OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-stable/] [binutils-2.20.1/] [gold/] [dwarf_reader.cc] - Blame information for rev 818

Details | Compare with Previous | View Log

Line No. Rev Author Line
1 205 julius
// dwarf_reader.cc -- parse dwarf2/3 debug information
2
 
3
// Copyright 2007, 2008, 2009 Free Software Foundation, Inc.
4
// Written by Ian Lance Taylor <iant@google.com>.
5
 
6
// This file is part of gold.
7
 
8
// This program is free software; you can redistribute it and/or modify
9
// it under the terms of the GNU General Public License as published by
10
// the Free Software Foundation; either version 3 of the License, or
11
// (at your option) any later version.
12
 
13
// This program is distributed in the hope that it will be useful,
14
// but WITHOUT ANY WARRANTY; without even the implied warranty of
15
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16
// GNU General Public License for more details.
17
 
18
// You should have received a copy of the GNU General Public License
19
// along with this program; if not, write to the Free Software
20
// Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21
// MA 02110-1301, USA.
22
 
23
#include "gold.h"
24
 
25
#include <algorithm>
26
#include <vector>
27
 
28
#include "elfcpp_swap.h"
29
#include "dwarf.h"
30
#include "object.h"
31
#include "parameters.h"
32
#include "reloc.h"
33
#include "dwarf_reader.h"
34
 
35
namespace gold {
36
 
37
// Read an unsigned LEB128 number.  Each byte contains 7 bits of
38
// information, plus one bit saying whether the number continues or
39
// not.
40
 
41
uint64_t
42
read_unsigned_LEB_128(const unsigned char* buffer, size_t* len)
43
{
44
  uint64_t result = 0;
45
  size_t num_read = 0;
46
  unsigned int shift = 0;
47
  unsigned char byte;
48
 
49
  do
50
    {
51
      if (num_read >= 64 / 7)
52
        {
53
          gold_warning(_("Unusually large LEB128 decoded, "
54
                         "debug information may be corrupted"));
55
          break;
56
        }
57
      byte = *buffer++;
58
      num_read++;
59
      result |= (static_cast<uint64_t>(byte & 0x7f)) << shift;
60
      shift += 7;
61
    }
62
  while (byte & 0x80);
63
 
64
  *len = num_read;
65
 
66
  return result;
67
}
68
 
69
// Read a signed LEB128 number.  These are like regular LEB128
70
// numbers, except the last byte may have a sign bit set.
71
 
72
int64_t
73
read_signed_LEB_128(const unsigned char* buffer, size_t* len)
74
{
75
  int64_t result = 0;
76
  int shift = 0;
77
  size_t num_read = 0;
78
  unsigned char byte;
79
 
80
  do
81
    {
82
      if (num_read >= 64 / 7)
83
        {
84
          gold_warning(_("Unusually large LEB128 decoded, "
85
                         "debug information may be corrupted"));
86
          break;
87
        }
88
      byte = *buffer++;
89
      num_read++;
90
      result |= (static_cast<uint64_t>(byte & 0x7f) << shift);
91
      shift += 7;
92
    }
93
  while (byte & 0x80);
94
 
95
  if ((shift < 8 * static_cast<int>(sizeof(result))) && (byte & 0x40))
96
    result |= -((static_cast<int64_t>(1)) << shift);
97
  *len = num_read;
98
  return result;
99
}
100
 
101
// This is the format of a DWARF2/3 line state machine that we process
102
// opcodes using.  There is no need for anything outside the lineinfo
103
// processor to know how this works.
104
 
105
struct LineStateMachine
106
{
107
  int file_num;
108
  uint64_t address;
109
  int line_num;
110
  int column_num;
111
  unsigned int shndx;    // the section address refers to
112
  bool is_stmt;          // stmt means statement.
113
  bool basic_block;
114
  bool end_sequence;
115
};
116
 
117
static void
118
ResetLineStateMachine(struct LineStateMachine* lsm, bool default_is_stmt)
119
{
120
  lsm->file_num = 1;
121
  lsm->address = 0;
122
  lsm->line_num = 1;
123
  lsm->column_num = 0;
124
  lsm->shndx = -1U;
125
  lsm->is_stmt = default_is_stmt;
126
  lsm->basic_block = false;
127
  lsm->end_sequence = false;
128
}
129
 
