OpenCores
URL https://opencores.org/ocsvn/openrisc_me/openrisc_me/trunk

Subversion Repositories openrisc_me

[/] [openrisc/] [trunk/] [gnu-src/] [newlib-1.17.0/] [newlib/] [libc/] [search/] [hash_page.c] - Blame information for rev 158

Details | Compare with Previous | View Log

Line No. Rev Author Line
1 148 jeremybenn
/*-
2
 * Copyright (c) 1990, 1993, 1994
3
 *      The Regents of the University of California.  All rights reserved.
4
 *
5
 * This code is derived from software contributed to Berkeley by
6
 * Margo Seltzer.
7
 *
8
 * Redistribution and use in source and binary forms, with or without
9
 * modification, are permitted provided that the following conditions
10
 * are met:
11
 * 1. Redistributions of source code must retain the above copyright
12
 *    notice, this list of conditions and the following disclaimer.
13
 * 2. Redistributions in binary form must reproduce the above copyright
14
 *    notice, this list of conditions and the following disclaimer in the
15
 *    documentation and/or other materials provided with the distribution.
16
 * 3. All advertising materials mentioning features or use of this software
17
 *    must display the following acknowledgement:
18
 *      This product includes software developed by the University of
19
 *      California, Berkeley and its contributors.
20
 * 4. Neither the name of the University nor the names of its contributors
21
 *    may be used to endorse or promote products derived from this software
22
 *    without specific prior written permission.
23
 *
24
 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34
 * SUCH DAMAGE.
35
 */
36
 
37
#include <sys/param.h>
38
#if defined(LIBC_SCCS) && !defined(lint)
39
static char sccsid[] = "@(#)hash_page.c 8.7 (Berkeley) 8/16/94";
40
#endif /* LIBC_SCCS and not lint */
41
#include <sys/cdefs.h>
42
 
43
/*
44
 * PACKAGE:  hashing
45
 *
46
 * DESCRIPTION:
47
 *      Page manipulation for hashing package.
48
 *
49
 * ROUTINES:
50
 *
51
 * External
52
 *      __get_page
53
 *      __add_ovflpage
54
 * Internal
55
 *      overflow_page
56
 *      open_temp
57
 */
58
 
59
#include <sys/types.h>
60
 
61
#include <errno.h>
62
#include <fcntl.h>
63
#include <signal.h>
64
#include <stdio.h>
65
#include <stdlib.h>
66
#include <string.h>
67
#include <unistd.h>
68
#ifdef DEBUG
69
#include <assert.h>
70
#endif
71
 
72
#include "db_local.h"
73
#include "hash.h"
74
#include "page.h"
75
#include "extern.h"
76
 
77
static __uint32_t       *fetch_bitmap(HTAB *, int);
78
static __uint32_t        first_free(__uint32_t);
79
static int       open_temp(HTAB *);
80
static __uint16_t        overflow_page(HTAB *);
81
static void      putpair(char *, const DBT *, const DBT *);
82
static void      squeeze_key(__uint16_t *, const DBT *, const DBT *);
83
static int       ugly_split
84
(HTAB *, __uint32_t, BUFHEAD *, BUFHEAD *, int, int);
85
 
86
#define PAGE_INIT(P) { \
87
        ((__uint16_t *)(P))[0] = 0; \
88
        ((__uint16_t *)(P))[1] = hashp->BSIZE - 3 * sizeof(__uint16_t); \
89
        ((__uint16_t *)(P))[2] = hashp->BSIZE; \
90
}
91
 
92
/*
93
 * This is called AFTER we have verified that there is room on the page for
94
 * the pair (PAIRFITS has returned true) so we go right ahead and start moving
95
 * stuff on.
96
 */
97
static void
98
putpair(p, key, val)
99
        char *p;
100
        const DBT *key, *val;
101
{
102
        __uint16_t *bp, n, off;
103
 
104
        bp = (__uint16_t *)p;
105
 
106
        /* Enter the key first. */
107
        n = bp[0];
108
 
109
        off = OFFSET(bp) - key->size;
110
        memmove(p + off, key->data, key->size);
111
        bp[++n] = off;
112
 
113
        /* Now the data. */
114
        off -= val->size;
115
        memmove(p + off, val->data, val->size);
116
        bp[++n] = off;
117
 
118
        /* Adjust page info. */
119
        bp[0] = n;
120
        bp[n + 1] = off - ((n + 3) * sizeof(__uint16_t));
121
        bp[n + 2] = off;
122
}
123
 
