1 |
330 |
jeremybenn |
/* Handle SVR4 shared libraries for GDB, the GNU Debugger.
|
2 |
|
|
|
3 |
|
|
Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1998, 1999, 2000,
|
4 |
|
|
2001, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
|
5 |
|
|
Free Software Foundation, Inc.
|
6 |
|
|
|
7 |
|
|
This file is part of GDB.
|
8 |
|
|
|
9 |
|
|
This program is free software; you can redistribute it and/or modify
|
10 |
|
|
it under the terms of the GNU General Public License as published by
|
11 |
|
|
the Free Software Foundation; either version 3 of the License, or
|
12 |
|
|
(at your option) any later version.
|
13 |
|
|
|
14 |
|
|
This program is distributed in the hope that it will be useful,
|
15 |
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
16 |
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
17 |
|
|
GNU General Public License for more details.
|
18 |
|
|
|
19 |
|
|
You should have received a copy of the GNU General Public License
|
20 |
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>. */
|
21 |
|
|
|
22 |
|
|
#include "defs.h"
|
23 |
|
|
|
24 |
|
|
#include "elf/external.h"
|
25 |
|
|
#include "elf/common.h"
|
26 |
|
|
#include "elf/mips.h"
|
27 |
|
|
|
28 |
|
|
#include "symtab.h"
|
29 |
|
|
#include "bfd.h"
|
30 |
|
|
#include "symfile.h"
|
31 |
|
|
#include "objfiles.h"
|
32 |
|
|
#include "gdbcore.h"
|
33 |
|
|
#include "target.h"
|
34 |
|
|
#include "inferior.h"
|
35 |
|
|
#include "regcache.h"
|
36 |
|
|
#include "gdbthread.h"
|
37 |
|
|
#include "observer.h"
|
38 |
|
|
|
39 |
|
|
#include "gdb_assert.h"
|
40 |
|
|
|
41 |
|
|
#include "solist.h"
|
42 |
|
|
#include "solib.h"
|
43 |
|
|
#include "solib-svr4.h"
|
44 |
|
|
|
45 |
|
|
#include "bfd-target.h"
|
46 |
|
|
#include "elf-bfd.h"
|
47 |
|
|
#include "exec.h"
|
48 |
|
|
#include "auxv.h"
|
49 |
|
|
#include "exceptions.h"
|
50 |
|
|
|
51 |
|
|
static struct link_map_offsets *svr4_fetch_link_map_offsets (void);
|
52 |
|
|
static int svr4_have_link_map_offsets (void);
|
53 |
|
|
static void svr4_relocate_main_executable (void);
|
54 |
|
|
|
55 |
|
|
/* Link map info to include in an allocated so_list entry */
|
56 |
|
|
|
57 |
|
|
struct lm_info
|
58 |
|
|
{
|
59 |
|
|
/* Pointer to copy of link map from inferior. The type is char *
|
60 |
|
|
rather than void *, so that we may use byte offsets to find the
|
61 |
|
|
various fields without the need for a cast. */
|
62 |
|
|
gdb_byte *lm;
|
63 |
|
|
|
64 |
|
|
/* Amount by which addresses in the binary should be relocated to
|
65 |
|
|
match the inferior. This could most often be taken directly
|
66 |
|
|
from lm, but when prelinking is involved and the prelink base
|
67 |
|
|
address changes, we may need a different offset, we want to
|
68 |
|
|
warn about the difference and compute it only once. */
|
69 |
|
|
CORE_ADDR l_addr;
|
70 |
|
|
|
71 |
|
|
/* The target location of lm. */
|
72 |
|
|
CORE_ADDR lm_addr;
|
73 |
|
|
};
|
74 |
|
|
|
75 |
|
|
/* On SVR4 systems, a list of symbols in the dynamic linker where
|
76 |
|
|
GDB can try to place a breakpoint to monitor shared library
|
77 |
|
|
events.
|
78 |
|
|
|
79 |
|
|
If none of these symbols are found, or other errors occur, then
|
80 |
|
|
SVR4 systems will fall back to using a symbol as the "startup
|
81 |
|
|
mapping complete" breakpoint address. */
|
82 |
|
|
|
83 |
|
|
static char *solib_break_names[] =
|
84 |
|
|
{
|
85 |
|
|
"r_debug_state",
|
86 |
|
|
"_r_debug_state",
|
87 |
|
|
"_dl_debug_state",
|
88 |
|
|
"rtld_db_dlactivity",
|
89 |
|
|
"__dl_rtld_db_dlactivity",
|
90 |
|
|
"_rtld_debug_state",
|
91 |
|
|
|
92 |
|
|
NULL
|
93 |
|
|
};
|
94 |
|
|
|
95 |
|
|
static char *bkpt_names[] =
|
96 |
|
|
{
|
97 |
|
|
"_start",
|
98 |
|
|
"__start",
|
99 |
|
|
"main",
|
100 |
|
|
NULL
|
101 |
|
|
};
|
102 |
|
|
|
103 |
|
|
static char *main_name_list[] =
|
104 |
|
|
{
|
105 |
|
|
"main_$main",
|
106 |
|
|
NULL
|
107 |
|
|
};
|
108 |
|
|
|
109 |
|
|
/* Return non-zero if GDB_SO_NAME and INFERIOR_SO_NAME represent
|
110 |
|
|
the same shared library. */
|
111 |
|
|
|
112 |
|
|
static int
|
113 |
|
|
svr4_same_1 (const char *gdb_so_name, const char *inferior_so_name)
|
114 |
|
|
{
|
115 |
|
|
if (strcmp (gdb_so_name, inferior_so_name) == 0)
|
116 |
|
|
return 1;
|
117 |
|
|
|
118 |
|
|
/* On Solaris, when starting inferior we think that dynamic linker is
|
119 |
|
|
/usr/lib/ld.so.1, but later on, the table of loaded shared libraries
|
120 |
|
|
contains /lib/ld.so.1. Sometimes one file is a link to another, but
|
121 |
|
|
sometimes they have identical content, but are not linked to each
|
122 |
|
|
other. We don't restrict this check for Solaris, but the chances
|
123 |
|
|
of running into this situation elsewhere are very low. */
|
124 |
|
|
if (strcmp (gdb_so_name, "/usr/lib/ld.so.1") == 0
|
125 |
|
|
&& strcmp (inferior_so_name, "/lib/ld.so.1") == 0)
|
126 |
|
|
return 1;
|
127 |
|
|
|
128 |
|
|
/* Similarly, we observed the same issue with sparc64, but with
|
129 |
|
|
different locations. */
|
130 |
|
|
if (strcmp (gdb_so_name, "/usr/lib/sparcv9/ld.so.1") == 0
|
131 |
|
|
&& strcmp (inferior_so_name, "/lib/sparcv9/ld.so.1") == 0)
|
132 |
|
|
return 1;
|
133 |
|
|
|
134 |
|
|
return 0;
|
135 |
|
|
}
|
136 |
|
|
|
137 |
|
|
static int
|
138 |
|
|
svr4_same (struct so_list *gdb, struct so_list *inferior)
|
139 |
|
|
{
|
140 |
|
|
return (svr4_same_1 (gdb->so_original_name, inferior->so_original_name));
|
141 |
|
|
}
|
142 |
|
|
|
143 |
|
|
/* link map access functions */
|
144 |
|
|
|
145 |
|
|
static CORE_ADDR
|
146 |
|
|
LM_ADDR_FROM_LINK_MAP (struct so_list *so)
|
147 |
|
|
{
|
148 |
|
|
struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
|
149 |
|
|
struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
|
150 |
|
|
|
151 |
|
|
return extract_typed_address (so->lm_info->lm + lmo->l_addr_offset,
|
152 |
|
|
ptr_type);
|
153 |
|
|
}
|
154 |
|
|
|
155 |
|
|
static int
|
156 |
|
|
HAS_LM_DYNAMIC_FROM_LINK_MAP (void)
|
157 |
|
|
{
|
158 |
|
|
struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
|
159 |
|
|
|
160 |
|
|
return lmo->l_ld_offset >= 0;
|
161 |
|
|
}
|
162 |
|
|
|
163 |
|
|
static CORE_ADDR
|
164 |
|
|
LM_DYNAMIC_FROM_LINK_MAP (struct so_list *so)
|
165 |
|
|
{
|
166 |
|
|
struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
|
167 |
|
|
struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
|
168 |
|
|
|
169 |
|
|
return extract_typed_address (so->lm_info->lm + lmo->l_ld_offset,
|
170 |
|
|
ptr_type);
|
171 |
|
|
}
|
172 |
|
|
|
173 |
|
|
static CORE_ADDR
|
174 |
|
|
LM_ADDR_CHECK (struct so_list *so, bfd *abfd)
|
175 |
|
|
{
|
176 |
|
|
if (so->lm_info->l_addr == (CORE_ADDR)-1)
|
177 |
|
|
{
|
178 |
|
|
struct bfd_section *dyninfo_sect;
|
179 |
|
|
CORE_ADDR l_addr, l_dynaddr, dynaddr;
|
180 |
|
|
|
181 |
|
|
l_addr = LM_ADDR_FROM_LINK_MAP (so);
|
182 |
|
|
|
183 |
|
|
if (! abfd || ! HAS_LM_DYNAMIC_FROM_LINK_MAP ())
|
184 |
|
|
goto set_addr;
|
185 |
|
|
|
186 |
|
|
l_dynaddr = LM_DYNAMIC_FROM_LINK_MAP (so);
|
187 |
|
|
|
188 |
|
|
dyninfo_sect = bfd_get_section_by_name (abfd, ".dynamic");
|
189 |
|
|
if (dyninfo_sect == NULL)
|
190 |
|
|
goto set_addr;
|
191 |
|
|
|
192 |
|
|
dynaddr = bfd_section_vma (abfd, dyninfo_sect);
|
193 |
|
|
|
194 |
|
|
if (dynaddr + l_addr != l_dynaddr)
|
195 |
|
|
{
|
196 |
|
|
CORE_ADDR align = 0x1000;
|
197 |
|
|
CORE_ADDR minpagesize = align;
|
198 |
|
|
|
199 |
|
|
if (bfd_get_flavour (abfd) == bfd_target_elf_flavour)
|
200 |
|
|
{
|
201 |
|
|
Elf_Internal_Ehdr *ehdr = elf_tdata (abfd)->elf_header;
|
202 |
|
|
Elf_Internal_Phdr *phdr = elf_tdata (abfd)->phdr;
|
203 |
|
|
int i;
|
204 |
|
|
|
205 |
|
|
align = 1;
|
206 |
|
|
|
207 |
|
|
for (i = 0; i < ehdr->e_phnum; i++)
|
208 |
|
|
if (phdr[i].p_type == PT_LOAD && phdr[i].p_align > align)
|
209 |
|
|
align = phdr[i].p_align;
|
210 |
|
|
|
211 |
|
|
minpagesize = get_elf_backend_data (abfd)->minpagesize;
|
212 |
|
|
}
|
213 |
|
|
|
214 |
|
|
/* Turn it into a mask. */
|
215 |
|
|
align--;
|
216 |
|
|
|
217 |
|
|
/* If the changes match the alignment requirements, we
|
218 |
|
|
assume we're using a core file that was generated by the
|
219 |
|
|
same binary, just prelinked with a different base offset.
|
220 |
|
|
If it doesn't match, we may have a different binary, the
|
221 |
|
|
same binary with the dynamic table loaded at an unrelated
|
222 |
|
|
location, or anything, really. To avoid regressions,
|
223 |
|
|
don't adjust the base offset in the latter case, although
|
224 |
|
|
odds are that, if things really changed, debugging won't
|
225 |
|
|
quite work.
|
226 |
|
|
|
227 |
|
|
One could expect more the condition
|
228 |
|
|
((l_addr & align) == 0 && ((l_dynaddr - dynaddr) & align) == 0)
|
229 |
|
|
but the one below is relaxed for PPC. The PPC kernel supports
|
230 |
|
|
either 4k or 64k page sizes. To be prepared for 64k pages,
|
231 |
|
|
PPC ELF files are built using an alignment requirement of 64k.
|
232 |
|
|
However, when running on a kernel supporting 4k pages, the memory
|
233 |
|
|
mapping of the library may not actually happen on a 64k boundary!
|
234 |
|
|
|
235 |
|
|
(In the usual case where (l_addr & align) == 0, this check is
|
236 |
|
|
equivalent to the possibly expected check above.)
|
237 |
|
|
|
238 |
|
|
Even on PPC it must be zero-aligned at least for MINPAGESIZE. */
|
239 |
|
|
|
240 |
|
|
if ((l_addr & (minpagesize - 1)) == 0
|
241 |
|
|
&& (l_addr & align) == ((l_dynaddr - dynaddr) & align))
|
242 |
|
|
{
|
243 |
|
|
l_addr = l_dynaddr - dynaddr;
|
244 |
|
|
|
245 |
|
|
if (info_verbose)
|
246 |
|
|
printf_unfiltered (_("Using PIC (Position Independent Code) "
|
247 |
|
|
"prelink displacement %s for \"%s\".\n"),
|
248 |
|
|
paddress (target_gdbarch, l_addr),
|
249 |
|
|
so->so_name);
|
250 |
|
|
}
|
251 |
|
|
else
|
252 |
|
|
warning (_(".dynamic section for \"%s\" "
|
253 |
|
|
"is not at the expected address "
|
254 |
|
|
"(wrong library or version mismatch?)"), so->so_name);
|
255 |
|
|
}
|
256 |
|
|
|
257 |
|
|
set_addr:
|
258 |
|
|
so->lm_info->l_addr = l_addr;
|
259 |
|
|
}
|
260 |
|
|
|
261 |
|
|
return so->lm_info->l_addr;
|
262 |
|
|
}
|
263 |
|
|
|
264 |
|
|
static CORE_ADDR
|
265 |
|
|
LM_NEXT (struct so_list *so)
|
266 |
|
|
{
|
267 |
|
|
struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
|
268 |
|
|
struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
|
269 |
|
|
|
270 |
|
|
return extract_typed_address (so->lm_info->lm + lmo->l_next_offset,
|
271 |
|
|
ptr_type);
|
272 |
|
|
}
|
273 |
|
|
|
274 |
|
|
static CORE_ADDR
|
275 |
|
|
LM_PREV (struct so_list *so)
|
276 |
|
|
{
|
277 |
|
|
struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
|
278 |
|
|
struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
|
279 |
|
|
|
280 |
|
|
return extract_typed_address (so->lm_info->lm + lmo->l_prev_offset,
|
281 |
|
|
ptr_type);
|
282 |
|
|
}
|
283 |
|
|
|
284 |
|
|
static CORE_ADDR
|
285 |
|
|
LM_NAME (struct so_list *so)
|
286 |
|
|
{
|
287 |
|
|
struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
|
288 |
|
|
struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
|
289 |
|
|
|
290 |
|
|
return extract_typed_address (so->lm_info->lm + lmo->l_name_offset,
|
291 |
|
|
ptr_type);
|
292 |
|
|
}
|
293 |
|
|
|
294 |
|
|
static int
|
295 |
|
|
IGNORE_FIRST_LINK_MAP_ENTRY (struct so_list *so)
|
296 |
|
|
{
|
297 |
|
|
/* Assume that everything is a library if the dynamic loader was loaded
|
298 |
|
|
late by a static executable. */
|
299 |
|
|
if (exec_bfd && bfd_get_section_by_name (exec_bfd, ".dynamic") == NULL)
|
300 |
|
|
return 0;
|
301 |
|
|
|
302 |
|
|
return LM_PREV (so) == 0;
|
303 |
|
|
}
|
304 |
|
|
|
305 |
|
|
/* Per pspace SVR4 specific data. */
|
306 |
|
|
|
307 |
|
|
struct svr4_info
|
308 |
|
|
{
|
309 |
|
|
CORE_ADDR debug_base; /* Base of dynamic linker structures */
|
310 |
|
|
|
311 |
|
|
/* Validity flag for debug_loader_offset. */
|
312 |
|
|
int debug_loader_offset_p;
|
313 |
|
|
|
314 |
|
|
/* Load address for the dynamic linker, inferred. */
|
315 |
|
|
CORE_ADDR debug_loader_offset;
|
316 |
|
|
|
317 |
|
|
/* Name of the dynamic linker, valid if debug_loader_offset_p. */
|
318 |
|
|
char *debug_loader_name;
|
319 |
|
|
|
320 |
|
|
/* Load map address for the main executable. */
|
321 |
|
|
CORE_ADDR main_lm_addr;
|
322 |
|
|
|
323 |
|
|
CORE_ADDR interp_text_sect_low;
|
324 |
|
|
CORE_ADDR interp_text_sect_high;
|
325 |
|
|
CORE_ADDR interp_plt_sect_low;
|
326 |
|
|
CORE_ADDR interp_plt_sect_high;
|
327 |
|
|
};
|
328 |
|
|
|
329 |
|
|
/* Per-program-space data key. */
|
330 |
|
|
static const struct program_space_data *solib_svr4_pspace_data;
|
331 |
|
|
|
332 |
|
|
static void
|
333 |
|
|
svr4_pspace_data_cleanup (struct program_space *pspace, void *arg)
|
334 |
|
|
{
|
335 |
|
|
struct svr4_info *info;
|
336 |
|
|
|
337 |
|
|
info = program_space_data (pspace, solib_svr4_pspace_data);
|
338 |
|
|
xfree (info);
|
339 |
|
|
}
|
340 |
|
|
|
341 |
|
|
/* Get the current svr4 data. If none is found yet, add it now. This
|
342 |
|
|
function always returns a valid object. */
|
343 |
|
|
|
344 |
|
|
static struct svr4_info *
|
345 |
|
|
get_svr4_info (void)
|
346 |
|
|
{
|
347 |
|
|
struct svr4_info *info;
|
348 |
|
|
|
349 |
|
|
info = program_space_data (current_program_space, solib_svr4_pspace_data);
|
350 |
|
|
if (info != NULL)
|
351 |
|
|
return info;
|
352 |
|
|
|
353 |
|
|
info = XZALLOC (struct svr4_info);
|
354 |
|
|
set_program_space_data (current_program_space, solib_svr4_pspace_data, info);
|
355 |
|
|
return info;
|
356 |
|
|
}
|
357 |
|
|
|
358 |
|
|
/* Local function prototypes */
|
359 |
|
|
|
360 |
|
|
static int match_main (char *);
|
361 |
|
|
|
362 |
|
|
static CORE_ADDR bfd_lookup_symbol (bfd *, char *);
|
363 |
|
|
|
364 |
|
|
/*
|
365 |
|
|
|
366 |
|
|
LOCAL FUNCTION
|
367 |
|
|
|
368 |
|
|
bfd_lookup_symbol -- lookup the value for a specific symbol
|
369 |
|
|
|
370 |
|
|
SYNOPSIS
|
371 |
|
|
|
372 |
|
|
CORE_ADDR bfd_lookup_symbol (bfd *abfd, char *symname)
|
373 |
|
|
|
374 |
|
|
DESCRIPTION
|
375 |
|
|
|
376 |
|
|
An expensive way to lookup the value of a single symbol for
|
377 |
|
|
bfd's that are only temporary anyway. This is used by the
|
378 |
|
|
shared library support to find the address of the debugger
|
379 |
|
|
notification routine in the shared library.