130
template<int size, bool big_endian>
131
Sized_dwarf_line_info<size, big_endian>::Sized_dwarf_line_info(Object* object,
132
                                                               unsigned int read_shndx)
133
  : data_valid_(false), buffer_(NULL), symtab_buffer_(NULL),
134
    directories_(), files_(), current_header_index_(-1)
135
{
136
  unsigned int debug_shndx;
137
  for (debug_shndx = 0; debug_shndx < object->shnum(); ++debug_shndx)
138
    // FIXME: do this more efficiently: section_name() isn't super-fast
139
    if (object->section_name(debug_shndx) == ".debug_line")
140
      {
141
        section_size_type buffer_size;
142
        this->buffer_ = object->section_contents(debug_shndx, &buffer_size,
143
                                                 false);
144
        this->buffer_end_ = this->buffer_ + buffer_size;
145
        break;
146
      }
147
  if (this->buffer_ == NULL)
148
    return;
149
 
150
  // Find the relocation section for ".debug_line".
151
  // We expect these for relobjs (.o's) but not dynobjs (.so's).
152
  bool got_relocs = false;
153
  for (unsigned int reloc_shndx = 0;
154
       reloc_shndx < object->shnum();
155
       ++reloc_shndx)
156
    {
157
      unsigned int reloc_sh_type = object->section_type(reloc_shndx);
158
      if ((reloc_sh_type == elfcpp::SHT_REL
159
           || reloc_sh_type == elfcpp::SHT_RELA)
160
          && object->section_info(reloc_shndx) == debug_shndx)
161
        {
162
          got_relocs = this->track_relocs_.initialize(object, reloc_shndx,
163
                                                      reloc_sh_type);
164
          break;
165
        }
166
    }
167
 
168
  // Finally, we need the symtab section to interpret the relocs.
169
  if (got_relocs)
170
    {
171
      unsigned int symtab_shndx;
172
      for (symtab_shndx = 0; symtab_shndx < object->shnum(); ++symtab_shndx)
173
        if (object->section_type(symtab_shndx) == elfcpp::SHT_SYMTAB)
174
          {
175
            this->symtab_buffer_ = object->section_contents(
176
                symtab_shndx, &this->symtab_buffer_size_, false);
177
            break;
178
          }
179
      if (this->symtab_buffer_ == NULL)
180
        return;
181
    }
182
 
183
  // Now that we have successfully read all the data, parse the debug
184
  // info.
185
  this->data_valid_ = true;
186
  this->read_line_mappings(object, read_shndx);
187
}
188
 
189
// Read the DWARF header.
190
 
191
template<int size, bool big_endian>
192
const unsigned char*
193
Sized_dwarf_line_info<size, big_endian>::read_header_prolog(
194
    const unsigned char* lineptr)
195
{
196
  uint32_t initial_length = elfcpp::Swap_unaligned<32, big_endian>::readval(lineptr);
197
  lineptr += 4;
198
 
199
  // In DWARF2/3, if the initial length is all 1 bits, then the offset
200
  // size is 8 and we need to read the next 8 bytes for the real length.
201
  if (initial_length == 0xffffffff)
202
    {
203
      header_.offset_size = 8;
204
      initial_length = elfcpp::Swap_unaligned<64, big_endian>::readval(lineptr);
205
      lineptr += 8;
206
    }
207
  else
208
    header_.offset_size = 4;
209
 
210
  header_.total_length = initial_length;
211
 
212
  gold_assert(lineptr + header_.total_length <= buffer_end_);
213
 
214
  header_.version = elfcpp::Swap_unaligned<16, big_endian>::readval(lineptr);
215
  lineptr += 2;
216
 
217
  if (header_.offset_size == 4)
218
    header_.prologue_length = elfcpp::Swap_unaligned<32, big_endian>::readval(lineptr);
219
  else
220
    header_.prologue_length = elfcpp::Swap_unaligned<64, big_endian>::readval(lineptr);
221
  lineptr += header_.offset_size;
222
 
223
  header_.min_insn_length = *lineptr;
224
  lineptr += 1;
225
 
226
  header_.default_is_stmt = *lineptr;
227
  lineptr += 1;
228
 
229
  header_.line_base = *reinterpret_cast<const signed char*>(lineptr);
230
  lineptr += 1;
231
 
232
  header_.line_range = *lineptr;
233
  lineptr += 1;
234
 
235
  header_.opcode_base = *lineptr;
236
  lineptr += 1;
237
 
238
  header_.std_opcode_lengths.reserve(header_.opcode_base + 1);
239
  header_.std_opcode_lengths[0] = 0;
240
  for (int i = 1; i < header_.opcode_base; i++)
241
    {
242
      header_.std_opcode_lengths[i] = *lineptr;
243
      lineptr += 1;
244
    }
245
 
246
  return lineptr;
247
}
248
 
249
// The header for a debug_line section is mildly complicated, because
250
// the line info is very tightly encoded.
251
 
