1 |
207 |
jeremybenn |
/* sf_erf.c -- float version of s_erf.c.
|
2 |
|
|
* Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
|
3 |
|
|
*/
|
4 |
|
|
|
5 |
|
|
/*
|
6 |
|
|
* ====================================================
|
7 |
|
|
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
8 |
|
|
*
|
9 |
|
|
* Developed at SunPro, a Sun Microsystems, Inc. business.
|
10 |
|
|
* Permission to use, copy, modify, and distribute this
|
11 |
|
|
* software is freely granted, provided that this notice
|
12 |
|
|
* is preserved.
|
13 |
|
|
* ====================================================
|
14 |
|
|
*/
|
15 |
|
|
|
16 |
|
|
#include "fdlibm.h"
|
17 |
|
|
|
18 |
|
|
#ifdef __v810__
|
19 |
|
|
#define const
|
20 |
|
|
#endif
|
21 |
|
|
|
22 |
|
|
#ifdef __STDC__
|
23 |
|
|
static const float
|
24 |
|
|
#else
|
25 |
|
|
static float
|
26 |
|
|
#endif
|
27 |
|
|
tiny = 1e-30,
|
28 |
|
|
half= 5.0000000000e-01, /* 0x3F000000 */
|
29 |
|
|
one = 1.0000000000e+00, /* 0x3F800000 */
|
30 |
|
|
two = 2.0000000000e+00, /* 0x40000000 */
|
31 |
|
|
/* c = (subfloat)0.84506291151 */
|
32 |
|
|
erx = 8.4506291151e-01, /* 0x3f58560b */
|
33 |
|
|
/*
|
34 |
|
|
* Coefficients for approximation to erf on [0,0.84375]
|
35 |
|
|
*/
|
36 |
|
|
efx = 1.2837916613e-01, /* 0x3e0375d4 */
|
37 |
|
|
efx8= 1.0270333290e+00, /* 0x3f8375d4 */
|
38 |
|
|
pp0 = 1.2837916613e-01, /* 0x3e0375d4 */
|
39 |
|
|
pp1 = -3.2504209876e-01, /* 0xbea66beb */
|
40 |
|
|
pp2 = -2.8481749818e-02, /* 0xbce9528f */
|
41 |
|
|
pp3 = -5.7702702470e-03, /* 0xbbbd1489 */
|
42 |
|
|
pp4 = -2.3763017452e-05, /* 0xb7c756b1 */
|
43 |
|
|
qq1 = 3.9791721106e-01, /* 0x3ecbbbce */
|
44 |
|
|
qq2 = 6.5022252500e-02, /* 0x3d852a63 */
|
45 |
|
|
qq3 = 5.0813062117e-03, /* 0x3ba68116 */
|
46 |
|
|
qq4 = 1.3249473704e-04, /* 0x390aee49 */
|
47 |
|
|
qq5 = -3.9602282413e-06, /* 0xb684e21a */
|
48 |
|
|
/*
|
49 |
|
|
* Coefficients for approximation to erf in [0.84375,1.25]
|
50 |
|
|
*/
|
51 |
|
|
pa0 = -2.3621185683e-03, /* 0xbb1acdc6 */
|
52 |
|
|
pa1 = 4.1485610604e-01, /* 0x3ed46805 */
|
53 |
|
|
pa2 = -3.7220788002e-01, /* 0xbebe9208 */
|
54 |
|
|
pa3 = 3.1834661961e-01, /* 0x3ea2fe54 */
|
55 |
|
|
pa4 = -1.1089469492e-01, /* 0xbde31cc2 */
|
56 |
|
|
pa5 = 3.5478305072e-02, /* 0x3d1151b3 */
|
57 |
|
|
pa6 = -2.1663755178e-03, /* 0xbb0df9c0 */
|
58 |
|
|
