| 1 |
330 |
jeremybenn |
/* Target-dependent code for Renesas M32R, for GDB.
|
| 2 |
|
|
|
| 3 |
|
|
Copyright (C) 1996, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2007,
|
| 4 |
|
|
2008, 2009, 2010 Free Software Foundation, Inc.
|
| 5 |
|
|
|
| 6 |
|
|
This file is part of GDB.
|
| 7 |
|
|
|
| 8 |
|
|
This program is free software; you can redistribute it and/or modify
|
| 9 |
|
|
it under the terms of the GNU General Public License as published by
|
| 10 |
|
|
the Free Software Foundation; either version 3 of the License, or
|
| 11 |
|
|
(at your option) any later version.
|
| 12 |
|
|
|
| 13 |
|
|
This program is distributed in the hope that it will be useful,
|
| 14 |
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
| 15 |
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
| 16 |
|
|
GNU General Public License for more details.
|
| 17 |
|
|
|
| 18 |
|
|
You should have received a copy of the GNU General Public License
|
| 19 |
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>. */
|
| 20 |
|
|
|
| 21 |
|
|
#include "defs.h"
|
| 22 |
|
|
#include "frame.h"
|
| 23 |
|
|
#include "frame-unwind.h"
|
| 24 |
|
|
#include "frame-base.h"
|
| 25 |
|
|
#include "symtab.h"
|
| 26 |
|
|
#include "gdbtypes.h"
|
| 27 |
|
|
#include "gdbcmd.h"
|
| 28 |
|
|
#include "gdbcore.h"
|
| 29 |
|
|
#include "gdb_string.h"
|
| 30 |
|
|
#include "value.h"
|
| 31 |
|
|
#include "inferior.h"
|
| 32 |
|
|
#include "symfile.h"
|
| 33 |
|
|
#include "objfiles.h"
|
| 34 |
|
|
#include "osabi.h"
|
| 35 |
|
|
#include "language.h"
|
| 36 |
|
|
#include "arch-utils.h"
|
| 37 |
|
|
#include "regcache.h"
|
| 38 |
|
|
#include "trad-frame.h"
|
| 39 |
|
|
#include "dis-asm.h"
|
| 40 |
|
|
|
| 41 |
|
|
#include "gdb_assert.h"
|
| 42 |
|
|
|
| 43 |
|
|
#include "m32r-tdep.h"
|
| 44 |
|
|
|
| 45 |
|
|
/* Local functions */
|
| 46 |
|
|
|
| 47 |
|
|
extern void _initialize_m32r_tdep (void);
|
| 48 |
|
|
|
| 49 |
|
|
static CORE_ADDR
|
| 50 |
|
|
m32r_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
|
| 51 |
|
|
{
|
| 52 |
|
|
/* Align to the size of an instruction (so that they can safely be
|
| 53 |
|
|
pushed onto the stack. */
|
| 54 |
|
|
return sp & ~3;
|
| 55 |
|
|
}
|
| 56 |
|
|
|
| 57 |
|
|
|
| 58 |
|
|
/* Breakpoints
|
| 59 |
|
|
|
| 60 |
|
|
The little endian mode of M32R is unique. In most of architectures,
|
| 61 |
|
|
two 16-bit instructions, A and B, are placed as the following:
|
| 62 |
|
|
|
| 63 |
|
|
Big endian:
|
| 64 |
|
|
A0 A1 B0 B1
|
| 65 |
|
|
|
| 66 |
|
|
Little endian:
|
| 67 |
|
|
A1 A0 B1 B0
|
| 68 |
|
|
|
| 69 |
|
|
In M32R, they are placed like this:
|
| 70 |
|
|
|
| 71 |
|
|
Big endian:
|
| 72 |
|
|
A0 A1 B0 B1
|
| 73 |
|
|
|
| 74 |
|
|
Little endian:
|
| 75 |
|
|
B1 B0 A1 A0
|
| 76 |
|
|
|
| 77 |
|
|
This is because M32R always fetches instructions in 32-bit.
|
| 78 |
|
|
|
| 79 |
|
|
The following functions take care of this behavior. */
|
| 80 |
|
|
|
| 81 |
|
|
static int
|
| 82 |
|
|
m32r_memory_insert_breakpoint (struct gdbarch *gdbarch,
|
| 83 |
|
|
struct bp_target_info *bp_tgt)
|
| 84 |
|
|
{
|
| 85 |
|
|
CORE_ADDR addr = bp_tgt->placed_address;
|
| 86 |
|
|
int val;
|
| 87 |
|
|
gdb_byte buf[4];
|
| 88 |
|
|
gdb_byte *contents_cache = bp_tgt->shadow_contents;
|
| 89 |
|
|
gdb_byte bp_entry[] = { 0x10, 0xf1 }; /* dpt */
|
| 90 |
|
|
|
| 91 |
|
|
/* Save the memory contents. */
|
| 92 |
|
|
val = target_read_memory (addr & 0xfffffffc, contents_cache, 4);
|
| 93 |
|
|
if (val != 0)
|
| 94 |
|
|
return val; /* return error */
|
| 95 |
|
|
|
| 96 |
|
|
bp_tgt->placed_size = bp_tgt->shadow_len = 4;
|
| 97 |
|
|
|
| 98 |
|
|
/* Determine appropriate breakpoint contents and size for this address. */
|
| 99 |
|
|
if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
|
| 100 |
|
|
{
|
| 101 |
|
|
if ((addr & 3) == 0)
|
| 102 |
|
|
{
|
| 103 |
|
|
buf[0] = bp_entry[0];
|
| 104 |
|
|
buf[1] = bp_entry[1];
|
| 105 |
|
|
buf[2] = contents_cache[2] & 0x7f;
|
| 106 |
|
|
buf[3] = contents_cache[3];
|
| 107 |
|
|
}
|
| 108 |
|
|
else
|
| 109 |
|
|
{
|
| 110 |
|
|
buf[0] = contents_cache[0];
|
| 111 |
|
|
buf[1] = contents_cache[1];
|
| 112 |
|
|
buf[2] = bp_entry[0];
|
| 113 |
|
|
buf[3] = bp_entry[1];
|
| 114 |
|
|
}
|
| 115 |
|
|
}
|
| 116 |
|
|
else /* little-endian */
|
| 117 |
