OpenCores
URL https://opencores.org/ocsvn/openrisc_me/openrisc_me/trunk

Subversion Repositories openrisc_me

[/] [openrisc/] [trunk/] [gnu-src/] [newlib-1.18.0/] [newlib/] [libm/] [machine/] [spu/] [headers/] [lgammad2.h] - Blame information for rev 207

Details | Compare with Previous | View Log

Line No. Rev Author Line
1 207 jeremybenn
/* --------------------------------------------------------------  */
2
/* (C)Copyright 2007,2008,                                         */
3
/* International Business Machines Corporation                     */
4
/* All Rights Reserved.                                            */
5
/*                                                                 */
6
/* Redistribution and use in source and binary forms, with or      */
7
/* without modification, are permitted provided that the           */
8
/* following conditions are met:                                   */
9
/*                                                                 */
10
/* - Redistributions of source code must retain the above copyright*/
11
/*   notice, this list of conditions and the following disclaimer. */
12
/*                                                                 */
13
/* - Redistributions in binary form must reproduce the above       */
14
/*   copyright notice, this list of conditions and the following   */
15
/*   disclaimer in the documentation and/or other materials        */
16
/*   provided with the distribution.                               */
17
/*                                                                 */
18
/* - Neither the name of IBM Corporation nor the names of its      */
19
/*   contributors may be used to endorse or promote products       */
20
/*   derived from this software without specific prior written     */
21
/*   permission.                                                   */
22
/*                                                                 */
23
/* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND          */
24
/* CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,     */
25
/* INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF        */
26
/* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE        */
27
/* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR            */
28
/* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,    */
29
/* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT    */
30
/* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;    */
31
/* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)        */
32
/* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN       */
33
/* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR    */
34
/* OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,  */
35
/* EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.              */
36
/* --------------------------------------------------------------  */
37
/* PROLOG END TAG zYx                                              */
38
#ifdef __SPU__
39
 
40
#ifndef _LGAMMAD2_H_
41
#define _LGAMMAD2_H_    1
42
 
43
#include <spu_intrinsics.h>
44
#include "divd2.h"
45
#include "recipd2.h"
46
#include "logd2.h"
47
#include "sind2.h"
48
#include "truncd2.h"
49
 
50
 
51
/*
52
 * FUNCTION
53
 *      vector double _lgammad2(vector double x) - Natural Log of Gamma Function
54
 *
55
 * DESCRIPTION
56
 *      _lgammad2 calculates the natural logarithm of the absolute value of the gamma
57
 *      function for the corresponding elements of the input vector.
58
 *
59
 * C99 Special Cases:
60
 *      lgamma(0) returns +infinite
61
 *      lgamma(1) returns +0
62
 *      lgamma(2) returns +0
63
 *      lgamma(negative integer) returns +infinite
64
 *      lgamma(+infinite) returns +infinite
65
 *      lgamma(-infinite) returns +infinite
66
 *
67
 * Other Cases:
68
 *  lgamma(Nan) returns Nan
69
 *  lgamma(Denorm) treated as lgamma(0) and returns +infinite
70
 *
71
 */
72
 
73
#define PI                  3.1415926535897932384626433832795028841971693993751058209749445923078164
74
#define HALFLOG2PI          9.1893853320467274178032973640561763986139747363778341281715154048276570E-1
75
 
76
#define EULER_MASCHERONI    0.5772156649015328606065
77
 
78
/*
79
 * Zeta constants for Maclaurin approx. near zero
80
 */
81
#define ZETA_02_DIV_02       8.2246703342411321823620758332301E-1
82
#define ZETA_03_DIV_03      -4.0068563438653142846657938717048E-1
83
#define ZETA_04_DIV_04       2.7058080842778454787900092413529E-1
84
#define ZETA_05_DIV_05      -2.0738555102867398526627309729141E-1
85
#define ZETA_06_DIV_06       1.6955717699740818995241965496515E-1
86
 
