OpenCores
URL https://opencores.org/ocsvn/openrisc_me/openrisc_me/trunk

Subversion Repositories openrisc_me

[/] [openrisc/] [trunk/] [gnu-src/] [newlib-1.17.0/] [newlib/] [libm/] [machine/] [spu/] [headers/] [tgammaf4.h] - Blame information for rev 148

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 148 jeremybenn
/* --------------------------------------------------------------  */
2
/* (C)Copyright 2007,2008,                                         */
3
/* International Business Machines Corporation                     */
4
/* All Rights Reserved.                                            */
5
/*                                                                 */
6
/* Redistribution and use in source and binary forms, with or      */
7
/* without modification, are permitted provided that the           */
8
/* following conditions are met:                                   */
9
/*                                                                 */
10
/* - Redistributions of source code must retain the above copyright*/
11
/*   notice, this list of conditions and the following disclaimer. */
12
/*                                                                 */
13
/* - Redistributions in binary form must reproduce the above       */
14
/*   copyright notice, this list of conditions and the following   */
15
/*   disclaimer in the documentation and/or other materials        */
16
/*   provided with the distribution.                               */
17
/*                                                                 */
18
/* - Neither the name of IBM Corporation nor the names of its      */
19
/*   contributors may be used to endorse or promote products       */
20
/*   derived from this software without specific prior written     */
21
/*   permission.                                                   */
22
/*                                                                 */
23
/* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND          */
24
/* CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,     */
25
/* INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF        */
26
/* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE        */
27
/* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR            */
28
/* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,    */
29
/* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT    */
30
/* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;    */
31
/* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)        */
32
/* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN       */
33
/* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR    */
34
/* OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,  */
35
/* EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.              */
36
/* --------------------------------------------------------------  */
37
/* PROLOG END TAG zYx                                              */
38
#ifdef __SPU__
39
#ifndef _TGAMMAF4_H_
40
#define _TGAMMAF4_H_    1
41
 
42
#include <spu_intrinsics.h>
43
#include "simdmath.h"
44
 
45
#include "recipf4.h"
46
#include "truncf4.h"
47
#include "expf4.h"
48
#include "logf4.h"
49
#include "divf4.h"
50
#include "sinf4.h"
51
#include "powf4.h"
52
#include "tgammad2.h"
53
 
54
/*
55
 * FUNCTION
56
 *  vector float _tgammaf4(vector float x)
57
 *
58
 * DESCRIPTION
59
 *  The tgammaf4 function returns a vector containing tgamma for each
60
 *  element of x
61
 *
62
 *      We take a fairly standard approach - break the domain into 5 separate regions:
63
 *
64
 *      1. [-infinity, 0)  - use gamma(x) = pi/(x*gamma(-x)*sin(x*pi))
65
 *      2. [0, 1)          - push x into [1,2), then adjust the
66
 *                           result.
67
 *      3. [1, 2)          - use a rational approximation.
68
 *      4. [2, 10)         - pull back into [1, 2), then adjust
69
 *                           the result.
70
 *      5. [10, +infinity] - use Stirling's Approximation.
71
 *
72
 *
73
 * Special Cases:
74
 *      - tgamma(+/- 0) returns +/- infinity
75
 *      - tgamma(negative integer) returns NaN
76
 *      - tgamma(-infinity) returns NaN
77
 *      - tgamma(infinity) returns infinity
78
 *
79
 */
80
 
81
/*
82
 * Coefficients for Stirling's Series for Gamma() are defined in
83
 * tgammad2.h
84
 */
85
 
86
/*
87
 * Rational Approximation Coefficients for the
88
 * domain [1, 2) are defined in tgammad2.h
89
 */
90
 