qa1 = 1.0642088205e-01, /* 0x3dd9f331 */
|
59 |
|
|
qa2 = 5.4039794207e-01, /* 0x3f0a5785 */
|
60 |
|
|
qa3 = 7.1828655899e-02, /* 0x3d931ae7 */
|
61 |
|
|
qa4 = 1.2617121637e-01, /* 0x3e013307 */
|
62 |
|
|
qa5 = 1.3637083583e-02, /* 0x3c5f6e13 */
|
63 |
|
|
qa6 = 1.1984500103e-02, /* 0x3c445aa3 */
|
64 |
|
|
/*
|
65 |
|
|
* Coefficients for approximation to erfc in [1.25,1/0.35]
|
66 |
|
|
*/
|
67 |
|
|
ra0 = -9.8649440333e-03, /* 0xbc21a093 */
|
68 |
|
|
ra1 = -6.9385856390e-01, /* 0xbf31a0b7 */
|
69 |
|
|
ra2 = -1.0558626175e+01, /* 0xc128f022 */
|
70 |
|
|
ra3 = -6.2375331879e+01, /* 0xc2798057 */
|
71 |
|
|
ra4 = -1.6239666748e+02, /* 0xc322658c */
|
72 |
|
|
ra5 = -1.8460508728e+02, /* 0xc3389ae7 */
|
73 |
|
|
ra6 = -8.1287437439e+01, /* 0xc2a2932b */
|
74 |
|
|
ra7 = -9.8143291473e+00, /* 0xc11d077e */
|
75 |
|
|
sa1 = 1.9651271820e+01, /* 0x419d35ce */
|
76 |
|
|
sa2 = 1.3765776062e+02, /* 0x4309a863 */
|
77 |
|
|
sa3 = 4.3456588745e+02, /* 0x43d9486f */
|
78 |
|
|
sa4 = 6.4538726807e+02, /* 0x442158c9 */
|
79 |
|
|
sa5 = 4.2900814819e+02, /* 0x43d6810b */
|
80 |
|
|
sa6 = 1.0863500214e+02, /* 0x42d9451f */
|
81 |
|
|
sa7 = 6.5702495575e+00, /* 0x40d23f7c */
|
82 |
|
|
sa8 = -6.0424413532e-02, /* 0xbd777f97 */
|
83 |
|
|
/*
|
84 |
|
|
* Coefficients for approximation to erfc in [1/.35,28]
|
85 |
|
|
*/
|
86 |
|
|
rb0 = -9.8649431020e-03, /* 0xbc21a092 */
|
87 |
|
|
rb1 = -7.9928326607e-01, /* 0xbf4c9dd4 */
|
88 |
|
|
rb2 = -1.7757955551e+01, /* 0xc18e104b */
|
89 |
|
|
rb3 = -1.6063638306e+02, /* 0xc320a2ea */
|
90 |
|
|
rb4 = -6.3756646729e+02, /* 0xc41f6441 */
|
91 |
|
|
rb5 = -1.0250950928e+03, /* 0xc480230b */
|
92 |
|
|
rb6 = -4.8351919556e+02, /* 0xc3f1c275 */
|
93 |
|
|
sb1 = 3.0338060379e+01, /* 0x41f2b459 */
|
94 |
|
|
sb2 = 3.2579251099e+02, /* 0x43a2e571 */
|
95 |
|
|
sb3 = 1.5367296143e+03, /* 0x44c01759 */
|
96 |
|
|
sb4 = 3.1998581543e+03, /* 0x4547fdbb */
|
97 |
|
|
sb5 = 2.5530502930e+03, /* 0x451f90ce */
|
98 |
|
|
sb6 = 4.7452853394e+02, /* 0x43ed43a7 */
|
99 |
|
|
sb7 = -2.2440952301e+01; /* 0xc1b38712 */
|
100 |
|
|
|
101 |
|
|
#ifdef __STDC__
|
102 |
|
|
float erff(float x)
|
103 |
|
|
#else
|
104 |
|
|
float erff(x)
|
105 |
|
|
float x;
|
106 |
|
|
#endif
|
107 |
|
|
{
|
108 |
|
|
__int32_t hx,ix,i;
|
109 |
|
|
float R,S,P,Q,s,y,z,r;
|
110 |
|
|
GET_FLOAT_WORD(hx,x);
|
111 |
|
|
ix = hx&0x7fffffff;
|
112 |
