OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-stable/] [binutils-2.20.1/] [gold/] [gold.cc] - Blame information for rev 854

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 205 julius
// gold.cc -- main linker functions
2
 
3
// Copyright 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
4
// Written by Ian Lance Taylor <iant@google.com>.
5
 
6
// This file is part of gold.
7
 
8
// This program is free software; you can redistribute it and/or modify
9
// it under the terms of the GNU General Public License as published by
10
// the Free Software Foundation; either version 3 of the License, or
11
// (at your option) any later version.
12
 
13
// This program is distributed in the hope that it will be useful,
14
// but WITHOUT ANY WARRANTY; without even the implied warranty of
15
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16
// GNU General Public License for more details.
17
 
18
// You should have received a copy of the GNU General Public License
19
// along with this program; if not, write to the Free Software
20
// Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21
// MA 02110-1301, USA.
22
 
23
#include "gold.h"
24
 
25
#include <cstdlib>
26
#include <cstdio>
27
#include <cstring>
28
#include <unistd.h>
29
#include <algorithm>
30
#include "libiberty.h"
31
 
32
#include "options.h"
33
#include "debug.h"
34
#include "workqueue.h"
35
#include "dirsearch.h"
36
#include "readsyms.h"
37
#include "symtab.h"
38
#include "common.h"
39
#include "object.h"
40
#include "layout.h"
41
#include "reloc.h"
42
#include "defstd.h"
43
#include "plugin.h"
44
#include "gc.h"
45
#include "icf.h"
46
#include "incremental.h"
47
 
48
namespace gold
49
{
50
 
51
const char* program_name;
52
 
53
void
54
gold_exit(bool status)
55
{
56
  if (parameters != NULL
57
      && parameters->options_valid()
58
      && parameters->options().has_plugins())
59
    parameters->options().plugins()->cleanup();
60
  if (!status && parameters != NULL && parameters->options_valid())
61
    unlink_if_ordinary(parameters->options().output_file_name());
62
  exit(status ? EXIT_SUCCESS : EXIT_FAILURE);
63
}
64
 
65
void
66
gold_nomem()
67
{
68
  // We are out of memory, so try hard to print a reasonable message.
69
  // Note that we don't try to translate this message, since the
70
  // translation process itself will require memory.
71
 
72
  // LEN only exists to avoid a pointless warning when write is
73
  // declared with warn_use_result, as when compiling with
74
  // -D_USE_FORTIFY on GNU/Linux.  Casting to void does not appear to
75
  // work, at least not with gcc 4.3.0.
76
 
77
  ssize_t len = write(2, program_name, strlen(program_name));
78
  if (len >= 0)
79
    {
80
      const char* const s = ": out of memory\n";
81
      len = write(2, s, strlen(s));
82
    }
83
  gold_exit(false);
84
}
85
 
86
// Handle an unreachable case.
87
 
88
void
89
do_gold_unreachable(const char* filename, int lineno, const char* function)
90
{
91
  fprintf(stderr, _("%s: internal error in %s, at %s:%d\n"),
92
          program_name, function, filename, lineno);
93
  gold_exit(false);
94
}
95
 
96
// This class arranges to run the functions done in the middle of the
97
// link.  It is just a closure.
98
 
99
class Middle_runner : public Task_function_runner
100
{
101
 public:
102
  Middle_runner(const General_options& options,
103
                const Input_objects* input_objects,
104
                Symbol_table* symtab,
105
                Layout* layout, Mapfile* mapfile)
106
    : options_(options), input_objects_(input_objects), symtab_(symtab),
107
      layout_(layout), mapfile_(mapfile)
108
  { }
109
 
110
  void
111
  run(Workqueue*, const Task*);
112
 
113
 private:
114
  const General_options& options_;
115
  const Input_objects* input_objects_;
116
  Symbol_table* symtab_;
117
  Layout* layout_;
118
  Mapfile* mapfile_;
119
};
120
 