124
/*
125
 * Returns:
126
 *       0 OK
127
 *      -1 error
128
 */
129
extern int
130
__delpair(hashp, bufp, ndx)
131
        HTAB *hashp;
132
        BUFHEAD *bufp;
133
        int ndx;
134
{
135
        __uint16_t *bp, newoff;
136
        int n;
137
        __uint16_t pairlen;
138
 
139
        bp = (__uint16_t *)bufp->page;
140
        n = bp[0];
141
 
142
        if (bp[ndx + 1] < REAL_KEY)
143
                return (__big_delete(hashp, bufp));
144
        if (ndx != 1)
145
                newoff = bp[ndx - 1];
146
        else
147
                newoff = hashp->BSIZE;
148
        pairlen = newoff - bp[ndx + 1];
149
 
150
        if (ndx != (n - 1)) {
151
                /* Hard Case -- need to shuffle keys */
152
                int i;
153
                char *src = bufp->page + (int)OFFSET(bp);
154
                char *dst = src + (int)pairlen;
155
                memmove(dst, src, bp[ndx + 1] - OFFSET(bp));
156
 
157
                /* Now adjust the pointers */
158
                for (i = ndx + 2; i <= n; i += 2) {
159
                        if (bp[i + 1] == OVFLPAGE) {
160
                                bp[i - 2] = bp[i];
161
                                bp[i - 1] = bp[i + 1];
162
                        } else {
163
                                bp[i - 2] = bp[i] + pairlen;
164
                                bp[i - 1] = bp[i + 1] + pairlen;
165
                        }
166
                }
167
        }
168
        /* Finally adjust the page data */
169
        bp[n] = OFFSET(bp) + pairlen;
170
        bp[n - 1] = bp[n + 1] + pairlen + 2 * sizeof(__uint16_t);
171
        bp[0] = n - 2;
172
        hashp->NKEYS--;
173
 
174
        bufp->flags |= BUF_MOD;
175
        return (0);
176
}
177
/*
178
 * Returns:
179
 *       0 ==> OK
180
 *      -1 ==> Error
181
 */
182
extern int
183
__split_page(hashp, obucket, nbucket)
184
        HTAB *hashp;
185
        __uint32_t obucket, nbucket;
186
{
187
        BUFHEAD *new_bufp, *old_bufp;
188
        __uint16_t *ino;
189
        char *np;
190
        DBT key, val;
191
        int n, ndx, retval;
192
        __uint16_t copyto, diff, off, moved;
193
        char *op;
194
 
195
        copyto = (__uint16_t)hashp->BSIZE;
196
        off = (__uint16_t)hashp->BSIZE;
197
        old_bufp = __get_buf(hashp, obucket, NULL, 0);
198
        if (old_bufp == NULL)
199
                return (-1);
200
        new_bufp = __get_buf(hashp, nbucket, NULL, 0);
201
        if (new_bufp == NULL)
202
                return (-1);
203
 
204
        old_bufp->flags |= (BUF_MOD | BUF_PIN);
205
        new_bufp->flags |= (BUF_MOD | BUF_PIN);
206
 
207
        ino = (__uint16_t *)(op = old_bufp->page);
208
        np = new_bufp->page;
209
 
210
        moved = 0;
211
 
212
        for (n = 1, ndx = 1; n < ino[0]; n += 2) {
213
                if (ino[n + 1] < REAL_KEY) {
214
                        retval = ugly_split(hashp, obucket, old_bufp, new_bufp,
215
                            (int)copyto, (int)moved);
216
                        old_bufp->flags &= ~BUF_PIN;
217
                        new_bufp->flags &= ~BUF_PIN;
218
                        return (retval);
219
 
220
                }
221
                key.data = (u_char *)op + ino[n];
222
                key.size = off - ino[n];
223
 
224
                if (__call_hash(hashp, key.data, key.size) == obucket) {
225
                        /* Don't switch page */
226
                        diff = copyto - off;
227
                        if (diff) {
228
                                copyto = ino[n + 1] + diff;
229
                                memmove(op + copyto, op + ino[n + 1],
230
                                    off - ino[n + 1]);
231
                                ino[ndx] = copyto + ino[n] - ino[n + 1];
232
                                ino[ndx + 1] = copyto;
233
                        } else
234
                                copyto = ino[n + 1];
235
                        ndx += 2;
236
                } else {
237
                        /* Switch page */
238
                        val.data = (u_char *)op + ino[n + 1];
239
                        val.size = ino[n] - ino[n + 1];
240
                        putpair(np, &key, &val);
241
                        moved += 2;
242
                }
243
 
244
                off = ino[n + 1];
245
        }
246
 
247
        /* Now clean up the page */
248
        ino[0] -= moved;
249
        FREESPACE(ino) = copyto - sizeof(__uint16_t) * (ino[0] + 3);
250
        OFFSET(ino) = copyto;
251
 
