummy;
|
6087 |
|
|
int stopped_by_random_signal;
|
6088 |
|
|
int stepping_over_breakpoint;
|
6089 |
|
|
CORE_ADDR step_range_start;
|
6090 |
|
|
CORE_ADDR step_range_end;
|
6091 |
|
|
struct frame_id step_frame_id;
|
6092 |
|
|
struct frame_id step_stack_frame_id;
|
6093 |
|
|
enum step_over_calls_kind step_over_calls;
|
6094 |
|
|
CORE_ADDR step_resume_break_address;
|
6095 |
|
|
int stop_after_trap;
|
6096 |
|
|
int stop_soon;
|
6097 |
|
|
|
6098 |
|
|
/* ID if the selected frame when the inferior function call was made. */
|
6099 |
|
|
struct frame_id selected_frame_id;
|
6100 |
|
|
|
6101 |
|
|
int proceed_to_finish;
|
6102 |
|
|
int in_infcall;
|
6103 |
|
|
};
|
6104 |
|
|
|
6105 |
|
|
/* Save all of the information associated with the inferior<==>gdb
|
6106 |
|
|
connection. */
|
6107 |
|
|
|
6108 |
|
|
struct inferior_status *
|
6109 |
|
|
save_inferior_status (void)
|
6110 |
|
|
{
|
6111 |
|
|
struct inferior_status *inf_status = XMALLOC (struct inferior_status);
|
6112 |
|
|
struct thread_info *tp = inferior_thread ();
|
6113 |
|
|
struct inferior *inf = current_inferior ();
|
6114 |
|
|
|
6115 |
|
|
inf_status->stop_step = tp->stop_step;
|
6116 |
|
|
inf_status->stop_stack_dummy = stop_stack_dummy;
|
6117 |
|
|
inf_status->stopped_by_random_signal = stopped_by_random_signal;
|
6118 |
|
|
inf_status->stepping_over_breakpoint = tp->trap_expected;
|
6119 |
|
|
inf_status->step_range_start = tp->step_range_start;
|
6120 |
|
|
inf_status->step_range_end = tp->step_range_end;
|
6121 |
|
|
inf_status->step_frame_id = tp->step_frame_id;
|
6122 |
|
|
inf_status->step_stack_frame_id = tp->step_stack_frame_id;
|
6123 |
|
|
inf_status->step_over_calls = tp->step_over_calls;
|
6124 |
|
|
inf_status->stop_after_trap = stop_after_trap;
|
6125 |
|
|
inf_status->stop_soon = inf->stop_soon;
|
6126 |
|
|
/* Save original bpstat chain here; replace it with copy of chain.
|
6127 |
|
|
If caller's caller is walking the chain, they'll be happier if we
|
6128 |
|
|
hand them back the original chain when restore_inferior_status is
|
6129 |
|
|
called. */
|
6130 |
|
|
inf_status->stop_bpstat = tp->stop_bpstat;
|
6131 |
|
|
tp->stop_bpstat = bpstat_copy (tp->stop_bpstat);
|
6132 |
|
|
inf_status->proceed_to_finish = tp->proceed_to_finish;
|
6133 |
|
|
inf_status->in_infcall = tp->in_infcall;
|
6134 |
|
|
|
6135 |
|
|
inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
|
6136 |
|
|
|
6137 |
|
|
return inf_status;
|
6138 |
|
|
}
|
6139 |
|
|
|
6140 |
|
|
static int
|
6141 |
|
|
restore_selected_frame (void *args)
|
6142 |
|
|
{
|
6143 |
|
|
struct frame_id *fid = (struct frame_id *) args;
|
6144 |
|
|
struct frame_info *frame;
|
6145 |
|
|
|
6146 |
|
|
frame = frame_find_by_id (*fid);
|
6147 |
|
|
|
6148 |
|
|
/* If inf_status->selected_frame_id is NULL, there was no previously
|
6149 |
|
|
selected frame. */
|
6150 |
|
|
if (frame == NULL)
|
6151 |
|
|
{
|
6152 |
|
|
warning (_("Unable to restore previously selected frame."));
|
6153 |
|
|
return 0;
|
6154 |
|
|
}
|
6155 |
|
|
|
6156 |
|
|
select_frame (frame);
|
6157 |
|
|
|
6158 |
|
|
return (1);
|
6159 |
|
|
}
|
6160 |
|
|
|
6161 |
|
|
/* Restore inferior session state to INF_STATUS. */
|
6162 |
|
|
|
6163 |
|
|
void
|
6164 |
|
|
restore_inferior_status (struct inferior_status *inf_status)
|
6165 |
|
|
{
|
6166 |
|
|
struct thread_info *tp = inferior_thread ();
|
6167 |
|
|
struct inferior *inf = current_inferior ();
|
6168 |
|
|
|
6169 |
|
|
tp->stop_step = inf_status->stop_step;
|
6170 |
|
|
stop_stack_dummy = inf_status->stop_stack_dummy;
|
6171 |
|
|
stopped_by_random_signal = inf_status->stopped_by_random_signal;
|
6172 |
|
|
tp->trap_expected = inf_status->stepping_over_breakpoint;
|
6173 |
|
|
tp->step_range_start = inf_status->step_range_start;
|
6174 |
|
|
