OpenCores
URL https://opencores.org/ocsvn/openrisc_2011-10-31/openrisc_2011-10-31/trunk

Subversion Repositories openrisc_2011-10-31

[/] [openrisc/] [trunk/] [gnu-src/] [gdb-7.2/] [gdb/] [mep-tdep.c] - Blame information for rev 631

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 330 jeremybenn
/* Target-dependent code for the Toshiba MeP for GDB, the GNU debugger.
2
 
3
   Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
4
   Free Software Foundation, Inc.
5
 
6
   Contributed by Red Hat, Inc.
7
 
8
   This file is part of GDB.
9
 
10
   This program is free software; you can redistribute it and/or modify
11
   it under the terms of the GNU General Public License as published by
12
   the Free Software Foundation; either version 3 of the License, or
13
   (at your option) any later version.
14
 
15
   This program is distributed in the hope that it will be useful,
16
   but WITHOUT ANY WARRANTY; without even the implied warranty of
17
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18
   GNU General Public License for more details.
19
 
20
   You should have received a copy of the GNU General Public License
21
   along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
22
 
23
#include "defs.h"
24
#include "frame.h"
25
#include "frame-unwind.h"
26
#include "frame-base.h"
27
#include "symtab.h"
28
#include "gdbtypes.h"
29
#include "gdbcmd.h"
30
#include "gdbcore.h"
31
#include "gdb_string.h"
32
#include "value.h"
33
#include "inferior.h"
34
#include "dis-asm.h"
35
#include "symfile.h"
36
#include "objfiles.h"
37
#include "language.h"
38
#include "arch-utils.h"
39
#include "regcache.h"
40
#include "remote.h"
41
#include "floatformat.h"
42
#include "sim-regno.h"
43
#include "disasm.h"
44
#include "trad-frame.h"
45
#include "reggroups.h"
46
#include "elf-bfd.h"
47
#include "elf/mep.h"
48
#include "prologue-value.h"
49
#include "cgen/bitset.h"
50
#include "infcall.h"
51
 
52
#include "gdb_assert.h"
53
 
54
/* Get the user's customized MeP coprocessor register names from
55
   libopcodes.  */
56
#include "opcodes/mep-desc.h"
57
#include "opcodes/mep-opc.h"
58
 
59
 
60
/* The gdbarch_tdep structure.  */
61
 
62
/* A quick recap for GDB hackers not familiar with the whole Toshiba
63
   Media Processor story:
64
 
65
   The MeP media engine is a configureable processor: users can design
66
   their own coprocessors, implement custom instructions, adjust cache
67
   sizes, select optional standard facilities like add-and-saturate
68
   instructions, and so on.  Then, they can build custom versions of
69
   the GNU toolchain to support their customized chips.  The
70
   MeP-Integrator program (see utils/mep) takes a GNU toolchain source
71
   tree, and a config file pointing to various files provided by the
72
   user describing their customizations, and edits the source tree to
73
   produce a compiler that can generate their custom instructions, an
74
   assembler that can assemble them and recognize their custom
75
   register names, and so on.
76
 
77
   Furthermore, the user can actually specify several of these custom
78
   configurations, called 'me_modules', and get a toolchain which can
79
   produce code for any of them, given a compiler/assembler switch;
80
   you say something like 'gcc -mconfig=mm_max' to generate code for
81
   the me_module named 'mm_max'.
82
 
83
   GDB, in particular, needs to:
84
 
85
   - use the coprocessor control register names provided by the user
86
     in their hardware description, in expressions, 'info register'
87
     output, and disassembly,
88
 
89
   - know the number, names, and types of the coprocessor's
90
     general-purpose registers, adjust the 'info all-registers' output
91
     accordingly, and print error messages if the user refers to one
92
     that doesn't exist
93
 
94
   - allow access to the control bus space only when the configuration
95
     actually has a control bus, and recognize which regions of the
96
     control bus space are actually populated,
97
 
98
   - disassemble using the user's provided mnemonics for their custom
99
     instructions, and
100
 
101
   - recognize whether the $hi and $lo registers are present, and
102
     allow access to them only when they are actually there.
103
 
104
   There are three sources of information about what sort of me_module
105
   we're actually dealing with:
106
 
107
   - A MeP executable file indicates which me_module it was compiled
108
     for, and libopcodes has tables describing each module.  So, given
109
     an executable file, we can find out about the processor it was
110
     compiled for.
111
 
112
   - There are SID command-line options to select a particular
113
     me_module, overriding the one specified in the ELF file.  SID
114
     provides GDB with a fake read-only register, 'module', which
115
     indicates which me_module GDB is communicating with an instance
116
     of.
117
 
118
   - There are SID command-line options to enable or disable certain
119
     optional processor features, overriding the defaults for the
120
     selected me_module.  The MeP $OPT register indicates which
121
     options are present on the current processor.  */
122
 
123
 
124
struct gdbarch_tdep
125
{
126
  /* A CGEN cpu descriptor for this BFD architecture and machine.
127
 
128
     Note: this is *not* customized for any particular me_module; the
129
     MeP libopcodes machinery actually puts off module-specific
130
     customization until the last minute.  So this contains
131
     information about all supported me_modules.  */
132
  CGEN_CPU_DESC cpu_desc;
133
 
134
  /* The me_module index from the ELF file we used to select this
135
     architecture, or CONFIG_NONE if there was none.
136
 
137
     Note that we should prefer to use the me_module number available
138
     via the 'module' register, whenever we're actually talking to a
139
     real target.
140
 
141
     In the absence of live information, we'd like to get the
142
     me_module number from the ELF file.  But which ELF file: the
143
     executable file, the core file, ... ?  The answer is, "the last
144
     ELF file we used to set the current architecture".  Thus, we
145
     create a separate instance of the gdbarch structure for each
146
     me_module value mep_gdbarch_init sees, and store the me_module
147
     value from the ELF file here.  */
148
  CONFIG_ATTR me_module;
149
};
150
 
151
 
152
 
153
/* Getting me_module information from the CGEN tables.  */
154
 
155
 
156
/* Find an entry in the DESC's hardware table whose name begins with
157
   PREFIX, and whose ISA mask intersects COPRO_ISA_MASK, but does not
158
   intersect with GENERIC_ISA_MASK.  If there is no matching entry,
159
   return zero.  */
160
static const CGEN_HW_ENTRY *
161
find_hw_entry_by_prefix_and_isa (CGEN_CPU_DESC desc,
162
                                 const char *prefix,
163
                                 CGEN_BITSET *copro_isa_mask,
164
                                 CGEN_BITSET *generic_isa_mask)
165
{
166
  int prefix_len = strlen (prefix);
167
  int i;
168
 
169
  for (i = 0; i < desc->hw_table.num_entries; i++)
170
    {
171
      const CGEN_HW_ENTRY *hw = desc->hw_table.entries[i];
172
      if (strncmp (prefix, hw->name, prefix_len) == 0)
173
        {
174
          CGEN_BITSET *hw_isa_mask
175
            = ((CGEN_BITSET *)
176
               &CGEN_ATTR_CGEN_HW_ISA_VALUE (CGEN_HW_ATTRS (hw)));
177
 
178
          if (cgen_bitset_intersect_p (hw_isa_mask, copro_isa_mask)
179
              && ! cgen_bitset_intersect_p (hw_isa_mask, generic_isa_mask))
180
            return hw;
181
        }
182
    }
183
 
184
  return 0;
185
}
186
 
187
 
188
/* Find an entry in DESC's hardware table whose type is TYPE.  Return
189
   zero if there is none.  */
190
static const CGEN_HW_ENTRY *
191
find_hw_entry_by_type (CGEN_CPU_DESC desc, CGEN_HW_TYPE type)
192
{
193
  int i;
194
 
195
  for (i = 0; i < desc->hw_table.num_entries; i++)
196
    {
197
      const CGEN_HW_ENTRY *hw = desc->hw_table.entries[i];
198
 
199
      if (hw->type == type)
200
        return hw;
201
    }
202
 
203
  return 0;
204
}
205
 
206
 
207
/* Return the CGEN hardware table entry for the coprocessor register
208
   set for ME_MODULE, whose name prefix is PREFIX.  If ME_MODULE has
209
   no such register set, return zero.  If ME_MODULE is the generic
210
   me_module CONFIG_NONE, return the table entry for the register set
211
   whose hardware type is GENERIC_TYPE.  */
212
static const CGEN_HW_ENTRY *
213
me_module_register_set (CONFIG_ATTR me_module,
214
                        const char *prefix,
215
                        CGEN_HW_TYPE generic_type)
216
{
217
  /* This is kind of tricky, because the hardware table is constructed
218
     in a way that isn't very helpful.  Perhaps we can fix that, but
219
     here's how it works at the moment:
220
 
221
     The configuration map, `mep_config_map', is indexed by me_module
222
     number, and indicates which coprocessor and core ISAs that
223
     me_module supports.  The 'core_isa' mask includes all the core
224
     ISAs, and the 'cop_isa' mask includes all the coprocessor ISAs.
225
     The entry for the generic me_module, CONFIG_NONE, has an empty
226
     'cop_isa', and its 'core_isa' selects only the standard MeP
227
     instruction set.
228
 
229
     The CGEN CPU descriptor's hardware table, desc->hw_table, has
230
     entries for all the register sets, for all me_modules.  Each
231
     entry has a mask indicating which ISAs use that register set.
232
     So, if an me_module supports some coprocessor ISA, we can find
233
     applicable register sets by scanning the hardware table for
234
     register sets whose masks include (at least some of) those ISAs.
235
 
236
     Each hardware table entry also has a name, whose prefix says
237
     whether it's a general-purpose ("h-cr") or control ("h-ccr")
238
     coprocessor register set.  It might be nicer to have an attribute
239
     indicating what sort of register set it was, that we could use
240
     instead of pattern-matching on the name.
241
 
242
     When there is no hardware table entry whose mask includes a
243
     particular coprocessor ISA and whose name starts with a given
244
     prefix, then that means that that coprocessor doesn't have any
245
     registers of that type.  In such cases, this function must return
246
     a null pointer.
247
 
248
     Coprocessor register sets' masks may or may not include the core
249
     ISA for the me_module they belong to.  Those generated by a2cgen
250
     do, but the sample me_module included in the unconfigured tree,
251
     'ccfx', does not.
252
 
253
     There are generic coprocessor register sets, intended only for
254
     use with the generic me_module.  Unfortunately, their masks
255
     include *all* ISAs --- even those for coprocessors that don't
256
     have such register sets.  This makes detecting the case where a
257
     coprocessor lacks a particular register set more complicated.
258
 
259
     So, here's the approach we take:
260
 
261
     - For CONFIG_NONE, we return the generic coprocessor register set.
262
 
263
     - For any other me_module, we search for a register set whose
264
       mask contains any of the me_module's coprocessor ISAs,
265
       specifically excluding the generic coprocessor register sets.  */
266
 
267
  CGEN_CPU_DESC desc = gdbarch_tdep (target_gdbarch)->cpu_desc;
268
  const CGEN_HW_ENTRY *hw;
269
 
270
  if (me_module == CONFIG_NONE)
271
    hw = find_hw_entry_by_type (desc, generic_type);
272
  else
273
    {
274
      CGEN_BITSET *cop = &mep_config_map[me_module].cop_isa;
275
      CGEN_BITSET *core = &mep_config_map[me_module].core_isa;
276
      CGEN_BITSET *generic = &mep_config_map[CONFIG_NONE].core_isa;
277
      CGEN_BITSET *cop_and_core;
278
 
279
      /* The coprocessor ISAs include the ISA for the specific core which
280
         has that coprocessor.  */
281
      cop_and_core = cgen_bitset_copy (cop);
282
      cgen_bitset_union (cop, core, cop_and_core);
283
      hw = find_hw_entry_by_prefix_and_isa (desc, prefix, cop_and_core, generic);
284
    }
285
 
286
  return hw;
287
}
288
 
289
 
290
/* Given a hardware table entry HW representing a register set, return
291
   a pointer to the keyword table with all the register names.  If HW
292
   is NULL, return NULL, to propage the "no such register set" info
293
   along.  */
294
static CGEN_KEYWORD *
295
register_set_keyword_table (const CGEN_HW_ENTRY *hw)
296
{
297
  if (! hw)
298
    return NULL;
299
 
300
  /* Check that HW is actually a keyword table.  */
301
  gdb_assert (hw->asm_type == CGEN_ASM_KEYWORD);
302
 
303
  /* The 'asm_data' field of a register set's hardware table entry
304
     refers to a keyword table.  */
305
  return (CGEN_KEYWORD *) hw->asm_data;
306
}
307
 
308
 
309
/* Given a keyword table KEYWORD and a register number REGNUM, return
310
   the name of the register, or "" if KEYWORD contains no register
311
   whose number is REGNUM.  */
312
static char *
313
register_name_from_keyword (CGEN_KEYWORD *keyword_table, int regnum)
314
{
315
  const CGEN_KEYWORD_ENTRY *entry
316
    = cgen_keyword_lookup_value (keyword_table, regnum);
317
 
318
  if (entry)
319
    {
320
      char *name = entry->name;
321
 
322
      /* The CGEN keyword entries for register names include the
323
         leading $, which appears in MeP assembly as well as in GDB.
324
         But we don't want to return that; GDB core code adds that
325
         itself.  */
326
      if (name[0] == '$')
327
        name++;
328
 
329
      return name;
330
    }
331
  else
332
    return "";
333
}
334
 
335
 
336
/* Masks for option bits in the OPT special-purpose register.  */
337
enum {
338
  MEP_OPT_DIV = 1 << 25,        /* 32-bit divide instruction option */
339
  MEP_OPT_MUL = 1 << 24,        /* 32-bit multiply instruction option */
340
  MEP_OPT_BIT = 1 << 23,        /* bit manipulation instruction option */
341
  MEP_OPT_SAT = 1 << 22,        /* saturation instruction option */
342
  MEP_OPT_CLP = 1 << 21,        /* clip instruction option */
343
  MEP_OPT_MIN = 1 << 20,        /* min/max instruction option */
344
  MEP_OPT_AVE = 1 << 19,        /* average instruction option */
345
  MEP_OPT_ABS = 1 << 18,        /* absolute difference instruction option */
346
  MEP_OPT_LDZ = 1 << 16,        /* leading zero instruction option */
347
  MEP_OPT_VL64 = 1 << 6,        /* 64-bit VLIW operation mode option */
348
  MEP_OPT_VL32 = 1 << 5,        /* 32-bit VLIW operation mode option */
349
  MEP_OPT_COP = 1 << 4,         /* coprocessor option */
350
  MEP_OPT_DSP = 1 << 2,         /* DSP option */
351
  MEP_OPT_UCI = 1 << 1,         /* UCI option */
352
  MEP_OPT_DBG = 1 << 0,         /* DBG function option */
353
};
354
 