|
|
if(!FLT_UWORD_IS_FINITE(ix)) { /* erf(nan)=nan */
|
113 |
|
|
i = ((__uint32_t)hx>>31)<<1;
|
114 |
|
|
return (float)(1-i)+one/x; /* erf(+-inf)=+-1 */
|
115 |
|
|
}
|
116 |
|
|
|
117 |
|
|
if(ix < 0x3f580000) { /* |x|<0.84375 */
|
118 |
|
|
if(ix < 0x31800000) { /* |x|<2**-28 */
|
119 |
|
|
if (ix < 0x04000000)
|
120 |
|
|
/*avoid underflow */
|
121 |
|
|
return (float)0.125*((float)8.0*x+efx8*x);
|
122 |
|
|
return x + efx*x;
|
123 |
|
|
}
|
124 |
|
|
z = x*x;
|
125 |
|
|
r = pp0+z*(pp1+z*(pp2+z*(pp3+z*pp4)));
|
126 |
|
|
s = one+z*(qq1+z*(qq2+z*(qq3+z*(qq4+z*qq5))));
|
127 |
|
|
y = r/s;
|
128 |
|
|
return x + x*y;
|
129 |
|
|
}
|
130 |
|
|
if(ix < 0x3fa00000) { /* 0.84375 <= |x| < 1.25 */
|
131 |
|
|
s = fabsf(x)-one;
|
132 |
|
|
P = pa0+s*(pa1+s*(pa2+s*(pa3+s*(pa4+s*(pa5+s*pa6)))));
|
133 |
|
|
Q = one+s*(qa1+s*(qa2+s*(qa3+s*(qa4+s*(qa5+s*qa6)))));
|
134 |
|
|
if(hx>=0) return erx + P/Q; else return -erx - P/Q;
|
135 |
|
|
}
|
136 |
|
|
if (ix >= 0x40c00000) { /* inf>|x|>=6 */
|
137 |
|
|
if(hx>=0) return one-tiny; else return tiny-one;
|
138 |
|
|
}
|
139 |
|
|
x = fabsf(x);
|
140 |
|
|
s = one/(x*x);
|
141 |
|
|
if(ix< 0x4036DB6E) { /* |x| < 1/0.35 */
|
142 |
|
|
R=ra0+s*(ra1+s*(ra2+s*(ra3+s*(ra4+s*(
|
143 |
|
|
ra5+s*(ra6+s*ra7))))));
|
144 |
|
|
S=one+s*(sa1+s*(sa2+s*(sa3+s*(sa4+s*(
|
145 |
|
|
sa5+s*(sa6+s*(sa7+s*sa8)))))));
|
146 |
|
|
} else { /* |x| >= 1/0.35 */
|
147 |
|
|
R=rb0+s*(rb1+s*(rb2+s*(rb3+s*(rb4+s*(
|
148 |
|
|
rb5+s*rb6)))));
|
149 |
|
|
S=one+s*(sb1+s*(sb2+s*(sb3+s*(sb4+s*(
|
150 |
|
|
sb5+s*(sb6+s*sb7))))));
|
151 |
|
|
}
|
152 |
|
|
GET_FLOAT_WORD(ix,x);
|
153 |
|
|
SET_FLOAT_WORD(z,ix&0xfffff000);
|
154 |
|
|
r = __ieee754_expf(-z*z-(float)0.5625)*__ieee754_expf((z-x)*(z+x)+R/S);
|
155 |
|
|
if(hx>=0) return one-r/x; else return r/x-one;
|
156 |
|
|
}
|
157 |
|
|
|
158 |
|
|
#ifdef __STDC__
|
159 |
|
|
float erfcf(float x)
|
160 |
|
|
#else
|
161 |
|
|
float erfcf(x)
|
162 |
|
|
float x;
|
163 |
|
|
#endif
|
164 |
|
|
{
|
165 |
|
|
__int32_t hx,ix;
|
166 |
|
|
float R,S,P,Q,s,y,z,r;
|
167 |
|
|
GET_FLOAT_WORD(hx,x);
|
168 |
|
|
ix = hx&0x7fffffff;
|
169 |
|
|
if(!FLT_UWORD_IS_FINITE(ix)) { /* erfc(nan)=nan */
|
170 |
|
|
/* erfc(+-inf)=0,2 */
|
171 |
|
|
return (float)(((__uint32_t)hx>>31)<<1)+one/x;
|
172 |
|
|
}
|
173 |
|
|
|
174 |
|
|
if(ix < 0x3f580000) { /* |x|<0.84375 */
|
175 |