|
|
{
|
| 118 |
|
|
if ((addr & 3) == 0)
|
| 119 |
|
|
{
|
| 120 |
|
|
buf[0] = contents_cache[0];
|
| 121 |
|
|
buf[1] = contents_cache[1] & 0x7f;
|
| 122 |
|
|
buf[2] = bp_entry[1];
|
| 123 |
|
|
buf[3] = bp_entry[0];
|
| 124 |
|
|
}
|
| 125 |
|
|
else
|
| 126 |
|
|
{
|
| 127 |
|
|
buf[0] = bp_entry[1];
|
| 128 |
|
|
buf[1] = bp_entry[0];
|
| 129 |
|
|
buf[2] = contents_cache[2];
|
| 130 |
|
|
buf[3] = contents_cache[3];
|
| 131 |
|
|
}
|
| 132 |
|
|
}
|
| 133 |
|
|
|
| 134 |
|
|
/* Write the breakpoint. */
|
| 135 |
|
|
val = target_write_memory (addr & 0xfffffffc, buf, 4);
|
| 136 |
|
|
return val;
|
| 137 |
|
|
}
|
| 138 |
|
|
|
| 139 |
|
|
static int
|
| 140 |
|
|
m32r_memory_remove_breakpoint (struct gdbarch *gdbarch,
|
| 141 |
|
|
struct bp_target_info *bp_tgt)
|
| 142 |
|
|
{
|
| 143 |
|
|
CORE_ADDR addr = bp_tgt->placed_address;
|
| 144 |
|
|
int val;
|
| 145 |
|
|
gdb_byte buf[4];
|
| 146 |
|
|
gdb_byte *contents_cache = bp_tgt->shadow_contents;
|
| 147 |
|
|
|
| 148 |
|
|
buf[0] = contents_cache[0];
|
| 149 |
|
|
buf[1] = contents_cache[1];
|
| 150 |
|
|
buf[2] = contents_cache[2];
|
| 151 |
|
|
buf[3] = contents_cache[3];
|
| 152 |
|
|
|
| 153 |
|
|
/* Remove parallel bit. */
|
| 154 |
|
|
if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
|
| 155 |
|
|
{
|
| 156 |
|
|
if ((buf[0] & 0x80) == 0 && (buf[2] & 0x80) != 0)
|
| 157 |
|
|
buf[2] &= 0x7f;
|
| 158 |
|
|
}
|
| 159 |
|
|
else /* little-endian */
|
| 160 |
|
|
{
|
| 161 |
|
|
if ((buf[3] & 0x80) == 0 && (buf[1] & 0x80) != 0)
|
| 162 |
|
|
buf[1] &= 0x7f;
|
| 163 |
|
|
}
|
| 164 |
|
|
|
| 165 |
|
|
/* Write contents. */
|
| 166 |
|
|
val = target_write_memory (addr & 0xfffffffc, buf, 4);
|
| 167 |
|
|
return val;
|
| 168 |
|
|
}
|
| 169 |
|
|
|
| 170 |
|
|
static const gdb_byte *
|
| 171 |
|
|
m32r_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr, int *lenptr)
|
| 172 |
|
|
{
|
| 173 |
|
|
static gdb_byte be_bp_entry[] = { 0x10, 0xf1, 0x70, 0x00 }; /* dpt -> nop */
|
| 174 |
|
|
static gdb_byte le_bp_entry[] = { 0x00, 0x70, 0xf1, 0x10 }; /* dpt -> nop */
|
| 175 |
|
|
gdb_byte *bp;
|
| 176 |
|
|
|
| 177 |
|
|
/* Determine appropriate breakpoint. */
|
| 178 |
|
|
if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
|
| 179 |
|
|
{
|
| 180 |
|
|
if ((*pcptr & 3) == 0)
|
| 181 |
|
|
{
|
| 182 |
|
|
bp = be_bp_entry;
|
| 183 |
|
|
*lenptr = 4;
|
| 184 |
|
|
}
|
| 185 |
|
|
else
|
| 186 |
|
|
{
|
| 187 |
|
|
bp = be_bp_entry;
|
| 188 |
|
|
*lenptr = 2;
|
| 189 |
|
|
}
|
| 190 |
|
|
}
|
| 191 |
|
|
else
|
| 192 |
|
|
{
|
| 193 |
|
|
if ((*pcptr & 3) == 0)
|
| 194 |
|
|
{
|
| 195 |
|
|
bp = le_bp_entry;
|
| 196 |
|
|
*lenptr = 4;
|
| 197 |
|
|
}
|
| 198 |
|
|
else
|
| 199 |
|
|
{
|
| 200 |
|
|
bp = le_bp_entry + 2;
|
| 201 |
|
|
*lenptr = 2;
|
| 202 |
|
|
}
|
| 203 |
|
|
}
|
| 204 |
|
|
|
| 205 |
|
|
return bp;
|
| 206 |
|
|
}
|
| 207 |
|
|
|
| 208 |
|
|
|
| 209 |
|
|
char *m32r_register_names[] = {
|
| 210 |
|
|
"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
|
| 211 |
|
|
"r8", "r9", "r10", "r11", "r12", "fp", "lr", "sp",
|
| 212 |
|
|
"psw", "cbr", "spi", "spu", "bpc", "pc", "accl", "acch",
|
| 213 |
|
|
"evb"
|
| 214 |
|
|
};
|
| 215 |
|
|
|
| 216 |
|
|
static const char *
|
| 217 |
|
|
m32r_register_name (struct gdbarch *gdbarch, int reg_nr)
|
| 218 |
|
|
{
|
| 219 |
|
|
if (reg_nr < 0)
|
| 220 |
|
|
return NULL;
|
| 221 |
|
|
if (reg_nr >= M32R_NUM_REGS)
|
| 222 |
|
|
return NULL;
|
| 223 |
|
|
return m32r_register_names[reg_nr];
|
| 224 |
|
|
}
|
| 225 |
|
|
|
| 226 |
|
|
|
| 227 |
|
|
/* Return the GDB type object for the "standard" data type
|
| 228 |
|
|
of data in register N. */
|
| 229 |
|
|
|
| 230 |
|
|
static struct type *
|
| 231 |
|
|
m32r_register_type (struct gdbarch *gdbarch, int reg_nr)
|
| 232 |
|
|
{
|
| 233 |
|
|
if (reg_nr == M32R_PC_REGNUM)
|
| 234 |
|
|
return builtin_type (gdbarch)->builtin_func_ptr;
|
| 235 |
|
|
else if (reg_nr == M32R_SP_REGNUM || reg_nr == M32R_FP_REGNUM)
|
| 236 |
|
|
return builtin_type (gdbarch)->builtin_data_ptr;
|
| 237 |
|
|
else
|
| 238 |
|
|
return builtin_type (gdbarch)->builtin_int32;
|
| 239 |
|
|
}
|
| 240 |
|
|
|
| 241 |
|
|
|
| 242 |
|
|
/* Write into appropriate registers a function return value
|
| 243 |
|
|
of type TYPE, given in virtual format.
