OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-stable/] [binutils-2.20.1/] [gold/] [script.cc] - Blame information for rev 825

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 205 julius
// script.cc -- handle linker scripts for gold.
2
 
3
// Copyright 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
4
// Written by Ian Lance Taylor <iant@google.com>.
5
 
6
// This file is part of gold.
7
 
8
// This program is free software; you can redistribute it and/or modify
9
// it under the terms of the GNU General Public License as published by
10
// the Free Software Foundation; either version 3 of the License, or
11
// (at your option) any later version.
12
 
13
// This program is distributed in the hope that it will be useful,
14
// but WITHOUT ANY WARRANTY; without even the implied warranty of
15
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16
// GNU General Public License for more details.
17
 
18
// You should have received a copy of the GNU General Public License
19
// along with this program; if not, write to the Free Software
20
// Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21
// MA 02110-1301, USA.
22
 
23
#include "gold.h"
24
 
25
#include <cstdio>
26
#include <cstdlib>
27
#include <cstring>
28
#include <fnmatch.h>
29
#include <string>
30
#include <vector>
31
#include "filenames.h"
32
 
33
#include "elfcpp.h"
34
#include "demangle.h"
35
#include "dirsearch.h"
36
#include "options.h"
37
#include "fileread.h"
38
#include "workqueue.h"
39
#include "readsyms.h"
40
#include "parameters.h"
41
#include "layout.h"
42
#include "symtab.h"
43
#include "target-select.h"
44
#include "script.h"
45
#include "script-c.h"
46
#include "incremental.h"
47
 
48
namespace gold
49
{
50
 
51
// A token read from a script file.  We don't implement keywords here;
52
// all keywords are simply represented as a string.
53
 
54
class Token
55
{
56
 public:
57
  // Token classification.
58
  enum Classification
59
  {
60
    // Token is invalid.
61
    TOKEN_INVALID,
62
    // Token indicates end of input.
63
    TOKEN_EOF,
64
    // Token is a string of characters.
65
    TOKEN_STRING,
66
    // Token is a quoted string of characters.
67
    TOKEN_QUOTED_STRING,
68
    // Token is an operator.
69
    TOKEN_OPERATOR,
70
    // Token is a number (an integer).
71
    TOKEN_INTEGER
72
  };
73
 
74
  // We need an empty constructor so that we can put this STL objects.
75
  Token()
76
    : classification_(TOKEN_INVALID), value_(NULL), value_length_(0),
77
      opcode_(0), lineno_(0), charpos_(0)
78
  { }
79
 
80
  // A general token with no value.
81
  Token(Classification classification, int lineno, int charpos)
82
    : classification_(classification), value_(NULL), value_length_(0),
83
      opcode_(0), lineno_(lineno), charpos_(charpos)
84
  {
85
    gold_assert(classification == TOKEN_INVALID
86
                || classification == TOKEN_EOF);
87
  }
88
 
89
  // A general token with a value.
90
  Token(Classification classification, const char* value, size_t length,
91
        int lineno, int charpos)
92
    : classification_(classification), value_(value), value_length_(length),
93
      opcode_(0), lineno_(lineno), charpos_(charpos)
94
  {
95
    gold_assert(classification != TOKEN_INVALID
96
                && classification != TOKEN_EOF);
97
  }
98
 
99
  // A token representing an operator.
100
  Token(int opcode, int lineno, int charpos)
101
    : classification_(TOKEN_OPERATOR), value_(NULL), value_length_(0),
102
      opcode_(opcode), lineno_(lineno), charpos_(charpos)
103
  { }
104
 
105
  // Return whether the token is invalid.
106
  bool
107
  is_invalid() const
108
  { return this->classification_ == TOKEN_INVALID; }
109
 
110
  // Return whether this is an EOF token.
111
  bool
112
  is_eof() const
113
  { return this->classification_ == TOKEN_EOF; }
114
 
115
  // Return the token classification.
116
  Classification
117
  classification() const
118
  { return this->classification_; }
119
 
120
  // Return the line number at which the token starts.
121
  int
122
  lineno() const
123
  { return this->lineno_; }
124
 
125
  // Return the character position at this the token starts.
126
  int
127
  charpos() const
128
  { return this->charpos_; }
129
 
130
  // Get the value of a token.
131
 
132
  const char*
133
  string_value(size_t* length) const
134
  {
135
    gold_assert(this->classification_ == TOKEN_STRING
136
                || this->classification_ == TOKEN_QUOTED_STRING);
137
    *length = this->value_length_;
138
    return this->value_;
139
  }
140
 
141
  int
142
  operator_value() const
143
  {
144
    gold_assert(this->classification_ == TOKEN_OPERATOR);
145
    return this->opcode_;
146
  }
147
 
148
  uint64_t
149
  integer_value() const
150
  {
151
    gold_assert(this->classification_ == TOKEN_INTEGER);
152
    // Null terminate.
153
    std::string s(this->value_, this->value_length_);
154
    return strtoull(s.c_str(), NULL, 0);
155
  }
156
 
157
 private:
158
  // The token classification.
159
  Classification classification_;
160
  // The token value, for TOKEN_STRING or TOKEN_QUOTED_STRING or
161
  // TOKEN_INTEGER.
162
  const char* value_;
163
  // The length of the token value.
164
  size_t value_length_;
165
  // The token value, for TOKEN_OPERATOR.
166
  int opcode_;
167
  // The line number where this token started (one based).
168
  int lineno_;
169
  // The character position within the line where this token started
170
  // (one based).
171
  int charpos_;
172
};
173
 
174
// This class handles lexing a file into a sequence of tokens.
175
 
176
class Lex
177
{
178
 public:
179
  // We unfortunately have to support different lexing modes, because
180
  // when reading different parts of a linker script we need to parse
181
  // things differently.
182
  enum Mode
183
  {
184
    // Reading an ordinary linker script.
185
    LINKER_SCRIPT,
186
    // Reading an expression in a linker script.
187
    EXPRESSION,
188
    // Reading a version script.
189
    VERSION_SCRIPT,
190
    // Reading a --dynamic-list file.
191
    DYNAMIC_LIST
192
  };
193
 
194
  Lex(const char* input_string, size_t input_length, int parsing_token)
195
    : input_string_(input_string), input_length_(input_length),
196
      current_(input_string), mode_(LINKER_SCRIPT),
197
      first_token_(parsing_token), token_(),
198
      lineno_(1), linestart_(input_string)
199
  { }
200
 
201
  // Read a file into a string.
202
  static void
203
  read_file(Input_file*, std::string*);
204
 
205
  // Return the next token.
206
  const Token*
207
  next_token();
208
 
209
  // Return the current lexing mode.
210
  Lex::Mode
211
  mode() const
212
  { return this->mode_; }
213
 
214
  // Set the lexing mode.
215
  void
216
  set_mode(Mode mode)
217
  { this->mode_ = mode; }
218
 
219
 private:
220
  Lex(const Lex&);
221
  Lex& operator=(const Lex&);
222
 
223
  // Make a general token with no value at the current location.
224
  Token
225
  make_token(Token::Classification c, const char* start) const
226
  { return Token(c, this->lineno_, start - this->linestart_ + 1); }
227
 
228
  // Make a general token with a value at the current location.
229
  Token
230
  make_token(Token::Classification c, const char* v, size_t len,
231
             const char* start)
232
    const
233
  { return Token(c, v, len, this->lineno_, start - this->linestart_ + 1); }
234
 
235
  // Make an operator token at the current location.
236
  Token
237
  make_token(int opcode, const char* start) const
238
  { return Token(opcode, this->lineno_, start - this->linestart_ + 1); }
239
 
