1 |
330 |
jeremybenn |
/* PPC GNU/Linux native support.
|
2 |
|
|
|
3 |
|
|
Copyright (C) 1988, 1989, 1991, 1992, 1994, 1996, 2000, 2001, 2002, 2003,
|
4 |
|
|
2004, 2005, 2006, 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
|
5 |
|
|
|
6 |
|
|
This file is part of GDB.
|
7 |
|
|
|
8 |
|
|
This program is free software; you can redistribute it and/or modify
|
9 |
|
|
it under the terms of the GNU General Public License as published by
|
10 |
|
|
the Free Software Foundation; either version 3 of the License, or
|
11 |
|
|
(at your option) any later version.
|
12 |
|
|
|
13 |
|
|
This program is distributed in the hope that it will be useful,
|
14 |
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
15 |
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
16 |
|
|
GNU General Public License for more details.
|
17 |
|
|
|
18 |
|
|
You should have received a copy of the GNU General Public License
|
19 |
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>. */
|
20 |
|
|
|
21 |
|
|
#include "defs.h"
|
22 |
|
|
#include "gdb_string.h"
|
23 |
|
|
#include "observer.h"
|
24 |
|
|
#include "frame.h"
|
25 |
|
|
#include "inferior.h"
|
26 |
|
|
#include "gdbthread.h"
|
27 |
|
|
#include "gdbcore.h"
|
28 |
|
|
#include "regcache.h"
|
29 |
|
|
#include "gdb_assert.h"
|
30 |
|
|
#include "target.h"
|
31 |
|
|
#include "linux-nat.h"
|
32 |
|
|
|
33 |
|
|
#include <stdint.h>
|
34 |
|
|
#include <sys/types.h>
|
35 |
|
|
#include <sys/param.h>
|
36 |
|
|
#include <signal.h>
|
37 |
|
|
#include <sys/user.h>
|
38 |
|
|
#include <sys/ioctl.h>
|
39 |
|
|
#include "gdb_wait.h"
|
40 |
|
|
#include <fcntl.h>
|
41 |
|
|
#include <sys/procfs.h>
|
42 |
|
|
#include <sys/ptrace.h>
|
43 |
|
|
|
44 |
|
|
/* Prototypes for supply_gregset etc. */
|
45 |
|
|
#include "gregset.h"
|
46 |
|
|
#include "ppc-tdep.h"
|
47 |
|
|
#include "ppc-linux-tdep.h"
|
48 |
|
|
|
49 |
|
|
/* Required when using the AUXV. */
|
50 |
|
|
#include "elf/common.h"
|
51 |
|
|
#include "auxv.h"
|
52 |
|
|
|
53 |
|
|
/* This sometimes isn't defined. */
|
54 |
|
|
#ifndef PT_ORIG_R3
|
55 |
|
|
#define PT_ORIG_R3 34
|
56 |
|
|
#endif
|
57 |
|
|
#ifndef PT_TRAP
|
58 |
|
|
#define PT_TRAP 40
|
59 |
|
|
#endif
|
60 |
|
|
|
61 |
|
|
/* The PPC_FEATURE_* defines should be provided by <asm/cputable.h>.
|
62 |
|
|
If they aren't, we can provide them ourselves (their values are fixed
|
63 |
|
|
because they are part of the kernel ABI). They are used in the AT_HWCAP
|
64 |
|
|
entry of the AUXV. */
|
65 |
|
|
#ifndef PPC_FEATURE_CELL
|
66 |
|
|
#define PPC_FEATURE_CELL 0x00010000
|
67 |
|
|
#endif
|
68 |
|
|
#ifndef PPC_FEATURE_BOOKE
|
69 |
|
|
#define PPC_FEATURE_BOOKE 0x00008000
|
70 |
|
|
#endif
|
71 |
|
|
#ifndef PPC_FEATURE_HAS_DFP
|
72 |
|
|
#define PPC_FEATURE_HAS_DFP 0x00000400 /* Decimal Floating Point. */
|
73 |
|
|
#endif
|
74 |
|
|
|
75 |
|
|
/* Glibc's headers don't define PTRACE_GETVRREGS so we cannot use a
|
76 |
|
|
configure time check. Some older glibc's (for instance 2.2.1)
|
77 |
|
|
don't have a specific powerpc version of ptrace.h, and fall back on
|
78 |
|
|
a generic one. In such cases, sys/ptrace.h defines
|
79 |
|
|
PTRACE_GETFPXREGS and PTRACE_SETFPXREGS to the same numbers that
|
80 |
|
|
ppc kernel's asm/ptrace.h defines PTRACE_GETVRREGS and
|
81 |
|
|
PTRACE_SETVRREGS to be. This also makes a configury check pretty
|
82 |
|
|
much useless. */
|
83 |
|
|
|
84 |
|
|
/* These definitions should really come from the glibc header files,
|
85 |
|
|
but Glibc doesn't know about the vrregs yet. */
|
86 |
|
|
#ifndef PTRACE_GETVRREGS
|
87 |
|
|
#define PTRACE_GETVRREGS 18
|
88 |
|
|
#define PTRACE_SETVRREGS 19
|
89 |
|
|
#endif
|
90 |
|
|
|
91 |
|
|
/* PTRACE requests for POWER7 VSX registers. */
|
92 |
|
|
#ifndef PTRACE_GETVSXREGS
|
93 |
|
|
#define PTRACE_GETVSXREGS 27
|
94 |
|
|
#define PTRACE_SETVSXREGS 28
|
95 |
|
|
#endif
|
96 |
|
|
|
97 |
|
|
/* Similarly for the ptrace requests for getting / setting the SPE
|
98 |
|
|
registers (ev0 -- ev31, acc, and spefscr). See the description of
|
99 |
|
|
gdb_evrregset_t for details. */
|
100 |
|
|
#ifndef PTRACE_GETEVRREGS
|
101 |
|
|
#define PTRACE_GETEVRREGS 20
|
102 |
|
|
#define PTRACE_SETEVRREGS 21
|
103 |
|
|
#endif
|
104 |
|
|
|
105 |
|
|
/* Similarly for the hardware watchpoint support. These requests are used
|
106 |
|
|
when the BookE kernel interface is not available. */
|
107 |
|
|
#ifndef PTRACE_GET_DEBUGREG
|
108 |
|
|
#define PTRACE_GET_DEBUGREG 25
|
109 |
|
|
#endif
|
110 |
|
|
#ifndef PTRACE_SET_DEBUGREG
|
111 |
|
|
#define PTRACE_SET_DEBUGREG 26
|
112 |
|
|
#endif
|
113 |
|
|
#ifndef PTRACE_GETSIGINFO
|
114 |
|
|
#define PTRACE_GETSIGINFO 0x4202
|
115 |
|
|
#endif
|
116 |
|
|
|
117 |
|
|
/* These requests are used when the BookE kernel interface is available.
|
118 |
|
|
It exposes the additional debug features of BookE processors, such as
|
119 |
|
|
ranged breakpoints and watchpoints and hardware-accelerated condition
|
120 |
|
|
evaluation. */
|
121 |
|
|
#ifndef PPC_PTRACE_GETHWDBGINFO
|
122 |
|
|
|
123 |
|
|
/* Not having PPC_PTRACE_GETHWDBGINFO defined means that the new BookE
|
124 |
|
|
interface is not present in ptrace.h, so we'll have to pretty much include
|
125 |
|
|
it all here so that the code at least compiles on older systems. */
|
126 |
|
|
#define PPC_PTRACE_GETHWDBGINFO 0x89
|
127 |
|
|
#define PPC_PTRACE_SETHWDEBUG 0x88
|
128 |
|
|
#define PPC_PTRACE_DELHWDEBUG 0x87
|
129 |
|
|
|
130 |
|
|
struct ppc_debug_info
|
131 |
|
|
{
|
132 |
|
|
uint32_t version; /* Only version 1 exists to date */
|
133 |
|
|
uint32_t num_instruction_bps;
|
134 |
|
|
uint32_t num_data_bps;
|
135 |
|
|
uint32_t num_condition_regs;
|
136 |
|
|
uint32_t data_bp_alignment;
|
137 |
|
|
uint32_t sizeof_condition; /* size of the DVC register */
|
138 |
|
|
uint64_t features;
|
139 |
|
|
};
|
140 |
|
|
|
141 |
|
|
/* Features will have bits indicating whether there is support for: */
|
142 |
|
|
#define PPC_DEBUG_FEATURE_INSN_BP_RANGE 0x1
|
143 |
|
|
#define PPC_DEBUG_FEATURE_INSN_BP_MASK 0x2
|
144 |
|
|
#define PPC_DEBUG_FEATURE_DATA_BP_RANGE 0x4
|
145 |
|
|
#define PPC_DEBUG_FEATURE_DATA_BP_MASK 0x8
|
146 |
|
|
|
147 |
|
|
struct ppc_hw_breakpoint
|
148 |
|
|
{
|
149 |
|
|
uint32_t version; /* currently, version must be 1 */
|
150 |
|
|
uint32_t trigger_type; /* only some combinations allowed */
|
151 |
|
|
uint32_t addr_mode; /* address match mode */
|
152 |
|
|
uint32_t condition_mode; /* break/watchpoint condition flags */
|
153 |
|
|
uint64_t addr; /* break/watchpoint address */
|
154 |
|
|
uint64_t addr2; /* range end or mask */
|
155 |
|
|
uint64_t condition_value; /* contents of the DVC register */
|
156 |
|
|
};
|
157 |
|
|
|
158 |
|
|
/* Trigger type. */
|
159 |
|
|
#define PPC_BREAKPOINT_TRIGGER_EXECUTE 0x1
|
160 |
|
|
#define PPC_BREAKPOINT_TRIGGER_READ 0x2
|
161 |
|
|
#define PPC_BREAKPOINT_TRIGGER_WRITE 0x4
|
162 |
|
|
#define PPC_BREAKPOINT_TRIGGER_RW 0x6
|
163 |
|
|
|
164 |
|
|
/* Address mode. */
|
165 |
|
|
#define PPC_BREAKPOINT_MODE_EXACT 0x0
|
166 |
|
|
#define PPC_BREAKPOINT_MODE_RANGE_INCLUSIVE 0x1
|
167 |
|
|
#define PPC_BREAKPOINT_MODE_RANGE_EXCLUSIVE 0x2
|
168 |
|
|
#define PPC_BREAKPOINT_MODE_MASK 0x3
|
169 |
|
|
|
170 |
|
|
/* Condition mode. */
|
171 |
|
|
#define PPC_BREAKPOINT_CONDITION_NONE 0x0
|
172 |
|
|
#define PPC_BREAKPOINT_CONDITION_AND 0x1
|
173 |
|
|
#define PPC_BREAKPOINT_CONDITION_EXACT 0x1
|
174 |
|
|
#define PPC_BREAKPOINT_CONDITION_OR 0x2
|
175 |
|
|
#define PPC_BREAKPOINT_CONDITION_AND_OR 0x3
|
176 |
|
|
#define PPC_BREAKPOINT_CONDITION_BE_ALL 0x00ff0000
|
177 |
|
|
#define PPC_BREAKPOINT_CONDITION_BE_SHIFT 16
|
178 |
|
|
#define PPC_BREAKPOINT_CONDITION_BE(n) \
|
179 |
|
|
(1<<((n)+PPC_BREAKPOINT_CONDITION_BE_SHIFT))
|
180 |
|
|
#endif /* PPC_PTRACE_GETHWDBGINFO */
|
181 |
|
|
|
182 |
|
|
|
183 |
|
|
|
184 |
|
|
/* Similarly for the general-purpose (gp0 -- gp31)
|
185 |
|
|
and floating-point registers (fp0 -- fp31). */
|
186 |
|
|
#ifndef PTRACE_GETREGS
|
187 |
|
|
#define PTRACE_GETREGS 12
|
188 |
|
|
#endif
|
189 |
|
|
#ifndef PTRACE_SETREGS
|
190 |
|
|
#define PTRACE_SETREGS 13
|
191 |
|
|
#endif
|
192 |
|
|
#ifndef PTRACE_GETFPREGS
|
193 |
|
|
#define PTRACE_GETFPREGS 14
|
194 |
|
|
#endif
|
195 |
|
|
#ifndef PTRACE_SETFPREGS
|
196 |
|
|
#define PTRACE_SETFPREGS 15
|
197 |
|
|
#endif
|
198 |
|
|
|
199 |
|
|
/* This oddity is because the Linux kernel defines elf_vrregset_t as
|
200 |
|
|
an array of 33 16 bytes long elements. I.e. it leaves out vrsave.
|
201 |
|
|
However the PTRACE_GETVRREGS and PTRACE_SETVRREGS requests return
|
202 |
|
|
the vrsave as an extra 4 bytes at the end. I opted for creating a
|
203 |
|
|
flat array of chars, so that it is easier to manipulate for gdb.
|
204 |
|
|
|
205 |
|
|
There are 32 vector registers 16 bytes longs, plus a VSCR register
|
206 |
|
|
which is only 4 bytes long, but is fetched as a 16 bytes
|
207 |
|
|
quantity. Up to here we have the elf_vrregset_t structure.
|
208 |
|
|
Appended to this there is space for the VRSAVE register: 4 bytes.
|
209 |
|
|
Even though this vrsave register is not included in the regset
|
210 |
|
|
typedef, it is handled by the ptrace requests.
|
211 |
|
|
|
212 |
|
|
Note that GNU/Linux doesn't support little endian PPC hardware,
|
213 |
|
|
therefore the offset at which the real value of the VSCR register
|
214 |
|
|
is located will be always 12 bytes.
|
215 |
|
|
|
216 |
|
|
The layout is like this (where x is the actual value of the vscr reg): */
|
217 |
|
|
|
218 |
|
|
/* *INDENT-OFF* */
|
219 |
|
|
/*
|
220 |
|
|
|.|.|.|.|.....|.|.|.|.||.|.|.|x||.|
|
221 |
|
|
<-------> <-------><-------><->
|
222 |
|
|
VR0 VR31 VSCR VRSAVE
|
223 |
|
|
*/
|
224 |
|
|
/* *INDENT-ON* */
|
225 |
|
|
|
226 |
|
|
#define SIZEOF_VRREGS 33*16+4
|
227 |
|
|
|
228 |
|
|
typedef char gdb_vrregset_t[SIZEOF_VRREGS];
|
229 |
|
|
|
230 |
|
|
/* This is the layout of the POWER7 VSX registers and the way they overlap
|
231 |
|
|
with the existing FPR and VMX registers.
|
232 |
|
|
|
233 |
|
|
VSR doubleword 0 VSR doubleword 1
|
234 |
|
|
----------------------------------------------------------------
|
235 |
|
|
VSR[0] | FPR[0] | |
|
236 |
|
|
----------------------------------------------------------------
|
237 |
|
|
VSR[1] | FPR[1] | |
|
238 |
|
|
----------------------------------------------------------------
|
239 |
|
|
| ... | |
|
240 |
|
|
| ... | |
|
241 |
|
|
----------------------------------------------------------------
|
242 |
|
|
VSR[30] | FPR[30] | |
|
243 |
|
|
----------------------------------------------------------------
|
244 |
|
|
VSR[31] | FPR[31] | |
|
245 |
|
|
----------------------------------------------------------------
|
246 |
|
|
VSR[32] | VR[0] |
|
247 |
|
|
----------------------------------------------------------------
|
248 |
|
|
VSR[33] | VR[1] |
|
249 |
|
|
----------------------------------------------------------------
|
250 |
|
|
| ... |
|
251 |
|
|
| ... |
|
252 |
|
|
----------------------------------------------------------------
|
253 |
|
|
VSR[62] | VR[30] |
|
254 |
|
|
----------------------------------------------------------------
|
255 |
|
|
VSR[63] | VR[31] |
|
256 |
|
|
----------------------------------------------------------------
|
257 |
|
|
|
258 |
|
|
VSX has 64 128bit registers. The first 32 registers overlap with
|
259 |
|
|
the FP registers (doubleword 0) and hence extend them with additional
|
260 |
|
|
64 bits (doubleword 1). The other 32 regs overlap with the VMX
|
261 |
|
|
registers. */
|
262 |
|
|
#define SIZEOF_VSXREGS 32*8
|
263 |
|
|
|
264 |
|
|
typedef char gdb_vsxregset_t[SIZEOF_VSXREGS];
|
265 |
|
|
|
266 |
|
|
/* On PPC processors that support the the Signal Processing Extension
|
267 |
|
|
(SPE) APU, the general-purpose registers are 64 bits long.
|
268 |
|
|
However, the ordinary Linux kernel PTRACE_PEEKUSER / PTRACE_POKEUSER
|
269 |
|
|
ptrace calls only access the lower half of each register, to allow
|
270 |
|
|
them to behave the same way they do on non-SPE systems. There's a
|
271 |
|
|
separate pair of calls, PTRACE_GETEVRREGS / PTRACE_SETEVRREGS, that
|
272 |
|
|
read and write the top halves of all the general-purpose registers
|
273 |
|
|
at once, along with some SPE-specific registers.
|
274 |
|
|
|
275 |
|
|
GDB itself continues to claim the general-purpose registers are 32
|
276 |
|
|
bits long. It has unnamed raw registers that hold the upper halves
|
277 |
|
|
of the gprs, and the the full 64-bit SIMD views of the registers,
|
278 |
|
|
'ev0' -- 'ev31', are pseudo-registers that splice the top and
|
279 |
|
|
bottom halves together.
