OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-stable/] [binutils-2.20.1/] [gold/] [resolve.cc] - Blame information for rev 825

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 205 julius
// resolve.cc -- symbol resolution for gold
2
 
3
// Copyright 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
4
// Written by Ian Lance Taylor <iant@google.com>.
5
 
6
// This file is part of gold.
7
 
8
// This program is free software; you can redistribute it and/or modify
9
// it under the terms of the GNU General Public License as published by
10
// the Free Software Foundation; either version 3 of the License, or
11
// (at your option) any later version.
12
 
13
// This program is distributed in the hope that it will be useful,
14
// but WITHOUT ANY WARRANTY; without even the implied warranty of
15
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16
// GNU General Public License for more details.
17
 
18
// You should have received a copy of the GNU General Public License
19
// along with this program; if not, write to the Free Software
20
// Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21
// MA 02110-1301, USA.
22
 
23
#include "gold.h"
24
 
25
#include "elfcpp.h"
26
#include "target.h"
27
#include "object.h"
28
#include "symtab.h"
29
#include "plugin.h"
30
 
31
namespace gold
32
{
33
 
34
// Symbol methods used in this file.
35
 
36
// This symbol is being overridden by another symbol whose version is
37
// VERSION.  Update the VERSION_ field accordingly.
38
 
39
inline void
40
Symbol::override_version(const char* version)
41
{
42
  if (version == NULL)
43
    {
44
      // This is the case where this symbol is NAME/VERSION, and the
45
      // version was not marked as hidden.  That makes it the default
46
      // version, so we create NAME/NULL.  Later we see another symbol
47
      // NAME/NULL, and that symbol is overriding this one.  In this
48
      // case, since NAME/VERSION is the default, we make NAME/NULL
49
      // override NAME/VERSION as well.  They are already the same
50
      // Symbol structure.  Setting the VERSION_ field to NULL ensures
51
      // that it will be output with the correct, empty, version.
52
      this->version_ = version;
53
    }
54
  else
55
    {
56
      // This is the case where this symbol is NAME/VERSION_ONE, and
57
      // now we see NAME/VERSION_TWO, and NAME/VERSION_TWO is
58
      // overriding NAME.  If VERSION_ONE and VERSION_TWO are
59
      // different, then this can only happen when VERSION_ONE is NULL
60
      // and VERSION_TWO is not hidden.
61
      gold_assert(this->version_ == version || this->version_ == NULL);
62
      this->version_ = version;
63
    }
64
}
65
 
66
// This symbol is being overidden by another symbol whose visibility
67
// is VISIBILITY.  Updated the VISIBILITY_ field accordingly.
68
 
69
inline void
70
Symbol::override_visibility(elfcpp::STV visibility)
71
{
72
  // The rule for combining visibility is that we always choose the
73
  // most constrained visibility.  In order of increasing constraint,
74
  // visibility goes PROTECTED, HIDDEN, INTERNAL.  This is the reverse
75
  // of the numeric values, so the effect is that we always want the
76
  // smallest non-zero value.
77
  if (visibility != elfcpp::STV_DEFAULT)
78
    {
79
      if (this->visibility_ == elfcpp::STV_DEFAULT)
80
        this->visibility_ = visibility;
81
      else if (this->visibility_ > visibility)
82
        this->visibility_ = visibility;
83
    }
84
}
85
 
86
// Override the fields in Symbol.
87
 
88
template<int size, bool big_endian>
89
void
90
Symbol::override_base(const elfcpp::Sym<size, big_endian>& sym,
91
                      unsigned int st_shndx, bool is_ordinary,
92
                      Object* object, const char* version)
93
{
94
  gold_assert(this->source_ == FROM_OBJECT);
95
  this->u_.from_object.object = object;
96
  this->override_version(version);
97
  this->u_.from_object.shndx = st_shndx;
98
  this->is_ordinary_shndx_ = is_ordinary;
99
  this->type_ = sym.get_st_type();
100
  this->binding_ = sym.get_st_bind();
101
  this->override_visibility(sym.get_st_visibility());
102
  this->nonvis_ = sym.get_st_nonvis();
103
  if (object->is_dynamic())
104
    this->in_dyn_ = true;
105
  else
106
    this->in_reg_ = true;
107
}
108
 
109
// Override the fields in Sized_symbol.
110
 
111
template<int size>
112
template<bool big_endian>
113
void
114
Sized_symbol<size>::override(const elfcpp::Sym<size, big_endian>& sym,
115
                             unsigned st_shndx, bool is_ordinary,
116
                             Object* object, const char* version)
117
{
118
  this->override_base(sym, st_shndx, is_ordinary, object, version);
119
  this->value_ = sym.get_st_value();
120
  this->symsize_ = sym.get_st_size();
121
}
122
 
123
// Override TOSYM with symbol FROMSYM, defined in OBJECT, with version
124
// VERSION.  This handles all aliases of TOSYM.
125
 