91
 
92
static __inline vector float _tgammaf4(vector float x)
93
{
94
    vector float signbit = spu_splats(-0.0f);
95
    vector float zerof   = spu_splats(0.0f);
96
    vector float halff   = spu_splats(0.5f);
97
    vector float onef    = spu_splats(1.0f);
98
    vector float ninep9f = (vector float)spu_splats(0x411FFFFF); /* Next closest to 10.0 */
99
    vector float t38f    = spu_splats(38.0f);
100
    vector float pi      = spu_splats((float)SM_PI);
101
    vector float sqrt2pi = spu_splats(2.506628274631000502415765284811f);
102
    vector float inf     = (vec_float4)spu_splats(0x7F800000);
103
    vector float nan     = (vec_float4)spu_splats(0x7FFFFFFF);
104
 
105
    vector float xabs;
106
    vector float xscaled;
107
    vector float xtrunc;
108
    vector float xinv;
109
    vector float nresult; /* Negative x result */
110
    vector float rresult; /* Rational Approx result */
111
    vector float sresult; /* Stirling's result */
112
    vector float result;
113
    vector float pr,qr;
114
 
115
    vector unsigned int gt0   = spu_cmpgt(x, zerof);
116
    vector unsigned int gt1   = spu_cmpgt(x, onef);
117
    vector unsigned int gt9p9 = spu_cmpgt(x, ninep9f);
118
    vector unsigned int gt38  = spu_cmpgt(x, t38f);
119
 
120
    xabs    = spu_andc(x, signbit);
121
 
122
    /*
123
     * For x in [0, 1], add 1 to x, use rational
124
     * approximation, then use:
125
     *
126
     * gamma(x) = gamma(x+1)/x
127
     *
128
     */
129
    xabs = spu_sel(spu_add(xabs, onef), xabs, gt1);
130
    xtrunc = _truncf4(xabs);
131
 
132
 
133
    /*
134
     * For x in [2, 10):
135
     */
136
    xscaled = spu_add(onef, spu_sub(xabs, xtrunc));
137
 
138
    /*
139
     * For x in [1,2), use a rational approximation.
140
     */
141
    pr = spu_madd(xscaled, spu_splats((float)TGD2_P07), spu_splats((float)TGD2_P06));
142
    pr = spu_madd(pr, xscaled, spu_splats((float)TGD2_P05));
143
    pr = spu_madd(pr, xscaled, spu_splats((float)TGD2_P04));
144
    pr = spu_madd(pr, xscaled, spu_splats((float)TGD2_P03));
145
    pr = spu_madd(pr, xscaled, spu_splats((float)TGD2_P02));
146
    pr = spu_madd(pr, xscaled, spu_splats((float)TGD2_P01));
147
    pr = spu_madd(pr, xscaled, spu_splats((float)TGD2_P00));
148
 
149
    qr = spu_madd(xscaled, spu_splats((float)TGD2_Q07), spu_splats((float)TGD2_Q06));
150
    qr = spu_madd(qr, xscaled, spu_splats((float)TGD2_Q05));
151
    qr = spu_madd(qr, xscaled, spu_splats((float)TGD2_Q04));
152
    qr = spu_madd(qr, xscaled, spu_splats((float)TGD2_Q03));
153
    qr = spu_madd(qr, xscaled, spu_splats((float)TGD2_Q02));
154
    qr = spu_madd(qr, xscaled, spu_splats((float)TGD2_Q01));
155
    qr = spu_madd(qr, xscaled, spu_splats((float)TGD2_Q00));
156
 
157
    rresult = _divf4(pr, qr);
158
    rresult = spu_sel(_divf4(rresult, x), rresult, gt1);
159
 