|
380 |
|
|
|
381 |
|
|
The returned symbol may be in a code or data section; functions
|
382 |
|
|
will normally be in a code section, but may be in a data section
|
383 |
|
|
if this architecture uses function descriptors.
|
384 |
|
|
|
385 |
|
|
Note that 0 is specifically allowed as an error return (no
|
386 |
|
|
such symbol).
|
387 |
|
|
*/
|
388 |
|
|
|
389 |
|
|
static CORE_ADDR
|
390 |
|
|
bfd_lookup_symbol (bfd *abfd, char *symname)
|
391 |
|
|
{
|
392 |
|
|
long storage_needed;
|
393 |
|
|
asymbol *sym;
|
394 |
|
|
asymbol **symbol_table;
|
395 |
|
|
unsigned int number_of_symbols;
|
396 |
|
|
unsigned int i;
|
397 |
|
|
struct cleanup *back_to;
|
398 |
|
|
CORE_ADDR symaddr = 0;
|
399 |
|
|
|
400 |
|
|
storage_needed = bfd_get_symtab_upper_bound (abfd);
|
401 |
|
|
|
402 |
|
|
if (storage_needed > 0)
|
403 |
|
|
{
|
404 |
|
|
symbol_table = (asymbol **) xmalloc (storage_needed);
|
405 |
|
|
back_to = make_cleanup (xfree, symbol_table);
|
406 |
|
|
number_of_symbols = bfd_canonicalize_symtab (abfd, symbol_table);
|
407 |
|
|
|
408 |
|
|
for (i = 0; i < number_of_symbols; i++)
|
409 |
|
|
{
|
410 |
|
|
sym = *symbol_table++;
|
411 |
|
|
if (strcmp (sym->name, symname) == 0
|
412 |
|
|
&& (sym->section->flags & (SEC_CODE | SEC_DATA)) != 0)
|
413 |
|
|
{
|
414 |
|
|
/* BFD symbols are section relative. */
|
415 |
|
|
symaddr = sym->value + sym->section->vma;
|
416 |
|
|
break;
|
417 |
|
|
}
|
418 |
|
|
}
|
419 |
|
|
do_cleanups (back_to);
|
420 |
|
|
}
|
421 |
|
|
|
422 |
|
|
if (symaddr)
|
423 |
|
|
return symaddr;
|
424 |
|
|
|
425 |
|
|
/* On FreeBSD, the dynamic linker is stripped by default. So we'll
|
426 |
|
|
have to check the dynamic string table too. */
|
427 |
|
|
|
428 |
|
|
storage_needed = bfd_get_dynamic_symtab_upper_bound (abfd);
|
429 |
|
|
|
430 |
|
|
if (storage_needed > 0)
|
431 |
|
|
{
|
432 |
|
|
symbol_table = (asymbol **) xmalloc (storage_needed);
|
433 |
|
|
back_to = make_cleanup (xfree, symbol_table);
|
434 |
|
|
number_of_symbols = bfd_canonicalize_dynamic_symtab (abfd, symbol_table);
|
435 |
|
|
|
436 |
|
|
for (i = 0; i < number_of_symbols; i++)
|
437 |
|
|
{
|
438 |
|
|
sym = *symbol_table++;
|
439 |
|
|
|
440 |
|
|
if (strcmp (sym->name, symname) == 0
|
441 |
|
|
&& (sym->section->flags & (SEC_CODE | SEC_DATA)) != 0)
|
442 |
|
|
{
|
443 |
|
|
/* BFD symbols are section relative. */
|
444 |
|
|
symaddr = sym->value + sym->section->vma;
|
445 |
|
|
break;
|
446 |
|
|
}
|
447 |
|
|
}
|
448 |
|
|
do_cleanups (back_to);
|
449 |
|
|
}
|
450 |
|
|
|
451 |
|
|
return symaddr;
|
452 |
|
|
}
|
453 |
|
|
|
454 |
|
|
|
455 |
|
|
/* Read program header TYPE from inferior memory. The header is found
|
456 |
|
|
by scanning the OS auxillary vector.
|
457 |
|
|
|
458 |
|
|
If TYPE == -1, return the program headers instead of the contents of
|
459 |
|
|
one program header.
|
460 |
|
|
|
461 |
|
|
Return a pointer to allocated memory holding the program header contents,
|
462 |
|
|
or NULL on failure. If sucessful, and unless P_SECT_SIZE is NULL, the
|
463 |
|
|
size of those contents is returned to P_SECT_SIZE. Likewise, the target
|
464 |
|
|
architecture size (32-bit or 64-bit) is returned to P_ARCH_SIZE. */
|
465 |
|
|
|
466 |
|
|
static gdb_byte *
|
467 |
|
|
read_program_header (int type, int *p_sect_size, int *p_arch_size)
|
468 |
|
|
{
|
469 |
|
|
enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch);
|
470 |
|
|
CORE_ADDR at_phdr, at_phent, at_phnum;
|
471 |
|
|
int arch_size, sect_size;
|
472 |
|
|
CORE_ADDR sect_addr;
|
473 |
|
|
gdb_byte *buf;
|
474 |
|
|
|
475 |
|
|
/* Get required auxv elements from target. */
|
476 |
|
|
if (target_auxv_search (¤t_target, AT_PHDR, &at_phdr) <= 0)
|
477 |
|
|
return 0;
|
478 |
|
|
if (target_auxv_search (¤t_target, AT_PHENT, &at_phent) <= 0)
|
479 |
|
|
return 0;
|
480 |
|
|
if (target_auxv_search (¤t_target, AT_PHNUM, &at_phnum) <= 0)
|
481 |
|
|
return 0;
|
482 |
|
|
if (!at_phdr || !at_phnum)
|
483 |
|
|
return 0;
|
484 |
|
|
|
485 |
|
|
/* Determine ELF architecture type. */
|
486 |
|
|
if (at_phent == sizeof (Elf32_External_Phdr))
|
487 |
|
|
arch_size = 32;
|
488 |
|
|
else if (at_phent == sizeof (Elf64_External_Phdr))
|
489 |
|
|
arch_size = 64;
|
490 |
|
|
else
|
491 |
|
|
return 0;
|
492 |
|
|
|
493 |
|
|
/* Find the requested segment. */
|
494 |
|
|
if (type == -1)
|
495 |
|
|
{
|
496 |
|
|
sect_addr = at_phdr;
|
497 |
|
|
sect_size = at_phent * at_phnum;
|
498 |
|
|
}
|
499 |
|
|
else if (arch_size == 32)
|
500 |
|
|
{
|
501 |
|
|
Elf32_External_Phdr phdr;
|
502 |
|
|
int i;
|
503 |
|
|
|
504 |
|
|
/* Search for requested PHDR. */
|
505 |
|
|
for (i = 0; i < at_phnum; i++)
|
506 |
|
|
{
|
507 |
|
|
if (target_read_memory (at_phdr + i * sizeof (phdr),
|
508 |
|
|
(gdb_byte *)&phdr, sizeof (phdr)))
|
509 |
|
|
return 0;
|
510 |
|
|
|
511 |
|
|
if (extract_unsigned_integer ((gdb_byte *)phdr.p_type,
|
512 |
|
|
4, byte_order) == type)
|
513 |
|
|
break;
|
514 |
|
|
}
|
515 |
|
|
|
516 |
|
|
if (i == at_phnum)
|
517 |
|
|
return 0;
|
518 |
|
|
|
519 |
|
|
/* Retrieve address and size. */
|
520 |
|
|
sect_addr = extract_unsigned_integer ((gdb_byte *)phdr.p_vaddr,
|
521 |
|
|
4, byte_order);
|
522 |
|
|
sect_size = extract_unsigned_integer ((gdb_byte *)phdr.p_memsz,
|
523 |
|
|
4, byte_order);
|
524 |
|
|
}
|
525 |
|
|
else
|
526 |
|
|
{
|
527 |
|
|
Elf64_External_Phdr phdr;
|
528 |
|
|
int i;
|
529 |
|
|
|
530 |
|
|
/* Search for requested PHDR. */
|
531 |
|
|
for (i = 0; i < at_phnum; i++)
|
532 |
|
|
{
|
533 |
|
|
if (target_read_memory (at_phdr + i * sizeof (phdr),
|
534 |
|
|
(gdb_byte *)&phdr, sizeof (phdr)))
|
535 |
|
|
return 0;
|
536 |
|
|
|
537 |
|
|
if (extract_unsigned_integer ((gdb_byte *)phdr.p_type,
|
538 |
|
|
4, byte_order) == type)
|
539 |
|
|
break;
|
540 |
|
|
}
|
541 |
|
|
|
542 |
|
|
if (i == at_phnum)
|
543 |
|
|
return 0;
|
544 |
|
|
|
545 |
|
|
/* Retrieve address and size. */
|
546 |
|
|
sect_addr = extract_unsigned_integer ((gdb_byte *)phdr.p_vaddr,
|
547 |
|
|
8, byte_order);
|
548 |
|
|
sect_size = extract_unsigned_integer ((gdb_byte *)phdr.p_memsz,
|
549 |
|
|
8, byte_order);
|
550 |
|
|
}
|
551 |
|
|
|
552 |
|
|
/* Read in requested program header. */
|
553 |
|
|
buf = xmalloc (sect_size);
|
554 |
|
|
if (target_read_memory (sect_addr, buf, sect_size))
|
555 |
|
|
{
|
556 |
|
|
xfree (buf);
|
557 |
|
|
return NULL;
|
558 |
|
|
}
|
559 |
|
|
|
560 |
|
|
if (p_arch_size)
|
561 |
|
|
*p_arch_size = arch_size;
|
562 |
|
|
if (p_sect_size)
|
563 |
|
|
*p_sect_size = sect_size;
|
564 |
|
|
|
565 |
|
|
return buf;
|
566 |
|
|
}
|
567 |
|
|
|
568 |
|
|
|
569 |
|
|
/* Return program interpreter string. */
|
570 |
|
|
static gdb_byte *
|
571 |
|
|
find_program_interpreter (void)
|
572 |
|
|
{
|
573 |
|
|
gdb_byte *buf = NULL;
|
574 |
|
|
|
575 |
|
|
/* If we have an exec_bfd, use its section table. */
|
576 |
|
|
if (exec_bfd
|
577 |
|
|
&& bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour)
|
578 |
|
|
{
|
579 |
|
|
struct bfd_section *interp_sect;
|
580 |
|
|
|
581 |
|
|
interp_sect = bfd_get_section_by_name (exec_bfd, ".interp");
|
582 |
|
|
if (interp_sect != NULL)
|
583 |
|
|
{
|
584 |
|
|
int sect_size = bfd_section_size (exec_bfd, interp_sect);
|
585 |
|
|
|
586 |
|
|
buf = xmalloc (sect_size);
|
587 |
|
|
bfd_get_section_contents (exec_bfd, interp_sect, buf, 0, sect_size);
|
588 |
|
|
}
|
589 |
|
|
}
|
590 |
|
|
|
591 |
|
|
/* If we didn't find it, use the target auxillary vector. */
|
592 |
|
|
if (!buf)
|
593 |
|
|
buf = read_program_header (PT_INTERP, NULL, NULL);
|
594 |
|
|
|
595 |
|
|
return buf;
|
596 |
|
|
}
|
597 |
|
|
|
598 |
|
|
|
599 |
|
|
/* Scan for DYNTAG in .dynamic section of ABFD. If DYNTAG is found 1 is
|
600 |
|
|
returned and the corresponding PTR is set. */
|
601 |
|
|
|
602 |
|
|
static int
|
603 |
|
|
scan_dyntag (int dyntag, bfd *abfd, CORE_ADDR *ptr)
|
604 |
|
|
{
|
605 |
|
|
int arch_size, step, sect_size;
|
606 |
|
|
long dyn_tag;
|
607 |
|
|
CORE_ADDR dyn_ptr, dyn_addr;
|
608 |
|
|
gdb_byte *bufend, *bufstart, *buf;
|
609 |
|
|
Elf32_External_Dyn *x_dynp_32;
|
610 |
|
|
Elf64_External_Dyn *x_dynp_64;
|
611 |
|
|
struct bfd_section *sect;
|
612 |
|
|
struct target_section *target_section;
|
613 |
|
|
|
614 |
|
|
if (abfd == NULL)
|
615 |
|
|
return 0;
|
616 |
|
|
|
617 |
|
|
if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
|
618 |
|
|
return 0;
|
619 |
|
|
|
620 |
|
|
arch_size = bfd_get_arch_size (abfd);
|
621 |
|
|
if (arch_size == -1)
|
622 |
|
|
return 0;
|
623 |
|
|
|
624 |
|
|
/* Find the start address of the .dynamic section. */
|
625 |
|
|
sect = bfd_get_section_by_name (abfd, ".dynamic");
|
626 |
|
|
if (sect == NULL)
|
627 |
|
|
return 0;
|
628 |
|
|
|
629 |
|
|
for (target_section = current_target_sections->sections;
|
630 |
|
|
target_section < current_target_sections->sections_end;
|
631 |
|
|
target_section++)
|
632 |
|
|
if (sect == target_section->the_bfd_section)
|
633 |
|
|
break;
|
634 |
|
|
if (target_section < current_target_sections->sections_end)
|
635 |
|
|
dyn_addr = target_section->addr;
|
636 |
|
|
else
|
637 |
|
|
{
|
638 |
|
|
/* ABFD may come from OBJFILE acting only as a symbol file without being
|
639 |
|
|
loaded into the target (see add_symbol_file_command). This case is
|
640 |
|
|
such fallback to the file VMA address without the possibility of
|
641 |
|
|
having the section relocated to its actual in-memory address. */
|
642 |
|
|
|
643 |
|
|
dyn_addr = bfd_section_vma (abfd, sect);
|
644 |
|
|
}
|
645 |
|
|
|
646 |
|
|
/* Read in .dynamic from the BFD. We will get the actual value
|
647 |
|
|
from memory later. */
|
648 |
|
|
sect_size = bfd_section_size (abfd, sect);
|
649 |
|
|
buf = bufstart = alloca (sect_size);
|
650 |
|
|
if (!bfd_get_section_contents (abfd, sect,
|
651 |
|
|
buf, 0, sect_size))
|
652 |
|
|
return 0;
|
653 |
|
|
|
654 |
|
|
/* Iterate over BUF and scan for DYNTAG. If found, set PTR and return. */
|
655 |
|
|
step = (arch_size == 32) ? sizeof (Elf32_External_Dyn)
|
656 |
|
|
: sizeof (Elf64_External_Dyn);
|
657 |
|
|
for (bufend = buf + sect_size;
|
658 |
|
|
buf < bufend;
|
659 |
|
|
buf += step)
|
660 |
|
|
{
|
661 |
|
|
if (arch_size == 32)
|
662 |
|
|
{
|
663 |
|
|
x_dynp_32 = (Elf32_External_Dyn *) buf;
|
664 |
|
|
dyn_tag = bfd_h_get_32 (abfd, (bfd_byte *) x_dynp_32->d_tag);
|
665 |
|
|
dyn_ptr = bfd_h_get_32 (abfd, (bfd_byte *) x_dynp_32->d_un.d_ptr);
|
666 |
|
|
}
|
667 |
|
|
else
|
668 |
|
|
{
|
669 |
|
|
x_dynp_64 = (Elf64_External_Dyn *) buf;
|
670 |
|
|
dyn_tag = bfd_h_get_64 (abfd, (bfd_byte *) x_dynp_64->d_tag);
|
671 |
|
|
dyn_ptr = bfd_h_get_64 (abfd, (bfd_byte *) x_dynp_64->d_un.d_ptr);
|
672 |
|
|
}
|
673 |
|
|
if (dyn_tag == DT_NULL)
|
674 |
|
|
return 0;
|
675 |
|
|
if (dyn_tag == dyntag)
|
676 |
|
|
{
|
677 |
|
|
/* If requested, try to read the runtime value of this .dynamic
|
678 |
|
|
entry. */
|
679 |
|
|
if (ptr)
|
680 |
|
|
{
|
681 |
|
|
struct type *ptr_type;
|
682 |
|
|
gdb_byte ptr_buf[8];
|
683 |
|
|
CORE_ADDR ptr_addr;
|
684 |
|
|
|
685 |
|
|
ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
|
686 |
|
|
ptr_addr = dyn_addr + (buf - bufstart) + arch_size / 8;
|
687 |
|
|
if (target_read_memory (ptr_addr, ptr_buf, arch_size / 8) == 0)
|
688 |
|
|
dyn_ptr = extract_typed_address (ptr_buf, ptr_type);
|
689 |
|
|
*ptr = dyn_ptr;
|
690 |
|
|
}
|
691 |
|
|
return 1;
|
692 |
|
|
}
|
693 |
|
|
}
|
694 |
|
|
|
695 |
|
|
return 0;
|
696 |
|
|
}
|
697 |
|
|
|
698 |
|
|
/* Scan for DYNTAG in .dynamic section of the target's main executable,
|
699 |
|
|
found by consulting the OS auxillary vector. If DYNTAG is found 1 is
|
700 |
|
|
returned and the corresponding PTR is set. */
|
701 |