126
template<int size, bool big_endian>
127
void
128
Symbol_table::override(Sized_symbol<size>* tosym,
129
                       const elfcpp::Sym<size, big_endian>& fromsym,
130
                       unsigned int st_shndx, bool is_ordinary,
131
                       Object* object, const char* version)
132
{
133
  tosym->override(fromsym, st_shndx, is_ordinary, object, version);
134
  if (tosym->has_alias())
135
    {
136
      Symbol* sym = this->weak_aliases_[tosym];
137
      gold_assert(sym != NULL);
138
      Sized_symbol<size>* ssym = this->get_sized_symbol<size>(sym);
139
      do
140
        {
141
          ssym->override(fromsym, st_shndx, is_ordinary, object, version);
142
          sym = this->weak_aliases_[ssym];
143
          gold_assert(sym != NULL);
144
          ssym = this->get_sized_symbol<size>(sym);
145
        }
146
      while (ssym != tosym);
147
    }
148
}
149
 
150
// The resolve functions build a little code for each symbol.
151
// Bit 0: 0 for global, 1 for weak.
152
// Bit 1: 0 for regular object, 1 for shared object
153
// Bits 2-3: 0 for normal, 1 for undefined, 2 for common
154
// This gives us values from 0 to 11.
155
 
156
static const int global_or_weak_shift = 0;
157
static const unsigned int global_flag = 0 << global_or_weak_shift;
158
static const unsigned int weak_flag = 1 << global_or_weak_shift;
159
 
160
static const int regular_or_dynamic_shift = 1;
161
static const unsigned int regular_flag = 0 << regular_or_dynamic_shift;
162
static const unsigned int dynamic_flag = 1 << regular_or_dynamic_shift;
163
 
164
static const int def_undef_or_common_shift = 2;
165
static const unsigned int def_flag = 0 << def_undef_or_common_shift;
166
static const unsigned int undef_flag = 1 << def_undef_or_common_shift;
167
static const unsigned int common_flag = 2 << def_undef_or_common_shift;
168
 
169
// This convenience function combines all the flags based on facts
170
// about the symbol.
171
 
172
static unsigned int
173
symbol_to_bits(elfcpp::STB binding, bool is_dynamic,
174
               unsigned int shndx, bool is_ordinary, elfcpp::STT type)
175
{
176
  unsigned int bits;
177
 
178
  switch (binding)
179
    {
180
    case elfcpp::STB_GLOBAL:
181
      bits = global_flag;
182
      break;
183
 
184
    case elfcpp::STB_WEAK:
185
      bits = weak_flag;
186
      break;
187
 
188
    case elfcpp::STB_LOCAL:
189
      // We should only see externally visible symbols in the symbol
190
      // table.
191
      gold_error(_("invalid STB_LOCAL symbol in external symbols"));
192
      bits = global_flag;
193
 
194
    default:
195
      // Any target which wants to handle STB_LOOS, etc., needs to
196
      // define a resolve method.
197
      gold_error(_("unsupported symbol binding"));
198
      bits = global_flag;
199
    }
200
 
201
  if (is_dynamic)
202
    bits |= dynamic_flag;
203
  else
204
    bits |= regular_flag;
205
 
206
  switch (shndx)
207
    {
208
    case elfcpp::SHN_UNDEF:
209
      bits |= undef_flag;
210
      break;
211
 
212
    case elfcpp::SHN_COMMON:
213
      if (!is_ordinary)
214
        bits |= common_flag;
215
      break;
216
 
217
    default:
218
      if (type == elfcpp::STT_COMMON)
219
        bits |= common_flag;
220
      else if (!is_ordinary && Symbol::is_common_shndx(shndx))
221
        bits |= common_flag;
222
      else
223
        bits |= def_flag;
224
      break;
225
    }
226
 
227
  return bits;
228
}
229
 
230
// Resolve a symbol.  This is called the second and subsequent times
231
// we see a symbol.  TO is the pre-existing symbol.  ST_SHNDX is the
232
// section index for SYM, possibly adjusted for many sections.
233
// IS_ORDINARY is whether ST_SHNDX is a normal section index rather
234
// than a special code.  ORIG_ST_SHNDX is the original section index,
235
// before any munging because of discarded sections, except that all
236
// non-ordinary section indexes are mapped to SHN_UNDEF.  VERSION is
237
// the version of SYM.
238
 
239
template<int size, bool big_endian>
240
void
241
Symbol_table::resolve(Sized_symbol<size>* to,
242
                      const elfcpp::Sym<size, big_endian>& sym,
243
                      unsigned int st_shndx, bool is_ordinary,
244
                      unsigned int orig_st_shndx,
245
                      Object* object, const char* version)
246
{
247
  if (parameters->target().has_resolve())
248
    {
249
      Sized_target<size, big_endian>* sized_target;
250
      sized_target = parameters->sized_target<size, big_endian>();
251
      sized_target->resolve(to, sym, object, version);
252
      return;
253
    }
254
 
