OpenCores
URL https://opencores.org/ocsvn/openrisc_me/openrisc_me/trunk

Subversion Repositories openrisc_me

[/] [openrisc/] [trunk/] [gnu-src/] [gdb-7.2/] [gdb/] [solib-irix.c] - Blame information for rev 476

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 330 jeremybenn
/* Shared library support for IRIX.
2
   Copyright (C) 1993, 1994, 1995, 1996, 1998, 1999, 2000, 2001, 2002, 2004,
3
   2007, 2008, 2009, 2010 Free Software Foundation, Inc.
4
 
5
   This file was created using portions of irix5-nat.c originally
6
   contributed to GDB by Ian Lance Taylor.
7
 
8
   This file is part of GDB.
9
 
10
   This program is free software; you can redistribute it and/or modify
11
   it under the terms of the GNU General Public License as published by
12
   the Free Software Foundation; either version 3 of the License, or
13
   (at your option) any later version.
14
 
15
   This program is distributed in the hope that it will be useful,
16
   but WITHOUT ANY WARRANTY; without even the implied warranty of
17
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18
   GNU General Public License for more details.
19
 
20
   You should have received a copy of the GNU General Public License
21
   along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
22
 
23
#include "defs.h"
24
 
25
#include "symtab.h"
26
#include "bfd.h"
27
/* FIXME: ezannoni/2004-02-13 Verify that the include below is
28
   really needed.  */
29
#include "symfile.h"
30
#include "objfiles.h"
31
#include "gdbcore.h"
32
#include "target.h"
33
#include "inferior.h"
34
#include "gdbthread.h"
35
 
36
#include "solist.h"
37
#include "solib.h"
38
#include "solib-irix.h"
39
 
40
 
41
/* Link map info to include in an allocate so_list entry.  Unlike some
42
   of the other solib backends, this (Irix) backend chooses to decode
43
   the link map info obtained from the target and store it as (mostly)
44
   CORE_ADDRs which need no further decoding.  This is more convenient
45
   because there are three different link map formats to worry about.
46
   We use a single routine (fetch_lm_info) to read (and decode) the target
47
   specific link map data.  */
48
 
49
struct lm_info
50
{
51
  CORE_ADDR addr;               /* address of obj_info or obj_list
52
                                   struct on target (from which the
53
                                   following information is obtained).  */
54
  CORE_ADDR next;               /* address of next item in list.  */
55
  CORE_ADDR reloc_offset;       /* amount to relocate by  */
56
  CORE_ADDR pathname_addr;      /* address of pathname  */
57
  int pathname_len;             /* length of pathname */
58
};
59
 
60
/* It's not desirable to use the system header files to obtain the
61
   structure of the obj_list or obj_info structs.  Therefore, we use a
62
   platform neutral representation which has been derived from the IRIX
63
   header files.  */
64
 
65
typedef struct
66
{
67
  gdb_byte b[4];
68
}
69
gdb_int32_bytes;
70
typedef struct
71
{
72
  gdb_byte b[8];
73
}
74
gdb_int64_bytes;
75
 
76
/* The "old" obj_list struct.  This is used with old (o32) binaries.
77
   The ``data'' member points at a much larger and more complicated
78
   struct which we will only refer to by offsets.  See
79
   fetch_lm_info().  */
80
 
81
struct irix_obj_list
82
{
83
  gdb_int32_bytes data;
84
  gdb_int32_bytes next;
85
  gdb_int32_bytes prev;
86
};
87
 
88
/* The ELF32 and ELF64 versions of the above struct.  The oi_magic value
89
   corresponds to the ``data'' value in the "old" struct.  When this value
90
   is 0xffffffff, the data will be in one of the following formats.  The
91
   ``oi_size'' field is used to decide which one we actually have.  */
92
 
93
struct irix_elf32_obj_info
94
{
95
  gdb_int32_bytes oi_magic;
96
  gdb_int32_bytes oi_size;
97
  gdb_int32_bytes oi_next;
98
  gdb_int32_bytes oi_prev;
99
  gdb_int32_bytes oi_ehdr;
100
  gdb_int32_bytes oi_orig_ehdr;
101
  gdb_int32_bytes oi_pathname;
102
  gdb_int32_bytes oi_pathname_len;
103
};
104
 