tp->step_range_end = inf_status->step_range_end;
|
6175 |
|
|
tp->step_frame_id = inf_status->step_frame_id;
|
6176 |
|
|
tp->step_stack_frame_id = inf_status->step_stack_frame_id;
|
6177 |
|
|
tp->step_over_calls = inf_status->step_over_calls;
|
6178 |
|
|
stop_after_trap = inf_status->stop_after_trap;
|
6179 |
|
|
inf->stop_soon = inf_status->stop_soon;
|
6180 |
|
|
bpstat_clear (&tp->stop_bpstat);
|
6181 |
|
|
tp->stop_bpstat = inf_status->stop_bpstat;
|
6182 |
|
|
inf_status->stop_bpstat = NULL;
|
6183 |
|
|
tp->proceed_to_finish = inf_status->proceed_to_finish;
|
6184 |
|
|
tp->in_infcall = inf_status->in_infcall;
|
6185 |
|
|
|
6186 |
|
|
if (target_has_stack)
|
6187 |
|
|
{
|
6188 |
|
|
/* The point of catch_errors is that if the stack is clobbered,
|
6189 |
|
|
walking the stack might encounter a garbage pointer and
|
6190 |
|
|
error() trying to dereference it. */
|
6191 |
|
|
if (catch_errors
|
6192 |
|
|
(restore_selected_frame, &inf_status->selected_frame_id,
|
6193 |
|
|
"Unable to restore previously selected frame:\n",
|
6194 |
|
|
RETURN_MASK_ERROR) == 0)
|
6195 |
|
|
/* Error in restoring the selected frame. Select the innermost
|
6196 |
|
|
frame. */
|
6197 |
|
|
select_frame (get_current_frame ());
|
6198 |
|
|
}
|
6199 |
|
|
|
6200 |
|
|
xfree (inf_status);
|
6201 |
|
|
}
|
6202 |
|
|
|
6203 |
|
|
static void
|
6204 |
|
|
do_restore_inferior_status_cleanup (void *sts)
|
6205 |
|
|
{
|
6206 |
|
|
restore_inferior_status (sts);
|
6207 |
|
|
}
|
6208 |
|
|
|
6209 |
|
|
struct cleanup *
|
6210 |
|
|
make_cleanup_restore_inferior_status (struct inferior_status *inf_status)
|
6211 |
|
|
{
|
6212 |
|
|
return make_cleanup (do_restore_inferior_status_cleanup, inf_status);
|
6213 |
|
|
}
|
6214 |
|
|
|
6215 |
|
|
void
|
6216 |
|
|
discard_inferior_status (struct inferior_status *inf_status)
|
6217 |
|
|
{
|
6218 |
|
|
/* See save_inferior_status for info on stop_bpstat. */
|
6219 |
|
|
bpstat_clear (&inf_status->stop_bpstat);
|
6220 |
|
|
xfree (inf_status);
|
6221 |
|
|
}
|
6222 |
|
|
|
6223 |
|
|
int
|
6224 |
|
|
inferior_has_forked (ptid_t pid, ptid_t *child_pid)
|
6225 |
|
|
{
|
6226 |
|
|
struct target_waitstatus last;
|
6227 |
|
|
ptid_t last_ptid;
|
6228 |
|
|
|
6229 |
|
|
get_last_target_status (&last_ptid, &last);
|
6230 |
|
|
|
6231 |
|
|
if (last.kind != TARGET_WAITKIND_FORKED)
|
6232 |
|
|
return 0;
|
6233 |
|
|
|
6234 |
|
|
if (!ptid_equal (last_ptid, pid))
|
6235 |
|
|
return 0;
|
6236 |
|
|
|
6237 |
|
|
*child_pid = last.value.related_pid;
|
6238 |
|
|
return 1;
|
6239 |
|
|
}
|
6240 |
|
|
|
6241 |
|
|
int
|
6242 |
|
|
inferior_has_vforked (ptid_t pid, ptid_t *child_pid)
|
6243 |
|
|
{
|
6244 |
|
|
struct target_waitstatus last;
|
6245 |
|
|
ptid_t last_ptid;
|
6246 |
|
|
|
6247 |
|
|
get_last_target_status (&last_ptid, &last);
|
6248 |
|
|
|
6249 |
|
|
if (last.kind != TARGET_WAITKIND_VFORKED)
|
6250 |
|
|
return 0;
|
6251 |
|
|
|
6252 |
|
|
if (!ptid_equal (last_ptid, pid))
|
6253 |
|
|
return 0;
|
6254 |
|
|
|
6255 |
|
|
*child_pid = last.value.related_pid;
|
6256 |
|
|
return 1;
|
6257 |
|
|
}
|
6258 |
|
|
|
6259 |
|
|
int
|
6260 |
|
|
inferior_has_execd (ptid_t pid, char **execd_pathname)
|
6261 |
|
|
{
|
6262 |
|
|
struct target_waitstatus last;
|
6263 |
|
|
ptid_t last_ptid;
|
6264 |
|
|
|
6265 |
|
|
get_last_target_status (&last_ptid, &last);
|
6266 |
|
|
|
6267 |
|
|
if (last.kind != TARGET_WAITKIND_EXECD)
|
6268 |
|
|
return 0;
|
6269 |
|
|
|
6270 |
|
|
if (!ptid_equal (last_ptid, pid))
|
6271 |
|
|
return 0;
|
6272 |
|
|
|
6273 |
|
|
*execd_pathname = xstrdup (last.value.execd_pathname);
|
6274 |
|
|
return 1;
|
6275 |
|
|
}
|
6276 |
|
|
|
6277 |
|
|
int
|
6278 |
|
|
inferior_has_called_syscall (ptid_t pid, int *syscall_number)
|
6279 |
|
|
{
|
6280 |
|
|
struct target_waitstatus last;
|