255
  if (!object->is_dynamic())
256
    {
257
      // Record that we've seen this symbol in a regular object.
258
      to->set_in_reg();
259
    }
260
  else if (st_shndx == elfcpp::SHN_UNDEF
261
           && (to->visibility() == elfcpp::STV_HIDDEN
262
               || to->visibility() == elfcpp::STV_INTERNAL))
263
    {
264
      // A dynamic object cannot reference a hidden or internal symbol
265
      // defined in another object.
266
      gold_warning(_("%s symbol '%s' in %s is referenced by DSO %s"),
267
                   (to->visibility() == elfcpp::STV_HIDDEN
268
                    ? "hidden"
269
                    : "internal"),
270
                   to->demangled_name().c_str(),
271
                   to->object()->name().c_str(),
272
                   object->name().c_str());
273
      return;
274
    }
275
  else
276
    {
277
      // Record that we've seen this symbol in a dynamic object.
278
      to->set_in_dyn();
279
    }
280
 
281
  // Record if we've seen this symbol in a real ELF object (i.e., the
282
  // symbol is referenced from outside the world known to the plugin).
283
  if (object->pluginobj() == NULL)
284
    to->set_in_real_elf();
285
 
286
  // If we're processing replacement files, allow new symbols to override
287
  // the placeholders from the plugin objects.
288
  if (to->source() == Symbol::FROM_OBJECT)
289
    {
290
      Pluginobj* obj = to->object()->pluginobj();
291
      if (obj != NULL
292
          && parameters->options().plugins()->in_replacement_phase())
293
        {
294
          this->override(to, sym, st_shndx, is_ordinary, object, version);
295
          return;
296
        }
297
    }
298
 
299
  unsigned int frombits = symbol_to_bits(sym.get_st_bind(),
300
                                         object->is_dynamic(),
301
                                         st_shndx, is_ordinary,
302
                                         sym.get_st_type());
303
 
304
  bool adjust_common_sizes;
305
  typename Sized_symbol<size>::Size_type tosize = to->symsize();
306
  if (Symbol_table::should_override(to, frombits, object,
307
                                    &adjust_common_sizes))
308
    {
309
      this->override(to, sym, st_shndx, is_ordinary, object, version);
310
      if (adjust_common_sizes && tosize > to->symsize())
311
        to->set_symsize(tosize);
312
    }
313
  else
314
    {
315
      if (adjust_common_sizes && sym.get_st_size() > tosize)
316
        to->set_symsize(sym.get_st_size());
317
      // The ELF ABI says that even for a reference to a symbol we
318
      // merge the visibility.
319
      to->override_visibility(sym.get_st_visibility());
320
    }
321
 
322
  if (adjust_common_sizes && parameters->options().warn_common())
323
    {
324
      if (tosize > sym.get_st_size())
325
        Symbol_table::report_resolve_problem(false,
326
                                             _("common of '%s' overriding "
327
                                               "smaller common"),
328
                                             to, object);
329
      else if (tosize < sym.get_st_size())
330
        Symbol_table::report_resolve_problem(false,
331
                                             _("common of '%s' overidden by "
332
                                               "larger common"),
333
                                             to, object);
334
      else
335
        Symbol_table::report_resolve_problem(false,
336
                                             _("multiple common of '%s'"),
337
                                             to, object);
338
    }
339
 
340
  // A new weak undefined reference, merging with an old weak
341
  // reference, could be a One Definition Rule (ODR) violation --
342
  // especially if the types or sizes of the references differ.  We'll
343
  // store such pairs and look them up later to make sure they
344
  // actually refer to the same lines of code.  (Note: not all ODR
345
  // violations can be found this way, and not everything this finds
346
  // is an ODR violation.  But it's helpful to warn about.)
347
  bool to_is_ordinary;
348
  if (parameters->options().detect_odr_violations()
349
      && sym.get_st_bind() == elfcpp::STB_WEAK
350
      && to->binding() == elfcpp::STB_WEAK
351
      && orig_st_shndx != elfcpp::SHN_UNDEF
352
      && to->shndx(&to_is_ordinary) != elfcpp::SHN_UNDEF
353
      && to_is_ordinary
354
      && sym.get_st_size() != 0    // Ignore weird 0-sized symbols.
355
      && to->symsize() != 0
356
      && (sym.get_st_type() != to->type()
357
          || sym.get_st_size() != to->symsize())
358
      // C does not have a concept of ODR, so we only need to do this
359
      // on C++ symbols.  These have (mangled) names starting with _Z.
360
      && to->name()[0] == '_' && to->name()[1] == 'Z')
361
    {
362
      Symbol_location fromloc
363
          = { object, orig_st_shndx, sym.get_st_value() };
364
      Symbol_location toloc = { to->object(), to->shndx(&to_is_ordinary),
365
                                to->value() };
366
      this->candidate_odr_violations_[to->name()].insert(fromloc);
367
      this->candidate_odr_violations_[to->name()].insert(toloc);
368
    }
369
}
370
 
371
// Handle the core of symbol resolution.  This is called with the
372
// existing symbol, TO, and a bitflag describing the new symbol.  This
373
// returns true if we should override the existing symbol with the new
374
// one, and returns false otherwise.  It sets *ADJUST_COMMON_SIZES to
375
// true if we should set the symbol size to the maximum of the TO and
376
// FROM sizes.  It handles error conditions.
377
 