240
  // Make an invalid token at the current location.
241
  Token
242
  make_invalid_token(const char* start)
243
  { return this->make_token(Token::TOKEN_INVALID, start); }
244
 
245
  // Make an EOF token at the current location.
246
  Token
247
  make_eof_token(const char* start)
248
  { return this->make_token(Token::TOKEN_EOF, start); }
249
 
250
  // Return whether C can be the first character in a name.  C2 is the
251
  // next character, since we sometimes need that.
252
  inline bool
253
  can_start_name(char c, char c2);
254
 
255
  // If C can appear in a name which has already started, return a
256
  // pointer to a character later in the token or just past
257
  // it. Otherwise, return NULL.
258
  inline const char*
259
  can_continue_name(const char* c);
260
 
261
  // Return whether C, C2, C3 can start a hex number.
262
  inline bool
263
  can_start_hex(char c, char c2, char c3);
264
 
265
  // If C can appear in a hex number which has already started, return
266
  // a pointer to a character later in the token or just past
267
  // it. Otherwise, return NULL.
268
  inline const char*
269
  can_continue_hex(const char* c);
270
 
271
  // Return whether C can start a non-hex number.
272
  static inline bool
273
  can_start_number(char c);
274
 
275
  // If C can appear in a decimal number which has already started,
276
  // return a pointer to a character later in the token or just past
277
  // it. Otherwise, return NULL.
278
  inline const char*
279
  can_continue_number(const char* c)
280
  { return Lex::can_start_number(*c) ? c + 1 : NULL; }
281
 
282
  // If C1 C2 C3 form a valid three character operator, return the
283
  // opcode.  Otherwise return 0.
284
  static inline int
285
  three_char_operator(char c1, char c2, char c3);
286
 
287
  // If C1 C2 form a valid two character operator, return the opcode.
288
  // Otherwise return 0.
289
  static inline int
290
  two_char_operator(char c1, char c2);
291
 
292
  // If C1 is a valid one character operator, return the opcode.
293
  // Otherwise return 0.
294
  static inline int
295
  one_char_operator(char c1);
296
 
297
  // Read the next token.
298
  Token
299
  get_token(const char**);
300
 
301
  // Skip a C style /* */ comment.  Return false if the comment did
302
  // not end.
303
  bool
304
  skip_c_comment(const char**);
305
 
306
  // Skip a line # comment.  Return false if there was no newline.
307
  bool
308
  skip_line_comment(const char**);
309
 
310
  // Build a token CLASSIFICATION from all characters that match
311
  // CAN_CONTINUE_FN.  The token starts at START.  Start matching from
312
  // MATCH.  Set *PP to the character following the token.
313
  inline Token
314
  gather_token(Token::Classification,
315
               const char* (Lex::*can_continue_fn)(const char*),
316
               const char* start, const char* match, const char** pp);
317
 
318
  // Build a token from a quoted string.
319
  Token
320
  gather_quoted_string(const char** pp);
321
 
322
  // The string we are tokenizing.
323
  const char* input_string_;
324
  // The length of the string.
325
  size_t input_length_;
326
  // The current offset into the string.
327
  const char* current_;
328
  // The current lexing mode.
329
  Mode mode_;
330
  // The code to use for the first token.  This is set to 0 after it
331
  // is used.
332
  int first_token_;
333
  // The current token.
334
  Token token_;
335
  // The current line number.
336
  int lineno_;
337
  // The start of the current line in the string.
338
  const char* linestart_;
339
};
340
 
341
// Read the whole file into memory.  We don't expect linker scripts to
342
// be large, so we just use a std::string as a buffer.  We ignore the
343
// data we've already read, so that we read aligned buffers.
344
 
345
void
346
Lex::read_file(Input_file* input_file, std::string* contents)
347
{
348
  off_t filesize = input_file->file().filesize();
349
  contents->clear();
350
  contents->reserve(filesize);
351
 
352
  off_t off = 0;
353
  unsigned char buf[BUFSIZ];
354
  while (off < filesize)
355
    {
356
      off_t get = BUFSIZ;
357
      if (get > filesize - off)
358
        get = filesize - off;
359
      input_file->file().read(off, get, buf);
360
      contents->append(reinterpret_cast<char*>(&buf[0]), get);
361
      off += get;
362
    }
363
}
364
 
365
// Return whether C can be the start of a name, if the next character
366
// is C2.  A name can being with a letter, underscore, period, or
367
// dollar sign.  Because a name can be a file name, we also permit
368
// forward slash, backslash, and tilde.  Tilde is the tricky case
369
// here; GNU ld also uses it as a bitwise not operator.  It is only
370
// recognized as the operator if it is not immediately followed by
371
// some character which can appear in a symbol.  That is, when we
372
// don't know that we are looking at an expression, "~0" is a file
373
// name, and "~ 0" is an expression using bitwise not.  We are
374
// compatible.
375
 
376
inline bool
377
Lex::can_start_name(char c, char c2)
378
{
379
  switch (c)
380
    {
381
    case 'A': case 'B': case 'C': case 'D': case 'E': case 'F':
382
    case 'G': case 'H': case 'I': case 'J': case 'K': case 'L':
383
    case 'M': case 'N': case 'O': case 'Q': case 'P': case 'R':
384
    case 'S': case 'T': case 'U': case 'V': case 'W': case 'X':
385
    case 'Y': case 'Z':
386
    case 'a': case 'b': case 'c': case 'd': case 'e': case 'f':
387
    case 'g': case 'h': case 'i': case 'j': case 'k': case 'l':
388
    case 'm': case 'n': case 'o': case 'q': case 'p': case 'r':
389
    case 's': case 't': case 'u': case 'v': case 'w': case 'x':
390
    case 'y': case 'z':
391
    case '_': case '.': case '$':
392
      return true;
393
 
394
    case '/': case '\\':
395
      return this->mode_ == LINKER_SCRIPT;
396
 
397
    case '~':
398
      return this->mode_ == LINKER_SCRIPT && can_continue_name(&c2);
399
 
400
    case '*': case '[':
401
      return (this->mode_ == VERSION_SCRIPT
402
              || this->mode_ == DYNAMIC_LIST
403
              || (this->mode_ == LINKER_SCRIPT
404
                  && can_continue_name(&c2)));
405
 
406
    default:
407
      return false;
408
    }
409
}
410
 
411
// Return whether C can continue a name which has already started.
412
// Subsequent characters in a name are the same as the leading
413
// characters, plus digits and "=+-:[],?*".  So in general the linker
414
// script language requires spaces around operators, unless we know
415
// that we are parsing an expression.
416
 
417
inline const char*
418
Lex::can_continue_name(const char* c)
419
{
420
  switch (*c)
421
    {
422
    case 'A': case 'B': case 'C': case 'D': case 'E': case 'F':
423
    case 'G': case 'H': case 'I': case 'J': case 'K': case 'L':
424
    case 'M': case 'N': case 'O': case 'Q': case 'P': case 'R':
425
    case 'S': case 'T': case 'U': case 'V': case 'W': case 'X':
426
    case 'Y': case 'Z':
427
    case 'a': case 'b': case 'c': case 'd': case 'e': case 'f':
428
    case 'g': case 'h': case 'i': case 'j': case 'k': case 'l':
429
    case 'm': case 'n': case 'o': case 'q': case 'p': case 'r':
430
    case 's': case 't': case 'u': case 'v': case 'w': case 'x':
431
    case 'y': case 'z':
432
    case '_': case '.': case '$':
433
    case '0': case '1': case '2': case '3': case '4':
434
    case '5': case '6': case '7': case '8': case '9':
435
      return c + 1;
436
 