|
280 |
|
|
|
281 |
|
|
This is the structure filled in by PTRACE_GETEVRREGS and written to
|
282 |
|
|
the inferior's registers by PTRACE_SETEVRREGS. */
|
283 |
|
|
struct gdb_evrregset_t
|
284 |
|
|
{
|
285 |
|
|
unsigned long evr[32];
|
286 |
|
|
unsigned long long acc;
|
287 |
|
|
unsigned long spefscr;
|
288 |
|
|
};
|
289 |
|
|
|
290 |
|
|
/* Non-zero if our kernel may support the PTRACE_GETVSXREGS and
|
291 |
|
|
PTRACE_SETVSXREGS requests, for reading and writing the VSX
|
292 |
|
|
POWER7 registers 0 through 31. Zero if we've tried one of them and
|
293 |
|
|
gotten an error. Note that VSX registers 32 through 63 overlap
|
294 |
|
|
with VR registers 0 through 31. */
|
295 |
|
|
int have_ptrace_getsetvsxregs = 1;
|
296 |
|
|
|
297 |
|
|
/* Non-zero if our kernel may support the PTRACE_GETVRREGS and
|
298 |
|
|
PTRACE_SETVRREGS requests, for reading and writing the Altivec
|
299 |
|
|
registers. Zero if we've tried one of them and gotten an
|
300 |
|
|
error. */
|
301 |
|
|
int have_ptrace_getvrregs = 1;
|
302 |
|
|
|
303 |
|
|
/* Non-zero if our kernel may support the PTRACE_GETEVRREGS and
|
304 |
|
|
PTRACE_SETEVRREGS requests, for reading and writing the SPE
|
305 |
|
|
registers. Zero if we've tried one of them and gotten an
|
306 |
|
|
error. */
|
307 |
|
|
int have_ptrace_getsetevrregs = 1;
|
308 |
|
|
|
309 |
|
|
/* Non-zero if our kernel may support the PTRACE_GETREGS and
|
310 |
|
|
PTRACE_SETREGS requests, for reading and writing the
|
311 |
|
|
general-purpose registers. Zero if we've tried one of
|
312 |
|
|
them and gotten an error. */
|
313 |
|
|
int have_ptrace_getsetregs = 1;
|
314 |
|
|
|
315 |
|
|
/* Non-zero if our kernel may support the PTRACE_GETFPREGS and
|
316 |
|
|
PTRACE_SETFPREGS requests, for reading and writing the
|
317 |
|
|
floating-pointers registers. Zero if we've tried one of
|
318 |
|
|
them and gotten an error. */
|
319 |
|
|
int have_ptrace_getsetfpregs = 1;
|
320 |
|
|
|
321 |
|
|
/* *INDENT-OFF* */
|
322 |
|
|
/* registers layout, as presented by the ptrace interface:
|
323 |
|
|
PT_R0, PT_R1, PT_R2, PT_R3, PT_R4, PT_R5, PT_R6, PT_R7,
|
324 |
|
|
PT_R8, PT_R9, PT_R10, PT_R11, PT_R12, PT_R13, PT_R14, PT_R15,
|
325 |
|
|
PT_R16, PT_R17, PT_R18, PT_R19, PT_R20, PT_R21, PT_R22, PT_R23,
|
326 |
|
|
PT_R24, PT_R25, PT_R26, PT_R27, PT_R28, PT_R29, PT_R30, PT_R31,
|
327 |
|
|
PT_FPR0, PT_FPR0 + 2, PT_FPR0 + 4, PT_FPR0 + 6, PT_FPR0 + 8, PT_FPR0 + 10, PT_FPR0 + 12, PT_FPR0 + 14,
|
328 |
|
|
PT_FPR0 + 16, PT_FPR0 + 18, PT_FPR0 + 20, PT_FPR0 + 22, PT_FPR0 + 24, PT_FPR0 + 26, PT_FPR0 + 28, PT_FPR0 + 30,
|
329 |
|
|
PT_FPR0 + 32, PT_FPR0 + 34, PT_FPR0 + 36, PT_FPR0 + 38, PT_FPR0 + 40, PT_FPR0 + 42, PT_FPR0 + 44, PT_FPR0 + 46,
|
330 |
|
|
PT_FPR0 + 48, PT_FPR0 + 50, PT_FPR0 + 52, PT_FPR0 + 54, PT_FPR0 + 56, PT_FPR0 + 58, PT_FPR0 + 60, PT_FPR0 + 62,
|
331 |
|
|
PT_NIP, PT_MSR, PT_CCR, PT_LNK, PT_CTR, PT_XER, PT_MQ */
|
332 |
|
|
/* *INDENT_ON * */
|
333 |
|
|
|
334 |
|
|
static int
|
335 |
|
|
ppc_register_u_addr (struct gdbarch *gdbarch, int regno)
|
336 |
|
|
{
|
337 |
|
|
int u_addr = -1;
|
338 |
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
339 |
|
|
/* NOTE: cagney/2003-11-25: This is the word size used by the ptrace
|
340 |
|
|
interface, and not the wordsize of the program's ABI. */
|
341 |
|
|
int wordsize = sizeof (long);
|
342 |
|
|
|
343 |
|
|
/* General purpose registers occupy 1 slot each in the buffer */
|
344 |
|
|
if (regno >= tdep->ppc_gp0_regnum
|
345 |
|
|
&& regno < tdep->ppc_gp0_regnum + ppc_num_gprs)
|
346 |
|
|
u_addr = ((regno - tdep->ppc_gp0_regnum + PT_R0) * wordsize);
|
347 |
|
|
|
348 |
|
|
/* Floating point regs: eight bytes each in both 32- and 64-bit
|
349 |
|
|
ptrace interfaces. Thus, two slots each in 32-bit interface, one
|
350 |
|
|
slot each in 64-bit interface. */
|
351 |
|
|
if (tdep->ppc_fp0_regnum >= 0
|
352 |
|
|
&& regno >= tdep->ppc_fp0_regnum
|
353 |
|
|
&& regno < tdep->ppc_fp0_regnum + ppc_num_fprs)
|
354 |
|
|
u_addr = (PT_FPR0 * wordsize) + ((regno - tdep->ppc_fp0_regnum) * 8);
|
355 |
|
|
|
356 |
|
|
/* UISA special purpose registers: 1 slot each */
|
357 |
|
|
if (regno == gdbarch_pc_regnum (gdbarch))
|
358 |
|
|
u_addr = PT_NIP * wordsize;
|
359 |
|
|
if (regno == tdep->ppc_lr_regnum)
|
360 |
|
|
u_addr = PT_LNK * wordsize;
|
361 |
|
|
if (regno == tdep->ppc_cr_regnum)
|
362 |
|
|
u_addr = PT_CCR * wordsize;
|
363 |
|
|
if (regno == tdep->ppc_xer_regnum)
|
364 |
|
|
u_addr = PT_XER * wordsize;
|
365 |
|
|
if (regno == tdep->ppc_ctr_regnum)
|
366 |
|
|
u_addr = PT_CTR * wordsize;
|
367 |
|
|
#ifdef PT_MQ
|
368 |
|
|
if (regno == tdep->ppc_mq_regnum)
|
369 |
|
|
u_addr = PT_MQ * wordsize;
|
370 |
|
|
#endif
|
371 |
|
|
if (regno == tdep->ppc_ps_regnum)
|
372 |
|
|
u_addr = PT_MSR * wordsize;
|
373 |
|
|
if (regno == PPC_ORIG_R3_REGNUM)
|
374 |
|
|
u_addr = PT_ORIG_R3 * wordsize;
|
375 |
|
|
if (regno == PPC_TRAP_REGNUM)
|
376 |
|
|
u_addr = PT_TRAP * wordsize;
|
377 |
|
|
if (tdep->ppc_fpscr_regnum >= 0
|
378 |
|
|
&& regno == tdep->ppc_fpscr_regnum)
|
379 |
|
|
{
|
380 |
|
|
/* NOTE: cagney/2005-02-08: On some 64-bit GNU/Linux systems the
|
381 |
|
|
kernel headers incorrectly contained the 32-bit definition of
|
382 |
|
|
PT_FPSCR. For the 32-bit definition, floating-point
|
383 |
|
|
registers occupy two 32-bit "slots", and the FPSCR lives in
|
384 |
|
|
the second half of such a slot-pair (hence +1). For 64-bit,
|
385 |
|
|
the FPSCR instead occupies the full 64-bit 2-word-slot and
|
386 |
|
|
hence no adjustment is necessary. Hack around this. */
|
387 |
|
|
if (wordsize == 8 && PT_FPSCR == (48 + 32 + 1))
|
388 |
|
|
u_addr = (48 + 32) * wordsize;
|
389 |
|
|
/* If the FPSCR is 64-bit wide, we need to fetch the whole 64-bit
|
390 |
|
|
slot and not just its second word. The PT_FPSCR supplied when
|
391 |
|
|
GDB is compiled as a 32-bit app doesn't reflect this. */
|
392 |
|
|
else if (wordsize == 4 && register_size (gdbarch, regno) == 8
|
393 |
|
|
&& PT_FPSCR == (48 + 2*32 + 1))
|
394 |
|
|
u_addr = (48 + 2*32) * wordsize;
|
395 |
|
|
else
|
396 |
|
|
u_addr = PT_FPSCR * wordsize;
|
397 |
|
|
}
|
398 |
|
|
return u_addr;
|
399 |
|
|
}
|
400 |
|
|
|
401 |
|
|
/* The Linux kernel ptrace interface for POWER7 VSX registers uses the
|
402 |
|
|
registers set mechanism, as opposed to the interface for all the
|
403 |
|
|
other registers, that stores/fetches each register individually. */
|
404 |
|
|
static void
|
405 |
|
|
fetch_vsx_register (struct regcache *regcache, int tid, int regno)
|
406 |
|
|
{
|
407 |
|
|
int ret;
|
408 |
|
|
gdb_vsxregset_t regs;
|
409 |
|
|
struct gdbarch *gdbarch = get_regcache_arch (regcache);
|
410 |
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
411 |
|
|
int vsxregsize = register_size (gdbarch, tdep->ppc_vsr0_upper_regnum);
|
412 |
|
|
|
413 |
|
|
ret = ptrace (PTRACE_GETVSXREGS, tid, 0, ®s);
|
414 |
|
|
if (ret < 0)
|
415 |
|
|
{
|
416 |
|
|
if (errno == EIO)
|
417 |
|
|
{
|
418 |
|
|
have_ptrace_getsetvsxregs = 0;
|
419 |
|
|
return;
|
420 |
|
|
}
|
421 |
|
|
perror_with_name (_("Unable to fetch VSX register"));
|
422 |
|
|
}
|
423 |
|
|
|
424 |
|
|
regcache_raw_supply (regcache, regno,
|
425 |
|
|
regs + (regno - tdep->ppc_vsr0_upper_regnum)
|
426 |
|
|
* vsxregsize);
|
427 |
|
|
}
|
428 |
|
|
|
429 |
|
|
/* The Linux kernel ptrace interface for AltiVec registers uses the
|
430 |
|
|
registers set mechanism, as opposed to the interface for all the
|
431 |
|
|
other registers, that stores/fetches each register individually. */
|
432 |
|
|
static void
|
433 |
|
|
fetch_altivec_register (struct regcache *regcache, int tid, int regno)
|
434 |
|
|
{
|
435 |
|
|
int ret;
|
436 |
|
|
int offset = 0;
|
437 |
|
|
gdb_vrregset_t regs;
|
438 |
|
|
struct gdbarch *gdbarch = get_regcache_arch (regcache);
|
439 |
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
440 |
|
|
int vrregsize = register_size (gdbarch, tdep->ppc_vr0_regnum);
|
441 |
|
|
|
442 |
|
|
ret = ptrace (PTRACE_GETVRREGS, tid, 0, ®s);
|
443 |
|
|
if (ret < 0)
|
444 |
|
|
{
|
445 |
|
|
if (errno == EIO)
|
446 |
|
|
{
|
447 |
|
|
have_ptrace_getvrregs = 0;
|
448 |
|
|
return;
|
449 |
|
|
}
|
450 |
|
|
perror_with_name (_("Unable to fetch AltiVec register"));
|
451 |
|
|
}
|
452 |
|
|
|
453 |
|
|
/* VSCR is fetched as a 16 bytes quantity, but it is really 4 bytes
|
454 |
|
|
long on the hardware. We deal only with the lower 4 bytes of the
|
455 |
|
|
vector. VRSAVE is at the end of the array in a 4 bytes slot, so
|
456 |
|
|
there is no need to define an offset for it. */
|
457 |
|
|
if (regno == (tdep->ppc_vrsave_regnum - 1))
|
458 |
|
|
offset = vrregsize - register_size (gdbarch, tdep->ppc_vrsave_regnum);
|
459 |
|
|
|
460 |
|
|
regcache_raw_supply (regcache, regno,
|
461 |
|
|
regs + (regno - tdep->ppc_vr0_regnum) * vrregsize + offset);
|
462 |
|
|
}
|
463 |
|
|
|
464 |
|
|
/* Fetch the top 32 bits of TID's general-purpose registers and the
|
465 |
|
|
SPE-specific registers, and place the results in EVRREGSET. If we
|
466 |
|
|
don't support PTRACE_GETEVRREGS, then just fill EVRREGSET with
|
467 |
|
|
zeros.
