OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-stable/] [binutils-2.20.1/] [bfd/] [doc/] [section.texi] - Blame information for rev 864

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 205 julius
@section Sections
2
The raw data contained within a BFD is maintained through the
3
section abstraction.  A single BFD may have any number of
4
sections.  It keeps hold of them by pointing to the first;
5
each one points to the next in the list.
6
 
7
Sections are supported in BFD in @code{section.c}.
8
 
9
@menu
10
* Section Input::
11
* Section Output::
12
* typedef asection::
13
* section prototypes::
14
@end menu
15
 
16
@node Section Input, Section Output, Sections, Sections
17
@subsection Section input
18
When a BFD is opened for reading, the section structures are
19
created and attached to the BFD.
20
 
21
Each section has a name which describes the section in the
22
outside world---for example, @code{a.out} would contain at least
23
three sections, called @code{.text}, @code{.data} and @code{.bss}.
24
 
25
Names need not be unique; for example a COFF file may have several
26
sections named @code{.data}.
27
 
28
Sometimes a BFD will contain more than the ``natural'' number of
29
sections. A back end may attach other sections containing
30
constructor data, or an application may add a section (using
31
@code{bfd_make_section}) to the sections attached to an already open
32
BFD. For example, the linker creates an extra section
33
@code{COMMON} for each input file's BFD to hold information about
34
common storage.
35
 
36
The raw data is not necessarily read in when
37
the section descriptor is created. Some targets may leave the
38
data in place until a @code{bfd_get_section_contents} call is
39
made. Other back ends may read in all the data at once.  For
40
example, an S-record file has to be read once to determine the
41
size of the data. An IEEE-695 file doesn't contain raw data in
42
sections, but data and relocation expressions intermixed, so
43
the data area has to be parsed to get out the data and
44
relocations.
45
 
46
@node Section Output, typedef asection, Section Input, Sections
47
@subsection Section output
48
To write a new object style BFD, the various sections to be
49
written have to be created. They are attached to the BFD in
50
the same way as input sections; data is written to the
51
sections using @code{bfd_set_section_contents}.
52
 
53
Any program that creates or combines sections (e.g., the assembler
54
and linker) must use the @code{asection} fields @code{output_section} and
55
@code{output_offset} to indicate the file sections to which each
56
section must be written.  (If the section is being created from
57
scratch, @code{output_section} should probably point to the section
58
itself and @code{output_offset} should probably be zero.)
59
 
60
The data to be written comes from input sections attached
61
(via @code{output_section} pointers) to
62
the output sections.  The output section structure can be
63
considered a filter for the input section: the output section
64
determines the vma of the output data and the name, but the
65
input section determines the offset into the output section of
66
the data to be written.
67
 
68
E.g., to create a section "O", starting at 0x100, 0x123 long,
69
containing two subsections, "A" at offset 0x0 (i.e., at vma
70
0x100) and "B" at offset 0x20 (i.e., at vma 0x120) the @code{asection}
71
structures would look like:
72
 
73
@example
74
   section name          "A"
75
     output_offset   0x00
76
     size            0x20
77
     output_section ----------->  section name    "O"
78
                             |    vma             0x100
79
   section name          "B" |    size            0x123
80
     output_offset   0x20    |
81
     size            0x103   |
82
     output_section  --------|
83
@end example
84
 
85
@subsection Link orders
86
The data within a section is stored in a @dfn{link_order}.
87
These are much like the fixups in @code{gas}.  The link_order
88
abstraction allows a section to grow and shrink within itself.
89
 
90
A link_order knows how big it is, and which is the next
91
link_order and where the raw data for it is; it also points to
92
a list of relocations which apply to it.
93
 
94
The link_order is used by the linker to perform relaxing on
95
final code.  The compiler creates code which is as big as
96
necessary to make it work without relaxing, and the user can
97
select whether to relax.  Sometimes relaxing takes a lot of
98
time.  The linker runs around the relocations to see if any
99
are attached to data which can be shrunk, if so it does it on
100
a link_order by link_order basis.
101
 
102
 
103
@node typedef asection, section prototypes, Section Output, Sections
104
@subsection typedef asection
105
Here is the section structure:
106
 
107
 
108
@example
109
 
110
typedef struct bfd_section
111
@{
112
  /* The name of the section; the name isn't a copy, the pointer is
113
     the same as that passed to bfd_make_section.  */
114
  const char *name;
115
 
116
  /* A unique sequence number.  */
117
  int id;
118
 
119
  /* Which section in the bfd; 0..n-1 as sections are created in a bfd.  */
120
  int index;
121
 
122
  /* The next section in the list belonging to the BFD, or NULL.  */
123
  struct bfd_section *next;
124
 
125
  /* The previous section in the list belonging to the BFD, or NULL.  */
126
  struct bfd_section *prev;
127
 
128
  /* The field flags contains attributes of the section. Some
129
     flags are read in from the object file, and some are
130
     synthesized from other information.  */
131
  flagword flags;
132
 
