OpenCores
URL https://opencores.org/ocsvn/openrisc_me/openrisc_me/trunk

Subversion Repositories openrisc_me

[/] [openrisc/] [trunk/] [gnu-src/] [newlib-1.18.0/] [newlib/] [libm/] [math/] [k_tan.c] - Blame information for rev 471

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 207 jeremybenn
 
2
/* @(#)k_tan.c 5.1 93/09/24 */
3
/*
4
 * ====================================================
5
 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
6
 *
7
 * Developed at SunPro, a Sun Microsystems, Inc. business.
8
 * Permission to use, copy, modify, and distribute this
9
 * software is freely granted, provided that this notice
10
 * is preserved.
11
 * ====================================================
12
 */
13
 
14
/* __kernel_tan( x, y, k )
15
 * kernel tan function on [-pi/4, pi/4], pi/4 ~ 0.7854
16
 * Input x is assumed to be bounded by ~pi/4 in magnitude.
17
 * Input y is the tail of x.
18
 * Input k indicates whether tan (if k=1) or
19
 * -1/tan (if k= -1) is returned.
20
 *
21
 * Algorithm
22
 *      1. Since tan(-x) = -tan(x), we need only to consider positive x.
23
 *      2. if x < 2^-28 (hx<0x3e300000 0), return x with inexact if x!=0.
24
 *      3. tan(x) is approximated by a odd polynomial of degree 27 on
25
 *         [0,0.67434]
26
 *                               3             27
27
 *              tan(x) ~ x + T1*x + ... + T13*x
28
 *         where
29
 *
30
 *              |tan(x)         2     4            26   |     -59.2
31
 *              |----- - (1+T1*x +T2*x +.... +T13*x    )| <= 2
32
 *              |  x                                    |
33
 *
34
 *         Note: tan(x+y) = tan(x) + tan'(x)*y
35
 *                        ~ tan(x) + (1+x*x)*y
36
 *         Therefore, for better accuracy in computing tan(x+y), let
37
 *                   3      2      2       2       2
38
 *              r = x *(T2+x *(T3+x *(...+x *(T12+x *T13))))
39
 *         then
40
 *                                  3    2
41
 *              tan(x+y) = x + (T1*x + (x *(r+y)+y))
42
 *
43
 *      4. For x in [0.67434,pi/4],  let y = pi/4 - x, then
44
 *              tan(x) = tan(pi/4-y) = (1-tan(y))/(1+tan(y))
45
 *                     = 1 - 2*(tan(y) - (tan(y)^2)/(1+tan(y)))
46
 */
47
 
48
#include "fdlibm.h"
49
 
50
#ifndef _DOUBLE_IS_32BITS
51
 
52
#ifdef __STDC__
53
static const double
54
#else
55
static double
56
#endif
57
one   =  1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */
58
pio4  =  7.85398163397448278999e-01, /* 0x3FE921FB, 0x54442D18 */
59
pio4lo=  3.06161699786838301793e-17, /* 0x3C81A626, 0x33145C07 */
60
T[] =  {
61
  3.33333333333334091986e-01, /* 0x3FD55555, 0x55555563 */
62
  1.33333333333201242699e-01, /* 0x3FC11111, 0x1110FE7A */
63
  5.39682539762260521377e-02, /* 0x3FABA1BA, 0x1BB341FE */
64
  2.18694882948595424599e-02, /* 0x3F9664F4, 0x8406D637 */
65
  8.86323982359930005737e-03, /* 0x3F8226E3, 0xE96E8493 */
66
  3.59207910759131235356e-03, /* 0x3F6D6D22, 0xC9560328 */
67
  1.45620945432529025516e-03, /* 0x3F57DBC8, 0xFEE08315 */
68
  5.88041240820264096874e-04, /* 0x3F4344D8, 0xF2F26501 */
69
  2.46463134818469906812e-04, /* 0x3F3026F7, 0x1A8D1068 */
70
  7.81794442939557092300e-05, /* 0x3F147E88, 0xA03792A6 */
71
  7.14072491382608190305e-05, /* 0x3F12B80F, 0x32F0A7E9 */
72
 -1.85586374855275456654e-05, /* 0xBEF375CB, 0xDB605373 */
73
  2.59073051863633712884e-05, /* 0x3EFB2A70, 0x74BF7AD4 */
74
};
75
 
76
#ifdef __STDC__
77
        double __kernel_tan(double x, double y, int iy)
78
#else
79
        double __kernel_tan(x, y, iy)
80
        double x,y; int iy;
81
#endif
82
{
83
        double z,r,v,w,s;
84
        __int32_t ix,hx;
85
        GET_HIGH_WORD(hx,x);
86
        ix = hx&0x7fffffff;     /* high word of |x| */
87
        if(ix<0x3e300000)                       /* x < 2**-28 */
88
            {if((int)x==0) {                     /* generate inexact */
89
                __uint32_t low;
90
                GET_LOW_WORD(low,x);
91
                if(((ix|low)|(iy+1))==0) return one/fabs(x);
92
                else return (iy==1)? x: -one/x;
93
            }
94
            }
95
        if(ix>=0x3FE59428) {                    /* |x|>=0.6744 */
96
            if(hx<0) {x = -x; y = -y;}
97
            z = pio4-x;
98
            w = pio4lo-y;
99
            x = z+w; y = 0.0;
100
        }
101
        z       =  x*x;
102
        w       =  z*z;
103
    /* Break x^5*(T[1]+x^2*T[2]+...) into
104
     *    x^5(T[1]+x^4*T[3]+...+x^20*T[11]) +
105
     *    x^5(x^2*(T[2]+x^4*T[4]+...+x^22*[T12]))
106
     */
107
        r = T[1]+w*(T[3]+w*(T[5]+w*(T[7]+w*(T[9]+w*T[11]))));
108
        v = z*(T[2]+w*(T[4]+w*(T[6]+w*(T[8]+w*(T[10]+w*T[12])))));
109
        s = z*x;
110
        r = y + z*(s*(r+v)+y);
111
        r += T[0]*s;
112
        w = x+r;
113
        if(ix>=0x3FE59428) {
114
            v = (double)iy;
115
            return (double)(1-((hx>>30)&2))*(v-2.0*(x-(w*w/(w+v)-r)));
116
        }
117
        if(iy==1) return w;
118
        else {          /* if allow error up to 2 ulp,
119
                           simply return -1.0/(x+r) here */
120
     /*  compute -1.0/(x+r) accurately */
121
            double a,t;
122
            z  = w;
123
            SET_LOW_WORD(z,0);
124
            v  = r-(z - x);     /* z+v = r+x */
125
            t = a  = -1.0/w;    /* a = -1.0/w */
126
            SET_LOW_WORD(t,0);
127
            s  = 1.0+t*z;
128
            return t+a*(s+t*v);
129
        }
130
}
131
 
132
#endif /* defined(_DOUBLE_IS_32BITS) */

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.