121
void
122
Middle_runner::run(Workqueue* workqueue, const Task* task)
123
{
124
  queue_middle_tasks(this->options_, task, this->input_objects_, this->symtab_,
125
                     this->layout_, workqueue, this->mapfile_);
126
}
127
 
128
// This class arranges the tasks to process the relocs for garbage collection.
129
 
130
class Gc_runner : public Task_function_runner
131
{
132
  public:
133
   Gc_runner(const General_options& options,
134
             const Input_objects* input_objects,
135
             Symbol_table* symtab,
136
             Layout* layout, Mapfile* mapfile)
137
    : options_(options), input_objects_(input_objects), symtab_(symtab),
138
      layout_(layout), mapfile_(mapfile)
139
   { }
140
 
141
  void
142
  run(Workqueue*, const Task*);
143
 
144
 private:
145
  const General_options& options_;
146
  const Input_objects* input_objects_;
147
  Symbol_table* symtab_;
148
  Layout* layout_;
149
  Mapfile* mapfile_;
150
};
151
 
152
void
153
Gc_runner::run(Workqueue* workqueue, const Task* task)
154
{
155
  queue_middle_gc_tasks(this->options_, task, this->input_objects_,
156
                        this->symtab_, this->layout_, workqueue,
157
                        this->mapfile_);
158
}
159
 
160
// Queue up the initial set of tasks for this link job.
161
 
162
void
163
queue_initial_tasks(const General_options& options,
164
                    Dirsearch& search_path,
165
                    const Command_line& cmdline,
166
                    Workqueue* workqueue, Input_objects* input_objects,
167
                    Symbol_table* symtab, Layout* layout, Mapfile* mapfile)
168
{
169
  if (cmdline.begin() == cmdline.end())
170
    {
171
      if (options.printed_version())
172
        gold_exit(true);
173
      gold_fatal(_("no input files"));
174
    }
175
 
176
  int thread_count = options.thread_count_initial();
177
  if (thread_count == 0)
178
    thread_count = cmdline.number_of_input_files();
179
  workqueue->set_thread_count(thread_count);
180
 
181
  if (cmdline.options().incremental())
182
    {
183
      Incremental_checker incremental_checker(
184
          parameters->options().output_file_name(),
185
          layout->incremental_inputs());
186
      if (incremental_checker.can_incrementally_link_output_file())
187
        {
188
          // TODO: remove when incremental linking implemented.
189
          printf("Incremental linking might be possible "
190
              "(not implemented yet)\n");
191
        }
192
      // TODO: If we decide on an incremental build, fewer tasks
193
      // should be scheduled.
194
    }
195
 
196
  // Read the input files.  We have to add the symbols to the symbol
197
  // table in order.  We do this by creating a separate blocker for
198
  // each input file.  We associate the blocker with the following
199
  // input file, to give us a convenient place to delete it.
200
  Task_token* this_blocker = NULL;
201
  for (Command_line::const_iterator p = cmdline.begin();
202
       p != cmdline.end();
203
       ++p)
204
    {
205
      Task_token* next_blocker = new Task_token(true);
206
      next_blocker->add_blocker();
207
      workqueue->queue(new Read_symbols(input_objects, symtab, layout,
208
                                        &search_path, 0, mapfile, &*p, NULL,
209
                                        this_blocker, next_blocker));
210
      this_blocker = next_blocker;
211
    }
212
 
213
  if (options.has_plugins())
214
    {
215
      Task_token* next_blocker = new Task_token(true);
216
      next_blocker->add_blocker();
217
      workqueue->queue(new Plugin_hook(options, input_objects, symtab, layout,
218
                                       &search_path, mapfile, this_blocker,
219
                                       next_blocker));
220
      this_blocker = next_blocker;
221
    }
222
 
223
  if (parameters->options().relocatable()
224
      && (parameters->options().gc_sections()
225
          || parameters->options().icf_enabled()))
226
    gold_error(_("cannot mix -r with --gc-sections or --icf"));
227
 