437
    // TODO(csilvers): why not allow ~ in names for version-scripts?
438
    case '/': case '\\': case '~':
439
    case '=': case '+':
440
    case ',':
441
      if (this->mode_ == LINKER_SCRIPT)
442
        return c + 1;
443
      return NULL;
444
 
445
    case '[': case ']': case '*': case '?': case '-':
446
      if (this->mode_ == LINKER_SCRIPT || this->mode_ == VERSION_SCRIPT
447
          || this->mode_ == DYNAMIC_LIST)
448
        return c + 1;
449
      return NULL;
450
 
451
    // TODO(csilvers): why allow this?  ^ is meaningless in version scripts.
452
    case '^':
453
      if (this->mode_ == VERSION_SCRIPT || this->mode_ == DYNAMIC_LIST)
454
        return c + 1;
455
      return NULL;
456
 
457
    case ':':
458
      if (this->mode_ == LINKER_SCRIPT)
459
        return c + 1;
460
      else if ((this->mode_ == VERSION_SCRIPT || this->mode_ == DYNAMIC_LIST)
461
               && (c[1] == ':'))
462
        {
463
          // A name can have '::' in it, as that's a c++ namespace
464
          // separator. But a single colon is not part of a name.
465
          return c + 2;
466
        }
467
      return NULL;
468
 
469
    default:
470
      return NULL;
471
    }
472
}
473
 
474
// For a number we accept 0x followed by hex digits, or any sequence
475
// of digits.  The old linker accepts leading '$' for hex, and
476
// trailing HXBOD.  Those are for MRI compatibility and we don't
477
// accept them.  The old linker also accepts trailing MK for mega or
478
// kilo.  FIXME: Those are mentioned in the documentation, and we
479
// should accept them.
480
 
481
// Return whether C1 C2 C3 can start a hex number.
482
 
483
inline bool
484
Lex::can_start_hex(char c1, char c2, char c3)
485
{
486
  if (c1 == '0' && (c2 == 'x' || c2 == 'X'))
487
    return this->can_continue_hex(&c3);
488
  return false;
489
}
490
 
491
// Return whether C can appear in a hex number.
492
 
493
inline const char*
494
Lex::can_continue_hex(const char* c)
495
{
496
  switch (*c)
497
    {
498
    case '0': case '1': case '2': case '3': case '4':
499
    case '5': case '6': case '7': case '8': case '9':
500
    case 'A': case 'B': case 'C': case 'D': case 'E': case 'F':
501
    case 'a': case 'b': case 'c': case 'd': case 'e': case 'f':
502
      return c + 1;
503
 
504
    default:
505
      return NULL;
506
    }
507
}
508
 
509
// Return whether C can start a non-hex number.
510
 
511
inline bool
512
Lex::can_start_number(char c)
513
{
514
  switch (c)
515
    {
516
    case '0': case '1': case '2': case '3': case '4':
517
    case '5': case '6': case '7': case '8': case '9':
518
      return true;
519
 
520
    default:
521
      return false;
522
    }
523
}
524
 
525
// If C1 C2 C3 form a valid three character operator, return the
526
// opcode (defined in the yyscript.h file generated from yyscript.y).
527
// Otherwise return 0.
528
 
529
inline int
530
Lex::three_char_operator(char c1, char c2, char c3)
531
{
532
  switch (c1)
533
    {
534
    case '<':
535
      if (c2 == '<' && c3 == '=')
536
        return LSHIFTEQ;
537
      break;
538
    case '>':
539
      if (c2 == '>' && c3 == '=')
540
        return RSHIFTEQ;
541
      break;
542
    default:
543
      break;
544
    }
545
  return 0;
546
}
547
 
548
// If C1 C2 form a valid two character operator, return the opcode
549
// (defined in the yyscript.h file generated from yyscript.y).
550
// Otherwise return 0.
551
 
552
inline int
553
Lex::two_char_operator(char c1, char c2)
554
{
555
  switch (c1)
556
    {
557
    case '=':
558
      if (c2 == '=')
559
        return EQ;
560
      break;
561
    case '!':
562
      if (c2 == '=')
563
        return NE;
564
      break;
565
    case '+':
566
      if (c2 == '=')
567
        return PLUSEQ;
568
      break;
569
    case '-':
570
      if (c2 == '=')
571
        return MINUSEQ;
572
      break;
573
    case '*':
574
      if (c2 == '=')
575
        return MULTEQ;
576
      break;
577
    case '/':
578
      if (c2 == '=')
579
        return DIVEQ;
580
      break;
581
    case '|':
582
      if (c2 == '=')
583
        return OREQ;
584
      if (c2 == '|')
585
        return OROR;
586
      break;
587
    case '&':
588
      if (c2 == '=')
589
        return ANDEQ;
590
      if (c2 == '&')
591
        return ANDAND;
592
      break;
593
    case '>':
594
      if (c2 == '=')
595
        return GE;
596
      if (c2 == '>')
597
        return RSHIFT;
598
      break;
599
    case '<':
600
      if (c2 == '=')
601
        return LE;
602
      if (c2 == '<')
603
        return LSHIFT;
604
      break;
605
    default:
606
      break;
607
    }
608
  return 0;
609
}
610
 
611
// If C1 is a valid operator, return the opcode.  Otherwise return 0.
612
 
613
inline int
614
Lex::one_char_operator(char c1)
615
{
616
  switch (c1)
617
    {
618
    case '+':
619
    case '-':
620
    case '*':
621
    case '/':
622
    case '%':
623
    case '!':
624
    case '&':
625
    case '|':
626
    case '^':
627
    case '~':
628
    case '<':
629
    case '>':
630
    case '=':
631
    case '?':
632
    case ',':
633
    case '(':
634
    case ')':
635
    case '{':
636
    case '}':
637
    case '[':
638
    case ']':
639
    case ':':
640
    case ';':
641
      return c1;
642
    default:
643
      return 0;
644
    }
645
}
646
 
647
// Skip a C style comment.  *PP points to just after the "/*".  Return
648
// false if the comment did not end.
649
 
650
bool
651
Lex::skip_c_comment(const char** pp)
652
{
653
  const char* p = *pp;
654
  while (p[0] != '*' || p[1] != '/')
655
    {
656
      if (*p == '\0')
657
        {
658
          *pp = p;
659
          return false;
660
        }
661
 
662
      if (*p == '\n')
663
        {
664
          ++this->lineno_;
665
          this->linestart_ = p + 1;
666
        }
667
      ++p;
668
    }
669
 
670
  *pp = p + 2;
671
  return true;
672
}
673
 
674
// Skip a line # comment.  Return false if there was no newline.
675
 
676
bool
677
Lex::skip_line_comment(const char** pp)
678
{
679
  const char* p = *pp;
680
  size_t skip = strcspn(p, "\n");
681
  if (p[skip] == '\0')
682
    {
683
      *pp = p + skip;
684
      return false;
685
    }
686
 
687
  p += skip + 1;
688
  ++this->lineno_;
689
  this->linestart_ = p;
690
  *pp = p;
691
 
692
  return true;
693
}
694
 
695
// Build a token CLASSIFICATION from all characters that match
696
// CAN_CONTINUE_FN.  Update *PP.
697
 
698
inline Token
699
Lex::gather_token(Token::Classification classification,
700
                  const char* (Lex::*can_continue_fn)(const char*),
701
                  const char* start,
702
                  const char* match,
703
                  const char **pp)
704
{
705
  const char* new_match = NULL;
706
  while ((new_match = (this->*can_continue_fn)(match)))
707
    match = new_match;
708
  *pp = match;
709
  return this->make_token(classification, start, match - start, start);
710
}
711
 