105
struct irix_elf64_obj_info
106
{
107
  gdb_int32_bytes oi_magic;
108
  gdb_int32_bytes oi_size;
109
  gdb_int64_bytes oi_next;
110
  gdb_int64_bytes oi_prev;
111
  gdb_int64_bytes oi_ehdr;
112
  gdb_int64_bytes oi_orig_ehdr;
113
  gdb_int64_bytes oi_pathname;
114
  gdb_int32_bytes oi_pathname_len;
115
  gdb_int32_bytes padding;
116
};
117
 
118
/* Union of all of the above (plus a split out magic field).  */
119
 
120
union irix_obj_info
121
{
122
  gdb_int32_bytes magic;
123
  struct irix_obj_list ol32;
124
  struct irix_elf32_obj_info oi32;
125
  struct irix_elf64_obj_info oi64;
126
};
127
 
128
/* MIPS sign extends its 32 bit addresses.  We could conceivably use
129
   extract_typed_address here, but to do so, we'd have to construct an
130
   appropriate type.  Calling extract_signed_integer seems simpler.  */
131
 
132
static CORE_ADDR
133
extract_mips_address (void *addr, int len, enum bfd_endian byte_order)
134
{
135
  return extract_signed_integer (addr, len, byte_order);
136
}
137
 
138
/* Fetch and return the link map data associated with ADDR.  Note that
139
   this routine automatically determines which (of three) link map
140
   formats is in use by the target.  */
141
 
142
static struct lm_info
143
fetch_lm_info (CORE_ADDR addr)
144
{
145
  enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch);
146
  struct lm_info li;
147
  union irix_obj_info buf;
148
 
149
  li.addr = addr;
150
 
151
  /* The smallest region that we'll need is for buf.ol32.  We'll read
152
     that first.  We'll read more of the buffer later if we have to deal
153
     with one of the other cases.  (We don't want to incur a memory error
154
     if we were to read a larger region that generates an error due to
155
     being at the end of a page or the like.)  */
156
  read_memory (addr, (char *) &buf, sizeof (buf.ol32));
157
 
158
  if (extract_unsigned_integer (buf.magic.b, sizeof (buf.magic), byte_order)
159
      != 0xffffffff)
160
    {
161
      /* Use buf.ol32... */
162
      char obj_buf[432];
163
      CORE_ADDR obj_addr = extract_mips_address (&buf.ol32.data,
164
                                                 sizeof (buf.ol32.data),
165
                                                 byte_order);
166
 
167
      li.next = extract_mips_address (&buf.ol32.next,
168
                                      sizeof (buf.ol32.next), byte_order);
169
 
170
      read_memory (obj_addr, obj_buf, sizeof (obj_buf));
171
 
172
      li.pathname_addr = extract_mips_address (&obj_buf[236], 4, byte_order);
173
      li.pathname_len = 0;       /* unknown */
174
      li.reloc_offset = extract_mips_address (&obj_buf[196], 4, byte_order)
175
        - extract_mips_address (&obj_buf[248], 4, byte_order);
176
 
177
    }
178
  else if (extract_unsigned_integer (buf.oi32.oi_size.b,
179
                                     sizeof (buf.oi32.oi_size), byte_order)
180
           == sizeof (buf.oi32))
181
    {
182
      /* Use buf.oi32...  */
183
 
184
      /* Read rest of buffer.  */
185
      read_memory (addr + sizeof (buf.ol32),
186
                   ((char *) &buf) + sizeof (buf.ol32),
187
                   sizeof (buf.oi32) - sizeof (buf.ol32));
188
 