|
| 244 |
|
|
|
| 245 |
|
|
Things always get returned in RET1_REGNUM, RET2_REGNUM. */
|
| 246 |
|
|
|
| 247 |
|
|
static void
|
| 248 |
|
|
m32r_store_return_value (struct type *type, struct regcache *regcache,
|
| 249 |
|
|
const void *valbuf)
|
| 250 |
|
|
{
|
| 251 |
|
|
struct gdbarch *gdbarch = get_regcache_arch (regcache);
|
| 252 |
|
|
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
| 253 |
|
|
CORE_ADDR regval;
|
| 254 |
|
|
int len = TYPE_LENGTH (type);
|
| 255 |
|
|
|
| 256 |
|
|
regval = extract_unsigned_integer (valbuf, len > 4 ? 4 : len, byte_order);
|
| 257 |
|
|
regcache_cooked_write_unsigned (regcache, RET1_REGNUM, regval);
|
| 258 |
|
|
|
| 259 |
|
|
if (len > 4)
|
| 260 |
|
|
{
|
| 261 |
|
|
regval = extract_unsigned_integer ((gdb_byte *) valbuf + 4,
|
| 262 |
|
|
len - 4, byte_order);
|
| 263 |
|
|
regcache_cooked_write_unsigned (regcache, RET1_REGNUM + 1, regval);
|
| 264 |
|
|
}
|
| 265 |
|
|
}
|
| 266 |
|
|
|
| 267 |
|
|
/* This is required by skip_prologue. The results of decoding a prologue
|
| 268 |
|
|
should be cached because this thrashing is getting nuts. */
|
| 269 |
|
|
|
| 270 |
|
|
static int
|
| 271 |
|
|
decode_prologue (struct gdbarch *gdbarch,
|
| 272 |
|
|
CORE_ADDR start_pc, CORE_ADDR scan_limit,
|
| 273 |
|
|
CORE_ADDR *pl_endptr, unsigned long *framelength)
|
| 274 |
|
|
{
|
| 275 |
|
|
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
| 276 |
|
|
unsigned long framesize;
|
| 277 |
|
|
int insn;
|
| 278 |
|
|
int op1;
|
| 279 |
|
|
CORE_ADDR after_prologue = 0;
|
| 280 |
|
|
CORE_ADDR after_push = 0;
|
| 281 |
|
|
CORE_ADDR after_stack_adjust = 0;
|
| 282 |
|
|
CORE_ADDR current_pc;
|
| 283 |
|
|
LONGEST return_value;
|
| 284 |
|
|
|
| 285 |
|
|
framesize = 0;
|
| 286 |
|
|
after_prologue = 0;
|
| 287 |
|
|
|
| 288 |
|
|
for (current_pc = start_pc; current_pc < scan_limit; current_pc += 2)
|
| 289 |
|
|
{
|
| 290 |
|
|
/* Check if current pc's location is readable. */
|
| 291 |
|
|
if (!safe_read_memory_integer (current_pc, 2, byte_order, &return_value))
|
| 292 |
|
|
return -1;
|
| 293 |
|
|
|
| 294 |
|
|
insn = read_memory_unsigned_integer (current_pc, 2, byte_order);
|
| 295 |
|
|
|
| 296 |
|
|
if (insn == 0x0000)
|
| 297 |
|
|
break;
|
| 298 |
|
|
|
| 299 |
|
|
/* If this is a 32 bit instruction, we dont want to examine its
|
| 300 |
|
|
immediate data as though it were an instruction */
|
| 301 |
|
|
if (current_pc & 0x02)
|
| 302 |
|
|
{
|
| 303 |
|
|
/* decode this instruction further */
|
| 304 |
|
|
insn &= 0x7fff;
|
| 305 |
|
|
}
|
| 306 |
|
|
else
|
| 307 |
|
|
{
|
| 308 |
|
|
if (insn & 0x8000)
|
| 309 |
|
|
{
|
| 310 |
|
|
if (current_pc == scan_limit)
|
| 311 |
|
|
scan_limit += 2; /* extend the search */
|
| 312 |
|
|
|
| 313 |
|
|
current_pc += 2; /* skip the immediate data */
|
| 314 |
|
|
|
| 315 |
|
|
/* Check if current pc's location is readable. */
|
| 316 |
|
|
if (!safe_read_memory_integer (current_pc, 2, byte_order,
|
| 317 |
|
|
&return_value))
|
| 318 |
|
|
return -1;
|
| 319 |
|
|
|
| 320 |
|
|
if (insn == 0x8faf) /* add3 sp, sp, xxxx */
|
| 321 |
|
|
/* add 16 bit sign-extended offset */
|
| 322 |
|
|
{
|
| 323 |
|
|
framesize +=
|
| 324 |
|
|
-((short) read_memory_unsigned_integer (current_pc,
|
| 325 |
|
|
2, byte_order));
|
| 326 |
|
|
}
|
| 327 |
|
|
else
|
| 328 |
|
|
{
|
| 329 |
|
|
if (((insn >> 8) == 0xe4) /* ld24 r4, xxxxxx; sub sp, r4 */
|
| 330 |
|
|
&& safe_read_memory_integer (current_pc + 2,
|
| 331 |
|
|
2, byte_order,
|
| 332 |
|
|
&return_value)
|
| 333 |
|
|
&& read_memory_unsigned_integer (current_pc + 2,
|
| 334 |
|
|
2, byte_order)
|
| 335 |
|
|
== 0x0f24)
|
| 336 |
|
|
/* subtract 24 bit sign-extended negative-offset */
|
| 337 |
|
|
{
|
| 338 |
|
|
insn = read_memory_unsigned_integer (current_pc - 2,
|
| 339 |
|
|
4, byte_order);
|
| 340 |
|
|
if (insn & 0x00800000) /* sign extend */
|
| 341 |
|
|
insn |= 0xff000000; /* negative */
|
| 342 |
|
|
else
|
| 343 |
|
|
insn &= 0x00ffffff; /* positive */
|
| 344 |
|
|
framesize += insn;
|
| 345 |
|
|
}
|
| 346 |
|
|
}
|
| 347 |
|
|
after_push = current_pc + 2;
|
| 348 |
|
|
continue;
|
| 349 |
|
|
}
|
| 350 |
|
|
}
|
| 351 |
|
|
op1 = insn & 0xf000; /* isolate just the first nibble */
|
| 352 |
|
|
|
| 353 |
|
|
if ((insn & 0xf0ff) == 0x207f)
|
| 354 |
|
|
{ /* st reg, @-sp */
|
| 355 |
|
|
int regno;
|
| 356 |
|
|
framesize += 4;
|
| 357 |
|
|
regno = ((insn >> 8) & 0xf);
|
| 358 |
|
|
after_prologue = 0;
|
| 359 |
|
|
continue;
|
| 360 |
|
|
}
|
| 361 |
|
|
if ((insn >> 8) == 0x4f) /* addi sp, xx */
|
| 362 |
|
|
/* add 8 bit sign-extended offset */
|
| 363 |
|
|
{
|
| 364 |
|
|
int stack_adjust = (signed char) (insn & 0xff);
|
| 365 |
|
|
|
| 366 |
|
|
/* there are probably two of these stack adjustments:
|
| 367 |
|
|
1) A negative one in the prologue, and
|
| 368 |
|
|
2) A positive one in the epilogue.
|
| 369 |
|
|
We are only interested in the first one. */
|
| 370 |
|
|
|
| 371 |
|
|
if (stack_adjust < 0)
|
| 372 |
|
|
{
|
| 373 |
|
|
framesize -= stack_adjust;
|
| 374 |
|
|
after_prologue = 0;
|
| 375 |
|
|
/* A frameless function may have no "mv fp, sp".