|
468 |
|
|
|
469 |
|
|
All the logic to deal with whether or not the PTRACE_GETEVRREGS and
|
470 |
|
|
PTRACE_SETEVRREGS requests are supported is isolated here, and in
|
471 |
|
|
set_spe_registers. */
|
472 |
|
|
static void
|
473 |
|
|
get_spe_registers (int tid, struct gdb_evrregset_t *evrregset)
|
474 |
|
|
{
|
475 |
|
|
if (have_ptrace_getsetevrregs)
|
476 |
|
|
{
|
477 |
|
|
if (ptrace (PTRACE_GETEVRREGS, tid, 0, evrregset) >= 0)
|
478 |
|
|
return;
|
479 |
|
|
else
|
480 |
|
|
{
|
481 |
|
|
/* EIO means that the PTRACE_GETEVRREGS request isn't supported;
|
482 |
|
|
we just return zeros. */
|
483 |
|
|
if (errno == EIO)
|
484 |
|
|
have_ptrace_getsetevrregs = 0;
|
485 |
|
|
else
|
486 |
|
|
/* Anything else needs to be reported. */
|
487 |
|
|
perror_with_name (_("Unable to fetch SPE registers"));
|
488 |
|
|
}
|
489 |
|
|
}
|
490 |
|
|
|
491 |
|
|
memset (evrregset, 0, sizeof (*evrregset));
|
492 |
|
|
}
|
493 |
|
|
|
494 |
|
|
/* Supply values from TID for SPE-specific raw registers: the upper
|
495 |
|
|
halves of the GPRs, the accumulator, and the spefscr. REGNO must
|
496 |
|
|
be the number of an upper half register, acc, spefscr, or -1 to
|
497 |
|
|
supply the values of all registers. */
|
498 |
|
|
static void
|
499 |
|
|
fetch_spe_register (struct regcache *regcache, int tid, int regno)
|
500 |
|
|
{
|
501 |
|
|
struct gdbarch *gdbarch = get_regcache_arch (regcache);
|
502 |
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
503 |
|
|
struct gdb_evrregset_t evrregs;
|
504 |
|
|
|
505 |
|
|
gdb_assert (sizeof (evrregs.evr[0])
|
506 |
|
|
== register_size (gdbarch, tdep->ppc_ev0_upper_regnum));
|
507 |
|
|
gdb_assert (sizeof (evrregs.acc)
|
508 |
|
|
== register_size (gdbarch, tdep->ppc_acc_regnum));
|
509 |
|
|
gdb_assert (sizeof (evrregs.spefscr)
|
510 |
|
|
== register_size (gdbarch, tdep->ppc_spefscr_regnum));
|
511 |
|
|
|
512 |
|
|
get_spe_registers (tid, &evrregs);
|
513 |
|
|
|
514 |
|
|
if (regno == -1)
|
515 |
|
|
{
|
516 |
|
|
int i;
|
517 |
|
|
|
518 |
|
|
for (i = 0; i < ppc_num_gprs; i++)
|
519 |
|
|
regcache_raw_supply (regcache, tdep->ppc_ev0_upper_regnum + i,
|
520 |
|
|
&evrregs.evr[i]);
|
521 |
|
|
}
|
522 |
|
|
else if (tdep->ppc_ev0_upper_regnum <= regno
|
523 |
|
|
&& regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs)
|
524 |
|
|
regcache_raw_supply (regcache, regno,
|
525 |
|
|
&evrregs.evr[regno - tdep->ppc_ev0_upper_regnum]);
|
526 |
|
|
|
527 |
|
|
if (regno == -1
|
528 |
|
|
|| regno == tdep->ppc_acc_regnum)
|
529 |
|
|
regcache_raw_supply (regcache, tdep->ppc_acc_regnum, &evrregs.acc);
|
530 |
|
|
|
531 |
|
|
if (regno == -1
|
532 |
|
|
|| regno == tdep->ppc_spefscr_regnum)
|
533 |
|
|
regcache_raw_supply (regcache, tdep->ppc_spefscr_regnum,
|
534 |
|
|
&evrregs.spefscr);
|
535 |
|
|
}
|
536 |
|
|
|
537 |
|
|
static void
|
538 |
|
|
fetch_register (struct regcache *regcache, int tid, int regno)
|
539 |
|
|
{
|
540 |
|
|
struct gdbarch *gdbarch = get_regcache_arch (regcache);
|
541 |
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
542 |
|
|
/* This isn't really an address. But ptrace thinks of it as one. */
|
543 |
|
|
CORE_ADDR regaddr = ppc_register_u_addr (gdbarch, regno);
|
544 |
|
|
int bytes_transferred;
|
545 |
|
|
unsigned int offset; /* Offset of registers within the u area. */
|
546 |
|
|
char buf[MAX_REGISTER_SIZE];
|
547 |
|
|
|
548 |
|
|
if (altivec_register_p (gdbarch, regno))
|
549 |
|
|
{
|
550 |
|
|
/* If this is the first time through, or if it is not the first
|
551 |
|
|
time through, and we have comfirmed that there is kernel
|
552 |
|
|
support for such a ptrace request, then go and fetch the
|
553 |
|
|
register. */
|
554 |
|
|
if (have_ptrace_getvrregs)
|
555 |
|
|
{
|
556 |
|
|
fetch_altivec_register (regcache, tid, regno);
|
557 |
|
|
return;
|
558 |
|
|
}
|
559 |
|
|
/* If we have discovered that there is no ptrace support for
|
560 |
|
|
AltiVec registers, fall through and return zeroes, because
|
561 |
|
|
regaddr will be -1 in this case. */
|
562 |
|
|
}
|
563 |
|
|
if (vsx_register_p (gdbarch, regno))
|
564 |
|
|
{
|
565 |
|
|
if (have_ptrace_getsetvsxregs)
|
566 |
|
|
{
|
567 |
|
|
fetch_vsx_register (regcache, tid, regno);
|
568 |
|
|
return;
|
569 |
|
|
}
|
570 |
|
|
}
|
571 |
|
|
else if (spe_register_p (gdbarch, regno))
|
572 |
|
|
{
|
573 |
|
|
fetch_spe_register (regcache, tid, regno);
|
574 |
|
|
return;
|
575 |
|
|
}
|
576 |
|
|
|
577 |
|
|
if (regaddr == -1)
|
578 |
|
|
{
|
579 |
|
|
memset (buf, '\0', register_size (gdbarch, regno)); /* Supply zeroes */
|
580 |
|
|
regcache_raw_supply (regcache, regno, buf);
|
581 |
|
|
return;
|
582 |
|
|
}
|
583 |
|
|
|
584 |
|
|
/* Read the raw register using sizeof(long) sized chunks. On a
|
585 |
|
|
32-bit platform, 64-bit floating-point registers will require two
|
586 |
|
|
transfers. */
|
587 |
|
|
for (bytes_transferred = 0;
|
588 |
|
|
bytes_transferred < register_size (gdbarch, regno);
|
589 |
|
|
bytes_transferred += sizeof (long))
|
590 |
|
|
{
|
591 |
|
|
errno = 0;
|
592 |
|
|
*(long *) &buf[bytes_transferred]
|
593 |
|
|
= ptrace (PTRACE_PEEKUSER, tid, (PTRACE_TYPE_ARG3) regaddr, 0);
|
594 |
|
|
regaddr += sizeof (long);
|
595 |
|
|
if (errno != 0)
|
596 |
|
|
{
|
597 |
|
|
char message[128];
|
598 |
|
|
sprintf (message, "reading register %s (#%d)",
|
599 |
|
|
gdbarch_register_name (gdbarch, regno), regno);
|
600 |
|
|
perror_with_name (message);
|
601 |
|
|
}
|
602 |
|
|
}
|
603 |
|
|
|
604 |
|
|
/* Now supply the register. Keep in mind that the regcache's idea
|
605 |
|
|
of the register's size may not be a multiple of sizeof
|
606 |
|
|
(long). */
|
607 |
|
|
if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
|
608 |
|
|
{
|
609 |
|
|
/* Little-endian values are always found at the left end of the
|
610 |
|
|
bytes transferred. */
|
611 |
|
|
regcache_raw_supply (regcache, regno, buf);
|
612 |
|
|
}
|
613 |
|
|
else if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
|
614 |
|
|
{
|
615 |
|
|
/* Big-endian values are found at the right end of the bytes
|
616 |
|
|
transferred. */
|
617 |
|
|
size_t padding = (bytes_transferred - register_size (gdbarch, regno));
|
618 |
|
|
regcache_raw_supply (regcache, regno, buf + padding);
|
619 |
|
|
}
|
620 |
|
|
else
|
621 |
|
|
internal_error (__FILE__, __LINE__,
|
622 |
|
|
_("fetch_register: unexpected byte order: %d"),
|
623 |
|
|
gdbarch_byte_order (gdbarch));
|
624 |
|
|
}
|
625 |
|
|
|
626 |
|
|
static void
|
627 |
|
|
supply_vsxregset (struct regcache *regcache, gdb_vsxregset_t *vsxregsetp)
|
628 |
|
|
{
|
629 |
|
|
int i;
|
630 |
|
|
struct gdbarch *gdbarch = get_regcache_arch (regcache);
|
631 |
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
632 |
|
|
int vsxregsize = register_size (gdbarch, tdep->ppc_vsr0_upper_regnum);
|
633 |
|
|
|
634 |
|
|
for (i = 0; i < ppc_num_vshrs; i++)
|
635 |
|
|
{
|
636 |
|
|
regcache_raw_supply (regcache, tdep->ppc_vsr0_upper_regnum + i,
|
637 |
|
|
*vsxregsetp + i * vsxregsize);
|
638 |
|
|
}
|
639 |
|
|
}
|
640 |
|
|
|
641 |
|
|
static void
|
642 |
|
|
supply_vrregset (struct regcache *regcache, gdb_vrregset_t *vrregsetp)
|
643 |
|
|
{
|
644 |
|
|
int i;
|
645 |
|
|
struct gdbarch *gdbarch = get_regcache_arch (regcache);
|
646 |
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
647 |
|
|
int num_of_vrregs = tdep->ppc_vrsave_regnum - tdep->ppc_vr0_regnum + 1;
|
648 |
|
|
int vrregsize = register_size (gdbarch, tdep->ppc_vr0_regnum);
|
649 |
|
|
int offset = vrregsize - register_size (gdbarch, tdep->ppc_vrsave_regnum);
|
650 |
|
|
|
651 |
|
|
for (i = 0; i < num_of_vrregs; i++)
|
652 |
|
|
{
|
653 |
|
|
/* The last 2 registers of this set are only 32 bit long, not
|
654 |
|
|
128. However an offset is necessary only for VSCR because it
|
655 |
|
|
occupies a whole vector, while VRSAVE occupies a full 4 bytes
|
656 |
|
|
slot. */
|
657 |
|
|
if (i == (num_of_vrregs - 2))
|
658 |
|
|
regcache_raw_supply (regcache, tdep->ppc_vr0_regnum + i,
|
659 |
|
|
*vrregsetp + i * vrregsize + offset);
|
660 |
|
|
else
|
661 |
|
|
regcache_raw_supply (regcache, tdep->ppc_vr0_regnum + i,
|
662 |
|
|
*vrregsetp + i * vrregsize);
|
663 |
|
|
}
|
664 |
|
|
}
|
665 |
|
|
|
666 |
|
|
static void
|
667 |
|
|
fetch_vsx_registers (struct regcache *regcache, int tid)
|
668 |
|
|
{
|
669 |
|
|
int ret;
|
670 |
|
|
gdb_vsxregset_t regs;
|
671 |
|
|
|
672 |
|
|
ret = ptrace (PTRACE_GETVSXREGS, tid, 0, ®s);
|
673 |
|
|
if (ret < 0)
|
674 |
|
|
{
|
675 |
|
|
if (errno == EIO)
|
676 |
|
|
{
|
677 |
|
|
have_ptrace_getsetvsxregs = 0;
|
678 |
|
|
return;
|
679 |
|
|
}
|
680 |
|
|
perror_with_name (_("Unable to fetch VSX registers"));
|
681 |
|
|
}
|
682 |
|
|
supply_vsxregset (regcache, ®s);
|
683 |
|
|
}
|
684 |
|
|
|
685 |
|
|
static void
|
686 |
|
|
fetch_altivec_registers (struct regcache *regcache, int tid)
|
687 |
|
|
{
|
688 |
|
|
int ret;
|
689 |
|
|
gdb_vrregset_t regs;
|
690 |
|
|
|
691 |
|
|
ret = ptrace (PTRACE_GETVRREGS, tid, 0, ®s);
|
692 |
|
|
if (ret < 0)
|
693 |
|
|
{
|
694 |
|
|
if (errno == EIO)
|
695 |
|
|
{
|
696 |
|
|
have_ptrace_getvrregs = 0;
|
697 |
|
|
return;
|
698 |
|
|
}
|
699 |
|
|
perror_with_name (_("Unable to fetch AltiVec registers"));
|
700 |
|
|
}
|
701 |
|
|
supply_vrregset (regcache, ®s);
|
702 |
|
|
}
|
703 |
|
|
|
704 |
|
|
/* This function actually issues the request to ptrace, telling
|
705 |
|
|
it to get all general-purpose registers and put them into the
|
706 |
|
|
specified regset.
|
707 |
|
|
|
708 |
|
|
If the ptrace request does not exist, this function returns 0
|
709 |
|
|
and properly sets the have_ptrace_* flag. If the request fails,
|
710 |
|
|
this function calls perror_with_name. Otherwise, if the request
|
711 |
|
|
succeeds, then the regcache gets filled and 1 is returned. */
|
712 |
|
|
static int
|
713 |
|
|
fetch_all_gp_regs (struct regcache *regcache, int tid)
|
714 |
|
|
{
|
715 |
|
|
struct gdbarch *gdbarch = get_regcache_arch (regcache);
|
716 |
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
717 |
|
|
gdb_gregset_t gregset;
|
718 |
|
|
|
719 |
|
|
if (ptrace (PTRACE_GETREGS, tid, 0, (void *) &gregset) < 0)
|
720 |
|
|
{
|
721 |
|
|
if (errno == EIO)
|
722 |
|
|
{
|
723 |
|
|
have_ptrace_getsetregs = 0;
|
724 |
|
|
return 0;
|
725 |
|
|
}
|
726 |
|
|
perror_with_name (_("Couldn't get general-purpose registers."));
|
727 |
|
|
}
|
728 |
|
|
|
729 |
|
|
supply_gregset (regcache, (const gdb_gregset_t *) &gregset);
|
730 |
|
|
|
731 |
|
|
return 1;
|
732 |
|
|
}
|
733 |
|
|
|
734 |
|
|
/* This is a wrapper for the fetch_all_gp_regs function. It is
|
735 |
|
|
responsible for verifying if this target has the ptrace request
|
736 |
|
|
that can be used to fetch all general-purpose registers at one
|
737 |
|
|
shot. If it doesn't, then we should fetch them using the
|
738 |
|
|
old-fashioned way, which is to iterate over the registers and
|
739 |
|
|
request them one by one. */
|
740 |
|
|
static void
|
741 |
|
|
fetch_gp_regs (struct regcache *regcache, int tid)
|
742 |
|
|
{
|
743 |
|
|
struct gdbarch *gdbarch = get_regcache_arch (regcache);
|
744 |
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
745 |
|
|
int i;
|
746 |
|
|
|
747 |
|
|
if (have_ptrace_getsetregs)
|
748 |
|
|
if (fetch_all_gp_regs (regcache, tid))
|
749 |
|
|
return;
|
750 |
|
|
|
751 |
|
|
/* If we've hit this point, it doesn't really matter which
|
752 |
|
|
architecture we are using. We just need to read the
|
753 |
|
|
registers in the "old-fashioned way". */
|
754 |
|
|
for (i = 0; i < ppc_num_gprs; i++)
|
755 |
|
|
fetch_register (regcache, tid, tdep->ppc_gp0_regnum + i);
|
756 |
|
|
}
|
757 |
|
|
|
758 |
|
|
/* This function actually issues the request to ptrace, telling
|
759 |
|
|
it to get all floating-point registers and put them into the
|
760 |
|
|
specified regset.
|
761 |
|
|
|
762 |
|
|
If the ptrace request does not exist, this function returns 0
|
763 |
|
|
and properly sets the have_ptrace_* flag. If the request fails,
|
764 |
|
|
this function calls perror_with_name. Otherwise, if the request
|
765 |
|
|
succeeds, then the regcache gets filled and 1 is returned. */
|
766 |
|
|
static int
|
767 |
|
|
fetch_all_fp_regs (struct regcache *regcache, int tid)
|
768 |
|
|
{
|
769 |
|
|
gdb_fpregset_t fpregs;
|
770 |
|
|
|
771 |
|
|
if (ptrace (PTRACE_GETFPREGS, tid, 0, (void *) &fpregs) < 0)
|
772 |
|
|
{
|
773 |
|
|
if (errno == EIO)
|
774 |
|
|
{
|
775 |
|
|
have_ptrace_getsetfpregs = 0;
|
776 |
|
|
return 0;
|
777 |
|
|
}
|
778 |
|
|
perror_with_name (_("Couldn't get floating-point registers."));
|
779 |
|
|
}
|
780 |
|
|
|
781 |
|
|
supply_fpregset (regcache, (const gdb_fpregset_t *) &fpregs);
|
782 |
|
|
|
783 |
|
|
return 1;
|
784 |
|
|
}
|
785 |
|
|
|
786 |
|
|
/* This is a wrapper for the fetch_all_fp_regs function. It is
|
787 |
|
|
responsible for verifying if this target has the ptrace request
|
788 |
|
|
that can be used to fetch all floating-point registers at one
|
789 |
|
|
shot. If it doesn't, then we should fetch them using the
|
790 |
|
|
old-fashioned way, which is to iterate over the registers and
|
791 |
|
|
request them one by one. */
|
792 |
|
|
static void
|
793 |
|
|
fetch_fp_regs (struct regcache *regcache, int tid)
|
794 |
|
|
{
|
795 |
|
|
struct gdbarch *gdbarch = get_regcache_arch (regcache);
|
796 |
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
797 |
|
|
int i;
|
798 |
|
|
|
799 |
|
|
if (have_ptrace_getsetfpregs)
|
800 |
|
|
if (fetch_all_fp_regs (regcache, tid))
|
801 |
|
|
return;
|
802 |
|
|
|
803 |
|
|
/* If we've hit this point, it doesn't really matter which
|
804 |
|
|
architecture we are using. We just need to read the
|
805 |
|
|
registers in the "old-fashioned way". */
|
806 |
|
|
for (i = 0; i < ppc_num_fprs; i++)
|
807 |
|
|
fetch_register (regcache, tid, tdep->ppc_fp0_regnum + i);
|
808 |
|
|
}
|
809 |
|
|
|
810 |
|
|
static void
|
811 |
|
|
fetch_ppc_registers (struct regcache *regcache, int tid)
|
812 |
|
|
{
|
813 |
|
|
int i;
|
814 |
|
|
struct gdbarch *gdbarch = get_regcache_arch (regcache);
|
815 |
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
816 |
|
|
|
817 |
|
|
fetch_gp_regs (regcache, tid);
|
818 |
|
|
if (tdep->ppc_fp0_regnum >= 0)
|
819 |
|
|
fetch_fp_regs (regcache, tid);
|
820 |
|
|
fetch_register (regcache, tid, gdbarch_pc_regnum (gdbarch));
|
821 |
|
|
if (tdep->ppc_ps_regnum != -1)
|
822 |
|
|
fetch_register (regcache, tid, tdep->ppc_ps_regnum);
|
823 |
|
|
if (tdep->ppc_cr_regnum != -1)
|
824 |
|
|
fetch_register (regcache, tid, tdep->ppc_cr_regnum);
|
825 |
|
|
if (tdep->ppc_lr_regnum != -1)
|
826 |
|
|
fetch_register (regcache, tid, tdep->ppc_lr_regnum);
|
827 |
|
|
if (tdep->ppc_ctr_regnum != -1)
|
828 |
|
|
fetch_register (regcache, tid, tdep->ppc_ctr_regnum);
|
829 |
|
|
if (tdep->ppc_xer_regnum != -1)
|
830 |
|
|
fetch_register (regcache, tid, tdep->ppc_xer_regnum);
|
831 |
|
|
if (tdep->ppc_mq_regnum != -1)
|
832 |
|
|
fetch_register (regcache, tid, tdep->ppc_mq_regnum);
|
833 |
|
|
if (ppc_linux_trap_reg_p (gdbarch))
|
834 |
|
|
{
|
835 |
|
|
fetch_register (regcache, tid, PPC_ORIG_R3_REGNUM);
|
836 |
|
|
fetch_register (regcache, tid, PPC_TRAP_REGNUM);
|
837 |
|
|
}
|
838 |
|
|
if (tdep->ppc_fpscr_regnum != -1)
|
839 |
|
|
fetch_register (regcache, tid, tdep->ppc_fpscr_regnum);
|
840 |
|
|
if (have_ptrace_getvrregs)
|
841 |
|
|
if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1)
|
842 |
|
|
fetch_altivec_registers (regcache, tid);
|
843 |
|
|
if (have_ptrace_getsetvsxregs)
|
844 |
|
|
if (tdep->ppc_vsr0_upper_regnum != -1)
|
845 |
|
|
fetch_vsx_registers (regcache, tid);
|
846 |
|
|
if (tdep->ppc_ev0_upper_regnum >= 0)
|
847 |
|
|
fetch_spe_register (regcache, tid, -1);
|
848 |
|
|
}
|
849 |
|
|
|
850 |
|
|
/* Fetch registers from the child process. Fetch all registers if
|
851 |
|
|
regno == -1, otherwise fetch all general registers or all floating
|
852 |
|
|
point registers depending upon the value of regno. */
|
853 |
|
|
static void
|
854 |
|
|
ppc_linux_fetch_inferior_registers (struct target_ops *ops,
|
855 |
|
|
struct regcache *regcache, int regno)
|
856 |
|
|
{
|
857 |
|
|
/* Overload thread id onto process id */
|
858 |
|
|
int tid = TIDGET (inferior_ptid);
|
859 |
|
|
|
860 |
|
|
/* No thread id, just use process id */
|
861 |
|
|
if (tid == 0)
|
862 |
|
|
tid = PIDGET (inferior_ptid);
|
863 |
|
|
|
864 |
|
|
if (regno == -1)
|
865 |
|
|
fetch_ppc_registers (regcache, tid);
|
866 |
|
|
else
|
867 |
|
|
fetch_register (regcache, tid, regno);
|
868 |
|
|
}
|
869 |
|
|
|
870 |
|
|
/* Store one VSX register. */
|
871 |
|
|
static void
|
872 |
|
|
store_vsx_register (const struct regcache *regcache, int tid, int regno)
|
873 |
|
|
{
|
874 |
|
|
int ret;
|
875 |
|
|
gdb_vsxregset_t regs;
|
876 |
|
|
struct gdbarch *gdbarch = get_regcache_arch (regcache);
|
877 |
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
878 |
|
|
int vsxregsize = register_size (gdbarch, tdep->ppc_vsr0_upper_regnum);
|
879 |
|
|
|
880 |
|
|
ret = ptrace (PTRACE_GETVSXREGS, tid, 0, ®s);
|
881 |
|
|
if (ret < 0)
|
882 |
|
|
{
|
883 |
|
|
if (errno == EIO)
|
884 |
|
|
{
|
885 |
|
|
have_ptrace_getsetvsxregs = 0;
|
886 |
|
|
return;
|
887 |
|
|
}
|
888 |
|
|
perror_with_name (_("Unable to fetch VSX register"));
|
889 |
|
|
}
|
890 |
|
|
|
891 |
|
|
regcache_raw_collect (regcache, regno, regs +
|
892 |
|
|
(regno - tdep->ppc_vsr0_upper_regnum) * vsxregsize);
|
893 |
|
|
|
894 |
|
|
ret = ptrace (PTRACE_SETVSXREGS, tid, 0, ®s);
|
895 |
|
|
if (ret < 0)
|
896 |
|
|
perror_with_name (_("Unable to store VSX register"));
|
897 |
|
|
}
|
898 |
|
|
|
899 |
|
|
/* Store one register. */
|
900 |
|
|
static void
|
901 |
|
|
store_altivec_register (const struct regcache *regcache, int tid, int regno)
|
902 |
|
|
{
|
903 |
|
|
int ret;
|
904 |
|
|
int offset = 0;
|
905 |
|
|
gdb_vrregset_t regs;
|
906 |
|
|
struct gdbarch *gdbarch = get_regcache_arch (regcache);
|
907 |
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
908 |
|
|
int vrregsize = register_size (gdbarch, tdep->ppc_vr0_regnum);
|
909 |
|
|
|
910 |
|
|
ret = ptrace (PTRACE_GETVRREGS, tid, 0, ®s);
|
911 |
|
|
if (ret < 0)
|
912 |
|
|
{
|
913 |
|
|
if (errno == EIO)
|
914 |
|
|
{
|
915 |
|
|
have_ptrace_getvrregs = 0;
|
916 |
|
|
return;
|
917 |
|
|
}
|
918 |
|
|
perror_with_name (_("Unable to fetch AltiVec register"));
|
919 |
|
|
}
|
920 |
|
|
|
921 |
|
|
/* VSCR is fetched as a 16 bytes quantity, but it is really 4 bytes
|
922 |
|
|
long on the hardware. */
|
923 |
|
|
if (regno == (tdep->ppc_vrsave_regnum - 1))
|
924 |
|
|
offset = vrregsize - register_size (gdbarch, tdep->ppc_vrsave_regnum);
|
925 |
|
|
|
926 |
|
|
regcache_raw_collect (regcache, regno,
|
927 |
|
|
regs + (regno - tdep->ppc_vr0_regnum) * vrregsize + offset);
|
928 |
|
|
|
929 |
|
|
ret = ptrace (PTRACE_SETVRREGS, tid, 0, ®s);
|
930 |
|
|
if (ret < 0)
|
931 |
|
|
perror_with_name (_("Unable to store AltiVec register"));
|
932 |
|
|
}
|
933 |
|
|
|
934 |
|
|
/* Assuming TID referrs to an SPE process, set the top halves of TID's
|
935 |
|
|
general-purpose registers and its SPE-specific registers to the
|
936 |
|
|
values in EVRREGSET. If we don't support PTRACE_SETEVRREGS, do
|
937 |
|
|
nothing.