378
bool
379
Symbol_table::should_override(const Symbol* to, unsigned int frombits,
380
                              Object* object, bool* adjust_common_sizes)
381
{
382
  *adjust_common_sizes = false;
383
 
384
  unsigned int tobits;
385
  if (to->source() == Symbol::IS_UNDEFINED)
386
    tobits = symbol_to_bits(to->binding(), false, elfcpp::SHN_UNDEF, true,
387
                            to->type());
388
  else if (to->source() != Symbol::FROM_OBJECT)
389
    tobits = symbol_to_bits(to->binding(), false, elfcpp::SHN_ABS, false,
390
                            to->type());
391
  else
392
    {
393
      bool is_ordinary;
394
      unsigned int shndx = to->shndx(&is_ordinary);
395
      tobits = symbol_to_bits(to->binding(),
396
                              to->object()->is_dynamic(),
397
                              shndx,
398
                              is_ordinary,
399
                              to->type());
400
    }
401
 
402
  // FIXME: Warn if either but not both of TO and SYM are STT_TLS.
403
 
404
  // We use a giant switch table for symbol resolution.  This code is
405
  // unwieldy, but: 1) it is efficient; 2) we definitely handle all
406
  // cases; 3) it is easy to change the handling of a particular case.
407
  // The alternative would be a series of conditionals, but it is easy
408
  // to get the ordering wrong.  This could also be done as a table,
409
  // but that is no easier to understand than this large switch
410
  // statement.
411
 
412
  // These are the values generated by the bit codes.
413
  enum
414
  {
415
    DEF =              global_flag | regular_flag | def_flag,
416
    WEAK_DEF =         weak_flag   | regular_flag | def_flag,
417
    DYN_DEF =          global_flag | dynamic_flag | def_flag,
418
    DYN_WEAK_DEF =     weak_flag   | dynamic_flag | def_flag,
419
    UNDEF =            global_flag | regular_flag | undef_flag,
420
    WEAK_UNDEF =       weak_flag   | regular_flag | undef_flag,
421
    DYN_UNDEF =        global_flag | dynamic_flag | undef_flag,
422
    DYN_WEAK_UNDEF =   weak_flag   | dynamic_flag | undef_flag,
423
    COMMON =           global_flag | regular_flag | common_flag,
424
    WEAK_COMMON =      weak_flag   | regular_flag | common_flag,
425
    DYN_COMMON =       global_flag | dynamic_flag | common_flag,
426
    DYN_WEAK_COMMON =  weak_flag   | dynamic_flag | common_flag
427
  };
428
 
429
  switch (tobits * 16 + frombits)
430
    {
431
    case DEF * 16 + DEF:
432
      // Two definitions of the same symbol.
433
 
434
      // If either symbol is defined by an object included using
435
      // --just-symbols, then don't warn.  This is for compatibility
436
      // with the GNU linker.  FIXME: This is a hack.
437
      if ((to->source() == Symbol::FROM_OBJECT && to->object()->just_symbols())
438
          || object->just_symbols())
439
        return false;
440
 
441
      Symbol_table::report_resolve_problem(true,
442
                                           _("multiple definition of '%s'"),
443
                                           to, object);
444
      return false;
445
 
446
    case WEAK_DEF * 16 + DEF:
447
      // We've seen a weak definition, and now we see a strong
448
      // definition.  In the original SVR4 linker, this was treated as
449
      // a multiple definition error.  In the Solaris linker and the
450
      // GNU linker, a weak definition followed by a regular
451
      // definition causes the weak definition to be overridden.  We
452
      // are currently compatible with the GNU linker.  In the future
453
      // we should add a target specific option to change this.
454
      // FIXME.
455
      return true;
456
 
457
    case DYN_DEF * 16 + DEF:
458
    case DYN_WEAK_DEF * 16 + DEF:
459
      // We've seen a definition in a dynamic object, and now we see a
460
      // definition in a regular object.  The definition in the
461
      // regular object overrides the definition in the dynamic
462
      // object.
463
      return true;
464
 
465
    case UNDEF * 16 + DEF:
466
    case WEAK_UNDEF * 16 + DEF:
467
    case DYN_UNDEF * 16 + DEF:
468
    case DYN_WEAK_UNDEF * 16 + DEF:
469
      // We've seen an undefined reference, and now we see a
470
      // definition.  We use the definition.
471
      return true;
472
 
473
    case COMMON * 16 + DEF:
474
    case WEAK_COMMON * 16 + DEF:
475
    case DYN_COMMON * 16 + DEF:
476
    case DYN_WEAK_COMMON * 16 + DEF:
477
      // We've seen a common symbol and now we see a definition.  The
478
      // definition overrides.
479
      if (parameters->options().warn_common())
480
        Symbol_table::report_resolve_problem(false,
481
                                             _("definition of '%s' overriding "
482
                                               "common"),
483
                                             to, object);
484
      return true;
485
 
486
    case DEF * 16 + WEAK_DEF:
487
    case WEAK_DEF * 16 + WEAK_DEF:
488
      // We've seen a definition and now we see a weak definition.  We
489
      // ignore the new weak definition.
490
      return false;
491
 
