1 |
148 |
jeremybenn |
/* ef_pow.c -- float version of e_pow.c.
|
2 |
|
|
* Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
|
3 |
|
|
*/
|
4 |
|
|
|
5 |
|
|
/*
|
6 |
|
|
* ====================================================
|
7 |
|
|
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
8 |
|
|
*
|
9 |
|
|
* Developed at SunPro, a Sun Microsystems, Inc. business.
|
10 |
|
|
* Permission to use, copy, modify, and distribute this
|
11 |
|
|
* software is freely granted, provided that this notice
|
12 |
|
|
* is preserved.
|
13 |
|
|
* ====================================================
|
14 |
|
|
*/
|
15 |
|
|
|
16 |
|
|
#include "fdlibm.h"
|
17 |
|
|
|
18 |
|
|
#ifdef __v810__
|
19 |
|
|
#define const
|
20 |
|
|
#endif
|
21 |
|
|
|
22 |
|
|
#ifdef __STDC__
|
23 |
|
|
static const float
|
24 |
|
|
#else
|
25 |
|
|
static float
|
26 |
|
|
#endif
|
27 |
|
|
bp[] = {1.0, 1.5,},
|
28 |
|
|
dp_h[] = { 0.0, 5.84960938e-01,}, /* 0x3f15c000 */
|
29 |
|
|
dp_l[] = { 0.0, 1.56322085e-06,}, /* 0x35d1cfdc */
|
30 |
|
|
zero = 0.0,
|
31 |
|
|
one = 1.0,
|
32 |
|
|
two = 2.0,
|
33 |
|
|
two24 = 16777216.0, /* 0x4b800000 */
|
34 |
|
|
huge = 1.0e30,
|
35 |
|
|
tiny = 1.0e-30,
|
36 |
|
|
/* poly coefs for (3/2)*(log(x)-2s-2/3*s**3 */
|
37 |
|
|
L1 = 6.0000002384e-01, /* 0x3f19999a */
|
38 |
|
|
L2 = 4.2857143283e-01, /* 0x3edb6db7 */
|
39 |
|
|
L3 = 3.3333334327e-01, /* 0x3eaaaaab */
|
40 |
|
|
L4 = 2.7272811532e-01, /* 0x3e8ba305 */
|
41 |
|
|
L5 = 2.3066075146e-01, /* 0x3e6c3255 */
|
42 |
|
|
L6 = 2.0697501302e-01, /* 0x3e53f142 */
|
43 |
|
|
P1 = 1.6666667163e-01, /* 0x3e2aaaab */
|
44 |
|
|
P2 = -2.7777778450e-03, /* 0xbb360b61 */
|
45 |
|
|
P3 = 6.6137559770e-05, /* 0x388ab355 */
|
46 |
|
|
P4 = -1.6533901999e-06, /* 0xb5ddea0e */
|
47 |
|
|
P5 = 4.1381369442e-08, /* 0x3331bb4c */
|
48 |
|
|
lg2 = 6.9314718246e-01, /* 0x3f317218 */
|
49 |
|
|
lg2_h = 6.93145752e-01, /* 0x3f317200 */
|
50 |
|
|
lg2_l = 1.42860654e-06, /* 0x35bfbe8c */
|
51 |
|
|
ovt = 4.2995665694e-08, /* -(128-log2(ovfl+.5ulp)) */
|
52 |
|
|
cp = 9.6179670095e-01, /* 0x3f76384f =2/(3ln2) */
|
53 |
|
|
cp_h = 9.6179199219e-01, /* 0x3f763800 =head of cp */
|
54 |
|
|
cp_l = 4.7017383622e-06, /* 0x369dc3a0 =tail of cp_h */
|
55 |
|
|
ivln2 = 1.4426950216e+00, /* 0x3fb8aa3b =1/ln2 */
|
56 |
|
|
ivln2_h = 1.4426879883e+00, /* 0x3fb8aa00 =16b 1/ln2*/
|
57 |
|
|
ivln2_l = 7.0526075433e-06; /* 0x36eca570 =1/ln2 tail*/
|
58 |
|
|
|
59 |
|
|