|
|
|
702 |
|
|
static int
|
703 |
|
|
scan_dyntag_auxv (int dyntag, CORE_ADDR *ptr)
|
704 |
|
|
{
|
705 |
|
|
enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch);
|
706 |
|
|
int sect_size, arch_size, step;
|
707 |
|
|
long dyn_tag;
|
708 |
|
|
CORE_ADDR dyn_ptr;
|
709 |
|
|
gdb_byte *bufend, *bufstart, *buf;
|
710 |
|
|
|
711 |
|
|
/* Read in .dynamic section. */
|
712 |
|
|
buf = bufstart = read_program_header (PT_DYNAMIC, §_size, &arch_size);
|
713 |
|
|
if (!buf)
|
714 |
|
|
return 0;
|
715 |
|
|
|
716 |
|
|
/* Iterate over BUF and scan for DYNTAG. If found, set PTR and return. */
|
717 |
|
|
step = (arch_size == 32) ? sizeof (Elf32_External_Dyn)
|
718 |
|
|
: sizeof (Elf64_External_Dyn);
|
719 |
|
|
for (bufend = buf + sect_size;
|
720 |
|
|
buf < bufend;
|
721 |
|
|
buf += step)
|
722 |
|
|
{
|
723 |
|
|
if (arch_size == 32)
|
724 |
|
|
{
|
725 |
|
|
Elf32_External_Dyn *dynp = (Elf32_External_Dyn *) buf;
|
726 |
|
|
|
727 |
|
|
dyn_tag = extract_unsigned_integer ((gdb_byte *) dynp->d_tag,
|
728 |
|
|
4, byte_order);
|
729 |
|
|
dyn_ptr = extract_unsigned_integer ((gdb_byte *) dynp->d_un.d_ptr,
|
730 |
|
|
4, byte_order);
|
731 |
|
|
}
|
732 |
|
|
else
|
733 |
|
|
{
|
734 |
|
|
Elf64_External_Dyn *dynp = (Elf64_External_Dyn *) buf;
|
735 |
|
|
|
736 |
|
|
dyn_tag = extract_unsigned_integer ((gdb_byte *) dynp->d_tag,
|
737 |
|
|
8, byte_order);
|
738 |
|
|
dyn_ptr = extract_unsigned_integer ((gdb_byte *) dynp->d_un.d_ptr,
|
739 |
|
|
8, byte_order);
|
740 |
|
|
}
|
741 |
|
|
if (dyn_tag == DT_NULL)
|
742 |
|
|
break;
|
743 |
|
|
|
744 |
|
|
if (dyn_tag == dyntag)
|
745 |
|
|
{
|
746 |
|
|
if (ptr)
|
747 |
|
|
*ptr = dyn_ptr;
|
748 |
|
|
|
749 |
|
|
xfree (bufstart);
|
750 |
|
|
return 1;
|
751 |
|
|
}
|
752 |
|
|
}
|
753 |
|
|
|
754 |
|
|
xfree (bufstart);
|
755 |
|
|
return 0;
|
756 |
|
|
}
|
757 |
|
|
|
758 |
|
|
|
759 |
|
|
/*
|
760 |
|
|
|
761 |
|
|
LOCAL FUNCTION
|
762 |
|
|
|
763 |
|
|
elf_locate_base -- locate the base address of dynamic linker structs
|
764 |
|
|
for SVR4 elf targets.
|
765 |
|
|
|
766 |
|
|
SYNOPSIS
|
767 |
|
|
|
768 |
|
|
CORE_ADDR elf_locate_base (void)
|
769 |
|
|
|
770 |
|
|
DESCRIPTION
|
771 |
|
|
|
772 |
|
|
For SVR4 elf targets the address of the dynamic linker's runtime
|
773 |
|
|
structure is contained within the dynamic info section in the
|
774 |
|
|
executable file. The dynamic section is also mapped into the
|
775 |
|
|
inferior address space. Because the runtime loader fills in the
|
776 |
|
|
real address before starting the inferior, we have to read in the
|
777 |
|
|
dynamic info section from the inferior address space.
|
778 |
|
|
If there are any errors while trying to find the address, we
|
779 |
|
|
silently return 0, otherwise the found address is returned.
|
780 |
|
|
|
781 |
|
|
*/
|
782 |
|
|
|
783 |
|
|
static CORE_ADDR
|
784 |
|
|
elf_locate_base (void)
|
785 |
|
|
{
|
786 |
|
|
struct minimal_symbol *msymbol;
|
787 |
|
|
CORE_ADDR dyn_ptr;
|
788 |
|
|
|
789 |
|
|
/* Look for DT_MIPS_RLD_MAP first. MIPS executables use this
|
790 |
|
|
instead of DT_DEBUG, although they sometimes contain an unused
|
791 |
|
|
DT_DEBUG. */
|
792 |
|
|
if (scan_dyntag (DT_MIPS_RLD_MAP, exec_bfd, &dyn_ptr)
|
793 |
|
|
|| scan_dyntag_auxv (DT_MIPS_RLD_MAP, &dyn_ptr))
|
794 |
|
|
{
|
795 |
|
|
struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
|
796 |
|
|
gdb_byte *pbuf;
|
797 |
|
|
int pbuf_size = TYPE_LENGTH (ptr_type);
|
798 |
|
|
|
799 |
|
|
pbuf = alloca (pbuf_size);
|
800 |
|
|
/* DT_MIPS_RLD_MAP contains a pointer to the address
|
801 |
|
|
of the dynamic link structure. */
|
802 |
|
|
if (target_read_memory (dyn_ptr, pbuf, pbuf_size))
|
803 |
|
|
return 0;
|
804 |
|
|
return extract_typed_address (pbuf, ptr_type);
|
805 |
|
|
}
|
806 |
|
|
|
807 |
|
|
/* Find DT_DEBUG. */
|
808 |
|
|
if (scan_dyntag (DT_DEBUG, exec_bfd, &dyn_ptr)
|
809 |
|
|
|| scan_dyntag_auxv (DT_DEBUG, &dyn_ptr))
|
810 |
|
|
return dyn_ptr;
|
811 |
|
|
|
812 |
|
|
/* This may be a static executable. Look for the symbol
|
813 |
|
|
conventionally named _r_debug, as a last resort. */
|
814 |
|
|
msymbol = lookup_minimal_symbol ("_r_debug", NULL, symfile_objfile);
|
815 |
|
|
if (msymbol != NULL)
|
816 |
|
|
return SYMBOL_VALUE_ADDRESS (msymbol);
|
817 |
|
|
|
818 |
|
|
/* DT_DEBUG entry not found. */
|
819 |
|
|
return 0;
|
820 |
|
|
}
|
821 |
|
|
|
822 |
|
|
/*
|
823 |
|
|
|
824 |
|
|
LOCAL FUNCTION
|
825 |
|
|
|
826 |
|
|
locate_base -- locate the base address of dynamic linker structs
|
827 |
|
|
|
828 |
|
|
SYNOPSIS
|
829 |
|
|
|
830 |
|
|
CORE_ADDR locate_base (struct svr4_info *)
|
831 |
|
|
|
832 |
|
|
DESCRIPTION
|
833 |
|
|
|
834 |
|
|
For both the SunOS and SVR4 shared library implementations, if the
|
835 |
|
|
inferior executable has been linked dynamically, there is a single
|
836 |
|
|
address somewhere in the inferior's data space which is the key to
|
837 |
|
|
locating all of the dynamic linker's runtime structures. This
|
838 |
|
|
address is the value of the debug base symbol. The job of this
|
839 |
|
|
function is to find and return that address, or to return 0 if there
|
840 |
|
|
is no such address (the executable is statically linked for example).
|
841 |
|
|
|
842 |
|
|
For SunOS, the job is almost trivial, since the dynamic linker and
|
843 |
|
|
all of it's structures are statically linked to the executable at
|
844 |
|
|
link time. Thus the symbol for the address we are looking for has
|
845 |
|
|
already been added to the minimal symbol table for the executable's
|
846 |
|
|
objfile at the time the symbol file's symbols were read, and all we
|
847 |
|
|
have to do is look it up there. Note that we explicitly do NOT want
|
848 |
|
|
to find the copies in the shared library.
|
849 |
|
|
|
850 |
|
|
The SVR4 version is a bit more complicated because the address
|
851 |
|
|
is contained somewhere in the dynamic info section. We have to go
|
852 |
|
|
to a lot more work to discover the address of the debug base symbol.
|
853 |
|
|
Because of this complexity, we cache the value we find and return that
|
854 |
|
|
value on subsequent invocations. Note there is no copy in the
|
855 |
|
|
executable symbol tables.
|
856 |
|
|
|
857 |
|
|
*/
|
858 |
|
|
|
859 |
|
|
static CORE_ADDR
|
860 |
|
|
locate_base (struct svr4_info *info)
|
861 |
|
|
{
|
862 |
|
|
/* Check to see if we have a currently valid address, and if so, avoid
|
863 |
|
|
doing all this work again and just return the cached address. If
|
864 |
|
|
we have no cached address, try to locate it in the dynamic info
|
865 |
|
|
section for ELF executables. There's no point in doing any of this
|
866 |
|
|
though if we don't have some link map offsets to work with. */
|
867 |
|
|
|
868 |
|
|
if (info->debug_base == 0 && svr4_have_link_map_offsets ())
|
869 |
|
|
info->debug_base = elf_locate_base ();
|
870 |
|
|
return info->debug_base;
|
871 |
|
|
}
|
872 |
|
|
|
873 |
|
|
/* Find the first element in the inferior's dynamic link map, and
|
874 |
|
|
return its address in the inferior. Return zero if the address
|
875 |
|
|
could not be determined.
|
876 |
|
|
|
877 |
|
|
FIXME: Perhaps we should validate the info somehow, perhaps by
|
878 |
|
|
checking r_version for a known version number, or r_state for
|
879 |
|
|
RT_CONSISTENT. */
|
880 |
|
|
|
881 |
|
|
static CORE_ADDR
|
882 |
|
|
solib_svr4_r_map (struct svr4_info *info)
|
883 |
|
|
{
|
884 |
|
|
struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
|
885 |
|
|
struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
|
886 |
|
|
CORE_ADDR addr = 0;
|
887 |
|
|
volatile struct gdb_exception ex;
|
888 |
|
|
|
889 |
|
|
TRY_CATCH (ex, RETURN_MASK_ERROR)
|
890 |
|
|
{
|
891 |
|
|
addr = read_memory_typed_address (info->debug_base + lmo->r_map_offset,
|
892 |
|
|
ptr_type);
|
893 |
|
|
}
|
894 |
|
|
exception_print (gdb_stderr, ex);
|
895 |
|
|
return addr;
|
896 |
|
|
}
|
897 |
|
|
|
898 |
|
|
/* Find r_brk from the inferior's debug base. */
|
899 |
|
|
|
900 |
|
|
static CORE_ADDR
|
901 |
|
|
solib_svr4_r_brk (struct svr4_info *info)
|
902 |
|
|
{
|
903 |
|
|
struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
|
904 |
|
|
struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
|
905 |
|
|
|
906 |
|
|
return read_memory_typed_address (info->debug_base + lmo->r_brk_offset,
|
907 |
|
|
ptr_type);
|
908 |
|
|
}
|
909 |
|
|
|
910 |
|
|
/* Find the link map for the dynamic linker (if it is not in the
|
911 |
|
|
normal list of loaded shared objects). */
|
912 |
|
|
|
913 |
|
|
static CORE_ADDR
|
914 |
|
|
solib_svr4_r_ldsomap (struct svr4_info *info)
|
915 |
|
|
{
|
916 |
|
|
struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
|
917 |
|
|
struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
|
918 |
|
|
enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch);
|
919 |
|
|
ULONGEST version;
|
920 |
|
|
|
921 |
|
|
/* Check version, and return zero if `struct r_debug' doesn't have
|
922 |
|
|
the r_ldsomap member. */
|
923 |
|
|
version
|
924 |
|
|
= read_memory_unsigned_integer (info->debug_base + lmo->r_version_offset,
|
925 |
|
|
lmo->r_version_size, byte_order);
|
926 |
|
|
if (version < 2 || lmo->r_ldsomap_offset == -1)
|
927 |
|
|
return 0;
|
928 |
|
|
|
929 |
|
|
return read_memory_typed_address (info->debug_base + lmo->r_ldsomap_offset,
|
930 |
|
|
ptr_type);
|
931 |
|
|
}
|
932 |
|
|
|
933 |
|
|
/* On Solaris systems with some versions of the dynamic linker,
|
934 |
|
|
ld.so's l_name pointer points to the SONAME in the string table
|
935 |
|
|
rather than into writable memory. So that GDB can find shared
|
936 |
|
|
libraries when loading a core file generated by gcore, ensure that
|
937 |
|
|
memory areas containing the l_name string are saved in the core
|
938 |
|
|
file. */
|
939 |
|
|
|
940 |
|
|
static int
|
941 |
|
|
svr4_keep_data_in_core (CORE_ADDR vaddr, unsigned long size)
|
942 |
|
|
{
|
943 |
|
|
struct svr4_info *info;
|
944 |
|
|
CORE_ADDR ldsomap;
|
945 |
|
|
struct so_list *new;
|
946 |
|
|
struct cleanup *old_chain;
|
947 |
|
|
struct link_map_offsets *lmo;
|
948 |
|
|
CORE_ADDR lm_name;
|
949 |
|
|
|
950 |
|
|
info = get_svr4_info ();
|
951 |
|
|
|
952 |
|
|
info->debug_base = 0;
|
953 |
|
|
locate_base (info);
|
954 |
|
|
if (!info->debug_base)
|
955 |
|
|
return 0;
|
956 |
|
|
|
957 |
|
|
ldsomap = solib_svr4_r_ldsomap (info);
|
958 |
|
|
if (!ldsomap)
|
959 |
|
|
return 0;
|
960 |
|
|
|
961 |
|
|
lmo = svr4_fetch_link_map_offsets ();
|
962 |
|
|
new = XZALLOC (struct so_list);
|
963 |
|
|
old_chain = make_cleanup (xfree, new);
|
964 |
|
|
new->lm_info = xmalloc (sizeof (struct lm_info));
|
965 |
|
|
make_cleanup (xfree, new->lm_info);
|
966 |
|
|
new->lm_info->l_addr = (CORE_ADDR)-1;
|
967 |
|
|
new->lm_info->lm_addr = ldsomap;
|
968 |
|
|
new->lm_info->lm = xzalloc (lmo->link_map_size);
|
969 |
|
|
make_cleanup (xfree, new->lm_info->lm);
|
970 |
|
|
read_memory (ldsomap, new->lm_info->lm, lmo->link_map_size);
|
971 |
|
|
lm_name = LM_NAME (new);
|
972 |
|
|
do_cleanups (old_chain);
|
973 |
|
|
|
974 |
|
|
return (lm_name >= vaddr && lm_name < vaddr + size);
|
975 |
|
|
}
|
976 |
|
|
|
977 |
|
|
/*
|
978 |
|
|
|
979 |
|
|
LOCAL FUNCTION
|
980 |
|
|
|
981 |
|
|
open_symbol_file_object
|
982 |
|
|
|
983 |
|
|
SYNOPSIS
|
984 |
|
|
|
985 |
|
|
void open_symbol_file_object (void *from_tty)
|
986 |
|
|
|
987 |
|
|
DESCRIPTION
|
988 |
|
|
|
989 |
|
|
If no open symbol file, attempt to locate and open the main symbol
|
990 |
|
|
file. On SVR4 systems, this is the first link map entry. If its
|
991 |
|
|
name is here, we can open it. Useful when attaching to a process
|
992 |
|
|
without first loading its symbol file.