|
938 |
|
|
|
939 |
|
|
All the logic to deal with whether or not the PTRACE_GETEVRREGS and
|
940 |
|
|
PTRACE_SETEVRREGS requests are supported is isolated here, and in
|
941 |
|
|
get_spe_registers. */
|
942 |
|
|
static void
|
943 |
|
|
set_spe_registers (int tid, struct gdb_evrregset_t *evrregset)
|
944 |
|
|
{
|
945 |
|
|
if (have_ptrace_getsetevrregs)
|
946 |
|
|
{
|
947 |
|
|
if (ptrace (PTRACE_SETEVRREGS, tid, 0, evrregset) >= 0)
|
948 |
|
|
return;
|
949 |
|
|
else
|
950 |
|
|
{
|
951 |
|
|
/* EIO means that the PTRACE_SETEVRREGS request isn't
|
952 |
|
|
supported; we fail silently, and don't try the call
|
953 |
|
|
again. */
|
954 |
|
|
if (errno == EIO)
|
955 |
|
|
have_ptrace_getsetevrregs = 0;
|
956 |
|
|
else
|
957 |
|
|
/* Anything else needs to be reported. */
|
958 |
|
|
perror_with_name (_("Unable to set SPE registers"));
|
959 |
|
|
}
|
960 |
|
|
}
|
961 |
|
|
}
|
962 |
|
|
|
963 |
|
|
/* Write GDB's value for the SPE-specific raw register REGNO to TID.
|
964 |
|
|
If REGNO is -1, write the values of all the SPE-specific
|
965 |
|
|
registers. */
|
966 |
|
|
static void
|
967 |
|
|
store_spe_register (const struct regcache *regcache, int tid, int regno)
|
968 |
|
|
{
|
969 |
|
|
struct gdbarch *gdbarch = get_regcache_arch (regcache);
|
970 |
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
971 |
|
|
struct gdb_evrregset_t evrregs;
|
972 |
|
|
|
973 |
|
|
gdb_assert (sizeof (evrregs.evr[0])
|
974 |
|
|
== register_size (gdbarch, tdep->ppc_ev0_upper_regnum));
|
975 |
|
|
gdb_assert (sizeof (evrregs.acc)
|
976 |
|
|
== register_size (gdbarch, tdep->ppc_acc_regnum));
|
977 |
|
|
gdb_assert (sizeof (evrregs.spefscr)
|
978 |
|
|
== register_size (gdbarch, tdep->ppc_spefscr_regnum));
|
979 |
|
|
|
980 |
|
|
if (regno == -1)
|
981 |
|
|
/* Since we're going to write out every register, the code below
|
982 |
|
|
should store to every field of evrregs; if that doesn't happen,
|
983 |
|
|
make it obvious by initializing it with suspicious values. */
|
984 |
|
|
memset (&evrregs, 42, sizeof (evrregs));
|
985 |
|
|
else
|
986 |
|
|
/* We can only read and write the entire EVR register set at a
|
987 |
|
|
time, so to write just a single register, we do a
|
988 |
|
|
read-modify-write maneuver. */
|
989 |
|
|
get_spe_registers (tid, &evrregs);
|
990 |
|
|
|
991 |
|
|
if (regno == -1)
|
992 |
|
|
{
|
993 |
|
|
int i;
|
994 |
|
|
|
995 |
|
|
for (i = 0; i < ppc_num_gprs; i++)
|
996 |
|
|
regcache_raw_collect (regcache,
|
997 |
|
|
tdep->ppc_ev0_upper_regnum + i,
|
998 |
|
|
&evrregs.evr[i]);
|
999 |
|
|
}
|
1000 |
|
|
else if (tdep->ppc_ev0_upper_regnum <= regno
|
1001 |
|
|
&& regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs)
|
1002 |
|
|
regcache_raw_collect (regcache, regno,
|
1003 |
|
|
&evrregs.evr[regno - tdep->ppc_ev0_upper_regnum]);
|
1004 |
|
|
|
1005 |
|
|
if (regno == -1
|
1006 |
|
|
|| regno == tdep->ppc_acc_regnum)
|
1007 |
|
|
regcache_raw_collect (regcache,
|
1008 |
|
|
tdep->ppc_acc_regnum,
|
1009 |
|
|
&evrregs.acc);
|
1010 |
|
|
|
1011 |
|
|
if (regno == -1
|
1012 |
|
|
|| regno == tdep->ppc_spefscr_regnum)
|
1013 |
|
|
regcache_raw_collect (regcache,
|
1014 |
|
|
tdep->ppc_spefscr_regnum,
|
1015 |
|
|
&evrregs.spefscr);
|
1016 |
|
|
|
1017 |
|
|
/* Write back the modified register set. */
|
1018 |
|
|
set_spe_registers (tid, &evrregs);
|
1019 |
|
|
}
|
1020 |
|
|
|
1021 |
|
|
static void
|
1022 |
|
|
store_register (const struct regcache *regcache, int tid, int regno)
|
1023 |
|
|
{
|
1024 |
|
|
struct gdbarch *gdbarch = get_regcache_arch (regcache);
|
1025 |
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
1026 |
|
|
/* This isn't really an address. But ptrace thinks of it as one. */
|
1027 |
|
|
CORE_ADDR regaddr = ppc_register_u_addr (gdbarch, regno);
|
1028 |
|
|
int i;
|
1029 |
|
|
size_t bytes_to_transfer;
|
1030 |
|
|
char buf[MAX_REGISTER_SIZE];
|
1031 |
|
|
|
1032 |
|
|
if (altivec_register_p (gdbarch, regno))
|
1033 |
|
|
{
|
1034 |
|
|
store_altivec_register (regcache, tid, regno);
|
1035 |
|
|
return;
|
1036 |
|
|
}
|
1037 |
|
|
if (vsx_register_p (gdbarch, regno))
|
1038 |
|
|
{
|
1039 |
|
|
store_vsx_register (regcache, tid, regno);
|
1040 |
|
|
return;
|
1041 |
|
|
}
|
1042 |
|
|
else if (spe_register_p (gdbarch, regno))
|
1043 |
|
|
{
|
1044 |
|
|
store_spe_register (regcache, tid, regno);
|
1045 |
|
|
return;
|
1046 |
|
|
}
|
1047 |
|
|
|
1048 |
|
|
if (regaddr == -1)
|
1049 |
|
|
return;
|
1050 |
|
|
|
1051 |
|
|
/* First collect the register. Keep in mind that the regcache's
|
1052 |
|
|
idea of the register's size may not be a multiple of sizeof
|
1053 |
|
|
(long). */
|
1054 |
|
|
memset (buf, 0, sizeof buf);
|
1055 |
|
|
bytes_to_transfer = align_up (register_size (gdbarch, regno), sizeof (long));
|
1056 |
|
|
if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
|
1057 |
|
|
{
|
1058 |
|
|
/* Little-endian values always sit at the left end of the buffer. */
|
1059 |
|
|
regcache_raw_collect (regcache, regno, buf);
|
1060 |
|
|
}
|
1061 |
|
|
else if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
|
1062 |
|
|
{
|
1063 |
|
|
/* Big-endian values sit at the right end of the buffer. */
|
1064 |
|
|
size_t padding = (bytes_to_transfer - register_size (gdbarch, regno));
|
1065 |
|
|
regcache_raw_collect (regcache, regno, buf + padding);
|
1066 |
|
|
}
|
1067 |
|
|
|
1068 |
|
|
for (i = 0; i < bytes_to_transfer; i += sizeof (long))
|
1069 |
|
|
{
|
1070 |
|
|
errno = 0;
|
1071 |
|
|
ptrace (PTRACE_POKEUSER, tid, (PTRACE_TYPE_ARG3) regaddr,
|
1072 |
|
|
*(long *) &buf[i]);
|
1073 |
|
|
regaddr += sizeof (long);
|
1074 |
|
|
|
1075 |
|
|
if (errno == EIO
|
1076 |
|
|
&& (regno == tdep->ppc_fpscr_regnum
|
1077 |
|
|
|| regno == PPC_ORIG_R3_REGNUM
|
1078 |
|
|
|| regno == PPC_TRAP_REGNUM))
|
1079 |
|
|
{
|
1080 |
|
|
/* Some older kernel versions don't allow fpscr, orig_r3
|
1081 |
|
|
or trap to be written. */
|
1082 |
|
|
continue;
|
1083 |
|
|
}
|
1084 |
|
|
|
1085 |
|
|
if (errno != 0)
|
1086 |
|
|
{
|
1087 |
|
|
char message[128];
|
1088 |
|
|
sprintf (message, "writing register %s (#%d)",
|
1089 |
|
|
gdbarch_register_name (gdbarch, regno), regno);
|
1090 |
|
|
perror_with_name (message);
|
1091 |
|
|
}
|
1092 |
|
|
}
|
1093 |
|
|
}
|
1094 |
|
|
|
1095 |
|
|
static void
|
1096 |
|
|
fill_vsxregset (const struct regcache *regcache, gdb_vsxregset_t *vsxregsetp)
|
1097 |
|
|
{
|
1098 |
|
|
int i;
|
1099 |
|
|
struct gdbarch *gdbarch = get_regcache_arch (regcache);
|
1100 |
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
1101 |
|
|
int vsxregsize = register_size (gdbarch, tdep->ppc_vsr0_upper_regnum);
|
1102 |
|
|
|
1103 |
|
|
for (i = 0; i < ppc_num_vshrs; i++)
|
1104 |
|
|
regcache_raw_collect (regcache, tdep->ppc_vsr0_upper_regnum + i,
|
1105 |
|
|
*vsxregsetp + i * vsxregsize);
|
1106 |
|
|
}
|
1107 |
|
|
|
1108 |
|
|
static void
|
1109 |
|
|
fill_vrregset (const struct regcache *regcache, gdb_vrregset_t *vrregsetp)
|
1110 |
|
|
{
|
1111 |
|
|
int i;
|
1112 |
|
|
struct gdbarch *gdbarch = get_regcache_arch (regcache);
|
1113 |
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
1114 |
|
|
int num_of_vrregs = tdep->ppc_vrsave_regnum - tdep->ppc_vr0_regnum + 1;
|
1115 |
|
|
int vrregsize = register_size (gdbarch, tdep->ppc_vr0_regnum);
|
1116 |
|
|
int offset = vrregsize - register_size (gdbarch, tdep->ppc_vrsave_regnum);
|
1117 |
|
|
|
1118 |
|
|
for (i = 0; i < num_of_vrregs; i++)
|
1119 |
|
|
{
|
1120 |
|
|
/* The last 2 registers of this set are only 32 bit long, not
|
1121 |
|
|
128, but only VSCR is fetched as a 16 bytes quantity. */
|
1122 |
|
|
if (i == (num_of_vrregs - 2))
|
1123 |
|
|
regcache_raw_collect (regcache, tdep->ppc_vr0_regnum + i,
|
1124 |
|
|
*vrregsetp + i * vrregsize + offset);
|
1125 |
|
|
else
|
1126 |
|
|
regcache_raw_collect (regcache, tdep->ppc_vr0_regnum + i,
|
1127 |
|
|
*vrregsetp + i * vrregsize);
|
1128 |
|
|
}
|
1129 |
|
|
}
|
1130 |
|
|
|
1131 |
|
|
static void
|
1132 |
|
|
store_vsx_registers (const struct regcache *regcache, int tid)
|
1133 |
|
|
{
|
1134 |
|
|
int ret;
|
1135 |
|
|
gdb_vsxregset_t regs;
|
1136 |
|
|
|
1137 |
|
|
ret = ptrace (PTRACE_GETVSXREGS, tid, 0, ®s);
|
1138 |
|
|
if (ret < 0)
|
1139 |
|
|
{
|
1140 |
|
|
if (errno == EIO)
|
1141 |
|
|
{
|
1142 |
|
|
have_ptrace_getsetvsxregs = 0;
|
1143 |
|
|
return;
|
1144 |
|
|
}
|
1145 |
|
|
perror_with_name (_("Couldn't get VSX registers"));
|
1146 |
|
|
}
|
1147 |
|
|
|
1148 |
|
|
fill_vsxregset (regcache, ®s);
|
1149 |
|
|
|
1150 |
|
|
if (ptrace (PTRACE_SETVSXREGS, tid, 0, ®s) < 0)
|
1151 |
|
|
perror_with_name (_("Couldn't write VSX registers"));
|
1152 |
|
|
}
|
1153 |
|
|
|
1154 |
|
|
static void
|
1155 |
|
|
store_altivec_registers (const struct regcache *regcache, int tid)
|
1156 |
|
|
{
|
1157 |
|
|
int ret;
|
1158 |
|
|
gdb_vrregset_t regs;
|
1159 |
|
|
|
1160 |
|
|
ret = ptrace (PTRACE_GETVRREGS, tid, 0, ®s);
|
1161 |
|
|
if (ret < 0)
|
1162 |
|
|
{
|
1163 |
|
|
if (errno == EIO)
|
1164 |
|
|
{
|
1165 |
|
|
have_ptrace_getvrregs = 0;
|
1166 |
|
|
return;
|
1167 |
|
|
}
|
1168 |
|
|
perror_with_name (_("Couldn't get AltiVec registers"));
|
1169 |
|
|
}
|
1170 |
|
|
|
1171 |
|
|
fill_vrregset (regcache, ®s);
|
1172 |
|
|
|
1173 |
|
|
if (ptrace (PTRACE_SETVRREGS, tid, 0, ®s) < 0)
|
1174 |
|
|
perror_with_name (_("Couldn't write AltiVec registers"));
|
1175 |
|
|
}
|
1176 |
|
|
|
1177 |
|
|
/* This function actually issues the request to ptrace, telling
|
1178 |
|
|
it to store all general-purpose registers present in the specified
|
1179 |
|
|
regset.
