OpenCores
URL https://opencores.org/ocsvn/openrisc_me/openrisc_me/trunk

Subversion Repositories openrisc_me

[/] [openrisc/] [trunk/] [gnu-src/] [newlib-1.18.0/] [newlib/] [libm/] [math/] [e_exp.c] - Blame information for rev 307

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 207 jeremybenn
 
2
/* @(#)e_exp.c 5.1 93/09/24 */
3
/*
4
 * ====================================================
5
 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
6
 *
7
 * Developed at SunPro, a Sun Microsystems, Inc. business.
8
 * Permission to use, copy, modify, and distribute this
9
 * software is freely granted, provided that this notice
10
 * is preserved.
11
 * ====================================================
12
 */
13
 
14
/* __ieee754_exp(x)
15
 * Returns the exponential of x.
16
 *
17
 * Method
18
 *   1. Argument reduction:
19
 *      Reduce x to an r so that |r| <= 0.5*ln2 ~ 0.34658.
20
 *      Given x, find r and integer k such that
21
 *
22
 *               x = k*ln2 + r,  |r| <= 0.5*ln2.
23
 *
24
 *      Here r will be represented as r = hi-lo for better
25
 *      accuracy.
26
 *
27
 *   2. Approximation of exp(r) by a special rational function on
28
 *      the interval [0,0.34658]:
29
 *      Write
30
 *          R(r**2) = r*(exp(r)+1)/(exp(r)-1) = 2 + r*r/6 - r**4/360 + ...
31
 *      We use a special Reme algorithm on [0,0.34658] to generate
32
 *      a polynomial of degree 5 to approximate R. The maximum error
33
 *      of this polynomial approximation is bounded by 2**-59. In
34
 *      other words,
35
 *          R(z) ~ 2.0 + P1*z + P2*z**2 + P3*z**3 + P4*z**4 + P5*z**5
36
 *      (where z=r*r, and the values of P1 to P5 are listed below)
37
 *      and
38
 *          |                  5          |     -59
39
 *          | 2.0+P1*z+...+P5*z   -  R(z) | <= 2
40
 *          |                             |
41
 *      The computation of exp(r) thus becomes
42
 *                             2*r
43
 *              exp(r) = 1 + -------
44
 *                            R - r
45
 *                                 r*R1(r)
46
 *                     = 1 + r + ----------- (for better accuracy)
47
 *                                2 - R1(r)
48
 *      where
49
 *                               2       4             10
50
 *              R1(r) = r - (P1*r  + P2*r  + ... + P5*r   ).
51
 *
52
 *   3. Scale back to obtain exp(x):
53
 *      From step 1, we have
54
 *         exp(x) = 2^k * exp(r)
55
 *
56
 * Special cases:
57
 *      exp(INF) is INF, exp(NaN) is NaN;
58
 *      exp(-INF) is 0, and
59
 *      for finite argument, only exp(0)=1 is exact.
60
 *
61
 * Accuracy:
62
 *      according to an error analysis, the error is always less than
63
 *      1 ulp (unit in the last place).
64
 *
65
 * Misc. info.
66
 *      For IEEE double
67
 *          if x >  7.09782712893383973096e+02 then exp(x) overflow
68
 *          if x < -7.45133219101941108420e+02 then exp(x) underflow
69
 *
70
 * Constants:
71
 * The hexadecimal values are the intended ones for the following
72
 * constants. The decimal values may be used, provided that the
73
 * compiler will convert from decimal to binary accurately enough
74
 * to produce the hexadecimal values shown.
75
 */
76
 