|
| 376 |
|
|
In that case, this is the end of the prologue. */
|
| 377 |
|
|
after_stack_adjust = current_pc + 2;
|
| 378 |
|
|
}
|
| 379 |
|
|
continue;
|
| 380 |
|
|
}
|
| 381 |
|
|
if (insn == 0x1d8f)
|
| 382 |
|
|
{ /* mv fp, sp */
|
| 383 |
|
|
after_prologue = current_pc + 2;
|
| 384 |
|
|
break; /* end of stack adjustments */
|
| 385 |
|
|
}
|
| 386 |
|
|
|
| 387 |
|
|
/* Nop looks like a branch, continue explicitly */
|
| 388 |
|
|
if (insn == 0x7000)
|
| 389 |
|
|
{
|
| 390 |
|
|
after_prologue = current_pc + 2;
|
| 391 |
|
|
continue; /* nop occurs between pushes */
|
| 392 |
|
|
}
|
| 393 |
|
|
/* End of prolog if any of these are trap instructions */
|
| 394 |
|
|
if ((insn & 0xfff0) == 0x10f0)
|
| 395 |
|
|
{
|
| 396 |
|
|
after_prologue = current_pc;
|
| 397 |
|
|
break;
|
| 398 |
|
|
}
|
| 399 |
|
|
/* End of prolog if any of these are branch instructions */
|
| 400 |
|
|
if ((op1 == 0x7000) || (op1 == 0xb000) || (op1 == 0xf000))
|
| 401 |
|
|
{
|
| 402 |
|
|
after_prologue = current_pc;
|
| 403 |
|
|
continue;
|
| 404 |
|
|
}
|
| 405 |
|
|
/* Some of the branch instructions are mixed with other types */
|
| 406 |
|
|
if (op1 == 0x1000)
|
| 407 |
|
|
{
|
| 408 |
|
|
int subop = insn & 0x0ff0;
|
| 409 |
|
|
if ((subop == 0x0ec0) || (subop == 0x0fc0))
|
| 410 |
|
|
{
|
| 411 |
|
|
after_prologue = current_pc;
|
| 412 |
|
|
continue; /* jmp , jl */
|
| 413 |
|
|
}
|
| 414 |
|
|
}
|
| 415 |
|
|
}
|
| 416 |
|
|
|
| 417 |
|
|
if (framelength)
|
| 418 |
|
|
*framelength = framesize;
|
| 419 |
|
|
|
| 420 |
|
|
if (current_pc >= scan_limit)
|
| 421 |
|
|
{
|
| 422 |
|
|
if (pl_endptr)
|
| 423 |
|
|
{
|
| 424 |
|
|
if (after_stack_adjust != 0)
|
| 425 |
|
|
/* We did not find a "mv fp,sp", but we DID find
|
| 426 |
|
|
a stack_adjust. Is it safe to use that as the
|
| 427 |
|
|
end of the prologue? I just don't know. */
|
| 428 |
|
|
{
|
| 429 |
|
|
*pl_endptr = after_stack_adjust;
|
| 430 |
|
|
}
|
| 431 |
|
|
else if (after_push != 0)
|
| 432 |
|
|
/* We did not find a "mv fp,sp", but we DID find
|
| 433 |
|
|
a push. Is it safe to use that as the
|
| 434 |
|
|
end of the prologue? I just don't know. */
|
| 435 |
|
|
{
|
| 436 |
|
|
*pl_endptr = after_push;
|
| 437 |
|
|
}
|
| 438 |
|
|
else
|
| 439 |
|
|
/* We reached the end of the loop without finding the end
|
| 440 |
|
|
of the prologue. No way to win -- we should report failure.
|
| 441 |
|
|
The way we do that is to return the original start_pc.
|
| 442 |
|
|
GDB will set a breakpoint at the start of the function (etc.) */
|
| 443 |
|
|
*pl_endptr = start_pc;
|
| 444 |
|
|
}
|
| 445 |
|
|
return 0;
|
| 446 |
|
|
}
|
| 447 |
|
|
|
| 448 |
|
|
if (after_prologue == 0)
|
| 449 |
|
|
after_prologue = current_pc;
|
| 450 |
|
|
|
| 451 |
|
|
if (pl_endptr)
|
| 452 |
|
|
*pl_endptr = after_prologue;
|
| 453 |
|
|
|
| 454 |
|
|
return 0;
|
| 455 |
|
|
} /* decode_prologue */
|
| 456 |
|
|
|
| 457 |
|
|
/* Function: skip_prologue
|
| 458 |
|
|
Find end of function prologue */
|
| 459 |
|
|
|
| 460 |
|
|
#define DEFAULT_SEARCH_LIMIT 128
|
| 461 |
|
|
|
| 462 |
|
|
static CORE_ADDR
|
| 463 |
|
|
m32r_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
|
| 464 |
|
|
{
|
| 465 |
|
|
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
| 466 |
|
|
CORE_ADDR func_addr, func_end;
|
| 467 |
|
|
struct symtab_and_line sal;
|
| 468 |
|
|
LONGEST return_value;
|
| 469 |
|
|
|
| 470 |
|
|
/* See what the symbol table says */
|
| 471 |
|
|
|
| 472 |
|
|
if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
|
| 473 |
|
|
{
|
| 474 |
|
|
sal = find_pc_line (func_addr, 0);
|
| 475 |
|
|
|
| 476 |
|
|
if (sal.line != 0 && sal.end <= func_end)
|
| 477 |
|
|
{
|
| 478 |
|
|
func_end = sal.end;
|
| 479 |
|
|
}
|
| 480 |
|
|
else
|
| 481 |
|
|
/* Either there's no line info, or the line after the prologue is after
|
| 482 |
|
|
the end of the function. In this case, there probably isn't a
|
| 483 |
|
|
prologue. */
|
| 484 |
|
|
{
|
| 485 |
|
|
func_end = min (func_end, func_addr + DEFAULT_SEARCH_LIMIT);
|
| 486 |
|
|
}
|
| 487 |
|
|
}
|
| 488 |
|
|
else
|
| 489 |
|
|
func_end = pc + DEFAULT_SEARCH_LIMIT;
|
| 490 |
|
|
|
| 491 |
|
|
/* If pc's location is not readable, just quit. */
|
| 492 |
|
|
if (!safe_read_memory_integer (pc, 4, byte_order, &return_value))
|
| 493 |
|
|
return pc;
|
| 494 |
|
|
|
| 495 |
|
|
/* Find the end of prologue. */
|
| 496 |
|
|
if (decode_prologue (gdbarch, pc, func_end, &sal.end, NULL) < 0)
|
| 497 |
|
|
return pc;
|
| 498 |
|
|
|
| 499 |
|
|
return sal.end;
|
| 500 |
|
|
}
|
| 501 |
|
|
|
| 502 |
|
|
struct m32r_unwind_cache
|
| 503 |
|
|
{
|
| 504 |
|
|
/* The previous frame's inner most stack address. Used as this
|
| 505 |
|
|
frame ID's stack_addr. */
|
| 506 |
|
|
CORE_ADDR prev_sp;
|
| 507 |
|
|
/* The frame's base, optionally used by the high-level debug info. */
|
| 508 |
|
|
CORE_ADDR base;
|
| 509 |
|
|
int size;
|
| 510 |
|
|
/* How far the SP and r13 (FP) have been offset from the start of
|
| 511 |
|
|
the stack frame (as defined by the previous frame's stack
|
| 512 |
|
|
pointer). */
|
| 513 |
|
|
LONGEST sp_offset;
|
| 514 |
|
|
LONGEST r13_offset;
|
| 515 |
|
|
int uses_frame;
|
| 516 |
|
|