133
#define SEC_NO_FLAGS   0x000
134
 
135
  /* Tells the OS to allocate space for this section when loading.
136
     This is clear for a section containing debug information only.  */
137
#define SEC_ALLOC      0x001
138
 
139
  /* Tells the OS to load the section from the file when loading.
140
     This is clear for a .bss section.  */
141
#define SEC_LOAD       0x002
142
 
143
  /* The section contains data still to be relocated, so there is
144
     some relocation information too.  */
145
#define SEC_RELOC      0x004
146
 
147
  /* A signal to the OS that the section contains read only data.  */
148
#define SEC_READONLY   0x008
149
 
150
  /* The section contains code only.  */
151
#define SEC_CODE       0x010
152
 
153
  /* The section contains data only.  */
154
#define SEC_DATA       0x020
155
 
156
  /* The section will reside in ROM.  */
157
#define SEC_ROM        0x040
158
 
159
  /* The section contains constructor information. This section
160
     type is used by the linker to create lists of constructors and
161
     destructors used by @code{g++}. When a back end sees a symbol
162
     which should be used in a constructor list, it creates a new
163
     section for the type of name (e.g., @code{__CTOR_LIST__}), attaches
164
     the symbol to it, and builds a relocation. To build the lists
165
     of constructors, all the linker has to do is catenate all the
166
     sections called @code{__CTOR_LIST__} and relocate the data
167
     contained within - exactly the operations it would peform on
168
     standard data.  */
169
#define SEC_CONSTRUCTOR 0x080
170
 
171
  /* The section has contents - a data section could be
172
     @code{SEC_ALLOC} | @code{SEC_HAS_CONTENTS}; a debug section could be
173
     @code{SEC_HAS_CONTENTS}  */
174
#define SEC_HAS_CONTENTS 0x100
175
 
176
  /* An instruction to the linker to not output the section
177
     even if it has information which would normally be written.  */
178
#define SEC_NEVER_LOAD 0x200
179
 
180
  /* The section contains thread local data.  */
181
#define SEC_THREAD_LOCAL 0x400
182
 
183
  /* The section has GOT references.  This flag is only for the
184
     linker, and is currently only used by the elf32-hppa back end.
185
     It will be set if global offset table references were detected
186
     in this section, which indicate to the linker that the section
187
     contains PIC code, and must be handled specially when doing a
188
     static link.  */
189
#define SEC_HAS_GOT_REF 0x800
190
 
191
  /* The section contains common symbols (symbols may be defined
192
     multiple times, the value of a symbol is the amount of
193
     space it requires, and the largest symbol value is the one
194
     used).  Most targets have exactly one of these (which we
195
     translate to bfd_com_section_ptr), but ECOFF has two.  */
196
#define SEC_IS_COMMON 0x1000
197
 
198
  /* The section contains only debugging information.  For
199
     example, this is set for ELF .debug and .stab sections.
200
     strip tests this flag to see if a section can be
201
     discarded.  */
202
#define SEC_DEBUGGING 0x2000
203
 
204
  /* The contents of this section are held in memory pointed to
205
     by the contents field.  This is checked by bfd_get_section_contents,
206
     and the data is retrieved from memory if appropriate.  */
207
#define SEC_IN_MEMORY 0x4000
208
 
209
  /* The contents of this section are to be excluded by the
210
     linker for executable and shared objects unless those
211
     objects are to be further relocated.  */
212
#define SEC_EXCLUDE 0x8000
213
 
214
  /* The contents of this section are to be sorted based on the sum of
215
     the symbol and addend values specified by the associated relocation
216
     entries.  Entries without associated relocation entries will be
217
     appended to the end of the section in an unspecified order.  */
218
#define SEC_SORT_ENTRIES 0x10000
219
 
220
  /* When linking, duplicate sections of the same name should be
221
     discarded, rather than being combined into a single section as
222
     is usually done.  This is similar to how common symbols are
223
     handled.  See SEC_LINK_DUPLICATES below.  */
224
#define SEC_LINK_ONCE 0x20000
225
 
226
  /* If SEC_LINK_ONCE is set, this bitfield describes how the linker
227
     should handle duplicate sections.  */
228
#define SEC_LINK_DUPLICATES 0xc0000
229
 
230
  /* This value for SEC_LINK_DUPLICATES means that duplicate
231
     sections with the same name should simply be discarded.  */
232
#define SEC_LINK_DUPLICATES_DISCARD 0x0
233
 
234
  /* This value for SEC_LINK_DUPLICATES means that the linker
235
     should warn if there are any duplicate sections, although
236
     it should still only link one copy.  */
237
#define SEC_LINK_DUPLICATES_ONE_ONLY 0x40000
238
 
239
  /* This value for SEC_LINK_DUPLICATES means that the linker
240
     should warn if any duplicate sections are a different size.  */
241
#define SEC_LINK_DUPLICATES_SAME_SIZE 0x80000
242
 
243
  /* This value for SEC_LINK_DUPLICATES means that the linker
244
     should warn if any duplicate sections contain different
245
     contents.  */
246
#define SEC_LINK_DUPLICATES_SAME_CONTENTS \
247
  (SEC_LINK_DUPLICATES_ONE_ONLY | SEC_LINK_DUPLICATES_SAME_SIZE)
248
 