252
template<int size, bool big_endian>
253
const unsigned char*
254
Sized_dwarf_line_info<size, big_endian>::read_header_tables(
255
    const unsigned char* lineptr)
256
{
257
  ++this->current_header_index_;
258
 
259
  // Create a new directories_ entry and a new files_ entry for our new
260
  // header.  We initialize each with a single empty element, because
261
  // dwarf indexes directory and filenames starting at 1.
262
  gold_assert(static_cast<int>(this->directories_.size())
263
              == this->current_header_index_);
264
  gold_assert(static_cast<int>(this->files_.size())
265
              == this->current_header_index_);
266
  this->directories_.push_back(std::vector<std::string>(1));
267
  this->files_.push_back(std::vector<std::pair<int, std::string> >(1));
268
 
269
  // It is legal for the directory entry table to be empty.
270
  if (*lineptr)
271
    {
272
      int dirindex = 1;
273
      while (*lineptr)
274
        {
275
          const char* dirname = reinterpret_cast<const char*>(lineptr);
276
          gold_assert(dirindex
277
                      == static_cast<int>(this->directories_.back().size()));
278
          this->directories_.back().push_back(dirname);
279
          lineptr += this->directories_.back().back().size() + 1;
280
          dirindex++;
281
        }
282
    }
283
  lineptr++;
284
 
285
  // It is also legal for the file entry table to be empty.
286
  if (*lineptr)
287
    {
288
      int fileindex = 1;
289
      size_t len;
290
      while (*lineptr)
291
        {
292
          const char* filename = reinterpret_cast<const char*>(lineptr);
293
          lineptr += strlen(filename) + 1;
294
 
295
          uint64_t dirindex = read_unsigned_LEB_128(lineptr, &len);
296
          lineptr += len;
297
 
298
          if (dirindex >= this->directories_.back().size())
299
            dirindex = 0;
300
          int dirindexi = static_cast<int>(dirindex);
301
 
302
          read_unsigned_LEB_128(lineptr, &len);   // mod_time
303
          lineptr += len;
304
 
305
          read_unsigned_LEB_128(lineptr, &len);   // filelength
306
          lineptr += len;
307
 
308
          gold_assert(fileindex
309
                      == static_cast<int>(this->files_.back().size()));
310
          this->files_.back().push_back(std::make_pair(dirindexi, filename));
311
          fileindex++;
312
        }
313
    }
314
  lineptr++;
315
 
316
  return lineptr;
317
}
318
 
319
// Process a single opcode in the .debug.line structure.
320
 
321
// Templating on size and big_endian would yield more efficient (and
322
// simpler) code, but would bloat the binary.  Speed isn't important
323
// here.
324
 
325
template<int size, bool big_endian>
326
bool
327
Sized_dwarf_line_info<size, big_endian>::process_one_opcode(
328
    const unsigned char* start, struct LineStateMachine* lsm, size_t* len)
329
{
330
  size_t oplen = 0;
331
  size_t templen;
332
  unsigned char opcode = *start;
333
  oplen++;
334
  start++;
335
 
336
  // If the opcode is great than the opcode_base, it is a special
337
  // opcode. Most line programs consist mainly of special opcodes.
338
  if (opcode >= header_.opcode_base)
339
    {
340
      opcode -= header_.opcode_base;
341
      const int advance_address = ((opcode / header_.line_range)
342
                                   * header_.min_insn_length);
343
      lsm->address += advance_address;
344
 
345
      const int advance_line = ((opcode % header_.line_range)
346
                                + header_.line_base);
347
      lsm->line_num += advance_line;
348
      lsm->basic_block = true;
349
      *len = oplen;
350
      return true;
351
    }
352
 
353
  // Otherwise, we have the regular opcodes
354
  switch (opcode)
355
    {
356
    case elfcpp::DW_LNS_copy:
357
      lsm->basic_block = false;
358
      *len = oplen;
359
      return true;
360
 
361
    case elfcpp::DW_LNS_advance_pc:
362
      {
363
        const uint64_t advance_address
364
            = read_unsigned_LEB_128(start, &templen);
365
        oplen += templen;
366
        lsm->address += header_.min_insn_length * advance_address;
367
      }
368
      break;
369
 
370
    case elfcpp::DW_LNS_advance_line:
371
      {
372
        const uint64_t advance_line = read_signed_LEB_128(start, &templen);
373
        oplen += templen;
374
        lsm->line_num += advance_line;
375
      }
376
      break;
377
 