189
      /* Fill in fields using buffer contents.  */
190
      li.next = extract_mips_address (&buf.oi32.oi_next,
191
                                      sizeof (buf.oi32.oi_next), byte_order);
192
      li.reloc_offset = extract_mips_address (&buf.oi32.oi_ehdr,
193
                                              sizeof (buf.oi32.oi_ehdr),
194
                                              byte_order)
195
        - extract_mips_address (&buf.oi32.oi_orig_ehdr,
196
                                sizeof (buf.oi32.oi_orig_ehdr), byte_order);
197
      li.pathname_addr = extract_mips_address (&buf.oi32.oi_pathname,
198
                                               sizeof (buf.oi32.oi_pathname),
199
                                               byte_order);
200
      li.pathname_len = extract_unsigned_integer (buf.oi32.oi_pathname_len.b,
201
                                                  sizeof (buf.oi32.
202
                                                          oi_pathname_len),
203
                                                  byte_order);
204
    }
205
  else if (extract_unsigned_integer (buf.oi64.oi_size.b,
206
                                     sizeof (buf.oi64.oi_size), byte_order)
207
           == sizeof (buf.oi64))
208
    {
209
      /* Use buf.oi64...  */
210
 
211
      /* Read rest of buffer.  */
212
      read_memory (addr + sizeof (buf.ol32),
213
                   ((char *) &buf) + sizeof (buf.ol32),
214
                   sizeof (buf.oi64) - sizeof (buf.ol32));
215
 
216
      /* Fill in fields using buffer contents.  */
217
      li.next = extract_mips_address (&buf.oi64.oi_next,
218
                                      sizeof (buf.oi64.oi_next), byte_order);
219
      li.reloc_offset = extract_mips_address (&buf.oi64.oi_ehdr,
220
                                              sizeof (buf.oi64.oi_ehdr),
221
                                              byte_order)
222
        - extract_mips_address (&buf.oi64.oi_orig_ehdr,
223
                                sizeof (buf.oi64.oi_orig_ehdr), byte_order);
224
      li.pathname_addr = extract_mips_address (&buf.oi64.oi_pathname,
225
                                               sizeof (buf.oi64.oi_pathname),
226
                                               byte_order);
227
      li.pathname_len = extract_unsigned_integer (buf.oi64.oi_pathname_len.b,
228
                                                  sizeof (buf.oi64.
229
                                                          oi_pathname_len),
230
                                                  byte_order);
231
    }
232
  else
233
    {
234
      error (_("Unable to fetch shared library obj_info or obj_list info."));
235
    }
236
 
237
  return li;
238
}
239
 
240
/* The symbol which starts off the list of shared libraries.  */
241
#define DEBUG_BASE "__rld_obj_head"
242
 
243
static void *base_breakpoint;
244
 
245
static CORE_ADDR debug_base;    /* Base of dynamic linker structures */
246
 
247
/*
248
 
249
   LOCAL FUNCTION
250
 
251
   locate_base -- locate the base address of dynamic linker structs
252
 
253
   SYNOPSIS
254
 
255
   CORE_ADDR locate_base (void)
256
 
257
   DESCRIPTION
258
 
259
   For both the SunOS and SVR4 shared library implementations, if the
260
   inferior executable has been linked dynamically, there is a single
261
   address somewhere in the inferior's data space which is the key to
262
   locating all of the dynamic linker's runtime structures.  This
263
   address is the value of the symbol defined by the macro DEBUG_BASE.
264
   The job of this function is to find and return that address, or to
265
   return 0 if there is no such address (the executable is statically
266
   linked for example).
267
 
268
   For SunOS, the job is almost trivial, since the dynamic linker and
269
   all of it's structures are statically linked to the executable at
270
   link time.  Thus the symbol for the address we are looking for has
271
   already been added to the minimal symbol table for the executable's
272
   objfile at the time the symbol file's symbols were read, and all we
273
   have to do is look it up there.  Note that we explicitly do NOT want
274
   to find the copies in the shared library.
275
 
276
   The SVR4 version is much more complicated because the dynamic linker
277
   and it's structures are located in the shared C library, which gets
278
   run as the executable's "interpreter" by the kernel.  We have to go
279
   to a lot more work to discover the address of DEBUG_BASE.  Because
280
   of this complexity, we cache the value we find and return that value
281
   on subsequent invocations.  Note there is no copy in the executable
282
   symbol tables.
283
 