|
1180 |
|
|
|
1181 |
|
|
If the ptrace request does not exist, this function returns 0
|
1182 |
|
|
and properly sets the have_ptrace_* flag. If the request fails,
|
1183 |
|
|
this function calls perror_with_name. Otherwise, if the request
|
1184 |
|
|
succeeds, then the regcache is stored and 1 is returned. */
|
1185 |
|
|
static int
|
1186 |
|
|
store_all_gp_regs (const struct regcache *regcache, int tid, int regno)
|
1187 |
|
|
{
|
1188 |
|
|
struct gdbarch *gdbarch = get_regcache_arch (regcache);
|
1189 |
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
1190 |
|
|
gdb_gregset_t gregset;
|
1191 |
|
|
|
1192 |
|
|
if (ptrace (PTRACE_GETREGS, tid, 0, (void *) &gregset) < 0)
|
1193 |
|
|
{
|
1194 |
|
|
if (errno == EIO)
|
1195 |
|
|
{
|
1196 |
|
|
have_ptrace_getsetregs = 0;
|
1197 |
|
|
return 0;
|
1198 |
|
|
}
|
1199 |
|
|
perror_with_name (_("Couldn't get general-purpose registers."));
|
1200 |
|
|
}
|
1201 |
|
|
|
1202 |
|
|
fill_gregset (regcache, &gregset, regno);
|
1203 |
|
|
|
1204 |
|
|
if (ptrace (PTRACE_SETREGS, tid, 0, (void *) &gregset) < 0)
|
1205 |
|
|
{
|
1206 |
|
|
if (errno == EIO)
|
1207 |
|
|
{
|
1208 |
|
|
have_ptrace_getsetregs = 0;
|
1209 |
|
|
return 0;
|
1210 |
|
|
}
|
1211 |
|
|
perror_with_name (_("Couldn't set general-purpose registers."));
|
1212 |
|
|
}
|
1213 |
|
|
|
1214 |
|
|
return 1;
|
1215 |
|
|
}
|
1216 |
|
|
|
1217 |
|
|
/* This is a wrapper for the store_all_gp_regs function. It is
|
1218 |
|
|
responsible for verifying if this target has the ptrace request
|
1219 |
|
|
that can be used to store all general-purpose registers at one
|
1220 |
|
|
shot. If it doesn't, then we should store them using the
|
1221 |
|
|
old-fashioned way, which is to iterate over the registers and
|
1222 |
|
|
store them one by one. */
|
1223 |
|
|
static void
|
1224 |
|
|
store_gp_regs (const struct regcache *regcache, int tid, int regno)
|
1225 |
|
|
{
|
1226 |
|
|
struct gdbarch *gdbarch = get_regcache_arch (regcache);
|
1227 |
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
1228 |
|
|
int i;
|
1229 |
|
|
|
1230 |
|
|
if (have_ptrace_getsetregs)
|
1231 |
|
|
if (store_all_gp_regs (regcache, tid, regno))
|
1232 |
|
|
return;
|
1233 |
|
|
|
1234 |
|
|
/* If we hit this point, it doesn't really matter which
|
1235 |
|
|
architecture we are using. We just need to store the
|
1236 |
|
|
registers in the "old-fashioned way". */
|
1237 |
|
|
for (i = 0; i < ppc_num_gprs; i++)
|
1238 |
|
|
store_register (regcache, tid, tdep->ppc_gp0_regnum + i);
|
1239 |
|
|
}
|
1240 |
|
|
|
1241 |
|
|
/* This function actually issues the request to ptrace, telling
|
1242 |
|
|
it to store all floating-point registers present in the specified
|
1243 |
|
|
regset.
|
1244 |
|
|
|
1245 |
|
|
If the ptrace request does not exist, this function returns 0
|
1246 |
|
|
and properly sets the have_ptrace_* flag. If the request fails,
|
1247 |
|
|
this function calls perror_with_name. Otherwise, if the request
|
1248 |
|
|
succeeds, then the regcache is stored and 1 is returned. */
|
1249 |
|
|
static int
|
1250 |
|
|
store_all_fp_regs (const struct regcache *regcache, int tid, int regno)
|
1251 |
|
|
{
|
1252 |
|
|
gdb_fpregset_t fpregs;
|
1253 |
|
|
|
1254 |
|
|
if (ptrace (PTRACE_GETFPREGS, tid, 0, (void *) &fpregs) < 0)
|
1255 |
|
|
{
|
1256 |
|
|
if (errno == EIO)
|
1257 |
|
|
{
|
1258 |
|
|
have_ptrace_getsetfpregs = 0;
|
1259 |
|
|
return 0;
|
1260 |
|
|
}
|
1261 |
|
|
perror_with_name (_("Couldn't get floating-point registers."));
|
1262 |
|
|
}
|
1263 |
|
|
|
1264 |
|
|
fill_fpregset (regcache, &fpregs, regno);
|
1265 |
|
|
|
1266 |
|
|
if (ptrace (PTRACE_SETFPREGS, tid, 0, (void *) &fpregs) < 0)
|
1267 |
|
|
{
|
1268 |
|
|
if (errno == EIO)
|
1269 |
|
|
{
|
1270 |
|
|
have_ptrace_getsetfpregs = 0;
|
1271 |
|
|
return 0;
|
1272 |
|
|
}
|
1273 |
|
|
perror_with_name (_("Couldn't set floating-point registers."));
|
1274 |
|
|
}
|
1275 |
|
|
|
1276 |
|
|
return 1;
|
1277 |
|
|
}
|
1278 |
|
|
|
1279 |
|
|
/* This is a wrapper for the store_all_fp_regs function. It is
|
1280 |
|
|
responsible for verifying if this target has the ptrace request
|
1281 |
|
|
that can be used to store all floating-point registers at one
|
1282 |
|
|
shot. If it doesn't, then we should store them using the
|
1283 |
|
|
old-fashioned way, which is to iterate over the registers and
|
1284 |
|
|
store them one by one. */
|
1285 |
|
|
static void
|
1286 |
|
|
store_fp_regs (const struct regcache *regcache, int tid, int regno)
|
1287 |
|
|
{
|
1288 |
|
|
struct gdbarch *gdbarch = get_regcache_arch (regcache);
|
1289 |
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
1290 |
|
|
int i;
|
1291 |
|
|
|
1292 |
|
|
if (have_ptrace_getsetfpregs)
|
1293 |
|
|
if (store_all_fp_regs (regcache, tid, regno))
|
1294 |
|
|
return;
|
1295 |
|
|
|
1296 |
|
|
/* If we hit this point, it doesn't really matter which
|
1297 |
|
|
architecture we are using. We just need to store the
|
1298 |
|
|
registers in the "old-fashioned way". */
|
1299 |
|
|
for (i = 0; i < ppc_num_fprs; i++)
|
1300 |
|
|
store_register (regcache, tid, tdep->ppc_fp0_regnum + i);
|
1301 |
|
|
}
|
1302 |
|
|
|
1303 |
|
|
static void
|
1304 |
|
|
store_ppc_registers (const struct regcache *regcache, int tid)
|
1305 |
|
|
{
|
1306 |
|
|
int i;
|
1307 |
|
|
struct gdbarch *gdbarch = get_regcache_arch (regcache);
|
1308 |
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
1309 |
|
|
|
1310 |
|
|
store_gp_regs (regcache, tid, -1);
|
1311 |
|
|
if (tdep->ppc_fp0_regnum >= 0)
|
1312 |
|
|
store_fp_regs (regcache, tid, -1);
|
1313 |
|
|
store_register (regcache, tid, gdbarch_pc_regnum (gdbarch));
|
1314 |
|
|
if (tdep->ppc_ps_regnum != -1)
|
1315 |
|
|
store_register (regcache, tid, tdep->ppc_ps_regnum);
|
1316 |
|
|
if (tdep->ppc_cr_regnum != -1)
|
1317 |
|
|
store_register (regcache, tid, tdep->ppc_cr_regnum);
|
1318 |
|
|
if (tdep->ppc_lr_regnum != -1)
|
1319 |
|
|
store_register (regcache, tid, tdep->ppc_lr_regnum);
|
1320 |
|
|
if (tdep->ppc_ctr_regnum != -1)
|
1321 |
|
|
store_register (regcache, tid, tdep->ppc_ctr_regnum);
|
1322 |
|
|
if (tdep->ppc_xer_regnum != -1)
|
1323 |
|
|
store_register (regcache, tid, tdep->ppc_xer_regnum);
|
1324 |
|
|
if (tdep->ppc_mq_regnum != -1)
|
1325 |
|
|
store_register (regcache, tid, tdep->ppc_mq_regnum);
|
1326 |
|
|
if (tdep->ppc_fpscr_regnum != -1)
|
1327 |
|
|
store_register (regcache, tid, tdep->ppc_fpscr_regnum);
|
1328 |
|
|
if (ppc_linux_trap_reg_p (gdbarch))
|
1329 |
|
|
{
|
1330 |
|
|
store_register (regcache, tid, PPC_ORIG_R3_REGNUM);
|
1331 |
|
|
store_register (regcache, tid, PPC_TRAP_REGNUM);
|
1332 |
|
|
}
|
1333 |
|
|
if (have_ptrace_getvrregs)
|
1334 |
|
|
if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1)
|
1335 |
|
|
store_altivec_registers (regcache, tid);
|
1336 |
|
|
if (have_ptrace_getsetvsxregs)
|
1337 |
|
|
if (tdep->ppc_vsr0_upper_regnum != -1)
|
1338 |
|
|
store_vsx_registers (regcache, tid);
|
1339 |
|
|
if (tdep->ppc_ev0_upper_regnum >= 0)
|
1340 |
|
|
store_spe_register (regcache, tid, -1);
|
1341 |
|
|
}
|
1342 |
|
|
|
1343 |
|
|
/* Fetch the AT_HWCAP entry from the aux vector. */
|
1344 |
|
|
unsigned long ppc_linux_get_hwcap (void)
|
1345 |
|
|
{
|
1346 |
|
|
CORE_ADDR field;
|
1347 |
|
|
|
1348 |
|
|
if (target_auxv_search (¤t_target, AT_HWCAP, &field))
|
1349 |
|
|
return (unsigned long) field;
|
1350 |
|
|
|
1351 |
|
|
return 0;
|
1352 |
|
|
}
|
1353 |
|
|
|
1354 |
|
|
/* The cached DABR value, to install in new threads.
|
1355 |
|
|
This variable is used when we are dealing with non-BookE
|
1356 |
|
|
processors. */
|
1357 |
|
|
static long saved_dabr_value;
|
1358 |
|
|
|
1359 |
|
|
/* Global structure that will store information about the available
|
1360 |
|
|
features on this BookE processor. */
|
1361 |
|
|
static struct ppc_debug_info booke_debug_info;
|
1362 |
|
|
|
1363 |
|
|
/* Global variable that holds the maximum number of slots that the
|
1364 |
|
|
kernel will use. This is only used when the processor is BookE. */
|
1365 |
|
|
static size_t max_slots_number = 0;
|
1366 |
|
|
|
1367 |
|
|
struct hw_break_tuple
|
1368 |
|
|
{
|
1369 |
|
|
long slot;
|
1370 |
|
|
struct ppc_hw_breakpoint *hw_break;
|
1371 |
|
|
};
|
1372 |
|
|
|
1373 |
|
|
/* This is an internal VEC created to store information about *points inserted
|
1374 |
|
|
for each thread. This is used for BookE processors. */
|
1375 |
|
|
typedef struct thread_points
|
1376 |
|
|
{
|
1377 |
|
|
/* The TID to which this *point relates. */
|
1378 |
|
|
int tid;
|
1379 |
|
|
/* Information about the *point, such as its address, type, etc.