492
    case DYN_DEF * 16 + WEAK_DEF:
493
    case DYN_WEAK_DEF * 16 + WEAK_DEF:
494
      // We've seen a dynamic definition and now we see a regular weak
495
      // definition.  The regular weak definition overrides.
496
      return true;
497
 
498
    case UNDEF * 16 + WEAK_DEF:
499
    case WEAK_UNDEF * 16 + WEAK_DEF:
500
    case DYN_UNDEF * 16 + WEAK_DEF:
501
    case DYN_WEAK_UNDEF * 16 + WEAK_DEF:
502
      // A weak definition of a currently undefined symbol.
503
      return true;
504
 
505
    case COMMON * 16 + WEAK_DEF:
506
    case WEAK_COMMON * 16 + WEAK_DEF:
507
      // A weak definition does not override a common definition.
508
      return false;
509
 
510
    case DYN_COMMON * 16 + WEAK_DEF:
511
    case DYN_WEAK_COMMON * 16 + WEAK_DEF:
512
      // A weak definition does override a definition in a dynamic
513
      // object.
514
      if (parameters->options().warn_common())
515
        Symbol_table::report_resolve_problem(false,
516
                                             _("definition of '%s' overriding "
517
                                               "dynamic common definition"),
518
                                             to, object);
519
      return true;
520
 
521
    case DEF * 16 + DYN_DEF:
522
    case WEAK_DEF * 16 + DYN_DEF:
523
    case DYN_DEF * 16 + DYN_DEF:
524
    case DYN_WEAK_DEF * 16 + DYN_DEF:
525
      // Ignore a dynamic definition if we already have a definition.
526
      return false;
527
 
528
    case UNDEF * 16 + DYN_DEF:
529
    case WEAK_UNDEF * 16 + DYN_DEF:
530
    case DYN_UNDEF * 16 + DYN_DEF:
531
    case DYN_WEAK_UNDEF * 16 + DYN_DEF:
532
      // Use a dynamic definition if we have a reference.
533
      return true;
534
 
535
    case COMMON * 16 + DYN_DEF:
536
    case WEAK_COMMON * 16 + DYN_DEF:
537
    case DYN_COMMON * 16 + DYN_DEF:
538
    case DYN_WEAK_COMMON * 16 + DYN_DEF:
539
      // Ignore a dynamic definition if we already have a common
540
      // definition.
541
      return false;
542
 
543
    case DEF * 16 + DYN_WEAK_DEF:
544
    case WEAK_DEF * 16 + DYN_WEAK_DEF:
545
    case DYN_DEF * 16 + DYN_WEAK_DEF:
546
    case DYN_WEAK_DEF * 16 + DYN_WEAK_DEF:
547
      // Ignore a weak dynamic definition if we already have a
548
      // definition.
549
      return false;
550
 
551
    case UNDEF * 16 + DYN_WEAK_DEF:
552
    case WEAK_UNDEF * 16 + DYN_WEAK_DEF:
553
    case DYN_UNDEF * 16 + DYN_WEAK_DEF:
554
    case DYN_WEAK_UNDEF * 16 + DYN_WEAK_DEF:
555
      // Use a weak dynamic definition if we have a reference.
556
      return true;
557
 
558
    case COMMON * 16 + DYN_WEAK_DEF:
559
    case WEAK_COMMON * 16 + DYN_WEAK_DEF:
560
    case DYN_COMMON * 16 + DYN_WEAK_DEF:
561
    case DYN_WEAK_COMMON * 16 + DYN_WEAK_DEF:
562
      // Ignore a weak dynamic definition if we already have a common
563
      // definition.
564
      return false;
565
 
566
    case DEF * 16 + UNDEF:
567
    case WEAK_DEF * 16 + UNDEF:
568
    case DYN_DEF * 16 + UNDEF:
569
    case DYN_WEAK_DEF * 16 + UNDEF:
570
    case UNDEF * 16 + UNDEF:
571
      // A new undefined reference tells us nothing.
572
      return false;
573
 
574
    case WEAK_UNDEF * 16 + UNDEF:
575
    case DYN_UNDEF * 16 + UNDEF:
576
    case DYN_WEAK_UNDEF * 16 + UNDEF:
577
      // A strong undef overrides a dynamic or weak undef.
578
      return true;
579
 
580
    case COMMON * 16 + UNDEF:
581
    case WEAK_COMMON * 16 + UNDEF:
582
    case DYN_COMMON * 16 + UNDEF:
583
    case DYN_WEAK_COMMON * 16 + UNDEF:
584
      // A new undefined reference tells us nothing.
585
      return false;
586
 
587
    case DEF * 16 + WEAK_UNDEF:
588
    case WEAK_DEF * 16 + WEAK_UNDEF:
589
    case DYN_DEF * 16 + WEAK_UNDEF:
590
    case DYN_WEAK_DEF * 16 + WEAK_UNDEF:
591
    case UNDEF * 16 + WEAK_UNDEF:
592
    case WEAK_UNDEF * 16 + WEAK_UNDEF:
593
    case DYN_UNDEF * 16 + WEAK_UNDEF:
594
    case DYN_WEAK_UNDEF * 16 + WEAK_UNDEF:
595
    case COMMON * 16 + WEAK_UNDEF:
596
    case WEAK_COMMON * 16 + WEAK_UNDEF:
597
    case DYN_COMMON * 16 + WEAK_UNDEF:
598
    case DYN_WEAK_COMMON * 16 + WEAK_UNDEF:
599
      // A new weak undefined reference tells us nothing.
600
      return false;
601
 
