1 |
148 |
jeremybenn |
/* -------------------------------------------------------------- */
|
2 |
|
|
/* (C)Copyright 2007,2008, */
|
3 |
|
|
/* International Business Machines Corporation */
|
4 |
|
|
/* All Rights Reserved. */
|
5 |
|
|
/* */
|
6 |
|
|
/* Redistribution and use in source and binary forms, with or */
|
7 |
|
|
/* without modification, are permitted provided that the */
|
8 |
|
|
/* following conditions are met: */
|
9 |
|
|
/* */
|
10 |
|
|
/* - Redistributions of source code must retain the above copyright*/
|
11 |
|
|
/* notice, this list of conditions and the following disclaimer. */
|
12 |
|
|
/* */
|
13 |
|
|
/* - Redistributions in binary form must reproduce the above */
|
14 |
|
|
/* copyright notice, this list of conditions and the following */
|
15 |
|
|
/* disclaimer in the documentation and/or other materials */
|
16 |
|
|
/* provided with the distribution. */
|
17 |
|
|
/* */
|
18 |
|
|
/* - Neither the name of IBM Corporation nor the names of its */
|
19 |
|
|
/* contributors may be used to endorse or promote products */
|
20 |
|
|
/* derived from this software without specific prior written */
|
21 |
|
|
/* permission. */
|
22 |
|
|
/* */
|
23 |
|
|
/* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND */
|
24 |
|
|
/* CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, */
|
25 |
|
|
/* INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF */
|
26 |
|
|
/* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE */
|
27 |
|
|
/* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR */
|
28 |
|
|
/* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, */
|
29 |
|
|
/* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT */
|
30 |
|
|
/* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; */
|
31 |
|
|
/* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) */
|
32 |
|
|
/* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN */
|
33 |
|
|
/* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR */
|
34 |
|
|
/* OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, */
|
35 |
|
|
/* EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */
|
36 |
|
|
/* -------------------------------------------------------------- */
|
37 |
|
|
/* PROLOG END TAG zYx */
|
38 |
|
|
#ifdef __SPU__
|
39 |
|
|
#ifndef _ERFCD2_H_
|
40 |
|
|
#define _ERFCD2_H_ 1
|
41 |
|
|
|
42 |
|
|
#include <spu_intrinsics.h>
|
43 |
|
|
|
44 |
|
|
#include "expd2.h"
|
45 |
|
|
#include "recipd2.h"
|
46 |
|
|
#include "divd2.h"
|
47 |
|
|
#include "erf_utils.h"
|
48 |
|
|
|
49 |
|
|
/*
|
50 |
|
|
* FUNCTION
|
51 |
|
|
* vector double _erfcd2(vector double x)
|
52 |
|
|
*
|
53 |
|
|
* DESCRIPTION
|
54 |
|
|
* The erfcd2 function computes the complement error function of each element of x.
|
55 |
|
|
*
|
56 |
|
|
* Accuracy Note: We would benefit from a rational approximation in the domain
|
57 |
|
|
* 1.2 < x < 2.0 and also around x = 2.5.
|
58 |
|
|
*
|
59 |
|
|
* C99 Special Cases:
|
60 |
|
|
* - erfc(+0) returns +1
|
61 |
|
|
* - erfc(-0) returns +1
|
62 |
|
|
* - erfc(+infinite) returns +0
|
63 |
|
|
* - erfc(-infinite) returns +2
|
64 |
|
|
*
|
65 |
|
|
* Other Cases:
|
66 |
|
|
* - erfc(Nan) returns Nan
|
67 |
|
|
*
|
68 |
|
|
*/
|
69 |
|
|
|
70 |
|
|
static __inline vector double _erfcd2(vector double x)
|
71 |
|
|
{
|
72 |
|
|
vec_uchar16 dup_even = ((vec_uchar16) { 0,1,2,3, 0,1,2,3, 8,9,10,11, 8,9,10,11 });
|
73 |
|
|
vec_double2 onehalfd = spu_splats(0.5);
|
74 |
|
|
vec_double2 zerod = spu_splats(0.0);
|
75 |
|
|
vec_double2 oned = spu_splats(1.0);
|
76 |
|
|
vec_double2 twod = spu_splats(2.0);
|
77 |
|
|
vec_double2 sign_mask = spu_splats(-0.0);
|
78 |
|
|
|
79 |
|
|
/* This is where we switch from near zero approx. */
|
80 |
|
|
vec_float4 approx_point = spu_splats(1.71f);
|
81 |
|
|
|
82 |
|
|
vec_double2 xabs, xsqu, xsign;
|
83 |
|
|
vec_uint4 isneg;
|
84 |
|
|
vec_double2 tresult, presult, result;
|
85 |
|
|
|
86 |
|
|
xsign = spu_and(x, sign_mask);
|
87 |
|
|
xabs = spu_andc(x, sign_mask);
|
88 |
|
|
xsqu = spu_mul(x, x);
|
89 |
|
|
|
90 |
|
|
/*
|
91 |
|
|
* Use Taylor Series for x near 0
|
92 |
|
|
* Preserve sign of x in result, since erf(-x) = -erf(x)
|
93 |
|
|
* This approximation is for erf, so adjust for erfc.
|
94 |
|
|
*/
|
95 |
|
|
TAYLOR_ERF(xabs, xsqu, tresult);
|
96 |
|
|
tresult = spu_or(tresult, xsign);
|
97 |
|
|
tresult = spu_sub(oned, tresult);
|
98 |
|
|
|
99 |
|
|
/*
|
100 |
|
|
* Now, use the Continued Fractions approximation away
|
101 |
|
|
* from 0. If x < 0, use erfc(-x) = 2 - erfc(x)
|
102 |
|
|
*/
|
103 |
|
|
CONTFRAC_ERFC(xabs, xsqu, presult);
|
104 |
|
|
isneg = (vec_uint4)spu_shuffle(x, x, dup_even);
|
105 |
|
|
isneg = spu_rlmaska(isneg, -32);
|
106 |
|
|
presult = spu_sel(presult, spu_sub(twod, presult), (vec_ullong2)isneg);
|
107 |
|
|
|
108 |
|
|
/*
|
109 |
|
|
* Select the appropriate approximation.
|
110 |
|
|
*/
|
111 |
|
|
vec_float4 xf = spu_roundtf(xabs);
|
112 |
|
|
xf = spu_shuffle(xf, xf, dup_even);
|
113 |
|
|
result = spu_sel(tresult, presult, (vec_ullong2)spu_cmpgt(xf, approx_point));
|
114 |
|
|
|
115 |
|
|
/*
|
116 |
|
|
* Special cases
|
117 |
|
|
*/
|
118 |
|
|
result = spu_sel(result, twod, spu_testsv(x, SPU_SV_NEG_INFINITY));
|
119 |
|
|
result = spu_sel(result, zerod, spu_testsv(x, SPU_SV_POS_INFINITY));
|
120 |
|
|
result = spu_sel(result, x, spu_testsv(x, SPU_SV_NEG_DENORM | SPU_SV_POS_DENORM));
|
121 |
|
|
|
122 |
|
|
return result;
|
123 |
|
|
}
|
124 |
|
|
|
125 |
|
|
#endif /* _ERFCD2_H_ */
|
126 |
|
|
#endif /* __SPU__ */
|