|
1380 |
|
|
|
1381 |
|
|
Each element inside this vector corresponds to a hardware
|
1382 |
|
|
breakpoint or watchpoint in the thread represented by TID. The maximum
|
1383 |
|
|
size of these vector is MAX_SLOTS_NUMBER. If the hw_break element of
|
1384 |
|
|
the tuple is NULL, then the position in the vector is free. */
|
1385 |
|
|
struct hw_break_tuple *hw_breaks;
|
1386 |
|
|
} *thread_points_p;
|
1387 |
|
|
DEF_VEC_P (thread_points_p);
|
1388 |
|
|
|
1389 |
|
|
VEC(thread_points_p) *ppc_threads = NULL;
|
1390 |
|
|
|
1391 |
|
|
/* The version of the kernel interface that we will use if the processor is
|
1392 |
|
|
BookE. */
|
1393 |
|
|
#define PPC_DEBUG_CURRENT_VERSION 1
|
1394 |
|
|
|
1395 |
|
|
/* Returns non-zero if we support the ptrace interface which enables
|
1396 |
|
|
booke debugging resources. */
|
1397 |
|
|
static int
|
1398 |
|
|
have_ptrace_booke_interface (void)
|
1399 |
|
|
{
|
1400 |
|
|
static int have_ptrace_booke_interface = -1;
|
1401 |
|
|
|
1402 |
|
|
if (have_ptrace_booke_interface == -1)
|
1403 |
|
|
{
|
1404 |
|
|
int tid;
|
1405 |
|
|
|
1406 |
|
|
tid = TIDGET (inferior_ptid);
|
1407 |
|
|
if (tid == 0)
|
1408 |
|
|
tid = PIDGET (inferior_ptid);
|
1409 |
|
|
|
1410 |
|
|
/* Check for kernel support for BOOKE debug registers. */
|
1411 |
|
|
if (ptrace (PPC_PTRACE_GETHWDBGINFO, tid, 0, &booke_debug_info) >= 0)
|
1412 |
|
|
{
|
1413 |
|
|
have_ptrace_booke_interface = 1;
|
1414 |
|
|
max_slots_number = booke_debug_info.num_instruction_bps
|
1415 |
|
|
+ booke_debug_info.num_data_bps + booke_debug_info.num_condition_regs;
|
1416 |
|
|
}
|
1417 |
|
|
else
|
1418 |
|
|
{
|
1419 |
|
|
/* Old school interface and no BOOKE debug registers support. */
|
1420 |
|
|
have_ptrace_booke_interface = 0;
|
1421 |
|
|
memset (&booke_debug_info, 0, sizeof (struct ppc_debug_info));
|
1422 |
|
|
}
|
1423 |
|
|
}
|
1424 |
|
|
|
1425 |
|
|
return have_ptrace_booke_interface;
|
1426 |
|
|
}
|
1427 |
|
|
|
1428 |
|
|
static int
|
1429 |
|
|
ppc_linux_can_use_hw_breakpoint (int type, int cnt, int ot)
|
1430 |
|
|
{
|
1431 |
|
|
int total_hw_wp, total_hw_bp;
|
1432 |
|
|
|
1433 |
|
|
if (have_ptrace_booke_interface ())
|
1434 |
|
|
{
|
1435 |
|
|
/* For PPC BookE processors, the number of available hardware
|
1436 |
|
|
watchpoints and breakpoints is stored at the booke_debug_info
|
1437 |
|
|
struct. */
|
1438 |
|
|
total_hw_bp = booke_debug_info.num_instruction_bps;
|
1439 |
|
|
total_hw_wp = booke_debug_info.num_data_bps;
|
1440 |
|
|
}
|
1441 |
|
|
else
|
1442 |
|
|
{
|
1443 |
|
|
/* For PPC server processors, we accept 1 hardware watchpoint and 0
|
1444 |
|
|
hardware breakpoints. */
|
1445 |
|
|
total_hw_bp = 0;
|
1446 |
|
|
total_hw_wp = 1;
|
1447 |
|
|
}
|
1448 |
|
|
|
1449 |
|
|
if (type == bp_hardware_watchpoint || type == bp_read_watchpoint
|
1450 |
|
|
|| type == bp_access_watchpoint || type == bp_watchpoint)
|
1451 |
|
|
{
|
1452 |
|
|
if (cnt > total_hw_wp)
|
1453 |
|
|
return -1;
|
1454 |
|
|
}
|
1455 |
|
|
else if (type == bp_hardware_breakpoint)
|
1456 |
|
|
{
|
1457 |
|
|
if (cnt > total_hw_bp)
|
1458 |
|
|
return -1;
|
1459 |
|
|
}
|
1460 |
|
|
|
1461 |
|
|
if (!have_ptrace_booke_interface ())
|
1462 |
|
|
{
|
1463 |
|
|
int tid;
|
1464 |
|
|
ptid_t ptid = inferior_ptid;
|
1465 |
|
|
|
1466 |
|
|
/* We need to know whether ptrace supports PTRACE_SET_DEBUGREG and whether
|
1467 |
|
|
the target has DABR. If either answer is no, the ptrace call will
|
1468 |
|
|
return -1. Fail in that case. */
|
1469 |
|
|
tid = TIDGET (ptid);
|
1470 |
|
|
if (tid == 0)
|
1471 |
|
|
tid = PIDGET (ptid);
|
1472 |
|
|
|
1473 |
|
|
if (ptrace (PTRACE_SET_DEBUGREG, tid, 0, 0) == -1)
|
1474 |
|
|
return 0;
|
1475 |
|
|
}
|
1476 |
|
|
|
1477 |
|
|
return 1;
|
1478 |
|
|
}
|
1479 |
|
|
|
1480 |
|
|
static int
|
1481 |
|
|
ppc_linux_region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
|
1482 |
|
|
{
|
1483 |
|
|
/* Handle sub-8-byte quantities. */
|
1484 |
|
|
if (len <= 0)
|
1485 |
|
|
return 0;
|
1486 |
|
|
|
1487 |
|
|
/* The new BookE ptrace interface tells if there are alignment restrictions
|
1488 |
|
|
for watchpoints in the processors. In that case, we use that information
|
1489 |
|
|
to determine the hardcoded watchable region for watchpoints. */
|
1490 |
|
|
if (have_ptrace_booke_interface ())
|
1491 |
|
|
{
|
1492 |
|
|
if (booke_debug_info.data_bp_alignment
|
1493 |
|
|
&& (addr + len > (addr & ~(booke_debug_info.data_bp_alignment - 1))
|
1494 |
|
|
+ booke_debug_info.data_bp_alignment))
|
1495 |
|
|
return 0;
|
1496 |
|
|
}
|
1497 |
|
|
/* addr+len must fall in the 8 byte watchable region for DABR-based
|
1498 |
|
|
processors (i.e., server processors). Without the new BookE ptrace
|
1499 |
|
|
interface, DAC-based processors (i.e., embedded processors) will use
|
1500 |
|
|
addresses aligned to 4-bytes due to the way the read/write flags are
|
1501 |
|
|
passed in the old ptrace interface. */
|
1502 |
|
|
else if (((ppc_linux_get_hwcap () & PPC_FEATURE_BOOKE)
|
1503 |
|
|
&& (addr + len) > (addr & ~3) + 4)
|
1504 |
|
|
|| (addr + len) > (addr & ~7) + 8)
|
1505 |
|
|
return 0;
|
1506 |
|
|
|
1507 |
|
|
return 1;
|
1508 |
|
|
}
|
1509 |
|
|
|
1510 |
|
|
/* This function compares two ppc_hw_breakpoint structs field-by-field. */
|
1511 |
|
|
static int
|
1512 |
|
|
booke_cmp_hw_point (struct ppc_hw_breakpoint *a, struct ppc_hw_breakpoint *b)
|
1513 |
|
|
{
|
1514 |
|
|
return (a->trigger_type == b->trigger_type
|
1515 |
|
|
&& a->addr_mode == b->addr_mode
|
1516 |
|
|
&& a->condition_mode == b->condition_mode
|
1517 |
|
|
&& a->addr == b->addr
|
1518 |
|
|
&& a->addr2 == b->addr2
|
1519 |
|
|
&& a->condition_value == b->condition_value);
|
1520 |
|
|
}
|
1521 |
|
|
|
1522 |
|
|
/* This function can be used to retrieve a thread_points by the TID of the
|
1523 |
|
|
related process/thread. If nothing has been found, and ALLOC_NEW is 0,
|
1524 |
|
|
it returns NULL. If ALLOC_NEW is non-zero, a new thread_points for the
|
1525 |
|
|
provided TID will be created and returned. */
|
1526 |
|
|
static struct thread_points *
|
1527 |
|
|
booke_find_thread_points_by_tid (int tid, int alloc_new)
|
1528 |
|
|
{
|
1529 |
|
|
int i;
|
1530 |
|
|
struct thread_points *t;
|
1531 |
|
|
|
1532 |
|
|
for (i = 0; VEC_iterate (thread_points_p, ppc_threads, i, t); i++)
|
1533 |
|
|
if (t->tid == tid)
|
1534 |
|
|
return t;
|
1535 |
|
|
|
1536 |
|
|
t = NULL;
|
1537 |
|
|
|
1538 |
|
|
/* Do we need to allocate a new point_item
|
1539 |
|
|
if the wanted one does not exist? */
|
1540 |
|
|
if (alloc_new)
|
1541 |
|
|
{
|
1542 |
|
|
t = xmalloc (sizeof (struct thread_points));
|
1543 |
|
|
t->hw_breaks = xzalloc (max_slots_number * sizeof (struct hw_break_tuple));
|
1544 |
|
|
t->tid = tid;
|
1545 |
|
|
VEC_safe_push (thread_points_p, ppc_threads, t);
|
1546 |
|
|
}
|
1547 |
|
|
|
1548 |
|
|
return t;
|
1549 |
|
|
}
|
1550 |
|
|
|
1551 |
|
|
/* This function is a generic wrapper that is responsible for inserting a
|
1552 |
|
|
*point (i.e., calling `ptrace' in order to issue the request to the
|
1553 |
|
|
kernel) and registering it internally in GDB. */
|
1554 |
|
|
static void
|
1555 |
|
|
booke_insert_point (struct ppc_hw_breakpoint *b, int tid)
|
1556 |
|
|
{
|
1557 |
|
|
int i;
|
1558 |
|
|
long slot;
|
1559 |
|
|
struct ppc_hw_breakpoint *p = xmalloc (sizeof (struct ppc_hw_breakpoint));
|
1560 |
|
|
struct hw_break_tuple *hw_breaks;
|
1561 |
|
|
struct cleanup *c = make_cleanup (xfree, p);
|
1562 |
|
|
struct thread_points *t;
|
1563 |
|
|
struct hw_break_tuple *tuple;
|
1564 |
|
|
|
1565 |
|
|
memcpy (p, b, sizeof (struct ppc_hw_breakpoint));
|
1566 |
|
|
|
1567 |
|
|
errno = 0;
|
1568 |
|
|
slot = ptrace (PPC_PTRACE_SETHWDEBUG, tid, 0, p);
|
1569 |
|
|
if (slot < 0)
|
1570 |
|
|
perror_with_name (_("Unexpected error setting breakpoint or watchpoint"));
|
1571 |
|
|
|
1572 |
|
|
/* Everything went fine, so we have to register this *point. */
|
1573 |
|
|
t = booke_find_thread_points_by_tid (tid, 1);
|
1574 |
|
|
gdb_assert (t != NULL);
|
1575 |
|
|
hw_breaks = t->hw_breaks;
|
1576 |
|
|
|
1577 |
|
|
/* Find a free element in the hw_breaks vector. */
|
1578 |
|
|
for (i = 0; i < max_slots_number; i++)
|
1579 |
|
|
if (hw_breaks[i].hw_break == NULL)
|
1580 |
|
|
{
|
1581 |
|
|
hw_breaks[i].slot = slot;
|
1582 |
|
|
hw_breaks[i].hw_break = p;
|
1583 |
|
|
break;
|
1584 |
|
|
}
|
1585 |
|
|
|
1586 |
|
|
gdb_assert (i != max_slots_number);
|
1587 |
|
|
|
1588 |
|
|
discard_cleanups (c);
|
1589 |
|
|
}
|
1590 |
|
|
|
1591 |
|
|
/* This function is a generic wrapper that is responsible for removing a
|
1592 |
|
|
*point (i.e., calling `ptrace' in order to issue the request to the
|
1593 |
|
|
kernel), and unregistering it internally at GDB. */
|
1594 |
|
|
static void
|
1595 |
|
|
booke_remove_point (struct ppc_hw_breakpoint *b, int tid)
|
1596 |
|
|
{
|
1597 |
|
|
int i;
|
1598 |
|
|
struct hw_break_tuple *hw_breaks;
|
1599 |
|
|
struct thread_points *t;
|
1600 |
|
|
|
1601 |
|
|
t = booke_find_thread_points_by_tid (tid, 0);
|
1602 |
|
|
gdb_assert (t != NULL);
|
1603 |
|
|
hw_breaks = t->hw_breaks;
|
1604 |
|
|
|
1605 |
|
|
for (i = 0; i < max_slots_number; i++)
|
1606 |
|
|
if (hw_breaks[i].hw_break && booke_cmp_hw_point (hw_breaks[i].hw_break, b))
|
1607 |
|
|
break;
|
1608 |
|
|
|
1609 |
|
|
gdb_assert (i != max_slots_number);
|
1610 |
|
|
|
1611 |
|
|
/* We have to ignore ENOENT errors because the kernel implements hardware
|
1612 |
|
|
breakpoints/watchpoints as "one-shot", that is, they are automatically
|
1613 |
|
|
deleted when hit. */
|
1614 |
|
|
errno = 0;
|
1615 |
|
|
if (ptrace (PPC_PTRACE_DELHWDEBUG, tid, 0, hw_breaks[i].slot) < 0)
|
1616 |
|
|
if (errno != ENOENT)
|
1617 |
|
|
perror_with_name (_("Unexpected error deleting breakpoint or watchpoint"));
|
1618 |
|
|
|
1619 |
|
|
xfree (hw_breaks[i].hw_break);
|
1620 |
|
|
hw_breaks[i].hw_break = NULL;
|
1621 |
|
|
}
|
1622 |
|
|
|
1623 |
|
|
static int
|
1624 |
|
|
ppc_linux_insert_hw_breakpoint (struct gdbarch *gdbarch,
|
1625 |
|
|
struct bp_target_info *bp_tgt)
|
1626 |
|
|
{
|
1627 |
|
|
ptid_t ptid;
|
1628 |
|
|
struct lwp_info *lp;
|
1629 |
|
|
struct ppc_hw_breakpoint p;
|
1630 |
|
|
|
1631 |
|
|
if (!have_ptrace_booke_interface ())
|
1632 |
|
|
return -1;
|
1633 |
|
|
|
1634 |
|
|
p.version = PPC_DEBUG_CURRENT_VERSION;
|
1635 |
|
|
p.trigger_type = PPC_BREAKPOINT_TRIGGER_EXECUTE;
|
1636 |
|
|
p.addr_mode = PPC_BREAKPOINT_MODE_EXACT;
|
1637 |
|
|
p.condition_mode = PPC_BREAKPOINT_CONDITION_NONE;
|
1638 |
|
|
p.addr = (uint64_t) bp_tgt->placed_address;
|
1639 |
|
|
p.addr2 = 0;
|
1640 |
|
|
p.condition_value = 0;
|
1641 |
|
|
|
1642 |
|
|
ALL_LWPS (lp, ptid)
|
1643 |
|
|
booke_insert_point (&p, TIDGET (ptid));
|
1644 |
|
|
|
1645 |
|
|
return 0;
|
1646 |
|
|
}
|
1647 |
|
|
|
1648 |
|
|
static int
|
1649 |
|
|
ppc_linux_remove_hw_breakpoint (struct gdbarch *gdbarch,
|
1650 |
|
|
struct bp_target_info *bp_tgt)
|
1651 |
|
|
{
|
1652 |
|
|
ptid_t ptid;
|
1653 |
|
|
struct lwp_info *lp;
|
1654 |
|
|
struct ppc_hw_breakpoint p;
|
1655 |
|
|
|
1656 |
|
|
if (!have_ptrace_booke_interface ())
|
1657 |
|
|
return -1;
|
1658 |
|
|
|
1659 |
|
|
p.version = PPC_DEBUG_CURRENT_VERSION;
|
1660 |
|
|
p.trigger_type = PPC_BREAKPOINT_TRIGGER_EXECUTE;
|
1661 |
|
|
p.addr_mode = PPC_BREAKPOINT_MODE_EXACT;
|
1662 |
|
|
p.condition_mode = PPC_BREAKPOINT_CONDITION_NONE;
|
1663 |
|
|
p.addr = (uint64_t) bp_tgt->placed_address;
|
1664 |
|
|
p.addr2 = 0;
|
1665 |
|
|
p.condition_value = 0;
|
1666 |
|
|
|
1667 |
|
|
ALL_LWPS (lp, ptid)
|
1668 |
|
|
booke_remove_point (&p, TIDGET (ptid));
|
1669 |
|
|
|
1670 |
|
|
return 0;
|
1671 |
|
|
}
|
1672 |
|
|
|
1673 |
|
|
static int
|
1674 |
|
|
get_trigger_type (int rw)
|
1675 |
|
|
{
|
1676 |
|
|
int t;
|
1677 |
|
|
|
1678 |
|
|
if (rw == hw_read)
|
1679 |
|
|
t = PPC_BREAKPOINT_TRIGGER_READ;
|
1680 |
|
|
else if (rw == hw_write)
|
1681 |
|
|
t = PPC_BREAKPOINT_TRIGGER_WRITE;
|
1682 |
|
|
else
|
1683 |
|
|
t = PPC_BREAKPOINT_TRIGGER_READ | PPC_BREAKPOINT_TRIGGER_WRITE;
|
1684 |
|
|
|
1685 |
|
|
return t;
|
1686 |
|
|
}
|
1687 |
|
|
|
1688 |
|
|
/* Check whether we have at least one free DVC register. */
|
1689 |
|
|
static int
|
1690 |
|
|
can_use_watchpoint_cond_accel (void)
|
1691 |
|
|
{
|
1692 |
|
|
struct thread_points *p;
|
1693 |
|
|
int tid = TIDGET (inferior_ptid);
|
1694 |
|
|
int cnt = booke_debug_info.num_condition_regs, i;
|
1695 |
|
|
CORE_ADDR tmp_value;
|
1696 |
|
|
|
1697 |
|
|
if (!have_ptrace_booke_interface () || cnt == 0)
|
1698 |
|
|
return 0;
|
1699 |
|
|
|
1700 |
|
|
p = booke_find_thread_points_by_tid (tid, 0);
|
1701 |
|
|
|
1702 |
|
|
if (p)
|
1703 |
|
|
{
|
1704 |
|
|
for (i = 0; i < max_slots_number; i++)
|
1705 |
|
|
if (p->hw_breaks[i].hw_break != NULL
|
1706 |
|
|
&& (p->hw_breaks[i].hw_break->condition_mode
|
1707 |
|
|
!= PPC_BREAKPOINT_CONDITION_NONE))
|
1708 |
|
|
cnt--;
|
1709 |
|
|
|
1710 |
|
|
/* There are no available slots now. */
|
1711 |
|
|
if (cnt <= 0)
|
1712 |
|
|
return 0;
|
1713 |
|
|
}
|
1714 |
|
|
|
1715 |
|
|
return 1;
|
1716 |
|
|
}
|
1717 |
|
|
|
1718 |
|
|
/* Calculate the enable bits and the contents of the Data Value Compare
|
1719 |
|
|
debug register present in BookE processors.
|
1720 |
|
|
|
1721 |
|
|
ADDR is the address to be watched, LEN is the length of watched data
|
1722 |
|
|
and DATA_VALUE is the value which will trigger the watchpoint.
|
1723 |
|
|
On exit, CONDITION_MODE will hold the enable bits for the DVC, and
|
1724 |
|
|
CONDITION_VALUE will hold the value which should be put in the
|
1725 |
|
|
DVC register. */
|
1726 |
|
|
static void
|
1727 |
|
|
calculate_dvc (CORE_ADDR addr, int len, CORE_ADDR data_value,
|
1728 |
|
|
uint32_t *condition_mode, uint64_t *condition_value)
|
1729 |
|
|
{
|
1730 |
|
|
int i, num_byte_enable, align_offset, num_bytes_off_dvc,
|
1731 |
|
|
rightmost_enabled_byte;
|
1732 |
|
|
CORE_ADDR addr_end_data, addr_end_dvc;
|
1733 |
|
|
|
1734 |
|
|
/* The DVC register compares bytes within fixed-length windows which
|
1735 |
|
|
are word-aligned, with length equal to that of the DVC register.
|
1736 |
|
|
We need to calculate where our watch region is relative to that
|
1737 |
|
|
window and enable comparison of the bytes which fall within it. */
|
1738 |
|
|
|
1739 |
|
|
align_offset = addr % booke_debug_info.sizeof_condition;
|
1740 |
|
|
addr_end_data = addr + len;
|
1741 |
|
|
addr_end_dvc = (addr - align_offset
|
1742 |
|
|
+ booke_debug_info.sizeof_condition);
|
1743 |
|
|
num_bytes_off_dvc = (addr_end_data > addr_end_dvc)?
|
1744 |
|
|
addr_end_data - addr_end_dvc : 0;
|
1745 |
|
|
num_byte_enable = len - num_bytes_off_dvc;
|
1746 |
|
|
/* Here, bytes are numbered from right to left. */
|
1747 |
|
|
rightmost_enabled_byte = (addr_end_data < addr_end_dvc)?