249
  /* This section was created by the linker as part of dynamic
250
     relocation or other arcane processing.  It is skipped when
251
     going through the first-pass output, trusting that someone
252
     else up the line will take care of it later.  */
253
#define SEC_LINKER_CREATED 0x100000
254
 
255
  /* This section should not be subject to garbage collection.
256
     Also set to inform the linker that this section should not be
257
     listed in the link map as discarded.  */
258
#define SEC_KEEP 0x200000
259
 
260
  /* This section contains "short" data, and should be placed
261
     "near" the GP.  */
262
#define SEC_SMALL_DATA 0x400000
263
 
264
  /* Attempt to merge identical entities in the section.
265
     Entity size is given in the entsize field.  */
266
#define SEC_MERGE 0x800000
267
 
268
  /* If given with SEC_MERGE, entities to merge are zero terminated
269
     strings where entsize specifies character size instead of fixed
270
     size entries.  */
271
#define SEC_STRINGS 0x1000000
272
 
273
  /* This section contains data about section groups.  */
274
#define SEC_GROUP 0x2000000
275
 
276
  /* The section is a COFF shared library section.  This flag is
277
     only for the linker.  If this type of section appears in
278
     the input file, the linker must copy it to the output file
279
     without changing the vma or size.  FIXME: Although this
280
     was originally intended to be general, it really is COFF
281
     specific (and the flag was renamed to indicate this).  It
282
     might be cleaner to have some more general mechanism to
283
     allow the back end to control what the linker does with
284
     sections.  */
285
#define SEC_COFF_SHARED_LIBRARY 0x4000000
286
 
287
  /* This section contains data which may be shared with other
288
     executables or shared objects. This is for COFF only.  */
289
#define SEC_COFF_SHARED 0x8000000
290
 
291
  /* When a section with this flag is being linked, then if the size of
292
     the input section is less than a page, it should not cross a page
293
     boundary.  If the size of the input section is one page or more,
294
     it should be aligned on a page boundary.  This is for TI
295
     TMS320C54X only.  */
296
#define SEC_TIC54X_BLOCK 0x10000000
297
 
298
  /* Conditionally link this section; do not link if there are no
299
     references found to any symbol in the section.  This is for TI
300
     TMS320C54X only.  */
301
#define SEC_TIC54X_CLINK 0x20000000
302
 
303
  /* Indicate that section has the no read flag set. This happens
304
     when memory read flag isn't set. */
305
#define SEC_COFF_NOREAD 0x40000000
306
 
307
  /*  End of section flags.  */
308
 
309
  /* Some internal packed boolean fields.  */
310
 
311
  /* See the vma field.  */
312
  unsigned int user_set_vma : 1;
313
 
314
  /* A mark flag used by some of the linker backends.  */
315
  unsigned int linker_mark : 1;
316
 
317
  /* Another mark flag used by some of the linker backends.  Set for
318
     output sections that have an input section.  */
319
  unsigned int linker_has_input : 1;
320
 
321
  /* Mark flag used by some linker backends for garbage collection.  */
322
  unsigned int gc_mark : 1;
323
 
324
  /* The following flags are used by the ELF linker. */
325
 
326
  /* Mark sections which have been allocated to segments.  */
327
  unsigned int segment_mark : 1;
328
 
329
  /* Type of sec_info information.  */
330
  unsigned int sec_info_type:3;
331
#define ELF_INFO_TYPE_NONE      0
332
#define ELF_INFO_TYPE_STABS     1
333
#define ELF_INFO_TYPE_MERGE     2
334
#define ELF_INFO_TYPE_EH_FRAME  3
335
#define ELF_INFO_TYPE_JUST_SYMS 4
336
 
337
  /* Nonzero if this section uses RELA relocations, rather than REL.  */
338
  unsigned int use_rela_p:1;
339
 
340
  /* Bits used by various backends.  The generic code doesn't touch
341
     these fields.  */
342
 
343
  /* Nonzero if this section has TLS related relocations.  */
344
  unsigned int has_tls_reloc:1;
345
 
346
  /* Nonzero if this section has a call to __tls_get_addr.  */
347
  unsigned int has_tls_get_addr_call:1;
348
 
349
  /* Nonzero if this section has a gp reloc.  */
350
  unsigned int has_gp_reloc:1;
351
 
352
  /* Nonzero if this section needs the relax finalize pass.  */
353
  unsigned int need_finalize_relax:1;
354
 
355
  /* Whether relocations have been processed.  */
356
  unsigned int reloc_done : 1;
357
 
358
  /* End of internal packed boolean fields.  */
359
 
360
  /*  The virtual memory address of the section - where it will be
361
      at run time.  The symbols are relocated against this.  The
362
      user_set_vma flag is maintained by bfd; if it's not set, the
363
      backend can assign addresses (for example, in @code{a.out}, where
364
      the default address for @code{.data} is dependent on the specific
365
      target and various flags).  */
366
  bfd_vma vma;
367
 