355
 
356
/* Given the option_mask value for a particular entry in
357
   mep_config_map, produce the value the processor's OPT register
358
   would use to represent the same set of options.  */
359
static unsigned int
360
opt_from_option_mask (unsigned int option_mask)
361
{
362
  /* A table mapping OPT register bits onto CGEN config map option
363
     bits.  */
364
  struct {
365
    unsigned int opt_bit, option_mask_bit;
366
  } bits[] = {
367
    { MEP_OPT_DIV, 1 << CGEN_INSN_OPTIONAL_DIV_INSN },
368
    { MEP_OPT_MUL, 1 << CGEN_INSN_OPTIONAL_MUL_INSN },
369
    { MEP_OPT_DIV, 1 << CGEN_INSN_OPTIONAL_DIV_INSN },
370
    { MEP_OPT_DBG, 1 << CGEN_INSN_OPTIONAL_DEBUG_INSN },
371
    { MEP_OPT_LDZ, 1 << CGEN_INSN_OPTIONAL_LDZ_INSN },
372
    { MEP_OPT_ABS, 1 << CGEN_INSN_OPTIONAL_ABS_INSN },
373
    { MEP_OPT_AVE, 1 << CGEN_INSN_OPTIONAL_AVE_INSN },
374
    { MEP_OPT_MIN, 1 << CGEN_INSN_OPTIONAL_MINMAX_INSN },
375
    { MEP_OPT_CLP, 1 << CGEN_INSN_OPTIONAL_CLIP_INSN },
376
    { MEP_OPT_SAT, 1 << CGEN_INSN_OPTIONAL_SAT_INSN },
377
    { MEP_OPT_UCI, 1 << CGEN_INSN_OPTIONAL_UCI_INSN },
378
    { MEP_OPT_DSP, 1 << CGEN_INSN_OPTIONAL_DSP_INSN },
379
    { MEP_OPT_COP, 1 << CGEN_INSN_OPTIONAL_CP_INSN },
380
  };
381
 
382
  int i;
383
  unsigned int opt = 0;
384
 
385
  for (i = 0; i < (sizeof (bits) / sizeof (bits[0])); i++)
386
    if (option_mask & bits[i].option_mask_bit)
387
      opt |= bits[i].opt_bit;
388
 
389
  return opt;
390
}
391
 
392
 
393
/* Return the value the $OPT register would use to represent the set
394
   of options for ME_MODULE.  */
395
static unsigned int
396
me_module_opt (CONFIG_ATTR me_module)
397
{
398
  return opt_from_option_mask (mep_config_map[me_module].option_mask);
399
}
400
 
401
 
402
/* Return the width of ME_MODULE's coprocessor data bus, in bits.
403
   This is either 32 or 64.  */
404
static int
405
me_module_cop_data_bus_width (CONFIG_ATTR me_module)
406
{
407
  if (mep_config_map[me_module].option_mask
408
      & (1 << CGEN_INSN_OPTIONAL_CP64_INSN))
409
    return 64;
410
  else
411
    return 32;
412
}
413
 
414
 
415
/* Return true if ME_MODULE is big-endian, false otherwise.  */
416
static int
417
me_module_big_endian (CONFIG_ATTR me_module)
418
{
419
  return mep_config_map[me_module].big_endian;
420
}
421
 
422
 
423
/* Return the name of ME_MODULE, or NULL if it has no name.  */
424
static const char *
425
me_module_name (CONFIG_ATTR me_module)
426
{
427
  /* The default me_module has "" as its name, but it's easier for our
428
     callers to test for NULL.  */
429
  if (! mep_config_map[me_module].name
430
      || mep_config_map[me_module].name[0] == '\0')
431
    return NULL;
432
  else
433
    return mep_config_map[me_module].name;
434
}
435
 
436
/* Register set.  */
437
 
438
 
439
/* The MeP spec defines the following registers:
440
   16 general purpose registers (r0-r15)
441
   32 control/special registers (csr0-csr31)
442
   32 coprocessor general-purpose registers (c0 -- c31)
443
   64 coprocessor control registers (ccr0 -- ccr63)
444
 
445
   For the raw registers, we assign numbers here explicitly, instead
446
   of letting the enum assign them for us; the numbers are a matter of
447
   external protocol, and shouldn't shift around as things are edited.
448
 
449
   We access the control/special registers via pseudoregisters, to
450
   enforce read-only portions that some registers have.
451
 
452
   We access the coprocessor general purpose and control registers via
453
   pseudoregisters, to make sure they appear in the proper order in
454
   the 'info all-registers' command (which uses the register number
455
   ordering), and also to allow them to be renamed and resized
456
   depending on the me_module in use.
457
 
458
   The MeP allows coprocessor general-purpose registers to be either
459
   32 or 64 bits long, depending on the configuration.  Since we don't
460
   want the format of the 'g' packet to vary from one core to another,
461
   the raw coprocessor GPRs are always 64 bits.  GDB doesn't allow the
462
   types of registers to change (see the implementation of
463
   register_type), so we have four banks of pseudoregisters for the
464
   coprocessor gprs --- 32-bit vs. 64-bit, and integer
465
   vs. floating-point --- and we show or hide them depending on the
466
   configuration.  */
467
enum
468
{
469
  MEP_FIRST_RAW_REGNUM = 0,
470
 
471
  MEP_FIRST_GPR_REGNUM = 0,
472
  MEP_R0_REGNUM = 0,
473
  MEP_R1_REGNUM = 1,
474
  MEP_R2_REGNUM = 2,
475
  MEP_R3_REGNUM = 3,
476
  MEP_R4_REGNUM = 4,
477
  MEP_R5_REGNUM = 5,
478
  MEP_R6_REGNUM = 6,
479
  MEP_R7_REGNUM = 7,
480
  MEP_R8_REGNUM = 8,
481
  MEP_R9_REGNUM = 9,
482
  MEP_R10_REGNUM = 10,
483
  MEP_R11_REGNUM = 11,
484
  MEP_R12_REGNUM = 12,
485
  MEP_FP_REGNUM = MEP_R8_REGNUM,
486
  MEP_R13_REGNUM = 13,
487
  MEP_TP_REGNUM = MEP_R13_REGNUM,       /* (r13) Tiny data pointer */
488
  MEP_R14_REGNUM = 14,
489
  MEP_GP_REGNUM = MEP_R14_REGNUM,       /* (r14) Global pointer */
490
  MEP_R15_REGNUM = 15,
491
  MEP_SP_REGNUM = MEP_R15_REGNUM,       /* (r15) Stack pointer */
492
  MEP_LAST_GPR_REGNUM = MEP_R15_REGNUM,
493
 
494
  /* The raw control registers.  These are the values as received via
495
     the remote protocol, directly from the target; we only let user
496
     code touch the via the pseudoregisters, which enforce read-only
497
     bits.  */
498
  MEP_FIRST_RAW_CSR_REGNUM = 16,
499
  MEP_RAW_PC_REGNUM    = 16,    /* Program counter */
500
  MEP_RAW_LP_REGNUM    = 17,    /* Link pointer */
501
  MEP_RAW_SAR_REGNUM   = 18,    /* Raw shift amount */
502
  MEP_RAW_CSR3_REGNUM  = 19,    /* csr3: reserved */
503
  MEP_RAW_RPB_REGNUM   = 20,    /* Raw repeat begin address */
504
  MEP_RAW_RPE_REGNUM   = 21,    /* Repeat end address */
505
  MEP_RAW_RPC_REGNUM   = 22,    /* Repeat count */
506
  MEP_RAW_HI_REGNUM    = 23, /* Upper 32 bits of result of 64 bit mult/div */
507
  MEP_RAW_LO_REGNUM    = 24, /* Lower 32 bits of result of 64 bit mult/div */
508
  MEP_RAW_CSR9_REGNUM  = 25,    /* csr3: reserved */
509
  MEP_RAW_CSR10_REGNUM = 26,    /* csr3: reserved */
510
  MEP_RAW_CSR11_REGNUM = 27,    /* csr3: reserved */
511
  MEP_RAW_MB0_REGNUM   = 28,    /* Raw modulo begin address 0 */
512
  MEP_RAW_ME0_REGNUM   = 29,    /* Raw modulo end address 0 */
513
  MEP_RAW_MB1_REGNUM   = 30,    /* Raw modulo begin address 1 */
514
  MEP_RAW_ME1_REGNUM   = 31,    /* Raw modulo end address 1 */
515
  MEP_RAW_PSW_REGNUM   = 32,    /* Raw program status word */
516
  MEP_RAW_ID_REGNUM    = 33,    /* Raw processor ID/revision */
517
  MEP_RAW_TMP_REGNUM   = 34,    /* Temporary */
518
  MEP_RAW_EPC_REGNUM   = 35,    /* Exception program counter */
519
  MEP_RAW_EXC_REGNUM   = 36,    /* Raw exception cause */
520
  MEP_RAW_CFG_REGNUM   = 37,    /* Raw processor configuration*/
521
  MEP_RAW_CSR22_REGNUM = 38,    /* csr3: reserved */
522
  MEP_RAW_NPC_REGNUM   = 39,    /* Nonmaskable interrupt PC */
523
  MEP_RAW_DBG_REGNUM   = 40,    /* Raw debug */
524
  MEP_RAW_DEPC_REGNUM  = 41,    /* Debug exception PC */
525
  MEP_RAW_OPT_REGNUM   = 42,    /* Raw options */
526
  MEP_RAW_RCFG_REGNUM  = 43,    /* Raw local ram config */
527
  MEP_RAW_CCFG_REGNUM  = 44,    /* Raw cache config */
528
  MEP_RAW_CSR29_REGNUM = 45,    /* csr3: reserved */
529
  MEP_RAW_CSR30_REGNUM = 46,    /* csr3: reserved */
530
  MEP_RAW_CSR31_REGNUM = 47,    /* csr3: reserved */
531
  MEP_LAST_RAW_CSR_REGNUM = MEP_RAW_CSR31_REGNUM,
532
 
533
  /* The raw coprocessor general-purpose registers.  These are all 64
534
     bits wide.  */
535
  MEP_FIRST_RAW_CR_REGNUM = 48,
536
  MEP_LAST_RAW_CR_REGNUM = MEP_FIRST_RAW_CR_REGNUM + 31,
537
 
538
  MEP_FIRST_RAW_CCR_REGNUM = 80,
539
  MEP_LAST_RAW_CCR_REGNUM = MEP_FIRST_RAW_CCR_REGNUM + 63,
540
 
541
  /* The module number register.  This is the index of the me_module
542
     of which the current target is an instance.  (This is not a real
543
     MeP-specified register; it's provided by SID.)  */
544
  MEP_MODULE_REGNUM,
545
 
546
  MEP_LAST_RAW_REGNUM = MEP_MODULE_REGNUM,
547
 
548
  MEP_NUM_RAW_REGS = MEP_LAST_RAW_REGNUM + 1,
549
 
550
  /* Pseudoregisters.  See mep_pseudo_register_read and
551
     mep_pseudo_register_write.  */
552
  MEP_FIRST_PSEUDO_REGNUM = MEP_NUM_RAW_REGS,
553
 
554
  /* We have a pseudoregister for every control/special register, to
555
     implement registers with read-only bits.  */
556
  MEP_FIRST_CSR_REGNUM = MEP_FIRST_PSEUDO_REGNUM,
557
  MEP_PC_REGNUM = MEP_FIRST_CSR_REGNUM, /* Program counter */
558
  MEP_LP_REGNUM,                /* Link pointer */
559
  MEP_SAR_REGNUM,               /* shift amount */
560
  MEP_CSR3_REGNUM,              /* csr3: reserved */
561
  MEP_RPB_REGNUM,               /* repeat begin address */
562
  MEP_RPE_REGNUM,               /* Repeat end address */
563
  MEP_RPC_REGNUM,               /* Repeat count */
564
  MEP_HI_REGNUM,  /* Upper 32 bits of the result of 64 bit mult/div */
565
  MEP_LO_REGNUM,  /* Lower 32 bits of the result of 64 bit mult/div */
566
  MEP_CSR9_REGNUM,              /* csr3: reserved */
567
  MEP_CSR10_REGNUM,             /* csr3: reserved */
568
  MEP_CSR11_REGNUM,             /* csr3: reserved */
569
  MEP_MB0_REGNUM,               /* modulo begin address 0 */
570
  MEP_ME0_REGNUM,               /* modulo end address 0 */
571
  MEP_MB1_REGNUM,               /* modulo begin address 1 */
572
  MEP_ME1_REGNUM,               /* modulo end address 1 */
573
  MEP_PSW_REGNUM,               /* program status word */
574
  MEP_ID_REGNUM,                /* processor ID/revision */
575
  MEP_TMP_REGNUM,               /* Temporary */
576
  MEP_EPC_REGNUM,               /* Exception program counter */
577
  MEP_EXC_REGNUM,               /* exception cause */
578
  MEP_CFG_REGNUM,               /* processor configuration*/
579
  MEP_CSR22_REGNUM,             /* csr3: reserved */
580
  MEP_NPC_REGNUM,               /* Nonmaskable interrupt PC */
581
  MEP_DBG_REGNUM,               /* debug */
582
  MEP_DEPC_REGNUM,              /* Debug exception PC */
583
  MEP_OPT_REGNUM,               /* options */
584
  MEP_RCFG_REGNUM,              /* local ram config */
585
  MEP_CCFG_REGNUM,              /* cache config */
586
  MEP_CSR29_REGNUM,             /* csr3: reserved */
587
  MEP_CSR30_REGNUM,             /* csr3: reserved */
588
  MEP_CSR31_REGNUM,             /* csr3: reserved */
589
  MEP_LAST_CSR_REGNUM = MEP_CSR31_REGNUM,
590
 
591
  /* The 32-bit integer view of the coprocessor GPR's.  */
592
  MEP_FIRST_CR32_REGNUM,
593
  MEP_LAST_CR32_REGNUM = MEP_FIRST_CR32_REGNUM + 31,
594
 