/* Table indicating the location of each and every register. */
|
| 517 |
|
|
struct trad_frame_saved_reg *saved_regs;
|
| 518 |
|
|
};
|
| 519 |
|
|
|
| 520 |
|
|
/* Put here the code to store, into fi->saved_regs, the addresses of
|
| 521 |
|
|
the saved registers of frame described by FRAME_INFO. This
|
| 522 |
|
|
includes special registers such as pc and fp saved in special ways
|
| 523 |
|
|
in the stack frame. sp is even more special: the address we return
|
| 524 |
|
|
for it IS the sp for the next frame. */
|
| 525 |
|
|
|
| 526 |
|
|
static struct m32r_unwind_cache *
|
| 527 |
|
|
m32r_frame_unwind_cache (struct frame_info *this_frame,
|
| 528 |
|
|
void **this_prologue_cache)
|
| 529 |
|
|
{
|
| 530 |
|
|
CORE_ADDR pc, scan_limit;
|
| 531 |
|
|
ULONGEST prev_sp;
|
| 532 |
|
|
ULONGEST this_base;
|
| 533 |
|
|
unsigned long op, op2;
|
| 534 |
|
|
int i;
|
| 535 |
|
|
struct m32r_unwind_cache *info;
|
| 536 |
|
|
|
| 537 |
|
|
|
| 538 |
|
|
if ((*this_prologue_cache))
|
| 539 |
|
|
return (*this_prologue_cache);
|
| 540 |
|
|
|
| 541 |
|
|
info = FRAME_OBSTACK_ZALLOC (struct m32r_unwind_cache);
|
| 542 |
|
|
(*this_prologue_cache) = info;
|
| 543 |
|
|
info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
|
| 544 |
|
|
|
| 545 |
|
|
info->size = 0;
|
| 546 |
|
|
info->sp_offset = 0;
|
| 547 |
|
|
info->uses_frame = 0;
|
| 548 |
|
|
|
| 549 |
|
|
scan_limit = get_frame_pc (this_frame);
|
| 550 |
|
|
for (pc = get_frame_func (this_frame);
|
| 551 |
|
|
pc > 0 && pc < scan_limit; pc += 2)
|
| 552 |
|
|
{
|
| 553 |
|
|
if ((pc & 2) == 0)
|
| 554 |
|
|
{
|
| 555 |
|
|
op = get_frame_memory_unsigned (this_frame, pc, 4);
|
| 556 |
|
|
if ((op & 0x80000000) == 0x80000000)
|
| 557 |
|
|
{
|
| 558 |
|
|
/* 32-bit instruction */
|
| 559 |
|
|
if ((op & 0xffff0000) == 0x8faf0000)
|
| 560 |
|
|
{
|
| 561 |
|
|
/* add3 sp,sp,xxxx */
|
| 562 |
|
|
short n = op & 0xffff;
|
| 563 |
|
|
info->sp_offset += n;
|
| 564 |
|
|
}
|
| 565 |
|
|
else if (((op >> 8) == 0xe4)
|
| 566 |
|
|
&& get_frame_memory_unsigned (this_frame, pc + 2,
|
| 567 |
|
|
2) == 0x0f24)
|
| 568 |
|
|
{
|
| 569 |
|
|
/* ld24 r4, xxxxxx; sub sp, r4 */
|
| 570 |
|
|
unsigned long n = op & 0xffffff;
|
| 571 |
|
|
info->sp_offset += n;
|
| 572 |
|
|
pc += 2; /* skip sub instruction */
|
| 573 |
|
|
}
|
| 574 |
|
|
|
| 575 |
|
|
if (pc == scan_limit)
|
| 576 |
|
|
scan_limit += 2; /* extend the search */
|
| 577 |
|
|
pc += 2; /* skip the immediate data */
|
| 578 |
|
|
continue;
|
| 579 |
|
|
}
|
| 580 |
|
|
}
|
| 581 |
|
|
|
| 582 |
|
|
/* 16-bit instructions */
|
| 583 |
|
|
op = get_frame_memory_unsigned (this_frame, pc, 2) & 0x7fff;
|
| 584 |
|
|
if ((op & 0xf0ff) == 0x207f)
|
| 585 |
|
|
{
|
| 586 |
|
|
/* st rn, @-sp */
|
| 587 |
|
|
int regno = ((op >> 8) & 0xf);
|
| 588 |
|
|
info->sp_offset -= 4;
|
| 589 |
|
|
info->saved_regs[regno].addr = info->sp_offset;
|
| 590 |
|
|
}
|
| 591 |
|
|
else if ((op & 0xff00) == 0x4f00)
|
| 592 |
|
|
{
|
| 593 |
|
|
/* addi sp, xx */
|
| 594 |
|
|
int n = (signed char) (op & 0xff);
|
| 595 |
|
|
info->sp_offset += n;
|
| 596 |
|
|
}
|
| 597 |
|
|
else if (op == 0x1d8f)
|
| 598 |
|
|
{
|
| 599 |
|
|
/* mv fp, sp */
|
| 600 |
|
|
info->uses_frame = 1;
|
| 601 |
|
|
info->r13_offset = info->sp_offset;
|
| 602 |
|
|
break; /* end of stack adjustments */
|
| 603 |
|
|
}
|
| 604 |
|
|
else if ((op & 0xfff0) == 0x10f0)
|
| 605 |
|
|
{
|
| 606 |
|
|
/* end of prologue if this is a trap instruction */
|
| 607 |
|
|
break; /* end of stack adjustments */
|
| 608 |
|
|
}
|
| 609 |
|
|
}
|
| 610 |
|
|
|
| 611 |
|
|
info->size = -info->sp_offset;
|
| 612 |
|
|
|
| 613 |
|
|
/* Compute the previous frame's stack pointer (which is also the
|
| 614 |
|
|
frame's ID's stack address), and this frame's base pointer. */
|
| 615 |
|
|
if (info->uses_frame)
|
| 616 |
|
|
{
|
| 617 |
|
|
/* The SP was moved to the FP. This indicates that a new frame
|
| 618 |
|
|
was created. Get THIS frame's FP value by unwinding it from
|
| 619 |
|
|
the next frame. */
|
| 620 |
|
|
this_base = get_frame_register_unsigned (this_frame, M32R_FP_REGNUM);
|
| 621 |
|
|
/* The FP points at the last saved register. Adjust the FP back
|
| 622 |
|
|
to before the first saved register giving the SP. */
|
| 623 |
|
|
prev_sp = this_base + info->size;
|
| 624 |
|
|
}
|
| 625 |
|
|
else
|
| 626 |
|
|
{
|
| 627 |
|
|
/* Assume that the FP is this frame's SP but with that pushed
|
| 628 |
|
|
stack space added back. */
|
| 629 |
|
|
this_base = get_frame_register_unsigned (this_frame, M32R_SP_REGNUM);
|
| 630 |
|
|
prev_sp = this_base + info->size;
|
| 631 |
|
|
}
|
| 632 |
|
|
|
| 633 |
|
|
/* Convert that SP/BASE into real addresses. */
|
| 634 |
|
|
info->prev_sp = prev_sp;
|
| 635 |
|
|
info->base = this_base;
|
| 636 |
|
|
|
| 637 |
|
|
/* Adjust all the saved registers so that they contain addresses and
|
| 638 |
|
|
not offsets. */
|
| 639 |
|
|
for (i = 0; i < gdbarch_num_regs (get_frame_arch (this_frame)) - 1; i++)
|
| 640 |
|
|
if (trad_frame_addr_p (info->saved_regs, i))
|
| 641 |
|
|
info->saved_regs[i].addr = (info->prev_sp + info->saved_regs[i].addr);
|
| 642 |
|
|
|
| 643 |
|
|
/* The call instruction moves the caller's PC in the callee's LR.