#ifdef __STDC__
|
60 |
|
|
float __ieee754_powf(float x, float y)
|
61 |
|
|
#else
|
62 |
|
|
float __ieee754_powf(x,y)
|
63 |
|
|
float x, y;
|
64 |
|
|
#endif
|
65 |
|
|
{
|
66 |
|
|
float z,ax,z_h,z_l,p_h,p_l;
|
67 |
|
|
float y1,t1,t2,r,s,t,u,v,w;
|
68 |
|
|
__int32_t i,j,k,yisint,n;
|
69 |
|
|
__int32_t hx,hy,ix,iy,is;
|
70 |
|
|
|
71 |
|
|
GET_FLOAT_WORD(hx,x);
|
72 |
|
|
GET_FLOAT_WORD(hy,y);
|
73 |
|
|
ix = hx&0x7fffffff; iy = hy&0x7fffffff;
|
74 |
|
|
|
75 |
|
|
/* y==zero: x**0 = 1 */
|
76 |
|
|
if(FLT_UWORD_IS_ZERO(iy)) return one;
|
77 |
|
|
|
78 |
|
|
/* x|y==NaN return NaN unless x==1 then return 1 */
|
79 |
|
|
if(FLT_UWORD_IS_NAN(ix) ||
|
80 |
|
|
FLT_UWORD_IS_NAN(iy))
|
81 |
|
|
if(ix==0x3f800000) return one;
|
82 |
|
|
else return nanf("");
|
83 |
|
|
|
84 |
|
|
/* determine if y is an odd int when x < 0
|
85 |
|
|
* yisint = 0 ... y is not an integer
|
86 |
|
|
* yisint = 1 ... y is an odd int
|
87 |
|
|
* yisint = 2 ... y is an even int
|
88 |
|
|
*/
|
89 |
|
|
yisint = 0;
|
90 |
|
|
if(hx<0) {
|
91 |
|
|
if(iy>=0x4b800000) yisint = 2; /* even integer y */
|
92 |
|
|
else if(iy>=0x3f800000) {
|
93 |
|
|
k = (iy>>23)-0x7f; /* exponent */
|
94 |
|
|
j = iy>>(23-k);
|
95 |
|
|
if((j<<(23-k))==iy) yisint = 2-(j&1);
|
96 |
|
|
}
|
97 |
|
|
}
|
98 |
|
|
|
99 |
|
|
/* special value of y */
|
100 |
|
|
if (FLT_UWORD_IS_INFINITE(iy)) { /* y is +-inf */
|
101 |
|
|
if (ix==0x3f800000)
|
102 |
|
|
return one; /* +-1**+-inf = 1 */
|
103 |
|
|
else if (ix > 0x3f800000)/* (|x|>1)**+-inf = inf,0 */
|
104 |
|
|
return (hy>=0)? y: zero;
|
105 |
|
|
else /* (|x|<1)**-,+inf = inf,0 */
|
106 |
|
|
return (hy<0)?-y: zero;
|
107 |
|
|
}
|
108 |
|
|
if(iy==0x3f800000) { /* y is +-1 */
|
109 |
|
|
if(hy<0) return one/x; else return x;
|
110 |
|
|
}
|
111 |
|
|
if(hy==0x40000000) return x*x; /* y is 2 */
|
112 |
|
|
if(hy==0x3f000000) { /* y is 0.5 */
|
113 |
|
|
if(hx>=0) /* x >= +0 */
|
114 |
|
|
return __ieee754_sqrtf(x);
|
115 |
|
|
}
|
116 |
|
|
|
117 |
|
|
ax = fabsf(x);
|
118 |
|
|
/* special value of x */
|
119 |
|
|
if(FLT_UWORD_IS_INFINITE(ix)||FLT_UWORD_IS_ZERO(ix)||ix==0x3f800000){
|
120 |
|
|
z = ax; /*x is +-0,+-inf,+-1*/
|
121 |
|
|
if(hy<0) z = one/z; /* z = (1/|x|) */
|
122 |
|
|
if(hx<0) {
|
123 |
|
|
if(((ix-0x3f800000)|yisint)==0) {
|
124 |
|
|
z = (z-z)/(z-z); /* (-1)**non-int is NaN */
|
125 |
|
|
} else if(yisint==1)
|
126 |
|
|
z = -z; /* (x<0)**odd = -(|x|**odd) */
|
127 |
|
|
}
|