595
  /* The 32-bit floating-point view of the coprocessor GPR's.  */
596
  MEP_FIRST_FP_CR32_REGNUM,
597
  MEP_LAST_FP_CR32_REGNUM = MEP_FIRST_FP_CR32_REGNUM + 31,
598
 
599
  /* The 64-bit integer view of the coprocessor GPR's.  */
600
  MEP_FIRST_CR64_REGNUM,
601
  MEP_LAST_CR64_REGNUM = MEP_FIRST_CR64_REGNUM + 31,
602
 
603
  /* The 64-bit floating-point view of the coprocessor GPR's.  */
604
  MEP_FIRST_FP_CR64_REGNUM,
605
  MEP_LAST_FP_CR64_REGNUM = MEP_FIRST_FP_CR64_REGNUM + 31,
606
 
607
  MEP_FIRST_CCR_REGNUM,
608
  MEP_LAST_CCR_REGNUM = MEP_FIRST_CCR_REGNUM + 63,
609
 
610
  MEP_LAST_PSEUDO_REGNUM = MEP_LAST_CCR_REGNUM,
611
 
612
  MEP_NUM_PSEUDO_REGS = (MEP_LAST_PSEUDO_REGNUM - MEP_LAST_RAW_REGNUM),
613
 
614
  MEP_NUM_REGS = MEP_NUM_RAW_REGS + MEP_NUM_PSEUDO_REGS
615
};
616
 
617
 
618
#define IN_SET(set, n) \
619
  (MEP_FIRST_ ## set ## _REGNUM <= (n) && (n) <= MEP_LAST_ ## set ## _REGNUM)
620
 
621
#define IS_GPR_REGNUM(n)     (IN_SET (GPR,     (n)))
622
#define IS_RAW_CSR_REGNUM(n) (IN_SET (RAW_CSR, (n)))
623
#define IS_RAW_CR_REGNUM(n)  (IN_SET (RAW_CR,  (n)))
624
#define IS_RAW_CCR_REGNUM(n) (IN_SET (RAW_CCR, (n)))
625
 
626
#define IS_CSR_REGNUM(n)     (IN_SET (CSR,     (n)))
627
#define IS_CR32_REGNUM(n)    (IN_SET (CR32,    (n)))
628
#define IS_FP_CR32_REGNUM(n) (IN_SET (FP_CR32, (n)))
629
#define IS_CR64_REGNUM(n)    (IN_SET (CR64,    (n)))
630
#define IS_FP_CR64_REGNUM(n) (IN_SET (FP_CR64, (n)))
631
#define IS_CR_REGNUM(n)      (IS_CR32_REGNUM (n) || IS_FP_CR32_REGNUM (n) \
632
                              || IS_CR64_REGNUM (n) || IS_FP_CR64_REGNUM (n))
633
#define IS_CCR_REGNUM(n)     (IN_SET (CCR,     (n)))
634
 
635
#define IS_RAW_REGNUM(n)     (IN_SET (RAW,     (n)))
636
#define IS_PSEUDO_REGNUM(n)  (IN_SET (PSEUDO,  (n)))
637
 
638
#define NUM_REGS_IN_SET(set) \
639
  (MEP_LAST_ ## set ## _REGNUM - MEP_FIRST_ ## set ## _REGNUM + 1)
640
 
641
#define MEP_GPR_SIZE (4)        /* Size of a MeP general-purpose register.  */
642
#define MEP_PSW_SIZE (4)        /* Size of the PSW register.  */
643
#define MEP_LP_SIZE (4)         /* Size of the LP register.  */
644
 
645
 
646
/* Many of the control/special registers contain bits that cannot be
647
   written to; some are entirely read-only.  So we present them all as
648
   pseudoregisters.
649
 
650
   The following table describes the special properties of each CSR.  */
651
struct mep_csr_register
652
{
653
  /* The number of this CSR's raw register.  */
654
  int raw;
655
 
656
  /* The number of this CSR's pseudoregister.  */
657
  int pseudo;
658
 
659
  /* A mask of the bits that are writeable: if a bit is set here, then
660
     it can be modified; if the bit is clear, then it cannot.  */
661
  LONGEST writeable_bits;
662
};
663
 
664
 
665
/* mep_csr_registers[i] describes the i'th CSR.
666
   We just list the register numbers here explicitly to help catch
667
   typos.  */
668
#define CSR(name) MEP_RAW_ ## name ## _REGNUM, MEP_ ## name ## _REGNUM
669
struct mep_csr_register mep_csr_registers[] = {
670
  { CSR(PC),    0xffffffff },   /* manual says r/o, but we can write it */
671
  { CSR(LP),    0xffffffff },
672
  { CSR(SAR),   0x0000003f },
673
  { CSR(CSR3),  0xffffffff },
674
  { CSR(RPB),   0xfffffffe },
675
  { CSR(RPE),   0xffffffff },
676
  { CSR(RPC),   0xffffffff },
677
  { CSR(HI),    0xffffffff },
678
  { CSR(LO),    0xffffffff },
679
  { CSR(CSR9),  0xffffffff },
680
  { CSR(CSR10), 0xffffffff },
681
  { CSR(CSR11), 0xffffffff },
682
  { CSR(MB0),   0x0000ffff },
683
  { CSR(ME0),   0x0000ffff },
684
  { CSR(MB1),   0x0000ffff },
685
  { CSR(ME1),   0x0000ffff },
686
  { CSR(PSW),   0x000003ff },
687
  { CSR(ID),    0x00000000 },
688
  { CSR(TMP),   0xffffffff },
689
  { CSR(EPC),   0xffffffff },
690
  { CSR(EXC),   0x000030f0 },
691
  { CSR(CFG),   0x00c0001b },
692
  { CSR(CSR22), 0xffffffff },
693
  { CSR(NPC),   0xffffffff },
694
  { CSR(DBG),   0x00000580 },
695
  { CSR(DEPC),  0xffffffff },
696
  { CSR(OPT),   0x00000000 },
697
  { CSR(RCFG),  0x00000000 },
698
  { CSR(CCFG),  0x00000000 },
699
  { CSR(CSR29), 0xffffffff },
700
  { CSR(CSR30), 0xffffffff },
701
  { CSR(CSR31), 0xffffffff },
702
};
703
 
704
 
705
/* If R is the number of a raw register, then mep_raw_to_pseudo[R] is
706
   the number of the corresponding pseudoregister.  Otherwise,
707
   mep_raw_to_pseudo[R] == R.  */
708
static int mep_raw_to_pseudo[MEP_NUM_REGS];
709
 
710
/* If R is the number of a pseudoregister, then mep_pseudo_to_raw[R]
711
   is the number of the underlying raw register.  Otherwise
712
   mep_pseudo_to_raw[R] == R.  */
713
static int mep_pseudo_to_raw[MEP_NUM_REGS];
714
 
715
static void
716
mep_init_pseudoregister_maps (void)
717
{
718
  int i;
719
 
720
  /* Verify that mep_csr_registers covers all the CSRs, in order.  */
721
  gdb_assert (ARRAY_SIZE (mep_csr_registers) == NUM_REGS_IN_SET (CSR));
722
  gdb_assert (ARRAY_SIZE (mep_csr_registers) == NUM_REGS_IN_SET (RAW_CSR));
723
 
724
  /* Verify that the raw and pseudo ranges have matching sizes.  */
725
  gdb_assert (NUM_REGS_IN_SET (RAW_CSR) == NUM_REGS_IN_SET (CSR));
726
  gdb_assert (NUM_REGS_IN_SET (RAW_CR)  == NUM_REGS_IN_SET (CR32));
727
  gdb_assert (NUM_REGS_IN_SET (RAW_CR)  == NUM_REGS_IN_SET (CR64));
728
  gdb_assert (NUM_REGS_IN_SET (RAW_CCR) == NUM_REGS_IN_SET (CCR));
729
 
730
  for (i = 0; i < ARRAY_SIZE (mep_csr_registers); i++)
731
    {
732
      struct mep_csr_register *r = &mep_csr_registers[i];
733
 
734
      gdb_assert (r->pseudo == MEP_FIRST_CSR_REGNUM + i);
735
      gdb_assert (r->raw    == MEP_FIRST_RAW_CSR_REGNUM + i);
736
    }
737
 
738
  /* Set up the initial  raw<->pseudo mappings.  */
739
  for (i = 0; i < MEP_NUM_REGS; i++)
740
    {
741
      mep_raw_to_pseudo[i] = i;
742
      mep_pseudo_to_raw[i] = i;
743
    }
744
 
745
  /* Add the CSR raw<->pseudo mappings.  */
746
  for (i = 0; i < ARRAY_SIZE (mep_csr_registers); i++)
747
    {
748
      struct mep_csr_register *r = &mep_csr_registers[i];
749
 
750
      mep_raw_to_pseudo[r->raw] = r->pseudo;
751
      mep_pseudo_to_raw[r->pseudo] = r->raw;
752
    }
753
 
754
  /* Add the CR raw<->pseudo mappings.  */
755
  for (i = 0; i < NUM_REGS_IN_SET (RAW_CR); i++)
756
    {
757
      int raw = MEP_FIRST_RAW_CR_REGNUM + i;
758
      int pseudo32 = MEP_FIRST_CR32_REGNUM + i;
759
      int pseudofp32 = MEP_FIRST_FP_CR32_REGNUM + i;
760
      int pseudo64 = MEP_FIRST_CR64_REGNUM + i;
761
      int pseudofp64 = MEP_FIRST_FP_CR64_REGNUM + i;
762
 
763
      /* Truly, the raw->pseudo mapping depends on the current module.
764
         But we use the raw->pseudo mapping when we read the debugging
765
         info; at that point, we don't know what module we'll actually
766
         be running yet.  So, we always supply the 64-bit register
767
         numbers; GDB knows how to pick a smaller value out of a
768
         larger register properly.  */
769
      mep_raw_to_pseudo[raw] = pseudo64;
770
      mep_pseudo_to_raw[pseudo32] = raw;
771
      mep_pseudo_to_raw[pseudofp32] = raw;
772
      mep_pseudo_to_raw[pseudo64] = raw;
773
      mep_pseudo_to_raw[pseudofp64] = raw;
774
    }
775
 
776
  /* Add the CCR raw<->pseudo mappings.  */
777
  for (i = 0; i < NUM_REGS_IN_SET (CCR); i++)
778
    {
779
      int raw = MEP_FIRST_RAW_CCR_REGNUM + i;
780
      int pseudo = MEP_FIRST_CCR_REGNUM + i;
781
      mep_raw_to_pseudo[raw] = pseudo;
782
      mep_pseudo_to_raw[pseudo] = raw;
783
    }
784
}
785
 
786
 
787
static int
788
mep_debug_reg_to_regnum (struct gdbarch *gdbarch, int debug_reg)
789
{
790
  /* The debug info uses the raw register numbers.  */
791
  return mep_raw_to_pseudo[debug_reg];
792
}
793
 
794
 
795
/* Return the size, in bits, of the coprocessor pseudoregister
796
   numbered PSEUDO.  */
797
static int
798
mep_pseudo_cr_size (int pseudo)
799
{
800
  if (IS_CR32_REGNUM (pseudo)
801
      || IS_FP_CR32_REGNUM (pseudo))
802
    return 32;
803
  else if (IS_CR64_REGNUM (pseudo)
804
           || IS_FP_CR64_REGNUM (pseudo))
805
    return 64;
806
  else
807
    gdb_assert (0);
808
}
809
 
810
 
811
/* If the coprocessor pseudoregister numbered PSEUDO is a
812
   floating-point register, return non-zero; if it is an integer
813
   register, return zero.  */
814
static int
815
mep_pseudo_cr_is_float (int pseudo)
816
{
817
  return (IS_FP_CR32_REGNUM (pseudo)
818
          || IS_FP_CR64_REGNUM (pseudo));
819
}
820
 
821
 
822
/* Given a coprocessor GPR pseudoregister number, return its index
823
   within that register bank.  */
824
static int
825
mep_pseudo_cr_index (int pseudo)
826
{
827
  if (IS_CR32_REGNUM (pseudo))
828
    return pseudo - MEP_FIRST_CR32_REGNUM;
829
  else if (IS_FP_CR32_REGNUM (pseudo))
830
      return pseudo - MEP_FIRST_FP_CR32_REGNUM;
831
  else if (IS_CR64_REGNUM (pseudo))
832
      return pseudo - MEP_FIRST_CR64_REGNUM;
833
  else if (IS_FP_CR64_REGNUM (pseudo))
834
      return pseudo - MEP_FIRST_FP_CR64_REGNUM;
835
  else
836
    gdb_assert (0);
837
}
838
 
839
 
840
/* Return the me_module index describing the current target.
841
 
842
   If the current target has registers (e.g., simulator, remote
843
   target), then this uses the value of the 'module' register, raw
844
   register MEP_MODULE_REGNUM.  Otherwise, this retrieves the value
845
   from the ELF header's e_flags field of the current executable
846
   file.  */
847
static CONFIG_ATTR
848
current_me_module ()
849
{
850
  if (target_has_registers)
851
    {
852
      ULONGEST regval;
853
      regcache_cooked_read_unsigned (get_current_regcache (),
854
                                     MEP_MODULE_REGNUM, &regval);
855
      return regval;
856
    }
857
  else
858
    return gdbarch_tdep (target_gdbarch)->me_module;
859
}
860
 
861
 
862
/* Return the set of options for the current target, in the form that
863
   the OPT register would use.
864
 
865
   If the current target has registers (e.g., simulator, remote
866
   target), then this is the actual value of the OPT register.  If the
867
   current target does not have registers (e.g., an executable file),
868
   then use the 'module_opt' field we computed when we build the
869
   gdbarch object for this module.  */
870
static unsigned int
871
current_options ()
872
{
873
  if (target_has_registers)
874
    {
875
      ULONGEST regval;
876
      regcache_cooked_read_unsigned (get_current_regcache (),
877
                                     MEP_OPT_REGNUM, &regval);
878
      return regval;
879
    }
880
  else
881
    return me_module_opt (current_me_module ());
882
}
883
 
884
 
885
/* Return the width of the current me_module's coprocessor data bus,
886
   in bits.  This is either 32 or 64.  */
887
static int
888
current_cop_data_bus_width ()
889
{
890
  return me_module_cop_data_bus_width (current_me_module ());
891
}
892
 