|
| 644 |
|
|
Since this is an unwind, do the reverse. Copy the location of LR
|
| 645 |
|
|
into PC (the address / regnum) so that a request for PC will be
|
| 646 |
|
|
converted into a request for the LR. */
|
| 647 |
|
|
info->saved_regs[M32R_PC_REGNUM] = info->saved_regs[LR_REGNUM];
|
| 648 |
|
|
|
| 649 |
|
|
/* The previous frame's SP needed to be computed. Save the computed
|
| 650 |
|
|
value. */
|
| 651 |
|
|
trad_frame_set_value (info->saved_regs, M32R_SP_REGNUM, prev_sp);
|
| 652 |
|
|
|
| 653 |
|
|
return info;
|
| 654 |
|
|
}
|
| 655 |
|
|
|
| 656 |
|
|
static CORE_ADDR
|
| 657 |
|
|
m32r_read_pc (struct regcache *regcache)
|
| 658 |
|
|
{
|
| 659 |
|
|
ULONGEST pc;
|
| 660 |
|
|
regcache_cooked_read_unsigned (regcache, M32R_PC_REGNUM, &pc);
|
| 661 |
|
|
return pc;
|
| 662 |
|
|
}
|
| 663 |
|
|
|
| 664 |
|
|
static void
|
| 665 |
|
|
m32r_write_pc (struct regcache *regcache, CORE_ADDR val)
|
| 666 |
|
|
{
|
| 667 |
|
|
regcache_cooked_write_unsigned (regcache, M32R_PC_REGNUM, val);
|
| 668 |
|
|
}
|
| 669 |
|
|
|
| 670 |
|
|
static CORE_ADDR
|
| 671 |
|
|
m32r_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
|
| 672 |
|
|
{
|
| 673 |
|
|
return frame_unwind_register_unsigned (next_frame, M32R_SP_REGNUM);
|
| 674 |
|
|
}
|
| 675 |
|
|
|
| 676 |
|
|
|
| 677 |
|
|
static CORE_ADDR
|
| 678 |
|
|
m32r_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
|
| 679 |
|
|
struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
|
| 680 |
|
|
struct value **args, CORE_ADDR sp, int struct_return,
|
| 681 |
|
|
CORE_ADDR struct_addr)
|
| 682 |
|
|
{
|
| 683 |
|
|
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
| 684 |
|
|
int stack_offset, stack_alloc;
|
| 685 |
|
|
int argreg = ARG1_REGNUM;
|
| 686 |
|
|
int argnum;
|
| 687 |
|
|
struct type *type;
|
| 688 |
|
|
enum type_code typecode;
|
| 689 |
|
|
CORE_ADDR regval;
|
| 690 |
|
|
gdb_byte *val;
|
| 691 |
|
|
gdb_byte valbuf[MAX_REGISTER_SIZE];
|
| 692 |
|
|
int len;
|
| 693 |
|
|
int odd_sized_struct;
|
| 694 |
|
|
|
| 695 |
|
|
/* first force sp to a 4-byte alignment */
|
| 696 |
|
|
sp = sp & ~3;
|
| 697 |
|
|
|
| 698 |
|
|
/* Set the return address. For the m32r, the return breakpoint is
|
| 699 |
|
|
always at BP_ADDR. */
|
| 700 |
|
|
regcache_cooked_write_unsigned (regcache, LR_REGNUM, bp_addr);
|
| 701 |
|
|
|
| 702 |
|
|
/* If STRUCT_RETURN is true, then the struct return address (in
|
| 703 |
|
|
STRUCT_ADDR) will consume the first argument-passing register.
|
| 704 |
|
|
Both adjust the register count and store that value. */
|
| 705 |
|
|
if (struct_return)
|
| 706 |
|
|
{
|
| 707 |
|
|
regcache_cooked_write_unsigned (regcache, argreg, struct_addr);
|
| 708 |
|
|
argreg++;
|
| 709 |
|
|
}
|
| 710 |
|
|
|
| 711 |
|
|
/* Now make sure there's space on the stack */
|
| 712 |
|
|
for (argnum = 0, stack_alloc = 0; argnum < nargs; argnum++)
|
| 713 |
|
|
stack_alloc += ((TYPE_LENGTH (value_type (args[argnum])) + 3) & ~3);
|
| 714 |
|
|
sp -= stack_alloc; /* make room on stack for args */
|
| 715 |
|
|
|
| 716 |
|
|
for (argnum = 0, stack_offset = 0; argnum < nargs; argnum++)
|
| 717 |
|
|
{
|
| 718 |
|
|
type = value_type (args[argnum]);
|
| 719 |
|
|
typecode = TYPE_CODE (type);
|
| 720 |
|
|
len = TYPE_LENGTH (type);
|
| 721 |
|
|
|
| 722 |
|
|
memset (valbuf, 0, sizeof (valbuf));
|
| 723 |
|
|
|
| 724 |
|
|
/* Passes structures that do not fit in 2 registers by reference. */
|
| 725 |
|
|
if (len > 8
|
| 726 |
|
|
&& (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION))
|
| 727 |
|
|
{
|
| 728 |
|
|
store_unsigned_integer (valbuf, 4, byte_order,
|
| 729 |
|
|
value_address (args[argnum]));
|
| 730 |
|
|
typecode = TYPE_CODE_PTR;
|
| 731 |
|
|
len = 4;
|
| 732 |
|
|
val = valbuf;
|
| 733 |
|
|
}
|
| 734 |
|
|
else if (len < 4)
|
| 735 |
|
|
{
|
| 736 |
|
|
/* value gets right-justified in the register or stack word */
|
| 737 |
|
|
memcpy (valbuf + (register_size (gdbarch, argreg) - len),
|
| 738 |
|
|
(gdb_byte *) value_contents (args[argnum]), len);
|
| 739 |
|
|
val = valbuf;
|
| 740 |
|
|
}
|
| 741 |
|
|
else
|
| 742 |
|
|
val = (gdb_byte *) value_contents (args[argnum]);
|
| 743 |
|
|
|
| 744 |
|
|
while (len > 0)
|
| 745 |
|
|
{
|
| 746 |
|
|
if (argreg > ARGN_REGNUM)
|
| 747 |
|
|
{
|
| 748 |
|
|
/* must go on the stack */
|
| 749 |
|
|
write_memory (sp + stack_offset, val, 4);
|
| 750 |
|
|
stack_offset += 4;
|
| 751 |
|
|
}
|
| 752 |
|
|
else if (argreg <= ARGN_REGNUM)
|
| 753 |
|
|
{
|
| 754 |
|
|
/* there's room in a register */
|
| 755 |
|
|
regval =
|
| 756 |
|
|
extract_unsigned_integer (val,
|
| 757 |
|
|