6281 |
|
|
ptid_t last_ptid;
|
6282 |
|
|
|
6283 |
|
|
get_last_target_status (&last_ptid, &last);
|
6284 |
|
|
|
6285 |
|
|
if (last.kind != TARGET_WAITKIND_SYSCALL_ENTRY &&
|
6286 |
|
|
last.kind != TARGET_WAITKIND_SYSCALL_RETURN)
|
6287 |
|
|
return 0;
|
6288 |
|
|
|
6289 |
|
|
if (!ptid_equal (last_ptid, pid))
|
6290 |
|
|
return 0;
|
6291 |
|
|
|
6292 |
|
|
*syscall_number = last.value.syscall_number;
|
6293 |
|
|
return 1;
|
6294 |
|
|
}
|
6295 |
|
|
|
6296 |
|
|
/* Oft used ptids */
|
6297 |
|
|
ptid_t null_ptid;
|
6298 |
|
|
ptid_t minus_one_ptid;
|
6299 |
|
|
|
6300 |
|
|
/* Create a ptid given the necessary PID, LWP, and TID components. */
|
6301 |
|
|
|
6302 |
|
|
ptid_t
|
6303 |
|
|
ptid_build (int pid, long lwp, long tid)
|
6304 |
|
|
{
|
6305 |
|
|
ptid_t ptid;
|
6306 |
|
|
|
6307 |
|
|
ptid.pid = pid;
|
6308 |
|
|
ptid.lwp = lwp;
|
6309 |
|
|
ptid.tid = tid;
|
6310 |
|
|
return ptid;
|
6311 |
|
|
}
|
6312 |
|
|
|
6313 |
|
|
/* Create a ptid from just a pid. */
|
6314 |
|
|
|
6315 |
|
|
ptid_t
|
6316 |
|
|
pid_to_ptid (int pid)
|
6317 |
|
|
{
|
6318 |
|
|
return ptid_build (pid, 0, 0);
|
6319 |
|
|
}
|
6320 |
|
|
|
6321 |
|
|
/* Fetch the pid (process id) component from a ptid. */
|
6322 |
|
|
|
6323 |
|
|
int
|
6324 |
|
|
ptid_get_pid (ptid_t ptid)
|
6325 |
|
|
{
|
6326 |
|
|
return ptid.pid;
|
6327 |
|
|
}
|
6328 |
|
|
|
6329 |
|
|
/* Fetch the lwp (lightweight process) component from a ptid. */
|
6330 |
|
|
|
6331 |
|
|
long
|
6332 |
|
|
ptid_get_lwp (ptid_t ptid)
|
6333 |
|
|
{
|
6334 |
|
|
return ptid.lwp;
|
6335 |
|
|
}
|
6336 |
|
|
|
6337 |
|
|
/* Fetch the tid (thread id) component from a ptid. */
|
6338 |
|
|
|
6339 |
|
|
long
|
6340 |
|
|
ptid_get_tid (ptid_t ptid)
|
6341 |
|
|
{
|
6342 |
|
|
return ptid.tid;
|
6343 |
|
|
}
|
6344 |
|
|
|
6345 |
|
|
/* ptid_equal() is used to test equality of two ptids. */
|
6346 |
|
|
|
6347 |
|
|
int
|
6348 |
|
|
ptid_equal (ptid_t ptid1, ptid_t ptid2)
|
6349 |
|
|
{
|
6350 |
|
|
return (ptid1.pid == ptid2.pid && ptid1.lwp == ptid2.lwp
|
6351 |
|
|
&& ptid1.tid == ptid2.tid);
|
6352 |
|
|
}
|
6353 |
|
|
|
6354 |
|
|
/* Returns true if PTID represents a process. */
|
6355 |
|
|
|
6356 |
|
|
int
|
6357 |
|
|
ptid_is_pid (ptid_t ptid)
|
6358 |
|
|
{
|
6359 |
|
|
if (ptid_equal (minus_one_ptid, ptid))
|
6360 |
|
|
return 0;
|
6361 |
|
|
if (ptid_equal (null_ptid, ptid))
|
6362 |
|
|
return 0;
|
6363 |
|
|
|
6364 |
|
|
return (ptid_get_lwp (ptid) == 0 && ptid_get_tid (ptid) == 0);
|
6365 |
|
|
}
|
6366 |
|
|
|
6367 |
|
|
int
|
6368 |
|
|
ptid_match (ptid_t ptid, ptid_t filter)
|
6369 |
|
|
{
|
6370 |
|
|
/* Since both parameters have the same type, prevent easy mistakes
|
6371 |
|
|
from happening. */
|
6372 |
|
|
gdb_assert (!ptid_equal (ptid, minus_one_ptid)
|
6373 |
|
|
&& !ptid_equal (ptid, null_ptid));
|
6374 |
|
|
|
6375 |
|
|
if (ptid_equal (filter, minus_one_ptid))
|
6376 |
|
|
return 1;
|
6377 |
|
|
if (ptid_is_pid (filter)
|
6378 |
|
|
&& ptid_get_pid (ptid) == ptid_get_pid (filter))
|
6379 |
|
|
return 1;
|
6380 |
|
|
else if (ptid_equal (ptid, filter))
|
6381 |
|
|
return 1;
|
6382 |
|
|
|
6383 |
|
|
return 0;
|
6384 |
|
|
}
|
6385 |
|
|
|
6386 |
|
|
/* restore_inferior_ptid() will be used by the cleanup machinery
|
6387 |
|
|
to restore the inferior_ptid value saved in a call to
|
6388 |
|
|
save_inferior_ptid(). */
|
6389 |
|
|
|
6390 |
|
|
static void
|
6391 |
|
|
restore_inferior_ptid (void *arg)
|
6392 |
|
|
{
|
6393 |
|
|
ptid_t *saved_ptid_ptr = arg;
|
6394 |
|
|
|
6395 |
|
|
inferior_ptid = *saved_ptid_ptr;
|
6396 |
|
|
xfree (arg);
|
6397 |
|
|
}
|
6398 |
|
|
|
6399 |
|
|
/* Save the value of inferior_ptid so that it may be restored by a
|
6400 |
|
|
later call to do_cleanups(). Returns the struct cleanup pointer
|
6401 |
|
|