368
  /*  The load address of the section - where it would be in a
369
      rom image; really only used for writing section header
370
      information.  */
371
  bfd_vma lma;
372
 
373
  /* The size of the section in octets, as it will be output.
374
     Contains a value even if the section has no contents (e.g., the
375
     size of @code{.bss}).  */
376
  bfd_size_type size;
377
 
378
  /* For input sections, the original size on disk of the section, in
379
     octets.  This field should be set for any section whose size is
380
     changed by linker relaxation.  It is required for sections where
381
     the linker relaxation scheme doesn't cache altered section and
382
     reloc contents (stabs, eh_frame, SEC_MERGE, some coff relaxing
383
     targets), and thus the original size needs to be kept to read the
384
     section multiple times.  For output sections, rawsize holds the
385
     section size calculated on a previous linker relaxation pass.  */
386
  bfd_size_type rawsize;
387
 
388
  /* Relaxation table. */
389
  struct relax_table *relax;
390
 
391
  /* Count of used relaxation table entries. */
392
  int relax_count;
393
 
394
 
395
  /* If this section is going to be output, then this value is the
396
     offset in *bytes* into the output section of the first byte in the
397
     input section (byte ==> smallest addressable unit on the
398
     target).  In most cases, if this was going to start at the
399
     100th octet (8-bit quantity) in the output section, this value
400
     would be 100.  However, if the target byte size is 16 bits
401
     (bfd_octets_per_byte is "2"), this value would be 50.  */
402
  bfd_vma output_offset;
403
 
404
  /* The output section through which to map on output.  */
405
  struct bfd_section *output_section;
406
 
407
  /* The alignment requirement of the section, as an exponent of 2 -
408
     e.g., 3 aligns to 2^3 (or 8).  */
409
  unsigned int alignment_power;
410
 
411
  /* If an input section, a pointer to a vector of relocation
412
     records for the data in this section.  */
413
  struct reloc_cache_entry *relocation;
414
 
415
  /* If an output section, a pointer to a vector of pointers to
416
     relocation records for the data in this section.  */
417
  struct reloc_cache_entry **orelocation;
418
 
419
  /* The number of relocation records in one of the above.  */
420
  unsigned reloc_count;
421
 
422
  /* Information below is back end specific - and not always used
423
     or updated.  */
424
 
425
  /* File position of section data.  */
426
  file_ptr filepos;
427
 
428
  /* File position of relocation info.  */
429
  file_ptr rel_filepos;
430
 
431
  /* File position of line data.  */
432
  file_ptr line_filepos;
433
 
434
  /* Pointer to data for applications.  */
435
  void *userdata;
436
 
437
  /* If the SEC_IN_MEMORY flag is set, this points to the actual
438
     contents.  */
439
  unsigned char *contents;
440
 
441
  /* Attached line number information.  */
442
  alent *lineno;
443
 
444
  /* Number of line number records.  */
445
  unsigned int lineno_count;
446
 
447
  /* Entity size for merging purposes.  */
448
  unsigned int entsize;
449
 
450
  /* Points to the kept section if this section is a link-once section,
451
     and is discarded.  */
452
  struct bfd_section *kept_section;
453
 
454
  /* When a section is being output, this value changes as more
455
     linenumbers are written out.  */
456
  file_ptr moving_line_filepos;
457
 
458
  /* What the section number is in the target world.  */
459
  int target_index;
460
 
461
  void *used_by_bfd;
462
 
463
  /* If this is a constructor section then here is a list of the
464
     relocations created to relocate items within it.  */
465
  struct relent_chain *constructor_chain;
466
 
467
  /* The BFD which owns the section.  */
468
  bfd *owner;
469
 
470
  /* A symbol which points at this section only.  */
471
  struct bfd_symbol *symbol;
472
  struct bfd_symbol **symbol_ptr_ptr;
473
 
474
  /* Early in the link process, map_head and map_tail are used to build
475
     a list of input sections attached to an output section.  Later,
476
     output sections use these fields for a list of bfd_link_order
477
     structs.  */
478
  union @{
479
    struct bfd_link_order *link_order;
480
    struct bfd_section *s;
481
  @} map_head, map_tail;
482
@} asection;
483
 
484
/* Relax table contains information about instructions which can
485
   be removed by relaxation -- replacing a long address with a
486
   short address.  */
487
struct relax_table @{
488
  /* Address where bytes may be deleted. */
489
  bfd_vma addr;
490
 
491
  /* Number of bytes to be deleted.  */
492
  int size;
493
@};
494
 
495
/* These sections are global, and are managed by BFD.  The application
496
   and target back end are not permitted to change the values in
497
   these sections.  New code should use the section_ptr macros rather
498
   than referring directly to the const sections.  The const sections
499
   may eventually vanish.  */
500
#define BFD_ABS_SECTION_NAME "*ABS*"
501
#define BFD_UND_SECTION_NAME "*UND*"
502
#define BFD_COM_SECTION_NAME "*COM*"
503
#define BFD_IND_SECTION_NAME "*IND*"
504
 