register_size (gdbarch, argreg),
|
| 758 |
|
|
byte_order);
|
| 759 |
|
|
regcache_cooked_write_unsigned (regcache, argreg++, regval);
|
| 760 |
|
|
}
|
| 761 |
|
|
|
| 762 |
|
|
/* Store the value 4 bytes at a time. This means that things
|
| 763 |
|
|
larger than 4 bytes may go partly in registers and partly
|
| 764 |
|
|
on the stack. */
|
| 765 |
|
|
len -= register_size (gdbarch, argreg);
|
| 766 |
|
|
val += register_size (gdbarch, argreg);
|
| 767 |
|
|
}
|
| 768 |
|
|
}
|
| 769 |
|
|
|
| 770 |
|
|
/* Finally, update the SP register. */
|
| 771 |
|
|
regcache_cooked_write_unsigned (regcache, M32R_SP_REGNUM, sp);
|
| 772 |
|
|
|
| 773 |
|
|
return sp;
|
| 774 |
|
|
}
|
| 775 |
|
|
|
| 776 |
|
|
|
| 777 |
|
|
/* Given a return value in `regbuf' with a type `valtype',
|
| 778 |
|
|
extract and copy its value into `valbuf'. */
|
| 779 |
|
|
|
| 780 |
|
|
static void
|
| 781 |
|
|
m32r_extract_return_value (struct type *type, struct regcache *regcache,
|
| 782 |
|
|
void *dst)
|
| 783 |
|
|
{
|
| 784 |
|
|
struct gdbarch *gdbarch = get_regcache_arch (regcache);
|
| 785 |
|
|
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
| 786 |
|
|
bfd_byte *valbuf = dst;
|
| 787 |
|
|
int len = TYPE_LENGTH (type);
|
| 788 |
|
|
ULONGEST tmp;
|
| 789 |
|
|
|
| 790 |
|
|
/* By using store_unsigned_integer we avoid having to do
|
| 791 |
|
|
anything special for small big-endian values. */
|
| 792 |
|
|
regcache_cooked_read_unsigned (regcache, RET1_REGNUM, &tmp);
|
| 793 |
|
|
store_unsigned_integer (valbuf, (len > 4 ? len - 4 : len), byte_order, tmp);
|
| 794 |
|
|
|
| 795 |
|
|
/* Ignore return values more than 8 bytes in size because the m32r
|
| 796 |
|
|
returns anything more than 8 bytes in the stack. */
|
| 797 |
|
|
if (len > 4)
|
| 798 |
|
|
{
|
| 799 |
|
|
regcache_cooked_read_unsigned (regcache, RET1_REGNUM + 1, &tmp);
|
| 800 |
|
|
store_unsigned_integer (valbuf + len - 4, 4, byte_order, tmp);
|
| 801 |
|
|
}
|
| 802 |
|
|
}
|
| 803 |
|
|
|
| 804 |
|
|
static enum return_value_convention
|
| 805 |
|
|
m32r_return_value (struct gdbarch *gdbarch, struct type *func_type,
|
| 806 |
|
|
struct type *valtype, struct regcache *regcache,
|
| 807 |
|
|
gdb_byte *readbuf, const gdb_byte *writebuf)
|
| 808 |
|
|
{
|
| 809 |
|
|
if (TYPE_LENGTH (valtype) > 8)
|
| 810 |
|
|
return RETURN_VALUE_STRUCT_CONVENTION;
|
| 811 |
|
|
else
|
| 812 |
|
|
{
|
| 813 |
|
|
if (readbuf != NULL)
|
| 814 |
|
|
m32r_extract_return_value (valtype, regcache, readbuf);
|
| 815 |
|
|
if (writebuf != NULL)
|
| 816 |
|
|
m32r_store_return_value (valtype, regcache, writebuf);
|
| 817 |
|
|
return RETURN_VALUE_REGISTER_CONVENTION;
|
| 818 |
|
|
}
|
| 819 |
|
|
}
|
| 820 |
|
|
|
| 821 |
|
|
|
| 822 |
|
|
|
| 823 |
|
|
static CORE_ADDR
|
| 824 |
|
|
m32r_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
|
| 825 |
|
|
{
|
| 826 |
|
|
return frame_unwind_register_unsigned (next_frame, M32R_PC_REGNUM);
|
| 827 |
|
|
}
|
| 828 |
|
|
|
| 829 |
|
|
/* Given a GDB frame, determine the address of the calling function's
|
| 830 |
|
|
frame. This will be used to create a new GDB frame struct. */
|
| 831 |
|
|
|
| 832 |
|
|
static void
|
| 833 |
|
|
m32r_frame_this_id (struct frame_info *this_frame,
|
| 834 |
|
|
void **this_prologue_cache, struct frame_id *this_id)
|
| 835 |
|
|
{
|
| 836 |
|
|
struct m32r_unwind_cache *info
|
| 837 |
|
|
= m32r_frame_unwind_cache (this_frame, this_prologue_cache);
|
| 838 |
|
|
CORE_ADDR base;
|
| 839 |
|
|
CORE_ADDR func;
|
| 840 |
|
|
struct minimal_symbol *msym_stack;
|
| 841 |
|
|
struct frame_id id;
|
| 842 |
|
|
|
| 843 |
|
|
/* The FUNC is easy. */
|
| 844 |
|
|
func = get_frame_func (this_frame);
|
| 845 |
|
|
|
| 846 |
|
|
/* Check if the stack is empty. */
|
| 847 |
|
|
msym_stack = lookup_minimal_symbol ("_stack", NULL, NULL);
|
| 848 |
|
|
if (msym_stack && info->base == SYMBOL_VALUE_ADDRESS (msym_stack))
|
| 849 |
|
|
return;
|
| 850 |
|
|
|
| 851 |
|
|
/* Hopefully the prologue analysis either correctly determined the
|
| 852 |
|
|
frame's base (which is the SP from the previous frame), or set
|
| 853 |
|
|
that base to "NULL". */
|
| 854 |
|
|
base = info->prev_sp;
|
| 855 |
|
|
if (base == 0)
|
| 856 |
|
|
return;
|
| 857 |
|
|
|
| 858 |
|
|
id = frame_id_build (base, func);
|
| 859 |
|
|
(*this_id) = id;
|
| 860 |
|
|
}
|
| 861 |
|
|
|
| 862 |
|
|
static struct value *
|
| 863 |
|
|
m32r_frame_prev_register (struct frame_info *this_frame,
|
| 864 |
|
|
void **this_prologue_cache, int regnum)
|
| 865 |
|
|
{
|
| 866 |
|
|
struct m32r_unwind_cache *info
|
| 867 |
|
|
= m32r_frame_unwind_cache (this_frame, this_prologue_cache);