needed for later doing the cleanup. */
|
6402 |
|
|
|
6403 |
|
|
struct cleanup *
|
6404 |
|
|
save_inferior_ptid (void)
|
6405 |
|
|
{
|
6406 |
|
|
ptid_t *saved_ptid_ptr;
|
6407 |
|
|
|
6408 |
|
|
saved_ptid_ptr = xmalloc (sizeof (ptid_t));
|
6409 |
|
|
*saved_ptid_ptr = inferior_ptid;
|
6410 |
|
|
return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
|
6411 |
|
|
}
|
6412 |
|
|
|
6413 |
|
|
|
6414 |
|
|
/* User interface for reverse debugging:
|
6415 |
|
|
Set exec-direction / show exec-direction commands
|
6416 |
|
|
(returns error unless target implements to_set_exec_direction method). */
|
6417 |
|
|
|
6418 |
|
|
enum exec_direction_kind execution_direction = EXEC_FORWARD;
|
6419 |
|
|
static const char exec_forward[] = "forward";
|
6420 |
|
|
static const char exec_reverse[] = "reverse";
|
6421 |
|
|
static const char *exec_direction = exec_forward;
|
6422 |
|
|
static const char *exec_direction_names[] = {
|
6423 |
|
|
exec_forward,
|
6424 |
|
|
exec_reverse,
|
6425 |
|
|
NULL
|
6426 |
|
|
};
|
6427 |
|
|
|
6428 |
|
|
static void
|
6429 |
|
|
set_exec_direction_func (char *args, int from_tty,
|
6430 |
|
|
struct cmd_list_element *cmd)
|
6431 |
|
|
{
|
6432 |
|
|
if (target_can_execute_reverse)
|
6433 |
|
|
{
|
6434 |
|
|
if (!strcmp (exec_direction, exec_forward))
|
6435 |
|
|
execution_direction = EXEC_FORWARD;
|
6436 |
|
|
else if (!strcmp (exec_direction, exec_reverse))
|
6437 |
|
|
execution_direction = EXEC_REVERSE;
|
6438 |
|
|
}
|
6439 |
|
|
else
|
6440 |
|
|
{
|
6441 |
|
|
exec_direction = exec_forward;
|
6442 |
|
|
error (_("Target does not support this operation."));
|
6443 |
|
|
}
|
6444 |
|
|
}
|
6445 |
|
|
|
6446 |
|
|
static void
|
6447 |
|
|
show_exec_direction_func (struct ui_file *out, int from_tty,
|
6448 |
|
|
struct cmd_list_element *cmd, const char *value)
|
6449 |
|
|
{
|
6450 |
|
|
switch (execution_direction) {
|
6451 |
|
|
case EXEC_FORWARD:
|
6452 |
|
|
fprintf_filtered (out, _("Forward.\n"));
|
6453 |
|
|
break;
|
6454 |
|
|
case EXEC_REVERSE:
|
6455 |
|
|
fprintf_filtered (out, _("Reverse.\n"));
|
6456 |
|
|
break;
|
6457 |
|
|
case EXEC_ERROR:
|
6458 |
|
|
default:
|
6459 |
|
|
fprintf_filtered (out,
|
6460 |
|
|
_("Forward (target `%s' does not support exec-direction).\n"),
|
6461 |
|
|
target_shortname);
|
6462 |
|
|
break;
|
6463 |
|
|
}
|
6464 |
|
|
}
|
6465 |
|
|
|
6466 |
|
|
/* User interface for non-stop mode. */
|
6467 |
|
|
|
6468 |
|
|
int non_stop = 0;
|
6469 |
|
|
|
6470 |
|
|
static void
|
6471 |
|
|
set_non_stop (char *args, int from_tty,
|
6472 |
|
|
struct cmd_list_element *c)
|
6473 |
|
|
{
|
6474 |
|
|
if (target_has_execution)
|
6475 |
|
|
{
|
6476 |
|
|
non_stop_1 = non_stop;
|
6477 |
|
|
error (_("Cannot change this setting while the inferior is running."));
|
6478 |
|
|
}
|
6479 |
|
|
|
6480 |
|
|
non_stop = non_stop_1;
|
6481 |
|
|
}
|
6482 |
|
|
|
6483 |
|
|
static void
|
6484 |
|
|
show_non_stop (struct ui_file *file, int from_tty,
|
6485 |
|
|
struct cmd_list_element *c, const char *value)
|
6486 |
|
|
{
|
6487 |
|
|
fprintf_filtered (file,
|
6488 |
|
|
_("Controlling the inferior in non-stop mode is %s.\n"),
|
6489 |
|
|
value);
|
6490 |
|
|
}
|
6491 |
|
|
|
6492 |
|
|
static void
|
6493 |
|
|
show_schedule_multiple (struct ui_file *file, int from_tty,
|
6494 |
|
|
struct cmd_list_element *c, const char *value)
|
6495 |
|
|
{
|
6496 |
|
|
fprintf_filtered (file, _("\
|
6497 |
|
|
Resuming the execution of threads of all processes is %s.\n"), value);
|
6498 |
|
|
}
|
6499 |
|
|
|
6500 |
|
|
void
|
6501 |
|
|
_initialize_infrun (void)
|
6502 |
|
|
{
|
6503 |
|
|
int i;
|
6504 |
|
|
int numsigs;
|
6505 |
|
|
|
6506 |
|
|
add_info ("signals", signals_info, _("\
|
6507 |
|
|
What debugger does when program gets various signals.\n\
|
6508 |
|
|
