OpenCores
URL https://opencores.org/ocsvn/openrisc_me/openrisc_me/trunk

Subversion Repositories openrisc_me

[/] [openrisc/] [trunk/] [gnu-src/] [newlib-1.18.0/] [newlib/] [libm/] [mathfp/] [s_erf.c] - Blame information for rev 207

Details | Compare with Previous | View Log

Line No. Rev Author Line
1 207 jeremybenn
 
2
/* @(#)s_erf.c 5.1 93/09/24 */
3
/*
4
 * ====================================================
5
 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
6
 *
7
 * Developed at SunPro, a Sun Microsystems, Inc. business.
8
 * Permission to use, copy, modify, and distribute this
9
 * software is freely granted, provided that this notice
10
 * is preserved.
11
 * ====================================================
12
 */
13
 
14
/*
15
FUNCTION
16
        <<erf>>, <<erff>>, <<erfc>>, <<erfcf>>---error function
17
INDEX
18
        erf
19
INDEX
20
        erff
21
INDEX
22
        erfc
23
INDEX
24
        erfcf
25
 
26
ANSI_SYNOPSIS
27
        #include <math.h>
28
        double erf(double <[x]>);
29
        float erff(float <[x]>);
30
        double erfc(double <[x]>);
31
        float erfcf(float <[x]>);
32
TRAD_SYNOPSIS
33
        #include <math.h>
34
 
35
        double erf(<[x]>)
36
        double <[x]>;
37
 
38
        float erff(<[x]>)
39
        float <[x]>;
40
 
41
        double erfc(<[x]>)
42
        double <[x]>;
43
 
44
        float erfcf(<[x]>)
45
        float <[x]>;
46
 
47
DESCRIPTION
48
        <<erf>> calculates an approximation to the ``error function'',
49
        which estimates the probability that an observation will fall within
50
        <[x]> standard deviations of the mean (assuming a normal
51
        distribution).
52
        @tex
53
        The error function is defined as
54
        $${2\over\sqrt\pi}\times\int_0^x e^{-t^2}dt$$
55
         @end tex
56
 
57
        <<erfc>> calculates the complementary probability; that is,
58
        <<erfc(<[x]>)>> is <<1 - erf(<[x]>)>>.  <<erfc>> is computed directly,
59
        so that you can use it to avoid the loss of precision that would
60
        result from subtracting large probabilities (on large <[x]>) from 1.
61
 
62
        <<erff>> and <<erfcf>> differ from <<erf>> and <<erfc>> only in the
63
        argument and result types.
64
 
65
RETURNS
66
        For positive arguments, <<erf>> and all its variants return a
67
        probability---a number between 0 and 1.
68
 