252
#ifdef DEBUG3
253
        (void)fprintf(stderr, "split %d/%d\n",
254
            ((__uint16_t *)np)[0] / 2,
255
            ((__uint16_t *)op)[0] / 2);
256
#endif
257
        /* unpin both pages */
258
        old_bufp->flags &= ~BUF_PIN;
259
        new_bufp->flags &= ~BUF_PIN;
260
        return (0);
261
}
262
 
263
/*
264
 * Called when we encounter an overflow or big key/data page during split
265
 * handling.  This is special cased since we have to begin checking whether
266
 * the key/data pairs fit on their respective pages and because we may need
267
 * overflow pages for both the old and new pages.
268
 *
269
 * The first page might be a page with regular key/data pairs in which case
270
 * we have a regular overflow condition and just need to go on to the next
271
 * page or it might be a big key/data pair in which case we need to fix the
272
 * big key/data pair.
273
 *
274
 * Returns:
275
 *       0 ==> success
276
 *      -1 ==> failure
277
 */
278
static int
279
ugly_split(hashp, obucket, old_bufp, new_bufp, copyto, moved)
280
        HTAB *hashp;
281
        __uint32_t obucket;     /* Same as __split_page. */
282
        BUFHEAD *old_bufp, *new_bufp;
283
        int copyto;     /* First byte on page which contains key/data values. */
284
        int moved;              /* Number of pairs moved to new page. */
285
{
286
        BUFHEAD *bufp;          /* Buffer header for ino */
287
        __uint16_t *ino;                /* Page keys come off of */
288
        __uint16_t *np;         /* New page */
289
        __uint16_t *op;         /* Page keys go on to if they aren't moving */
290
 
291
        BUFHEAD *last_bfp;      /* Last buf header OVFL needing to be freed */
292
        DBT key, val;
293
        SPLIT_RETURN ret;
294
        __uint16_t n, off, ov_addr, scopyto;
295
        char *cino;             /* Character value of ino */
296
 
297
        bufp = old_bufp;
298
        ino = (__uint16_t *)old_bufp->page;
299
        np = (__uint16_t *)new_bufp->page;
300
        op = (__uint16_t *)old_bufp->page;
301
        last_bfp = NULL;
302
        scopyto = (__uint16_t)copyto;   /* ANSI */
303
 
304
        n = ino[0] - 1;
305
        while (n < ino[0]) {
306
                if (ino[2] < REAL_KEY && ino[2] != OVFLPAGE) {
307
                        if (__big_split(hashp, old_bufp,
308
                            new_bufp, bufp, bufp->addr, obucket, &ret))
309
                                return (-1);
310
                        old_bufp = ret.oldp;
311
                        if (!old_bufp)
312
                                return (-1);
313
                        op = (__uint16_t *)old_bufp->page;
314
                        new_bufp = ret.newp;
315
                        if (!new_bufp)
316
                                return (-1);
317
                        np = (__uint16_t *)new_bufp->page;
318
                        bufp = ret.nextp;
319
                        if (!bufp)
320
                                return (0);
321
                        cino = (char *)bufp->page;
322
                        ino = (__uint16_t *)cino;
323
                        last_bfp = ret.nextp;
324
                } else if (ino[n + 1] == OVFLPAGE) {
325
                        ov_addr = ino[n];
326
                        /*
327
                         * Fix up the old page -- the extra 2 are the fields
328
                         * which contained the overflow information.
329
                         */
330
                        ino[0] -= (moved + 2);
331
                        FREESPACE(ino) =
332
                            scopyto - sizeof(__uint16_t) * (ino[0] + 3);
333
                        OFFSET(ino) = scopyto;
334
 
335
                        bufp = __get_buf(hashp, ov_addr, bufp, 0);
336
                        if (!bufp)
337
                                return (-1);
338
 
339
                        ino = (__uint16_t *)bufp->page;
340
                        n = 1;
341
                        scopyto = hashp->BSIZE;
342
                        moved = 0;
343
 
344
                        if (last_bfp)
345
                                __free_ovflpage(hashp, last_bfp);
346
                        last_bfp = bufp;
347
                }
348
                /* Move regular sized pairs of there are any */
349
                off = hashp->BSIZE;
350
                for (n = 1; (n < ino[0]) && (ino[n + 1] >= REAL_KEY); n += 2) {
351
                        cino = (char *)ino;
352
                        key.data = (u_char *)cino + ino[n];
353
                        key.size = off - ino[n];
354
                        val.data = (u_char *)cino + ino[n + 1];
355
                        val.size = ino[n] - ino[n + 1];
356
                        off = ino[n + 1];
357
 