602
    case DEF * 16 + DYN_UNDEF:
603
    case WEAK_DEF * 16 + DYN_UNDEF:
604
    case DYN_DEF * 16 + DYN_UNDEF:
605
    case DYN_WEAK_DEF * 16 + DYN_UNDEF:
606
    case UNDEF * 16 + DYN_UNDEF:
607
    case WEAK_UNDEF * 16 + DYN_UNDEF:
608
    case DYN_UNDEF * 16 + DYN_UNDEF:
609
    case DYN_WEAK_UNDEF * 16 + DYN_UNDEF:
610
    case COMMON * 16 + DYN_UNDEF:
611
    case WEAK_COMMON * 16 + DYN_UNDEF:
612
    case DYN_COMMON * 16 + DYN_UNDEF:
613
    case DYN_WEAK_COMMON * 16 + DYN_UNDEF:
614
      // A new dynamic undefined reference tells us nothing.
615
      return false;
616
 
617
    case DEF * 16 + DYN_WEAK_UNDEF:
618
    case WEAK_DEF * 16 + DYN_WEAK_UNDEF:
619
    case DYN_DEF * 16 + DYN_WEAK_UNDEF:
620
    case DYN_WEAK_DEF * 16 + DYN_WEAK_UNDEF:
621
    case UNDEF * 16 + DYN_WEAK_UNDEF:
622
    case WEAK_UNDEF * 16 + DYN_WEAK_UNDEF:
623
    case DYN_UNDEF * 16 + DYN_WEAK_UNDEF:
624
    case DYN_WEAK_UNDEF * 16 + DYN_WEAK_UNDEF:
625
    case COMMON * 16 + DYN_WEAK_UNDEF:
626
    case WEAK_COMMON * 16 + DYN_WEAK_UNDEF:
627
    case DYN_COMMON * 16 + DYN_WEAK_UNDEF:
628
    case DYN_WEAK_COMMON * 16 + DYN_WEAK_UNDEF:
629
      // A new weak dynamic undefined reference tells us nothing.
630
      return false;
631
 
632
    case DEF * 16 + COMMON:
633
      // A common symbol does not override a definition.
634
      if (parameters->options().warn_common())
635
        Symbol_table::report_resolve_problem(false,
636
                                             _("common '%s' overridden by "
637
                                               "previous definition"),
638
                                             to, object);
639
      return false;
640
 
641
    case WEAK_DEF * 16 + COMMON:
642
    case DYN_DEF * 16 + COMMON:
643
    case DYN_WEAK_DEF * 16 + COMMON:
644
      // A common symbol does override a weak definition or a dynamic
645
      // definition.
646
      return true;
647
 
648
    case UNDEF * 16 + COMMON:
649
    case WEAK_UNDEF * 16 + COMMON:
650
    case DYN_UNDEF * 16 + COMMON:
651
    case DYN_WEAK_UNDEF * 16 + COMMON:
652
      // A common symbol is a definition for a reference.
653
      return true;
654
 
655
    case COMMON * 16 + COMMON:
656
      // Set the size to the maximum.
657
      *adjust_common_sizes = true;
658
      return false;
659
 
660
    case WEAK_COMMON * 16 + COMMON:
661
      // I'm not sure just what a weak common symbol means, but
662
      // presumably it can be overridden by a regular common symbol.
663
      return true;
664
 
665
    case DYN_COMMON * 16 + COMMON:
666
    case DYN_WEAK_COMMON * 16 + COMMON:
667
      // Use the real common symbol, but adjust the size if necessary.
668
      *adjust_common_sizes = true;
669
      return true;
670
 
671
    case DEF * 16 + WEAK_COMMON:
672
    case WEAK_DEF * 16 + WEAK_COMMON:
673
    case DYN_DEF * 16 + WEAK_COMMON:
674
    case DYN_WEAK_DEF * 16 + WEAK_COMMON:
675
      // Whatever a weak common symbol is, it won't override a
676
      // definition.
677
      return false;
678
 
679
    case UNDEF * 16 + WEAK_COMMON:
680
    case WEAK_UNDEF * 16 + WEAK_COMMON:
681
    case DYN_UNDEF * 16 + WEAK_COMMON:
682
    case DYN_WEAK_UNDEF * 16 + WEAK_COMMON:
683
      // A weak common symbol is better than an undefined symbol.
684
      return true;
685
 
686
    case COMMON * 16 + WEAK_COMMON:
687
    case WEAK_COMMON * 16 + WEAK_COMMON:
688
    case DYN_COMMON * 16 + WEAK_COMMON:
689
    case DYN_WEAK_COMMON * 16 + WEAK_COMMON:
690
      // Ignore a weak common symbol in the presence of a real common
691
      // symbol.
692
      return false;
693
 