87
/*
88
 *  More Maclaurin coefficients
89
 */
90
/*
91
#define ZETA_07_DIV_07      -1.4404989676884611811997107854997E-1
92
#define ZETA_08_DIV_08       1.2550966952474304242233565481358E-1
93
#define ZETA_09_DIV_09      -1.1133426586956469049087252991471E-1
94
#define ZETA_10_DIV_10       1.0009945751278180853371459589003E-1
95
#define ZETA_11_DIV_11      -9.0954017145829042232609298411497E-2
96
#define ZETA_12_DIV_12       8.3353840546109004024886499837312E-2
97
#define ZETA_13_DIV_13      -7.6932516411352191472827064348181E-2
98
#define ZETA_14_DIV_14       7.1432946295361336059232753221795E-2
99
#define ZETA_15_DIV_15      -6.6668705882420468032903448567376E-2
100
#define ZETA_16_DIV_16       6.2500955141213040741983285717977E-2
101
#define ZETA_17_DIV_17      -5.8823978658684582338957270605504E-2
102
#define ZETA_18_DIV_18       5.5555767627403611102214247869146E-2
103
#define ZETA_19_DIV_19      -5.2631679379616660733627666155673E-2
104
#define ZETA_20_DIV_20       5.0000047698101693639805657601934E-2
105
 */
106
 
107
/*
108
 * Coefficients for Stirling's Series for Lgamma()
109
 */
110
#define STIRLING_01    8.3333333333333333333333333333333333333333333333333333333333333333333333E-2
111
#define STIRLING_02   -2.7777777777777777777777777777777777777777777777777777777777777777777778E-3
112
#define STIRLING_03    7.9365079365079365079365079365079365079365079365079365079365079365079365E-4
113
#define STIRLING_04   -5.9523809523809523809523809523809523809523809523809523809523809523809524E-4
114
#define STIRLING_05    8.4175084175084175084175084175084175084175084175084175084175084175084175E-4
115
#define STIRLING_06   -1.9175269175269175269175269175269175269175269175269175269175269175269175E-3
116
#define STIRLING_07    6.4102564102564102564102564102564102564102564102564102564102564102564103E-3
117
#define STIRLING_08   -2.9550653594771241830065359477124183006535947712418300653594771241830065E-2
118
#define STIRLING_09    1.7964437236883057316493849001588939669435025472177174963552672531000704E-1
119
#define STIRLING_10   -1.3924322169059011164274322169059011164274322169059011164274322169059011E0
120
#define STIRLING_11    1.3402864044168391994478951000690131124913733609385783298826777087646653E1
121
#define STIRLING_12   -1.5684828462600201730636513245208897382810426288687158252375643679991506E2
122
#define STIRLING_13    2.1931033333333333333333333333333333333333333333333333333333333333333333E3
123
#define STIRLING_14   -3.6108771253724989357173265219242230736483610046828437633035334184759472E4
124
#define STIRLING_15    6.9147226885131306710839525077567346755333407168779805042318946657100161E5
125
/*
126
 *  More Stirling's coefficients
127
 */
128
/*
129
#define STIRLING_16   -1.5238221539407416192283364958886780518659076533839342188488298545224541E7
130
#define STIRLING_17    3.8290075139141414141414141414141414141414141414141414141414141414141414E8
131
#define STIRLING_18   -1.0882266035784391089015149165525105374729434879810819660443720594096534E10
132
#define STIRLING_19    3.4732028376500225225225225225225225225225225225225225225225225225225225E11
133
#define STIRLING_20   -1.2369602142269274454251710349271324881080978641954251710349271324881081E13
134
#define STIRLING_21    4.8878806479307933507581516251802290210847053890567382180703629532735764E14
135
*/
136
 
137
 
138
static __inline vector double _lgammad2(vector double x)
139
{
140
  vec_uchar16 dup_even  = ((vec_uchar16) { 0,1,2,3, 0,1,2,3,  8, 9,10,11,  8, 9,10,11 });
141
  vec_uchar16 dup_odd   = ((vec_uchar16) { 4,5,6,7, 4,5,6,7, 12,13,14,15, 12,13,14,15 });
142
  vec_uchar16 swap_word = ((vec_uchar16) { 4,5,6,7, 0,1,2,3, 12,13,14,15,  8, 9,10,11  });
143
  vec_double2 infinited = (vec_double2)spu_splats(0x7FF0000000000000ull);
144
  vec_double2 zerod     = spu_splats(0.0);
145
  vec_double2 oned      = spu_splats(1.0);
146
  vec_double2 twod      = spu_splats(2.0);
147
  vec_double2 pi        = spu_splats(PI);
148
  vec_double2 sign_maskd = spu_splats(-0.0);
149
 
150
  /* This is where we switch from near zero approx. */
151
  vec_float4 zero_switch = spu_splats(0.001f);
152
  vec_float4 shift_switch = spu_splats(6.0f);
153
 