893
 
894
/* Return the keyword table of coprocessor general-purpose register
895
   names appropriate for the me_module we're dealing with.  */
896
static CGEN_KEYWORD *
897
current_cr_names ()
898
{
899
  const CGEN_HW_ENTRY *hw
900
    = me_module_register_set (current_me_module (), "h-cr-", HW_H_CR);
901
 
902
  return register_set_keyword_table (hw);
903
}
904
 
905
 
906
/* Return non-zero if the coprocessor general-purpose registers are
907
   floating-point values, zero otherwise.  */
908
static int
909
current_cr_is_float ()
910
{
911
  const CGEN_HW_ENTRY *hw
912
    = me_module_register_set (current_me_module (), "h-cr-", HW_H_CR);
913
 
914
  return CGEN_ATTR_CGEN_HW_IS_FLOAT_VALUE (CGEN_HW_ATTRS (hw));
915
}
916
 
917
 
918
/* Return the keyword table of coprocessor control register names
919
   appropriate for the me_module we're dealing with.  */
920
static CGEN_KEYWORD *
921
current_ccr_names ()
922
{
923
  const CGEN_HW_ENTRY *hw
924
    = me_module_register_set (current_me_module (), "h-ccr-", HW_H_CCR);
925
 
926
  return register_set_keyword_table (hw);
927
}
928
 
929
 
930
static const char *
931
mep_register_name (struct gdbarch *gdbarch, int regnr)
932
{
933
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
934
 
935
  /* General-purpose registers.  */
936
  static const char *gpr_names[] = {
937
    "r0",   "r1",   "r2",   "r3",   /* 0 */
938
    "r4",   "r5",   "r6",   "r7",   /* 4 */
939
    "fp",   "r9",   "r10",  "r11",  /* 8 */
940
    "r12",  "tp",   "gp",   "sp"    /* 12 */
941
  };
942
 
943
  /* Special-purpose registers.  */
944
  static const char *csr_names[] = {
945
    "pc",   "lp",   "sar",  "",     /* 0  csr3: reserved */
946
    "rpb",  "rpe",  "rpc",  "hi",   /* 4 */
947
    "lo",   "",     "",     "",     /* 8  csr9-csr11: reserved */
948
    "mb0",  "me0",  "mb1",  "me1",  /* 12 */
949
 
950
    "psw",  "id",   "tmp",  "epc",  /* 16 */
951
    "exc",  "cfg",  "",     "npc",  /* 20  csr22: reserved */
952
    "dbg",  "depc", "opt",  "rcfg", /* 24 */
953
    "ccfg", "",     "",     ""      /* 28  csr29-csr31: reserved */
954
  };
955
 
956
  if (IS_GPR_REGNUM (regnr))
957
    return gpr_names[regnr - MEP_R0_REGNUM];
958
  else if (IS_CSR_REGNUM (regnr))
959
    {
960
      /* The 'hi' and 'lo' registers are only present on processors
961
         that have the 'MUL' or 'DIV' instructions enabled.  */
962
      if ((regnr == MEP_HI_REGNUM || regnr == MEP_LO_REGNUM)
963
          && (! (current_options () & (MEP_OPT_MUL | MEP_OPT_DIV))))
964
        return "";
965
 
966
      return csr_names[regnr - MEP_FIRST_CSR_REGNUM];
967
    }
968
  else if (IS_CR_REGNUM (regnr))
969
    {
970
      CGEN_KEYWORD *names;
971
      int cr_size;
972
      int cr_is_float;
973
 
974
      /* Does this module have a coprocessor at all?  */
975
      if (! (current_options () & MEP_OPT_COP))
976
        return "";
977
 
978
      names = current_cr_names ();
979
      if (! names)
980
        /* This module's coprocessor has no general-purpose registers.  */
981
        return "";
982
 
983
      cr_size = current_cop_data_bus_width ();
984
      if (cr_size != mep_pseudo_cr_size (regnr))
985
        /* This module's coprocessor's GPR's are of a different size.  */
986
        return "";
987
 
988
      cr_is_float = current_cr_is_float ();
989
      /* The extra ! operators ensure we get boolean equality, not
990
         numeric equality.  */
991
      if (! cr_is_float != ! mep_pseudo_cr_is_float (regnr))
992
        /* This module's coprocessor's GPR's are of a different type.  */
993
        return "";
994
 
995
      return register_name_from_keyword (names, mep_pseudo_cr_index (regnr));
996
    }
997
  else if (IS_CCR_REGNUM (regnr))
998
    {
999
      /* Does this module have a coprocessor at all?  */
1000
      if (! (current_options () & MEP_OPT_COP))
1001
        return "";
1002
 
1003
      {
1004
        CGEN_KEYWORD *names = current_ccr_names ();
1005
 
1006
        if (! names)
1007
          /* This me_module's coprocessor has no control registers.  */
1008
          return "";
1009
 
1010
        return register_name_from_keyword (names, regnr-MEP_FIRST_CCR_REGNUM);
1011
      }
1012
    }
1013
 
1014
  /* It might be nice to give the 'module' register a name, but that
1015
     would affect the output of 'info all-registers', which would
1016
     disturb the test suites.  So we leave it invisible.  */
1017
  else
1018
    return NULL;
1019
}
1020
 
1021
 
1022
/* Custom register groups for the MeP.  */
1023
static struct reggroup *mep_csr_reggroup; /* control/special */
1024
static struct reggroup *mep_cr_reggroup;  /* coprocessor general-purpose */
1025
static struct reggroup *mep_ccr_reggroup; /* coprocessor control */
1026
 
1027
 
1028
static int
1029
mep_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
1030
                         struct reggroup *group)
1031
{
1032
  /* Filter reserved or unused register numbers.  */
1033
  {
1034
    const char *name = mep_register_name (gdbarch, regnum);
1035
 
1036
    if (! name || name[0] == '\0')
1037
      return 0;
1038
  }
1039
 
1040
  /* We could separate the GPRs and the CSRs.  Toshiba has approved of
1041
     the existing behavior, so we'd want to run that by them.  */
1042
  if (group == general_reggroup)
1043
    return (IS_GPR_REGNUM (regnum)
1044
            || IS_CSR_REGNUM (regnum));
1045
 
1046
  /* Everything is in the 'all' reggroup, except for the raw CSR's.  */
1047
  else if (group == all_reggroup)
1048
    return (IS_GPR_REGNUM (regnum)
1049
            || IS_CSR_REGNUM (regnum)
1050
            || IS_CR_REGNUM (regnum)
1051
            || IS_CCR_REGNUM (regnum));
1052
 
1053
  /* All registers should be saved and restored, except for the raw
1054
     CSR's.
1055
 
1056
     This is probably right if the coprocessor is something like a
1057
     floating-point unit, but would be wrong if the coprocessor is
1058
     something that does I/O, where register accesses actually cause
1059
     externally-visible actions.  But I get the impression that the
1060
     coprocessor isn't supposed to do things like that --- you'd use a
1061
     hardware engine, perhaps.  */
1062
  else if (group == save_reggroup || group == restore_reggroup)
1063
    return (IS_GPR_REGNUM (regnum)
1064
            || IS_CSR_REGNUM (regnum)
1065
            || IS_CR_REGNUM (regnum)
1066
            || IS_CCR_REGNUM (regnum));
1067
 
1068
  else if (group == mep_csr_reggroup)
1069
    return IS_CSR_REGNUM (regnum);
1070
  else if (group == mep_cr_reggroup)
1071
    return IS_CR_REGNUM (regnum);
1072
  else if (group == mep_ccr_reggroup)
1073
    return IS_CCR_REGNUM (regnum);
1074
  else
1075
    return 0;
1076
}
1077
 
1078
 
1079
static struct type *
1080
mep_register_type (struct gdbarch *gdbarch, int reg_nr)
1081
{
1082
  /* Coprocessor general-purpose registers may be either 32 or 64 bits
1083
     long.  So for them, the raw registers are always 64 bits long (to
1084
     keep the 'g' packet format fixed), and the pseudoregisters vary
1085
     in length.  */
1086
  if (IS_RAW_CR_REGNUM (reg_nr))
1087
    return builtin_type (gdbarch)->builtin_uint64;
1088
 
1089
  /* Since GDB doesn't allow registers to change type, we have two
1090
     banks of pseudoregisters for the coprocessor general-purpose
1091
     registers: one that gives a 32-bit view, and one that gives a
1092
     64-bit view.  We hide or show one or the other depending on the
1093
     current module.  */
1094
  if (IS_CR_REGNUM (reg_nr))
1095
    {
1096
      int size = mep_pseudo_cr_size (reg_nr);
1097
      if (size == 32)
1098
        {
1099
          if (mep_pseudo_cr_is_float (reg_nr))
1100
            return builtin_type (gdbarch)->builtin_float;
1101
          else
1102
            return builtin_type (gdbarch)->builtin_uint32;
1103
        }
1104
      else if (size == 64)
1105
        {
1106
          if (mep_pseudo_cr_is_float (reg_nr))
1107
            return builtin_type (gdbarch)->builtin_double;
1108
          else
1109
            return builtin_type (gdbarch)->builtin_uint64;
1110
        }
1111
      else
1112
        gdb_assert (0);
1113
    }
1114
 
1115
  /* All other registers are 32 bits long.  */
1116
  else
1117
    return builtin_type (gdbarch)->builtin_uint32;
1118
}
1119
 
1120
 
1121
static CORE_ADDR
1122
mep_read_pc (struct regcache *regcache)
1123
{
1124
  ULONGEST pc;
1125
  regcache_cooked_read_unsigned (regcache, MEP_PC_REGNUM, &pc);
1126
  return pc;
1127
}
1128
 
1129
static void
1130
mep_write_pc (struct regcache *regcache, CORE_ADDR pc)
1131
{
1132
  regcache_cooked_write_unsigned (regcache, MEP_PC_REGNUM, pc);
1133
}
1134
 
1135
 
1136
static void
1137
mep_pseudo_cr32_read (struct gdbarch *gdbarch,
1138
                      struct regcache *regcache,
1139
                      int cookednum,
1140
                      void *buf)
1141
{
1142
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1143
  /* Read the raw register into a 64-bit buffer, and then return the
1144
     appropriate end of that buffer.  */
1145
  int rawnum = mep_pseudo_to_raw[cookednum];
1146
  char buf64[8];
1147
 
1148
  gdb_assert (TYPE_LENGTH (register_type (gdbarch, rawnum)) == sizeof (buf64));
1149
  gdb_assert (TYPE_LENGTH (register_type (gdbarch, cookednum)) == 4);
1150
  regcache_raw_read (regcache, rawnum, buf64);
1151
  /* Slow, but legible.  */
1152
  store_unsigned_integer (buf, 4, byte_order,
1153
                          extract_unsigned_integer (buf64, 8, byte_order));
1154
}
1155
 
1156
 
1157
static void
1158
mep_pseudo_cr64_read (struct gdbarch *gdbarch,
1159
                      struct regcache *regcache,
1160
                      int cookednum,
1161
                      void *buf)
1162
{
1163
  regcache_raw_read (regcache, mep_pseudo_to_raw[cookednum], buf);
1164
}
1165
 
1166
 
1167
static void
1168
mep_pseudo_register_read (struct gdbarch *gdbarch,
1169
                          struct regcache *regcache,
1170
                          int cookednum,
1171
                          gdb_byte *buf)
1172
{
1173
  if (IS_CSR_REGNUM (cookednum)
1174
      || IS_CCR_REGNUM (cookednum))
1175
    regcache_raw_read (regcache, mep_pseudo_to_raw[cookednum], buf);
1176
  else if (IS_CR32_REGNUM (cookednum)
1177
           || IS_FP_CR32_REGNUM (cookednum))
1178
    mep_pseudo_cr32_read (gdbarch, regcache, cookednum, buf);
1179
  else if (IS_CR64_REGNUM (cookednum)
1180
           || IS_FP_CR64_REGNUM (cookednum))
1181
    mep_pseudo_cr64_read (gdbarch, regcache, cookednum, buf);
1182
  else
1183
    gdb_assert (0);
1184
}
1185
 
1186
 
1187
static void
1188
mep_pseudo_csr_write (struct gdbarch *gdbarch,
1189
                      struct regcache *regcache,
1190
                      int cookednum,
1191
                      const void *buf)
1192
{
1193
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1194
  int size = register_size (gdbarch, cookednum);
1195
  struct mep_csr_register *r
1196
    = &mep_csr_registers[cookednum - MEP_FIRST_CSR_REGNUM];
1197
 
1198
  if (r->writeable_bits == 0)
1199
    /* A completely read-only register; avoid the read-modify-
1200
       write cycle, and juts ignore the entire write.  */
1201
    ;
1202
  else
1203
    {
1204
      /* A partially writeable register; do a read-modify-write cycle.  */
1205
      ULONGEST old_bits;
1206
      ULONGEST new_bits;
1207
      ULONGEST mixed_bits;
1208
 
1209
      regcache_raw_read_unsigned (regcache, r->raw, &old_bits);
1210
      new_bits = extract_unsigned_integer (buf, size, byte_order);
1211
      mixed_bits = ((r->writeable_bits & new_bits)
1212
                    | (~r->writeable_bits & old_bits));
1213
      regcache_raw_write_unsigned (regcache, r->raw, mixed_bits);
1214
    }
1215
}
1216
 
1217
 
1218
static void
1219
mep_pseudo_cr32_write (struct gdbarch *gdbarch,
1220
                       struct regcache *regcache,
1221
                       int cookednum,
1222
                       const void *buf)
1223
{
1224
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1225
  /* Expand the 32-bit value into a 64-bit value, and write that to
1226
     the pseudoregister.  */
1227
  int rawnum = mep_pseudo_to_raw[cookednum];
1228
  char buf64[8];
1229
 
1230
  gdb_assert (TYPE_LENGTH (register_type (gdbarch, rawnum)) == sizeof (buf64));
1231
  gdb_assert (TYPE_LENGTH (register_type (gdbarch, cookednum)) == 4);
1232
  /* Slow, but legible.  */
1233
  store_unsigned_integer (buf64, 8, byte_order,
1234
                          extract_unsigned_integer (buf, 4, byte_order));
1235
  regcache_raw_write (regcache, rawnum, buf64);
1236
}
1237
 