378
    case elfcpp::DW_LNS_set_file:
379
      {
380
        const uint64_t fileno = read_unsigned_LEB_128(start, &templen);
381
        oplen += templen;
382
        lsm->file_num = fileno;
383
      }
384
      break;
385
 
386
    case elfcpp::DW_LNS_set_column:
387
      {
388
        const uint64_t colno = read_unsigned_LEB_128(start, &templen);
389
        oplen += templen;
390
        lsm->column_num = colno;
391
      }
392
      break;
393
 
394
    case elfcpp::DW_LNS_negate_stmt:
395
      lsm->is_stmt = !lsm->is_stmt;
396
      break;
397
 
398
    case elfcpp::DW_LNS_set_basic_block:
399
      lsm->basic_block = true;
400
      break;
401
 
402
    case elfcpp::DW_LNS_fixed_advance_pc:
403
      {
404
        int advance_address;
405
        advance_address = elfcpp::Swap_unaligned<16, big_endian>::readval(start);
406
        oplen += 2;
407
        lsm->address += advance_address;
408
      }
409
      break;
410
 
411
    case elfcpp::DW_LNS_const_add_pc:
412
      {
413
        const int advance_address = (header_.min_insn_length
414
                                     * ((255 - header_.opcode_base)
415
                                        / header_.line_range));
416
        lsm->address += advance_address;
417
      }
418
      break;
419
 
420
    case elfcpp::DW_LNS_extended_op:
421
      {
422
        const uint64_t extended_op_len
423
            = read_unsigned_LEB_128(start, &templen);
424
        start += templen;
425
        oplen += templen + extended_op_len;
426
 
427
        const unsigned char extended_op = *start;
428
        start++;
429
 
430
        switch (extended_op)
431
          {
432
          case elfcpp::DW_LNE_end_sequence:
433
            // This means that the current byte is the one immediately
434
            // after a set of instructions.  Record the current line
435
            // for up to one less than the current address.
436
            lsm->line_num = -1;
437
            lsm->end_sequence = true;
438
            *len = oplen;
439
            return true;
440
 
441
          case elfcpp::DW_LNE_set_address:
442
            {
443
              lsm->address = elfcpp::Swap_unaligned<size, big_endian>::readval(start);
444
              typename Reloc_map::const_iterator it
445
                  = reloc_map_.find(start - this->buffer_);
446
              if (it != reloc_map_.end())
447
                {
448
                  // value + addend.
449
                  lsm->address += it->second.second;
450
                  lsm->shndx = it->second.first;
451
                }
452
              else
453
                {
454
                  // If we're a normal .o file, with relocs, every
455
                  // set_address should have an associated relocation.
456
                  if (this->input_is_relobj())
457
                    this->data_valid_ = false;
458
                }
459
              break;
460
            }
461
          case elfcpp::DW_LNE_define_file:
462
            {
463
              const char* filename  = reinterpret_cast<const char*>(start);
464
              templen = strlen(filename) + 1;
465
              start += templen;
466
 
467
              uint64_t dirindex = read_unsigned_LEB_128(start, &templen);
468
              oplen += templen;
469
 
470
              if (dirindex >= this->directories_.back().size())
471
                dirindex = 0;
472
              int dirindexi = static_cast<int>(dirindex);
473
 
474
              read_unsigned_LEB_128(start, &templen);   // mod_time
475
              oplen += templen;
476
 
477
              read_unsigned_LEB_128(start, &templen);   // filelength
478
              oplen += templen;
479
 
480
              this->files_.back().push_back(std::make_pair(dirindexi,
481
                                                           filename));
482
            }
483
            break;
484
          }
485
      }
486
      break;
487
 
488
    default:
489
      {
490
        // Ignore unknown opcode  silently
491
        for (int i = 0; i < header_.std_opcode_lengths[opcode]; i++)
492
          {
493
            size_t templen;
494
            read_unsigned_LEB_128(start, &templen);
495
            start += templen;
496
            oplen += templen;
497
          }
498
      }
499
      break;
500
  }
501
  *len = oplen;
502
  return false;
503
}
504
 
505
// Read the debug information at LINEPTR and store it in the line
506
// number map.
507
 
508
template<int size, bool big_endian>
509
unsigned const char*
510
Sized_dwarf_line_info<size, big_endian>::read_lines(unsigned const char* lineptr,
511
                                                    unsigned int shndx)
512
{
513
  struct LineStateMachine lsm;
514
 
515
  // LENGTHSTART is the place the length field is based on.  It is the
516
  // point in the header after the initial length field.
517
  const unsigned char* lengthstart = buffer_;
518
 