|
993 |
|
|
|
994 |
|
|
If FROM_TTYP dereferences to a non-zero integer, allow messages to
|
995 |
|
|
be printed. This parameter is a pointer rather than an int because
|
996 |
|
|
open_symbol_file_object() is called via catch_errors() and
|
997 |
|
|
catch_errors() requires a pointer argument. */
|
998 |
|
|
|
999 |
|
|
static int
|
1000 |
|
|
open_symbol_file_object (void *from_ttyp)
|
1001 |
|
|
{
|
1002 |
|
|
CORE_ADDR lm, l_name;
|
1003 |
|
|
char *filename;
|
1004 |
|
|
int errcode;
|
1005 |
|
|
int from_tty = *(int *)from_ttyp;
|
1006 |
|
|
struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
|
1007 |
|
|
struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
|
1008 |
|
|
int l_name_size = TYPE_LENGTH (ptr_type);
|
1009 |
|
|
gdb_byte *l_name_buf = xmalloc (l_name_size);
|
1010 |
|
|
struct cleanup *cleanups = make_cleanup (xfree, l_name_buf);
|
1011 |
|
|
struct svr4_info *info = get_svr4_info ();
|
1012 |
|
|
|
1013 |
|
|
if (symfile_objfile)
|
1014 |
|
|
if (!query (_("Attempt to reload symbols from process? ")))
|
1015 |
|
|
return 0;
|
1016 |
|
|
|
1017 |
|
|
/* Always locate the debug struct, in case it has moved. */
|
1018 |
|
|
info->debug_base = 0;
|
1019 |
|
|
if (locate_base (info) == 0)
|
1020 |
|
|
return 0; /* failed somehow... */
|
1021 |
|
|
|
1022 |
|
|
/* First link map member should be the executable. */
|
1023 |
|
|
lm = solib_svr4_r_map (info);
|
1024 |
|
|
if (lm == 0)
|
1025 |
|
|
return 0; /* failed somehow... */
|
1026 |
|
|
|
1027 |
|
|
/* Read address of name from target memory to GDB. */
|
1028 |
|
|
read_memory (lm + lmo->l_name_offset, l_name_buf, l_name_size);
|
1029 |
|
|
|
1030 |
|
|
/* Convert the address to host format. */
|
1031 |
|
|
l_name = extract_typed_address (l_name_buf, ptr_type);
|
1032 |
|
|
|
1033 |
|
|
/* Free l_name_buf. */
|
1034 |
|
|
do_cleanups (cleanups);
|
1035 |
|
|
|
1036 |
|
|
if (l_name == 0)
|
1037 |
|
|
return 0; /* No filename. */
|
1038 |
|
|
|
1039 |
|
|
/* Now fetch the filename from target memory. */
|
1040 |
|
|
target_read_string (l_name, &filename, SO_NAME_MAX_PATH_SIZE - 1, &errcode);
|
1041 |
|
|
make_cleanup (xfree, filename);
|
1042 |
|
|
|
1043 |
|
|
if (errcode)
|
1044 |
|
|
{
|
1045 |
|
|
warning (_("failed to read exec filename from attached file: %s"),
|
1046 |
|
|
safe_strerror (errcode));
|
1047 |
|
|
return 0;
|
1048 |
|
|
}
|
1049 |
|
|
|
1050 |
|
|
/* Have a pathname: read the symbol file. */
|
1051 |
|
|
symbol_file_add_main (filename, from_tty);
|
1052 |
|
|
|
1053 |
|
|
return 1;
|
1054 |
|
|
}
|
1055 |
|
|
|
1056 |
|
|
/* If no shared library information is available from the dynamic
|
1057 |
|
|
linker, build a fallback list from other sources. */
|
1058 |
|
|
|
1059 |
|
|
static struct so_list *
|
1060 |
|
|
svr4_default_sos (void)
|
1061 |
|
|
{
|
1062 |
|
|
struct svr4_info *info = get_svr4_info ();
|
1063 |
|
|
|
1064 |
|
|
struct so_list *head = NULL;
|
1065 |
|
|
struct so_list **link_ptr = &head;
|
1066 |
|
|
|
1067 |
|
|
if (info->debug_loader_offset_p)
|
1068 |
|
|
{
|
1069 |
|
|
struct so_list *new = XZALLOC (struct so_list);
|
1070 |
|
|
|
1071 |
|
|
new->lm_info = xmalloc (sizeof (struct lm_info));
|
1072 |
|
|
|
1073 |
|
|
/* Nothing will ever check the cached copy of the link
|
1074 |
|
|
map if we set l_addr. */
|
1075 |
|
|
new->lm_info->l_addr = info->debug_loader_offset;
|
1076 |
|
|
new->lm_info->lm_addr = 0;
|
1077 |
|
|
new->lm_info->lm = NULL;
|
1078 |
|
|
|
1079 |
|
|
strncpy (new->so_name, info->debug_loader_name,
|
1080 |
|
|
SO_NAME_MAX_PATH_SIZE - 1);
|
1081 |
|
|
new->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0';
|
1082 |
|
|
strcpy (new->so_original_name, new->so_name);
|
1083 |
|
|
|
1084 |
|
|
*link_ptr = new;
|
1085 |
|
|
link_ptr = &new->next;
|
1086 |
|
|
}
|
1087 |
|
|
|
1088 |
|
|
return head;
|
1089 |
|
|
}
|
1090 |
|
|
|
1091 |
|
|
/* LOCAL FUNCTION
|
1092 |
|
|
|
1093 |
|
|
current_sos -- build a list of currently loaded shared objects
|
1094 |
|
|
|
1095 |
|
|
SYNOPSIS
|
1096 |
|
|
|
1097 |
|
|
struct so_list *current_sos ()
|
1098 |
|
|
|
1099 |
|
|
DESCRIPTION
|
1100 |
|
|
|
1101 |
|
|
Build a list of `struct so_list' objects describing the shared
|
1102 |
|
|
objects currently loaded in the inferior. This list does not
|
1103 |
|
|
include an entry for the main executable file.
|
1104 |
|
|
|
1105 |
|
|
Note that we only gather information directly available from the
|
1106 |
|
|
inferior --- we don't examine any of the shared library files
|
1107 |
|
|
themselves. The declaration of `struct so_list' says which fields
|
1108 |
|
|
we provide values for. */
|
1109 |
|
|
|
1110 |
|
|
static struct so_list *
|
1111 |
|
|
svr4_current_sos (void)
|
1112 |
|
|
{
|
1113 |
|
|
CORE_ADDR lm, prev_lm;
|
1114 |
|
|
struct so_list *head = 0;
|
1115 |
|
|
struct so_list **link_ptr = &head;
|
1116 |
|
|
CORE_ADDR ldsomap = 0;
|
1117 |
|
|
struct svr4_info *info;
|
1118 |
|
|
|
1119 |
|
|
info = get_svr4_info ();
|
1120 |
|
|
|
1121 |
|
|
/* Always locate the debug struct, in case it has moved. */
|
1122 |
|
|
info->debug_base = 0;
|
1123 |
|
|
locate_base (info);
|
1124 |
|
|
|
1125 |
|
|
/* If we can't find the dynamic linker's base structure, this
|
1126 |
|
|
must not be a dynamically linked executable. Hmm. */
|
1127 |
|
|
if (! info->debug_base)
|
1128 |
|
|
return svr4_default_sos ();
|
1129 |
|
|
|
1130 |
|
|
/* Walk the inferior's link map list, and build our list of
|
1131 |
|
|
`struct so_list' nodes. */
|
1132 |
|
|
prev_lm = 0;
|
1133 |
|
|
lm = solib_svr4_r_map (info);
|
1134 |
|
|
|
1135 |
|
|
while (lm)
|
1136 |
|
|
{
|
1137 |
|
|
struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
|
1138 |
|
|
struct so_list *new = XZALLOC (struct so_list);
|
1139 |
|
|
struct cleanup *old_chain = make_cleanup (xfree, new);
|
1140 |
|
|
CORE_ADDR next_lm;
|
1141 |
|
|
|
1142 |
|
|
new->lm_info = xmalloc (sizeof (struct lm_info));
|
1143 |
|
|
make_cleanup (xfree, new->lm_info);
|
1144 |
|
|
|
1145 |
|
|
new->lm_info->l_addr = (CORE_ADDR)-1;
|
1146 |
|
|
new->lm_info->lm_addr = lm;
|
1147 |
|
|
new->lm_info->lm = xzalloc (lmo->link_map_size);
|
1148 |
|
|
make_cleanup (xfree, new->lm_info->lm);
|
1149 |
|
|
|
1150 |
|
|
read_memory (lm, new->lm_info->lm, lmo->link_map_size);
|
1151 |
|
|
|
1152 |
|
|
next_lm = LM_NEXT (new);
|
1153 |
|
|
|
1154 |
|
|
if (LM_PREV (new) != prev_lm)
|
1155 |
|
|
{
|
1156 |
|
|
warning (_("Corrupted shared library list"));
|
1157 |
|
|
free_so (new);
|
1158 |
|
|
next_lm = 0;
|
1159 |
|
|
}
|
1160 |
|
|
|
1161 |
|
|
/* For SVR4 versions, the first entry in the link map is for the
|
1162 |
|
|
inferior executable, so we must ignore it. For some versions of
|
1163 |
|
|
SVR4, it has no name. For others (Solaris 2.3 for example), it
|
1164 |
|
|
does have a name, so we can no longer use a missing name to
|
1165 |
|
|
decide when to ignore it. */
|
1166 |
|
|
else if (IGNORE_FIRST_LINK_MAP_ENTRY (new) && ldsomap == 0)
|
1167 |
|
|
{
|
1168 |
|
|
info->main_lm_addr = new->lm_info->lm_addr;
|
1169 |
|
|
free_so (new);
|
1170 |
|
|
}
|
1171 |
|
|
else
|
1172 |
|
|
{
|
1173 |
|
|
int errcode;
|
1174 |
|
|
char *buffer;
|
1175 |
|
|
|
1176 |
|
|
/* Extract this shared object's name. */
|
1177 |
|
|
target_read_string (LM_NAME (new), &buffer,
|
1178 |
|
|
SO_NAME_MAX_PATH_SIZE - 1, &errcode);
|
1179 |
|
|
if (errcode != 0)
|
1180 |
|
|
warning (_("Can't read pathname for load map: %s."),
|
1181 |
|
|
safe_strerror (errcode));
|
1182 |
|
|
else
|
1183 |
|
|
{
|
1184 |
|
|
strncpy (new->so_name, buffer, SO_NAME_MAX_PATH_SIZE - 1);
|
1185 |
|
|
new->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0';
|
1186 |
|
|
strcpy (new->so_original_name, new->so_name);
|
1187 |
|
|
}
|
1188 |
|
|
xfree (buffer);
|
1189 |
|
|
|
1190 |
|
|
/* If this entry has no name, or its name matches the name
|
1191 |
|
|
for the main executable, don't include it in the list. */
|
1192 |
|
|
if (! new->so_name[0]
|
1193 |
|
|
|| match_main (new->so_name))
|
1194 |
|
|
free_so (new);
|
1195 |
|
|
else
|
1196 |
|
|
{
|
1197 |
|
|
new->next = 0;
|
1198 |
|
|
*link_ptr = new;
|
1199 |
|
|
link_ptr = &new->next;
|
1200 |
|
|
}
|
1201 |
|
|
}
|
1202 |
|
|
|
1203 |
|
|
prev_lm = lm;
|
1204 |
|
|
lm = next_lm;
|
1205 |
|
|
|
1206 |
|
|
/* On Solaris, the dynamic linker is not in the normal list of
|
1207 |
|
|
shared objects, so make sure we pick it up too. Having
|
1208 |
|
|
symbol information for the dynamic linker is quite crucial
|
1209 |
|
|
for skipping dynamic linker resolver code. */
|
1210 |
|
|
if (lm == 0 && ldsomap == 0)
|
1211 |
|
|
{
|
1212 |
|
|
lm = ldsomap = solib_svr4_r_ldsomap (info);
|
1213 |
|
|
prev_lm = 0;
|
1214 |
|
|
}
|
1215 |
|
|
|
1216 |
|
|
discard_cleanups (old_chain);
|
1217 |
|
|
}
|
1218 |
|
|
|
1219 |
|
|
if (head == NULL)
|
1220 |
|
|
return svr4_default_sos ();
|
1221 |
|
|
|
1222 |
|
|
return head;
|
1223 |
|
|
}
|
1224 |
|
|
|
1225 |
|
|
/* Get the address of the link_map for a given OBJFILE. */
|
1226 |
|
|
|
1227 |
|
|
CORE_ADDR
|
1228 |
|
|
svr4_fetch_objfile_link_map (struct objfile *objfile)
|
1229 |
|
|
{
|
1230 |
|
|
struct so_list *so;
|
1231 |
|
|
struct svr4_info *info = get_svr4_info ();
|
1232 |
|
|
|
1233 |
|
|
/* Cause svr4_current_sos() to be run if it hasn't been already. */
|
1234 |
|
|
if (info->main_lm_addr == 0)
|
1235 |
|
|
solib_add (NULL, 0, ¤t_target, auto_solib_add);
|
1236 |
|
|
|
1237 |
|
|
/* svr4_current_sos() will set main_lm_addr for the main executable. */
|
1238 |
|
|
if (objfile == symfile_objfile)
|
1239 |
|
|
return info->main_lm_addr;
|
1240 |
|
|
|
1241 |
|
|
/* The other link map addresses may be found by examining the list
|
1242 |
|
|
of shared libraries. */
|
1243 |
|
|
for (so = master_so_list (); so; so = so->next)
|
1244 |
|
|
if (so->objfile == objfile)
|
1245 |
|
|
return so->lm_info->lm_addr;
|
1246 |
|
|
|
1247 |
|
|
/* Not found! */
|
1248 |
|
|
return 0;
|
1249 |
|
|
}
|
1250 |
|
|
|
1251 |
|
|
/* On some systems, the only way to recognize the link map entry for
|
1252 |
|
|
the main executable file is by looking at its name. Return
|
1253 |
|
|
non-zero iff SONAME matches one of the known main executable names. */
|
1254 |
|
|
|
1255 |
|
|
static int
|
1256 |
|
|
match_main (char *soname)
|
1257 |
|
|
{
|
1258 |
|
|
char **mainp;
|
1259 |
|
|
|
1260 |
|
|
for (mainp = main_name_list; *mainp != NULL; mainp++)
|
1261 |
|
|
{
|
1262 |
|
|
if (strcmp (soname, *mainp) == 0)
|
1263 |
|
|
return (1);
|
1264 |
|
|
}
|
1265 |
|
|
|
1266 |
|
|
return (0);
|
1267 |
|
|
}
|
1268 |
|
|
|
1269 |
|
|
/* Return 1 if PC lies in the dynamic symbol resolution code of the
|
1270 |
|
|
SVR4 run time loader. */
|
1271 |
|
|
|
1272 |
|
|
int
|
1273 |
|
|
svr4_in_dynsym_resolve_code (CORE_ADDR pc)
|
1274 |
|
|
{
|
1275 |
|
|
struct svr4_info *info = get_svr4_info ();
|
1276 |
|
|
|
1277 |
|
|
return ((pc >= info->interp_text_sect_low
|
1278 |
|
|
&& pc < info->interp_text_sect_high)
|
1279 |
|
|
|| (pc >= info->interp_plt_sect_low
|
1280 |
|
|
&& pc < info->interp_plt_sect_high)
|
1281 |
|
|
|| in_plt_section (pc, NULL));
|
1282 |
|
|
}
|
1283 |
|
|
|
1284 |
|
|
/* Given an executable's ABFD and target, compute the entry-point
|
1285 |
|
|
address. */
|
1286 |
|
|
|
1287 |
|
|
static CORE_ADDR
|
1288 |
|
|
exec_entry_point (struct bfd *abfd, struct target_ops *targ)
|
1289 |
|
|
{
|
1290 |
|
|
/* KevinB wrote ... for most targets, the address returned by
|
1291 |
|
|
bfd_get_start_address() is the entry point for the start
|
1292 |
|
|
function. But, for some targets, bfd_get_start_address() returns
|
1293 |
|
|
the address of a function descriptor from which the entry point
|
1294 |
|
|
address may be extracted. This address is extracted by
|
1295 |
|
|
gdbarch_convert_from_func_ptr_addr(). The method
|
1296 |
|
|
gdbarch_convert_from_func_ptr_addr() is the merely the identify
|
1297 |
|
|
function for targets which don't use function descriptors. */
|
1298 |
|
|
return gdbarch_convert_from_func_ptr_addr (target_gdbarch,
|
1299 |
|
|
bfd_get_start_address (abfd),
|
1300 |
|
|
targ);
|
1301 |
|
|
}
|
1302 |
|
|
|
1303 |
|
|
/*
|
1304 |
|
|
|
1305 |
|
|
LOCAL FUNCTION
|
1306 |
|
|
|
1307 |
|
|
enable_break -- arrange for dynamic linker to hit breakpoint
|
1308 |
|
|
|
1309 |
|
|
SYNOPSIS
|
1310 |
|
|
|
1311 |
|
|
int enable_break (void)
|
1312 |
|
|
|
1313 |
|
|
DESCRIPTION
|
1314 |
|
|
|
1315 |
|
|
Both the SunOS and the SVR4 dynamic linkers have, as part of their
|
1316 |
|
|
debugger interface, support for arranging for the inferior to hit
|
1317 |
|
|
a breakpoint after mapping in the shared libraries. This function
|
1318 |
|
|
enables that breakpoint.