228
  if (parameters->options().gc_sections()
229
      || parameters->options().icf_enabled())
230
    {
231
      workqueue->queue(new Task_function(new Gc_runner(options,
232
                                                       input_objects,
233
                                                       symtab,
234
                                                       layout,
235
                                                       mapfile),
236
                                         this_blocker,
237
                                         "Task_function Gc_runner"));
238
    }
239
  else
240
    {
241
      workqueue->queue(new Task_function(new Middle_runner(options,
242
                                                           input_objects,
243
                                                           symtab,
244
                                                           layout,
245
                                                           mapfile),
246
                                         this_blocker,
247
                                         "Task_function Middle_runner"));
248
    }
249
}
250
 
251
// Queue up a set of tasks to be done before queueing the middle set
252
// of tasks.  This is only necessary when garbage collection
253
// (--gc-sections) of unused sections is desired.  The relocs are read
254
// and processed here early to determine the garbage sections before the
255
// relocs can be scanned in later tasks.
256
 
257
void
258
queue_middle_gc_tasks(const General_options& options,
259
                      const Task* ,
260
                      const Input_objects* input_objects,
261
                      Symbol_table* symtab,
262
                      Layout* layout,
263
                      Workqueue* workqueue,
264
                      Mapfile* mapfile)
265
{
266
  // Read_relocs for all the objects must be done and processed to find
267
  // unused sections before any scanning of the relocs can take place.
268
  Task_token* blocker = new Task_token(true);
269
  Task_token* symtab_lock = new Task_token(false);
270
  for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
271
       p != input_objects->relobj_end();
272
       ++p)
273
    {
274
      // We can read and process the relocations in any order.  
275
      blocker->add_blocker();
276
      workqueue->queue(new Read_relocs(options, symtab, layout, *p,
277
                                       symtab_lock, blocker));
278
    }
279
 
280
  Task_token* this_blocker = new Task_token(true);
281
  workqueue->queue(new Task_function(new Middle_runner(options,
282
                                                       input_objects,
283
                                                       symtab,
284
                                                       layout,
285
                                                       mapfile),
286
                                     this_blocker,
287
                                     "Task_function Middle_runner"));
288
}
289
 
290
// Queue up the middle set of tasks.  These are the tasks which run
291
// after all the input objects have been found and all the symbols
292
// have been read, but before we lay out the output file.
293
 
294
void
295
queue_middle_tasks(const General_options& options,
296
                   const Task* task,
297
                   const Input_objects* input_objects,
298
                   Symbol_table* symtab,
299
                   Layout* layout,
300
                   Workqueue* workqueue,
301
                   Mapfile* mapfile)
302
{
303
  // Add any symbols named with -u options to the symbol table.
304
  symtab->add_undefined_symbols_from_command_line();
305
 
306
  // If garbage collection was chosen, relocs have been read and processed
307
  // at this point by pre_middle_tasks.  Layout can then be done for all 
308
  // objects.
309
  if (parameters->options().gc_sections())
310
    {
311
      // Find the start symbol if any.
312
      Symbol* start_sym;
313
      if (parameters->options().entry())
314
        start_sym = symtab->lookup(parameters->options().entry());
315
      else
316
        start_sym = symtab->lookup("_start");
317
      if (start_sym !=NULL)
318
        {
319
          bool is_ordinary;
320
          unsigned int shndx = start_sym->shndx(&is_ordinary);
321
          if (is_ordinary)
322
            {
323
              symtab->gc()->worklist().push(
324
                Section_id(start_sym->object(), shndx));
325
            }
326
        }
327
      // Symbols named with -u should not be considered garbage.
328
      symtab->gc_mark_undef_symbols();
329
      gold_assert(symtab->gc() != NULL);
330
      // Do a transitive closure on all references to determine the worklist.
331
      symtab->gc()->do_transitive_closure();
332
    }
333
 