284
   Irix 5 is basically like SunOS.
285
 
286
   Note that we can assume nothing about the process state at the time
287
   we need to find this address.  We may be stopped on the first instruc-
288
   tion of the interpreter (C shared library), the first instruction of
289
   the executable itself, or somewhere else entirely (if we attached
290
   to the process for example).
291
 
292
 */
293
 
294
static CORE_ADDR
295
locate_base (void)
296
{
297
  struct minimal_symbol *msymbol;
298
  CORE_ADDR address = 0;
299
 
300
  msymbol = lookup_minimal_symbol (DEBUG_BASE, NULL, symfile_objfile);
301
  if ((msymbol != NULL) && (SYMBOL_VALUE_ADDRESS (msymbol) != 0))
302
    {
303
      address = SYMBOL_VALUE_ADDRESS (msymbol);
304
    }
305
  return (address);
306
}
307
 
308
/*
309
 
310
   LOCAL FUNCTION
311
 
312
   disable_break -- remove the "mapping changed" breakpoint
313
 
314
   SYNOPSIS
315
 
316
   static int disable_break ()
317
 
318
   DESCRIPTION
319
 
320
   Removes the breakpoint that gets hit when the dynamic linker
321
   completes a mapping change.
322
 
323
 */
324
 
325
static int
326
disable_break (void)
327
{
328
  int status = 1;
329
 
330
  /* Note that breakpoint address and original contents are in our address
331
     space, so we just need to write the original contents back. */
332
 
333
  if (deprecated_remove_raw_breakpoint (target_gdbarch, base_breakpoint) != 0)
334
    {
335
      status = 0;
336
    }
337
 
338
  base_breakpoint = NULL;
339
 
340
  /* Note that it is possible that we have stopped at a location that
341
     is different from the location where we inserted our breakpoint.
342
     On mips-irix, we can actually land in __dbx_init(), so we should
343
     not check the PC against our breakpoint address here.  See procfs.c
344
     for more details.  */
345
 
346
  return (status);
347
}
348
 
349
/*
350
 
351
   LOCAL FUNCTION
352
 
353
   enable_break -- arrange for dynamic linker to hit breakpoint
354
 
355
   SYNOPSIS
356
 
357
   int enable_break (void)
358
 
359
   DESCRIPTION
360
 
361
   This functions inserts a breakpoint at the entry point of the
362
   main executable, where all shared libraries are mapped in.
363
 */
364
 
365
static int
366
enable_break (void)
367
{
368
  if (symfile_objfile != NULL && has_stack_frames ())
369
    {
370
      struct frame_info *frame = get_current_frame ();
371
      struct address_space *aspace = get_frame_address_space (frame);
372
      CORE_ADDR entry_point;
373
 
374
      if (!entry_point_address_query (&entry_point))
375
        return 0;
376
 
377
      base_breakpoint = deprecated_insert_raw_breakpoint (target_gdbarch,
378
                                                          aspace, entry_point);
379
 
380
      if (base_breakpoint != NULL)
381
        return 1;
382
    }
383
 
384
  return 0;
385
}
386
 
387
/*
388
 
389
   LOCAL FUNCTION
390
 
391
   irix_solib_create_inferior_hook -- shared library startup support
392
 
393
   SYNOPSIS
394
 
395
   void solib_create_inferior_hook (int from_tty)
396
 
397
   DESCRIPTION
398
 
399
   When gdb starts up the inferior, it nurses it along (through the
400
   shell) until it is ready to execute it's first instruction.  At this
401
   point, this function gets called via expansion of the macro
402
   SOLIB_CREATE_INFERIOR_HOOK.
403
 
404
   For SunOS executables, this first instruction is typically the
405
   one at "_start", or a similar text label, regardless of whether
406
   the executable is statically or dynamically linked.  The runtime
407
   startup code takes care of dynamically linking in any shared
408
   libraries, once gdb allows the inferior to continue.
409
 