|
1319 |
|
|
|
1320 |
|
|
For SunOS, there is a special flag location (in_debugger) which we
|
1321 |
|
|
set to 1. When the dynamic linker sees this flag set, it will set
|
1322 |
|
|
a breakpoint at a location known only to itself, after saving the
|
1323 |
|
|
original contents of that place and the breakpoint address itself,
|
1324 |
|
|
in it's own internal structures. When we resume the inferior, it
|
1325 |
|
|
will eventually take a SIGTRAP when it runs into the breakpoint.
|
1326 |
|
|
We handle this (in a different place) by restoring the contents of
|
1327 |
|
|
the breakpointed location (which is only known after it stops),
|
1328 |
|
|
chasing around to locate the shared libraries that have been
|
1329 |
|
|
loaded, then resuming.
|
1330 |
|
|
|
1331 |
|
|
For SVR4, the debugger interface structure contains a member (r_brk)
|
1332 |
|
|
which is statically initialized at the time the shared library is
|
1333 |
|
|
built, to the offset of a function (_r_debug_state) which is guaran-
|
1334 |
|
|
teed to be called once before mapping in a library, and again when
|
1335 |
|
|
the mapping is complete. At the time we are examining this member,
|
1336 |
|
|
it contains only the unrelocated offset of the function, so we have
|
1337 |
|
|
to do our own relocation. Later, when the dynamic linker actually
|
1338 |
|
|
runs, it relocates r_brk to be the actual address of _r_debug_state().
|
1339 |
|
|
|
1340 |
|
|
The debugger interface structure also contains an enumeration which
|
1341 |
|
|
is set to either RT_ADD or RT_DELETE prior to changing the mapping,
|
1342 |
|
|
depending upon whether or not the library is being mapped or unmapped,
|
1343 |
|
|
and then set to RT_CONSISTENT after the library is mapped/unmapped.
|
1344 |
|
|
*/
|
1345 |
|
|
|
1346 |
|
|
static int
|
1347 |
|
|
enable_break (struct svr4_info *info, int from_tty)
|
1348 |
|
|
{
|
1349 |
|
|
struct minimal_symbol *msymbol;
|
1350 |
|
|
char **bkpt_namep;
|
1351 |
|
|
asection *interp_sect;
|
1352 |
|
|
gdb_byte *interp_name;
|
1353 |
|
|
CORE_ADDR sym_addr;
|
1354 |
|
|
|
1355 |
|
|
info->interp_text_sect_low = info->interp_text_sect_high = 0;
|
1356 |
|
|
info->interp_plt_sect_low = info->interp_plt_sect_high = 0;
|
1357 |
|
|
|
1358 |
|
|
/* If we already have a shared library list in the target, and
|
1359 |
|
|
r_debug contains r_brk, set the breakpoint there - this should
|
1360 |
|
|
mean r_brk has already been relocated. Assume the dynamic linker
|
1361 |
|
|
is the object containing r_brk. */
|
1362 |
|
|
|
1363 |
|
|
solib_add (NULL, from_tty, ¤t_target, auto_solib_add);
|
1364 |
|
|
sym_addr = 0;
|
1365 |
|
|
if (info->debug_base && solib_svr4_r_map (info) != 0)
|
1366 |
|
|
sym_addr = solib_svr4_r_brk (info);
|
1367 |
|
|
|
1368 |
|
|
if (sym_addr != 0)
|
1369 |
|
|
{
|
1370 |
|
|
struct obj_section *os;
|
1371 |
|
|
|
1372 |
|
|
sym_addr = gdbarch_addr_bits_remove
|
1373 |
|
|
(target_gdbarch, gdbarch_convert_from_func_ptr_addr (target_gdbarch,
|
1374 |
|
|
sym_addr,
|
1375 |
|
|
¤t_target));
|
1376 |
|
|
|
1377 |
|
|
/* On at least some versions of Solaris there's a dynamic relocation
|
1378 |
|
|
on _r_debug.r_brk and SYM_ADDR may not be relocated yet, e.g., if
|
1379 |
|
|
we get control before the dynamic linker has self-relocated.
|
1380 |
|
|
Check if SYM_ADDR is in a known section, if it is assume we can
|
1381 |
|
|
trust its value. This is just a heuristic though, it could go away
|
1382 |
|
|
or be replaced if it's getting in the way.
|
1383 |
|
|
|
1384 |
|
|
On ARM we need to know whether the ISA of rtld_db_dlactivity (or
|
1385 |
|
|
however it's spelled in your particular system) is ARM or Thumb.
|
1386 |
|
|
That knowledge is encoded in the address, if it's Thumb the low bit
|
1387 |
|
|
is 1. However, we've stripped that info above and it's not clear
|
1388 |
|
|
what all the consequences are of passing a non-addr_bits_remove'd
|
1389 |
|
|
address to create_solib_event_breakpoint. The call to
|
1390 |
|
|
find_pc_section verifies we know about the address and have some
|
1391 |
|
|
hope of computing the right kind of breakpoint to use (via
|
1392 |
|
|
symbol info). It does mean that GDB needs to be pointed at a
|
1393 |
|
|
non-stripped version of the dynamic linker in order to obtain
|
1394 |
|
|
information it already knows about. Sigh. */
|
1395 |
|
|
|
1396 |
|
|
os = find_pc_section (sym_addr);
|
1397 |
|
|
if (os != NULL)
|
1398 |
|
|
{
|
1399 |
|
|
/* Record the relocated start and end address of the dynamic linker
|
1400 |
|
|
text and plt section for svr4_in_dynsym_resolve_code. */
|
1401 |
|
|
bfd *tmp_bfd;
|
1402 |
|
|
CORE_ADDR load_addr;
|
1403 |
|
|
|
1404 |
|
|
tmp_bfd = os->objfile->obfd;
|
1405 |
|
|
load_addr = ANOFFSET (os->objfile->section_offsets,
|
1406 |
|
|
os->objfile->sect_index_text);
|
1407 |
|
|
|
1408 |
|
|
interp_sect = bfd_get_section_by_name (tmp_bfd, ".text");
|
1409 |
|
|
if (interp_sect)
|
1410 |
|
|
{
|
1411 |
|
|
info->interp_text_sect_low =
|
1412 |
|
|
bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
|
1413 |
|
|
info->interp_text_sect_high =
|
1414 |
|
|
info->interp_text_sect_low
|
1415 |
|
|
+ bfd_section_size (tmp_bfd, interp_sect);
|
1416 |
|
|
}
|
1417 |
|
|
interp_sect = bfd_get_section_by_name (tmp_bfd, ".plt");
|
1418 |
|
|
if (interp_sect)
|
1419 |
|
|
{
|
1420 |
|
|
info->interp_plt_sect_low =
|
1421 |
|
|
bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
|
1422 |
|
|
info->interp_plt_sect_high =
|
1423 |
|
|
info->interp_plt_sect_low
|
1424 |
|
|
+ bfd_section_size (tmp_bfd, interp_sect);
|
1425 |
|
|
}
|
1426 |
|
|
|
1427 |
|
|
create_solib_event_breakpoint (target_gdbarch, sym_addr);
|
1428 |
|
|
return 1;
|
1429 |
|
|
}
|
1430 |
|
|
}
|
1431 |
|
|
|
1432 |
|
|
/* Find the program interpreter; if not found, warn the user and drop
|
1433 |
|
|
into the old breakpoint at symbol code. */
|
1434 |
|
|
interp_name = find_program_interpreter ();
|
1435 |
|
|
if (interp_name)
|
1436 |
|
|
{
|
1437 |
|
|
CORE_ADDR load_addr = 0;
|
1438 |
|
|
int load_addr_found = 0;
|
1439 |
|
|
int loader_found_in_list = 0;
|
1440 |
|
|
struct so_list *so;
|
1441 |
|
|
bfd *tmp_bfd = NULL;
|
1442 |
|
|
struct target_ops *tmp_bfd_target;
|
1443 |
|
|
volatile struct gdb_exception ex;
|
1444 |
|
|
|
1445 |
|
|
sym_addr = 0;
|
1446 |
|
|
|
1447 |
|
|
/* Now we need to figure out where the dynamic linker was
|
1448 |
|
|
loaded so that we can load its symbols and place a breakpoint
|
1449 |
|
|
in the dynamic linker itself.
|
1450 |
|
|
|
1451 |
|
|
This address is stored on the stack. However, I've been unable
|
1452 |
|
|
to find any magic formula to find it for Solaris (appears to
|
1453 |
|
|
be trivial on GNU/Linux). Therefore, we have to try an alternate
|
1454 |
|
|
mechanism to find the dynamic linker's base address. */
|
1455 |
|
|
|
1456 |
|
|
TRY_CATCH (ex, RETURN_MASK_ALL)
|
1457 |
|
|
{
|
1458 |
|
|
tmp_bfd = solib_bfd_open (interp_name);
|
1459 |
|
|
}
|
1460 |
|
|
if (tmp_bfd == NULL)
|
1461 |
|
|
goto bkpt_at_symbol;
|
1462 |
|
|
|
1463 |
|
|
/* Now convert the TMP_BFD into a target. That way target, as
|
1464 |
|
|
well as BFD operations can be used. Note that closing the
|
1465 |
|
|
target will also close the underlying bfd. */
|
1466 |
|
|
tmp_bfd_target = target_bfd_reopen (tmp_bfd);
|
1467 |
|
|
|
1468 |
|
|
/* On a running target, we can get the dynamic linker's base
|
1469 |
|
|
address from the shared library table. */
|
1470 |
|
|
so = master_so_list ();
|
1471 |
|
|
while (so)
|
1472 |
|
|
{
|
1473 |
|
|
if (svr4_same_1 (interp_name, so->so_original_name))
|
1474 |
|
|
{
|
1475 |
|
|
load_addr_found = 1;
|
1476 |
|
|
loader_found_in_list = 1;
|
1477 |
|
|
load_addr = LM_ADDR_CHECK (so, tmp_bfd);
|
1478 |
|
|
break;
|
1479 |
|
|
}
|
1480 |
|
|
so = so->next;
|
1481 |
|
|
}
|
1482 |
|
|
|
1483 |
|
|
/* If we were not able to find the base address of the loader
|
1484 |
|
|
from our so_list, then try using the AT_BASE auxilliary entry. */
|
1485 |
|
|
if (!load_addr_found)
|
1486 |
|
|
if (target_auxv_search (¤t_target, AT_BASE, &load_addr) > 0)
|
1487 |
|
|
{
|
1488 |
|
|
int addr_bit = gdbarch_addr_bit (target_gdbarch);
|
1489 |
|
|
|
1490 |
|
|
/* Ensure LOAD_ADDR has proper sign in its possible upper bits so
|
1491 |
|
|
that `+ load_addr' will overflow CORE_ADDR width not creating
|
1492 |
|
|
invalid addresses like 0x101234567 for 32bit inferiors on 64bit
|
1493 |
|
|
GDB. */
|
1494 |
|
|
|
1495 |
|
|
if (addr_bit < (sizeof (CORE_ADDR) * HOST_CHAR_BIT))
|
1496 |
|
|
{
|
1497 |
|
|
CORE_ADDR space_size = (CORE_ADDR) 1 << addr_bit;
|
1498 |
|
|
CORE_ADDR tmp_entry_point = exec_entry_point (tmp_bfd,
|
1499 |
|
|
tmp_bfd_target);
|
1500 |
|
|
|
1501 |
|
|
gdb_assert (load_addr < space_size);
|
1502 |
|
|
|
1503 |
|
|
/* TMP_ENTRY_POINT exceeding SPACE_SIZE would be for prelinked
|
1504 |
|
|
64bit ld.so with 32bit executable, it should not happen. */
|
1505 |
|
|
|
1506 |
|
|
if (tmp_entry_point < space_size
|
1507 |
|
|
&& tmp_entry_point + load_addr >= space_size)
|
1508 |
|
|
load_addr -= space_size;
|
1509 |
|
|
}
|
1510 |
|
|
|
1511 |
|
|
load_addr_found = 1;
|
1512 |
|
|
}
|
1513 |
|
|
|
1514 |
|
|
/* Otherwise we find the dynamic linker's base address by examining
|
1515 |
|
|
the current pc (which should point at the entry point for the
|
1516 |
|
|
dynamic linker) and subtracting the offset of the entry point.