519
  // In 64 bit dwarf, the initial length is 12 bytes, because of the
520
  // 0xffffffff at the start.
521
  if (header_.offset_size == 8)
522
    lengthstart += 12;
523
  else
524
    lengthstart += 4;
525
 
526
  while (lineptr < lengthstart + header_.total_length)
527
    {
528
      ResetLineStateMachine(&lsm, header_.default_is_stmt);
529
      while (!lsm.end_sequence)
530
        {
531
          size_t oplength;
532
          bool add_line = this->process_one_opcode(lineptr, &lsm, &oplength);
533
          if (add_line
534
              && (shndx == -1U || lsm.shndx == -1U || shndx == lsm.shndx))
535
            {
536
              Offset_to_lineno_entry entry
537
                  = { lsm.address, this->current_header_index_,
538
                      lsm.file_num, lsm.line_num };
539
              line_number_map_[lsm.shndx].push_back(entry);
540
            }
541
          lineptr += oplength;
542
        }
543
    }
544
 
545
  return lengthstart + header_.total_length;
546
}
547
 
548
// Looks in the symtab to see what section a symbol is in.
549
 
550
template<int size, bool big_endian>
551
unsigned int
552
Sized_dwarf_line_info<size, big_endian>::symbol_section(
553
    Object* object,
554
    unsigned int sym,
555
    typename elfcpp::Elf_types<size>::Elf_Addr* value,
556
    bool* is_ordinary)
557
{
558
  const int symsize = elfcpp::Elf_sizes<size>::sym_size;
559
  gold_assert(sym * symsize < this->symtab_buffer_size_);
560
  elfcpp::Sym<size, big_endian> elfsym(this->symtab_buffer_ + sym * symsize);
561
  *value = elfsym.get_st_value();
562
  return object->adjust_sym_shndx(sym, elfsym.get_st_shndx(), is_ordinary);
563
}
564
 
565
// Read the relocations into a Reloc_map.
566
 
567
template<int size, bool big_endian>
568
void
569
Sized_dwarf_line_info<size, big_endian>::read_relocs(Object* object)
570
{
571
  if (this->symtab_buffer_ == NULL)
572
    return;
573
 
574
  typename elfcpp::Elf_types<size>::Elf_Addr value;
575
  off_t reloc_offset;
576
  while ((reloc_offset = this->track_relocs_.next_offset()) != -1)
577
    {
578
      const unsigned int sym = this->track_relocs_.next_symndx();
579
 
580
      bool is_ordinary;
581
      const unsigned int shndx = this->symbol_section(object, sym, &value,
582
                                                      &is_ordinary);
583
 
584
      // There is no reason to record non-ordinary section indexes, or
585
      // SHN_UNDEF, because they will never match the real section.
586
      if (is_ordinary && shndx != elfcpp::SHN_UNDEF)
587
        this->reloc_map_[reloc_offset] = std::make_pair(shndx, value);
588
 
589
      this->track_relocs_.advance(reloc_offset + 1);
590
    }
591
}
592
 
593
// Read the line number info.
594
 
595
template<int size, bool big_endian>
596
void
597
Sized_dwarf_line_info<size, big_endian>::read_line_mappings(Object* object,
598
                                                            unsigned int shndx)
599
{
600
  gold_assert(this->data_valid_ == true);
601
 
602
  this->read_relocs(object);
603
  while (this->buffer_ < this->buffer_end_)
604
    {
605
      const unsigned char* lineptr = this->buffer_;
606
      lineptr = this->read_header_prolog(lineptr);
607
      lineptr = this->read_header_tables(lineptr);
608
      lineptr = this->read_lines(lineptr, shndx);
609
      this->buffer_ = lineptr;
610
    }
611
 
612
  // Sort the lines numbers, so addr2line can use binary search.
613
  for (typename Lineno_map::iterator it = line_number_map_.begin();
614
       it != line_number_map_.end();
615
       ++it)
616
    // Each vector needs to be sorted by offset.
617
    std::sort(it->second.begin(), it->second.end());
618
}
619
 
620
// Some processing depends on whether the input is a .o file or not.
621
// For instance, .o files have relocs, and have .debug_lines
622
// information on a per section basis.  .so files, on the other hand,
623
// lack relocs, and offsets are unique, so we can ignore the section
624
// information.
625
 
626
template<int size, bool big_endian>
627
bool
628
Sized_dwarf_line_info<size, big_endian>::input_is_relobj()
629
{
630
  // Only .o files have relocs and the symtab buffer that goes with them.
631
  return this->symtab_buffer_ != NULL;
632
}
633
 
634
// Given an Offset_to_lineno_entry vector, and an offset, figure out
635
// if the offset points into a function according to the vector (see
636
// comments below for the algorithm).  If it does, return an iterator
637
// into the vector that points to the line-number that contains that
638
// offset.  If not, it returns vector::end().
639
 