358
                        if (__call_hash(hashp, key.data, key.size) == obucket) {
359
                                /* Keep on old page */
360
                                if (PAIRFITS(op, (&key), (&val)))
361
                                        putpair((char *)op, &key, &val);
362
                                else {
363
                                        old_bufp =
364
                                            __add_ovflpage(hashp, old_bufp);
365
                                        if (!old_bufp)
366
                                                return (-1);
367
                                        op = (__uint16_t *)old_bufp->page;
368
                                        putpair((char *)op, &key, &val);
369
                                }
370
                                old_bufp->flags |= BUF_MOD;
371
                        } else {
372
                                /* Move to new page */
373
                                if (PAIRFITS(np, (&key), (&val)))
374
                                        putpair((char *)np, &key, &val);
375
                                else {
376
                                        new_bufp =
377
                                            __add_ovflpage(hashp, new_bufp);
378
                                        if (!new_bufp)
379
                                                return (-1);
380
                                        np = (__uint16_t *)new_bufp->page;
381
                                        putpair((char *)np, &key, &val);
382
                                }
383
                                new_bufp->flags |= BUF_MOD;
384
                        }
385
                }
386
        }
387
        if (last_bfp)
388
                __free_ovflpage(hashp, last_bfp);
389
        return (0);
390
}
391
 
392
/*
393
 * Add the given pair to the page
394
 *
395
 * Returns:
396
 *      0 ==> OK
397
 *      1 ==> failure
398
 */
399
extern int
400
__addel(hashp, bufp, key, val)
401
        HTAB *hashp;
402
        BUFHEAD *bufp;
403
        const DBT *key, *val;
404
{
405
        __uint16_t *bp, *sop;
406
        int do_expand;
407
 
408
        bp = (__uint16_t *)bufp->page;
409
        do_expand = 0;
410
        while (bp[0] && (bp[2] < REAL_KEY || bp[bp[0]] < REAL_KEY))
411
                /* Exception case */
412
                if (bp[2] == FULL_KEY_DATA && bp[0] == 2)
413
                        /* This is the last page of a big key/data pair
414
                           and we need to add another page */
415
                        break;
416
                else if (bp[2] < REAL_KEY && bp[bp[0]] != OVFLPAGE) {
417
                        bufp = __get_buf(hashp, bp[bp[0] - 1], bufp, 0);
418
                        if (!bufp)
419
                                return (-1);
420
                        bp = (__uint16_t *)bufp->page;
421
                } else
422
                        /* Try to squeeze key on this page */
423
                        if (FREESPACE(bp) > PAIRSIZE(key, val)) {
424
                                squeeze_key(bp, key, val);
425
                                return (0);
426
                        } else {
427
                                bufp = __get_buf(hashp, bp[bp[0] - 1], bufp, 0);
428
                                if (!bufp)
429
                                        return (-1);
430
                                bp = (__uint16_t *)bufp->page;
431
                        }
432
 
433
        if (PAIRFITS(bp, key, val))
434
                putpair(bufp->page, key, val);
435
        else {
436
                do_expand = 1;
437
                bufp = __add_ovflpage(hashp, bufp);
438
                if (!bufp)
439
                        return (-1);
440
                sop = (__uint16_t *)bufp->page;
441
 
442
                if (PAIRFITS(sop, key, val))
443
                        putpair((char *)sop, key, val);
444
                else
445
                        if (__big_insert(hashp, bufp, key, val))
446
                                return (-1);
447
        }
448
        bufp->flags |= BUF_MOD;
449
        /*
450
         * If the average number of keys per bucket exceeds the fill factor,
451
         * expand the table.
452
         */
453
        hashp->NKEYS++;
454
        if (do_expand ||
455
            (hashp->NKEYS / (hashp->MAX_BUCKET + 1) > hashp->FFACTOR))
456
                return (__expand_table(hashp));
457
        return (0);
458
}
459
 
460
/*
461
 *
462
 * Returns:
463
 *      pointer on success
464
 *      NULL on error
465
 */
466
extern BUFHEAD *
467
__add_ovflpage(hashp, bufp)
468
        HTAB *hashp;
469
        BUFHEAD *bufp;
470
{
471
        __uint16_t *sp;
472
        __uint16_t ndx, ovfl_num;
473
#ifdef DEBUG1
474
        int tmp1, tmp2;
475
#endif
476
        sp = (__uint16_t *)bufp->page;
477
 