712
// Build a token from a quoted string.
713
 
714
Token
715
Lex::gather_quoted_string(const char** pp)
716
{
717
  const char* start = *pp;
718
  const char* p = start;
719
  ++p;
720
  size_t skip = strcspn(p, "\"\n");
721
  if (p[skip] != '"')
722
    return this->make_invalid_token(start);
723
  *pp = p + skip + 1;
724
  return this->make_token(Token::TOKEN_QUOTED_STRING, p, skip, start);
725
}
726
 
727
// Return the next token at *PP.  Update *PP.  General guideline: we
728
// require linker scripts to be simple ASCII.  No unicode linker
729
// scripts.  In particular we can assume that any '\0' is the end of
730
// the input.
731
 
732
Token
733
Lex::get_token(const char** pp)
734
{
735
  const char* p = *pp;
736
 
737
  while (true)
738
    {
739
      if (*p == '\0')
740
        {
741
          *pp = p;
742
          return this->make_eof_token(p);
743
        }
744
 
745
      // Skip whitespace quickly.
746
      while (*p == ' ' || *p == '\t' || *p == '\r')
747
        ++p;
748
 
749
      if (*p == '\n')
750
        {
751
          ++p;
752
          ++this->lineno_;
753
          this->linestart_ = p;
754
          continue;
755
        }
756
 
757
      // Skip C style comments.
758
      if (p[0] == '/' && p[1] == '*')
759
        {
760
          int lineno = this->lineno_;
761
          int charpos = p - this->linestart_ + 1;
762
 
763
          *pp = p + 2;
764
          if (!this->skip_c_comment(pp))
765
            return Token(Token::TOKEN_INVALID, lineno, charpos);
766
          p = *pp;
767
 
768
          continue;
769
        }
770
 
771
      // Skip line comments.
772
      if (*p == '#')
773
        {
774
          *pp = p + 1;
775
          if (!this->skip_line_comment(pp))
776
            return this->make_eof_token(p);
777
          p = *pp;
778
          continue;
779
        }
780
 
781
      // Check for a name.
782
      if (this->can_start_name(p[0], p[1]))
783
        return this->gather_token(Token::TOKEN_STRING,
784
                                  &Lex::can_continue_name,
785
                                  p, p + 1, pp);
786
 
787
      // We accept any arbitrary name in double quotes, as long as it
788
      // does not cross a line boundary.
789
      if (*p == '"')
790
        {
791
          *pp = p;
792
          return this->gather_quoted_string(pp);
793
        }
794
 
795
      // Check for a number.
796
 
797
      if (this->can_start_hex(p[0], p[1], p[2]))
798
        return this->gather_token(Token::TOKEN_INTEGER,
799
                                  &Lex::can_continue_hex,
800
                                  p, p + 3, pp);
801
 
802
      if (Lex::can_start_number(p[0]))
803
        return this->gather_token(Token::TOKEN_INTEGER,
804
                                  &Lex::can_continue_number,
805
                                  p, p + 1, pp);
806
 
807
      // Check for operators.
808
 
809
      int opcode = Lex::three_char_operator(p[0], p[1], p[2]);
810
      if (opcode != 0)
811
        {
812
          *pp = p + 3;
813
          return this->make_token(opcode, p);
814
        }
815
 
816
      opcode = Lex::two_char_operator(p[0], p[1]);
817
      if (opcode != 0)
818
        {
819
          *pp = p + 2;
820
          return this->make_token(opcode, p);
821
        }
822
 
823
      opcode = Lex::one_char_operator(p[0]);
824
      if (opcode != 0)
825
        {
826
          *pp = p + 1;
827
          return this->make_token(opcode, p);
828
        }
829
 
830
      return this->make_token(Token::TOKEN_INVALID, p);
831
    }
832
}
833
 
834
// Return the next token.
835
 
836
const Token*
837
Lex::next_token()
838
{
839
  // The first token is special.
840
  if (this->first_token_ != 0)
841
    {
842
      this->token_ = Token(this->first_token_, 0, 0);
843
      this->first_token_ = 0;
844
      return &this->token_;
845
    }
846
 
847
  this->token_ = this->get_token(&this->current_);
848
 
849
  // Don't let an early null byte fool us into thinking that we've
850
  // reached the end of the file.
851
  if (this->token_.is_eof()
852
      && (static_cast<size_t>(this->current_ - this->input_string_)
853
          < this->input_length_))
854
    this->token_ = this->make_invalid_token(this->current_);
855
 
856
  return &this->token_;
857
}
858
 
859
// class Symbol_assignment.
860
 
861
// Add the symbol to the symbol table.  This makes sure the symbol is
862
// there and defined.  The actual value is stored later.  We can't
863
// determine the actual value at this point, because we can't
864
// necessarily evaluate the expression until all ordinary symbols have
865
// been finalized.
866
 
867
// The GNU linker lets symbol assignments in the linker script
868
// silently override defined symbols in object files.  We are
869
// compatible.  FIXME: Should we issue a warning?
870
 
871
void
872
Symbol_assignment::add_to_table(Symbol_table* symtab)
873
{
874
  elfcpp::STV vis = this->hidden_ ? elfcpp::STV_HIDDEN : elfcpp::STV_DEFAULT;
875
  this->sym_ = symtab->define_as_constant(this->name_.c_str(),
876
                                          NULL, // version
877
                                          0, // value
878
                                          0, // size
879
                                          elfcpp::STT_NOTYPE,
880
                                          elfcpp::STB_GLOBAL,
881
                                          vis,
882
                                          0, // nonvis
883
                                          this->provide_,
884
                                          true); // force_override
885
}
886
 
887
// Finalize a symbol value.
888
 
889
void
890
Symbol_assignment::finalize(Symbol_table* symtab, const Layout* layout)
891
{
892
  this->finalize_maybe_dot(symtab, layout, false, 0, NULL);
893
}
894
 
895
// Finalize a symbol value which can refer to the dot symbol.
896
 
897
void
898
Symbol_assignment::finalize_with_dot(Symbol_table* symtab,
899
                                     const Layout* layout,
900
                                     uint64_t dot_value,
901
                                     Output_section* dot_section)
902
{
903
  this->finalize_maybe_dot(symtab, layout, true, dot_value, dot_section);
904
}
905
 
906
// Finalize a symbol value, internal version.
907
 
908
void
909
Symbol_assignment::finalize_maybe_dot(Symbol_table* symtab,
910
                                      const Layout* layout,
911
                                      bool is_dot_available,
912
                                      uint64_t dot_value,
913
                                      Output_section* dot_section)
914
{
915
  // If we were only supposed to provide this symbol, the sym_ field
916
  // will be NULL if the symbol was not referenced.
917
  if (this->sym_ == NULL)
918
    {
919
      gold_assert(this->provide_);
920
      return;
921
    }
922
 
923
  if (parameters->target().get_size() == 32)
924
    {
925
#if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
926
      this->sized_finalize<32>(symtab, layout, is_dot_available, dot_value,
927
                               dot_section);
928
#else
929
      gold_unreachable();
930
#endif
931
    }
932
  else if (parameters->target().get_size() == 64)
933
    {
934
#if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
935
      this->sized_finalize<64>(symtab, layout, is_dot_available, dot_value,
936
                               dot_section);
937
#else
938
      gold_unreachable();
939
#endif
940
    }
941
  else
942
    gold_unreachable();
943
}
944
 