Specify a signal as argument to print info on that signal only."));
|
6509 |
|
|
add_info_alias ("handle", "signals", 0);
|
6510 |
|
|
|
6511 |
|
|
add_com ("handle", class_run, handle_command, _("\
|
6512 |
|
|
Specify how to handle a signal.\n\
|
6513 |
|
|
Args are signals and actions to apply to those signals.\n\
|
6514 |
|
|
Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
|
6515 |
|
|
from 1-15 are allowed for compatibility with old versions of GDB.\n\
|
6516 |
|
|
Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
|
6517 |
|
|
The special arg \"all\" is recognized to mean all signals except those\n\
|
6518 |
|
|
used by the debugger, typically SIGTRAP and SIGINT.\n\
|
6519 |
|
|
Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
|
6520 |
|
|
\"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
|
6521 |
|
|
Stop means reenter debugger if this signal happens (implies print).\n\
|
6522 |
|
|
Print means print a message if this signal happens.\n\
|
6523 |
|
|
Pass means let program see this signal; otherwise program doesn't know.\n\
|
6524 |
|
|
Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
|
6525 |
|
|
Pass and Stop may be combined."));
|
6526 |
|
|
if (xdb_commands)
|
6527 |
|
|
{
|
6528 |
|
|
add_com ("lz", class_info, signals_info, _("\
|
6529 |
|
|
What debugger does when program gets various signals.\n\
|
6530 |
|
|
Specify a signal as argument to print info on that signal only."));
|
6531 |
|
|
add_com ("z", class_run, xdb_handle_command, _("\
|
6532 |
|
|
Specify how to handle a signal.\n\
|
6533 |
|
|
Args are signals and actions to apply to those signals.\n\
|
6534 |
|
|
Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
|
6535 |
|
|
from 1-15 are allowed for compatibility with old versions of GDB.\n\
|
6536 |
|
|
Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
|
6537 |
|
|
The special arg \"all\" is recognized to mean all signals except those\n\
|
6538 |
|
|
used by the debugger, typically SIGTRAP and SIGINT.\n\
|
6539 |
|
|
Recognized actions include \"s\" (toggles between stop and nostop),\n\
|
6540 |
|
|
\"r\" (toggles between print and noprint), \"i\" (toggles between pass and \
|
6541 |
|
|
nopass), \"Q\" (noprint)\n\
|
6542 |
|
|
Stop means reenter debugger if this signal happens (implies print).\n\
|
6543 |
|
|
Print means print a message if this signal happens.\n\
|
6544 |
|
|
Pass means let program see this signal; otherwise program doesn't know.\n\
|
6545 |
|
|
Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
|
6546 |
|
|
Pass and Stop may be combined."));
|
6547 |
|
|
}
|
6548 |
|
|
|
6549 |
|
|
if (!dbx_commands)
|
6550 |
|
|
stop_command = add_cmd ("stop", class_obscure,
|
6551 |
|
|
not_just_help_class_command, _("\
|
6552 |
|
|
There is no `stop' command, but you can set a hook on `stop'.\n\
|
6553 |
|
|
This allows you to set a list of commands to be run each time execution\n\
|
6554 |
|
|
of the program stops."), &cmdlist);
|
6555 |
|
|
|
6556 |
|
|
add_setshow_zinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
|
6557 |
|
|
Set inferior debugging."), _("\
|
6558 |
|
|
Show inferior debugging."), _("\
|
6559 |
|
|
When non-zero, inferior specific debugging is enabled."),
|
6560 |
|
|
NULL,
|
6561 |
|
|
show_debug_infrun,
|
6562 |
|
|
&setdebuglist, &showdebuglist);
|
6563 |
|
|
|
6564 |
|
|
add_setshow_boolean_cmd ("displaced", class_maintenance, &debug_displaced, _("\
|
6565 |
|
|
Set displaced stepping debugging."), _("\
|
6566 |
|
|
Show displaced stepping debugging."), _("\
|
6567 |
|
|
When non-zero, displaced stepping specific debugging is enabled."),
|
6568 |
|
|
NULL,
|
6569 |
|
|
show_debug_displaced,
|
6570 |
|
|
&setdebuglist, &showdebuglist);
|
6571 |
|
|
|
6572 |
|
|
add_setshow_boolean_cmd ("non-stop", no_class,
|
6573 |
|
|
&non_stop_1, _("\
|
6574 |