410
   For SVR4 executables, this first instruction is either the first
411
   instruction in the dynamic linker (for dynamically linked
412
   executables) or the instruction at "start" for statically linked
413
   executables.  For dynamically linked executables, the system
414
   first exec's /lib/libc.so.N, which contains the dynamic linker,
415
   and starts it running.  The dynamic linker maps in any needed
416
   shared libraries, maps in the actual user executable, and then
417
   jumps to "start" in the user executable.
418
 
419
   For both SunOS shared libraries, and SVR4 shared libraries, we
420
   can arrange to cooperate with the dynamic linker to discover the
421
   names of shared libraries that are dynamically linked, and the
422
   base addresses to which they are linked.
423
 
424
   This function is responsible for discovering those names and
425
   addresses, and saving sufficient information about them to allow
426
   their symbols to be read at a later time.
427
 
428
   FIXME
429
 
430
   Between enable_break() and disable_break(), this code does not
431
   properly handle hitting breakpoints which the user might have
432
   set in the startup code or in the dynamic linker itself.  Proper
433
   handling will probably have to wait until the implementation is
434
   changed to use the "breakpoint handler function" method.
435
 
436
   Also, what if child has exit()ed?  Must exit loop somehow.
437
 */
438
 
439
static void
440
irix_solib_create_inferior_hook (int from_tty)
441
{
442
  struct inferior *inf;
443
  struct thread_info *tp;
444
 
445
  inf = current_inferior ();
446
 
447
  /* If we are attaching to the inferior, the shared libraries
448
     have already been mapped, so nothing more to do.  */
449
  if (inf->attach_flag)
450
    return;
451
 
452
  /* Likewise when debugging from a core file, the shared libraries
453
     have already been mapped, so nothing more to do.  */
454
  if (!target_can_run (&current_target))
455
    return;
456
 
457
  if (!enable_break ())
458
    {
459
      warning (_("shared library handler failed to enable breakpoint"));
460
      return;
461
    }
462
 
463
  /* Now run the target.  It will eventually hit the breakpoint, at
464
     which point all of the libraries will have been mapped in and we
465
     can go groveling around in the dynamic linker structures to find
466
     out what we need to know about them. */
467
 
468
  tp = inferior_thread ();
469
 
470
  clear_proceed_status ();
471
 
472
  inf->stop_soon = STOP_QUIETLY;
473
  tp->stop_signal = TARGET_SIGNAL_0;
474
 
475
  do
476
    {
477
      target_resume (pid_to_ptid (-1), 0, tp->stop_signal);
478
      wait_for_inferior (0);
479
    }
480
  while (tp->stop_signal != TARGET_SIGNAL_TRAP);
481
 
482
  /* We are now either at the "mapping complete" breakpoint (or somewhere
483
     else, a condition we aren't prepared to deal with anyway), so adjust
484
     the PC as necessary after a breakpoint, disable the breakpoint, and
485
     add any shared libraries that were mapped in. */
486
 
487
  if (!disable_break ())
488
    {
489
      warning (_("shared library handler failed to disable breakpoint"));
490
    }
491
 
492
  /* solib_add will call reinit_frame_cache.
493
     But we are stopped in the startup code and we might not have symbols
494
     for the startup code, so heuristic_proc_start could be called
495
     and will put out an annoying warning.
496
     Delaying the resetting of stop_soon until after symbol loading
497
     suppresses the warning.  */
498
  solib_add ((char *) 0, 0, (struct target_ops *) 0, auto_solib_add);
499
  inf->stop_soon = NO_STOP_QUIETLY;
500
}
501
 
502
/* LOCAL FUNCTION
503
 
504
   current_sos -- build a list of currently loaded shared objects
505
 
506
   SYNOPSIS
507
 
508
   struct so_list *current_sos ()
509
 
510
   DESCRIPTION
511
 
512
   Build a list of `struct so_list' objects describing the shared
513
   objects currently loaded in the inferior.  This list does not
514
   include an entry for the main executable file.
515
 
516
   Note that we only gather information directly available from the
517
   inferior --- we don't examine any of the shared library files
518
   themselves.  The declaration of `struct so_list' says which fields
519
   we provide values for.  */
520
 