505
/* The absolute section.  */
506
extern asection bfd_abs_section;
507
#define bfd_abs_section_ptr ((asection *) &bfd_abs_section)
508
#define bfd_is_abs_section(sec) ((sec) == bfd_abs_section_ptr)
509
/* Pointer to the undefined section.  */
510
extern asection bfd_und_section;
511
#define bfd_und_section_ptr ((asection *) &bfd_und_section)
512
#define bfd_is_und_section(sec) ((sec) == bfd_und_section_ptr)
513
/* Pointer to the common section.  */
514
extern asection bfd_com_section;
515
#define bfd_com_section_ptr ((asection *) &bfd_com_section)
516
/* Pointer to the indirect section.  */
517
extern asection bfd_ind_section;
518
#define bfd_ind_section_ptr ((asection *) &bfd_ind_section)
519
#define bfd_is_ind_section(sec) ((sec) == bfd_ind_section_ptr)
520
 
521
#define bfd_is_const_section(SEC)              \
522
 (   ((SEC) == bfd_abs_section_ptr)            \
523
  || ((SEC) == bfd_und_section_ptr)            \
524
  || ((SEC) == bfd_com_section_ptr)            \
525
  || ((SEC) == bfd_ind_section_ptr))
526
 
527
/* Macros to handle insertion and deletion of a bfd's sections.  These
528
   only handle the list pointers, ie. do not adjust section_count,
529
   target_index etc.  */
530
#define bfd_section_list_remove(ABFD, S) \
531
  do                                                   \
532
    @{                                                  \
533
      asection *_s = S;                                \
534
      asection *_next = _s->next;                      \
535
      asection *_prev = _s->prev;                      \
536
      if (_prev)                                       \
537
        _prev->next = _next;                           \
538
      else                                             \
539
        (ABFD)->sections = _next;                      \
540
      if (_next)                                       \
541
        _next->prev = _prev;                           \
542
      else                                             \
543
        (ABFD)->section_last = _prev;                  \
544
    @}                                                  \
545
  while (0)
546
#define bfd_section_list_append(ABFD, S) \
547
  do                                                   \
548
    @{                                                  \
549
      asection *_s = S;                                \
550
      bfd *_abfd = ABFD;                               \
551
      _s->next = NULL;                                 \
552
      if (_abfd->section_last)                         \
553
        @{                                              \
554
          _s->prev = _abfd->section_last;              \
555
          _abfd->section_last->next = _s;              \
556
        @}                                              \
557
      else                                             \
558
        @{                                              \
559
          _s->prev = NULL;                             \
560
          _abfd->sections = _s;                        \
561
        @}                                              \
562
      _abfd->section_last = _s;                        \
563
    @}                                                  \
564
  while (0)
565
#define bfd_section_list_prepend(ABFD, S) \
566
  do                                                   \
567
    @{                                                  \
568
      asection *_s = S;                                \
569
      bfd *_abfd = ABFD;                               \
570
      _s->prev = NULL;                                 \
571
      if (_abfd->sections)                             \
572
        @{                                              \
573
          _s->next = _abfd->sections;                  \
574
          _abfd->sections->prev = _s;                  \
575
        @}                                              \
576
      else                                             \
577
        @{                                              \
578
          _s->next = NULL;                             \
579
          _abfd->section_last = _s;                    \
580
        @}                                              \
581
      _abfd->sections = _s;                            \
582
    @}                                                  \
583
  while (0)
584
#define bfd_section_list_insert_after(ABFD, A, S) \
585
  do                                                   \
586
    @{                                                  \
587
      asection *_a = A;                                \
588
      asection *_s = S;                                \
589
      asection *_next = _a->next;                      \
590
      _s->next = _next;                                \
591
      _s->prev = _a;                                   \
592
      _a->next = _s;                                   \
593
      if (_next)                                       \
594
        _next->prev = _s;                              \
595
      else                                             \
596
        (ABFD)->section_last = _s;                     \
597
    @}                                                  \
598
  while (0)
599
#define bfd_section_list_insert_before(ABFD, B, S) \
600
  do                                                   \
601
    @{                                                  \
602
      asection *_b = B;                                \
603
      asection *_s = S;                                \
604
      asection *_prev = _b->prev;                      \
605
      _s->prev = _prev;                                \
606
      _s->next = _b;                                   \
607
      _b->prev = _s;                                   \
608
      if (_prev)                                       \
609
        _prev->next = _s;                              \
610
      else                                             \
611
        (ABFD)->sections = _s;                         \
612
    @}                                                  \
613
  while (0)
614
#define bfd_section_removed_from_list(ABFD, S) \
615
  ((S)->next == NULL ? (ABFD)->section_last != (S) : (S)->next->prev != (S))
616
 