|
|
Set whether gdb controls the inferior in non-stop mode."), _("\
|
6575 |
|
|
Show whether gdb controls the inferior in non-stop mode."), _("\
|
6576 |
|
|
When debugging a multi-threaded program and this setting is\n\
|
6577 |
|
|
off (the default, also called all-stop mode), when one thread stops\n\
|
6578 |
|
|
(for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
|
6579 |
|
|
all other threads in the program while you interact with the thread of\n\
|
6580 |
|
|
interest. When you continue or step a thread, you can allow the other\n\
|
6581 |
|
|
threads to run, or have them remain stopped, but while you inspect any\n\
|
6582 |
|
|
thread's state, all threads stop.\n\
|
6583 |
|
|
\n\
|
6584 |
|
|
In non-stop mode, when one thread stops, other threads can continue\n\
|
6585 |
|
|
to run freely. You'll be able to step each thread independently,\n\
|
6586 |
|
|
leave it stopped or free to run as needed."),
|
6587 |
|
|
set_non_stop,
|
6588 |
|
|
show_non_stop,
|
6589 |
|
|
&setlist,
|
6590 |
|
|
&showlist);
|
6591 |
|
|
|
6592 |
|
|
numsigs = (int) TARGET_SIGNAL_LAST;
|
6593 |
|
|
signal_stop = (unsigned char *) xmalloc (sizeof (signal_stop[0]) * numsigs);
|
6594 |
|
|
signal_print = (unsigned char *)
|
6595 |
|
|
xmalloc (sizeof (signal_print[0]) * numsigs);
|
6596 |
|
|
signal_program = (unsigned char *)
|
6597 |
|
|
xmalloc (sizeof (signal_program[0]) * numsigs);
|
6598 |
|
|
for (i = 0; i < numsigs; i++)
|
6599 |
|
|
{
|
6600 |
|
|
signal_stop[i] = 1;
|
6601 |
|
|
signal_print[i] = 1;
|
6602 |
|
|
signal_program[i] = 1;
|
6603 |
|
|
}
|
6604 |
|
|
|
6605 |
|
|
/* Signals caused by debugger's own actions
|
6606 |
|
|
should not be given to the program afterwards. */
|
6607 |
|
|
signal_program[TARGET_SIGNAL_TRAP] = 0;
|
6608 |
|
|
signal_program[TARGET_SIGNAL_INT] = 0;
|
6609 |
|
|
|
6610 |
|
|
/* Signals that are not errors should not normally enter the debugger. */
|
6611 |
|
|
signal_stop[TARGET_SIGNAL_ALRM] = 0;
|
6612 |
|
|
signal_print[TARGET_SIGNAL_ALRM] = 0;
|
6613 |
|
|
signal_stop[TARGET_SIGNAL_VTALRM] = 0;
|
6614 |
|
|
signal_print[TARGET_SIGNAL_VTALRM] = 0;
|
6615 |
|
|
signal_stop[TARGET_SIGNAL_PROF] = 0;
|
6616 |
|
|
signal_print[TARGET_SIGNAL_PROF] = 0;
|
6617 |
|
|
signal_stop[TARGET_SIGNAL_CHLD] = 0;
|
6618 |
|
|
signal_print[TARGET_SIGNAL_CHLD] = 0;
|
6619 |
|
|
signal_stop[TARGET_SIGNAL_IO] = 0;
|
6620 |
|
|
signal_print[TARGET_SIGNAL_IO] = 0;
|
6621 |
|
|
signal_stop[TARGET_SIGNAL_POLL] = 0;
|
6622 |
|
|
signal_print[TARGET_SIGNAL_POLL] = 0;
|
6623 |
|
|
signal_stop[TARGET_SIGNAL_URG] = 0;
|
6624 |
|
|
signal_print[TARGET_SIGNAL_URG] = 0;
|
6625 |
|
|
signal_stop[TARGET_SIGNAL_WINCH] = 0;
|
6626 |
|
|
signal_print[TARGET_SIGNAL_WINCH] = 0;
|
6627 |
|
|
|
6628 |
|
|
/* These signals are used internally by user-level thread
|
6629 |
|
|
implementations. (See signal(5) on Solaris.) Like the above
|
6630 |
|
|
signals, a healthy program receives and handles them as part of
|
6631 |
|
|
its normal operation. */
|
6632 |
|
|
signal_stop[TARGET_SIGNAL_LWP] = 0;
|
6633 |
|
|
signal_print[TARGET_SIGNAL_LWP] = 0;
|
6634 |
|
|
signal_stop[TARGET_SIGNAL_WAITING] = 0;
|
6635 |
|
|
signal_print[TARGET_SIGNAL_WAITING] = 0;
|
6636 |
|
|
signal_stop[TARGET_SIGNAL_CANCEL] = 0;
|
6637 |
|
|
signal_print[TARGET_SIGNAL_CANCEL] = 0;
|
6638 |
|
|
|
6639 |
|
|
add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
|
6640 |
|
|
&stop_on_solib_events, _("\
|
6641 |
|
|
Set stopping for shared library events."), _("\
|
6642 |
|
|
Show stopping for shared library events."), _("\
|
6643 |
|
|
If nonzero, gdb will give control to the user when the dynamic linker\n\
|
6644 |
|
|
notifies gdb of shared library events. The most common event of interest\n\
|
6645 |
|
|
to the user would be loading/unloading of a new library."),