1238
 
1239
static void
1240
mep_pseudo_cr64_write (struct gdbarch *gdbarch,
1241
                     struct regcache *regcache,
1242
                     int cookednum,
1243
                     const void *buf)
1244
{
1245
  regcache_raw_write (regcache, mep_pseudo_to_raw[cookednum], buf);
1246
}
1247
 
1248
 
1249
static void
1250
mep_pseudo_register_write (struct gdbarch *gdbarch,
1251
                           struct regcache *regcache,
1252
                           int cookednum,
1253
                           const gdb_byte *buf)
1254
{
1255
  if (IS_CSR_REGNUM (cookednum))
1256
    mep_pseudo_csr_write (gdbarch, regcache, cookednum, buf);
1257
  else if (IS_CR32_REGNUM (cookednum)
1258
           || IS_FP_CR32_REGNUM (cookednum))
1259
    mep_pseudo_cr32_write (gdbarch, regcache, cookednum, buf);
1260
  else if (IS_CR64_REGNUM (cookednum)
1261
           || IS_FP_CR64_REGNUM (cookednum))
1262
    mep_pseudo_cr64_write (gdbarch, regcache, cookednum, buf);
1263
  else if (IS_CCR_REGNUM (cookednum))
1264
    regcache_raw_write (regcache, mep_pseudo_to_raw[cookednum], buf);
1265
  else
1266
    gdb_assert (0);
1267
}
1268
 
1269
 
1270
 
1271
/* Disassembly.  */
1272
 
1273
/* The mep disassembler needs to know about the section in order to
1274
   work correctly. */
1275
static int
1276
mep_gdb_print_insn (bfd_vma pc, disassemble_info * info)
1277
{
1278
  struct obj_section * s = find_pc_section (pc);
1279
 
1280
  if (s)
1281
    {
1282
      /* The libopcodes disassembly code uses the section to find the
1283
         BFD, the BFD to find the ELF header, the ELF header to find
1284
         the me_module index, and the me_module index to select the
1285
         right instructions to print.  */
1286
      info->section = s->the_bfd_section;
1287
      info->arch = bfd_arch_mep;
1288
 
1289
      return print_insn_mep (pc, info);
1290
    }
1291
 
1292
  return 0;
1293
}
1294
 
1295
 
1296
/* Prologue analysis.  */
1297
 
1298
 
1299
/* The MeP has two classes of instructions: "core" instructions, which
1300
   are pretty normal RISC chip stuff, and "coprocessor" instructions,
1301
   which are mostly concerned with moving data in and out of
1302
   coprocessor registers, and branching on coprocessor condition
1303
   codes.  There's space in the instruction set for custom coprocessor
1304
   instructions, too.
1305
 
1306
   Instructions can be 16 or 32 bits long; the top two bits of the
1307
   first byte indicate the length.  The coprocessor instructions are
1308
   mixed in with the core instructions, and there's no easy way to
1309
   distinguish them; you have to completely decode them to tell one
1310
   from the other.
1311
 
1312
   The MeP also supports a "VLIW" operation mode, where instructions
1313
   always occur in fixed-width bundles.  The bundles are either 32
1314
   bits or 64 bits long, depending on a fixed configuration flag.  You
1315
   decode the first part of the bundle as normal; if it's a core
1316
   instruction, and there's any space left in the bundle, the
1317
   remainder of the bundle is a coprocessor instruction, which will
1318
   execute in parallel with the core instruction.  If the first part
1319
   of the bundle is a coprocessor instruction, it occupies the entire
1320
   bundle.
1321
 
1322
   So, here are all the cases:
1323
 
1324
   - 32-bit VLIW mode:
1325
     Every bundle is four bytes long, and naturally aligned, and can hold
1326
     one or two instructions:
1327
     - 16-bit core instruction; 16-bit coprocessor instruction
1328
       These execute in parallel.
1329
     - 32-bit core instruction
1330
     - 32-bit coprocessor instruction
1331
 
1332
   - 64-bit VLIW mode:
1333
     Every bundle is eight bytes long, and naturally aligned, and can hold
1334
     one or two instructions:
1335
     - 16-bit core instruction; 48-bit (!) coprocessor instruction
1336
       These execute in parallel.
1337
     - 32-bit core instruction; 32-bit coprocessor instruction
1338
       These execute in parallel.
1339
     - 64-bit coprocessor instruction
1340
 
1341
   Now, the MeP manual doesn't define any 48- or 64-bit coprocessor
1342
   instruction, so I don't really know what's up there; perhaps these
1343
   are always the user-defined coprocessor instructions.  */
1344
 
1345
 
1346
/* Return non-zero if PC is in a VLIW code section, zero
1347
   otherwise.  */
1348
static int
1349
mep_pc_in_vliw_section (CORE_ADDR pc)
1350
{
1351
  struct obj_section *s = find_pc_section (pc);
1352
  if (s)
1353
    return (s->the_bfd_section->flags & SEC_MEP_VLIW);
1354
  return 0;
1355
}
1356
 
1357
 
1358
/* Set *INSN to the next core instruction at PC, and return the
1359
   address of the next instruction.
1360
 
1361
   The MeP instruction encoding is endian-dependent.  16- and 32-bit
1362
   instructions are encoded as one or two two-byte parts, and each
1363
   part is byte-swapped independently.  Thus:
1364
 
1365
      void
1366
      foo (void)
1367
      {
1368
        asm ("movu $1, 0x123456");
1369
        asm ("sb $1,0x5678($2)");
1370
        asm ("clip $1, 19");
1371
      }
1372
 
1373
   compiles to this big-endian code:
1374
 
1375
       0:       d1 56 12 34     movu $1,0x123456
1376
       4:       c1 28 56 78     sb $1,22136($2)
1377
       8:       f1 01 10 98     clip $1,0x13
1378
       c:       70 02           ret
1379
 
1380
   and this little-endian code:
1381
 
1382
       0:       56 d1 34 12     movu $1,0x123456
1383
       4:       28 c1 78 56     sb $1,22136($2)
1384
       8:       01 f1 98 10     clip $1,0x13
1385
       c:       02 70           ret
1386
 
1387
   Instructions are returned in *INSN in an endian-independent form: a
1388
   given instruction always appears in *INSN the same way, regardless
1389
   of whether the instruction stream is big-endian or little-endian.
1390
 
1391
   *INSN's most significant 16 bits are the first (i.e., at lower
1392
   addresses) 16 bit part of the instruction.  Its least significant
1393
   16 bits are the second (i.e., higher-addressed) 16 bit part of the
1394
   instruction, or zero for a 16-bit instruction.  Both 16-bit parts
1395
   are fetched using the current endianness.
1396
 
1397
   So, the *INSN values for the instruction sequence above would be
1398
   the following, in either endianness:
1399
 
1400
       0xd1561234       movu $1,0x123456
1401
       0xc1285678       sb $1,22136($2)
1402
       0xf1011098       clip $1,0x13
1403
       0x70020000       ret
1404
 
1405
   (In a sense, it would be more natural to return 16-bit instructions
1406
   in the least significant 16 bits of *INSN, but that would be
1407
   ambiguous.  In order to tell whether you're looking at a 16- or a
1408
   32-bit instruction, you have to consult the major opcode field ---
1409
   the most significant four bits of the instruction's first 16-bit
1410
   part.  But if we put 16-bit instructions at the least significant
1411
   end of *INSN, then you don't know where to find the major opcode
1412
   field until you know if it's a 16- or a 32-bit instruction ---
1413
   which is where we started.)
1414
 
1415
   If PC points to a core / coprocessor bundle in a VLIW section, set
1416
   *INSN to the core instruction, and return the address of the next
1417
   bundle.  This has the effect of skipping the bundled coprocessor
1418
   instruction.  That's okay, since coprocessor instructions aren't
1419
   significant to prologue analysis --- for the time being,
1420
   anyway.  */
1421
 
1422
static CORE_ADDR
1423
mep_get_insn (struct gdbarch *gdbarch, CORE_ADDR pc, long *insn)
1424
{
1425
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1426
  int pc_in_vliw_section;
1427
  int vliw_mode;
1428
  int insn_len;
1429
  char buf[2];
1430
 
1431
  *insn = 0;
1432
 
1433
  /* Are we in a VLIW section?  */
1434
  pc_in_vliw_section = mep_pc_in_vliw_section (pc);
1435
  if (pc_in_vliw_section)
1436
    {
1437
      /* Yes, find out which bundle size.  */
1438
      vliw_mode = current_options () & (MEP_OPT_VL32 | MEP_OPT_VL64);
1439
 
1440
      /* If PC is in a VLIW section, but the current core doesn't say
1441
         that it supports either VLIW mode, then we don't have enough
1442
         information to parse the instruction stream it contains.
1443
         Since the "undifferentiated" standard core doesn't have
1444
         either VLIW mode bit set, this could happen.
1445
 
1446
         But it shouldn't be an error to (say) set a breakpoint in a
1447
         VLIW section, if you know you'll never reach it.  (Perhaps
1448
         you have a script that sets a bunch of standard breakpoints.)
1449
 
1450
         So we'll just return zero here, and hope for the best.  */
1451
      if (! (vliw_mode & (MEP_OPT_VL32 | MEP_OPT_VL64)))
1452
        return 0;
1453
 
1454
      /* If both VL32 and VL64 are set, that's bogus, too.  */
1455
      if (vliw_mode == (MEP_OPT_VL32 | MEP_OPT_VL64))
1456
        return 0;
1457
    }
1458
  else
1459
    vliw_mode = 0;
1460
 
1461
  read_memory (pc, buf, sizeof (buf));
1462
  *insn = extract_unsigned_integer (buf, 2, byte_order) << 16;
1463
 
1464
  /* The major opcode --- the top four bits of the first 16-bit
1465
     part --- indicates whether this instruction is 16 or 32 bits
1466
     long.  All 32-bit instructions have a major opcode whose top
1467
     two bits are 11; all the rest are 16-bit instructions.  */
1468
  if ((*insn & 0xc0000000) == 0xc0000000)
1469
    {
1470
      /* Fetch the second 16-bit part of the instruction.  */
1471
      read_memory (pc + 2, buf, sizeof (buf));
1472
      *insn = *insn | extract_unsigned_integer (buf, 2, byte_order);
1473
    }
1474
 
1475
  /* If we're in VLIW code, then the VLIW width determines the address
1476
     of the next instruction.  */
1477
  if (vliw_mode)
1478
    {
1479
      /* In 32-bit VLIW code, all bundles are 32 bits long.  We ignore the
1480
         coprocessor half of a core / copro bundle.  */
1481
      if (vliw_mode == MEP_OPT_VL32)
1482
        insn_len = 4;
1483
 
1484
      /* In 64-bit VLIW code, all bundles are 64 bits long.  We ignore the
1485
         coprocessor half of a core / copro bundle.  */
1486
      else if (vliw_mode == MEP_OPT_VL64)
1487
        insn_len = 8;
1488
 
1489
      /* We'd better be in either core, 32-bit VLIW, or 64-bit VLIW mode.  */
1490
      else
1491
        gdb_assert (0);
1492
    }
1493
 
1494
  /* Otherwise, the top two bits of the major opcode are (again) what
1495
     we need to check.  */
1496
  else if ((*insn & 0xc0000000) == 0xc0000000)
1497
    insn_len = 4;
1498
  else
1499
    insn_len = 2;
1500
 
1501
  return pc + insn_len;
1502
}
1503
 
1504
 
1505
/* Sign-extend the LEN-bit value N.  */
1506
#define SEXT(n, len) ((((int) (n)) ^ (1 << ((len) - 1))) - (1 << ((len) - 1)))
1507
 
1508
/* Return the LEN-bit field at POS from I.  */
1509
#define FIELD(i, pos, len) (((i) >> (pos)) & ((1 << (len)) - 1))
1510
 
1511
/* Like FIELD, but sign-extend the field's value.  */
1512
#define SFIELD(i, pos, len) (SEXT (FIELD ((i), (pos), (len)), (len)))
1513
 
1514
 
1515
/* Macros for decoding instructions.
1516
 
1517
   Remember that 16-bit instructions are placed in bits 16..31 of i,
1518
   not at the least significant end; this means that the major opcode
1519
   field is always in the same place, regardless of the width of the
1520
   instruction.  As a reminder of this, we show the lower 16 bits of a
1521
   16-bit instruction as xxxx_xxxx_xxxx_xxxx.  */
1522
 
1523
/* SB Rn,(Rm)                 0000_nnnn_mmmm_1000 */
1524
/* SH Rn,(Rm)                 0000_nnnn_mmmm_1001 */
1525
/* SW Rn,(Rm)                 0000_nnnn_mmmm_1010 */
1526
 
1527
/* SW Rn,disp16(Rm)           1100_nnnn_mmmm_1010 dddd_dddd_dddd_dddd */
1528
#define IS_SW(i)              (((i) & 0xf00f0000) == 0xc00a0000)
1529
/* SB Rn,disp16(Rm)           1100_nnnn_mmmm_1000 dddd_dddd_dddd_dddd */
1530
#define IS_SB(i)              (((i) & 0xf00f0000) == 0xc0080000)
1531
/* SH Rn,disp16(Rm)           1100_nnnn_mmmm_1001 dddd_dddd_dddd_dddd */
1532
#define IS_SH(i)              (((i) & 0xf00f0000) == 0xc0090000)
1533
#define SWBH_32_BASE(i)       (FIELD (i, 20, 4))
1534
#define SWBH_32_SOURCE(i)     (FIELD (i, 24, 4))
1535
#define SWBH_32_OFFSET(i)     (SFIELD (i, 0, 16))
1536
 
1537
/* SW Rn,disp7.align4(SP)     0100_nnnn_0ddd_dd10 xxxx_xxxx_xxxx_xxxx */
1538
#define IS_SW_IMMD(i)         (((i) & 0xf0830000) == 0x40020000)
1539
#define SW_IMMD_SOURCE(i)     (FIELD (i, 24, 4))
1540
#define SW_IMMD_OFFSET(i)     (FIELD (i, 18, 5) << 2)
1541
 
1542
/* SW Rn,(Rm)                 0000_nnnn_mmmm_1010 xxxx_xxxx_xxxx_xxxx */
1543
#define IS_SW_REG(i)          (((i) & 0xf00f0000) == 0x000a0000)
1544
#define SW_REG_SOURCE(i)      (FIELD (i, 24, 4))
1545
#define SW_REG_BASE(i)        (FIELD (i, 20, 4))
1546
 