617
#define BFD_FAKE_SECTION(SEC, FLAGS, SYM, NAME, IDX)                   \
618
  /* name, id,  index, next, prev, flags, user_set_vma,            */  \
619
  @{ NAME,  IDX, 0,     NULL, NULL, FLAGS, 0,                           \
620
                                                                       \
621
  /* linker_mark, linker_has_input, gc_mark,                       */  \
622
     0,           0,                1,                                 \
623
                                                                       \
624
  /* segment_mark, sec_info_type, use_rela_p, has_tls_reloc,       */  \
625
     0,            0,             0,          0,                       \
626
                                                                       \
627
  /* has_tls_get_addr_call, has_gp_reloc, need_finalize_relax,     */  \
628
     0,                     0,            0,                           \
629
                                                                       \
630
  /* reloc_done, vma, lma, size, rawsize, relax, relax_count,      */  \
631
     0,          0,   0,   0,    0,       0,     0,                    \
632
                                                                       \
633
  /* output_offset, output_section,              alignment_power,  */  \
634
     0,             (struct bfd_section *) &SEC, 0,                    \
635
                                                                       \
636
  /* relocation, orelocation, reloc_count, filepos, rel_filepos,   */  \
637
     NULL,       NULL,        0,           0,       0,                 \
638
                                                                       \
639
  /* line_filepos, userdata, contents, lineno, lineno_count,       */  \
640
     0,            NULL,     NULL,     NULL,   0,                      \
641
                                                                       \
642
  /* entsize, kept_section, moving_line_filepos,                    */ \
643
     0,       NULL,          0,                                        \
644
                                                                       \
645
  /* target_index, used_by_bfd, constructor_chain, owner,          */  \
646
     0,            NULL,        NULL,              NULL,               \
647
                                                                       \
648
  /* symbol,                    symbol_ptr_ptr,                    */  \
649
     (struct bfd_symbol *) SYM, &SEC.symbol,                           \
650
                                                                       \
651
  /* map_head, map_tail                                            */  \
652
     @{ NULL @}, @{ NULL @}                                                \
653
    @}
654
 
655
@end example
656
 
657
@node section prototypes,  , typedef asection, Sections
658
@subsection Section prototypes
659
These are the functions exported by the section handling part of BFD.
660
 
661
@findex bfd_section_list_clear
662
@subsubsection @code{bfd_section_list_clear}
663
@strong{Synopsis}
664
@example
665
void bfd_section_list_clear (bfd *);
666
@end example
667
@strong{Description}@*
668
Clears the section list, and also resets the section count and
669
hash table entries.
670
 
671
@findex bfd_get_section_by_name
672
@subsubsection @code{bfd_get_section_by_name}
673
@strong{Synopsis}
674
@example
675
asection *bfd_get_section_by_name (bfd *abfd, const char *name);
676
@end example
677
@strong{Description}@*
678
Run through @var{abfd} and return the one of the
679
@code{asection}s whose name matches @var{name}, otherwise @code{NULL}.
680
@xref{Sections}, for more information.
681
 
682
This should only be used in special cases; the normal way to process
683
all sections of a given name is to use @code{bfd_map_over_sections} and
684
@code{strcmp} on the name (or better yet, base it on the section flags
685
or something else) for each section.
686
 
687
@findex bfd_get_section_by_name_if
688
@subsubsection @code{bfd_get_section_by_name_if}
689
@strong{Synopsis}
690
@example
691
asection *bfd_get_section_by_name_if
692
   (bfd *abfd,
693
    const char *name,
694
    bfd_boolean (*func) (bfd *abfd, asection *sect, void *obj),
695
    void *obj);
696
@end example
697
@strong{Description}@*
698
Call the provided function @var{func} for each section
699
attached to the BFD @var{abfd} whose name matches @var{name},
700
passing @var{obj} as an argument. The function will be called
701
as if by
702
 
703
@example
704
       func (abfd, the_section, obj);
705
@end example
706
 
707
It returns the first section for which @var{func} returns true,
708
otherwise @code{NULL}.
709
 
710
@findex bfd_get_unique_section_name
711
@subsubsection @code{bfd_get_unique_section_name}
712
@strong{Synopsis}
713
@example
714
char *bfd_get_unique_section_name
715
   (bfd *abfd, const char *templat, int *count);
716
@end example
717
@strong{Description}@*
718
Invent a section name that is unique in @var{abfd} by tacking
719
a dot and a digit suffix onto the original @var{templat}.  If
720
@var{count} is non-NULL, then it specifies the first number
721
tried as a suffix to generate a unique name.  The value
722
pointed to by @var{count} will be incremented in this case.
723
 
724
@findex bfd_make_section_old_way
725
@subsubsection @code{bfd_make_section_old_way}
726
@strong{Synopsis}
727
@example
728
asection *bfd_make_section_old_way (bfd *abfd, const char *name);
729
@end example
730
@strong{Description}@*
731
Create a new empty section called @var{name}
732
and attach it to the end of the chain of sections for the
733
BFD @var{abfd}. An attempt to create a section with a name which
734
is already in use returns its pointer without changing the
735
section chain.
736
 