69
PORTABILITY
70
        None of the variants of <<erf>> are ANSI C.
71
*/
72
 
73
/* double erf(double x)
74
 * double erfc(double x)
75
 *                           x
76
 *                    2      |\
77
 *     erf(x)  =  ---------  | exp(-t*t)dt
78
 *                 sqrt(pi) \|
79
 *                           0
80
 *
81
 *     erfc(x) =  1-erf(x)
82
 *  Note that
83
 *              erf(-x) = -erf(x)
84
 *              erfc(-x) = 2 - erfc(x)
85
 *
86
 * Method:
87
 *      1. For |x| in [0, 0.84375]
88
 *          erf(x)  = x + x*R(x^2)
89
 *          erfc(x) = 1 - erf(x)           if x in [-.84375,0.25]
90
 *                  = 0.5 + ((0.5-x)-x*R)  if x in [0.25,0.84375]
91
 *         where R = P/Q where P is an odd poly of degree 8 and
92
 *         Q is an odd poly of degree 10.
93
 *                                               -57.90
94
 *                      | R - (erf(x)-x)/x | <= 2
95
 *
96
 *
97
 *         Remark. The formula is derived by noting
98
 *          erf(x) = (2/sqrt(pi))*(x - x^3/3 + x^5/10 - x^7/42 + ....)
99
 *         and that
100
 *          2/sqrt(pi) = 1.128379167095512573896158903121545171688
101
 *         is close to one. The interval is chosen because the fix
102
 *         point of erf(x) is near 0.6174 (i.e., erf(x)=x when x is
103
 *         near 0.6174), and by some experiment, 0.84375 is chosen to
104
 *         guarantee the error is less than one ulp for erf.
105
 *
106
 *      2. For |x| in [0.84375,1.25], let s = |x| - 1, and
107
 *         c = 0.84506291151 rounded to single (24 bits)
108
 *              erf(x)  = sign(x) * (c  + P1(s)/Q1(s))
109
 *              erfc(x) = (1-c)  - P1(s)/Q1(s) if x > 0
110
 *                        1+(c+P1(s)/Q1(s))    if x < 0
111
 *              |P1/Q1 - (erf(|x|)-c)| <= 2**-59.06
112
 *         Remark: here we use the taylor series expansion at x=1.
113
 *              erf(1+s) = erf(1) + s*Poly(s)
114
 *                       = 0.845.. + P1(s)/Q1(s)
115
 *         That is, we use rational approximation to approximate
116
 *                      erf(1+s) - (c = (single)0.84506291151)
117
 *         Note that |P1/Q1|< 0.078 for x in [0.84375,1.25]
118
 *         where
119
 *              P1(s) = degree 6 poly in s
120
 *              Q1(s) = degree 6 poly in s
121
 *
122
 *      3. For x in [1.25,1/0.35(~2.857143)],
123
 *              erfc(x) = (1/x)*exp(-x*x-0.5625+R1/S1)
124
 *              erf(x)  = 1 - erfc(x)
125
 *         where
126
 *              R1(z) = degree 7 poly in z, (z=1/x^2)
127
 *              S1(z) = degree 8 poly in z
128
 *
129
 *      4. For x in [1/0.35,28]
130
 *              erfc(x) = (1/x)*exp(-x*x-0.5625+R2/S2) if x > 0
131
 *                      = 2.0 - (1/x)*exp(-x*x-0.5625+R2/S2) if -6<x<0
132
 *                      = 2.0 - tiny            (if x <= -6)
133
 *              erf(x)  = sign(x)*(1.0 - erfc(x)) if x < 6, else
134
 *              erf(x)  = sign(x)*(1.0 - tiny)
135
 *         where
136
 *              R2(z) = degree 6 poly in z, (z=1/x^2)
137
 *              S2(z) = degree 7 poly in z
138
 *
139
 *      Note1:
140
 *         To compute exp(-x*x-0.5625+R/S), let s be a single
141
 *         precision number and s := x; then
142
 *              -x*x = -s*s + (s-x)*(s+x)
143
 *              exp(-x*x-0.5626+R/S) =
144
 *                      exp(-s*s-0.5625)*exp((s-x)*(s+x)+R/S);
145
 *      Note2:
146
 *         Here 4 and 5 make use of the asymptotic series
147
 *                        exp(-x*x)
148
 *              erfc(x) ~ ---------- * ( 1 + Poly(1/x^2) )
149
 *                        x*sqrt(pi)
150
 *         We use rational approximation to approximate
151
 *              g(s)=f(1/x^2) = log(erfc(x)*x) - x*x + 0.5625
152
 *         Here is the error bound for R1/S1 and R2/S2
153
 *              |R1/S1 - f(x)|  < 2**(-62.57)
154
 *              |R2/S2 - f(x)|  < 2**(-61.52)
155
 *
156
 *      5. For inf > x >= 28
157
 *              erf(x)  = sign(x) *(1 - tiny)  (raise inexact)
158
 *              erfc(x) = tiny*tiny (raise underflow) if x > 0
159
 *                      = 2 - tiny if x<0
160
 *
161
 *      7. Special case:
162
 *              erf(0)  = 0, erf(inf)  = 1, erf(-inf) = -1,
163
 *              erfc(0) = 1, erfc(inf) = 0, erfc(-inf) = 2,
164
 *              erfc/erf(NaN) is NaN
165
 */
166
 