77
#include "fdlibm.h"
78
 
79
#ifndef _DOUBLE_IS_32BITS
80
 
81
#ifdef __STDC__
82
static const double
83
#else
84
static double
85
#endif
86
one     = 1.0,
87
halF[2] = {0.5,-0.5,},
88
huge    = 1.0e+300,
89
twom1000= 9.33263618503218878990e-302,     /* 2**-1000=0x01700000,0*/
90
o_threshold=  7.09782712893383973096e+02,  /* 0x40862E42, 0xFEFA39EF */
91
u_threshold= -7.45133219101941108420e+02,  /* 0xc0874910, 0xD52D3051 */
92
ln2HI[2]   ={ 6.93147180369123816490e-01,  /* 0x3fe62e42, 0xfee00000 */
93
             -6.93147180369123816490e-01,},/* 0xbfe62e42, 0xfee00000 */
94
ln2LO[2]   ={ 1.90821492927058770002e-10,  /* 0x3dea39ef, 0x35793c76 */
95
             -1.90821492927058770002e-10,},/* 0xbdea39ef, 0x35793c76 */
96
invln2 =  1.44269504088896338700e+00, /* 0x3ff71547, 0x652b82fe */
97
P1   =  1.66666666666666019037e-01, /* 0x3FC55555, 0x5555553E */
98
P2   = -2.77777777770155933842e-03, /* 0xBF66C16C, 0x16BEBD93 */
99
P3   =  6.61375632143793436117e-05, /* 0x3F11566A, 0xAF25DE2C */
100
P4   = -1.65339022054652515390e-06, /* 0xBEBBBD41, 0xC5D26BF1 */
101
P5   =  4.13813679705723846039e-08; /* 0x3E663769, 0x72BEA4D0 */
102
 
103
 
104
#ifdef __STDC__
105
        double __ieee754_exp(double x)  /* default IEEE double exp */
106
#else
107
        double __ieee754_exp(x) /* default IEEE double exp */
108
        double x;
109
#endif
110
{
111
        double y,hi,lo,c,t;
112
        __int32_t k,xsb;
113
        __uint32_t hx;
114
 
115
        GET_HIGH_WORD(hx,x);
116
        xsb = (hx>>31)&1;               /* sign bit of x */
117
        hx &= 0x7fffffff;               /* high word of |x| */
118
 
119
    /* filter out non-finite argument */
120
        if(hx >= 0x40862E42) {                  /* if |x|>=709.78... */
121
            if(hx>=0x7ff00000) {
122
                __uint32_t lx;
123
                GET_LOW_WORD(lx,x);
124
                if(((hx&0xfffff)|lx)!=0)
125
                     return x+x;                /* NaN */
126
                else return (xsb==0)? x:0.0;     /* exp(+-inf)={inf,0} */
127
            }
128
            if(x > o_threshold) return huge*huge; /* overflow */
129
            if(x < u_threshold) return twom1000*twom1000; /* underflow */
130
        }
131
 
132
    /* argument reduction */
133
        if(hx > 0x3fd62e42) {           /* if  |x| > 0.5 ln2 */
134
            if(hx < 0x3FF0A2B2) {       /* and |x| < 1.5 ln2 */
135
                hi = x-ln2HI[xsb]; lo=ln2LO[xsb]; k = 1-xsb-xsb;
136
            } else {
137
                k  = invln2*x+halF[xsb];
138
                t  = k;
139
                hi = x - t*ln2HI[0];     /* t*ln2HI is exact here */
140
                lo = t*ln2LO[0];
141
            }
142
            x  = hi - lo;
143
        }
144
        else if(hx < 0x3e300000)  {     /* when |x|<2**-28 */
145
            if(huge+x>one) return one+x;/* trigger inexact */
146
        }
147
        else k = 0;
148
 
149
    /* x is now in primary range */
150
        t  = x*x;
151
        c  = x - t*(P1+t*(P2+t*(P3+t*(P4+t*P5))));
152
        if(k==0)         return one-((x*c)/(c-2.0)-x);
153
        else            y = one-((lo-(x*c)/(2.0-c))-hi);
154
        if(k >= -1021) {
155
            __uint32_t hy;
156
            GET_HIGH_WORD(hy,y);
157
            SET_HIGH_WORD(y,hy+(k<<20));        /* add k to y's exponent */
158
            return y;
159
        } else {
160
            __uint32_t hy;
161
            GET_HIGH_WORD(hy,y);
162
            SET_HIGH_WORD(y,hy+((k+1000)<<20)); /* add k to y's exponent */
163
            return y*twom1000;
164
        }
165
}
166
 
167
#endif /* defined(_DOUBLE_IS_32BITS) */

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.