478
        /* Check if we are dynamically determining the fill factor */
479
        if (hashp->FFACTOR == DEF_FFACTOR) {
480
                hashp->FFACTOR = sp[0] >> 1;
481
                if (hashp->FFACTOR < MIN_FFACTOR)
482
                        hashp->FFACTOR = MIN_FFACTOR;
483
        }
484
        bufp->flags |= BUF_MOD;
485
        ovfl_num = overflow_page(hashp);
486
#ifdef DEBUG1
487
        tmp1 = bufp->addr;
488
        tmp2 = bufp->ovfl ? bufp->ovfl->addr : 0;
489
#endif
490
        if (!ovfl_num || !(bufp->ovfl = __get_buf(hashp, ovfl_num, bufp, 1)))
491
                return (NULL);
492
        bufp->ovfl->flags |= BUF_MOD;
493
#ifdef DEBUG1
494
        (void)fprintf(stderr, "ADDOVFLPAGE: %d->ovfl was %d is now %d\n",
495
            tmp1, tmp2, bufp->ovfl->addr);
496
#endif
497
        ndx = sp[0];
498
        /*
499
         * Since a pair is allocated on a page only if there's room to add
500
         * an overflow page, we know that the OVFL information will fit on
501
         * the page.
502
         */
503
        sp[ndx + 4] = OFFSET(sp);
504
        sp[ndx + 3] = FREESPACE(sp) - OVFLSIZE;
505
        sp[ndx + 1] = ovfl_num;
506
        sp[ndx + 2] = OVFLPAGE;
507
        sp[0] = ndx + 2;
508
#ifdef HASH_STATISTICS
509
        hash_overflows++;
510
#endif
511
        return (bufp->ovfl);
512
}
513
 
514
/*
515
 * Returns:
516
 *       0 indicates SUCCESS
517
 *      -1 indicates FAILURE
518
 */
519
extern int
520
__get_page(hashp, p, bucket, is_bucket, is_disk, is_bitmap)
521
        HTAB *hashp;
522
        char *p;
523
        __uint32_t bucket;
524
        int is_bucket, is_disk, is_bitmap;
525
{
526
        int fd, page, size;
527
        int rsize;
528
        __uint16_t *bp;
529
 
530
        fd = hashp->fp;
531
        size = hashp->BSIZE;
532
 
533
        if ((fd == -1) || !is_disk) {
534
                PAGE_INIT(p);
535
                return (0);
536
        }
537
        if (is_bucket)
538
                page = BUCKET_TO_PAGE(bucket);
539
        else
540
                page = OADDR_TO_PAGE(bucket);
541
        if ((lseek(fd, (off_t)page << hashp->BSHIFT, SEEK_SET) == -1) ||
542
            ((rsize = read(fd, p, size)) == -1))
543
                return (-1);
544
        bp = (__uint16_t *)p;
545
        if (!rsize)
546
                bp[0] = 0;        /* We hit the EOF, so initialize a new page */
547
        else
548
                if (rsize != size) {
549
                        errno = EFTYPE;
550
                        return (-1);
551
                }
552
        if (!is_bitmap && !bp[0]) {
553
                PAGE_INIT(p);
554
        } else
555
               if (hashp->LORDER != DB_BYTE_ORDER) {
556
                        int i, max;
557
 
558
                        if (is_bitmap) {
559
                                max = hashp->BSIZE >> 2; /* divide by 4 */
560
                                for (i = 0; i < max; i++)
561
                                        M_32_SWAP(((int *)p)[i]);
562
                        } else {
563
                                M_16_SWAP(bp[0]);
564
                                max = bp[0] + 2;
565
                                for (i = 1; i <= max; i++)
566
                                        M_16_SWAP(bp[i]);
567
                        }
568
                }
569
        return (0);
570
}
571
 
572
/*
573
 * Write page p to disk
574
 *
575
 * Returns:
576
 *       0 ==> OK
577
 *      -1 ==>failure
578
 */
579
extern int
580
__put_page(hashp, p, bucket, is_bucket, is_bitmap)
581
        HTAB *hashp;
582
        char *p;
583
        __uint32_t bucket;
584
        int is_bucket, is_bitmap;
585
{
586
        int fd, page, size;
587
        int wsize;
588
 
589
        size = hashp->BSIZE;
590
        if ((hashp->fp == -1) && open_temp(hashp))
591
                return (-1);
592
        fd = hashp->fp;
593
 
594
       if (hashp->LORDER != DB_BYTE_ORDER) {
595
                int i;
596
                int max;
597
 