128 |
|
|
return z;
|
129 |
|
|
}
|
130 |
|
|
|
131 |
|
|
/* (x<0)**(non-int) is NaN */
|
132 |
|
|
if(((((__uint32_t)hx>>31)-1)|yisint)==0) return (x-x)/(x-x);
|
133 |
|
|
|
134 |
|
|
/* |y| is huge */
|
135 |
|
|
if(iy>0x4d000000) { /* if |y| > 2**27 */
|
136 |
|
|
/* over/underflow if x is not close to one */
|
137 |
|
|
if(ix<0x3f7ffff8) return (hy<0)? huge*huge:tiny*tiny;
|
138 |
|
|
if(ix>0x3f800007) return (hy>0)? huge*huge:tiny*tiny;
|
139 |
|
|
/* now |1-x| is tiny <= 2**-20, suffice to compute
|
140 |
|
|
log(x) by x-x^2/2+x^3/3-x^4/4 */
|
141 |
|
|
t = ax-1; /* t has 20 trailing zeros */
|
142 |
|
|
w = (t*t)*((float)0.5-t*((float)0.333333333333-t*(float)0.25));
|
143 |
|
|
u = ivln2_h*t; /* ivln2_h has 16 sig. bits */
|
144 |
|
|
v = t*ivln2_l-w*ivln2;
|
145 |
|
|
t1 = u+v;
|
146 |
|
|
GET_FLOAT_WORD(is,t1);
|
147 |
|
|
SET_FLOAT_WORD(t1,is&0xfffff000);
|
148 |
|
|
t2 = v-(t1-u);
|
149 |
|
|
} else {
|
150 |
|
|
float s2,s_h,s_l,t_h,t_l;
|
151 |
|
|
n = 0;
|
152 |
|
|
/* take care subnormal number */
|
153 |
|
|
if(FLT_UWORD_IS_SUBNORMAL(ix))
|
154 |
|
|
{ax *= two24; n -= 24; GET_FLOAT_WORD(ix,ax); }
|
155 |
|
|
n += ((ix)>>23)-0x7f;
|
156 |
|
|
j = ix&0x007fffff;
|
157 |
|
|
/* determine interval */
|
158 |
|
|
ix = j|0x3f800000; /* normalize ix */
|
159 |
|
|
if(j<=0x1cc471) k=0; /* |x|<sqrt(3/2) */
|
160 |
|
|
else if(j<0x5db3d7) k=1; /* |x|<sqrt(3) */
|
161 |
|
|
else {k=0;n+=1;ix -= 0x00800000;}
|
162 |
|
|
SET_FLOAT_WORD(ax,ix);
|
163 |
|
|
|
164 |
|
|
/* compute s = s_h+s_l = (x-1)/(x+1) or (x-1.5)/(x+1.5) */
|
165 |
|
|
u = ax-bp[k]; /* bp[0]=1.0, bp[1]=1.5 */
|
166 |
|
|
v = one/(ax+bp[k]);
|
167 |
|
|
s = u*v;
|
168 |
|
|
s_h = s;
|
169 |
|
|
GET_FLOAT_WORD(is,s_h);
|
170 |
|
|
SET_FLOAT_WORD(s_h,is&0xfffff000);
|
171 |
|
|
/* t_h=ax+bp[k] High */
|
172 |
|
|
SET_FLOAT_WORD(t_h,((ix>>1)|0x20000000)+0x0040000+(k<<21));
|
173 |
|
|
t_l = ax - (t_h-bp[k]);
|
174 |
|
|
s_l = v*((u-s_h*t_h)-s_h*t_l);
|
175 |
|
|
/* compute log(ax) */
|
176 |
|
|
s2 = s*s;
|
177 |
|
|
r = s2*s2*(L1+s2*(L2+s2*(L3+s2*(L4+s2*(L5+s2*L6)))));
|
178 |
|
|
r += s_l*(s_h+s);
|
179 |
|
|
s2 = s_h*s_h;
|
180 |
|
|
t_h = (float)3.0+s2+r;
|
181 |
|
|
GET_FLOAT_WORD(is,t_h);
|
182 |
|
|
SET_FLOAT_WORD(t_h,is&0xfffff000);
|
183 |
|
|
t_l = r-((t_h-(float)3.0)-s2);
|
184 |
|
|
/* u+v = s*(1+...) */
|
185 |
|
|
u = s_h*t_h;
|
186 |
|
|
v = s_l*t_h+t_l*s;
|
187 |
|
|
/* 2/(3log2)*(s+...) */
|
188 |
|
|
p_h = u+v;