|
1517 |
|
|
|
1518 |
|
|
This is more fragile than the previous approaches, but is a good
|
1519 |
|
|
fallback method because it has actually been working well in
|
1520 |
|
|
most cases. */
|
1521 |
|
|
if (!load_addr_found)
|
1522 |
|
|
{
|
1523 |
|
|
struct regcache *regcache
|
1524 |
|
|
= get_thread_arch_regcache (inferior_ptid, target_gdbarch);
|
1525 |
|
|
|
1526 |
|
|
load_addr = (regcache_read_pc (regcache)
|
1527 |
|
|
- exec_entry_point (tmp_bfd, tmp_bfd_target));
|
1528 |
|
|
}
|
1529 |
|
|
|
1530 |
|
|
if (!loader_found_in_list)
|
1531 |
|
|
{
|
1532 |
|
|
info->debug_loader_name = xstrdup (interp_name);
|
1533 |
|
|
info->debug_loader_offset_p = 1;
|
1534 |
|
|
info->debug_loader_offset = load_addr;
|
1535 |
|
|
solib_add (NULL, from_tty, ¤t_target, auto_solib_add);
|
1536 |
|
|
}
|
1537 |
|
|
|
1538 |
|
|
/* Record the relocated start and end address of the dynamic linker
|
1539 |
|
|
text and plt section for svr4_in_dynsym_resolve_code. */
|
1540 |
|
|
interp_sect = bfd_get_section_by_name (tmp_bfd, ".text");
|
1541 |
|
|
if (interp_sect)
|
1542 |
|
|
{
|
1543 |
|
|
info->interp_text_sect_low =
|
1544 |
|
|
bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
|
1545 |
|
|
info->interp_text_sect_high =
|
1546 |
|
|
info->interp_text_sect_low
|
1547 |
|
|
+ bfd_section_size (tmp_bfd, interp_sect);
|
1548 |
|
|
}
|
1549 |
|
|
interp_sect = bfd_get_section_by_name (tmp_bfd, ".plt");
|
1550 |
|
|
if (interp_sect)
|
1551 |
|
|
{
|
1552 |
|
|
info->interp_plt_sect_low =
|
1553 |
|
|
bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
|
1554 |
|
|
info->interp_plt_sect_high =
|
1555 |
|
|
info->interp_plt_sect_low
|
1556 |
|
|
+ bfd_section_size (tmp_bfd, interp_sect);
|
1557 |
|
|
}
|
1558 |
|
|
|
1559 |
|
|
/* Now try to set a breakpoint in the dynamic linker. */
|
1560 |
|
|
for (bkpt_namep = solib_break_names; *bkpt_namep != NULL; bkpt_namep++)
|
1561 |
|
|
{
|
1562 |
|
|
sym_addr = bfd_lookup_symbol (tmp_bfd, *bkpt_namep);
|
1563 |
|
|
if (sym_addr != 0)
|
1564 |
|
|
break;
|
1565 |
|
|
}
|
1566 |
|
|
|
1567 |
|
|
if (sym_addr != 0)
|
1568 |
|
|
/* Convert 'sym_addr' from a function pointer to an address.
|
1569 |
|
|
Because we pass tmp_bfd_target instead of the current
|
1570 |
|
|
target, this will always produce an unrelocated value. */
|
1571 |
|
|
sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch,
|
1572 |
|
|
sym_addr,
|
1573 |
|
|
tmp_bfd_target);
|
1574 |
|
|
|
1575 |
|
|
/* We're done with both the temporary bfd and target. Remember,
|
1576 |
|
|
closing the target closes the underlying bfd. */
|
1577 |
|
|
target_close (tmp_bfd_target, 0);
|
1578 |
|
|
|
1579 |
|
|
if (sym_addr != 0)
|
1580 |
|
|
{
|
1581 |
|
|
create_solib_event_breakpoint (target_gdbarch, load_addr + sym_addr);
|
1582 |
|
|
xfree (interp_name);
|
1583 |
|
|
return 1;
|
1584 |
|
|
}
|
1585 |
|
|
|
1586 |
|
|
/* For whatever reason we couldn't set a breakpoint in the dynamic
|
1587 |
|
|
linker. Warn and drop into the old code. */
|
1588 |
|
|
bkpt_at_symbol:
|
1589 |
|
|
xfree (interp_name);
|
1590 |
|
|
warning (_("Unable to find dynamic linker breakpoint function.\n"
|
1591 |
|
|
"GDB will be unable to debug shared library initializers\n"
|
1592 |
|
|
"and track explicitly loaded dynamic code."));
|
1593 |
|
|
}
|
1594 |
|
|
|
1595 |
|
|
/* Scan through the lists of symbols, trying to look up the symbol and
|
1596 |
|
|
set a breakpoint there. Terminate loop when we/if we succeed. */
|
1597 |
|
|
|
1598 |
|
|
for (bkpt_namep = solib_break_names; *bkpt_namep != NULL; bkpt_namep++)
|
1599 |
|
|
{
|
1600 |
|
|
msymbol = lookup_minimal_symbol (*bkpt_namep, NULL, symfile_objfile);
|
1601 |
|
|
if ((msymbol != NULL) && (SYMBOL_VALUE_ADDRESS (msymbol) != 0))
|
1602 |
|
|
{
|
1603 |
|
|
sym_addr = SYMBOL_VALUE_ADDRESS (msymbol);
|
1604 |
|
|
sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch,
|
1605 |
|
|
sym_addr,
|
1606 |
|
|
¤t_target);
|
1607 |
|
|
create_solib_event_breakpoint (target_gdbarch, sym_addr);
|
1608 |
|
|
return 1;
|
1609 |
|
|
}
|
1610 |
|
|
}
|
1611 |
|
|
|
1612 |
|
|
for (bkpt_namep = bkpt_names; *bkpt_namep != NULL; bkpt_namep++)
|
1613 |
|
|
{
|
1614 |
|
|
msymbol = lookup_minimal_symbol (*bkpt_namep, NULL, symfile_objfile);
|
1615 |
|
|
if ((msymbol != NULL) && (SYMBOL_VALUE_ADDRESS (msymbol) != 0))
|
1616 |
|
|
{
|
1617 |
|
|
sym_addr = SYMBOL_VALUE_ADDRESS (msymbol);
|
1618 |
|
|
sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch,
|
1619 |
|
|
sym_addr,
|
1620 |
|
|
¤t_target);
|
1621 |
|
|
create_solib_event_breakpoint (target_gdbarch, sym_addr);
|
1622 |
|
|
return 1;
|
1623 |
|
|
}
|
1624 |
|
|
}
|
1625 |
|
|
return 0;
|
1626 |
|
|
}
|
1627 |
|
|
|
1628 |
|
|
/*
|
1629 |
|
|
|
1630 |
|
|
LOCAL FUNCTION
|
1631 |
|
|
|
1632 |
|
|
special_symbol_handling -- additional shared library symbol handling
|
1633 |
|
|
|
1634 |
|
|
SYNOPSIS
|
1635 |
|
|
|
1636 |
|
|
void special_symbol_handling ()
|
1637 |
|
|
|
1638 |
|
|
DESCRIPTION
|
1639 |
|
|
|
1640 |
|
|
Once the symbols from a shared object have been loaded in the usual
|
1641 |
|
|
way, we are called to do any system specific symbol handling that
|
1642 |
|
|
is needed.
|
1643 |
|
|
|
1644 |
|
|
For SunOS4, this consisted of grunging around in the dynamic
|
1645 |
|
|
linkers structures to find symbol definitions for "common" symbols
|
1646 |
|
|
and adding them to the minimal symbol table for the runtime common
|
1647 |
|
|
objfile.
|
1648 |
|
|
|
1649 |
|
|
However, for SVR4, there's nothing to do.
|
1650 |
|
|
|
1651 |
|
|
*/
|
1652 |
|
|
|
1653 |
|
|
static void
|
1654 |
|
|
svr4_special_symbol_handling (void)
|
1655 |
|
|
{
|
1656 |
|
|
}
|
1657 |
|
|
|
1658 |
|
|
/* Read the ELF program headers from ABFD. Return the contents and
|
1659 |
|
|
set *PHDRS_SIZE to the size of the program headers. */
|
1660 |
|
|
|
1661 |
|
|
static gdb_byte *
|
1662 |
|
|
read_program_headers_from_bfd (bfd *abfd, int *phdrs_size)
|
1663 |
|
|
{
|
1664 |
|
|
Elf_Internal_Ehdr *ehdr;
|
1665 |
|
|
gdb_byte *buf;
|
1666 |
|
|
|
1667 |
|
|
ehdr = elf_elfheader (abfd);
|
1668 |
|
|
|
1669 |
|
|
*phdrs_size = ehdr->e_phnum * ehdr->e_phentsize;
|
1670 |
|
|
if (*phdrs_size == 0)
|
1671 |
|
|
return NULL;
|
1672 |
|
|
|
1673 |
|
|
buf = xmalloc (*phdrs_size);
|
1674 |
|
|
if (bfd_seek (abfd, ehdr->e_phoff, SEEK_SET) != 0
|
1675 |
|
|
|| bfd_bread (buf, *phdrs_size, abfd) != *phdrs_size)
|
1676 |
|
|
{
|
1677 |
|
|
xfree (buf);
|
1678 |
|
|
return NULL;
|
1679 |
|
|
}
|
1680 |
|
|
|
1681 |
|
|
return buf;
|
1682 |
|
|
}
|
1683 |
|
|
|
1684 |
|
|
/* Return 1 and fill *DISPLACEMENTP with detected PIE offset of inferior
|
1685 |
|
|
exec_bfd. Otherwise return 0.
|
1686 |
|
|
|
1687 |
|
|
We relocate all of the sections by the same amount. This
|
1688 |
|
|
behavior is mandated by recent editions of the System V ABI.
|
1689 |
|
|
According to the System V Application Binary Interface,
|
1690 |
|
|
Edition 4.1, page 5-5:
|
1691 |
|
|
|
1692 |
|
|
... Though the system chooses virtual addresses for
|
1693 |
|
|
individual processes, it maintains the segments' relative
|
1694 |
|
|
positions. Because position-independent code uses relative
|
1695 |
|
|
addressesing between segments, the difference between
|
1696 |
|
|
virtual addresses in memory must match the difference
|
1697 |
|
|
between virtual addresses in the file. The difference
|
1698 |
|
|
between the virtual address of any segment in memory and
|
1699 |
|
|
the corresponding virtual address in the file is thus a
|
1700 |
|
|
single constant value for any one executable or shared
|
1701 |
|
|
object in a given process. This difference is the base
|
1702 |
|
|
address. One use of the base address is to relocate the
|
1703 |
|
|
memory image of the program during dynamic linking.
|
1704 |
|
|
|
1705 |
|
|
The same language also appears in Edition 4.0 of the System V
|
1706 |
|
|
ABI and is left unspecified in some of the earlier editions.
|
1707 |
|
|
|
1708 |
|
|
Decide if the objfile needs to be relocated. As indicated above, we will
|
1709 |
|
|
only be here when execution is stopped. But during attachment PC can be at
|
1710 |
|
|
arbitrary address therefore regcache_read_pc can be misleading (contrary to
|
1711 |
|
|
the auxv AT_ENTRY value). Moreover for executable with interpreter section
|
1712 |
|
|
regcache_read_pc would point to the interpreter and not the main executable.
|
1713 |
|
|
|
1714 |
|
|
So, to summarize, relocations are necessary when the start address obtained
|
1715 |
|
|
from the executable is different from the address in auxv AT_ENTRY entry.
|
1716 |
|
|
|
1717 |
|
|
[ The astute reader will note that we also test to make sure that
|
1718 |
|
|
the executable in question has the DYNAMIC flag set. It is my
|
1719 |
|
|
opinion that this test is unnecessary (undesirable even). It
|
1720 |
|
|
was added to avoid inadvertent relocation of an executable
|
1721 |
|
|
whose e_type member in the ELF header is not ET_DYN. There may
|
1722 |
|
|
be a time in the future when it is desirable to do relocations
|
1723 |
|
|
on other types of files as well in which case this condition
|
1724 |
|
|
should either be removed or modified to accomodate the new file
|
1725 |
|
|
type. - Kevin, Nov 2000. ] */
|
1726 |
|
|
|
1727 |
|
|
static int
|
1728 |
|
|
svr4_exec_displacement (CORE_ADDR *displacementp)
|
1729 |
|
|
{
|
1730 |
|
|
/* ENTRY_POINT is a possible function descriptor - before
|
1731 |
|
|
a call to gdbarch_convert_from_func_ptr_addr. */
|
1732 |
|
|
CORE_ADDR entry_point, displacement;
|
1733 |
|
|
|
1734 |
|
|
if (exec_bfd == NULL)
|
1735 |
|
|
return 0;
|
1736 |
|
|
|
1737 |
|
|
/* Therefore for ELF it is ET_EXEC and not ET_DYN. Both shared libraries
|
1738 |
|
|
being executed themselves and PIE (Position Independent Executable)
|
1739 |
|
|
executables are ET_DYN. */
|
1740 |
|
|
|
1741 |
|
|
if ((bfd_get_file_flags (exec_bfd) & DYNAMIC) == 0)
|
1742 |
|
|
return 0;
|
1743 |
|
|
|
1744 |
|
|
if (target_auxv_search (¤t_target, AT_ENTRY, &entry_point) <= 0)
|
1745 |
|
|
return 0;
|
1746 |
|
|
|
1747 |
|
|
displacement = entry_point - bfd_get_start_address (exec_bfd);
|
1748 |
|
|
|
1749 |
|
|
/* Verify the DISPLACEMENT candidate complies with the required page
|
1750 |
|
|
alignment. It is cheaper than the program headers comparison below. */
|
1751 |
|
|
|
1752 |
|
|
if (bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour)
|
1753 |
|
|
{
|
1754 |
|
|
const struct elf_backend_data *elf = get_elf_backend_data (exec_bfd);
|
1755 |
|
|
|
1756 |
|
|
/* p_align of PT_LOAD segments does not specify any alignment but
|
1757 |
|
|
only congruency of addresses:
|
1758 |
|
|
p_offset % p_align == p_vaddr % p_align
|
1759 |
|
|
Kernel is free to load the executable with lower alignment. */
|
1760 |
|
|
|
1761 |
|
|
if ((displacement & (elf->minpagesize - 1)) != 0)
|
1762 |
|
|
return 0;
|
1763 |
|
|
}
|
1764 |
|
|
|
1765 |
|
|
/* Verify that the auxilliary vector describes the same file as exec_bfd, by
|
1766 |
|
|
comparing their program headers. If the program headers in the auxilliary
|
1767 |
|
|
vector do not match the program headers in the executable, then we are
|
1768 |
|
|
looking at a different file than the one used by the kernel - for
|
1769 |
|
|
instance, "gdb program" connected to "gdbserver :PORT ld.so program". */
|
1770 |
|
|
|
1771 |
|
|
if (bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour)
|
1772 |
|
|
{
|
1773 |
|
|
/* Be optimistic and clear OK only if GDB was able to verify the headers
|
1774 |
|
|
really do not match. */
|
1775 |
|
|
int phdrs_size, phdrs2_size, ok = 1;
|
1776 |
|
|
gdb_byte *buf, *buf2;
|
1777 |
|
|
int arch_size;
|
1778 |
|
|
|
1779 |
|
|
buf = read_program_header (-1, &phdrs_size, &arch_size);
|
1780 |
|
|
buf2 = read_program_headers_from_bfd (exec_bfd, &phdrs2_size);
|
1781 |
|
|
if (buf != NULL && buf2 != NULL)
|
1782 |
|
|
{
|
1783 |
|
|
enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch);
|
1784 |
|
|
|
1785 |
|
|
/* We are dealing with three different addresses. EXEC_BFD
|
1786 |
|
|
represents current address in on-disk file. target memory content
|
1787 |
|
|
may be different from EXEC_BFD as the file may have been prelinked
|
1788 |
|
|
to a different address after the executable has been loaded.
|
1789 |
|
|
Moreover the address of placement in target memory can be
|
1790 |
|
|
different from what the program headers in target memory say - this
|
1791 |
|
|
is the goal of PIE.