334
  // If identical code folding (--icf) is chosen it makes sense to do it 
335
  // only after garbage collection (--gc-sections) as we do not want to 
336
  // be folding sections that will be garbage.
337
  if (parameters->options().icf_enabled())
338
    {
339
      symtab->icf()->find_identical_sections(input_objects, symtab);
340
    }
341
 
342
  // Call Object::layout for the second time to determine the 
343
  // output_sections for all referenced input sections.  When 
344
  // --gc-sections or --icf is turned on, Object::layout is 
345
  // called twice.  It is called the first time when the 
346
  // symbols are added.
347
  if (parameters->options().gc_sections()
348
      || parameters->options().icf_enabled())
349
    {
350
      for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
351
           p != input_objects->relobj_end();
352
           ++p)
353
        {
354
          (*p)->layout(symtab, layout, NULL);
355
        }
356
    }
357
 
358
  // Layout deferred objects due to plugins.
359
  if (parameters->options().has_plugins())
360
    {
361
      Plugin_manager* plugins = parameters->options().plugins();
362
      gold_assert(plugins != NULL);
363
      plugins->layout_deferred_objects();
364
    }
365
 
366
  if (parameters->options().gc_sections()
367
      || parameters->options().icf_enabled())
368
    {
369
      for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
370
           p != input_objects->relobj_end();
371
           ++p)
372
        {
373
          // Update the value of output_section stored in rd.
374
          Read_relocs_data *rd = (*p)->get_relocs_data();
375
          for (Read_relocs_data::Relocs_list::iterator q = rd->relocs.begin();
376
               q != rd->relocs.end();
377
               ++q)
378
            {
379
              q->output_section = (*p)->output_section(q->data_shndx);
380
              q->needs_special_offset_handling =
381
                      (*p)->is_output_section_offset_invalid(q->data_shndx);
382
            }
383
        }
384
    }
385
 
386
  // We have to support the case of not seeing any input objects, and
387
  // generate an empty file.  Existing builds depend on being able to
388
  // pass an empty archive to the linker and get an empty object file
389
  // out.  In order to do this we need to use a default target.
390
  if (input_objects->number_of_input_objects() == 0)
391
    parameters_force_valid_target();
392
 
393
  int thread_count = options.thread_count_middle();
394
  if (thread_count == 0)
395
    thread_count = std::max(2, input_objects->number_of_input_objects());
396
  workqueue->set_thread_count(thread_count);
397
 
398
  // Now we have seen all the input files.
399
  const bool doing_static_link =
400
    (!input_objects->any_dynamic()
401
     && !parameters->options().output_is_position_independent());
402
  set_parameters_doing_static_link(doing_static_link);
403
  if (!doing_static_link && options.is_static())
404
    {
405
      // We print out just the first .so we see; there may be others.
406
      gold_assert(input_objects->dynobj_begin() != input_objects->dynobj_end());
407
      gold_error(_("cannot mix -static with dynamic object %s"),
408
                 (*input_objects->dynobj_begin())->name().c_str());
409
    }
410
  if (!doing_static_link && parameters->options().relocatable())
411
    gold_fatal(_("cannot mix -r with dynamic object %s"),
412
               (*input_objects->dynobj_begin())->name().c_str());
413
  if (!doing_static_link
414
      && options.oformat_enum() != General_options::OBJECT_FORMAT_ELF)
415
    gold_fatal(_("cannot use non-ELF output format with dynamic object %s"),
416
               (*input_objects->dynobj_begin())->name().c_str());
417
 
418
  if (parameters->options().relocatable())
419
    {
420
      Input_objects::Relobj_iterator p = input_objects->relobj_begin();
421
      if (p != input_objects->relobj_end())
422
        {
423
          bool uses_split_stack = (*p)->uses_split_stack();
424
          for (++p; p != input_objects->relobj_end(); ++p)
425
            {
426
              if ((*p)->uses_split_stack() != uses_split_stack)
427
                gold_fatal(_("cannot mix split-stack '%s' and "
428
                             "non-split-stack '%s' when using -r"),
429
                           (*input_objects->relobj_begin())->name().c_str(),
430
                           (*p)->name().c_str());
431
            }
432
        }
433
    }
434
 