640
static std::vector<Offset_to_lineno_entry>::const_iterator
641
offset_to_iterator(const std::vector<Offset_to_lineno_entry>* offsets,
642
                   off_t offset)
643
{
644
  const Offset_to_lineno_entry lookup_key = { offset, 0, 0, 0 };
645
 
646
  // lower_bound() returns the smallest offset which is >= lookup_key.
647
  // If no offset in offsets is >= lookup_key, returns end().
648
  std::vector<Offset_to_lineno_entry>::const_iterator it
649
      = std::lower_bound(offsets->begin(), offsets->end(), lookup_key);
650
 
651
  // This code is easiest to understand with a concrete example.
652
  // Here's a possible offsets array:
653
  // {{offset = 3211, header_num = 0, file_num = 1, line_num = 16},  // 0
654
  //  {offset = 3224, header_num = 0, file_num = 1, line_num = 20},  // 1
655
  //  {offset = 3226, header_num = 0, file_num = 1, line_num = 22},  // 2
656
  //  {offset = 3231, header_num = 0, file_num = 1, line_num = 25},  // 3
657
  //  {offset = 3232, header_num = 0, file_num = 1, line_num = -1},  // 4
658
  //  {offset = 3232, header_num = 0, file_num = 1, line_num = 65},  // 5
659
  //  {offset = 3235, header_num = 0, file_num = 1, line_num = 66},  // 6
660
  //  {offset = 3236, header_num = 0, file_num = 1, line_num = -1},  // 7
661
  //  {offset = 5764, header_num = 0, file_num = 1, line_num = 47},  // 8
662
  //  {offset = 5765, header_num = 0, file_num = 1, line_num = 48},  // 9
663
  //  {offset = 5767, header_num = 0, file_num = 1, line_num = 49},  // 10
664
  //  {offset = 5768, header_num = 0, file_num = 1, line_num = 50},  // 11
665
  //  {offset = 5773, header_num = 0, file_num = 1, line_num = -1},  // 12
666
  //  {offset = 5787, header_num = 1, file_num = 1, line_num = 19},  // 13
667
  //  {offset = 5790, header_num = 1, file_num = 1, line_num = 20},  // 14
668
  //  {offset = 5793, header_num = 1, file_num = 1, line_num = 67},  // 15
669
  //  {offset = 5793, header_num = 1, file_num = 1, line_num = -1},  // 16
670
  //  {offset = 5795, header_num = 1, file_num = 1, line_num = 68},  // 17
671
  //  {offset = 5798, header_num = 1, file_num = 1, line_num = -1},  // 18
672
  // The entries with line_num == -1 mark the end of a function: the
673
  // associated offset is one past the last instruction in the
674
  // function.  This can correspond to the beginning of the next
675
  // function (as is true for offset 3232); alternately, there can be
676
  // a gap between the end of one function and the start of the next
677
  // (as is true for some others, most obviously from 3236->5764).
678
  //
679
  // Case 1: lookup_key has offset == 10.  lower_bound returns
680
  //         offsets[0].  Since it's not an exact match and we're
681
  //         at the beginning of offsets, we return end() (invalid).
682
  // Case 2: lookup_key has offset 10000.  lower_bound returns
683
  //         offset[19] (end()).  We return end() (invalid).
684
  // Case 3: lookup_key has offset == 3211.  lower_bound matches
685
  //         offsets[0] exactly, and that's the entry we return.
686
  // Case 4: lookup_key has offset == 3232.  lower_bound returns
687
  //         offsets[4].  That's an exact match, but indicates
688
  //         end-of-function.  We check if offsets[5] is also an
689
  //         exact match but not end-of-function.  It is, so we
690
  //         return offsets[5].
691
  // Case 5: lookup_key has offset == 3214.  lower_bound returns
692
  //         offsets[1].  Since it's not an exact match, we back
693
  //         up to the offset that's < lookup_key, offsets[0].
694
  //         We note offsets[0] is a valid entry (not end-of-function),
695
  //         so that's the entry we return.
696
  // Case 6: lookup_key has offset == 4000.  lower_bound returns
697
  //         offsets[8].  Since it's not an exact match, we back
698
  //         up to offsets[7].  Since offsets[7] indicates
699
  //         end-of-function, we know lookup_key is between
700
  //         functions, so we return end() (not a valid offset).
701
  // Case 7: lookup_key has offset == 5794.  lower_bound returns
702
  //         offsets[17].  Since it's not an exact match, we back
703
  //         up to offsets[15].  Note we back up to the *first*
704
  //         entry with offset 5793, not just offsets[17-1].
705
  //         We note offsets[15] is a valid entry, so we return it.
706
  //         If offsets[15] had had line_num == -1, we would have
707
  //         checked offsets[16].  The reason for this is that
708
  //         15 and 16 can be in an arbitrary order, since we sort
709
  //         only by offset.  (Note it doesn't help to use line_number
710
  //         as a secondary sort key, since sometimes we want the -1
711
  //         to be first and sometimes we want it to be last.)
712
 