|
1792 |
|
|
|
1793 |
|
|
Detected DISPLACEMENT covers both the offsets of PIE placement and
|
1794 |
|
|
possible new prelink performed after start of the program. Here
|
1795 |
|
|
relocate BUF and BUF2 just by the EXEC_BFD vs. target memory
|
1796 |
|
|
content offset for the verification purpose. */
|
1797 |
|
|
|
1798 |
|
|
if (phdrs_size != phdrs2_size
|
1799 |
|
|
|| bfd_get_arch_size (exec_bfd) != arch_size)
|
1800 |
|
|
ok = 0;
|
1801 |
|
|
else if (arch_size == 32 && phdrs_size >= sizeof (Elf32_External_Phdr)
|
1802 |
|
|
&& phdrs_size % sizeof (Elf32_External_Phdr) == 0)
|
1803 |
|
|
{
|
1804 |
|
|
Elf_Internal_Ehdr *ehdr2 = elf_tdata (exec_bfd)->elf_header;
|
1805 |
|
|
Elf_Internal_Phdr *phdr2 = elf_tdata (exec_bfd)->phdr;
|
1806 |
|
|
CORE_ADDR displacement = 0;
|
1807 |
|
|
int i;
|
1808 |
|
|
|
1809 |
|
|
/* DISPLACEMENT could be found more easily by the difference of
|
1810 |
|
|
ehdr2->e_entry. But we haven't read the ehdr yet, and we
|
1811 |
|
|
already have enough information to compute that displacement
|
1812 |
|
|
with what we've read. */
|
1813 |
|
|
|
1814 |
|
|
for (i = 0; i < ehdr2->e_phnum; i++)
|
1815 |
|
|
if (phdr2[i].p_type == PT_LOAD)
|
1816 |
|
|
{
|
1817 |
|
|
Elf32_External_Phdr *phdrp;
|
1818 |
|
|
gdb_byte *buf_vaddr_p, *buf_paddr_p;
|
1819 |
|
|
CORE_ADDR vaddr, paddr;
|
1820 |
|
|
CORE_ADDR displacement_vaddr = 0;
|
1821 |
|
|
CORE_ADDR displacement_paddr = 0;
|
1822 |
|
|
|
1823 |
|
|
phdrp = &((Elf32_External_Phdr *) buf)[i];
|
1824 |
|
|
buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
|
1825 |
|
|
buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
|
1826 |
|
|
|
1827 |
|
|
vaddr = extract_unsigned_integer (buf_vaddr_p, 4,
|
1828 |
|
|
byte_order);
|
1829 |
|
|
displacement_vaddr = vaddr - phdr2[i].p_vaddr;
|
1830 |
|
|
|
1831 |
|
|
paddr = extract_unsigned_integer (buf_paddr_p, 4,
|
1832 |
|
|
byte_order);
|
1833 |
|
|
displacement_paddr = paddr - phdr2[i].p_paddr;
|
1834 |
|
|
|
1835 |
|
|
if (displacement_vaddr == displacement_paddr)
|
1836 |
|
|
displacement = displacement_vaddr;
|
1837 |
|
|
|
1838 |
|
|
break;
|
1839 |
|
|
}
|
1840 |
|
|
|
1841 |
|
|
/* Now compare BUF and BUF2 with optional DISPLACEMENT. */
|
1842 |
|
|
|
1843 |
|
|
for (i = 0; i < phdrs_size / sizeof (Elf32_External_Phdr); i++)
|
1844 |
|
|
{
|
1845 |
|
|
Elf32_External_Phdr *phdrp;
|
1846 |
|
|
Elf32_External_Phdr *phdr2p;
|
1847 |
|
|
gdb_byte *buf_vaddr_p, *buf_paddr_p;
|
1848 |
|
|
CORE_ADDR vaddr, paddr;
|
1849 |
|
|
|
1850 |
|
|
phdrp = &((Elf32_External_Phdr *) buf)[i];
|
1851 |
|
|
buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
|
1852 |
|
|
buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
|
1853 |
|
|
phdr2p = &((Elf32_External_Phdr *) buf2)[i];
|
1854 |
|
|
|
1855 |
|
|
/* PT_GNU_STACK is an exception by being never relocated by
|
1856 |
|
|
prelink as its addresses are always zero. */
|
1857 |
|
|
|
1858 |
|
|
if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
|
1859 |
|
|
continue;
|
1860 |
|
|
|
1861 |
|
|
/* Check also other adjustment combinations - PR 11786. */
|
1862 |
|
|
|
1863 |
|
|
vaddr = extract_unsigned_integer (buf_vaddr_p, 4, byte_order);
|
1864 |
|
|
vaddr -= displacement;
|
1865 |
|
|
store_unsigned_integer (buf_vaddr_p, 4, byte_order, vaddr);
|
1866 |
|
|
|
1867 |
|
|
paddr = extract_unsigned_integer (buf_paddr_p, 4, byte_order);
|
1868 |
|
|
paddr -= displacement;
|
1869 |
|
|
store_unsigned_integer (buf_paddr_p, 4, byte_order, paddr);
|
1870 |
|
|
|
1871 |
|
|
if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
|
1872 |
|
|
continue;
|
1873 |
|
|
|
1874 |
|
|
ok = 0;
|
1875 |
|
|
break;
|
1876 |
|
|
}
|
1877 |
|
|
}
|
1878 |
|
|
else if (arch_size == 64 && phdrs_size >= sizeof (Elf64_External_Phdr)
|
1879 |
|
|
&& phdrs_size % sizeof (Elf64_External_Phdr) == 0)
|
1880 |
|
|
{
|
1881 |
|
|
Elf_Internal_Ehdr *ehdr2 = elf_tdata (exec_bfd)->elf_header;
|
1882 |
|
|
Elf_Internal_Phdr *phdr2 = elf_tdata (exec_bfd)->phdr;
|
1883 |
|
|
CORE_ADDR displacement = 0;
|
1884 |
|
|
int i;
|
1885 |
|
|
|
1886 |
|
|
/* DISPLACEMENT could be found more easily by the difference of
|
1887 |
|
|
ehdr2->e_entry. But we haven't read the ehdr yet, and we
|
1888 |
|
|
already have enough information to compute that displacement
|
1889 |
|
|
with what we've read. */
|
1890 |
|
|
|
1891 |
|
|
for (i = 0; i < ehdr2->e_phnum; i++)
|
1892 |
|
|
if (phdr2[i].p_type == PT_LOAD)
|
1893 |
|
|
{
|
1894 |
|
|
Elf64_External_Phdr *phdrp;
|
1895 |
|
|
gdb_byte *buf_vaddr_p, *buf_paddr_p;
|
1896 |
|
|
CORE_ADDR vaddr, paddr;
|
1897 |
|
|
CORE_ADDR displacement_vaddr = 0;
|
1898 |
|
|
CORE_ADDR displacement_paddr = 0;
|
1899 |
|
|
|
1900 |
|
|
phdrp = &((Elf64_External_Phdr *) buf)[i];
|
1901 |
|
|
buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
|
1902 |
|
|
buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
|
1903 |
|
|
|
1904 |
|
|
vaddr = extract_unsigned_integer (buf_vaddr_p, 8,
|
1905 |
|
|
byte_order);
|
1906 |
|
|
displacement_vaddr = vaddr - phdr2[i].p_vaddr;
|
1907 |
|
|
|
1908 |
|
|
paddr = extract_unsigned_integer (buf_paddr_p, 8,
|
1909 |
|
|
byte_order);
|
1910 |
|
|
displacement_paddr = paddr - phdr2[i].p_paddr;
|
1911 |
|
|
|
1912 |
|
|
if (displacement_vaddr == displacement_paddr)
|
1913 |
|
|
displacement = displacement_vaddr;
|
1914 |
|
|
|
1915 |
|
|
break;
|
1916 |
|
|
}
|
1917 |
|
|
|
1918 |
|
|
/* Now compare BUF and BUF2 with optional DISPLACEMENT. */
|
1919 |
|
|
|
1920 |
|
|
for (i = 0; i < phdrs_size / sizeof (Elf64_External_Phdr); i++)
|
1921 |
|
|
{
|
1922 |
|
|
Elf64_External_Phdr *phdrp;
|
1923 |
|
|
Elf64_External_Phdr *phdr2p;
|
1924 |
|
|
gdb_byte *buf_vaddr_p, *buf_paddr_p;
|
1925 |
|
|
CORE_ADDR vaddr, paddr;
|
1926 |
|
|
|
1927 |
|
|
phdrp = &((Elf64_External_Phdr *) buf)[i];
|
1928 |
|
|
buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
|
1929 |
|
|
buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
|
1930 |
|
|
phdr2p = &((Elf64_External_Phdr *) buf2)[i];
|
1931 |
|
|
|
1932 |
|
|
/* PT_GNU_STACK is an exception by being never relocated by
|
1933 |
|
|
prelink as its addresses are always zero. */
|
1934 |
|
|
|
1935 |
|
|
if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
|
1936 |
|
|
continue;
|
1937 |
|
|
|
1938 |
|
|
/* Check also other adjustment combinations - PR 11786. */
|
1939 |
|
|
|
1940 |
|
|
vaddr = extract_unsigned_integer (buf_vaddr_p, 8, byte_order);
|
1941 |
|
|
vaddr -= displacement;
|
1942 |
|
|
store_unsigned_integer (buf_vaddr_p, 8, byte_order, vaddr);
|
1943 |
|
|
|
1944 |
|
|
paddr = extract_unsigned_integer (buf_paddr_p, 8, byte_order);
|
1945 |
|
|
paddr -= displacement;
|
1946 |
|
|
store_unsigned_integer (buf_paddr_p, 8, byte_order, paddr);
|
1947 |
|
|
|
1948 |
|
|
if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
|
1949 |
|
|
continue;
|
1950 |
|
|
|
1951 |
|
|
ok = 0;
|
1952 |
|
|
break;
|
1953 |
|
|
}
|
1954 |
|
|
}
|
1955 |
|
|
else
|
1956 |
|
|
ok = 0;
|
1957 |
|
|
}
|
1958 |
|
|
|
1959 |
|
|
xfree (buf);
|
1960 |
|
|
xfree (buf2);
|
1961 |
|
|
|
1962 |
|
|
if (!ok)
|
1963 |
|
|
return 0;
|
1964 |
|
|
}
|
1965 |
|
|
|
1966 |
|
|
if (info_verbose)
|
1967 |
|
|
{
|
1968 |
|
|
/* It can be printed repeatedly as there is no easy way to check
|
1969 |
|
|
the executable symbols/file has been already relocated to
|
1970 |
|
|
displacement. */
|
1971 |
|
|
|
1972 |
|
|
printf_unfiltered (_("Using PIE (Position Independent Executable) "
|
1973 |
|
|
"displacement %s for \"%s\".\n"),
|
1974 |
|
|
paddress (target_gdbarch, displacement),
|
1975 |
|
|
bfd_get_filename (exec_bfd));
|
1976 |
|
|
}
|
1977 |
|
|
|
1978 |
|
|
*displacementp = displacement;
|
1979 |
|
|
return 1;
|
1980 |
|
|
}
|
1981 |
|
|
|
1982 |
|
|
/* Relocate the main executable. This function should be called upon
|
1983 |
|
|
stopping the inferior process at the entry point to the program.
|
1984 |
|
|
The entry point from BFD is compared to the AT_ENTRY of AUXV and if they are
|
1985 |
|
|
different, the main executable is relocated by the proper amount. */
|
1986 |
|
|
|
1987 |
|
|
static void
|
1988 |
|
|
svr4_relocate_main_executable (void)
|
1989 |
|
|
{
|
1990 |
|
|
CORE_ADDR displacement;
|
1991 |
|
|
|
1992 |
|
|
/* If we are re-running this executable, SYMFILE_OBJFILE->SECTION_OFFSETS
|
1993 |
|
|
probably contains the offsets computed using the PIE displacement
|
1994 |
|
|
from the previous run, which of course are irrelevant for this run.
|
1995 |
|
|
So we need to determine the new PIE displacement and recompute the
|
1996 |
|
|
section offsets accordingly, even if SYMFILE_OBJFILE->SECTION_OFFSETS
|
1997 |
|
|
already contains pre-computed offsets.
|
1998 |
|
|
|
1999 |
|
|
If we cannot compute the PIE displacement, either:
|
2000 |
|
|
|
2001 |
|
|
- The executable is not PIE.
|
2002 |
|
|
|
2003 |
|
|
- SYMFILE_OBJFILE does not match the executable started in the target.
|
2004 |
|
|
This can happen for main executable symbols loaded at the host while
|
2005 |
|
|
`ld.so --ld-args main-executable' is loaded in the target.
|
2006 |
|
|
|
2007 |
|
|
Then we leave the section offsets untouched and use them as is for
|
2008 |
|
|
this run. Either:
|
2009 |
|
|
|
2010 |
|
|
- These section offsets were properly reset earlier, and thus
|
2011 |
|
|
already contain the correct values. This can happen for instance
|
2012 |
|
|
when reconnecting via the remote protocol to a target that supports
|
2013 |
|
|
the `qOffsets' packet.
|
2014 |
|
|
|
2015 |
|
|
- The section offsets were not reset earlier, and the best we can
|
2016 |
|
|
hope is that the old offsets are still applicable to the new run.
|
2017 |
|
|
*/
|
2018 |
|
|
|
2019 |
|
|
if (! svr4_exec_displacement (&displacement))
|
2020 |
|
|
return;
|
2021 |
|
|
|
2022 |
|
|
/* Even DISPLACEMENT 0 is a valid new difference of in-memory vs. in-file
|
2023 |
|
|
addresses. */
|
2024 |
|
|
|
2025 |
|
|
if (symfile_objfile)
|
2026 |
|
|
{
|
2027 |
|
|
struct section_offsets *new_offsets;
|
2028 |
|
|
int i;
|
2029 |
|
|
|
2030 |
|
|
new_offsets = alloca (symfile_objfile->num_sections
|
2031 |
|
|
* sizeof (*new_offsets));
|
2032 |
|
|
|
2033 |
|
|
for (i = 0; i < symfile_objfile->num_sections; i++)
|
2034 |
|
|
new_offsets->offsets[i] = displacement;
|
2035 |
|
|
|
2036 |
|
|
objfile_relocate (symfile_objfile, new_offsets);
|
2037 |
|
|
}
|
2038 |
|
|
else if (exec_bfd)
|
2039 |
|
|
{
|
2040 |
|
|
asection *asect;
|
2041 |
|
|
|
2042 |
|
|
for (asect = exec_bfd->sections; asect != NULL; asect = asect->next)
|
2043 |
|
|
exec_set_section_address (bfd_get_filename (exec_bfd), asect->index,
|
2044 |
|
|
(bfd_section_vma (exec_bfd, asect)
|
2045 |
|
|
+ displacement));
|
2046 |
|
|
}
|
2047 |
|
|
}
|
2048 |
|
|
|
2049 |
|
|
/*
|
2050 |
|
|
|
2051 |
|
|
GLOBAL FUNCTION
|
2052 |
|
|
|
2053 |
|
|
svr4_solib_create_inferior_hook -- shared library startup support
|
2054 |
|
|
|
2055 |
|
|
SYNOPSIS
|
2056 |
|
|
|
2057 |
|
|
void svr4_solib_create_inferior_hook (int from_tty)
|
2058 |
|
|
|
2059 |
|
|
DESCRIPTION
|
2060 |
|
|
|
2061 |
|
|
When gdb starts up the inferior, it nurses it along (through the
|
2062 |
|
|
shell) until it is ready to execute it's first instruction. At this
|
2063 |
|
|
point, this function gets called via expansion of the macro
|
2064 |
|
|
SOLIB_CREATE_INFERIOR_HOOK.
|
2065 |
|
|
|
2066 |
|
|
For SunOS executables, this first instruction is typically the
|
2067 |
|
|
one at "_start", or a similar text label, regardless of whether
|
2068 |
|
|
the executable is statically or dynamically linked. The runtime
|
2069 |
|
|
startup code takes care of dynamically linking in any shared
|
2070 |
|
|
libraries, once gdb allows the inferior to continue.
|
2071 |
|
|
|
2072 |
|
|
For SVR4 executables, this first instruction is either the first
|
2073 |
|
|
instruction in the dynamic linker (for dynamically linked
|
2074 |
|
|
executables) or the instruction at "start" for statically linked
|
2075 |
|
|
executables. For dynamically linked executables, the system
|
2076 |
|
|
first exec's /lib/libc.so.N, which contains the dynamic linker,
|
2077 |
|
|
and starts it running. The dynamic linker maps in any needed
|
2078 |
|
|
shared libraries, maps in the actual user executable, and then
|
2079 |
|
|
jumps to "start" in the user executable.
|
2080 |
|
|
|
2081 |
|
|
For both SunOS shared libraries, and SVR4 shared libraries, we
|
2082 |
|
|
can arrange to cooperate with the dynamic linker to discover the
|
2083 |
|
|
names of shared libraries that are dynamically linked, and the
|
2084 |
|
|
base addresses to which they are linked.
|
2085 |
|
|
|
2086 |
|
|
This function is responsible for discovering those names and
|
2087 |
|
|
addresses, and saving sufficient information about them to allow
|
2088 |
|
|
their symbols to be read at a later time.
|
2089 |
|
|
|
2090 |
|
|
FIXME
|
2091 |
|
|
|
2092 |
|
|
Between enable_break() and disable_break(), this code does not
|
2093 |
|
|
properly handle hitting breakpoints which the user might have
|
2094 |
|
|
set in the startup code or in the dynamic linker itself. Proper
|
2095 |
|
|
handling will probably have to wait until the implementation is
|
2096 |
|
|
changed to use the "breakpoint handler function" method.