945
template<int size>
946
void
947
Symbol_assignment::sized_finalize(Symbol_table* symtab, const Layout* layout,
948
                                  bool is_dot_available, uint64_t dot_value,
949
                                  Output_section* dot_section)
950
{
951
  Output_section* section;
952
  uint64_t final_val = this->val_->eval_maybe_dot(symtab, layout, true,
953
                                                  is_dot_available,
954
                                                  dot_value, dot_section,
955
                                                  &section);
956
  Sized_symbol<size>* ssym = symtab->get_sized_symbol<size>(this->sym_);
957
  ssym->set_value(final_val);
958
  if (section != NULL)
959
    ssym->set_output_section(section);
960
}
961
 
962
// Set the symbol value if the expression yields an absolute value.
963
 
964
void
965
Symbol_assignment::set_if_absolute(Symbol_table* symtab, const Layout* layout,
966
                                   bool is_dot_available, uint64_t dot_value)
967
{
968
  if (this->sym_ == NULL)
969
    return;
970
 
971
  Output_section* val_section;
972
  uint64_t val = this->val_->eval_maybe_dot(symtab, layout, false,
973
                                            is_dot_available, dot_value,
974
                                            NULL, &val_section);
975
  if (val_section != NULL)
976
    return;
977
 
978
  if (parameters->target().get_size() == 32)
979
    {
980
#if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
981
      Sized_symbol<32>* ssym = symtab->get_sized_symbol<32>(this->sym_);
982
      ssym->set_value(val);
983
#else
984
      gold_unreachable();
985
#endif
986
    }
987
  else if (parameters->target().get_size() == 64)
988
    {
989
#if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
990
      Sized_symbol<64>* ssym = symtab->get_sized_symbol<64>(this->sym_);
991
      ssym->set_value(val);
992
#else
993
      gold_unreachable();
994
#endif
995
    }
996
  else
997
    gold_unreachable();
998
}
999
 
1000
// Print for debugging.
1001
 
1002
void
1003
Symbol_assignment::print(FILE* f) const
1004
{
1005
  if (this->provide_ && this->hidden_)
1006
    fprintf(f, "PROVIDE_HIDDEN(");
1007
  else if (this->provide_)
1008
    fprintf(f, "PROVIDE(");
1009
  else if (this->hidden_)
1010
    gold_unreachable();
1011
 
1012
  fprintf(f, "%s = ", this->name_.c_str());
1013
  this->val_->print(f);
1014
 
1015
  if (this->provide_ || this->hidden_)
1016
    fprintf(f, ")");
1017
 
1018
  fprintf(f, "\n");
1019
}
1020
 
1021
// Class Script_assertion.
1022
 
1023
// Check the assertion.
1024
 
1025
void
1026
Script_assertion::check(const Symbol_table* symtab, const Layout* layout)
1027
{
1028
  if (!this->check_->eval(symtab, layout, true))
1029
    gold_error("%s", this->message_.c_str());
1030
}
1031
 
1032
// Print for debugging.
1033
 
1034
void
1035
Script_assertion::print(FILE* f) const
1036
{
1037
  fprintf(f, "ASSERT(");
1038
  this->check_->print(f);
1039
  fprintf(f, ", \"%s\")\n", this->message_.c_str());
1040
}
1041
 
1042
// Class Script_options.
1043
 
1044
Script_options::Script_options()
1045
  : entry_(), symbol_assignments_(), version_script_info_(),
1046
    script_sections_()
1047
{
1048
}
1049
 
1050
// Add a symbol to be defined.
1051
 
1052
void
1053
Script_options::add_symbol_assignment(const char* name, size_t length,
1054
                                      Expression* value, bool provide,
1055
                                      bool hidden)
1056
{
1057
  if (length != 1 || name[0] != '.')
1058
    {
1059
      if (this->script_sections_.in_sections_clause())
1060
        this->script_sections_.add_symbol_assignment(name, length, value,
1061
                                                     provide, hidden);
1062
      else
1063
        {
1064
          Symbol_assignment* p = new Symbol_assignment(name, length, value,
1065
                                                       provide, hidden);
1066
          this->symbol_assignments_.push_back(p);
1067
        }
1068
    }
1069
  else
1070
    {
1071
      if (provide || hidden)
1072
        gold_error(_("invalid use of PROVIDE for dot symbol"));
1073
 
1074
      // The GNU linker permits assignments to dot outside of SECTIONS
1075
      // clauses and treats them as occurring inside, so we don't
1076
      // check in_sections_clause here.
1077
      this->script_sections_.add_dot_assignment(value);
1078
    }
1079
}
1080
 
1081
// Add an assertion.
1082
 
1083
void
1084
Script_options::add_assertion(Expression* check, const char* message,
1085
                              size_t messagelen)
1086
{
1087
  if (this->script_sections_.in_sections_clause())
1088
    this->script_sections_.add_assertion(check, message, messagelen);
1089
  else
1090
    {
1091
      Script_assertion* p = new Script_assertion(check, message, messagelen);
1092
      this->assertions_.push_back(p);
1093
    }
1094
}
1095
 
1096
// Create sections required by any linker scripts.
1097
 
1098
void
1099
Script_options::create_script_sections(Layout* layout)
1100
{
1101
  if (this->saw_sections_clause())
1102
    this->script_sections_.create_sections(layout);
1103
}
1104
 
1105
// Add any symbols we are defining to the symbol table.
1106
 
1107
void
1108
Script_options::add_symbols_to_table(Symbol_table* symtab)
1109
{
1110
  for (Symbol_assignments::iterator p = this->symbol_assignments_.begin();
1111
       p != this->symbol_assignments_.end();
1112
       ++p)
1113
    (*p)->add_to_table(symtab);
1114
  this->script_sections_.add_symbols_to_table(symtab);
1115
}
1116
 
1117
// Finalize symbol values.  Also check assertions.
1118
 
1119
void
1120
Script_options::finalize_symbols(Symbol_table* symtab, const Layout* layout)
1121
{
1122
  // We finalize the symbols defined in SECTIONS first, because they
1123
  // are the ones which may have changed.  This way if symbol outside
1124
  // SECTIONS are defined in terms of symbols inside SECTIONS, they
1125
  // will get the right value.
1126
  this->script_sections_.finalize_symbols(symtab, layout);
1127
 
1128
  for (Symbol_assignments::iterator p = this->symbol_assignments_.begin();
1129
       p != this->symbol_assignments_.end();
1130
       ++p)
1131
    (*p)->finalize(symtab, layout);
1132
 
1133
  for (Assertions::iterator p = this->assertions_.begin();
1134
       p != this->assertions_.end();
1135
       ++p)
1136
    (*p)->check(symtab, layout);
1137
}
1138
 
1139
// Set section addresses.  We set all the symbols which have absolute
1140
// values.  Then we let the SECTIONS clause do its thing.  This
1141
// returns the segment which holds the file header and segment
1142
// headers, if any.
1143
 
1144
Output_segment*
1145
Script_options::set_section_addresses(Symbol_table* symtab, Layout* layout)
1146
{
1147
  for (Symbol_assignments::iterator p = this->symbol_assignments_.begin();
1148
       p != this->symbol_assignments_.end();
1149
       ++p)
1150
    (*p)->set_if_absolute(symtab, layout, false, 0);
1151
 
1152
  return this->script_sections_.set_section_addresses(symtab, layout);
1153
}
1154
 
1155
// This class holds data passed through the parser to the lexer and to
1156
// the parser support functions.  This avoids global variables.  We
1157
// can't use global variables because we need not be called by a
1158
// singleton thread.
1159
 