|
1748 |
|
|
addr_end_dvc - addr_end_data : 0;
|
1749 |
|
|
|
1750 |
|
|
*condition_mode = PPC_BREAKPOINT_CONDITION_AND;
|
1751 |
|
|
for (i = 0; i < num_byte_enable; i++)
|
1752 |
|
|
*condition_mode |= PPC_BREAKPOINT_CONDITION_BE (i + rightmost_enabled_byte);
|
1753 |
|
|
|
1754 |
|
|
/* Now we need to match the position within the DVC of the comparison
|
1755 |
|
|
value with where the watch region is relative to the window
|
1756 |
|
|
(i.e., the ALIGN_OFFSET). */
|
1757 |
|
|
|
1758 |
|
|
*condition_value = ((uint64_t) data_value >> num_bytes_off_dvc * 8
|
1759 |
|
|
<< rightmost_enabled_byte * 8);
|
1760 |
|
|
}
|
1761 |
|
|
|
1762 |
|
|
/* Return the number of memory locations that need to be accessed to
|
1763 |
|
|
evaluate the expression which generated the given value chain.
|
1764 |
|
|
Returns -1 if there's any register access involved, or if there are
|
1765 |
|
|
other kinds of values which are not acceptable in a condition
|
1766 |
|
|
expression (e.g., lval_computed or lval_internalvar). */
|
1767 |
|
|
static int
|
1768 |
|
|
num_memory_accesses (struct value *v)
|
1769 |
|
|
{
|
1770 |
|
|
int found_memory_cnt = 0;
|
1771 |
|
|
struct value *head = v;
|
1772 |
|
|
|
1773 |
|
|
/* The idea here is that evaluating an expression generates a series
|
1774 |
|
|
of values, one holding the value of every subexpression. (The
|
1775 |
|
|
expression a*b+c has five subexpressions: a, b, a*b, c, and
|
1776 |
|
|
a*b+c.) GDB's values hold almost enough information to establish
|
1777 |
|
|
the criteria given above --- they identify memory lvalues,
|
1778 |
|
|
register lvalues, computed values, etcetera. So we can evaluate
|
1779 |
|
|
the expression, and then scan the chain of values that leaves
|
1780 |
|
|
behind to determine the memory locations involved in the evaluation
|
1781 |
|
|
of an expression.
|
1782 |
|
|
|
1783 |
|
|
However, I don't think that the values returned by inferior
|
1784 |
|
|
function calls are special in any way. So this function may not
|
1785 |
|
|
notice that an expression contains an inferior function call.
|
1786 |
|
|
FIXME. */
|
1787 |
|
|
|
1788 |
|
|
for (; v; v = value_next (v))
|
1789 |
|
|
{
|
1790 |
|
|
/* Constants and values from the history are fine. */
|
1791 |
|
|
if (VALUE_LVAL (v) == not_lval || deprecated_value_modifiable (v) == 0)
|
1792 |
|
|
continue;
|
1793 |
|
|
else if (VALUE_LVAL (v) == lval_memory)
|
1794 |
|
|
{
|
1795 |
|
|
/* A lazy memory lvalue is one that GDB never needed to fetch;
|
1796 |
|
|
we either just used its address (e.g., `a' in `a.b') or
|
1797 |
|
|
we never needed it at all (e.g., `a' in `a,b'). */
|
1798 |
|
|
if (!value_lazy (v))
|
1799 |
|
|
found_memory_cnt++;
|
1800 |
|
|
}
|
1801 |
|
|
/* Other kinds of values are not fine. */
|
1802 |
|
|
else
|
1803 |
|
|
return -1;
|
1804 |
|
|
}
|
1805 |
|
|
|
1806 |
|
|
return found_memory_cnt;
|
1807 |
|
|
}
|
1808 |
|
|
|
1809 |
|
|
/* Verifies whether the expression COND can be implemented using the
|
1810 |
|
|
DVC (Data Value Compare) register in BookE processors. The expression
|
1811 |
|
|
must test the watch value for equality with a constant expression.
|
1812 |
|
|
If the function returns 1, DATA_VALUE will contain the constant against
|
1813 |
|
|
which the watch value should be compared. */
|
1814 |
|
|
static int
|
1815 |
|
|
check_condition (CORE_ADDR watch_addr, struct expression *cond,
|
1816 |
|
|
CORE_ADDR *data_value)
|
1817 |
|
|
{
|
1818 |
|
|
int pc = 1, num_accesses_left, num_accesses_right;
|
1819 |
|
|
struct value *left_val, *right_val, *left_chain, *right_chain;
|
1820 |
|
|
|
1821 |
|
|
if (cond->elts[0].opcode != BINOP_EQUAL)
|
1822 |
|
|
return 0;
|
1823 |
|
|
|
1824 |
|
|
fetch_subexp_value (cond, &pc, &left_val, NULL, &left_chain);
|
1825 |
|
|
num_accesses_left = num_memory_accesses (left_chain);
|
1826 |
|
|
|
1827 |
|
|
if (left_val == NULL || num_accesses_left < 0)
|
1828 |
|
|
{
|
1829 |
|
|
free_value_chain (left_chain);
|
1830 |
|
|
|
1831 |
|
|
return 0;
|
1832 |
|
|
}
|
1833 |
|
|
|
1834 |
|
|
fetch_subexp_value (cond, &pc, &right_val, NULL, &right_chain);
|
1835 |
|
|
num_accesses_right = num_memory_accesses (right_chain);
|
1836 |
|
|
|
1837 |
|
|
if (right_val == NULL || num_accesses_right < 0)
|
1838 |
|
|
{
|
1839 |
|
|
free_value_chain (left_chain);
|
1840 |
|
|
free_value_chain (right_chain);
|
1841 |
|
|
|
1842 |
|
|
return 0;
|
1843 |
|
|
}
|
1844 |
|
|
|
1845 |
|
|
if (num_accesses_left == 1 && num_accesses_right == 0
|
1846 |
|
|
&& VALUE_LVAL (left_val) == lval_memory
|
1847 |
|
|
&& value_address (left_val) == watch_addr)
|
1848 |
|
|
*data_value = value_as_long (right_val);
|
1849 |
|
|
else if (num_accesses_left == 0 && num_accesses_right == 1
|
1850 |
|
|
&& VALUE_LVAL (right_val) == lval_memory
|
1851 |
|
|
&& value_address (right_val) == watch_addr)
|
1852 |
|
|
*data_value = value_as_long (left_val);
|
1853 |
|
|
else
|
1854 |
|
|
{
|
1855 |
|
|
free_value_chain (left_chain);
|
1856 |
|
|
free_value_chain (right_chain);
|
1857 |
|
|
|
1858 |
|
|
return 0;
|
1859 |
|
|
}
|
1860 |
|
|
|
1861 |
|
|
free_value_chain (left_chain);
|
1862 |
|
|
free_value_chain (right_chain);
|
1863 |
|
|
|
1864 |
|
|
return 1;
|
1865 |
|
|
}
|
1866 |
|
|
|
1867 |
|
|
/* Return non-zero if the target is capable of using hardware to evaluate
|
1868 |
|
|
the condition expression, thus only triggering the watchpoint when it is
|
1869 |
|
|
true. */
|
1870 |
|
|
static int
|
1871 |
|
|
ppc_linux_can_accel_watchpoint_condition (CORE_ADDR addr, int len, int rw,
|
1872 |
|
|
struct expression *cond)
|
1873 |
|
|
{
|
1874 |
|
|
CORE_ADDR data_value;
|
1875 |
|
|
|
1876 |
|
|
return (have_ptrace_booke_interface ()
|
1877 |
|
|
&& booke_debug_info.num_condition_regs > 0
|
1878 |
|
|
&& check_condition (addr, cond, &data_value));
|
1879 |
|
|
}
|
1880 |
|
|
|
1881 |
|
|
static int
|
1882 |
|
|
ppc_linux_insert_watchpoint (CORE_ADDR addr, int len, int rw,
|
1883 |
|
|
struct expression *cond)
|
1884 |
|
|
{
|
1885 |
|
|
struct lwp_info *lp;
|
1886 |
|
|
ptid_t ptid;
|
1887 |
|
|
int ret = -1;
|
1888 |
|
|
|
1889 |
|
|
if (have_ptrace_booke_interface ())
|
1890 |
|
|
{
|
1891 |
|
|
struct ppc_hw_breakpoint p;
|
1892 |
|
|
CORE_ADDR data_value;
|
1893 |
|
|
|
1894 |
|
|
if (cond && can_use_watchpoint_cond_accel ()
|
1895 |
|
|
&& check_condition (addr, cond, &data_value))
|
1896 |
|
|
calculate_dvc (addr, len, data_value, &p.condition_mode,
|
1897 |
|
|
&p.condition_value);
|
1898 |
|
|
else
|
1899 |
|
|
{
|
1900 |
|
|
p.condition_mode = PPC_BREAKPOINT_CONDITION_NONE;
|
1901 |
|
|
p.condition_value = 0;
|
1902 |
|
|
}
|
1903 |
|
|
|
1904 |
|
|
p.version = PPC_DEBUG_CURRENT_VERSION;
|
1905 |
|
|
p.trigger_type = get_trigger_type (rw);
|
1906 |
|
|
p.addr_mode = PPC_BREAKPOINT_MODE_EXACT;
|
1907 |
|
|
p.addr = (uint64_t) addr;
|
1908 |
|
|
p.addr2 = 0;
|
1909 |
|
|
|
1910 |
|
|
ALL_LWPS (lp, ptid)
|
1911 |
|
|
booke_insert_point (&p, TIDGET (ptid));
|
1912 |
|
|
|
1913 |
|
|
ret = 0;
|
1914 |
|
|
}
|
1915 |
|
|
else
|
1916 |
|
|
{
|
1917 |
|
|
long dabr_value;
|
1918 |
|
|
long read_mode, write_mode;
|
1919 |
|
|
|
1920 |
|
|
if (ppc_linux_get_hwcap () & PPC_FEATURE_BOOKE)
|
1921 |
|
|
{
|
1922 |
|
|
/* PowerPC 440 requires only the read/write flags to be passed
|
1923 |
|
|
to the kernel. */
|
1924 |
|
|
read_mode = 1;
|
1925 |
|
|
write_mode = 2;
|
1926 |
|
|
}
|
1927 |
|
|
else
|
1928 |
|
|
{
|
1929 |
|
|
/* PowerPC 970 and other DABR-based processors are required to pass
|
1930 |
|
|
the Breakpoint Translation bit together with the flags. */
|
1931 |
|
|
read_mode = 5;
|
1932 |
|
|
write_mode = 6;
|
1933 |
|
|
}
|
1934 |
|
|
|
1935 |
|
|
dabr_value = addr & ~(read_mode | write_mode);
|
1936 |
|
|
switch (rw)
|
1937 |
|
|
{
|
1938 |
|
|
case hw_read:
|
1939 |
|
|
/* Set read and translate bits. */
|
1940 |
|
|
dabr_value |= read_mode;
|
1941 |
|
|
break;
|
1942 |
|
|
case hw_write:
|
1943 |
|
|
/* Set write and translate bits. */
|
1944 |
|
|
dabr_value |= write_mode;
|
1945 |
|
|
break;
|
1946 |
|
|
case hw_access:
|
1947 |
|
|
/* Set read, write and translate bits. */
|
1948 |
|
|
dabr_value |= read_mode | write_mode;
|
1949 |
|
|
break;
|
1950 |
|
|
}
|
1951 |
|
|
|
1952 |
|
|
saved_dabr_value = dabr_value;
|
1953 |
|
|
|
1954 |
|
|
ALL_LWPS (lp, ptid)
|
1955 |
|
|
if (ptrace (PTRACE_SET_DEBUGREG, TIDGET (ptid), 0,
|
1956 |
|
|
saved_dabr_value) < 0)
|
1957 |
|
|
return -1;
|
1958 |
|
|
|
1959 |
|
|
ret = 0;
|
1960 |
|
|
}
|
1961 |
|
|
|
1962 |
|
|
return ret;
|
1963 |
|
|
}
|
1964 |
|
|
|
1965 |
|
|
static int
|
1966 |
|
|
ppc_linux_remove_watchpoint (CORE_ADDR addr, int len, int rw,
|
1967 |
|
|
struct expression *cond)
|
1968 |
|
|
{
|
1969 |
|
|
struct lwp_info *lp;
|
1970 |
|
|
ptid_t ptid;
|
1971 |
|
|
int ret = -1;
|
1972 |
|
|
|
1973 |
|
|
if (have_ptrace_booke_interface ())
|
1974 |
|
|
{
|
1975 |
|
|
struct ppc_hw_breakpoint p;
|
1976 |
|
|
CORE_ADDR data_value;
|
1977 |
|
|
|
1978 |
|
|
if (cond && booke_debug_info.num_condition_regs > 0
|
1979 |
|
|
&& check_condition (addr, cond, &data_value))
|
1980 |
|
|
calculate_dvc (addr, len, data_value, &p.condition_mode,
|
1981 |
|
|
&p.condition_value);
|
1982 |
|
|
else
|
1983 |
|
|
{
|
1984 |
|
|
p.condition_mode = PPC_BREAKPOINT_CONDITION_NONE;
|
1985 |
|
|
p.condition_value = 0;
|
1986 |
|
|
}
|
1987 |
|
|
|
1988 |
|
|
p.version = PPC_DEBUG_CURRENT_VERSION;
|
1989 |
|
|
p.trigger_type = get_trigger_type (rw);
|
1990 |
|
|
p.addr_mode = PPC_BREAKPOINT_MODE_EXACT;
|
1991 |
|
|
p.addr = (uint64_t) addr;
|
1992 |
|
|
p.addr2 = 0;
|
1993 |
|
|
|
1994 |
|
|
ALL_LWPS (lp, ptid)
|
1995 |
|
|
booke_remove_point (&p, TIDGET (ptid));
|
1996 |
|
|
|
1997 |
|
|
ret = 0;
|
1998 |
|
|
}
|
1999 |
|
|
else
|
2000 |
|
|
{
|
2001 |
|
|
saved_dabr_value = 0;
|
2002 |
|
|
ALL_LWPS (lp, ptid)
|
2003 |
|
|
if (ptrace (PTRACE_SET_DEBUGREG, TIDGET (ptid), 0,
|
2004 |
|
|
saved_dabr_value) < 0)
|
2005 |
|
|
return -1;
|
2006 |
|
|
|
2007 |
|
|
ret = 0;
|
2008 |
|
|
}
|
2009 |
|
|
|
2010 |
|
|
return ret;
|
2011 |
|
|
}
|
2012 |
|
|
|
2013 |
|
|
static void
|
2014 |
|
|
ppc_linux_new_thread (ptid_t ptid)
|
2015 |
|
|
{
|
2016 |
|
|
int tid = TIDGET (ptid);
|
2017 |
|
|
|
2018 |
|
|
if (have_ptrace_booke_interface ())
|
2019 |
|
|
{
|
2020 |
|
|
int i;
|
2021 |
|
|
struct thread_points *p;
|
2022 |
|
|
struct hw_break_tuple *hw_breaks;
|
2023 |
|
|
|
2024 |
|
|
if (VEC_empty (thread_points_p, ppc_threads))
|
2025 |
|
|
return;
|
2026 |
|
|
|
2027 |
|
|
/* Get a list of breakpoints from any thread. */
|
2028 |
|
|
p = VEC_last (thread_points_p, ppc_threads);
|
2029 |
|
|
hw_breaks = p->hw_breaks;
|
2030 |
|
|
|
2031 |
|
|
/* Copy that thread's breakpoints and watchpoints to the new thread. */
|
2032 |
|
|
for (i = 0; i < max_slots_number; i++)
|
2033 |
|
|
if (hw_breaks[i].hw_break)
|
2034 |
|
|
booke_insert_point (hw_breaks[i].hw_break, tid);
|
2035 |
|
|
}
|
2036 |
|
|
else
|
2037 |
|
|
ptrace (PTRACE_SET_DEBUGREG, tid, 0, saved_dabr_value);
|
2038 |
|
|
}
|
2039 |
|
|
|
2040 |
|
|
static void
|
2041 |
|
|
ppc_linux_thread_exit (struct thread_info *tp, int silent)
|
2042 |
|
|
{
|
2043 |
|
|
int i;
|
2044 |
|
|
int tid = TIDGET (tp->ptid);
|
2045 |
|
|
struct hw_break_tuple *hw_breaks;
|
2046 |
|
|
struct thread_points *t = NULL, *p;
|
2047 |
|
|
|
2048 |
|
|
if (!have_ptrace_booke_interface ())
|
2049 |
|
|
return;
|
2050 |
|
|
|
2051 |
|
|
for (i = 0; VEC_iterate (thread_points_p, ppc_threads, i, p); i++)
|
2052 |
|
|
if (p->tid == tid)
|
2053 |
|
|
{
|
2054 |
|
|
t = p;
|
2055 |
|
|
break;
|
2056 |
|
|
}
|
2057 |
|
|
|
2058 |
|
|
if (t == NULL)
|
2059 |
|
|
return;
|
2060 |
|
|
|
2061 |
|
|
VEC_unordered_remove (thread_points_p, ppc_threads, i);
|
2062 |
|
|
|
2063 |
|
|
hw_breaks = t->hw_breaks;
|
2064 |
|
|
|
2065 |
|
|
for (i = 0; i < max_slots_number; i++)
|
2066 |
|
|
if (hw_breaks[i].hw_break)
|
2067 |
|
|
xfree (hw_breaks[i].hw_break);
|
2068 |
|
|
|
2069 |
|
|
xfree (t->hw_breaks);
|
2070 |
|
|
xfree (t);
|
2071 |
|
|
}
|
2072 |
|
|
|
2073 |
|
|
static int
|
2074 |
|
|
ppc_linux_stopped_data_address (struct target_ops *target, CORE_ADDR *addr_p)
|
2075 |
|
|
{
|
2076 |
|
|
struct siginfo *siginfo_p;
|
2077 |
|
|
|
2078 |
|
|
siginfo_p = linux_nat_get_siginfo (inferior_ptid);
|
2079 |
|
|
|
2080 |
|
|
if (siginfo_p->si_signo != SIGTRAP
|
2081 |
|
|
|| (siginfo_p->si_code & 0xffff) != 0x0004 /* TRAP_HWBKPT */)
|
2082 |
|
|
return 0;
|
2083 |
|
|
|
2084 |
|
|
if (have_ptrace_booke_interface ())
|
2085 |
|
|
{
|
2086 |
|
|
int i;
|
2087 |
|
|
struct thread_points *t;
|
2088 |
|
|
struct hw_break_tuple *hw_breaks;
|
2089 |
|
|
/* The index (or slot) of the *point is passed in the si_errno field. */
|
2090 |
|
|
int slot = siginfo_p->si_errno;
|
2091 |
|
|
|
2092 |
|
|
t = booke_find_thread_points_by_tid (TIDGET (inferior_ptid), 0);
|
2093 |
|
|
|
2094 |
|
|
/* Find out if this *point is a hardware breakpoint.