|
189 |
|
|
GET_FLOAT_WORD(is,p_h);
|
190 |
|
|
SET_FLOAT_WORD(p_h,is&0xfffff000);
|
191 |
|
|
p_l = v-(p_h-u);
|
192 |
|
|
z_h = cp_h*p_h; /* cp_h+cp_l = 2/(3*log2) */
|
193 |
|
|
z_l = cp_l*p_h+p_l*cp+dp_l[k];
|
194 |
|
|
/* log2(ax) = (s+..)*2/(3*log2) = n + dp_h + z_h + z_l */
|
195 |
|
|
t = (float)n;
|
196 |
|
|
t1 = (((z_h+z_l)+dp_h[k])+t);
|
197 |
|
|
GET_FLOAT_WORD(is,t1);
|
198 |
|
|
SET_FLOAT_WORD(t1,is&0xfffff000);
|
199 |
|
|
t2 = z_l-(((t1-t)-dp_h[k])-z_h);
|
200 |
|
|
}
|
201 |
|
|
|
202 |
|
|
s = one; /* s (sign of result -ve**odd) = -1 else = 1 */
|
203 |
|
|
if(((((__uint32_t)hx>>31)-1)|(yisint-1))==0)
|
204 |
|
|
s = -one; /* (-ve)**(odd int) */
|
205 |
|
|
|
206 |
|
|
/* split up y into y1+y2 and compute (y1+y2)*(t1+t2) */
|
207 |
|
|
GET_FLOAT_WORD(is,y);
|
208 |
|
|
SET_FLOAT_WORD(y1,is&0xfffff000);
|
209 |
|
|
p_l = (y-y1)*t1+y*t2;
|
210 |
|
|
p_h = y1*t1;
|
211 |
|
|
z = p_l+p_h;
|
212 |
|
|
GET_FLOAT_WORD(j,z);
|
213 |
|
|
i = j&0x7fffffff;
|
214 |
|
|
if (j>0) {
|
215 |
|
|
if (i>FLT_UWORD_EXP_MAX)
|
216 |
|
|
return s*huge*huge; /* overflow */
|
217 |
|
|
else if (i==FLT_UWORD_EXP_MAX)
|
218 |
|
|
if(p_l+ovt>z-p_h) return s*huge*huge; /* overflow */
|
219 |
|
|
} else {
|
220 |
|
|
if (i>FLT_UWORD_EXP_MIN)
|
221 |
|
|
return s*tiny*tiny; /* underflow */
|
222 |
|
|
else if (i==FLT_UWORD_EXP_MIN)
|
223 |
|
|
if(p_l<=z-p_h) return s*tiny*tiny; /* underflow */
|
224 |
|
|
}
|
225 |
|
|
/*
|
226 |
|
|
* compute 2**(p_h+p_l)
|
227 |
|
|
*/
|
228 |
|
|
k = (i>>23)-0x7f;
|
229 |
|
|
n = 0;
|
230 |
|
|
if(i>0x3f000000) { /* if |z| > 0.5, set n = [z+0.5] */
|
231 |
|
|
n = j+(0x00800000>>(k+1));
|
232 |
|
|
k = ((n&0x7fffffff)>>23)-0x7f; /* new k for n */
|
233 |
|
|
SET_FLOAT_WORD(t,n&~(0x007fffff>>k));
|
234 |
|
|
n = ((n&0x007fffff)|0x00800000)>>(23-k);
|
235 |
|
|
if(j<0) n = -n;
|
236 |
|
|
p_h -= t;
|
237 |
|
|
}
|
238 |
|
|
t = p_l+p_h;
|
239 |
|
|
GET_FLOAT_WORD(is,t);
|
240 |
|
|
SET_FLOAT_WORD(t,is&0xfffff000);
|
241 |
|
|
u = t*lg2_h;
|
242 |
|
|
v = (p_l-(t-p_h))*lg2+t*lg2_l;
|
243 |
|
|
z = u+v;
|
244 |
|
|
w = v-(z-u);
|
245 |
|
|
t = z*z;
|
246 |
|
|
t1 = z - t*(P1+t*(P2+t*(P3+t*(P4+t*P5))));
|
247 |
|
|
r = (z*t1)/(t1-two)-(w+z*w);
|
248 |
|
|
z = one-(r-z);
|
249 |
|
|
GET_FLOAT_WORD(j,z);
|
250 |
|
|
j += (n<<23);
|
251 |
|
|
if((j>>23)<=0) z = scalbnf(z,(int)n); /* subnormal output */
|
252 |
|
|
else SET_FLOAT_WORD(z,j);
|
253 |
|
|
return s*z;
|
254 |
|
|
}
|