|
| 868 |
|
|
return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
|
| 869 |
|
|
}
|
| 870 |
|
|
|
| 871 |
|
|
static const struct frame_unwind m32r_frame_unwind = {
|
| 872 |
|
|
NORMAL_FRAME,
|
| 873 |
|
|
m32r_frame_this_id,
|
| 874 |
|
|
m32r_frame_prev_register,
|
| 875 |
|
|
NULL,
|
| 876 |
|
|
default_frame_sniffer
|
| 877 |
|
|
};
|
| 878 |
|
|
|
| 879 |
|
|
static CORE_ADDR
|
| 880 |
|
|
m32r_frame_base_address (struct frame_info *this_frame, void **this_cache)
|
| 881 |
|
|
{
|
| 882 |
|
|
struct m32r_unwind_cache *info
|
| 883 |
|
|
= m32r_frame_unwind_cache (this_frame, this_cache);
|
| 884 |
|
|
return info->base;
|
| 885 |
|
|
}
|
| 886 |
|
|
|
| 887 |
|
|
static const struct frame_base m32r_frame_base = {
|
| 888 |
|
|
&m32r_frame_unwind,
|
| 889 |
|
|
m32r_frame_base_address,
|
| 890 |
|
|
m32r_frame_base_address,
|
| 891 |
|
|
m32r_frame_base_address
|
| 892 |
|
|
};
|
| 893 |
|
|
|
| 894 |
|
|
/* Assuming THIS_FRAME is a dummy, return the frame ID of that dummy
|
| 895 |
|
|
frame. The frame ID's base needs to match the TOS value saved by
|
| 896 |
|
|
save_dummy_frame_tos(), and the PC match the dummy frame's breakpoint. */
|
| 897 |
|
|
|
| 898 |
|
|
static struct frame_id
|
| 899 |
|
|
m32r_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
|
| 900 |
|
|
{
|
| 901 |
|
|
CORE_ADDR sp = get_frame_register_unsigned (this_frame, M32R_SP_REGNUM);
|
| 902 |
|
|
return frame_id_build (sp, get_frame_pc (this_frame));
|
| 903 |
|
|
}
|
| 904 |
|
|
|
| 905 |
|
|
|
| 906 |
|
|
static gdbarch_init_ftype m32r_gdbarch_init;
|
| 907 |
|
|
|
| 908 |
|
|
static struct gdbarch *
|
| 909 |
|
|
m32r_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
|
| 910 |
|
|
{
|
| 911 |
|
|
struct gdbarch *gdbarch;
|
| 912 |
|
|
struct gdbarch_tdep *tdep;
|
| 913 |
|
|
|
| 914 |
|
|
/* If there is already a candidate, use it. */
|
| 915 |
|
|
arches = gdbarch_list_lookup_by_info (arches, &info);
|
| 916 |
|
|
if (arches != NULL)
|
| 917 |
|
|
return arches->gdbarch;
|
| 918 |
|
|
|
| 919 |
|
|
/* Allocate space for the new architecture. */
|
| 920 |
|
|
tdep = XMALLOC (struct gdbarch_tdep);
|
| 921 |
|
|
gdbarch = gdbarch_alloc (&info, tdep);
|
| 922 |
|
|
|
| 923 |
|
|
set_gdbarch_read_pc (gdbarch, m32r_read_pc);
|
| 924 |
|
|
set_gdbarch_write_pc (gdbarch, m32r_write_pc);
|
| 925 |
|
|
set_gdbarch_unwind_sp (gdbarch, m32r_unwind_sp);
|
| 926 |
|
|
|
| 927 |
|
|
set_gdbarch_num_regs (gdbarch, M32R_NUM_REGS);
|
| 928 |
|
|
set_gdbarch_sp_regnum (gdbarch, M32R_SP_REGNUM);
|
| 929 |
|
|
set_gdbarch_register_name (gdbarch, m32r_register_name);
|
| 930 |
|
|
set_gdbarch_register_type (gdbarch, m32r_register_type);
|
| 931 |
|
|
|
| 932 |
|
|
set_gdbarch_push_dummy_call (gdbarch, m32r_push_dummy_call);
|
| 933 |
|
|
set_gdbarch_return_value (gdbarch, m32r_return_value);
|
| 934 |
|
|
|
| 935 |
|
|
set_gdbarch_skip_prologue (gdbarch, m32r_skip_prologue);
|
| 936 |
|
|
set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
|
| 937 |
|
|
set_gdbarch_breakpoint_from_pc (gdbarch, m32r_breakpoint_from_pc);
|
| 938 |
|
|
set_gdbarch_memory_insert_breakpoint (gdbarch,
|
| 939 |
|
|
m32r_memory_insert_breakpoint);
|
| 940 |
|
|
set_gdbarch_memory_remove_breakpoint (gdbarch,
|
| 941 |
|
|
m32r_memory_remove_breakpoint);
|
| 942 |
|
|
|
| 943 |
|
|
set_gdbarch_frame_align (gdbarch, m32r_frame_align);
|
| 944 |
|
|
|
| 945 |
|
|
frame_base_set_default (gdbarch, &m32r_frame_base);
|
| 946 |
|
|
|
| 947 |
|
|
/* Methods for saving / extracting a dummy frame's ID. The ID's
|
| 948 |
|
|
stack address must match the SP value returned by
|
| 949 |
|
|
PUSH_DUMMY_CALL, and saved by generic_save_dummy_frame_tos. */
|
| 950 |
|
|
set_gdbarch_dummy_id (gdbarch, m32r_dummy_id);
|
| 951 |
|
|
|
| 952 |
|
|
/* Return the unwound PC value. */
|
| 953 |
|
|
set_gdbarch_unwind_pc (gdbarch, m32r_unwind_pc);
|
| 954 |
|
|
|
| 955 |
|
|
set_gdbarch_print_insn (gdbarch, print_insn_m32r);
|
| 956 |
|
|
|
| 957 |
|
|
/* Hook in ABI-specific overrides, if they have been registered. */
|
| 958 |
|
|
gdbarch_init_osabi (info, gdbarch);
|
| 959 |
|
|
|
| 960 |
|
|
/* Hook in the default unwinders. */
|
| 961 |
|
|
frame_unwind_append_unwinder (gdbarch, &m32r_frame_unwind);
|
| 962 |
|
|
|
| 963 |
|
|
/* Support simple overlay manager. */
|
| 964 |
|
|
set_gdbarch_overlay_update (gdbarch, simple_overlay_update);
|
| 965 |
|
|
|
| 966 |
|
|
return gdbarch;
|
| 967 |
|
|
}
|
| 968 |
|
|
|
| 969 |
|
|
void
|
| 970 |
|
|
_initialize_m32r_tdep (void)
|
| 971 |
|
|
{
|
| 972 |
|
|
register_gdbarch_init (bfd_arch_m32r, m32r_gdbarch_init);
|
| 973 |
|
|
}
|