167
 
168
#include "fdlibm.h"
169
 
170
#ifndef _DOUBLE_IS_32BITS
171
 
172
#ifdef __STDC__
173
static const double
174
#else
175
static double
176
#endif
177
tiny        = 1e-300,
178
half=  5.00000000000000000000e-01, /* 0x3FE00000, 0x00000000 */
179
one =  1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */
180
two =  2.00000000000000000000e+00, /* 0x40000000, 0x00000000 */
181
        /* c = (float)0.84506291151 */
182
erx =  8.45062911510467529297e-01, /* 0x3FEB0AC1, 0x60000000 */
183
/*
184
 * Coefficients for approximation to  erf on [0,0.84375]
185
 */
186
efx =  1.28379167095512586316e-01, /* 0x3FC06EBA, 0x8214DB69 */
187
efx8=  1.02703333676410069053e+00, /* 0x3FF06EBA, 0x8214DB69 */
188
pp0  =  1.28379167095512558561e-01, /* 0x3FC06EBA, 0x8214DB68 */
189
pp1  = -3.25042107247001499370e-01, /* 0xBFD4CD7D, 0x691CB913 */
190
pp2  = -2.84817495755985104766e-02, /* 0xBF9D2A51, 0xDBD7194F */
191
pp3  = -5.77027029648944159157e-03, /* 0xBF77A291, 0x236668E4 */
192
pp4  = -2.37630166566501626084e-05, /* 0xBEF8EAD6, 0x120016AC */
193
qq1  =  3.97917223959155352819e-01, /* 0x3FD97779, 0xCDDADC09 */
194
qq2  =  6.50222499887672944485e-02, /* 0x3FB0A54C, 0x5536CEBA */
195
qq3  =  5.08130628187576562776e-03, /* 0x3F74D022, 0xC4D36B0F */
196
qq4  =  1.32494738004321644526e-04, /* 0x3F215DC9, 0x221C1A10 */
197
qq5  = -3.96022827877536812320e-06, /* 0xBED09C43, 0x42A26120 */
198
/*
199
 * Coefficients for approximation to  erf  in [0.84375,1.25]
200
 */
201
pa0  = -2.36211856075265944077e-03, /* 0xBF6359B8, 0xBEF77538 */
202
pa1  =  4.14856118683748331666e-01, /* 0x3FDA8D00, 0xAD92B34D */
203
pa2  = -3.72207876035701323847e-01, /* 0xBFD7D240, 0xFBB8C3F1 */
204
pa3  =  3.18346619901161753674e-01, /* 0x3FD45FCA, 0x805120E4 */
205
pa4  = -1.10894694282396677476e-01, /* 0xBFBC6398, 0x3D3E28EC */
206
pa5  =  3.54783043256182359371e-02, /* 0x3FA22A36, 0x599795EB */
207
pa6  = -2.16637559486879084300e-03, /* 0xBF61BF38, 0x0A96073F */
208
qa1  =  1.06420880400844228286e-01, /* 0x3FBB3E66, 0x18EEE323 */
209
qa2  =  5.40397917702171048937e-01, /* 0x3FE14AF0, 0x92EB6F33 */
210
qa3  =  7.18286544141962662868e-02, /* 0x3FB2635C, 0xD99FE9A7 */
211
qa4  =  1.26171219808761642112e-01, /* 0x3FC02660, 0xE763351F */
212
qa5  =  1.36370839120290507362e-02, /* 0x3F8BEDC2, 0x6B51DD1C */
213
qa6  =  1.19844998467991074170e-02, /* 0x3F888B54, 0x5735151D */
214
/*
215
 * Coefficients for approximation to  erfc in [1.25,1/0.35]
216
 */
217
ra0  = -9.86494403484714822705e-03, /* 0xBF843412, 0x600D6435 */
218
ra1  = -6.93858572707181764372e-01, /* 0xBFE63416, 0xE4BA7360 */
219
ra2  = -1.05586262253232909814e+01, /* 0xC0251E04, 0x41B0E726 */
220
ra3  = -6.23753324503260060396e+01, /* 0xC04F300A, 0xE4CBA38D */
221
ra4  = -1.62396669462573470355e+02, /* 0xC0644CB1, 0x84282266 */
222
ra5  = -1.84605092906711035994e+02, /* 0xC067135C, 0xEBCCABB2 */
223
ra6  = -8.12874355063065934246e+01, /* 0xC0545265, 0x57E4D2F2 */
224
ra7  = -9.81432934416914548592e+00, /* 0xC023A0EF, 0xC69AC25C */
225
sa1  =  1.96512716674392571292e+01, /* 0x4033A6B9, 0xBD707687 */
226
sa2  =  1.37657754143519042600e+02, /* 0x4061350C, 0x526AE721 */
227
sa3  =  4.34565877475229228821e+02, /* 0x407B290D, 0xD58A1A71 */
228
sa4  =  6.45387271733267880336e+02, /* 0x40842B19, 0x21EC2868 */
229
sa5  =  4.29008140027567833386e+02, /* 0x407AD021, 0x57700314 */
230
sa6  =  1.08635005541779435134e+02, /* 0x405B28A3, 0xEE48AE2C */
231
sa7  =  6.57024977031928170135e+00, /* 0x401A47EF, 0x8E484A93 */
232
sa8  = -6.04244152148580987438e-02, /* 0xBFAEEFF2, 0xEE749A62 */
233
/*
234
 * Coefficients for approximation to  erfc in [1/.35,28]
235
 */
236
rb0  = -9.86494292470009928597e-03, /* 0xBF843412, 0x39E86F4A */
237
rb1  = -7.99283237680523006574e-01, /* 0xBFE993BA, 0x70C285DE */
238
rb2  = -1.77579549177547519889e+01, /* 0xC031C209, 0x555F995A */
239
rb3  = -1.60636384855821916062e+02, /* 0xC064145D, 0x43C5ED98 */
240
rb4  = -6.37566443368389627722e+02, /* 0xC083EC88, 0x1375F228 */
241
rb5  = -1.02509513161107724954e+03, /* 0xC0900461, 0x6A2E5992 */
242
rb6  = -4.83519191608651397019e+02, /* 0xC07E384E, 0x9BDC383F */
243
sb1  =  3.03380607434824582924e+01, /* 0x403E568B, 0x261D5190 */
244
sb2  =  3.25792512996573918826e+02, /* 0x40745CAE, 0x221B9F0A */
245
sb3  =  1.53672958608443695994e+03, /* 0x409802EB, 0x189D5118 */
246
sb4  =  3.19985821950859553908e+03, /* 0x40A8FFB7, 0x688C246A */
247
sb5  =  2.55305040643316442583e+03, /* 0x40A3F219, 0xCEDF3BE6 */
248
sb6  =  4.74528541206955367215e+02, /* 0x407DA874, 0xE79FE763 */
249
sb7  = -2.24409524465858183362e+01; /* 0xC03670E2, 0x42712D62 */
250
 