1160
class Parser_closure
1161
{
1162
 public:
1163
  Parser_closure(const char* filename,
1164
                 const Position_dependent_options& posdep_options,
1165
                 bool in_group, bool is_in_sysroot,
1166
                 Command_line* command_line,
1167
                 Script_options* script_options,
1168
                 Lex* lex,
1169
                 bool skip_on_incompatible_target)
1170
    : filename_(filename), posdep_options_(posdep_options),
1171
      in_group_(in_group), is_in_sysroot_(is_in_sysroot),
1172
      skip_on_incompatible_target_(skip_on_incompatible_target),
1173
      found_incompatible_target_(false),
1174
      command_line_(command_line), script_options_(script_options),
1175
      version_script_info_(script_options->version_script_info()),
1176
      lex_(lex), lineno_(0), charpos_(0), lex_mode_stack_(), inputs_(NULL)
1177
  {
1178
    // We start out processing C symbols in the default lex mode.
1179
    language_stack_.push_back("");
1180
    lex_mode_stack_.push_back(lex->mode());
1181
  }
1182
 
1183
  // Return the file name.
1184
  const char*
1185
  filename() const
1186
  { return this->filename_; }
1187
 
1188
  // Return the position dependent options.  The caller may modify
1189
  // this.
1190
  Position_dependent_options&
1191
  position_dependent_options()
1192
  { return this->posdep_options_; }
1193
 
1194
  // Return whether this script is being run in a group.
1195
  bool
1196
  in_group() const
1197
  { return this->in_group_; }
1198
 
1199
  // Return whether this script was found using a directory in the
1200
  // sysroot.
1201
  bool
1202
  is_in_sysroot() const
1203
  { return this->is_in_sysroot_; }
1204
 
1205
  // Whether to skip to the next file with the same name if we find an
1206
  // incompatible target in an OUTPUT_FORMAT statement.
1207
  bool
1208
  skip_on_incompatible_target() const
1209
  { return this->skip_on_incompatible_target_; }
1210
 
1211
  // Stop skipping to the next file on an incompatible target.  This
1212
  // is called when we make some unrevocable change to the data
1213
  // structures.
1214
  void
1215
  clear_skip_on_incompatible_target()
1216
  { this->skip_on_incompatible_target_ = false; }
1217
 
1218
  // Whether we found an incompatible target in an OUTPUT_FORMAT
1219
  // statement.
1220
  bool
1221
  found_incompatible_target() const
1222
  { return this->found_incompatible_target_; }
1223
 
1224
  // Note that we found an incompatible target.
1225
  void
1226
  set_found_incompatible_target()
1227
  { this->found_incompatible_target_ = true; }
1228
 
1229
  // Returns the Command_line structure passed in at constructor time.
1230
  // This value may be NULL.  The caller may modify this, which modifies
1231
  // the passed-in Command_line object (not a copy).
1232
  Command_line*
1233
  command_line()
1234
  { return this->command_line_; }
1235
 
1236
  // Return the options which may be set by a script.
1237
  Script_options*
1238
  script_options()
1239
  { return this->script_options_; }
1240
 
1241
  // Return the object in which version script information should be stored.
1242
  Version_script_info*
1243
  version_script()
1244
  { return this->version_script_info_; }
1245
 
1246
  // Return the next token, and advance.
1247
  const Token*
1248
  next_token()
1249
  {
1250
    const Token* token = this->lex_->next_token();
1251
    this->lineno_ = token->lineno();
1252
    this->charpos_ = token->charpos();
1253
    return token;
1254
  }
1255
 
1256
  // Set a new lexer mode, pushing the current one.
1257
  void
1258
  push_lex_mode(Lex::Mode mode)
1259
  {
1260
    this->lex_mode_stack_.push_back(this->lex_->mode());
1261
    this->lex_->set_mode(mode);
1262
  }
1263
 
1264
  // Pop the lexer mode.
1265
  void
1266
  pop_lex_mode()
1267
  {
1268
    gold_assert(!this->lex_mode_stack_.empty());
1269
    this->lex_->set_mode(this->lex_mode_stack_.back());
1270
    this->lex_mode_stack_.pop_back();
1271
  }
1272
 
1273
  // Return the current lexer mode.
1274
  Lex::Mode
1275
  lex_mode() const
1276
  { return this->lex_mode_stack_.back(); }
1277
 
1278
  // Return the line number of the last token.
1279
  int
1280
  lineno() const
1281
  { return this->lineno_; }
1282
 
1283
  // Return the character position in the line of the last token.
1284
  int
1285
  charpos() const
1286
  { return this->charpos_; }
1287
 
1288
  // Return the list of input files, creating it if necessary.  This
1289
  // is a space leak--we never free the INPUTS_ pointer.
1290
  Input_arguments*
1291
  inputs()
1292
  {
1293
    if (this->inputs_ == NULL)
1294
      this->inputs_ = new Input_arguments();
1295
    return this->inputs_;
1296
  }
1297
 
1298
  // Return whether we saw any input files.
1299
  bool
1300
  saw_inputs() const
1301
  { return this->inputs_ != NULL && !this->inputs_->empty(); }
1302
 
1303
  // Return the current language being processed in a version script
1304
  // (eg, "C++").  The empty string represents unmangled C names.
1305
  const std::string&
1306
  get_current_language() const
1307
  { return this->language_stack_.back(); }
1308
 
1309
  // Push a language onto the stack when entering an extern block.
1310
  void push_language(const std::string& lang)
1311
  { this->language_stack_.push_back(lang); }
1312
 
1313
  // Pop a language off of the stack when exiting an extern block.
1314
  void pop_language()
1315
  {
1316
    gold_assert(!this->language_stack_.empty());
1317
    this->language_stack_.pop_back();
1318
  }
1319
 
1320
 private:
1321
  // The name of the file we are reading.
1322
  const char* filename_;
1323
  // The position dependent options.
1324
  Position_dependent_options posdep_options_;
1325
  // Whether we are currently in a --start-group/--end-group.
1326
  bool in_group_;
1327
  // Whether the script was found in a sysrooted directory.
1328
  bool is_in_sysroot_;
1329
  // If this is true, then if we find an OUTPUT_FORMAT with an
1330
  // incompatible target, then we tell the parser to abort so that we
1331
  // can search for the next file with the same name.
1332
  bool skip_on_incompatible_target_;
1333
  // True if we found an OUTPUT_FORMAT with an incompatible target.
1334
  bool found_incompatible_target_;
1335
  // May be NULL if the user chooses not to pass one in.
1336
  Command_line* command_line_;
1337
  // Options which may be set from any linker script.
1338
  Script_options* script_options_;
1339
  // Information parsed from a version script.
1340
  Version_script_info* version_script_info_;
1341
  // The lexer.
1342
  Lex* lex_;
1343
  // The line number of the last token returned by next_token.
1344
  int lineno_;
1345
  // The column number of the last token returned by next_token.
1346
  int charpos_;
1347
  // A stack of lexer modes.
1348
  std::vector<Lex::Mode> lex_mode_stack_;
1349
  // A stack of which extern/language block we're inside. Can be C++,
1350
  // java, or empty for C.
1351
  std::vector<std::string> language_stack_;
1352
  // New input files found to add to the link.
1353
  Input_arguments* inputs_;
1354
};
1355
 
1356
// FILE was found as an argument on the command line.  Try to read it
1357
// as a script.  Return true if the file was handled.
1358
 
1359
bool
1360
read_input_script(Workqueue* workqueue, Symbol_table* symtab, Layout* layout,
1361
                  Dirsearch* dirsearch, int dirindex,
1362
                  Input_objects* input_objects, Mapfile* mapfile,
1363
                  Input_group* input_group,
1364
                  const Input_argument* input_argument,
1365
                  Input_file* input_file, Task_token* next_blocker,
1366
                  bool* used_next_blocker)
1367
{
1368
  *used_next_blocker = false;
1369
 
1370
  std::string input_string;
1371
  Lex::read_file(input_file, &input_string);
1372
 