154
  vec_float4 xf;
155
  vec_double2 inv_x, inv_xsqu;
156
  vec_double2 xtrunc, xstirling;
157
  vec_double2 sum, xabs;
158
  vec_uint4 xhigh, xlow, xthigh, xtlow;
159
  vec_uint4 x1, isnaninf, isnposint, iszero, isint, isneg, isshifted, is1, is2;
160
  vec_double2 result, stresult, shresult, mresult, nresult;
161
 
162
 
163
  /* Force Denorms to 0 */
164
  x = spu_add(x, zerod);
165
 
166
  xabs = spu_andc(x, sign_maskd);
167
  xf = spu_roundtf(xabs);
168
  xf = spu_shuffle(xf, xf, dup_even);
169
 
170
 
171
  /*
172
   * For 0 < x <= 0.001.
173
   * Approximation Near Zero
174
   *
175
   * Use Maclaurin Expansion of lgamma()
176
   *
177
   * lgamma(z) = -ln(z) - z * EulerMascheroni + Sum[(-1)^n * z^n * Zeta(n)/n]
178
   */
179
  mresult = spu_madd(xabs, spu_splats(ZETA_06_DIV_06), spu_splats(ZETA_05_DIV_05));
180
  mresult = spu_madd(xabs, mresult, spu_splats(ZETA_04_DIV_04));
181
  mresult = spu_madd(xabs, mresult, spu_splats(ZETA_03_DIV_03));
182
  mresult = spu_madd(xabs, mresult, spu_splats(ZETA_02_DIV_02));
183
  mresult = spu_mul(xabs, spu_mul(xabs, mresult));
184
  mresult = spu_sub(mresult, spu_add(_logd2(xabs), spu_mul(xabs, spu_splats(EULER_MASCHERONI))));
185
 
186
 
187
  /*
188
   * For 0.001 < x <= 6.0, we are going to push value
189
   * out to an area where Stirling's approximation is
190
   * accurate. Let's use a constant of 6.
191
   *
192
   * Use the recurrence relation:
193
   *    lgamma(x + 1) = ln(x) + lgamma(x)
194
   *
195
   * Note that we shift x here, before Stirling's calculation,
196
   * then after Stirling's, we adjust the result.
197
   *
198
   */
199
 
200
  isshifted = spu_cmpgt(shift_switch, xf);
201
  xstirling = spu_sel(xabs, spu_add(xabs, spu_splats(6.0)), (vec_ullong2)isshifted);
202
  inv_x    = _recipd2(xstirling);
203
  inv_xsqu = spu_mul(inv_x, inv_x);
204
 
205
  /*
206
   * For 6.0 < x < infinite
207
   *
208
   * Use Stirling's Series.
209
   *
210
   *              1                    1                1      1        1
211
   * lgamma(x) = --- ln (2*pi) + (z - ---) ln(x) - x + --- - ----- + ------ ...
212
   *              2                    2               12x   360x^3  1260x^5
213
   *
214
   * Taking 10 terms of the sum gives good results for x > 6.0
215
   *
216
   */
217
  sum = spu_madd(inv_xsqu, spu_splats(STIRLING_15), spu_splats(STIRLING_14));
218
  sum = spu_madd(sum, inv_xsqu, spu_splats(STIRLING_13));
219
  sum = spu_madd(sum, inv_xsqu, spu_splats(STIRLING_12));
220
  sum = spu_madd(sum, inv_xsqu, spu_splats(STIRLING_11));
221
  sum = spu_madd(sum, inv_xsqu, spu_splats(STIRLING_10));
222
  sum = spu_madd(sum, inv_xsqu, spu_splats(STIRLING_09));
223
  sum = spu_madd(sum, inv_xsqu, spu_splats(STIRLING_08));
224
  sum = spu_madd(sum, inv_xsqu, spu_splats(STIRLING_07));
225
  sum = spu_madd(sum, inv_xsqu, spu_splats(STIRLING_06));
226
  sum = spu_madd(sum, inv_xsqu, spu_splats(STIRLING_05));
227
  sum = spu_madd(sum, inv_xsqu, spu_splats(STIRLING_04));
228
  sum = spu_madd(sum, inv_xsqu, spu_splats(STIRLING_03));
229
  sum = spu_madd(sum, inv_xsqu, spu_splats(STIRLING_02));
230
  sum = spu_madd(sum, inv_xsqu, spu_splats(STIRLING_01));
231
  sum = spu_mul(sum, inv_x);
232
 