521
static struct so_list *
522
irix_current_sos (void)
523
{
524
  enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch);
525
  int addr_size = gdbarch_addr_bit (target_gdbarch) / TARGET_CHAR_BIT;
526
  CORE_ADDR lma;
527
  char addr_buf[8];
528
  struct so_list *head = 0;
529
  struct so_list **link_ptr = &head;
530
  int is_first = 1;
531
  struct lm_info lm;
532
 
533
  /* Make sure we've looked up the inferior's dynamic linker's base
534
     structure.  */
535
  if (!debug_base)
536
    {
537
      debug_base = locate_base ();
538
 
539
      /* If we can't find the dynamic linker's base structure, this
540
         must not be a dynamically linked executable.  Hmm.  */
541
      if (!debug_base)
542
        return 0;
543
    }
544
 
545
  read_memory (debug_base, addr_buf, addr_size);
546
  lma = extract_mips_address (addr_buf, addr_size, byte_order);
547
 
548
  while (lma)
549
    {
550
      lm = fetch_lm_info (lma);
551
      if (!is_first)
552
        {
553
          int errcode;
554
          char *name_buf;
555
          int name_size;
556
          struct so_list *new
557
            = (struct so_list *) xmalloc (sizeof (struct so_list));
558
          struct cleanup *old_chain = make_cleanup (xfree, new);
559
 
560
          memset (new, 0, sizeof (*new));
561
 
562
          new->lm_info = xmalloc (sizeof (struct lm_info));
563
          make_cleanup (xfree, new->lm_info);
564
 
565
          *new->lm_info = lm;
566
 
567
          /* Extract this shared object's name.  */
568
          name_size = lm.pathname_len;
569
          if (name_size == 0)
570
            name_size = SO_NAME_MAX_PATH_SIZE - 1;
571
 
572
          if (name_size >= SO_NAME_MAX_PATH_SIZE)
573
            {
574
              name_size = SO_NAME_MAX_PATH_SIZE - 1;
575
              warning
576
                ("current_sos: truncating name of %d characters to only %d characters",
577
                 lm.pathname_len, name_size);
578
            }
579
 
580
          target_read_string (lm.pathname_addr, &name_buf,
581
                              name_size, &errcode);
582
          if (errcode != 0)
583
            warning (_("Can't read pathname for load map: %s."),
584
                       safe_strerror (errcode));
585
          else
586
            {
587
              strncpy (new->so_name, name_buf, name_size);
588
              new->so_name[name_size] = '\0';
589
              xfree (name_buf);
590
              strcpy (new->so_original_name, new->so_name);
591
            }
592
 
593
          new->next = 0;
594
          *link_ptr = new;
595
          link_ptr = &new->next;
596
 
597
          discard_cleanups (old_chain);
598
        }
599
      is_first = 0;
600
      lma = lm.next;
601
    }
602
 
603
  return head;
604
}
605
 
606
/*
607
 
608
  LOCAL FUNCTION
609
 
610
  irix_open_symbol_file_object
611
 
612
  SYNOPSIS
613
 
614
  void irix_open_symbol_file_object (void *from_tty)
615
 
616
  DESCRIPTION
617
 
618
  If no open symbol file, attempt to locate and open the main symbol
619
  file.  On IRIX, this is the first link map entry.  If its name is
620
  here, we can open it.  Useful when attaching to a process without
621
  first loading its symbol file.
622
 
623
  If FROM_TTYP dereferences to a non-zero integer, allow messages to
624
  be printed.  This parameter is a pointer rather than an int because
625
  open_symbol_file_object() is called via catch_errors() and
626
  catch_errors() requires a pointer argument. */
627
 
628
static int
629
irix_open_symbol_file_object (void *from_ttyp)
630
{
631
  enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch);
632
  int addr_size = gdbarch_addr_bit (target_gdbarch) / TARGET_CHAR_BIT;
633
  CORE_ADDR lma;
634
  char addr_buf[8];
635
  struct lm_info lm;
636
  struct cleanup *cleanups;
637
  int errcode;
638
  int from_tty = *(int *) from_ttyp;
639
  char *filename;
640
 