598
                if (is_bitmap) {
599
                        max = hashp->BSIZE >> 2;        /* divide by 4 */
600
                        for (i = 0; i < max; i++)
601
                                M_32_SWAP(((int *)p)[i]);
602
                } else {
603
                        max = ((__uint16_t *)p)[0] + 2;
604
                        for (i = 0; i <= max; i++)
605
                                M_16_SWAP(((__uint16_t *)p)[i]);
606
                }
607
        }
608
        if (is_bucket)
609
                page = BUCKET_TO_PAGE(bucket);
610
        else
611
                page = OADDR_TO_PAGE(bucket);
612
        if ((lseek(fd, (off_t)page << hashp->BSHIFT, SEEK_SET) == -1) ||
613
            ((wsize = write(fd, p, size)) == -1))
614
                /* Errno is set */
615
                return (-1);
616
        if (wsize != size) {
617
                errno = EFTYPE;
618
                return (-1);
619
        }
620
        return (0);
621
}
622
 
623
#define BYTE_MASK       ((1 << INT_BYTE_SHIFT) -1)
624
/*
625
 * Initialize a new bitmap page.  Bitmap pages are left in memory
626
 * once they are read in.
627
 */
628
extern int
629
__ibitmap(hashp, pnum, nbits, ndx)
630
        HTAB *hashp;
631
        int pnum, nbits, ndx;
632
{
633
        __uint32_t *ip;
634
        int clearbytes, clearints;
635
 
636
        if ((ip = (__uint32_t *)malloc(hashp->BSIZE)) == NULL)
637
                return (1);
638
        hashp->nmaps++;
639
        clearints = ((nbits - 1) >> INT_BYTE_SHIFT) + 1;
640
        clearbytes = clearints << INT_TO_BYTE;
641
        (void)memset((char *)ip, 0, clearbytes);
642
        (void)memset(((char *)ip) + clearbytes, 0xFF,
643
            hashp->BSIZE - clearbytes);
644
        ip[clearints - 1] = ALL_SET << (nbits & BYTE_MASK);
645
        SETBIT(ip, 0);
646
        hashp->BITMAPS[ndx] = (__uint16_t)pnum;
647
        hashp->mapp[ndx] = ip;
648
        return (0);
649
}
650
 
651
static __uint32_t
652
first_free(map)
653
        __uint32_t map;
654
{
655
        __uint32_t i, mask;
656
 
657
        mask = 0x1;
658
        for (i = 0; i < BITS_PER_MAP; i++) {
659
                if (!(mask & map))
660
                        return (i);
661
                mask = mask << 1;
662
        }
663
        return (i);
664
}
665
 
666
static __uint16_t
667
overflow_page(hashp)
668
        HTAB *hashp;
669
{
670
        __uint32_t *freep;
671
        int max_free, offset, splitnum;
672
        __uint16_t addr;
673
        int bit, first_page, free_bit, free_page, i, in_use_bits, j;
674
#ifdef DEBUG2
675
        int tmp1, tmp2;
676
#endif
677
        splitnum = hashp->OVFL_POINT;
678
        max_free = hashp->SPARES[splitnum];
679
 
680
        free_page = (max_free - 1) >> (hashp->BSHIFT + BYTE_SHIFT);
681
        free_bit = (max_free - 1) & ((hashp->BSIZE << BYTE_SHIFT) - 1);
682
 
683
        /* Look through all the free maps to find the first free block */
684
        first_page = hashp->LAST_FREED >>(hashp->BSHIFT + BYTE_SHIFT);
685
        for ( i = first_page; i <= free_page; i++ ) {
686
                if (!(freep = (__uint32_t *)hashp->mapp[i]) &&
687
                    !(freep = fetch_bitmap(hashp, i)))
688
                        return (0);
689
                if (i == free_page)
690
                        in_use_bits = free_bit;
691
                else
692
                        in_use_bits = (hashp->BSIZE << BYTE_SHIFT) - 1;
693
 
694
                if (i == first_page) {
695
                        bit = hashp->LAST_FREED &
696
                            ((hashp->BSIZE << BYTE_SHIFT) - 1);
697
                        j = bit / BITS_PER_MAP;
698
                        bit = bit & ~(BITS_PER_MAP - 1);
699
                } else {
700
                        bit = 0;
701
                        j = 0;
702
                }
703
                for (; bit <= in_use_bits; j++, bit += BITS_PER_MAP)
704
                        if (freep[j] != ALL_SET)
705
                                goto found;
706
        }
707
 
708
        /* No Free Page Found */
709
        hashp->LAST_FREED = hashp->SPARES[splitnum];
710
        hashp->SPARES[splitnum]++;
711
        offset = hashp->SPARES[splitnum] -
712
            (splitnum ? hashp->SPARES[splitnum - 1] : 0);
713
 