251
#ifdef __STDC__
252
        double erf(double x)
253
#else
254
        double erf(x)
255
        double x;
256
#endif
257
{
258
        __int32_t hx,ix,i;
259
        double R,S,P,Q,s,y,z,r;
260
        GET_HIGH_WORD(hx,x);
261
        ix = hx&0x7fffffff;
262
        if(ix>=0x7ff00000) {            /* erf(nan)=nan */
263
            i = ((__uint32_t)hx>>31)<<1;
264
            return (double)(1-i)+one/x; /* erf(+-inf)=+-1 */
265
        }
266
 
267
        if(ix < 0x3feb0000) {           /* |x|<0.84375 */
268
            if(ix < 0x3e300000) {       /* |x|<2**-28 */
269
                if (ix < 0x00800000)
270
                    return 0.125*(8.0*x+efx8*x);  /*avoid underflow */
271
                return x + efx*x;
272
            }
273
            z = x*x;
274
            r = pp0+z*(pp1+z*(pp2+z*(pp3+z*pp4)));
275
            s = one+z*(qq1+z*(qq2+z*(qq3+z*(qq4+z*qq5))));
276
            y = r/s;
277
            return x + x*y;
278
        }
279
        if(ix < 0x3ff40000) {           /* 0.84375 <= |x| < 1.25 */
280
            s = fabs(x)-one;
281
            P = pa0+s*(pa1+s*(pa2+s*(pa3+s*(pa4+s*(pa5+s*pa6)))));
282
            Q = one+s*(qa1+s*(qa2+s*(qa3+s*(qa4+s*(qa5+s*qa6)))));
283
            if(hx>=0) return erx + P/Q; else return -erx - P/Q;
284
        }
285
        if (ix >= 0x40180000) {         /* inf>|x|>=6 */
286
            if(hx>=0) return one-tiny; else return tiny-one;
287
        }
288
        x = fabs(x);
289
        s = one/(x*x);
290
        if(ix< 0x4006DB6E) {    /* |x| < 1/0.35 */
291
            R=ra0+s*(ra1+s*(ra2+s*(ra3+s*(ra4+s*(
292
                                ra5+s*(ra6+s*ra7))))));
293
            S=one+s*(sa1+s*(sa2+s*(sa3+s*(sa4+s*(
294
                                sa5+s*(sa6+s*(sa7+s*sa8)))))));
295
        } else {        /* |x| >= 1/0.35 */
296
            R=rb0+s*(rb1+s*(rb2+s*(rb3+s*(rb4+s*(
297
                                rb5+s*rb6)))));
298
            S=one+s*(sb1+s*(sb2+s*(sb3+s*(sb4+s*(
299
                                sb5+s*(sb6+s*sb7))))));
300
        }
301
        z  = x;
302
        SET_LOW_WORD(z,0);
303
        r  =  exp(-z*z-0.5625)*exp((z-x)*(z+x)+R/S);
304
        if(hx>=0) return one-r/x; else return  r/x-one;
305
}
306
 