|
|
if(ix < 0x23800000) /* |x|<2**-56 */
|
176 |
|
|
return one-x;
|
177 |
|
|
z = x*x;
|
178 |
|
|
r = pp0+z*(pp1+z*(pp2+z*(pp3+z*pp4)));
|
179 |
|
|
s = one+z*(qq1+z*(qq2+z*(qq3+z*(qq4+z*qq5))));
|
180 |
|
|
y = r/s;
|
181 |
|
|
if(hx < 0x3e800000) { /* x<1/4 */
|
182 |
|
|
return one-(x+x*y);
|
183 |
|
|
} else {
|
184 |
|
|
r = x*y;
|
185 |
|
|
r += (x-half);
|
186 |
|
|
return half - r ;
|
187 |
|
|
}
|
188 |
|
|
}
|
189 |
|
|
if(ix < 0x3fa00000) { /* 0.84375 <= |x| < 1.25 */
|
190 |
|
|
s = fabsf(x)-one;
|
191 |
|
|
P = pa0+s*(pa1+s*(pa2+s*(pa3+s*(pa4+s*(pa5+s*pa6)))));
|
192 |
|
|
Q = one+s*(qa1+s*(qa2+s*(qa3+s*(qa4+s*(qa5+s*qa6)))));
|
193 |
|
|
if(hx>=0) {
|
194 |
|
|
z = one-erx; return z - P/Q;
|
195 |
|
|
} else {
|
196 |
|
|
z = erx+P/Q; return one+z;
|
197 |
|
|
}
|
198 |
|
|
}
|
199 |
|
|
if (ix < 0x41e00000) { /* |x|<28 */
|
200 |
|
|
x = fabsf(x);
|
201 |
|
|
s = one/(x*x);
|
202 |
|
|
if(ix< 0x4036DB6D) { /* |x| < 1/.35 ~ 2.857143*/
|
203 |
|
|
R=ra0+s*(ra1+s*(ra2+s*(ra3+s*(ra4+s*(
|
204 |
|
|
ra5+s*(ra6+s*ra7))))));
|
205 |
|
|
S=one+s*(sa1+s*(sa2+s*(sa3+s*(sa4+s*(
|
206 |
|
|
sa5+s*(sa6+s*(sa7+s*sa8)))))));
|
207 |
|
|
} else { /* |x| >= 1/.35 ~ 2.857143 */
|
208 |
|
|
if(hx<0&&ix>=0x40c00000) return two-tiny;/* x < -6 */
|
209 |
|
|
R=rb0+s*(rb1+s*(rb2+s*(rb3+s*(rb4+s*(
|
210 |
|
|
rb5+s*rb6)))));
|
211 |
|
|
S=one+s*(sb1+s*(sb2+s*(sb3+s*(sb4+s*(
|
212 |
|
|
sb5+s*(sb6+s*sb7))))));
|
213 |
|
|
}
|
214 |
|
|
GET_FLOAT_WORD(ix,x);
|
215 |
|
|
SET_FLOAT_WORD(z,ix&0xfffff000);
|
216 |
|
|
r = __ieee754_expf(-z*z-(float)0.5625)*
|
217 |
|
|
__ieee754_expf((z-x)*(z+x)+R/S);
|
218 |
|
|
if(hx>0) return r/x; else return two-r/x;
|
219 |
|
|
} else {
|
220 |
|
|
if(hx>0) return tiny*tiny; else return two-tiny;
|
221 |
|
|
}
|
222 |
|
|
}
|
223 |
|
|
|
224 |
|
|
#ifdef _DOUBLE_IS_32BITS
|
225 |
|
|
|
226 |
|
|
#ifdef __STDC__
|
227 |
|
|
double erf(double x)
|
228 |
|
|
#else
|
229 |
|
|
double erf(x)
|
230 |
|
|
double x;
|
231 |
|
|
#endif
|
232 |
|
|
{
|
233 |
|
|
return (double) erff((float) x);
|
234 |
|
|
}
|
235 |
|
|
|
236 |
|
|
#ifdef __STDC__
|
237 |
|
|
double erfc(double x)
|
238 |
|
|
#else
|
239 |
|
|
double erfc(x)
|
240 |
|
|
double x;
|
241 |
|
|
#endif
|
242 |
|
|
{
|
243 |
|
|
return (double) erfcf((float) x);
|
244 |
|
|
}
|
245 |
|
|
|
246 |
|
|
#endif /* defined(_DOUBLE_IS_32BITS) */
|