1547
/* ADD3 Rl,Rn,Rm              1001_nnnn_mmmm_llll xxxx_xxxx_xxxx_xxxx */
1548
#define IS_ADD3_16_REG(i)     (((i) & 0xf0000000) == 0x90000000)
1549
#define ADD3_16_REG_SRC1(i)   (FIELD (i, 20, 4))               /* n */
1550
#define ADD3_16_REG_SRC2(i)   (FIELD (i, 24, 4))               /* m */
1551
 
1552
/* ADD3 Rn,Rm,imm16           1100_nnnn_mmmm_0000 iiii_iiii_iiii_iiii */
1553
#define IS_ADD3_32(i)         (((i) & 0xf00f0000) == 0xc0000000)
1554
#define ADD3_32_TARGET(i)     (FIELD (i, 24, 4))
1555
#define ADD3_32_SOURCE(i)     (FIELD (i, 20, 4))
1556
#define ADD3_32_OFFSET(i)     (SFIELD (i, 0, 16))
1557
 
1558
/* ADD3 Rn,SP,imm7.align4     0100_nnnn_0iii_ii00 xxxx_xxxx_xxxx_xxxx */
1559
#define IS_ADD3_16(i)         (((i) & 0xf0830000) == 0x40000000)
1560
#define ADD3_16_TARGET(i)     (FIELD (i, 24, 4))
1561
#define ADD3_16_OFFSET(i)     (FIELD (i, 18, 5) << 2)
1562
 
1563
/* ADD Rn,imm6                0110_nnnn_iiii_ii00 xxxx_xxxx_xxxx_xxxx */
1564
#define IS_ADD(i)             (((i) & 0xf0030000) == 0x60000000)
1565
#define ADD_TARGET(i)         (FIELD (i, 24, 4))
1566
#define ADD_OFFSET(i)         (SFIELD (i, 18, 6))
1567
 
1568
/* LDC Rn,imm5                0111_nnnn_iiii_101I xxxx_xxxx_xxxx_xxxx
1569
                              imm5 = I||i[7:4] */
1570
#define IS_LDC(i)             (((i) & 0xf00e0000) == 0x700a0000)
1571
#define LDC_IMM(i)            ((FIELD (i, 16, 1) << 4) | FIELD (i, 20, 4))
1572
#define LDC_TARGET(i)         (FIELD (i, 24, 4))
1573
 
1574
/* LW Rn,disp16(Rm)           1100_nnnn_mmmm_1110 dddd_dddd_dddd_dddd  */
1575
#define IS_LW(i)              (((i) & 0xf00f0000) == 0xc00e0000)
1576
#define LW_TARGET(i)          (FIELD (i, 24, 4))
1577
#define LW_BASE(i)            (FIELD (i, 20, 4))
1578
#define LW_OFFSET(i)          (SFIELD (i, 0, 16))
1579
 
1580
/* MOV Rn,Rm                  0000_nnnn_mmmm_0000 xxxx_xxxx_xxxx_xxxx */
1581
#define IS_MOV(i)             (((i) & 0xf00f0000) == 0x00000000)
1582
#define MOV_TARGET(i)         (FIELD (i, 24, 4))
1583
#define MOV_SOURCE(i)         (FIELD (i, 20, 4))
1584
 
1585
/* BRA disp12.align2          1011_dddd_dddd_ddd0 xxxx_xxxx_xxxx_xxxx */
1586
#define IS_BRA(i)             (((i) & 0xf0010000) == 0xb0000000)
1587
#define BRA_DISP(i)           (SFIELD (i, 17, 11) << 1)
1588
 
1589
 
1590
/* This structure holds the results of a prologue analysis.  */
1591
struct mep_prologue
1592
{
1593
  /* The architecture for which we generated this prologue info.  */
1594
  struct gdbarch *gdbarch;
1595
 
1596
  /* The offset from the frame base to the stack pointer --- always
1597
     zero or negative.
1598
 
1599
     Calling this a "size" is a bit misleading, but given that the
1600
     stack grows downwards, using offsets for everything keeps one
1601
     from going completely sign-crazy: you never change anything's
1602
     sign for an ADD instruction; always change the second operand's
1603
     sign for a SUB instruction; and everything takes care of
1604
     itself.  */
1605
  int frame_size;
1606
 
1607
  /* Non-zero if this function has initialized the frame pointer from
1608
     the stack pointer, zero otherwise.  */
1609
  int has_frame_ptr;
1610
 
1611
  /* If has_frame_ptr is non-zero, this is the offset from the frame
1612
     base to where the frame pointer points.  This is always zero or
1613
     negative.  */
1614
  int frame_ptr_offset;
1615
 
1616
  /* The address of the first instruction at which the frame has been
1617
     set up and the arguments are where the debug info says they are
1618
     --- as best as we can tell.  */
1619
  CORE_ADDR prologue_end;
1620
 
1621
  /* reg_offset[R] is the offset from the CFA at which register R is
1622
     saved, or 1 if register R has not been saved.  (Real values are
1623
     always zero or negative.)  */
1624
  int reg_offset[MEP_NUM_REGS];
1625
};
1626
 
1627
/* Return non-zero if VALUE is an incoming argument register.  */
1628
 
1629
static int
1630
is_arg_reg (pv_t value)
1631
{
1632
  return (value.kind == pvk_register
1633
          && MEP_R1_REGNUM <= value.reg && value.reg <= MEP_R4_REGNUM
1634
          && value.k == 0);
1635
}
1636
 
1637
/* Return non-zero if a store of REG's current value VALUE to ADDR is
1638
   probably spilling an argument register to its stack slot in STACK.
1639
   Such instructions should be included in the prologue, if possible.
1640
 
1641
   The store is a spill if:
1642
   - the value being stored is REG's original value;
1643
   - the value has not already been stored somewhere in STACK; and
1644
   - ADDR is a stack slot's address (e.g., relative to the original
1645
     value of the SP).  */
1646
static int
1647
is_arg_spill (struct gdbarch *gdbarch, pv_t value, pv_t addr,
1648
              struct pv_area *stack)
1649
{
1650
  return (is_arg_reg (value)
1651
          && pv_is_register (addr, MEP_SP_REGNUM)
1652
          && ! pv_area_find_reg (stack, gdbarch, value.reg, 0));
1653
}
1654
 
1655
 
1656
/* Function for finding saved registers in a 'struct pv_area'; we pass
1657
   this to pv_area_scan.
1658
 
1659
   If VALUE is a saved register, ADDR says it was saved at a constant
1660
   offset from the frame base, and SIZE indicates that the whole
1661
   register was saved, record its offset in RESULT_UNTYPED.  */
1662
static void
1663
check_for_saved (void *result_untyped, pv_t addr, CORE_ADDR size, pv_t value)
1664
{
1665
  struct mep_prologue *result = (struct mep_prologue *) result_untyped;
1666
 
1667
  if (value.kind == pvk_register
1668
      && value.k == 0
1669
      && pv_is_register (addr, MEP_SP_REGNUM)
1670
      && size == register_size (result->gdbarch, value.reg))
1671
    result->reg_offset[value.reg] = addr.k;
1672
}
1673
 
1674
 
1675
/* Analyze a prologue starting at START_PC, going no further than
1676
   LIMIT_PC.  Fill in RESULT as appropriate.  */
1677
static void
1678
mep_analyze_prologue (struct gdbarch *gdbarch,
1679
                      CORE_ADDR start_pc, CORE_ADDR limit_pc,
1680
                      struct mep_prologue *result)
1681
{
1682
  CORE_ADDR pc;
1683
  unsigned long insn;
1684
  int rn;
1685
  int found_lp = 0;
1686
  pv_t reg[MEP_NUM_REGS];
1687
  struct pv_area *stack;
1688
  struct cleanup *back_to;
1689
  CORE_ADDR after_last_frame_setup_insn = start_pc;
1690
 
1691
  memset (result, 0, sizeof (*result));
1692
  result->gdbarch = gdbarch;
1693
 
1694
  for (rn = 0; rn < MEP_NUM_REGS; rn++)
1695
    {
1696
      reg[rn] = pv_register (rn, 0);
1697
      result->reg_offset[rn] = 1;
1698
    }
1699
 
1700
  stack = make_pv_area (MEP_SP_REGNUM, gdbarch_addr_bit (gdbarch));
1701
  back_to = make_cleanup_free_pv_area (stack);
1702
 
1703
  pc = start_pc;
1704
  while (pc < limit_pc)
1705
    {
1706
      CORE_ADDR next_pc;
1707
      pv_t pre_insn_fp, pre_insn_sp;
1708
 
1709
      next_pc = mep_get_insn (gdbarch, pc, &insn);
1710
 
1711
      /* A zero return from mep_get_insn means that either we weren't
1712
         able to read the instruction from memory, or that we don't
1713
         have enough information to be able to reliably decode it.  So
1714
         we'll store here and hope for the best.  */
1715
      if (! next_pc)
1716
        break;
1717
 
1718
      /* Note the current values of the SP and FP, so we can tell if
1719
         this instruction changed them, below.  */
1720
      pre_insn_fp = reg[MEP_FP_REGNUM];
1721
      pre_insn_sp = reg[MEP_SP_REGNUM];
1722
 
1723
      if (IS_ADD (insn))
1724
        {
1725
          int rn = ADD_TARGET (insn);
1726
          CORE_ADDR imm6 = ADD_OFFSET (insn);
1727
 
1728
          reg[rn] = pv_add_constant (reg[rn], imm6);
1729
        }
1730
      else if (IS_ADD3_16 (insn))
1731
        {
1732
          int rn = ADD3_16_TARGET (insn);
1733
          int imm7 = ADD3_16_OFFSET (insn);
1734
 
1735
          reg[rn] = pv_add_constant (reg[MEP_SP_REGNUM], imm7);
1736
        }
1737
      else if (IS_ADD3_32 (insn))
1738
        {
1739
          int rn = ADD3_32_TARGET (insn);
1740
          int rm = ADD3_32_SOURCE (insn);
1741
          int imm16 = ADD3_32_OFFSET (insn);
1742
 
1743
          reg[rn] = pv_add_constant (reg[rm], imm16);
1744
        }
1745
      else if (IS_SW_REG (insn))
1746
        {
1747
          int rn = SW_REG_SOURCE (insn);
1748
          int rm = SW_REG_BASE (insn);
1749
 
1750
          /* If simulating this store would require us to forget
1751
             everything we know about the stack frame in the name of
1752
             accuracy, it would be better to just quit now.  */
1753
          if (pv_area_store_would_trash (stack, reg[rm]))
1754
            break;
1755
 
1756
          if (is_arg_spill (gdbarch, reg[rn], reg[rm], stack))
1757
            after_last_frame_setup_insn = next_pc;
1758
 
1759
          pv_area_store (stack, reg[rm], 4, reg[rn]);
1760
        }
1761
      else if (IS_SW_IMMD (insn))
1762
        {
1763
          int rn = SW_IMMD_SOURCE (insn);
1764
          int offset = SW_IMMD_OFFSET (insn);
1765
          pv_t addr = pv_add_constant (reg[MEP_SP_REGNUM], offset);
1766
 
1767
          /* If simulating this store would require us to forget
1768
             everything we know about the stack frame in the name of
1769
             accuracy, it would be better to just quit now.  */
1770
          if (pv_area_store_would_trash (stack, addr))
1771
            break;
1772
 
1773
          if (is_arg_spill (gdbarch, reg[rn], addr, stack))
1774
            after_last_frame_setup_insn = next_pc;
1775
 
1776
          pv_area_store (stack, addr, 4, reg[rn]);
1777
        }
1778
      else if (IS_MOV (insn))
1779
        {
1780
          int rn = MOV_TARGET (insn);
1781
          int rm = MOV_SOURCE (insn);
1782
 
1783
          reg[rn] = reg[rm];
1784
 
1785
          if (pv_is_register (reg[rm], rm) && is_arg_reg (reg[rm]))
1786
            after_last_frame_setup_insn = next_pc;
1787
        }
1788
      else if (IS_SB (insn) || IS_SH (insn) || IS_SW (insn))
1789
        {
1790
          int rn = SWBH_32_SOURCE (insn);
1791
          int rm = SWBH_32_BASE (insn);
1792
          int disp = SWBH_32_OFFSET (insn);
1793
          int size = (IS_SB (insn) ? 1
1794
                      : IS_SH (insn) ? 2
1795
                      : IS_SW (insn) ? 4
1796
                      : (gdb_assert (0), 1));
1797
          pv_t addr = pv_add_constant (reg[rm], disp);
1798
 
1799
          if (pv_area_store_would_trash (stack, addr))
1800
            break;
1801
 
1802
          if (is_arg_spill (gdbarch, reg[rn], addr, stack))
1803
            after_last_frame_setup_insn = next_pc;
1804
 
1805
          pv_area_store (stack, addr, size, reg[rn]);
1806
        }
1807
      else if (IS_LDC (insn))
1808
        {
1809
          int rn = LDC_TARGET (insn);
1810
          int cr = LDC_IMM (insn) + MEP_FIRST_CSR_REGNUM;
1811
 
1812
          reg[rn] = reg[cr];
1813
        }
1814
      else if (IS_LW (insn))
1815
        {
1816
          int rn = LW_TARGET (insn);
1817
          int rm = LW_BASE (insn);
1818
          int offset = LW_OFFSET (insn);
1819
          pv_t addr = pv_add_constant (reg[rm], offset);
1820
 
1821
          reg[rn] = pv_area_fetch (stack, addr, 4);
1822
        }
1823
      else if (IS_BRA (insn) && BRA_DISP (insn) > 0)
1824
        {
1825
          /* When a loop appears as the first statement of a function
1826
             body, gcc 4.x will use a BRA instruction to branch to the
1827
             loop condition checking code.  This BRA instruction is
1828
             marked as part of the prologue.  We therefore set next_pc
1829
             to this branch target and also stop the prologue scan.
1830
             The instructions at and beyond the branch target should
1831
             no longer be associated with the prologue.
1832
 
1833
             Note that we only consider forward branches here.  We
1834
             presume that a forward branch is being used to skip over
1835
             a loop body.
1836
 