714
#define OVMSG   "HASH: Out of overflow pages.  Increase page size\n"
715
        if (offset > SPLITMASK) {
716
                if (++splitnum >= NCACHED) {
717
                        (void)write(STDERR_FILENO, OVMSG, sizeof(OVMSG) - 1);
718
                        return (0);
719
                }
720
                hashp->OVFL_POINT = splitnum;
721
                hashp->SPARES[splitnum] = hashp->SPARES[splitnum-1];
722
                hashp->SPARES[splitnum-1]--;
723
                offset = 1;
724
        }
725
 
726
        /* Check if we need to allocate a new bitmap page */
727
        if (free_bit == (hashp->BSIZE << BYTE_SHIFT) - 1) {
728
                free_page++;
729
                if (free_page >= NCACHED) {
730
                        (void)write(STDERR_FILENO, OVMSG, sizeof(OVMSG) - 1);
731
                        return (0);
732
                }
733
                /*
734
                 * This is tricky.  The 1 indicates that you want the new page
735
                 * allocated with 1 clear bit.  Actually, you are going to
736
                 * allocate 2 pages from this map.  The first is going to be
737
                 * the map page, the second is the overflow page we were
738
                 * looking for.  The init_bitmap routine automatically, sets
739
                 * the first bit of itself to indicate that the bitmap itself
740
                 * is in use.  We would explicitly set the second bit, but
741
                 * don't have to if we tell init_bitmap not to leave it clear
742
                 * in the first place.
743
                 */
744
                if (__ibitmap(hashp,
745
                    (int)OADDR_OF(splitnum, offset), 1, free_page))
746
                        return (0);
747
                hashp->SPARES[splitnum]++;
748
#ifdef DEBUG2
749
                free_bit = 2;
750
#endif
751
                offset++;
752
                if (offset > SPLITMASK) {
753
                        if (++splitnum >= NCACHED) {
754
                                (void)write(STDERR_FILENO, OVMSG,
755
                                    sizeof(OVMSG) - 1);
756
                                return (0);
757
                        }
758
                        hashp->OVFL_POINT = splitnum;
759
                        hashp->SPARES[splitnum] = hashp->SPARES[splitnum-1];
760
                        hashp->SPARES[splitnum-1]--;
761
                        offset = 0;
762
                }
763
        } else {
764
                /*
765
                 * Free_bit addresses the last used bit.  Bump it to address
766
                 * the first available bit.
767
                 */
768
                free_bit++;
769
                SETBIT(freep, free_bit);
770
        }
771
 
772
        /* Calculate address of the new overflow page */
773
        addr = OADDR_OF(splitnum, offset);
774
#ifdef DEBUG2
775
        (void)fprintf(stderr, "OVERFLOW_PAGE: ADDR: %d BIT: %d PAGE %d\n",
776
            addr, free_bit, free_page);
777
#endif
778
        return (addr);
779
 
780
found:
781
        bit = bit + first_free(freep[j]);
782
        SETBIT(freep, bit);
783
#ifdef DEBUG2
784
        tmp1 = bit;
785
        tmp2 = i;
786
#endif
787
        /*
788
         * Bits are addressed starting with 0, but overflow pages are addressed
789
         * beginning at 1. Bit is a bit addressnumber, so we need to increment
790
         * it to convert it to a page number.
791
         */
792
        bit = 1 + bit + (i * (hashp->BSIZE << BYTE_SHIFT));
793
        if (bit >= hashp->LAST_FREED)
794
                hashp->LAST_FREED = bit - 1;
795
 
796
        /* Calculate the split number for this page */
797
        for (i = 0; (i < splitnum) && (bit > hashp->SPARES[i]); i++);
798
        offset = (i ? bit - hashp->SPARES[i - 1] : bit);
799
        if (offset >= SPLITMASK)
800
                return (0);      /* Out of overflow pages */
801
        addr = OADDR_OF(i, offset);
802
#ifdef DEBUG2
803
        (void)fprintf(stderr, "OVERFLOW_PAGE: ADDR: %d BIT: %d PAGE %d\n",
804
            addr, tmp1, tmp2);
805
#endif
806
 
807
        /* Allocate and return the overflow page */
808
        return (addr);
809
}
810
 
811
/*
812
 * Mark this overflow page as free.
813
 */
814
extern void
815
__free_ovflpage(hashp, obufp)
816
        HTAB *hashp;
817
        BUFHEAD *obufp;
818
{
819
        __uint16_t addr;
820
        __uint32_t *freep;
821
        int bit_address, free_page, free_bit;
822
        __uint16_t ndx;
823
 