713
  // This deals with cases (1) and (2).
714
  if ((it == offsets->begin() && offset < it->offset)
715
      || it == offsets->end())
716
    return offsets->end();
717
 
718
  // This deals with cases (3) and (4).
719
  if (offset == it->offset)
720
    {
721
      while (it != offsets->end()
722
             && it->offset == offset
723
             && it->line_num == -1)
724
        ++it;
725
      if (it == offsets->end() || it->offset != offset)
726
        return offsets->end();
727
      else
728
        return it;
729
    }
730
 
731
  // This handles the first part of case (7) -- we back up to the
732
  // *first* entry that has the offset that's behind us.
733
  gold_assert(it != offsets->begin());
734
  std::vector<Offset_to_lineno_entry>::const_iterator range_end = it;
735
  --it;
736
  const off_t range_value = it->offset;
737
  while (it != offsets->begin() && (it-1)->offset == range_value)
738
    --it;
739
 
740
  // This handles cases (5), (6), and (7): if any entry in the
741
  // equal_range [it, range_end) has a line_num != -1, it's a valid
742
  // match.  If not, we're not in a function.
743
  for (; it != range_end; ++it)
744
    if (it->line_num != -1)
745
      return it;
746
  return offsets->end();
747
}
748
 
749
// Return a string for a file name and line number.
750
 
751
template<int size, bool big_endian>
752
std::string
753
Sized_dwarf_line_info<size, big_endian>::do_addr2line(unsigned int shndx,
754
                                                      off_t offset)
755
{
756
  if (this->data_valid_ == false)
757
    return "";
758
 
759
  const std::vector<Offset_to_lineno_entry>* offsets;
760
  // If we do not have reloc information, then our input is a .so or
761
  // some similar data structure where all the information is held in
762
  // the offset.  In that case, we ignore the input shndx.
763
  if (this->input_is_relobj())
764
    offsets = &this->line_number_map_[shndx];
765
  else
766
    offsets = &this->line_number_map_[-1U];
767
  if (offsets->empty())
768
    return "";
769
 
770
  typename std::vector<Offset_to_lineno_entry>::const_iterator it
771
      = offset_to_iterator(offsets, offset);
772
  if (it == offsets->end())
773
    return "";
774
 
775
  // Convert the file_num + line_num into a string.
776
  std::string ret;
777
 
778
  gold_assert(it->header_num < static_cast<int>(this->files_.size()));
779
  gold_assert(it->file_num
780
              < static_cast<int>(this->files_[it->header_num].size()));
781
  const std::pair<int, std::string>& filename_pair
782
      = this->files_[it->header_num][it->file_num];
783
  const std::string& filename = filename_pair.second;
784
 
785
  gold_assert(it->header_num < static_cast<int>(this->directories_.size()));
786
  gold_assert(filename_pair.first
787
              < static_cast<int>(this->directories_[it->header_num].size()));
788
  const std::string& dirname
789
      = this->directories_[it->header_num][filename_pair.first];
790
 
791
  if (!dirname.empty())
792
    {
793
      ret += dirname;
794
      ret += "/";
795
    }
796
  ret += filename;
797
  if (ret.empty())
798
    ret = "(unknown)";
799
 
800
  char buffer[64];   // enough to hold a line number
801
  snprintf(buffer, sizeof(buffer), "%d", it->line_num);
802
  ret += ":";
803
  ret += buffer;
804
 
805
  return ret;
806
}
807
 
808
// Dwarf_line_info routines.
809
 
810
static unsigned int next_generation_count = 0;
811
 
812
struct Addr2line_cache_entry
813
{
814
  Object* object;
815
  unsigned int shndx;
816
  Dwarf_line_info* dwarf_line_info;
817
  unsigned int generation_count;
818
  unsigned int access_count;
819
 
820
  Addr2line_cache_entry(Object* o, unsigned int s, Dwarf_line_info* d)
821
      : object(o), shndx(s), dwarf_line_info(d),
822
        generation_count(next_generation_count), access_count(0)
823
  {
824
    if (next_generation_count < (1U << 31))
825
      ++next_generation_count;
826
  }
827
};
828
// We expect this cache to be small, so don't bother with a hashtable
829
// or priority queue or anything: just use a simple vector.
830
static std::vector<Addr2line_cache_entry> addr2line_cache;
831
 