160
    /*
161
     * If x was in [2,10) and we pulled it into [1,2), we need to push
162
     * it back out again.
163
     */
164
    rresult = spu_sel(rresult, spu_mul(rresult, xscaled), spu_cmpgt(x, xscaled)); /* [2,3) */
165
    xscaled = spu_add(xscaled, onef);
166
    rresult = spu_sel(rresult, spu_mul(rresult, xscaled), spu_cmpgt(x, xscaled)); /* [3,4) */
167
    xscaled = spu_add(xscaled, onef);
168
    rresult = spu_sel(rresult, spu_mul(rresult, xscaled), spu_cmpgt(x, xscaled)); /* [4,5) */
169
    xscaled = spu_add(xscaled, onef);
170
    rresult = spu_sel(rresult, spu_mul(rresult, xscaled), spu_cmpgt(x, xscaled)); /* [5,6) */
171
    xscaled = spu_add(xscaled, onef);
172
    rresult = spu_sel(rresult, spu_mul(rresult, xscaled), spu_cmpgt(x, xscaled)); /* [6,7) */
173
    xscaled = spu_add(xscaled, onef);
174
    rresult = spu_sel(rresult, spu_mul(rresult, xscaled), spu_cmpgt(x, xscaled)); /* [7,8) */
175
    xscaled = spu_add(xscaled, onef);
176
    rresult = spu_sel(rresult, spu_mul(rresult, xscaled), spu_cmpgt(x, xscaled)); /* [8,9) */
177
    xscaled = spu_add(xscaled, onef);
178
    rresult = spu_sel(rresult, spu_mul(rresult, xscaled), spu_cmpgt(x, xscaled)); /* [9,10) */
179
 
180
 
181
    /*
182
     * For x >= 10, we use Stirling's Approximation
183
     */
184
    vector float sum;
185
    xinv    = _recipf4(xabs);
186
    sum = spu_madd(xinv, spu_splats((float)STIRLING_16), spu_splats((float)STIRLING_15));
187
    sum = spu_madd(sum, xinv, spu_splats((float)STIRLING_14));
188
    sum = spu_madd(sum, xinv, spu_splats((float)STIRLING_13));
189
    sum = spu_madd(sum, xinv, spu_splats((float)STIRLING_12));
190
    sum = spu_madd(sum, xinv, spu_splats((float)STIRLING_11));
191
    sum = spu_madd(sum, xinv, spu_splats((float)STIRLING_10));
192
    sum = spu_madd(sum, xinv, spu_splats((float)STIRLING_09));
193
    sum = spu_madd(sum, xinv, spu_splats((float)STIRLING_08));
194
    sum = spu_madd(sum, xinv, spu_splats((float)STIRLING_07));
195
    sum = spu_madd(sum, xinv, spu_splats((float)STIRLING_06));
196
    sum = spu_madd(sum, xinv, spu_splats((float)STIRLING_05));
197
    sum = spu_madd(sum, xinv, spu_splats((float)STIRLING_04));
198
    sum = spu_madd(sum, xinv, spu_splats((float)STIRLING_03));
199
    sum = spu_madd(sum, xinv, spu_splats((float)STIRLING_02));
200
    sum = spu_madd(sum, xinv, spu_splats((float)STIRLING_01));
201
    sum = spu_madd(sum, xinv, spu_splats((float)STIRLING_00));
202
 
203
    sum = spu_mul(sum, sqrt2pi);
204
    sum = spu_mul(sum, _powf4(x, spu_sub(x, halff)));
205
    sresult = spu_mul(sum, _expf4(spu_or(x, signbit)));
206
 
207
    /*
208
     * Choose rational approximation or Stirling's result.
209
     */
210
    result = spu_sel(rresult, sresult, gt9p9);
211
 
212
    result = spu_sel(result, inf, gt38);
213
 
214
    /* For x < 0, use:
215
     * gamma(x) = pi/(x*gamma(-x)*sin(x*pi))
216
     */
217
    nresult = _divf4(pi, spu_mul(x, spu_mul(result, _sinf4(spu_mul(x, pi)))));
218
    result = spu_sel(nresult, result, gt0);
219
 
220
    /*
221
     * x = non-positive integer, return NaN.
222
     */
223
    result = spu_sel(result, nan, spu_andc(spu_cmpeq(x, xtrunc), gt0));
224
 
225
    return result;
226
}
227
 
228
#endif /* _TGAMMAF4_H_ */
229
#endif /* __SPU__ */

powered by: WebSVN 2.1.0

© copyright 1999-2025 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.