1837
             A backwards branch is covered by the default case below.
1838
             If we were to encounter a backwards branch, that would
1839
             most likely mean that we've scanned through a loop body.
1840
             We definitely want to stop the prologue scan when this
1841
             happens and that is precisely what is done by the default
1842
             case below.  */
1843
          next_pc = pc + BRA_DISP (insn);
1844
          after_last_frame_setup_insn = next_pc;
1845
          break;
1846
        }
1847
      else
1848
        /* We've hit some instruction we don't know how to simulate.
1849
           Strictly speaking, we should set every value we're
1850
           tracking to "unknown".  But we'll be optimistic, assume
1851
           that we have enough information already, and stop
1852
           analysis here.  */
1853
        break;
1854
 
1855
      /* If this instruction changed the FP or decreased the SP (i.e.,
1856
         allocated more stack space), then this may be a good place to
1857
         declare the prologue finished.  However, there are some
1858
         exceptions:
1859
 
1860
         - If the instruction just changed the FP back to its original
1861
           value, then that's probably a restore instruction.  The
1862
           prologue should definitely end before that.
1863
 
1864
         - If the instruction increased the value of the SP (that is,
1865
           shrunk the frame), then it's probably part of a frame
1866
           teardown sequence, and the prologue should end before that.  */
1867
 
1868
      if (! pv_is_identical (reg[MEP_FP_REGNUM], pre_insn_fp))
1869
        {
1870
          if (! pv_is_register_k (reg[MEP_FP_REGNUM], MEP_FP_REGNUM, 0))
1871
            after_last_frame_setup_insn = next_pc;
1872
        }
1873
      else if (! pv_is_identical (reg[MEP_SP_REGNUM], pre_insn_sp))
1874
        {
1875
          /* The comparison of constants looks odd, there, because .k
1876
             is unsigned.  All it really means is that the new value
1877
             is lower than it was before the instruction.  */
1878
          if (pv_is_register (pre_insn_sp, MEP_SP_REGNUM)
1879
              && pv_is_register (reg[MEP_SP_REGNUM], MEP_SP_REGNUM)
1880
              && ((pre_insn_sp.k - reg[MEP_SP_REGNUM].k)
1881
                  < (reg[MEP_SP_REGNUM].k - pre_insn_sp.k)))
1882
            after_last_frame_setup_insn = next_pc;
1883
        }
1884
 
1885
      pc = next_pc;
1886
    }
1887
 
1888
  /* Is the frame size (offset, really) a known constant?  */
1889
  if (pv_is_register (reg[MEP_SP_REGNUM], MEP_SP_REGNUM))
1890
    result->frame_size = reg[MEP_SP_REGNUM].k;
1891
 
1892
  /* Was the frame pointer initialized?  */
1893
  if (pv_is_register (reg[MEP_FP_REGNUM], MEP_SP_REGNUM))
1894
    {
1895
      result->has_frame_ptr = 1;
1896
      result->frame_ptr_offset = reg[MEP_FP_REGNUM].k;
1897
    }
1898
 
1899
  /* Record where all the registers were saved.  */
1900
  pv_area_scan (stack, check_for_saved, (void *) result);
1901
 
1902
  result->prologue_end = after_last_frame_setup_insn;
1903
 
1904
  do_cleanups (back_to);
1905
}
1906
 
1907
 
1908
static CORE_ADDR
1909
mep_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
1910
{
1911
  char *name;
1912
  CORE_ADDR func_addr, func_end;
1913
  struct mep_prologue p;
1914
 
1915
  /* Try to find the extent of the function that contains PC.  */
1916
  if (! find_pc_partial_function (pc, &name, &func_addr, &func_end))
1917
    return pc;
1918
 
1919
  mep_analyze_prologue (gdbarch, pc, func_end, &p);
1920
  return p.prologue_end;
1921
}
1922
 
1923
 
1924
 
1925
/* Breakpoints.  */
1926
 
1927
static const unsigned char *
1928
mep_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR * pcptr, int *lenptr)
1929
{
1930
  static unsigned char breakpoint[] = { 0x70, 0x32 };
1931
  *lenptr = sizeof (breakpoint);
1932
  return breakpoint;
1933
}
1934
 
1935
 
1936
 
1937
/* Frames and frame unwinding.  */
1938
 
1939
 
1940
static struct mep_prologue *
1941
mep_analyze_frame_prologue (struct frame_info *this_frame,
1942
                            void **this_prologue_cache)
1943
{
1944
  if (! *this_prologue_cache)
1945
    {
1946
      CORE_ADDR func_start, stop_addr;
1947
 
1948
      *this_prologue_cache
1949
        = FRAME_OBSTACK_ZALLOC (struct mep_prologue);
1950
 
1951
      func_start = get_frame_func (this_frame);
1952
      stop_addr = get_frame_pc (this_frame);
1953
 
1954
      /* If we couldn't find any function containing the PC, then
1955
         just initialize the prologue cache, but don't do anything.  */
1956
      if (! func_start)
1957
        stop_addr = func_start;
1958
 
1959
      mep_analyze_prologue (get_frame_arch (this_frame),
1960
                            func_start, stop_addr, *this_prologue_cache);
1961
    }
1962
 
1963
  return *this_prologue_cache;
1964
}
1965
 
1966
 
1967
/* Given the next frame and a prologue cache, return this frame's
1968
   base.  */
1969
static CORE_ADDR
1970
mep_frame_base (struct frame_info *this_frame,
1971
                void **this_prologue_cache)
1972
{
1973
  struct mep_prologue *p
1974
    = mep_analyze_frame_prologue (this_frame, this_prologue_cache);
1975
 
1976
  /* In functions that use alloca, the distance between the stack
1977
     pointer and the frame base varies dynamically, so we can't use
1978
     the SP plus static information like prologue analysis to find the
1979
     frame base.  However, such functions must have a frame pointer,
1980
     to be able to restore the SP on exit.  So whenever we do have a
1981
     frame pointer, use that to find the base.  */
1982
  if (p->has_frame_ptr)
1983
    {
1984
      CORE_ADDR fp
1985
        = get_frame_register_unsigned (this_frame, MEP_FP_REGNUM);
1986
      return fp - p->frame_ptr_offset;
1987
    }
1988
  else
1989
    {
1990
      CORE_ADDR sp
1991
        = get_frame_register_unsigned (this_frame, MEP_SP_REGNUM);
1992
      return sp - p->frame_size;
1993
    }
1994
}
1995
 
1996
 
1997
static void
1998
mep_frame_this_id (struct frame_info *this_frame,
1999
                   void **this_prologue_cache,
2000
                   struct frame_id *this_id)
2001
{
2002
  *this_id = frame_id_build (mep_frame_base (this_frame, this_prologue_cache),
2003
                             get_frame_func (this_frame));
2004
}
2005
 
2006
 
2007
static struct value *
2008
mep_frame_prev_register (struct frame_info *this_frame,
2009
                         void **this_prologue_cache, int regnum)
2010
{
2011
  struct mep_prologue *p
2012
    = mep_analyze_frame_prologue (this_frame, this_prologue_cache);
2013
 
2014
  /* There are a number of complications in unwinding registers on the
2015
     MeP, having to do with core functions calling VLIW functions and
2016
     vice versa.
2017
 
2018
     The least significant bit of the link register, LP.LTOM, is the
2019
     VLIW mode toggle bit: it's set if a core function called a VLIW
2020
     function, or vice versa, and clear when the caller and callee
2021
     were both in the same mode.
2022
 
2023
     So, if we're asked to unwind the PC, then we really want to
2024
     unwind the LP and clear the least significant bit.  (Real return
2025
     addresses are always even.)  And if we want to unwind the program
2026
     status word (PSW), we need to toggle PSW.OM if LP.LTOM is set.
2027
 
2028
     Tweaking the register values we return in this way means that the
2029
     bits in BUFFERP[] are not the same as the bits you'd find at
2030
     ADDRP in the inferior, so we make sure lvalp is not_lval when we
2031
     do this.  */
2032
  if (regnum == MEP_PC_REGNUM)
2033
    {
2034
      struct value *value;
2035
      CORE_ADDR lp;
2036
      value = mep_frame_prev_register (this_frame, this_prologue_cache,
2037
                                       MEP_LP_REGNUM);
2038
      lp = value_as_long (value);
2039
      release_value (value);
2040
      value_free (value);
2041
 
2042
      return frame_unwind_got_constant (this_frame, regnum, lp & ~1);
2043
    }
2044
  else
2045
    {
2046
      CORE_ADDR frame_base = mep_frame_base (this_frame, this_prologue_cache);
2047
      struct value *value;
2048
 
2049
      /* Our caller's SP is our frame base.  */
2050
      if (regnum == MEP_SP_REGNUM)
2051
        return frame_unwind_got_constant (this_frame, regnum, frame_base);
2052
 
2053
      /* If prologue analysis says we saved this register somewhere,
2054
         return a description of the stack slot holding it.  */
2055
      if (p->reg_offset[regnum] != 1)
2056
        value = frame_unwind_got_memory (this_frame, regnum,
2057
                                         frame_base + p->reg_offset[regnum]);
2058
 
2059
      /* Otherwise, presume we haven't changed the value of this
2060
         register, and get it from the next frame.  */
2061
      else
2062
        value = frame_unwind_got_register (this_frame, regnum, regnum);
2063
 
2064
      /* If we need to toggle the operating mode, do so.  */
2065
      if (regnum == MEP_PSW_REGNUM)
2066
        {
2067
          CORE_ADDR psw, lp;
2068
 
2069
          psw = value_as_long (value);
2070
          release_value (value);
2071
          value_free (value);
2072
 
2073
          /* Get the LP's value, too.  */
2074
          value = get_frame_register_value (this_frame, MEP_LP_REGNUM);
2075
          lp = value_as_long (value);
2076
          release_value (value);
2077
          value_free (value);
2078
 
2079
          /* If LP.LTOM is set, then toggle PSW.OM.  */
2080
          if (lp & 0x1)
2081
            psw ^= 0x1000;
2082
 
2083
          return frame_unwind_got_constant (this_frame, regnum, psw);
2084
        }
2085
 
2086
      return value;
2087
    }
2088
}
2089
 
2090
 
2091
static const struct frame_unwind mep_frame_unwind = {
2092
  NORMAL_FRAME,
2093
  mep_frame_this_id,
2094
  mep_frame_prev_register,
2095
  NULL,
2096
  default_frame_sniffer
2097
};
2098
 
2099
 
2100
/* Our general unwinding function can handle unwinding the PC.  */
2101
static CORE_ADDR
2102
mep_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
2103
{
2104
  return frame_unwind_register_unsigned (next_frame, MEP_PC_REGNUM);
2105
}
2106
 
2107
 
2108
/* Our general unwinding function can handle unwinding the SP.  */
2109
static CORE_ADDR
2110
mep_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
2111
{
2112
  return frame_unwind_register_unsigned (next_frame, MEP_SP_REGNUM);
2113
}
2114
 
2115
 
2116
 
2117
/* Return values.  */
2118
 
2119
 
2120
static int
2121
mep_use_struct_convention (struct type *type)
2122
{
2123
  return (TYPE_LENGTH (type) > MEP_GPR_SIZE);
2124
}
2125
 
2126
 
2127
static void
2128
mep_extract_return_value (struct gdbarch *arch,
2129
                          struct type *type,
2130
                          struct regcache *regcache,
2131
                          gdb_byte *valbuf)
2132
{
2133
  int byte_order = gdbarch_byte_order (arch);
2134
 
2135
  /* Values that don't occupy a full register appear at the less
2136
     significant end of the value.  This is the offset to where the
2137
     value starts.  */
2138
  int offset;
2139
 
2140
  /* Return values > MEP_GPR_SIZE bytes are returned in memory,
2141
     pointed to by R0.  */
2142
  gdb_assert (TYPE_LENGTH (type) <= MEP_GPR_SIZE);
2143
 
2144
  if (byte_order == BFD_ENDIAN_BIG)
2145
    offset = MEP_GPR_SIZE - TYPE_LENGTH (type);
2146
  else
2147
    offset = 0;
2148
 
2149
  /* Return values that do fit in a single register are returned in R0. */
2150
  regcache_cooked_read_part (regcache, MEP_R0_REGNUM,
2151
                             offset, TYPE_LENGTH (type),
2152
                             valbuf);
2153
}
2154
 
2155
 
2156
static void
2157
mep_store_return_value (struct gdbarch *arch,
2158
                        struct type *type,
2159
                        struct regcache *regcache,
2160
                        const gdb_byte *valbuf)
2161
{
2162
  int byte_order = gdbarch_byte_order (arch);
2163
 
2164
  /* Values that fit in a single register go in R0.  */
2165
  if (TYPE_LENGTH (type) <= MEP_GPR_SIZE)
2166
    {
2167
      /* Values that don't occupy a full register appear at the least
2168
         significant end of the value.  This is the offset to where the
2169
         value starts.  */
2170
      int offset;
2171
 
2172
      if (byte_order == BFD_ENDIAN_BIG)
2173
        offset = MEP_GPR_SIZE - TYPE_LENGTH (type);
2174
      else
2175
        offset = 0;
2176
 
2177
      regcache_cooked_write_part (regcache, MEP_R0_REGNUM,
2178
                                  offset, TYPE_LENGTH (type),
2179
                                  valbuf);
2180
    }
2181
 
2182
  /* Return values larger than a single register are returned in
2183
     memory, pointed to by R0.  Unfortunately, we can't count on R0
2184
     pointing to the return buffer, so we raise an error here. */
2185
  else
2186
    error ("GDB cannot set return values larger than four bytes; "
2187
           "the Media Processor's\n"
2188
           "calling conventions do not provide enough information "
2189
           "to do this.\n"
2190
           "Try using the 'return' command with no argument.");
2191
}
2192
 