|
6646 |
|
|
NULL,
|
6647 |
|
|
show_stop_on_solib_events,
|
6648 |
|
|
&setlist, &showlist);
|
6649 |
|
|
|
6650 |
|
|
add_setshow_enum_cmd ("follow-fork-mode", class_run,
|
6651 |
|
|
follow_fork_mode_kind_names,
|
6652 |
|
|
&follow_fork_mode_string, _("\
|
6653 |
|
|
Set debugger response to a program call of fork or vfork."), _("\
|
6654 |
|
|
Show debugger response to a program call of fork or vfork."), _("\
|
6655 |
|
|
A fork or vfork creates a new process. follow-fork-mode can be:\n\
|
6656 |
|
|
parent - the original process is debugged after a fork\n\
|
6657 |
|
|
child - the new process is debugged after a fork\n\
|
6658 |
|
|
The unfollowed process will continue to run.\n\
|
6659 |
|
|
By default, the debugger will follow the parent process."),
|
6660 |
|
|
NULL,
|
6661 |
|
|
show_follow_fork_mode_string,
|
6662 |
|
|
&setlist, &showlist);
|
6663 |
|
|
|
6664 |
|
|
add_setshow_enum_cmd ("follow-exec-mode", class_run,
|
6665 |
|
|
follow_exec_mode_names,
|
6666 |
|
|
&follow_exec_mode_string, _("\
|
6667 |
|
|
Set debugger response to a program call of exec."), _("\
|
6668 |
|
|
Show debugger response to a program call of exec."), _("\
|
6669 |
|
|
An exec call replaces the program image of a process.\n\
|
6670 |
|
|
\n\
|
6671 |
|
|
follow-exec-mode can be:\n\
|
6672 |
|
|
\n\
|
6673 |
|
|
new - the debugger creates a new inferior and rebinds the process\n\
|
6674 |
|
|
to this new inferior. The program the process was running before\n\
|
6675 |
|
|
the exec call can be restarted afterwards by restarting the original\n\
|
6676 |
|
|
inferior.\n\
|
6677 |
|
|
\n\
|
6678 |
|
|
same - the debugger keeps the process bound to the same inferior.\n\
|
6679 |
|
|
The new executable image replaces the previous executable loaded in\n\
|
6680 |
|
|
the inferior. Restarting the inferior after the exec call restarts\n\
|
6681 |
|
|
the executable the process was running after the exec call.\n\
|
6682 |
|
|
\n\
|
6683 |
|
|
By default, the debugger will use the same inferior."),
|
6684 |
|
|
NULL,
|
6685 |
|
|
show_follow_exec_mode_string,
|
6686 |
|
|
&setlist, &showlist);
|
6687 |
|
|
|
6688 |
|
|
add_setshow_enum_cmd ("scheduler-locking", class_run,
|
6689 |
|
|
scheduler_enums, &scheduler_mode, _("\
|
6690 |
|
|
Set mode for locking scheduler during execution."), _("\
|
6691 |
|
|
Show mode for locking scheduler during execution."), _("\
|
6692 |
|
|
off == no locking (threads may preempt at any time)\n\
|
6693 |
|
|
on == full locking (no thread except the current thread may run)\n\
|
6694 |
|
|
step == scheduler locked during every single-step operation.\n\
|
6695 |
|
|
In this mode, no other thread may run during a step command.\n\
|
6696 |
|
|
Other threads may run while stepping over a function call ('next')."),
|
6697 |
|
|
set_schedlock_func, /* traps on target vector */
|
6698 |
|
|
show_scheduler_mode,
|
6699 |
|
|
&setlist, &showlist);
|
6700 |
|
|
|
6701 |
|
|
add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
|
6702 |
|
|
Set mode for resuming threads of all processes."), _("\
|
6703 |
|
|
Show mode for resuming threads of all processes."), _("\
|
6704 |
|
|
When on, execution commands (such as 'continue' or 'next') resume all\n\
|
6705 |
|
|
threads of all processes. When off (which is the default), execution\n\
|
6706 |
|
|
commands only resume the threads of the current process. The set of\n\
|
6707 |
|
|
threads that are resumed is further refined by the scheduler-locking\n\
|
6708 |
|
|
mode (see help set scheduler-locking)."),
|
6709 |
|
|
NULL,
|
6710 |
|
|
show_schedule_multiple,
|
6711 |
|
|
&setlist, &showlist);
|
6712 |
|
|
|
6713 |
|
|
add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
|
6714 |
|
|
Set mode of the step operation."), _("\
|
6715 |
|
|
