1 |
207 |
jeremybenn |
/* -------------------------------------------------------------- */
|
2 |
|
|
/* (C)Copyright 2007,2008, */
|
3 |
|
|
/* International Business Machines Corporation */
|
4 |
|
|
/* All Rights Reserved. */
|
5 |
|
|
/* */
|
6 |
|
|
/* Redistribution and use in source and binary forms, with or */
|
7 |
|
|
/* without modification, are permitted provided that the */
|
8 |
|
|
/* following conditions are met: */
|
9 |
|
|
/* */
|
10 |
|
|
/* - Redistributions of source code must retain the above copyright*/
|
11 |
|
|
/* notice, this list of conditions and the following disclaimer. */
|
12 |
|
|
/* */
|
13 |
|
|
/* - Redistributions in binary form must reproduce the above */
|
14 |
|
|
/* copyright notice, this list of conditions and the following */
|
15 |
|
|
/* disclaimer in the documentation and/or other materials */
|
16 |
|
|
/* provided with the distribution. */
|
17 |
|
|
/* */
|
18 |
|
|
/* - Neither the name of IBM Corporation nor the names of its */
|
19 |
|
|
/* contributors may be used to endorse or promote products */
|
20 |
|
|
/* derived from this software without specific prior written */
|
21 |
|
|
/* permission. */
|
22 |
|
|
/* */
|
23 |
|
|
/* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND */
|
24 |
|
|
/* CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, */
|
25 |
|
|
/* INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF */
|
26 |
|
|
/* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE */
|
27 |
|
|
/* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR */
|
28 |
|
|
/* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, */
|
29 |
|
|
/* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT */
|
30 |
|
|
/* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; */
|
31 |
|
|
/* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) */
|
32 |
|
|
/* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN */
|
33 |
|
|
/* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR */
|
34 |
|
|
/* OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, */
|
35 |
|
|
/* EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */
|
36 |
|
|
/* -------------------------------------------------------------- */
|
37 |
|
|
/* PROLOG END TAG zYx */
|
38 |
|
|
#ifdef __SPU__
|
39 |
|
|
#ifndef _TANHF4_H_
|
40 |
|
|
#define _TANHF4_H_ 1
|
41 |
|
|
|
42 |
|
|
#include <spu_intrinsics.h>
|
43 |
|
|
|
44 |
|
|
#include "expf4.h"
|
45 |
|
|
#include "divf4.h"
|
46 |
|
|
|
47 |
|
|
#include "tanhd2.h"
|
48 |
|
|
|
49 |
|
|
/*
|
50 |
|
|
* FUNCTION
|
51 |
|
|
* vector float _tanhf4(vector float x)
|
52 |
|
|
*
|
53 |
|
|
* DESCRIPTION
|
54 |
|
|
* The _tanhf4 function computes the hyperbolic tangent for each
|
55 |
|
|
* element of the input vector.
|
56 |
|
|
*
|
57 |
|
|
* We use the following to approximate tanh:
|
58 |
|
|
*
|
59 |
|
|
* |x| <= .25: Taylor Series
|
60 |
|
|
* |x| > .25: tanh(x) = (exp(2x) - 1)/(exp(2x) + 1)
|
61 |
|
|
*
|
62 |
|
|
*
|
63 |
|
|
* SPECIAL CASES:
|
64 |
|
|
* - tanh(+/- 0) = +/-0
|
65 |
|
|
* - tanh(+/- infinity) = +/- 1
|
66 |
|
|
*
|
67 |
|
|
*/
|
68 |
|
|
|
69 |
|
|
static __inline vector float _tanhf4(vector float x)
|
70 |
|
|
{
|
71 |
|
|
vector float signbit = spu_splats(-0.0f);
|
72 |
|
|
vector float onef = spu_splats(1.0f);
|
73 |
|
|
vector float twof = spu_splats(2.0f);
|
74 |
|
|
vector float xabs;
|
75 |
|
|
vector float x2;
|
76 |
|
|
vector unsigned int gttaylor;
|
77 |
|
|
vector float e;
|
78 |
|
|
vector float tresult;
|
79 |
|
|
vector float eresult;
|
80 |
|
|
vector float result;
|
81 |
|
|
|
82 |
|
|
xabs = spu_andc(x, signbit);
|
83 |
|
|
|
84 |
|
|
/*
|
85 |
|
|
* This is where we switch from Taylor Series
|
86 |
|
|
* to exponential formula.
|
87 |
|
|
*/
|
88 |
|
|
gttaylor = spu_cmpgt(xabs, spu_splats(0.25f));
|
89 |
|
|
|
90 |
|
|
|
91 |
|
|
/*
|
92 |
|
|
* Taylor Series Approximation
|
93 |
|
|
*/
|
94 |
|
|
x2 = spu_mul(x,x);
|
95 |
|
|
tresult = spu_madd(x2, spu_splats((float)TANH_TAY06), spu_splats((float)TANH_TAY05));
|
96 |
|
|
tresult = spu_madd(x2, tresult, spu_splats((float)TANH_TAY04));
|
97 |
|
|
tresult = spu_madd(x2, tresult, spu_splats((float)TANH_TAY03));
|
98 |
|
|
tresult = spu_madd(x2, tresult, spu_splats((float)TANH_TAY02));
|
99 |
|
|
tresult = spu_madd(x2, tresult, spu_splats((float)TANH_TAY01));
|
100 |
|
|
tresult = spu_mul(xabs, tresult);
|
101 |
|
|
|
102 |
|
|
|
103 |
|
|
/*
|
104 |
|
|
* Exponential Formula
|
105 |
|
|
* Our expf4 function gives a more accurate result in general
|
106 |
|
|
* with xabs instead of x for x<0. We correct for sign later.
|
107 |
|
|
*/
|
108 |
|
|
e = _expf4(spu_mul(xabs, twof));
|
109 |
|
|
eresult = _divf4(spu_sub(e, onef), spu_add(e, onef));
|
110 |
|
|
|
111 |
|
|
|
112 |
|
|
/*
|
113 |
|
|
* Select Taylor or exp result.
|
114 |
|
|
*/
|
115 |
|
|
result = spu_sel(tresult, eresult, gttaylor);
|
116 |
|
|
|
117 |
|
|
/*
|
118 |
|
|
* Correct for accumulated truncation error when
|
119 |
|
|
* tanh(x) should return 1.
|
120 |
|
|
* Note that this also handles the special case of
|
121 |
|
|
* x = +/- infinity.
|
122 |
|
|
*/
|
123 |
|
|
result = spu_sel(result, onef, spu_cmpgt(xabs, spu_splats(9.125f)));
|
124 |
|
|
|
125 |
|
|
/*
|
126 |
|
|
* Antisymmetric function - preserve sign bit of x
|
127 |
|
|
* in the result.
|
128 |
|
|
*/
|
129 |
|
|
result = spu_sel(result, x, (vec_uint4)signbit);
|
130 |
|
|
|
131 |
|
|
return result;
|
132 |
|
|
}
|
133 |
|
|
|
134 |
|
|
#endif /* _TANHF4_H_ */
|
135 |
|
|
#endif /* __SPU__ */
|