824
        addr = obufp->addr;
825
#ifdef DEBUG1
826
        (void)fprintf(stderr, "Freeing %d\n", addr);
827
#endif
828
        ndx = (((__uint16_t)addr) >> SPLITSHIFT);
829
        bit_address =
830
            (ndx ? hashp->SPARES[ndx - 1] : 0) + (addr & SPLITMASK) - 1;
831
         if (bit_address < hashp->LAST_FREED)
832
                hashp->LAST_FREED = bit_address;
833
        free_page = (bit_address >> (hashp->BSHIFT + BYTE_SHIFT));
834
        free_bit = bit_address & ((hashp->BSIZE << BYTE_SHIFT) - 1);
835
 
836
        if (!(freep = hashp->mapp[free_page]))
837
                freep = fetch_bitmap(hashp, free_page);
838
#ifdef DEBUG
839
        /*
840
         * This had better never happen.  It means we tried to read a bitmap
841
         * that has already had overflow pages allocated off it, and we
842
         * failed to read it from the file.
843
         */
844
        if (!freep)
845
                assert(0);
846
#endif
847
        CLRBIT(freep, free_bit);
848
#ifdef DEBUG2
849
        (void)fprintf(stderr, "FREE_OVFLPAGE: ADDR: %d BIT: %d PAGE %d\n",
850
            obufp->addr, free_bit, free_page);
851
#endif
852
        __reclaim_buf(hashp, obufp);
853
}
854
 
855
/*
856
 * Returns:
857
 *       0 success
858
 *      -1 failure
859
 */
860
static int
861
open_temp(hashp)
862
        HTAB *hashp;
863
{
864
        sigset_t set, oset;
865
        static char namestr[] = "_hashXXXXXX";
866
 
867
        /* Block signals; make sure file goes away at process exit. */
868
        (void)sigfillset(&set);
869
        (void)sigprocmask(SIG_BLOCK, &set, &oset);
870
        if ((hashp->fp = mkstemp(namestr)) != -1) {
871
                (void)unlink(namestr);
872
#ifdef HAVE_FCNTL
873
                (void)fcntl(hashp->fp, F_SETFD, 1);
874
#endif
875
        }
876
        (void)sigprocmask(SIG_SETMASK, &oset, (sigset_t *)NULL);
877
        return (hashp->fp != -1 ? 0 : -1);
878
}
879
 
880
/*
881
 * We have to know that the key will fit, but the last entry on the page is
882
 * an overflow pair, so we need to shift things.
883
 */
884
static void
885
squeeze_key(sp, key, val)
886
        __uint16_t *sp;
887
        const DBT *key, *val;
888
{
889
        char *p;
890
        __uint16_t free_space, n, off, pageno;
891
 
892
        p = (char *)sp;
893
        n = sp[0];
894
        free_space = FREESPACE(sp);
895
        off = OFFSET(sp);
896
 
897
        pageno = sp[n - 1];
898
        off -= key->size;
899
        sp[n - 1] = off;
900
        memmove(p + off, key->data, key->size);
901
        off -= val->size;
902
        sp[n] = off;
903
        memmove(p + off, val->data, val->size);
904
        sp[0] = n + 2;
905
        sp[n + 1] = pageno;
906
        sp[n + 2] = OVFLPAGE;
907
        FREESPACE(sp) = free_space - PAIRSIZE(key, val);
908
        OFFSET(sp) = off;
909
}
910
 
911
static __uint32_t *
912
fetch_bitmap(hashp, ndx)
913
        HTAB *hashp;
914
        int ndx;
915
{
916
        if (ndx >= hashp->nmaps)
917
                return (NULL);
918
        if ((hashp->mapp[ndx] = (__uint32_t *)malloc(hashp->BSIZE)) == NULL)
919
                return (NULL);
920
        if (__get_page(hashp,
921
            (char *)hashp->mapp[ndx], hashp->BITMAPS[ndx], 0, 1, 1)) {
922
                free(hashp->mapp[ndx]);
923
                return (NULL);
924
        }
925
        return (hashp->mapp[ndx]);
926
}
927
 
928
#ifdef DEBUG4
929
int
930
print_chain(addr)
931
        int addr;
932
{
933
        BUFHEAD *bufp;
934
        short *bp, oaddr;
935
 
936
        (void)fprintf(stderr, "%d ", addr);
937
        bufp = __get_buf(hashp, addr, NULL, 0);
938
        bp = (short *)bufp->page;
939
        while (bp[0] && ((bp[bp[0]] == OVFLPAGE) ||
940
                ((bp[0] > 2) && bp[2] < REAL_KEY))) {
941
                oaddr = bp[bp[0] - 1];
942
                (void)fprintf(stderr, "%d ", (int)oaddr);
943
                bufp = __get_buf(hashp, (int)oaddr, bufp, 0);
944
                bp = (short *)bufp->page;
945
        }
946
        (void)fprintf(stderr, "\n");
947
}
948
#endif

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.