435
  if (is_debugging_enabled(DEBUG_SCRIPT))
436
    layout->script_options()->print(stderr);
437
 
438
  // For each dynamic object, record whether we've seen all the
439
  // dynamic objects that it depends upon.
440
  input_objects->check_dynamic_dependencies();
441
 
442
  // See if any of the input definitions violate the One Definition Rule.
443
  // TODO: if this is too slow, do this as a task, rather than inline.
444
  symtab->detect_odr_violations(task, options.output_file_name());
445
 
446
  // Create any automatic note sections.
447
  layout->create_notes();
448
 
449
  // Create any output sections required by any linker script.
450
  layout->create_script_sections();
451
 
452
  // Define some sections and symbols needed for a dynamic link.  This
453
  // handles some cases we want to see before we read the relocs.
454
  layout->create_initial_dynamic_sections(symtab);
455
 
456
  // Define symbols from any linker scripts.
457
  layout->define_script_symbols(symtab);
458
 
459
  // Attach sections to segments.
460
  layout->attach_sections_to_segments();
461
 
462
  if (!parameters->options().relocatable())
463
    {
464
      // Predefine standard symbols.
465
      define_standard_symbols(symtab, layout);
466
 
467
      // Define __start and __stop symbols for output sections where
468
      // appropriate.
469
      layout->define_section_symbols(symtab);
470
    }
471
 
472
  // Make sure we have symbols for any required group signatures.
473
  layout->define_group_signatures(symtab);
474
 
475
  Task_token* blocker = new Task_token(true);
476
  Task_token* symtab_lock = new Task_token(false);
477
 
478
  // If doing garbage collection, the relocations have already been read.
479
  // Otherwise, read and scan the relocations.
480
  if (parameters->options().gc_sections()
481
      || parameters->options().icf_enabled())
482
    {
483
      for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
484
           p != input_objects->relobj_end();
485
           ++p)
486
        {
487
          blocker->add_blocker();
488
          workqueue->queue(new Scan_relocs(options, symtab, layout, *p,
489
                           (*p)->get_relocs_data(),symtab_lock, blocker));
490
        }
491
    }
492
  else
493
    {
494
      // Read the relocations of the input files.  We do this to find
495
      // which symbols are used by relocations which require a GOT and/or
496
      // a PLT entry, or a COPY reloc.  When we implement garbage
497
      // collection we will do it here by reading the relocations in a
498
      // breadth first search by references.
499
      //
500
      // We could also read the relocations during the first pass, and
501
      // mark symbols at that time.  That is how the old GNU linker works.
502
      // Doing that is more complex, since we may later decide to discard
503
      // some of the sections, and thus change our minds about the types
504
      // of references made to the symbols.
505
      for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
506
           p != input_objects->relobj_end();
507
           ++p)
508
        {
509
          // We can read and process the relocations in any order.  But we
510
          // only want one task to write to the symbol table at a time.
511
          // So we queue up a task for each object to read the
512
          // relocations.  That task will in turn queue a task to wait
513
          // until it can write to the symbol table.
514
          blocker->add_blocker();
515
          workqueue->queue(new Read_relocs(options, symtab, layout, *p,
516
                   symtab_lock, blocker));
517
        }
518
    }
519
 
520
  // Allocate common symbols.  This requires write access to the
521
  // symbol table, but is independent of the relocation processing.
522
  if (parameters->options().define_common())
523
    {
524
      blocker->add_blocker();
525
      workqueue->queue(new Allocate_commons_task(symtab, layout, mapfile,
526
                                                 symtab_lock, blocker));
527
    }
528
 