694
    case DEF * 16 + DYN_COMMON:
695
    case WEAK_DEF * 16 + DYN_COMMON:
696
    case DYN_DEF * 16 + DYN_COMMON:
697
    case DYN_WEAK_DEF * 16 + DYN_COMMON:
698
      // Ignore a dynamic common symbol in the presence of a
699
      // definition.
700
      return false;
701
 
702
    case UNDEF * 16 + DYN_COMMON:
703
    case WEAK_UNDEF * 16 + DYN_COMMON:
704
    case DYN_UNDEF * 16 + DYN_COMMON:
705
    case DYN_WEAK_UNDEF * 16 + DYN_COMMON:
706
      // A dynamic common symbol is a definition of sorts.
707
      return true;
708
 
709
    case COMMON * 16 + DYN_COMMON:
710
    case WEAK_COMMON * 16 + DYN_COMMON:
711
    case DYN_COMMON * 16 + DYN_COMMON:
712
    case DYN_WEAK_COMMON * 16 + DYN_COMMON:
713
      // Set the size to the maximum.
714
      *adjust_common_sizes = true;
715
      return false;
716
 
717
    case DEF * 16 + DYN_WEAK_COMMON:
718
    case WEAK_DEF * 16 + DYN_WEAK_COMMON:
719
    case DYN_DEF * 16 + DYN_WEAK_COMMON:
720
    case DYN_WEAK_DEF * 16 + DYN_WEAK_COMMON:
721
      // A common symbol is ignored in the face of a definition.
722
      return false;
723
 
724
    case UNDEF * 16 + DYN_WEAK_COMMON:
725
    case WEAK_UNDEF * 16 + DYN_WEAK_COMMON:
726
    case DYN_UNDEF * 16 + DYN_WEAK_COMMON:
727
    case DYN_WEAK_UNDEF * 16 + DYN_WEAK_COMMON:
728
      // I guess a weak common symbol is better than a definition.
729
      return true;
730
 
731
    case COMMON * 16 + DYN_WEAK_COMMON:
732
    case WEAK_COMMON * 16 + DYN_WEAK_COMMON:
733
    case DYN_COMMON * 16 + DYN_WEAK_COMMON:
734
    case DYN_WEAK_COMMON * 16 + DYN_WEAK_COMMON:
735
      // Set the size to the maximum.
736
      *adjust_common_sizes = true;
737
      return false;
738
 
739
    default:
740
      gold_unreachable();
741
    }
742
}
743
 
744
// Issue an error or warning due to symbol resolution.  IS_ERROR
745
// indicates an error rather than a warning.  MSG is the error
746
// message; it is expected to have a %s for the symbol name.  TO is
747
// the existing symbol.  OBJECT is where the new symbol was found.
748
 
749
// FIXME: We should have better location information here.  When the
750
// symbol is defined, we should be able to pull the location from the
751
// debug info if there is any.
752
 
753
void
754
Symbol_table::report_resolve_problem(bool is_error, const char* msg,
755
                                     const Symbol* to, Object* object)
756
{
757
  std::string demangled(to->demangled_name());
758
  size_t len = strlen(msg) + demangled.length() + 10;
759
  char* buf = new char[len];
760
  snprintf(buf, len, msg, demangled.c_str());
761
 
762
  const char* objname;
763
  if (object != NULL)
764
    objname = object->name().c_str();
765
  else
766
    objname = _("command line");
767
 
768
  if (is_error)
769
    gold_error("%s: %s", objname, buf);
770
  else
771
    gold_warning("%s: %s", objname, buf);
772
 
773
  delete[] buf;
774
 
775
  if (to->source() == Symbol::FROM_OBJECT)
776
    objname = to->object()->name().c_str();
777
  else
778
    objname = _("command line");
779
  gold_info("%s: %s: previous definition here", program_name, objname);
780
}
781
 
782
// A special case of should_override which is only called for a strong
783
// defined symbol from a regular object file.  This is used when
784
// defining special symbols.
785
 
786
bool
787
Symbol_table::should_override_with_special(const Symbol* to)
788
{
789
  bool adjust_common_sizes;
790
  unsigned int frombits = global_flag | regular_flag | def_flag;
791
  bool ret = Symbol_table::should_override(to, frombits, NULL,
792
                                           &adjust_common_sizes);
793
  gold_assert(!adjust_common_sizes);
794
  return ret;
795
}
796
 
797
// Override symbol base with a special symbol.
798
 
799
void
800
Symbol::override_base_with_special(const Symbol* from)
801
{
802
  gold_assert(this->name_ == from->name_ || this->has_alias());
803
 
804
  this->source_ = from->source_;
805
  switch (from->source_)
806
    {
807
    case FROM_OBJECT:
808
      this->u_.from_object = from->u_.from_object;
809
      break;
810
    case IN_OUTPUT_DATA:
811
      this->u_.in_output_data = from->u_.in_output_data;
812
      break;
813
    case IN_OUTPUT_SEGMENT:
814
      this->u_.in_output_segment = from->u_.in_output_segment;
815
      break;
816
    case IS_CONSTANT:
817
    case IS_UNDEFINED:
818
      break;
819
    default:
820
      gold_unreachable();
821
      break;
822
    }
823
 