2193
static enum return_value_convention
2194
mep_return_value (struct gdbarch *gdbarch, struct type *func_type,
2195
                  struct type *type, struct regcache *regcache,
2196
                  gdb_byte *readbuf, const gdb_byte *writebuf)
2197
{
2198
  if (mep_use_struct_convention (type))
2199
    {
2200
      if (readbuf)
2201
        {
2202
          ULONGEST addr;
2203
          /* Although the address of the struct buffer gets passed in R1, it's
2204
             returned in R0.  Fetch R0's value and then read the memory
2205
             at that address.  */
2206
          regcache_raw_read_unsigned (regcache, MEP_R0_REGNUM, &addr);
2207
          read_memory (addr, readbuf, TYPE_LENGTH (type));
2208
        }
2209
      if (writebuf)
2210
        {
2211
          /* Return values larger than a single register are returned in
2212
             memory, pointed to by R0.  Unfortunately, we can't count on R0
2213
             pointing to the return buffer, so we raise an error here. */
2214
          error ("GDB cannot set return values larger than four bytes; "
2215
                 "the Media Processor's\n"
2216
                 "calling conventions do not provide enough information "
2217
                 "to do this.\n"
2218
                 "Try using the 'return' command with no argument.");
2219
        }
2220
      return RETURN_VALUE_ABI_RETURNS_ADDRESS;
2221
    }
2222
 
2223
  if (readbuf)
2224
    mep_extract_return_value (gdbarch, type, regcache, readbuf);
2225
  if (writebuf)
2226
    mep_store_return_value (gdbarch, type, regcache, writebuf);
2227
 
2228
  return RETURN_VALUE_REGISTER_CONVENTION;
2229
}
2230
 
2231
 
2232
/* Inferior calls.  */
2233
 
2234
 
2235
static CORE_ADDR
2236
mep_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
2237
{
2238
  /* Require word alignment.  */
2239
  return sp & -4;
2240
}
2241
 
2242
 
2243
/* From "lang_spec2.txt":
2244
 
2245
   4.2 Calling conventions
2246
 
2247
   4.2.1 Core register conventions
2248
 
2249
   - Parameters should be evaluated from left to right, and they
2250
     should be held in $1,$2,$3,$4 in order. The fifth parameter or
2251
     after should be held in the stack. If the size is larger than 4
2252
     bytes in the first four parameters, the pointer should be held in
2253
     the registers instead. If the size is larger than 4 bytes in the
2254
     fifth parameter or after, the pointer should be held in the stack.
2255
 
2256
   - Return value of a function should be held in register $0. If the
2257
     size of return value is larger than 4 bytes, $1 should hold the
2258
     pointer pointing memory that would hold the return value. In this
2259
     case, the first parameter should be held in $2, the second one in
2260
     $3, and the third one in $4, and the forth parameter or after
2261
     should be held in the stack.
2262
 
2263
   [This doesn't say so, but arguments shorter than four bytes are
2264
   passed in the least significant end of a four-byte word when
2265
   they're passed on the stack.]  */
2266
 
2267
 
2268
/* Traverse the list of ARGC arguments ARGV; for every ARGV[i] too
2269
   large to fit in a register, save it on the stack, and place its
2270
   address in COPY[i].  SP is the initial stack pointer; return the
2271
   new stack pointer.  */
2272
static CORE_ADDR
2273
push_large_arguments (CORE_ADDR sp, int argc, struct value **argv,
2274
                      CORE_ADDR copy[])
2275
{
2276
  int i;
2277
 
2278
  for (i = 0; i < argc; i++)
2279
    {
2280
      unsigned arg_len = TYPE_LENGTH (value_type (argv[i]));
2281
 
2282
      if (arg_len > MEP_GPR_SIZE)
2283
        {
2284
          /* Reserve space for the copy, and then round the SP down, to
2285
             make sure it's all aligned properly.  */
2286
          sp = (sp - arg_len) & -4;
2287
          write_memory (sp, value_contents (argv[i]), arg_len);
2288
          copy[i] = sp;
2289
        }
2290
    }
2291
 
2292
  return sp;
2293
}
2294
 
2295
 
2296
static CORE_ADDR
2297
mep_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
2298
                     struct regcache *regcache, CORE_ADDR bp_addr,
2299
                     int argc, struct value **argv, CORE_ADDR sp,
2300
                     int struct_return,
2301
                     CORE_ADDR struct_addr)
2302
{
2303
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2304
  CORE_ADDR *copy = (CORE_ADDR *) alloca (argc * sizeof (copy[0]));
2305
  CORE_ADDR func_addr = find_function_addr (function, NULL);
2306
  int i;
2307
 
2308
  /* The number of the next register available to hold an argument.  */
2309
  int arg_reg;
2310
 
2311
  /* The address of the next stack slot available to hold an argument.  */
2312
  CORE_ADDR arg_stack;
2313
 
2314
  /* The address of the end of the stack area for arguments.  This is
2315
     just for error checking.  */
2316
  CORE_ADDR arg_stack_end;
2317
 
2318
  sp = push_large_arguments (sp, argc, argv, copy);
2319
 
2320
  /* Reserve space for the stack arguments, if any.  */
2321
  arg_stack_end = sp;
2322
  if (argc + (struct_addr ? 1 : 0) > 4)
2323
    sp -= ((argc + (struct_addr ? 1 : 0)) - 4) * MEP_GPR_SIZE;
2324
 
2325
  arg_reg = MEP_R1_REGNUM;
2326
  arg_stack = sp;
2327
 
2328
  /* If we're returning a structure by value, push the pointer to the
2329
     buffer as the first argument.  */
2330
  if (struct_return)
2331
    {
2332
      regcache_cooked_write_unsigned (regcache, arg_reg, struct_addr);
2333
      arg_reg++;
2334
    }
2335
 
2336
  for (i = 0; i < argc; i++)
2337
    {
2338
      unsigned arg_size = TYPE_LENGTH (value_type (argv[i]));
2339
      ULONGEST value;
2340
 
2341
      /* Arguments that fit in a GPR get expanded to fill the GPR.  */
2342
      if (arg_size <= MEP_GPR_SIZE)
2343
        value = extract_unsigned_integer (value_contents (argv[i]),
2344
                                          TYPE_LENGTH (value_type (argv[i])),
2345
                                          byte_order);
2346
 
2347
      /* Arguments too large to fit in a GPR get copied to the stack,
2348
         and we pass a pointer to the copy.  */
2349
      else
2350
        value = copy[i];
2351
 
2352
      /* We use $1 -- $4 for passing arguments, then use the stack.  */
2353
      if (arg_reg <= MEP_R4_REGNUM)
2354
        {
2355
          regcache_cooked_write_unsigned (regcache, arg_reg, value);
2356
          arg_reg++;
2357
        }
2358
      else
2359
        {
2360
          char buf[MEP_GPR_SIZE];
2361
          store_unsigned_integer (buf, MEP_GPR_SIZE, byte_order, value);
2362
          write_memory (arg_stack, buf, MEP_GPR_SIZE);
2363
          arg_stack += MEP_GPR_SIZE;
2364
        }
2365
    }
2366
 
2367
  gdb_assert (arg_stack <= arg_stack_end);
2368
 
2369
  /* Set the return address.  */
2370
  regcache_cooked_write_unsigned (regcache, MEP_LP_REGNUM, bp_addr);
2371
 
2372
  /* Update the stack pointer.  */
2373
  regcache_cooked_write_unsigned (regcache, MEP_SP_REGNUM, sp);
2374
 
2375
  return sp;
2376
}
2377
 
2378
 
2379
static struct frame_id
2380
mep_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
2381
{
2382
  CORE_ADDR sp = get_frame_register_unsigned (this_frame, MEP_SP_REGNUM);
2383
  return frame_id_build (sp, get_frame_pc (this_frame));
2384
}
2385
 
2386
 
2387
 
2388
/* Initialization.  */
2389
 
2390
 
2391
static struct gdbarch *
2392
mep_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2393
{
2394
  struct gdbarch *gdbarch;
2395
  struct gdbarch_tdep *tdep;
2396
 
2397
  /* Which me_module are we building a gdbarch object for?  */
2398
  CONFIG_ATTR me_module;
2399
 
2400
  /* If we have a BFD in hand, figure out which me_module it was built
2401
     for.  Otherwise, use the no-particular-me_module code.  */
2402
  if (info.abfd)
2403
    {
2404
      /* The way to get the me_module code depends on the object file
2405
         format.  At the moment, we only know how to handle ELF.  */
2406
      if (bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
2407
        me_module = elf_elfheader (info.abfd)->e_flags & EF_MEP_INDEX_MASK;
2408
      else
2409
        me_module = CONFIG_NONE;
2410
    }
2411
  else
2412
    me_module = CONFIG_NONE;
2413
 
2414
  /* If we're setting the architecture from a file, check the
2415
     endianness of the file against that of the me_module.  */
2416
  if (info.abfd)
2417
    {
2418
      /* The negations on either side make the comparison treat all
2419
         non-zero (true) values as equal.  */
2420
      if (! bfd_big_endian (info.abfd) != ! me_module_big_endian (me_module))
2421
        {
2422
          const char *module_name = me_module_name (me_module);
2423
          const char *module_endianness
2424
            = me_module_big_endian (me_module) ? "big" : "little";
2425
          const char *file_name = bfd_get_filename (info.abfd);
2426
          const char *file_endianness
2427
            = bfd_big_endian (info.abfd) ? "big" : "little";
2428
 
2429
          fputc_unfiltered ('\n', gdb_stderr);
2430
          if (module_name)
2431
            warning ("the MeP module '%s' is %s-endian, but the executable\n"
2432
                     "%s is %s-endian.",
2433
                     module_name, module_endianness,
2434
                     file_name, file_endianness);
2435
          else
2436
            warning ("the selected MeP module is %s-endian, but the "
2437
                     "executable\n"
2438
                     "%s is %s-endian.",
2439
                     module_endianness, file_name, file_endianness);
2440
        }
2441
    }
2442
 
2443
  /* Find a candidate among the list of architectures we've created
2444
     already.  info->bfd_arch_info needs to match, but we also want
2445
     the right me_module: the ELF header's e_flags field needs to
2446
     match as well.  */
2447
  for (arches = gdbarch_list_lookup_by_info (arches, &info);
2448
       arches != NULL;
2449
       arches = gdbarch_list_lookup_by_info (arches->next, &info))
2450
    if (gdbarch_tdep (arches->gdbarch)->me_module == me_module)
2451
      return arches->gdbarch;
2452
 
2453
  tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep));
2454
  gdbarch = gdbarch_alloc (&info, tdep);
2455
 
2456
  /* Get a CGEN CPU descriptor for this architecture.  */
2457
  {
2458
    const char *mach_name = info.bfd_arch_info->printable_name;
2459
    enum cgen_endian endian = (info.byte_order == BFD_ENDIAN_BIG
2460
                               ? CGEN_ENDIAN_BIG
2461
                               : CGEN_ENDIAN_LITTLE);
2462
 
2463
    tdep->cpu_desc = mep_cgen_cpu_open (CGEN_CPU_OPEN_BFDMACH, mach_name,
2464
                                        CGEN_CPU_OPEN_ENDIAN, endian,
2465
                                        CGEN_CPU_OPEN_END);
2466
  }
2467
 
2468
  tdep->me_module = me_module;
2469
 
2470
  /* Register set.  */
2471
  set_gdbarch_read_pc (gdbarch, mep_read_pc);
2472
  set_gdbarch_write_pc (gdbarch, mep_write_pc);
2473
  set_gdbarch_num_regs (gdbarch, MEP_NUM_RAW_REGS);
2474
  set_gdbarch_sp_regnum (gdbarch, MEP_SP_REGNUM);
2475
  set_gdbarch_register_name (gdbarch, mep_register_name);
2476
  set_gdbarch_register_type (gdbarch, mep_register_type);
2477
  set_gdbarch_num_pseudo_regs (gdbarch, MEP_NUM_PSEUDO_REGS);
2478
  set_gdbarch_pseudo_register_read (gdbarch, mep_pseudo_register_read);
2479
  set_gdbarch_pseudo_register_write (gdbarch, mep_pseudo_register_write);
2480
  set_gdbarch_dwarf2_reg_to_regnum (gdbarch, mep_debug_reg_to_regnum);
2481
  set_gdbarch_stab_reg_to_regnum (gdbarch, mep_debug_reg_to_regnum);
2482
 
2483
  set_gdbarch_register_reggroup_p (gdbarch, mep_register_reggroup_p);
2484
  reggroup_add (gdbarch, all_reggroup);
2485
  reggroup_add (gdbarch, general_reggroup);
2486
  reggroup_add (gdbarch, save_reggroup);
2487
  reggroup_add (gdbarch, restore_reggroup);
2488
  reggroup_add (gdbarch, mep_csr_reggroup);
2489
  reggroup_add (gdbarch, mep_cr_reggroup);
2490
  reggroup_add (gdbarch, mep_ccr_reggroup);
2491
 
2492
  /* Disassembly.  */
2493
  set_gdbarch_print_insn (gdbarch, mep_gdb_print_insn);
2494
 
2495
  /* Breakpoints.  */
2496
  set_gdbarch_breakpoint_from_pc (gdbarch, mep_breakpoint_from_pc);
2497
  set_gdbarch_decr_pc_after_break (gdbarch, 0);
2498
  set_gdbarch_skip_prologue (gdbarch, mep_skip_prologue);
2499
 
2500
  /* Frames and frame unwinding.  */
2501
  frame_unwind_append_unwinder (gdbarch, &mep_frame_unwind);
2502
  set_gdbarch_unwind_pc (gdbarch, mep_unwind_pc);
2503
  set_gdbarch_unwind_sp (gdbarch, mep_unwind_sp);
2504
  set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2505
  set_gdbarch_frame_args_skip (gdbarch, 0);
2506
 
2507
  /* Return values.  */
2508
  set_gdbarch_return_value (gdbarch, mep_return_value);
2509
 
2510
  /* Inferior function calls.  */
2511
  set_gdbarch_frame_align (gdbarch, mep_frame_align);
2512
  set_gdbarch_push_dummy_call (gdbarch, mep_push_dummy_call);
2513
  set_gdbarch_dummy_id (gdbarch, mep_dummy_id);
2514
 
2515
  return gdbarch;
2516
}
2517
 
2518
/* Provide a prototype to silence -Wmissing-prototypes.  */
2519
extern initialize_file_ftype _initialize_mep_tdep;
2520
 
2521
void
2522
_initialize_mep_tdep (void)
2523
{
2524
  mep_csr_reggroup = reggroup_new ("csr", USER_REGGROUP);
2525
  mep_cr_reggroup  = reggroup_new ("cr", USER_REGGROUP);
2526
  mep_ccr_reggroup = reggroup_new ("ccr", USER_REGGROUP);
2527
 
2528
  register_gdbarch_init (bfd_arch_mep, mep_gdbarch_init);
2529
 
2530
  mep_init_pseudoregister_maps ();
2531
}

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.