Show mode of the step operation."), _("\
|
6716 |
|
|
When set, doing a step over a function without debug line information\n\
|
6717 |
|
|
will stop at the first instruction of that function. Otherwise, the\n\
|
6718 |
|
|
function is skipped and the step command stops at a different source line."),
|
6719 |
|
|
NULL,
|
6720 |
|
|
show_step_stop_if_no_debug,
|
6721 |
|
|
&setlist, &showlist);
|
6722 |
|
|
|
6723 |
|
|
add_setshow_enum_cmd ("displaced-stepping", class_run,
|
6724 |
|
|
can_use_displaced_stepping_enum,
|
6725 |
|
|
&can_use_displaced_stepping, _("\
|
6726 |
|
|
Set debugger's willingness to use displaced stepping."), _("\
|
6727 |
|
|
Show debugger's willingness to use displaced stepping."), _("\
|
6728 |
|
|
If on, gdb will use displaced stepping to step over breakpoints if it is\n\
|
6729 |
|
|
supported by the target architecture. If off, gdb will not use displaced\n\
|
6730 |
|
|
stepping to step over breakpoints, even if such is supported by the target\n\
|
6731 |
|
|
architecture. If auto (which is the default), gdb will use displaced stepping\n\
|
6732 |
|
|
if the target architecture supports it and non-stop mode is active, but will not\n\
|
6733 |
|
|
use it in all-stop mode (see help set non-stop)."),
|
6734 |
|
|
NULL,
|
6735 |
|
|
show_can_use_displaced_stepping,
|
6736 |
|
|
&setlist, &showlist);
|
6737 |
|
|
|
6738 |
|
|
add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
|
6739 |
|
|
&exec_direction, _("Set direction of execution.\n\
|
6740 |
|
|
Options are 'forward' or 'reverse'."),
|
6741 |
|
|
_("Show direction of execution (forward/reverse)."),
|
6742 |
|
|
_("Tells gdb whether to execute forward or backward."),
|
6743 |
|
|
set_exec_direction_func, show_exec_direction_func,
|
6744 |
|
|
&setlist, &showlist);
|
6745 |
|
|
|
6746 |
|
|
/* Set/show detach-on-fork: user-settable mode. */
|
6747 |
|
|
|
6748 |
|
|
add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\
|
6749 |
|
|
Set whether gdb will detach the child of a fork."), _("\
|
6750 |
|
|
Show whether gdb will detach the child of a fork."), _("\
|
6751 |
|
|
Tells gdb whether to detach the child of a fork."),
|
6752 |
|
|
NULL, NULL, &setlist, &showlist);
|
6753 |
|
|
|
6754 |
|
|
/* ptid initializations */
|
6755 |
|
|
null_ptid = ptid_build (0, 0, 0);
|
6756 |
|
|
minus_one_ptid = ptid_build (-1, 0, 0);
|
6757 |
|
|
inferior_ptid = null_ptid;
|
6758 |
|
|
target_last_wait_ptid = minus_one_ptid;
|
6759 |
|
|
|
6760 |
|
|
observer_attach_thread_ptid_changed (infrun_thread_ptid_changed);
|
6761 |
|
|
observer_attach_thread_stop_requested (infrun_thread_stop_requested);
|
6762 |
|
|
observer_attach_thread_exit (infrun_thread_thread_exit);
|
6763 |
|
|
observer_attach_inferior_exit (infrun_inferior_exit);
|
6764 |
|
|
|
6765 |
|
|
/* Explicitly create without lookup, since that tries to create a
|
6766 |
|
|
value with a void typed value, and when we get here, gdbarch
|
6767 |
|
|
isn't initialized yet. At this point, we're quite sure there
|
6768 |
|
|
isn't another convenience variable of the same name. */
|
6769 |
|
|
create_internalvar_type_lazy ("_siginfo", siginfo_make_value);
|
6770 |
|
|
|
6771 |
|
|
add_setshow_boolean_cmd ("observer", no_class,
|
6772 |
|
|
&observer_mode_1, _("\
|
6773 |
|
|
Set whether gdb controls the inferior in observer mode."), _("\
|
6774 |
|
|
Show whether gdb controls the inferior in observer mode."), _("\
|
6775 |
|
|
In observer mode, GDB can get data from the inferior, but not\n\
|
6776 |
|
|
affect its execution. Registers and memory may not be changed,\n\
|
6777 |
|
|
breakpoints may not be set, and the program cannot be interrupted\n\
|
6778 |
|
|
or signalled."),
|
6779 |
|
|
set_observer_mode,
|
6780 |
|
|
show_observer_mode,
|
6781 |
|
|
&setlist,
|
6782 |
|
|
&showlist);
|
6783 |
|
|
}
|