307
#ifdef __STDC__
308
        double erfc(double x)
309
#else
310
        double erfc(x)
311
        double x;
312
#endif
313
{
314
        __int32_t hx,ix;
315
        double R,S,P,Q,s,y,z,r;
316
        GET_HIGH_WORD(hx,x);
317
        ix = hx&0x7fffffff;
318
        if(ix>=0x7ff00000) {                    /* erfc(nan)=nan */
319
                                                /* erfc(+-inf)=0,2 */
320
            return (double)(((__uint32_t)hx>>31)<<1)+one/x;
321
        }
322
 
323
        if(ix < 0x3feb0000) {           /* |x|<0.84375 */
324
            if(ix < 0x3c700000)         /* |x|<2**-56 */
325
                return one-x;
326
            z = x*x;
327
            r = pp0+z*(pp1+z*(pp2+z*(pp3+z*pp4)));
328
            s = one+z*(qq1+z*(qq2+z*(qq3+z*(qq4+z*qq5))));
329
            y = r/s;
330
            if(hx < 0x3fd00000) {       /* x<1/4 */
331
                return one-(x+x*y);
332
            } else {
333
                r = x*y;
334
                r += (x-half);
335
                return half - r ;
336
            }
337
        }
338
        if(ix < 0x3ff40000) {           /* 0.84375 <= |x| < 1.25 */
339
            s = fabs(x)-one;
340
            P = pa0+s*(pa1+s*(pa2+s*(pa3+s*(pa4+s*(pa5+s*pa6)))));
341
            Q = one+s*(qa1+s*(qa2+s*(qa3+s*(qa4+s*(qa5+s*qa6)))));
342
            if(hx>=0) {
343
                z  = one-erx; return z - P/Q;
344
            } else {
345
                z = erx+P/Q; return one+z;
346
            }
347
        }
348
        if (ix < 0x403c0000) {          /* |x|<28 */
349
            x = fabs(x);
350
            s = one/(x*x);
351
            if(ix< 0x4006DB6D) {        /* |x| < 1/.35 ~ 2.857143*/
352
                R=ra0+s*(ra1+s*(ra2+s*(ra3+s*(ra4+s*(
353
                                ra5+s*(ra6+s*ra7))))));
354
                S=one+s*(sa1+s*(sa2+s*(sa3+s*(sa4+s*(
355
                                sa5+s*(sa6+s*(sa7+s*sa8)))))));
356
            } else {                    /* |x| >= 1/.35 ~ 2.857143 */
357
                if(hx<0&&ix>=0x40180000) return two-tiny;/* x < -6 */
358
                R=rb0+s*(rb1+s*(rb2+s*(rb3+s*(rb4+s*(
359
                                rb5+s*rb6)))));
360
                S=one+s*(sb1+s*(sb2+s*(sb3+s*(sb4+s*(
361
                                sb5+s*(sb6+s*sb7))))));
362
            }
363
            z  = x;
364
            SET_LOW_WORD(z,0);
365
            r  =  exp(-z*z-0.5625)*
366
                        exp((z-x)*(z+x)+R/S);
367
            if(hx>0) return r/x; else return two-r/x;
368
        } else {
369
            if(hx>0) return tiny*tiny; else return two-tiny;
370
        }
371
}
372
 
373
#endif /* _DOUBLE_IS_32BITS */

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.