529
  // When all those tasks are complete, we can start laying out the
530
  // output file.
531
  // TODO(csilvers): figure out a more principled way to get the target
532
  Target* target = const_cast<Target*>(&parameters->target());
533
  workqueue->queue(new Task_function(new Layout_task_runner(options,
534
                                                            input_objects,
535
                                                            symtab,
536
                                                            target,
537
                                                            layout,
538
                                                            mapfile),
539
                                     blocker,
540
                                     "Task_function Layout_task_runner"));
541
}
542
 
543
// Queue up the final set of tasks.  This is called at the end of
544
// Layout_task.
545
 
546
void
547
queue_final_tasks(const General_options& options,
548
                  const Input_objects* input_objects,
549
                  const Symbol_table* symtab,
550
                  Layout* layout,
551
                  Workqueue* workqueue,
552
                  Output_file* of)
553
{
554
  int thread_count = options.thread_count_final();
555
  if (thread_count == 0)
556
    thread_count = std::max(2, input_objects->number_of_input_objects());
557
  workqueue->set_thread_count(thread_count);
558
 
559
  bool any_postprocessing_sections = layout->any_postprocessing_sections();
560
 
561
  // Use a blocker to wait until all the input sections have been
562
  // written out.
563
  Task_token* input_sections_blocker = NULL;
564
  if (!any_postprocessing_sections)
565
    input_sections_blocker = new Task_token(true);
566
 
567
  // Use a blocker to block any objects which have to wait for the
568
  // output sections to complete before they can apply relocations.
569
  Task_token* output_sections_blocker = new Task_token(true);
570
 
571
  // Use a blocker to block the final cleanup task.
572
  Task_token* final_blocker = new Task_token(true);
573
 
574
  // Queue a task to write out the symbol table.
575
  final_blocker->add_blocker();
576
  workqueue->queue(new Write_symbols_task(layout,
577
                                          symtab,
578
                                          input_objects,
579
                                          layout->sympool(),
580
                                          layout->dynpool(),
581
                                          of,
582
                                          final_blocker));
583
 
584
  // Queue a task to write out the output sections.
585
  output_sections_blocker->add_blocker();
586
  final_blocker->add_blocker();
587
  workqueue->queue(new Write_sections_task(layout, of, output_sections_blocker,
588
                                           final_blocker));
589
 
590
  // Queue a task to write out everything else.
591
  final_blocker->add_blocker();
592
  workqueue->queue(new Write_data_task(layout, symtab, of, final_blocker));
593
 
594
  // Queue a task for each input object to relocate the sections and
595
  // write out the local symbols.
596
  for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
597
       p != input_objects->relobj_end();
598
       ++p)
599
    {
600
      if (input_sections_blocker != NULL)
601
        input_sections_blocker->add_blocker();
602
      final_blocker->add_blocker();
603
      workqueue->queue(new Relocate_task(options, symtab, layout, *p, of,
604
                                         input_sections_blocker,
605
                                         output_sections_blocker,
606
                                         final_blocker));
607
    }
608
 
609
  // Queue a task to write out the output sections which depend on
610
  // input sections.  If there are any sections which require
611
  // postprocessing, then we need to do this last, since it may resize
612
  // the output file.
613
  if (!any_postprocessing_sections)
614
    {
615
      final_blocker->add_blocker();
616
      Task* t = new Write_after_input_sections_task(layout, of,
617
                                                    input_sections_blocker,
618
                                                    final_blocker);
619
      workqueue->queue(t);
620
    }
621
  else
622
    {
623
      Task_token *new_final_blocker = new Task_token(true);
624
      new_final_blocker->add_blocker();
625
      Task* t = new Write_after_input_sections_task(layout, of,
626
                                                    final_blocker,
627
                                                    new_final_blocker);
628
      workqueue->queue(t);
629
      final_blocker = new_final_blocker;
630
    }
631
 
632
  // Queue a task to close the output file.  This will be blocked by
633
  // FINAL_BLOCKER.
634
  workqueue->queue(new Task_function(new Close_task_runner(&options, layout,
635
                                                           of),
636
                                     final_blocker,
637
                                     "Task_function Close_task_runner"));
638
}
639
 
640
} // End namespace gold.

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.