1373
  Lex lex(input_string.c_str(), input_string.length(), PARSING_LINKER_SCRIPT);
1374
 
1375
  Parser_closure closure(input_file->filename().c_str(),
1376
                         input_argument->file().options(),
1377
                         input_group != NULL,
1378
                         input_file->is_in_sysroot(),
1379
                         NULL,
1380
                         layout->script_options(),
1381
                         &lex,
1382
                         input_file->will_search_for());
1383
 
1384
  if (yyparse(&closure) != 0)
1385
    {
1386
      if (closure.found_incompatible_target())
1387
        {
1388
          Read_symbols::incompatible_warning(input_argument, input_file);
1389
          Read_symbols::requeue(workqueue, input_objects, symtab, layout,
1390
                                dirsearch, dirindex, mapfile, input_argument,
1391
                                input_group, next_blocker);
1392
          return true;
1393
        }
1394
      return false;
1395
    }
1396
 
1397
  if (!closure.saw_inputs())
1398
    return true;
1399
 
1400
  Task_token* this_blocker = NULL;
1401
  for (Input_arguments::const_iterator p = closure.inputs()->begin();
1402
       p != closure.inputs()->end();
1403
       ++p)
1404
    {
1405
      Task_token* nb;
1406
      if (p + 1 == closure.inputs()->end())
1407
        nb = next_blocker;
1408
      else
1409
        {
1410
          nb = new Task_token(true);
1411
          nb->add_blocker();
1412
        }
1413
      workqueue->queue_soon(new Read_symbols(input_objects, symtab,
1414
                                             layout, dirsearch, 0, mapfile, &*p,
1415
                                             input_group, this_blocker, nb));
1416
      this_blocker = nb;
1417
    }
1418
 
1419
  if (layout->incremental_inputs())
1420
    {
1421
      // Like new Read_symbols(...) above, we rely on close.inputs()
1422
      // getting leaked by closure.
1423
      Script_info* info = new Script_info(closure.inputs());
1424
      layout->incremental_inputs()->report_script(
1425
          input_argument,
1426
          input_file->file().get_mtime(),
1427
          info);
1428
    }
1429
  *used_next_blocker = true;
1430
 
1431
  return true;
1432
}
1433
 
1434
// Helper function for read_version_script() and
1435
// read_commandline_script().  Processes the given file in the mode
1436
// indicated by first_token and lex_mode.
1437
 
1438
static bool
1439
read_script_file(const char* filename, Command_line* cmdline,
1440
                 Script_options* script_options,
1441
                 int first_token, Lex::Mode lex_mode)
1442
{
1443
  // TODO: if filename is a relative filename, search for it manually
1444
  // using "." + cmdline->options()->search_path() -- not dirsearch.
1445
  Dirsearch dirsearch;
1446
 
1447
  // The file locking code wants to record a Task, but we haven't
1448
  // started the workqueue yet.  This is only for debugging purposes,
1449
  // so we invent a fake value.
1450
  const Task* task = reinterpret_cast<const Task*>(-1);
1451
 
1452
  // We don't want this file to be opened in binary mode.
1453
  Position_dependent_options posdep = cmdline->position_dependent_options();
1454
  if (posdep.format_enum() == General_options::OBJECT_FORMAT_BINARY)
1455
    posdep.set_format_enum(General_options::OBJECT_FORMAT_ELF);
1456
  Input_file_argument input_argument(filename,
1457
                                     Input_file_argument::INPUT_FILE_TYPE_FILE,
1458
                                     "", false, posdep);
1459
  Input_file input_file(&input_argument);
1460
  int dummy = 0;
1461
  if (!input_file.open(dirsearch, task, &dummy))
1462
    return false;
1463
 
1464
  std::string input_string;
1465
  Lex::read_file(&input_file, &input_string);
1466
 
1467
  Lex lex(input_string.c_str(), input_string.length(), first_token);
1468
  lex.set_mode(lex_mode);
1469
 
1470
  Parser_closure closure(filename,
1471
                         cmdline->position_dependent_options(),
1472
                         false,
1473
                         input_file.is_in_sysroot(),
1474
                         cmdline,
1475
                         script_options,
1476
                         &lex,
1477
                         false);
1478
  if (yyparse(&closure) != 0)
1479
    {
1480
      input_file.file().unlock(task);
1481
      return false;
1482
    }
1483
 
1484
  input_file.file().unlock(task);
1485
 
1486
  gold_assert(!closure.saw_inputs());
1487
 
1488
  return true;
1489
}
1490
 
1491
// FILENAME was found as an argument to --script (-T).
1492
// Read it as a script, and execute its contents immediately.
1493
 
1494
bool
1495
read_commandline_script(const char* filename, Command_line* cmdline)
1496
{
1497
  return read_script_file(filename, cmdline, &cmdline->script_options(),
1498
                          PARSING_LINKER_SCRIPT, Lex::LINKER_SCRIPT);
1499
}
1500
 
1501
// FILENAME was found as an argument to --version-script.  Read it as
1502
// a version script, and store its contents in
1503
// cmdline->script_options()->version_script_info().
1504
 
1505
bool
1506
read_version_script(const char* filename, Command_line* cmdline)
1507
{
1508
  return read_script_file(filename, cmdline, &cmdline->script_options(),
1509
                          PARSING_VERSION_SCRIPT, Lex::VERSION_SCRIPT);
1510
}
1511
 
1512
// FILENAME was found as an argument to --dynamic-list.  Read it as a
1513
// list of symbols, and store its contents in DYNAMIC_LIST.
1514
 
1515
bool
1516
read_dynamic_list(const char* filename, Command_line* cmdline,
1517
                  Script_options* dynamic_list)
1518
{
1519
  return read_script_file(filename, cmdline, dynamic_list,
1520
                          PARSING_DYNAMIC_LIST, Lex::DYNAMIC_LIST);
1521
}
1522
 
1523
// Implement the --defsym option on the command line.  Return true if
1524
// all is well.
1525
 
1526
bool
1527
Script_options::define_symbol(const char* definition)
1528
{
1529
  Lex lex(definition, strlen(definition), PARSING_DEFSYM);
1530
  lex.set_mode(Lex::EXPRESSION);
1531
 
1532
  // Dummy value.
1533
  Position_dependent_options posdep_options;
1534
 
1535
  Parser_closure closure("command line", posdep_options, false, false, NULL,
1536
                         this, &lex, false);
1537
 
1538
  if (yyparse(&closure) != 0)
1539
    return false;
1540
 
1541
  gold_assert(!closure.saw_inputs());
1542
 
1543
  return true;
1544
}
1545
 
1546
// Print the script to F for debugging.
1547
 
1548
void
1549
Script_options::print(FILE* f) const
1550
{
1551
  fprintf(f, "%s: Dumping linker script\n", program_name);
1552
 
1553
  if (!this->entry_.empty())
1554
    fprintf(f, "ENTRY(%s)\n", this->entry_.c_str());
1555
 
1556
  for (Symbol_assignments::const_iterator p =
1557
         this->symbol_assignments_.begin();
1558
       p != this->symbol_assignments_.end();
1559
       ++p)
1560
    (*p)->print(f);
1561
 
1562
  for (Assertions::const_iterator p = this->assertions_.begin();
1563
       p != this->assertions_.end();
1564
       ++p)
1565
    (*p)->print(f);
1566
 
1567
  this->script_sections_.print(f);
1568
 
1569
  this->version_script_info_.print(f);
1570
}
1571
 
1572
// Manage mapping from keywords to the codes expected by the bison
1573
// parser.  We construct one global object for each lex mode with
1574
// keywords.
1575
 