641
  if (symfile_objfile)
642
    if (!query (_("Attempt to reload symbols from process? ")))
643
      return 0;
644
 
645
  if ((debug_base = locate_base ()) == 0)
646
    return 0;                    /* failed somehow...  */
647
 
648
  /* First link map member should be the executable.  */
649
  read_memory (debug_base, addr_buf, addr_size);
650
  lma = extract_mips_address (addr_buf, addr_size, byte_order);
651
  if (lma == 0)
652
    return 0;                    /* failed somehow...  */
653
 
654
  lm = fetch_lm_info (lma);
655
 
656
  if (lm.pathname_addr == 0)
657
    return 0;                    /* No filename.  */
658
 
659
  /* Now fetch the filename from target memory.  */
660
  target_read_string (lm.pathname_addr, &filename, SO_NAME_MAX_PATH_SIZE - 1,
661
                      &errcode);
662
 
663
  if (errcode)
664
    {
665
      warning (_("failed to read exec filename from attached file: %s"),
666
               safe_strerror (errcode));
667
      return 0;
668
    }
669
 
670
  cleanups = make_cleanup (xfree, filename);
671
  /* Have a pathname: read the symbol file.  */
672
  symbol_file_add_main (filename, from_tty);
673
 
674
  do_cleanups (cleanups);
675
 
676
  return 1;
677
}
678
 
679
 
680
/*
681
 
682
   LOCAL FUNCTION
683
 
684
   irix_special_symbol_handling -- additional shared library symbol handling
685
 
686
   SYNOPSIS
687
 
688
   void irix_special_symbol_handling ()
689
 
690
   DESCRIPTION
691
 
692
   Once the symbols from a shared object have been loaded in the usual
693
   way, we are called to do any system specific symbol handling that
694
   is needed.
695
 
696
   For SunOS4, this consisted of grunging around in the dynamic
697
   linkers structures to find symbol definitions for "common" symbols
698
   and adding them to the minimal symbol table for the runtime common
699
   objfile.
700
 
701
   However, for IRIX, there's nothing to do.
702
 
703
 */
704
 
705
static void
706
irix_special_symbol_handling (void)
707
{
708
}
709
 
710
/* Using the solist entry SO, relocate the addresses in SEC.  */
711
 
712
static void
713
irix_relocate_section_addresses (struct so_list *so,
714
                                 struct target_section *sec)
715
{
716
  sec->addr += so->lm_info->reloc_offset;
717
  sec->endaddr += so->lm_info->reloc_offset;
718
}
719
 
720
/* Free the lm_info struct.  */
721
 
722
static void
723
irix_free_so (struct so_list *so)
724
{
725
  xfree (so->lm_info);
726
}
727
 
728
/* Clear backend specific state.  */
729
 
730
static void
731
irix_clear_solib (void)
732
{
733
  debug_base = 0;
734
}
735
 
736
/* Return 1 if PC lies in the dynamic symbol resolution code of the
737
   run time loader.  */
738
static int
739
irix_in_dynsym_resolve_code (CORE_ADDR pc)
740
{
741
  return 0;
742
}
743
 
744
struct target_so_ops irix_so_ops;
745
 
746
/* Provide a prototype to silence -Wmissing-prototypes.  */
747
extern initialize_file_ftype _initialize_irix_solib;
748
 
749
void
750
_initialize_irix_solib (void)
751
{
752
  irix_so_ops.relocate_section_addresses = irix_relocate_section_addresses;
753
  irix_so_ops.free_so = irix_free_so;
754
  irix_so_ops.clear_solib = irix_clear_solib;
755
  irix_so_ops.solib_create_inferior_hook = irix_solib_create_inferior_hook;
756
  irix_so_ops.special_symbol_handling = irix_special_symbol_handling;
757
  irix_so_ops.current_sos = irix_current_sos;
758
  irix_so_ops.open_symbol_file_object = irix_open_symbol_file_object;
759
  irix_so_ops.in_dynsym_resolve_code = irix_in_dynsym_resolve_code;
760
  irix_so_ops.bfd_open = solib_bfd_open;
761
}

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.