737
It has the funny name since this is the way it used to be
738
before it was rewritten....
739
 
740
Possible errors are:
741
@itemize @bullet
742
 
743
@item
744
@code{bfd_error_invalid_operation} -
745
If output has already started for this BFD.
746
@item
747
@code{bfd_error_no_memory} -
748
If memory allocation fails.
749
@end itemize
750
 
751
@findex bfd_make_section_anyway_with_flags
752
@subsubsection @code{bfd_make_section_anyway_with_flags}
753
@strong{Synopsis}
754
@example
755
asection *bfd_make_section_anyway_with_flags
756
   (bfd *abfd, const char *name, flagword flags);
757
@end example
758
@strong{Description}@*
759
Create a new empty section called @var{name} and attach it to the end of
760
the chain of sections for @var{abfd}.  Create a new section even if there
761
is already a section with that name.  Also set the attributes of the
762
new section to the value @var{flags}.
763
 
764
Return @code{NULL} and set @code{bfd_error} on error; possible errors are:
765
@itemize @bullet
766
 
767
@item
768
@code{bfd_error_invalid_operation} - If output has already started for @var{abfd}.
769
@item
770
@code{bfd_error_no_memory} - If memory allocation fails.
771
@end itemize
772
 
773
@findex bfd_make_section_anyway
774
@subsubsection @code{bfd_make_section_anyway}
775
@strong{Synopsis}
776
@example
777
asection *bfd_make_section_anyway (bfd *abfd, const char *name);
778
@end example
779
@strong{Description}@*
780
Create a new empty section called @var{name} and attach it to the end of
781
the chain of sections for @var{abfd}.  Create a new section even if there
782
is already a section with that name.
783
 
784
Return @code{NULL} and set @code{bfd_error} on error; possible errors are:
785
@itemize @bullet
786
 
787
@item
788
@code{bfd_error_invalid_operation} - If output has already started for @var{abfd}.
789
@item
790
@code{bfd_error_no_memory} - If memory allocation fails.
791
@end itemize
792
 
793
@findex bfd_make_section_with_flags
794
@subsubsection @code{bfd_make_section_with_flags}
795
@strong{Synopsis}
796
@example
797
asection *bfd_make_section_with_flags
798
   (bfd *, const char *name, flagword flags);
799
@end example
800
@strong{Description}@*
801
Like @code{bfd_make_section_anyway}, but return @code{NULL} (without calling
802
bfd_set_error ()) without changing the section chain if there is already a
803
section named @var{name}.  Also set the attributes of the new section to
804
the value @var{flags}.  If there is an error, return @code{NULL} and set
805
@code{bfd_error}.
806
 
807
@findex bfd_make_section
808
@subsubsection @code{bfd_make_section}
809
@strong{Synopsis}
810
@example
811
asection *bfd_make_section (bfd *, const char *name);
812
@end example
813
@strong{Description}@*
814
Like @code{bfd_make_section_anyway}, but return @code{NULL} (without calling
815
bfd_set_error ()) without changing the section chain if there is already a
816
section named @var{name}.  If there is an error, return @code{NULL} and set
817
@code{bfd_error}.
818
 
819
@findex bfd_set_section_flags
820
@subsubsection @code{bfd_set_section_flags}
821
@strong{Synopsis}
822
@example
823
bfd_boolean bfd_set_section_flags
824
   (bfd *abfd, asection *sec, flagword flags);
825
@end example
826
@strong{Description}@*
827
Set the attributes of the section @var{sec} in the BFD
828
@var{abfd} to the value @var{flags}. Return @code{TRUE} on success,
829
@code{FALSE} on error. Possible error returns are:
830
 
831
@itemize @bullet
832
 
833
@item
834
@code{bfd_error_invalid_operation} -
835
The section cannot have one or more of the attributes
836
requested. For example, a .bss section in @code{a.out} may not
837
have the @code{SEC_HAS_CONTENTS} field set.
838
@end itemize
839
 
840
@findex bfd_map_over_sections
841
@subsubsection @code{bfd_map_over_sections}
842
@strong{Synopsis}
843
@example
844
void bfd_map_over_sections
845
   (bfd *abfd,
846
    void (*func) (bfd *abfd, asection *sect, void *obj),
847
    void *obj);
848
@end example
849
@strong{Description}@*
850
Call the provided function @var{func} for each section
851
attached to the BFD @var{abfd}, passing @var{obj} as an
852
argument. The function will be called as if by
853
 
854
@example
855
       func (abfd, the_section, obj);
856
@end example
857
 
858
This is the preferred method for iterating over sections; an
859
alternative would be to use a loop:
860
 
861
@example
862
          section *p;
863
          for (p = abfd->sections; p != NULL; p = p->next)
864
             func (abfd, p, ...)
865
@end example
866
 
867
@findex bfd_sections_find_if
868
@subsubsection @code{bfd_sections_find_if}
869
@strong{Synopsis}
870
@example
871
asection *bfd_sections_find_if
872
   (bfd *abfd,
873
    bfd_boolean (*operation) (bfd *abfd, asection *sect, void *obj),
874
    void *obj);
875
@end example
876
@strong{Description}@*
877
Call the provided function @var{operation} for each section
878
attached to the BFD @var{abfd}, passing @var{obj} as an
879
argument. The function will be called as if by
880
 