832
std::string
833
Dwarf_line_info::one_addr2line(Object* object,
834
                               unsigned int shndx, off_t offset,
835
                               size_t cache_size)
836
{
837
  Dwarf_line_info* lineinfo = NULL;
838
  std::vector<Addr2line_cache_entry>::iterator it;
839
 
840
  // First, check the cache.  If we hit, update the counts.
841
  for (it = addr2line_cache.begin(); it != addr2line_cache.end(); ++it)
842
    {
843
      if (it->object == object && it->shndx == shndx)
844
        {
845
          lineinfo = it->dwarf_line_info;
846
          it->generation_count = next_generation_count;
847
          // We cap generation_count at 2^31 -1 to avoid overflow.
848
          if (next_generation_count < (1U << 31))
849
            ++next_generation_count;
850
          // We cap access_count at 31 so 2^access_count doesn't overflow
851
          if (it->access_count < 31)
852
            ++it->access_count;
853
          break;
854
        }
855
    }
856
 
857
  // If we don't hit the cache, create a new object and insert into the
858
  // cache.
859
  if (lineinfo == NULL)
860
  {
861
    switch (parameters->size_and_endianness())
862
      {
863
#ifdef HAVE_TARGET_32_LITTLE
864
        case Parameters::TARGET_32_LITTLE:
865
          lineinfo = new Sized_dwarf_line_info<32, false>(object, shndx); break;
866
#endif
867
#ifdef HAVE_TARGET_32_BIG
868
        case Parameters::TARGET_32_BIG:
869
          lineinfo = new Sized_dwarf_line_info<32, true>(object, shndx); break;
870
#endif
871
#ifdef HAVE_TARGET_64_LITTLE
872
        case Parameters::TARGET_64_LITTLE:
873
          lineinfo = new Sized_dwarf_line_info<64, false>(object, shndx); break;
874
#endif
875
#ifdef HAVE_TARGET_64_BIG
876
        case Parameters::TARGET_64_BIG:
877
          lineinfo = new Sized_dwarf_line_info<64, true>(object, shndx); break;
878
#endif
879
        default:
880
          gold_unreachable();
881
      }
882
    addr2line_cache.push_back(Addr2line_cache_entry(object, shndx, lineinfo));
883
  }
884
 
885
  // Now that we have our object, figure out the answer
886
  std::string retval = lineinfo->addr2line(shndx, offset);
887
 
888
  // Finally, if our cache has grown too big, delete old objects.  We
889
  // assume the common (probably only) case is deleting only one object.
890
  // We use a pretty simple scheme to evict: function of LRU and MFU.
891
  while (addr2line_cache.size() > cache_size)
892
    {
893
      unsigned int lowest_score = ~0U;
894
      std::vector<Addr2line_cache_entry>::iterator lowest
895
          = addr2line_cache.end();
896
      for (it = addr2line_cache.begin(); it != addr2line_cache.end(); ++it)
897
        {
898
          const unsigned int score = (it->generation_count
899
                                      + (1U << it->access_count));
900
          if (score < lowest_score)
901
            {
902
              lowest_score = score;
903
              lowest = it;
904
            }
905
        }
906
      if (lowest != addr2line_cache.end())
907
        {
908
          delete lowest->dwarf_line_info;
909
          addr2line_cache.erase(lowest);
910
        }
911
    }
912
 
913
  return retval;
914
}
915
 
916
void
917
Dwarf_line_info::clear_addr2line_cache()
918
{
919
  for (std::vector<Addr2line_cache_entry>::iterator it = addr2line_cache.begin();
920
       it != addr2line_cache.end();
921
       ++it)
922
    delete it->dwarf_line_info;
923
  addr2line_cache.clear();
924
}
925
 
926
#ifdef HAVE_TARGET_32_LITTLE
927
template
928
class Sized_dwarf_line_info<32, false>;
929
#endif
930
 
931
#ifdef HAVE_TARGET_32_BIG
932
template
933
class Sized_dwarf_line_info<32, true>;
934
#endif
935
 
936
#ifdef HAVE_TARGET_64_LITTLE
937
template
938
class Sized_dwarf_line_info<64, false>;
939
#endif
940
 
941
#ifdef HAVE_TARGET_64_BIG
942
template
943
class Sized_dwarf_line_info<64, true>;
944
#endif
945
 
946
} // End namespace gold.

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.