|
2097 |
|
|
|
2098 |
|
|
Also, what if child has exit()ed? Must exit loop somehow.
|
2099 |
|
|
*/
|
2100 |
|
|
|
2101 |
|
|
static void
|
2102 |
|
|
svr4_solib_create_inferior_hook (int from_tty)
|
2103 |
|
|
{
|
2104 |
|
|
#if defined(_SCO_DS)
|
2105 |
|
|
struct inferior *inf;
|
2106 |
|
|
struct thread_info *tp;
|
2107 |
|
|
#endif /* defined(_SCO_DS) */
|
2108 |
|
|
struct svr4_info *info;
|
2109 |
|
|
|
2110 |
|
|
info = get_svr4_info ();
|
2111 |
|
|
|
2112 |
|
|
/* Relocate the main executable if necessary. */
|
2113 |
|
|
svr4_relocate_main_executable ();
|
2114 |
|
|
|
2115 |
|
|
if (!svr4_have_link_map_offsets ())
|
2116 |
|
|
return;
|
2117 |
|
|
|
2118 |
|
|
if (!enable_break (info, from_tty))
|
2119 |
|
|
return;
|
2120 |
|
|
|
2121 |
|
|
#if defined(_SCO_DS)
|
2122 |
|
|
/* SCO needs the loop below, other systems should be using the
|
2123 |
|
|
special shared library breakpoints and the shared library breakpoint
|
2124 |
|
|
service routine.
|
2125 |
|
|
|
2126 |
|
|
Now run the target. It will eventually hit the breakpoint, at
|
2127 |
|
|
which point all of the libraries will have been mapped in and we
|
2128 |
|
|
can go groveling around in the dynamic linker structures to find
|
2129 |
|
|
out what we need to know about them. */
|
2130 |
|
|
|
2131 |
|
|
inf = current_inferior ();
|
2132 |
|
|
tp = inferior_thread ();
|
2133 |
|
|
|
2134 |
|
|
clear_proceed_status ();
|
2135 |
|
|
inf->stop_soon = STOP_QUIETLY;
|
2136 |
|
|
tp->stop_signal = TARGET_SIGNAL_0;
|
2137 |
|
|
do
|
2138 |
|
|
{
|
2139 |
|
|
target_resume (pid_to_ptid (-1), 0, tp->stop_signal);
|
2140 |
|
|
wait_for_inferior (0);
|
2141 |
|
|
}
|
2142 |
|
|
while (tp->stop_signal != TARGET_SIGNAL_TRAP);
|
2143 |
|
|
inf->stop_soon = NO_STOP_QUIETLY;
|
2144 |
|
|
#endif /* defined(_SCO_DS) */
|
2145 |
|
|
}
|
2146 |
|
|
|
2147 |
|
|
static void
|
2148 |
|
|
svr4_clear_solib (void)
|
2149 |
|
|
{
|
2150 |
|
|
struct svr4_info *info;
|
2151 |
|
|
|
2152 |
|
|
info = get_svr4_info ();
|
2153 |
|
|
info->debug_base = 0;
|
2154 |
|
|
info->debug_loader_offset_p = 0;
|
2155 |
|
|
info->debug_loader_offset = 0;
|
2156 |
|
|
xfree (info->debug_loader_name);
|
2157 |
|
|
info->debug_loader_name = NULL;
|
2158 |
|
|
}
|
2159 |
|
|
|
2160 |
|
|
static void
|
2161 |
|
|
svr4_free_so (struct so_list *so)
|
2162 |
|
|
{
|
2163 |
|
|
xfree (so->lm_info->lm);
|
2164 |
|
|
xfree (so->lm_info);
|
2165 |
|
|
}
|
2166 |
|
|
|
2167 |
|
|
|
2168 |
|
|
/* Clear any bits of ADDR that wouldn't fit in a target-format
|
2169 |
|
|
data pointer. "Data pointer" here refers to whatever sort of
|
2170 |
|
|
address the dynamic linker uses to manage its sections. At the
|
2171 |
|
|
moment, we don't support shared libraries on any processors where
|
2172 |
|
|
code and data pointers are different sizes.
|
2173 |
|
|
|
2174 |
|
|
This isn't really the right solution. What we really need here is
|
2175 |
|
|
a way to do arithmetic on CORE_ADDR values that respects the
|
2176 |
|
|
natural pointer/address correspondence. (For example, on the MIPS,
|
2177 |
|
|
converting a 32-bit pointer to a 64-bit CORE_ADDR requires you to
|
2178 |
|
|
sign-extend the value. There, simply truncating the bits above
|
2179 |
|
|
gdbarch_ptr_bit, as we do below, is no good.) This should probably
|
2180 |
|
|
be a new gdbarch method or something. */
|
2181 |
|
|
static CORE_ADDR
|
2182 |
|
|
svr4_truncate_ptr (CORE_ADDR addr)
|
2183 |
|
|
{
|
2184 |
|
|
if (gdbarch_ptr_bit (target_gdbarch) == sizeof (CORE_ADDR) * 8)
|
2185 |
|
|
/* We don't need to truncate anything, and the bit twiddling below
|
2186 |
|
|
will fail due to overflow problems. */
|
2187 |
|
|
return addr;
|
2188 |
|
|
else
|
2189 |
|
|
return addr & (((CORE_ADDR) 1 << gdbarch_ptr_bit (target_gdbarch)) - 1);
|
2190 |
|
|
}
|
2191 |
|
|
|
2192 |
|
|
|
2193 |
|
|
static void
|
2194 |
|
|
svr4_relocate_section_addresses (struct so_list *so,
|
2195 |
|
|
struct target_section *sec)
|
2196 |
|
|
{
|
2197 |
|
|
sec->addr = svr4_truncate_ptr (sec->addr + LM_ADDR_CHECK (so,
|
2198 |
|
|
sec->bfd));
|
2199 |
|
|
sec->endaddr = svr4_truncate_ptr (sec->endaddr + LM_ADDR_CHECK (so,
|
2200 |
|
|
sec->bfd));
|
2201 |
|
|
}
|
2202 |
|
|
|
2203 |
|
|
|
2204 |
|
|
/* Architecture-specific operations. */
|
2205 |
|
|
|
2206 |
|
|
/* Per-architecture data key. */
|
2207 |
|
|
static struct gdbarch_data *solib_svr4_data;
|
2208 |
|
|
|
2209 |
|
|
struct solib_svr4_ops
|
2210 |
|
|
{
|
2211 |
|
|
/* Return a description of the layout of `struct link_map'. */
|
2212 |
|
|
struct link_map_offsets *(*fetch_link_map_offsets)(void);
|
2213 |
|
|
};
|
2214 |
|
|
|
2215 |
|
|
/* Return a default for the architecture-specific operations. */
|
2216 |
|
|
|
2217 |
|
|
static void *
|
2218 |
|
|
solib_svr4_init (struct obstack *obstack)
|
2219 |
|
|
{
|
2220 |
|
|
struct solib_svr4_ops *ops;
|
2221 |
|
|
|
2222 |
|
|
ops = OBSTACK_ZALLOC (obstack, struct solib_svr4_ops);
|
2223 |
|
|
ops->fetch_link_map_offsets = NULL;
|
2224 |
|
|
return ops;
|
2225 |
|
|
}
|
2226 |
|
|
|
2227 |
|
|
/* Set the architecture-specific `struct link_map_offsets' fetcher for
|
2228 |
|
|
GDBARCH to FLMO. Also, install SVR4 solib_ops into GDBARCH. */
|
2229 |
|
|
|
2230 |
|
|
void
|
2231 |
|
|
set_solib_svr4_fetch_link_map_offsets (struct gdbarch *gdbarch,
|
2232 |
|
|
struct link_map_offsets *(*flmo) (void))
|
2233 |
|
|
{
|
2234 |
|
|
struct solib_svr4_ops *ops = gdbarch_data (gdbarch, solib_svr4_data);
|
2235 |
|
|
|
2236 |
|
|
ops->fetch_link_map_offsets = flmo;
|
2237 |
|
|
|
2238 |
|
|
set_solib_ops (gdbarch, &svr4_so_ops);
|
2239 |
|
|
}
|
2240 |
|
|
|
2241 |
|
|
/* Fetch a link_map_offsets structure using the architecture-specific
|
2242 |
|
|
`struct link_map_offsets' fetcher. */
|
2243 |
|
|
|
2244 |
|
|
static struct link_map_offsets *
|
2245 |
|
|
svr4_fetch_link_map_offsets (void)
|
2246 |
|
|
{
|
2247 |
|
|
struct solib_svr4_ops *ops = gdbarch_data (target_gdbarch, solib_svr4_data);
|
2248 |
|
|
|
2249 |
|
|
gdb_assert (ops->fetch_link_map_offsets);
|
2250 |
|
|
return ops->fetch_link_map_offsets ();
|
2251 |
|
|
}
|
2252 |
|
|
|
2253 |
|
|
/* Return 1 if a link map offset fetcher has been defined, 0 otherwise. */
|
2254 |
|
|
|
2255 |
|
|
static int
|
2256 |
|
|
svr4_have_link_map_offsets (void)
|
2257 |
|
|
{
|
2258 |
|
|
struct solib_svr4_ops *ops = gdbarch_data (target_gdbarch, solib_svr4_data);
|
2259 |
|
|
|
2260 |
|
|
return (ops->fetch_link_map_offsets != NULL);
|
2261 |
|
|
}
|
2262 |
|
|
|
2263 |
|
|
|
2264 |
|
|
/* Most OS'es that have SVR4-style ELF dynamic libraries define a
|
2265 |
|
|
`struct r_debug' and a `struct link_map' that are binary compatible
|
2266 |
|
|
with the origional SVR4 implementation. */
|
2267 |
|
|
|
2268 |
|
|
/* Fetch (and possibly build) an appropriate `struct link_map_offsets'
|
2269 |
|
|
for an ILP32 SVR4 system. */
|
2270 |
|
|
|
2271 |
|
|
struct link_map_offsets *
|
2272 |
|
|
svr4_ilp32_fetch_link_map_offsets (void)
|
2273 |
|
|
{
|
2274 |
|
|
static struct link_map_offsets lmo;
|
2275 |
|
|
static struct link_map_offsets *lmp = NULL;
|
2276 |
|
|
|
2277 |
|
|
if (lmp == NULL)
|
2278 |
|
|
{
|
2279 |
|
|
lmp = &lmo;
|
2280 |
|
|
|
2281 |
|
|
lmo.r_version_offset = 0;
|
2282 |
|
|
lmo.r_version_size = 4;
|
2283 |
|
|
lmo.r_map_offset = 4;
|
2284 |
|
|
lmo.r_brk_offset = 8;
|
2285 |
|
|
lmo.r_ldsomap_offset = 20;
|
2286 |
|
|
|
2287 |
|
|
/* Everything we need is in the first 20 bytes. */
|
2288 |
|
|
lmo.link_map_size = 20;
|
2289 |
|
|
lmo.l_addr_offset = 0;
|
2290 |
|
|
lmo.l_name_offset = 4;
|
2291 |
|
|
lmo.l_ld_offset = 8;
|
2292 |
|
|
lmo.l_next_offset = 12;
|
2293 |
|
|
lmo.l_prev_offset = 16;
|
2294 |
|
|
}
|
2295 |
|
|
|
2296 |
|
|
return lmp;
|
2297 |
|
|
}
|
2298 |
|
|
|
2299 |
|
|
/* Fetch (and possibly build) an appropriate `struct link_map_offsets'
|
2300 |
|
|
for an LP64 SVR4 system. */
|
2301 |
|
|
|
2302 |
|
|
struct link_map_offsets *
|
2303 |
|
|
svr4_lp64_fetch_link_map_offsets (void)
|
2304 |
|
|
{
|
2305 |
|
|
static struct link_map_offsets lmo;
|
2306 |
|
|
static struct link_map_offsets *lmp = NULL;
|
2307 |
|
|
|
2308 |
|
|
if (lmp == NULL)
|
2309 |
|
|
{
|
2310 |
|
|
lmp = &lmo;
|
2311 |
|
|
|
2312 |
|
|
lmo.r_version_offset = 0;
|
2313 |
|
|
lmo.r_version_size = 4;
|
2314 |
|
|
lmo.r_map_offset = 8;
|
2315 |
|
|
lmo.r_brk_offset = 16;
|
2316 |
|
|
lmo.r_ldsomap_offset = 40;
|
2317 |
|
|
|
2318 |
|
|
/* Everything we need is in the first 40 bytes. */
|
2319 |
|
|
lmo.link_map_size = 40;
|
2320 |
|
|
lmo.l_addr_offset = 0;
|
2321 |
|
|
lmo.l_name_offset = 8;
|
2322 |
|
|
lmo.l_ld_offset = 16;
|
2323 |
|
|
lmo.l_next_offset = 24;
|
2324 |
|
|
lmo.l_prev_offset = 32;
|
2325 |
|
|
}
|
2326 |
|
|
|
2327 |
|
|
return lmp;
|
2328 |
|
|
}
|
2329 |
|
|
|
2330 |
|
|
|
2331 |
|
|
struct target_so_ops svr4_so_ops;
|
2332 |
|
|
|
2333 |
|
|
/* Lookup global symbol for ELF DSOs linked with -Bsymbolic. Those DSOs have a
|
2334 |
|
|
different rule for symbol lookup. The lookup begins here in the DSO, not in
|
2335 |
|
|
the main executable. */
|
2336 |
|
|
|
2337 |
|
|
static struct symbol *
|
2338 |
|
|
elf_lookup_lib_symbol (const struct objfile *objfile,
|
2339 |
|
|
const char *name,
|
2340 |
|
|
const domain_enum domain)
|
2341 |
|
|
{
|
2342 |
|
|
bfd *abfd;
|
2343 |
|
|
|
2344 |
|
|
if (objfile == symfile_objfile)
|
2345 |
|
|
abfd = exec_bfd;
|
2346 |
|
|
else
|
2347 |
|
|
{
|
2348 |
|
|
/* OBJFILE should have been passed as the non-debug one. */
|
2349 |
|
|
gdb_assert (objfile->separate_debug_objfile_backlink == NULL);
|
2350 |
|
|
|
2351 |
|
|
abfd = objfile->obfd;
|
2352 |
|
|
}
|
2353 |
|
|
|
2354 |
|
|
if (abfd == NULL || scan_dyntag (DT_SYMBOLIC, abfd, NULL) != 1)
|
2355 |
|
|
return NULL;
|
2356 |
|
|
|
2357 |
|
|
return lookup_global_symbol_from_objfile (objfile, name, domain);
|
2358 |
|
|
}
|
2359 |
|
|
|
2360 |
|
|
extern initialize_file_ftype _initialize_svr4_solib; /* -Wmissing-prototypes */
|
2361 |
|
|
|
2362 |
|
|
void
|
2363 |
|
|
_initialize_svr4_solib (void)
|
2364 |
|
|
{
|
2365 |
|
|
solib_svr4_data = gdbarch_data_register_pre_init (solib_svr4_init);
|
2366 |
|
|
solib_svr4_pspace_data
|
2367 |
|
|
= register_program_space_data_with_cleanup (svr4_pspace_data_cleanup);
|
2368 |
|
|
|
2369 |
|
|
svr4_so_ops.relocate_section_addresses = svr4_relocate_section_addresses;
|
2370 |
|
|
svr4_so_ops.free_so = svr4_free_so;
|
2371 |
|
|
svr4_so_ops.clear_solib = svr4_clear_solib;
|
2372 |
|
|
svr4_so_ops.solib_create_inferior_hook = svr4_solib_create_inferior_hook;
|
2373 |
|
|
svr4_so_ops.special_symbol_handling = svr4_special_symbol_handling;
|
2374 |
|
|
svr4_so_ops.current_sos = svr4_current_sos;
|
2375 |
|
|
svr4_so_ops.open_symbol_file_object = open_symbol_file_object;
|
2376 |
|
|
svr4_so_ops.in_dynsym_resolve_code = svr4_in_dynsym_resolve_code;
|
2377 |
|
|
svr4_so_ops.bfd_open = solib_bfd_open;
|
2378 |
|
|
svr4_so_ops.lookup_lib_global_symbol = elf_lookup_lib_symbol;
|
2379 |
|
|
svr4_so_ops.same = svr4_same;
|
2380 |
|
|
svr4_so_ops.keep_data_in_core = svr4_keep_data_in_core;
|
2381 |
|
|
}
|