881
@example
882
       operation (abfd, the_section, obj);
883
@end example
884
 
885
It returns the first section for which @var{operation} returns true.
886
 
887
@findex bfd_set_section_size
888
@subsubsection @code{bfd_set_section_size}
889
@strong{Synopsis}
890
@example
891
bfd_boolean bfd_set_section_size
892
   (bfd *abfd, asection *sec, bfd_size_type val);
893
@end example
894
@strong{Description}@*
895
Set @var{sec} to the size @var{val}. If the operation is
896
ok, then @code{TRUE} is returned, else @code{FALSE}.
897
 
898
Possible error returns:
899
@itemize @bullet
900
 
901
@item
902
@code{bfd_error_invalid_operation} -
903
Writing has started to the BFD, so setting the size is invalid.
904
@end itemize
905
 
906
@findex bfd_set_section_contents
907
@subsubsection @code{bfd_set_section_contents}
908
@strong{Synopsis}
909
@example
910
bfd_boolean bfd_set_section_contents
911
   (bfd *abfd, asection *section, const void *data,
912
    file_ptr offset, bfd_size_type count);
913
@end example
914
@strong{Description}@*
915
Sets the contents of the section @var{section} in BFD
916
@var{abfd} to the data starting in memory at @var{data}. The
917
data is written to the output section starting at offset
918
@var{offset} for @var{count} octets.
919
 
920
Normally @code{TRUE} is returned, else @code{FALSE}. Possible error
921
returns are:
922
@itemize @bullet
923
 
924
@item
925
@code{bfd_error_no_contents} -
926
The output section does not have the @code{SEC_HAS_CONTENTS}
927
attribute, so nothing can be written to it.
928
@item
929
and some more too
930
@end itemize
931
This routine is front end to the back end function
932
@code{_bfd_set_section_contents}.
933
 
934
@findex bfd_get_section_contents
935
@subsubsection @code{bfd_get_section_contents}
936
@strong{Synopsis}
937
@example
938
bfd_boolean bfd_get_section_contents
939
   (bfd *abfd, asection *section, void *location, file_ptr offset,
940
    bfd_size_type count);
941
@end example
942
@strong{Description}@*
943
Read data from @var{section} in BFD @var{abfd}
944
into memory starting at @var{location}. The data is read at an
945
offset of @var{offset} from the start of the input section,
946
and is read for @var{count} bytes.
947
 
948
If the contents of a constructor with the @code{SEC_CONSTRUCTOR}
949
flag set are requested or if the section does not have the
950
@code{SEC_HAS_CONTENTS} flag set, then the @var{location} is filled
951
with zeroes. If no errors occur, @code{TRUE} is returned, else
952
@code{FALSE}.
953
 
954
@findex bfd_malloc_and_get_section
955
@subsubsection @code{bfd_malloc_and_get_section}
956
@strong{Synopsis}
957
@example
958
bfd_boolean bfd_malloc_and_get_section
959
   (bfd *abfd, asection *section, bfd_byte **buf);
960
@end example
961
@strong{Description}@*
962
Read all data from @var{section} in BFD @var{abfd}
963
into a buffer, *@var{buf}, malloc'd by this function.
964
 
965
@findex bfd_copy_private_section_data
966
@subsubsection @code{bfd_copy_private_section_data}
967
@strong{Synopsis}
968
@example
969
bfd_boolean bfd_copy_private_section_data
970
   (bfd *ibfd, asection *isec, bfd *obfd, asection *osec);
971
@end example
972
@strong{Description}@*
973
Copy private section information from @var{isec} in the BFD
974
@var{ibfd} to the section @var{osec} in the BFD @var{obfd}.
975
Return @code{TRUE} on success, @code{FALSE} on error.  Possible error
976
returns are:
977
 
978
@itemize @bullet
979
 
980
@item
981
@code{bfd_error_no_memory} -
982
Not enough memory exists to create private data for @var{osec}.
983
@end itemize
984
@example
985
#define bfd_copy_private_section_data(ibfd, isection, obfd, osection) \
986
     BFD_SEND (obfd, _bfd_copy_private_section_data, \
987
               (ibfd, isection, obfd, osection))
988
@end example
989
 
990
@findex bfd_generic_is_group_section
991
@subsubsection @code{bfd_generic_is_group_section}
992
@strong{Synopsis}
993
@example
994
bfd_boolean bfd_generic_is_group_section (bfd *, const asection *sec);
995
@end example
996
@strong{Description}@*
997
Returns TRUE if @var{sec} is a member of a group.
998
 
999
@findex bfd_generic_discard_group
1000
@subsubsection @code{bfd_generic_discard_group}
1001
@strong{Synopsis}
1002
@example
1003
bfd_boolean bfd_generic_discard_group (bfd *abfd, asection *group);
1004
@end example
1005
@strong{Description}@*
1006
Remove all members of @var{group} from the output.
1007
 

powered by: WebSVN 2.1.0

© copyright 1999-2025 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.