233
  stresult = spu_madd(spu_sub(xstirling, spu_splats(0.5)), _logd2(xstirling), spu_splats(HALFLOG2PI));
234
  stresult = spu_sub(stresult, xstirling);
235
  stresult = spu_add(stresult, sum);
236
 
237
  /*
238
   * Adjust result if we shifted x into Stirling range.
239
   *
240
   * lgamma(x) = lgamma(x + n) - ln(x(x+1)(x+2)...(x+n-1)
241
   *
242
   */
243
  shresult = spu_mul(xabs, spu_add(xabs, spu_splats(1.0)));
244
  shresult = spu_mul(shresult, spu_add(xabs, spu_splats(2.0)));
245
  shresult = spu_mul(shresult, spu_add(xabs, spu_splats(3.0)));
246
  shresult = spu_mul(shresult, spu_add(xabs, spu_splats(4.0)));
247
  shresult = spu_mul(shresult, spu_add(xabs, spu_splats(5.0)));
248
  shresult = _logd2(shresult);
249
  shresult = spu_sub(stresult, shresult);
250
  stresult = spu_sel(stresult, shresult, (vec_ullong2)isshifted);
251
 
252
 
253
  /*
254
   * Select either Maclaurin or Stirling result before Negative X calc.
255
   */
256
  xf = spu_shuffle(xf, xf, dup_even);
257
  vec_uint4 useStirlings = spu_cmpgt(xf, zero_switch);
258
  result = spu_sel(mresult, stresult, (vec_ullong2)useStirlings);
259
 
260
 
261
  /*
262
   * Approximation for Negative X
263
   *
264
   * Use reflection relation
265
   *
266
   * gamma(x) * gamma(-x) = -pi/(x sin(pi x))
267
   *
268
   * lgamma(x) = log(pi/(-x sin(pi x))) - lgamma(-x)
269
   *
270
   */
271
  nresult = spu_mul(x, _sind2(spu_mul(x, pi)));
272
  nresult = spu_andc(nresult, sign_maskd);
273
  nresult = _logd2(_divd2(pi, nresult));
274
  nresult = spu_sub(nresult, result);
275
 
276
 
277
  /*
278
   * Select between the negative or positive x approximations.
279
   */
280
  isneg = (vec_uint4)spu_shuffle(x, x, dup_even);
281
  isneg = spu_rlmaska(isneg, -32);
282
  result = spu_sel(result, nresult, (vec_ullong2)isneg);
283
 
284
 
285
  /*
286
   * Finally, special cases/errors.
287
   */
288
  xhigh = (vec_uint4)spu_shuffle(xabs, xabs, dup_even);
289
  xlow  = (vec_uint4)spu_shuffle(xabs, xabs, dup_odd);
290
 
291
  /* x = zero, return infinite */
292
  x1 = spu_or(xhigh, xlow);
293
  iszero = spu_cmpeq(x1, 0);
294
 
295
  /* x = negative integer, return infinite */
296
  xtrunc = _truncd2(xabs);
297
  xthigh = (vec_uint4)spu_shuffle(xtrunc, xtrunc, dup_even);
298
  xtlow  = (vec_uint4)spu_shuffle(xtrunc, xtrunc, dup_odd);
299
  isint = spu_and(spu_cmpeq(xthigh, xhigh), spu_cmpeq(xtlow, xlow));
300
  isnposint = spu_or(spu_and(isint, isneg), iszero);
301
  result = spu_sel(result, infinited, (vec_ullong2)isnposint);
302
 
303
  /* x = 1.0 or 2.0, return 0.0 */
304
  is1 = spu_cmpeq((vec_uint4)x, (vec_uint4)oned);
305
  is1 = spu_and(is1, spu_shuffle(is1, is1, swap_word));
306
  is2 = spu_cmpeq((vec_uint4)x, (vec_uint4)twod);
307
  is2 = spu_and(is2, spu_shuffle(is2, is2, swap_word));
308
  result = spu_sel(result, zerod, (vec_ullong2)spu_or(is1,is2));
309
 
310
  /* x = +/- infinite or nan, return |x| */
311
  isnaninf = spu_cmpgt(xhigh, 0x7FEFFFFF);
312
  result = spu_sel(result, xabs, (vec_ullong2)isnaninf);
313
 
314
  return result;
315
}
316
 
317
#endif /* _LGAMMAD2_H_ */
318
#endif /* __SPU__ */

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.