|
2095 |
|
|
If so, we should return 0. */
|
2096 |
|
|
if (t)
|
2097 |
|
|
{
|
2098 |
|
|
hw_breaks = t->hw_breaks;
|
2099 |
|
|
for (i = 0; i < max_slots_number; i++)
|
2100 |
|
|
if (hw_breaks[i].hw_break && hw_breaks[i].slot == slot
|
2101 |
|
|
&& hw_breaks[i].hw_break->trigger_type
|
2102 |
|
|
== PPC_BREAKPOINT_TRIGGER_EXECUTE)
|
2103 |
|
|
return 0;
|
2104 |
|
|
}
|
2105 |
|
|
}
|
2106 |
|
|
|
2107 |
|
|
*addr_p = (CORE_ADDR) (uintptr_t) siginfo_p->si_addr;
|
2108 |
|
|
return 1;
|
2109 |
|
|
}
|
2110 |
|
|
|
2111 |
|
|
static int
|
2112 |
|
|
ppc_linux_stopped_by_watchpoint (void)
|
2113 |
|
|
{
|
2114 |
|
|
CORE_ADDR addr;
|
2115 |
|
|
return ppc_linux_stopped_data_address (¤t_target, &addr);
|
2116 |
|
|
}
|
2117 |
|
|
|
2118 |
|
|
static int
|
2119 |
|
|
ppc_linux_watchpoint_addr_within_range (struct target_ops *target,
|
2120 |
|
|
CORE_ADDR addr,
|
2121 |
|
|
CORE_ADDR start, int length)
|
2122 |
|
|
{
|
2123 |
|
|
int mask;
|
2124 |
|
|
|
2125 |
|
|
if (have_ptrace_booke_interface ()
|
2126 |
|
|
&& ppc_linux_get_hwcap () & PPC_FEATURE_BOOKE)
|
2127 |
|
|
return start <= addr && start + length >= addr;
|
2128 |
|
|
else if (ppc_linux_get_hwcap () & PPC_FEATURE_BOOKE)
|
2129 |
|
|
mask = 3;
|
2130 |
|
|
else
|
2131 |
|
|
mask = 7;
|
2132 |
|
|
|
2133 |
|
|
addr &= ~mask;
|
2134 |
|
|
|
2135 |
|
|
/* Check whether [start, start+length-1] intersects [addr, addr+mask]. */
|
2136 |
|
|
return start <= addr + mask && start + length - 1 >= addr;
|
2137 |
|
|
}
|
2138 |
|
|
|
2139 |
|
|
static void
|
2140 |
|
|
ppc_linux_store_inferior_registers (struct target_ops *ops,
|
2141 |
|
|
struct regcache *regcache, int regno)
|
2142 |
|
|
{
|
2143 |
|
|
/* Overload thread id onto process id */
|
2144 |
|
|
int tid = TIDGET (inferior_ptid);
|
2145 |
|
|
|
2146 |
|
|
/* No thread id, just use process id */
|
2147 |
|
|
if (tid == 0)
|
2148 |
|
|
tid = PIDGET (inferior_ptid);
|
2149 |
|
|
|
2150 |
|
|
if (regno >= 0)
|
2151 |
|
|
store_register (regcache, tid, regno);
|
2152 |
|
|
else
|
2153 |
|
|
store_ppc_registers (regcache, tid);
|
2154 |
|
|
}
|
2155 |
|
|
|
2156 |
|
|
/* Functions for transferring registers between a gregset_t or fpregset_t
|
2157 |
|
|
(see sys/ucontext.h) and gdb's regcache. The word size is that used
|
2158 |
|
|
by the ptrace interface, not the current program's ABI. eg. If a
|
2159 |
|
|
powerpc64-linux gdb is being used to debug a powerpc32-linux app, we
|
2160 |
|
|
read or write 64-bit gregsets. This is to suit the host libthread_db. */
|
2161 |
|
|
|
2162 |
|
|
void
|
2163 |
|
|
supply_gregset (struct regcache *regcache, const gdb_gregset_t *gregsetp)
|
2164 |
|
|
{
|
2165 |
|
|
const struct regset *regset = ppc_linux_gregset (sizeof (long));
|
2166 |
|
|
|
2167 |
|
|
ppc_supply_gregset (regset, regcache, -1, gregsetp, sizeof (*gregsetp));
|
2168 |
|
|
}
|
2169 |
|
|
|
2170 |
|
|
void
|
2171 |
|
|
fill_gregset (const struct regcache *regcache,
|
2172 |
|
|
gdb_gregset_t *gregsetp, int regno)
|
2173 |
|
|
{
|
2174 |
|
|
const struct regset *regset = ppc_linux_gregset (sizeof (long));
|
2175 |
|
|
|
2176 |
|
|
if (regno == -1)
|
2177 |
|
|
memset (gregsetp, 0, sizeof (*gregsetp));
|
2178 |
|
|
ppc_collect_gregset (regset, regcache, regno, gregsetp, sizeof (*gregsetp));
|
2179 |
|
|
}
|
2180 |
|
|
|
2181 |
|
|
void
|
2182 |
|
|
supply_fpregset (struct regcache *regcache, const gdb_fpregset_t * fpregsetp)
|
2183 |
|
|
{
|
2184 |
|
|
const struct regset *regset = ppc_linux_fpregset ();
|
2185 |
|
|
|
2186 |
|
|
ppc_supply_fpregset (regset, regcache, -1,
|
2187 |
|
|
fpregsetp, sizeof (*fpregsetp));
|
2188 |
|
|
}
|
2189 |
|
|
|
2190 |
|
|
void
|
2191 |
|
|
fill_fpregset (const struct regcache *regcache,
|
2192 |
|
|
gdb_fpregset_t *fpregsetp, int regno)
|
2193 |
|
|
{
|
2194 |
|
|
const struct regset *regset = ppc_linux_fpregset ();
|
2195 |
|
|
|
2196 |
|
|
ppc_collect_fpregset (regset, regcache, regno,
|
2197 |
|
|
fpregsetp, sizeof (*fpregsetp));
|
2198 |
|
|
}
|
2199 |
|
|
|
2200 |
|
|
static int
|
2201 |
|
|
ppc_linux_target_wordsize (void)
|
2202 |
|
|
{
|
2203 |
|
|
int wordsize = 4;
|
2204 |
|
|
|
2205 |
|
|
/* Check for 64-bit inferior process. This is the case when the host is
|
2206 |
|
|
64-bit, and in addition the top bit of the MSR register is set. */
|
2207 |
|
|
#ifdef __powerpc64__
|
2208 |
|
|
long msr;
|
2209 |
|
|
|
2210 |
|
|
int tid = TIDGET (inferior_ptid);
|
2211 |
|
|
if (tid == 0)
|
2212 |
|
|
tid = PIDGET (inferior_ptid);
|
2213 |
|
|
|
2214 |
|
|
errno = 0;
|
2215 |
|
|
msr = (long) ptrace (PTRACE_PEEKUSER, tid, PT_MSR * 8, 0);
|
2216 |
|
|
if (errno == 0 && msr < 0)
|
2217 |
|
|
wordsize = 8;
|
2218 |
|
|
#endif
|
2219 |
|
|
|
2220 |
|
|
return wordsize;
|
2221 |
|
|
}
|
2222 |
|
|
|
2223 |
|
|
static int
|
2224 |
|
|
ppc_linux_auxv_parse (struct target_ops *ops, gdb_byte **readptr,
|
2225 |
|
|
gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp)
|
2226 |
|
|
{
|
2227 |
|
|
int sizeof_auxv_field = ppc_linux_target_wordsize ();
|
2228 |
|
|
enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch);
|
2229 |
|
|
gdb_byte *ptr = *readptr;
|
2230 |
|
|
|
2231 |
|
|
if (endptr == ptr)
|
2232 |
|
|
return 0;
|
2233 |
|
|
|
2234 |
|
|
if (endptr - ptr < sizeof_auxv_field * 2)
|
2235 |
|
|
return -1;
|
2236 |
|
|
|
2237 |
|
|
*typep = extract_unsigned_integer (ptr, sizeof_auxv_field, byte_order);
|
2238 |
|
|
ptr += sizeof_auxv_field;
|
2239 |
|
|
*valp = extract_unsigned_integer (ptr, sizeof_auxv_field, byte_order);
|
2240 |
|
|
ptr += sizeof_auxv_field;
|
2241 |
|
|
|
2242 |
|
|
*readptr = ptr;
|
2243 |
|
|
return 1;
|
2244 |
|
|
}
|
2245 |
|
|
|
2246 |
|
|
static const struct target_desc *
|
2247 |
|
|
ppc_linux_read_description (struct target_ops *ops)
|
2248 |
|
|
{
|
2249 |
|
|
int altivec = 0;
|
2250 |
|
|
int vsx = 0;
|
2251 |
|
|
int isa205 = 0;
|
2252 |
|
|
int cell = 0;
|
2253 |
|
|
|
2254 |
|
|
int tid = TIDGET (inferior_ptid);
|
2255 |
|
|
if (tid == 0)
|
2256 |
|
|
tid = PIDGET (inferior_ptid);
|
2257 |
|
|
|
2258 |
|
|
if (have_ptrace_getsetevrregs)
|
2259 |
|
|
{
|
2260 |
|
|
struct gdb_evrregset_t evrregset;
|
2261 |
|
|
|
2262 |
|
|
if (ptrace (PTRACE_GETEVRREGS, tid, 0, &evrregset) >= 0)
|
2263 |
|
|
return tdesc_powerpc_e500l;
|
2264 |
|
|
|
2265 |
|
|
/* EIO means that the PTRACE_GETEVRREGS request isn't supported.
|
2266 |
|
|
Anything else needs to be reported. */
|
2267 |
|
|
else if (errno != EIO)
|
2268 |
|
|
perror_with_name (_("Unable to fetch SPE registers"));
|
2269 |
|
|
}
|
2270 |
|
|
|
2271 |
|
|
if (have_ptrace_getsetvsxregs)
|
2272 |
|
|
{
|
2273 |
|
|
gdb_vsxregset_t vsxregset;
|
2274 |
|
|
|
2275 |
|
|
if (ptrace (PTRACE_GETVSXREGS, tid, 0, &vsxregset) >= 0)
|
2276 |
|
|
vsx = 1;
|
2277 |
|
|
|
2278 |
|
|
/* EIO means that the PTRACE_GETVSXREGS request isn't supported.
|
2279 |
|
|
Anything else needs to be reported. */
|
2280 |
|
|
else if (errno != EIO)
|
2281 |
|
|
perror_with_name (_("Unable to fetch VSX registers"));
|
2282 |
|
|
}
|
2283 |
|
|
|
2284 |
|
|
if (have_ptrace_getvrregs)
|
2285 |
|
|
{
|
2286 |
|
|
gdb_vrregset_t vrregset;
|
2287 |
|
|
|
2288 |
|
|
if (ptrace (PTRACE_GETVRREGS, tid, 0, &vrregset) >= 0)
|
2289 |
|
|
altivec = 1;
|
2290 |
|
|
|
2291 |
|
|
/* EIO means that the PTRACE_GETVRREGS request isn't supported.
|
2292 |
|
|
Anything else needs to be reported. */
|
2293 |
|
|
else if (errno != EIO)
|
2294 |
|
|
perror_with_name (_("Unable to fetch AltiVec registers"));
|
2295 |
|
|
}
|
2296 |
|
|
|
2297 |
|
|
/* Power ISA 2.05 (implemented by Power 6 and newer processors) increases
|
2298 |
|
|
the FPSCR from 32 bits to 64 bits. Even though Power 7 supports this
|
2299 |
|
|
ISA version, it doesn't have PPC_FEATURE_ARCH_2_05 set, only
|
2300 |
|
|
PPC_FEATURE_ARCH_2_06. Since for now the only bits used in the higher
|
2301 |
|
|
half of the register are for Decimal Floating Point, we check if that
|
2302 |
|
|
feature is available to decide the size of the FPSCR. */
|
2303 |
|
|
if (ppc_linux_get_hwcap () & PPC_FEATURE_HAS_DFP)
|
2304 |
|
|
isa205 = 1;
|
2305 |
|
|
|
2306 |
|
|
if (ppc_linux_get_hwcap () & PPC_FEATURE_CELL)
|
2307 |
|
|
cell = 1;
|
2308 |
|
|
|
2309 |
|
|
if (ppc_linux_target_wordsize () == 8)
|
2310 |
|
|
{
|
2311 |
|
|
if (cell)
|
2312 |
|
|
return tdesc_powerpc_cell64l;
|
2313 |
|
|
else if (vsx)
|
2314 |
|
|
return isa205? tdesc_powerpc_isa205_vsx64l : tdesc_powerpc_vsx64l;
|
2315 |
|
|
else if (altivec)
|
2316 |
|
|
return isa205? tdesc_powerpc_isa205_altivec64l : tdesc_powerpc_altivec64l;
|
2317 |
|
|
|
2318 |
|
|
return isa205? tdesc_powerpc_isa205_64l : tdesc_powerpc_64l;
|
2319 |
|
|
}
|
2320 |
|
|
|
2321 |
|
|
if (cell)
|
2322 |
|
|
return tdesc_powerpc_cell32l;
|
2323 |
|
|
else if (vsx)
|
2324 |
|
|
return isa205? tdesc_powerpc_isa205_vsx32l : tdesc_powerpc_vsx32l;
|
2325 |
|
|
else if (altivec)
|
2326 |
|
|
return isa205? tdesc_powerpc_isa205_altivec32l : tdesc_powerpc_altivec32l;
|
2327 |
|
|
|
2328 |
|
|
return isa205? tdesc_powerpc_isa205_32l : tdesc_powerpc_32l;
|
2329 |
|
|
}
|
2330 |
|
|
|
2331 |
|
|
void _initialize_ppc_linux_nat (void);
|
2332 |
|
|
|
2333 |
|
|
void
|
2334 |
|
|
_initialize_ppc_linux_nat (void)
|
2335 |
|
|
{
|
2336 |
|
|
struct target_ops *t;
|
2337 |
|
|
|
2338 |
|
|
/* Fill in the generic GNU/Linux methods. */
|
2339 |
|
|
t = linux_target ();
|
2340 |
|
|
|
2341 |
|
|
/* Add our register access methods. */
|
2342 |
|
|
t->to_fetch_registers = ppc_linux_fetch_inferior_registers;
|
2343 |
|
|
t->to_store_registers = ppc_linux_store_inferior_registers;
|
2344 |
|
|
|
2345 |
|
|
/* Add our breakpoint/watchpoint methods. */
|
2346 |
|
|
t->to_can_use_hw_breakpoint = ppc_linux_can_use_hw_breakpoint;
|
2347 |
|
|
t->to_insert_hw_breakpoint = ppc_linux_insert_hw_breakpoint;
|
2348 |
|
|
t->to_remove_hw_breakpoint = ppc_linux_remove_hw_breakpoint;
|
2349 |
|
|
t->to_region_ok_for_hw_watchpoint = ppc_linux_region_ok_for_hw_watchpoint;
|
2350 |
|
|
t->to_insert_watchpoint = ppc_linux_insert_watchpoint;
|
2351 |
|
|
t->to_remove_watchpoint = ppc_linux_remove_watchpoint;
|
2352 |
|
|
t->to_stopped_by_watchpoint = ppc_linux_stopped_by_watchpoint;
|
2353 |
|
|
t->to_stopped_data_address = ppc_linux_stopped_data_address;
|
2354 |
|
|
t->to_watchpoint_addr_within_range = ppc_linux_watchpoint_addr_within_range;
|
2355 |
|
|
t->to_can_accel_watchpoint_condition = ppc_linux_can_accel_watchpoint_condition;
|
2356 |
|
|
|
2357 |
|
|
t->to_read_description = ppc_linux_read_description;
|
2358 |
|
|
t->to_auxv_parse = ppc_linux_auxv_parse;
|
2359 |
|
|
|
2360 |
|
|
observer_attach_thread_exit (ppc_linux_thread_exit);
|
2361 |
|
|
|
2362 |
|
|
/* Register the target. */
|
2363 |
|
|
linux_nat_add_target (t);
|
2364 |
|
|
linux_nat_set_new_thread (t, ppc_linux_new_thread);
|
2365 |
|
|
}
|