824
  this->override_version(from->version_);
825
  this->type_ = from->type_;
826
  this->binding_ = from->binding_;
827
  this->override_visibility(from->visibility_);
828
  this->nonvis_ = from->nonvis_;
829
 
830
  // Special symbols are always considered to be regular symbols.
831
  this->in_reg_ = true;
832
 
833
  if (from->needs_dynsym_entry_)
834
    this->needs_dynsym_entry_ = true;
835
  if (from->needs_dynsym_value_)
836
    this->needs_dynsym_value_ = true;
837
 
838
  // We shouldn't see these flags.  If we do, we need to handle them
839
  // somehow.
840
  gold_assert(!from->is_target_special_ || this->is_target_special_);
841
  gold_assert(!from->is_forwarder_);
842
  gold_assert(!from->has_plt_offset_);
843
  gold_assert(!from->has_warning_);
844
  gold_assert(!from->is_copied_from_dynobj_);
845
  gold_assert(!from->is_forced_local_);
846
}
847
 
848
// Override a symbol with a special symbol.
849
 
850
template<int size>
851
void
852
Sized_symbol<size>::override_with_special(const Sized_symbol<size>* from)
853
{
854
  this->override_base_with_special(from);
855
  this->value_ = from->value_;
856
  this->symsize_ = from->symsize_;
857
}
858
 
859
// Override TOSYM with the special symbol FROMSYM.  This handles all
860
// aliases of TOSYM.
861
 
862
template<int size>
863
void
864
Symbol_table::override_with_special(Sized_symbol<size>* tosym,
865
                                    const Sized_symbol<size>* fromsym)
866
{
867
  tosym->override_with_special(fromsym);
868
  if (tosym->has_alias())
869
    {
870
      Symbol* sym = this->weak_aliases_[tosym];
871
      gold_assert(sym != NULL);
872
      Sized_symbol<size>* ssym = this->get_sized_symbol<size>(sym);
873
      do
874
        {
875
          ssym->override_with_special(fromsym);
876
          sym = this->weak_aliases_[ssym];
877
          gold_assert(sym != NULL);
878
          ssym = this->get_sized_symbol<size>(sym);
879
        }
880
      while (ssym != tosym);
881
    }
882
  if (tosym->binding() == elfcpp::STB_LOCAL
883
      || ((tosym->visibility() == elfcpp::STV_HIDDEN
884
           || tosym->visibility() == elfcpp::STV_INTERNAL)
885
          && (tosym->binding() == elfcpp::STB_GLOBAL
886
              || tosym->binding() == elfcpp::STB_WEAK)
887
          && !parameters->options().relocatable()))
888
    this->force_local(tosym);
889
}
890
 
891
// Instantiate the templates we need.  We could use the configure
892
// script to restrict this to only the ones needed for implemented
893
// targets.
894
 
895
#ifdef HAVE_TARGET_32_LITTLE
896
template
897
void
898
Symbol_table::resolve<32, false>(
899
    Sized_symbol<32>* to,
900
    const elfcpp::Sym<32, false>& sym,
901
    unsigned int st_shndx,
902
    bool is_ordinary,
903
    unsigned int orig_st_shndx,
904
    Object* object,
905
    const char* version);
906
#endif
907
 
908
#ifdef HAVE_TARGET_32_BIG
909
template
910
void
911
Symbol_table::resolve<32, true>(
912
    Sized_symbol<32>* to,
913
    const elfcpp::Sym<32, true>& sym,
914
    unsigned int st_shndx,
915
    bool is_ordinary,
916
    unsigned int orig_st_shndx,
917
    Object* object,
918
    const char* version);
919
#endif
920
 
921
#ifdef HAVE_TARGET_64_LITTLE
922
template
923
void
924
Symbol_table::resolve<64, false>(
925
    Sized_symbol<64>* to,
926
    const elfcpp::Sym<64, false>& sym,
927
    unsigned int st_shndx,
928
    bool is_ordinary,
929
    unsigned int orig_st_shndx,
930
    Object* object,
931
    const char* version);
932
#endif
933
 
934
#ifdef HAVE_TARGET_64_BIG
935
template
936
void
937
Symbol_table::resolve<64, true>(
938
    Sized_symbol<64>* to,
939
    const elfcpp::Sym<64, true>& sym,
940
    unsigned int st_shndx,
941
    bool is_ordinary,
942
    unsigned int orig_st_shndx,
943
    Object* object,
944
    const char* version);
945
#endif
946
 
947
#if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
948
template
949
void
950
Symbol_table::override_with_special<32>(Sized_symbol<32>*,
951
                                        const Sized_symbol<32>*);
952
#endif
953
 
954
#if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
955
template
956
void
957
Symbol_table::override_with_special<64>(Sized_symbol<64>*,
958
                                        const Sized_symbol<64>*);
959
#endif
960
 
961
} // End namespace gold.

powered by: WebSVN 2.1.0

© copyright 1999-2025 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.