1576
class Keyword_to_parsecode
1577
{
1578
 public:
1579
  // The structure which maps keywords to parsecodes.
1580
  struct Keyword_parsecode
1581
  {
1582
    // Keyword.
1583
    const char* keyword;
1584
    // Corresponding parsecode.
1585
    int parsecode;
1586
  };
1587
 
1588
  Keyword_to_parsecode(const Keyword_parsecode* keywords,
1589
                       int keyword_count)
1590
      : keyword_parsecodes_(keywords), keyword_count_(keyword_count)
1591
  { }
1592
 
1593
  // Return the parsecode corresponding KEYWORD, or 0 if it is not a
1594
  // keyword.
1595
  int
1596
  keyword_to_parsecode(const char* keyword, size_t len) const;
1597
 
1598
 private:
1599
  const Keyword_parsecode* keyword_parsecodes_;
1600
  const int keyword_count_;
1601
};
1602
 
1603
// Mapping from keyword string to keyword parsecode.  This array must
1604
// be kept in sorted order.  Parsecodes are looked up using bsearch.
1605
// This array must correspond to the list of parsecodes in yyscript.y.
1606
 
1607
static const Keyword_to_parsecode::Keyword_parsecode
1608
script_keyword_parsecodes[] =
1609
{
1610
  { "ABSOLUTE", ABSOLUTE },
1611
  { "ADDR", ADDR },
1612
  { "ALIGN", ALIGN_K },
1613
  { "ALIGNOF", ALIGNOF },
1614
  { "ASSERT", ASSERT_K },
1615
  { "AS_NEEDED", AS_NEEDED },
1616
  { "AT", AT },
1617
  { "BIND", BIND },
1618
  { "BLOCK", BLOCK },
1619
  { "BYTE", BYTE },
1620
  { "CONSTANT", CONSTANT },
1621
  { "CONSTRUCTORS", CONSTRUCTORS },
1622
  { "CREATE_OBJECT_SYMBOLS", CREATE_OBJECT_SYMBOLS },
1623
  { "DATA_SEGMENT_ALIGN", DATA_SEGMENT_ALIGN },
1624
  { "DATA_SEGMENT_END", DATA_SEGMENT_END },
1625
  { "DATA_SEGMENT_RELRO_END", DATA_SEGMENT_RELRO_END },
1626
  { "DEFINED", DEFINED },
1627
  { "ENTRY", ENTRY },
1628
  { "EXCLUDE_FILE", EXCLUDE_FILE },
1629
  { "EXTERN", EXTERN },
1630
  { "FILL", FILL },
1631
  { "FLOAT", FLOAT },
1632
  { "FORCE_COMMON_ALLOCATION", FORCE_COMMON_ALLOCATION },
1633
  { "GROUP", GROUP },
1634
  { "HLL", HLL },
1635
  { "INCLUDE", INCLUDE },
1636
  { "INHIBIT_COMMON_ALLOCATION", INHIBIT_COMMON_ALLOCATION },
1637
  { "INPUT", INPUT },
1638
  { "KEEP", KEEP },
1639
  { "LENGTH", LENGTH },
1640
  { "LOADADDR", LOADADDR },
1641
  { "LONG", LONG },
1642
  { "MAP", MAP },
1643
  { "MAX", MAX_K },
1644
  { "MEMORY", MEMORY },
1645
  { "MIN", MIN_K },
1646
  { "NEXT", NEXT },
1647
  { "NOCROSSREFS", NOCROSSREFS },
1648
  { "NOFLOAT", NOFLOAT },
1649
  { "ONLY_IF_RO", ONLY_IF_RO },
1650
  { "ONLY_IF_RW", ONLY_IF_RW },
1651
  { "OPTION", OPTION },
1652
  { "ORIGIN", ORIGIN },
1653
  { "OUTPUT", OUTPUT },
1654
  { "OUTPUT_ARCH", OUTPUT_ARCH },
1655
  { "OUTPUT_FORMAT", OUTPUT_FORMAT },
1656
  { "OVERLAY", OVERLAY },
1657
  { "PHDRS", PHDRS },
1658
  { "PROVIDE", PROVIDE },
1659
  { "PROVIDE_HIDDEN", PROVIDE_HIDDEN },
1660
  { "QUAD", QUAD },
1661
  { "SEARCH_DIR", SEARCH_DIR },
1662
  { "SECTIONS", SECTIONS },
1663
  { "SEGMENT_START", SEGMENT_START },
1664
  { "SHORT", SHORT },
1665
  { "SIZEOF", SIZEOF },
1666
  { "SIZEOF_HEADERS", SIZEOF_HEADERS },
1667
  { "SORT", SORT_BY_NAME },
1668
  { "SORT_BY_ALIGNMENT", SORT_BY_ALIGNMENT },
1669
  { "SORT_BY_NAME", SORT_BY_NAME },
1670
  { "SPECIAL", SPECIAL },
1671
  { "SQUAD", SQUAD },
1672
  { "STARTUP", STARTUP },
1673
  { "SUBALIGN", SUBALIGN },
1674
  { "SYSLIB", SYSLIB },
1675
  { "TARGET", TARGET_K },
1676
  { "TRUNCATE", TRUNCATE },
1677
  { "VERSION", VERSIONK },
1678
  { "global", GLOBAL },
1679
  { "l", LENGTH },
1680
  { "len", LENGTH },
1681
  { "local", LOCAL },
1682
  { "o", ORIGIN },
1683
  { "org", ORIGIN },
1684
  { "sizeof_headers", SIZEOF_HEADERS },
1685
};
1686
 
1687
static const Keyword_to_parsecode
1688
script_keywords(&script_keyword_parsecodes[0],
1689
                (sizeof(script_keyword_parsecodes)
1690
                 / sizeof(script_keyword_parsecodes[0])));
1691
 
1692
static const Keyword_to_parsecode::Keyword_parsecode
1693
version_script_keyword_parsecodes[] =
1694
{
1695
  { "extern", EXTERN },
1696
  { "global", GLOBAL },
1697
  { "local", LOCAL },
1698
};
1699
 
1700
static const Keyword_to_parsecode
1701
version_script_keywords(&version_script_keyword_parsecodes[0],
1702
                        (sizeof(version_script_keyword_parsecodes)
1703
                         / sizeof(version_script_keyword_parsecodes[0])));
1704
 
1705
static const Keyword_to_parsecode::Keyword_parsecode
1706
dynamic_list_keyword_parsecodes[] =
1707
{
1708
  { "extern", EXTERN },
1709
};
1710
 
1711
static const Keyword_to_parsecode
1712
dynamic_list_keywords(&dynamic_list_keyword_parsecodes[0],
1713
                      (sizeof(dynamic_list_keyword_parsecodes)
1714
                       / sizeof(dynamic_list_keyword_parsecodes[0])));
1715
 
1716
 
1717
 
1718
// Comparison function passed to bsearch.
1719
 
1720
extern "C"
1721
{
1722
 
1723
struct Ktt_key
1724
{
1725
  const char* str;
1726
  size_t len;
1727
};
1728
 
1729
static int
1730
ktt_compare(const void* keyv, const void* kttv)
1731
{
1732
  const Ktt_key* key = static_cast<const Ktt_key*>(keyv);
1733
  const Keyword_to_parsecode::Keyword_parsecode* ktt =
1734
    static_cast<const Keyword_to_parsecode::Keyword_parsecode*>(kttv);
1735
  int i = strncmp(key->str, ktt->keyword, key->len);
1736
  if (i != 0)
1737
    return i;
1738
  if (ktt->keyword[key->len] != '\0')
1739
    return -1;
1740
  return 0;
1741
}
1742
 
1743
} // End extern "C".
1744
 
1745
int
1746
Keyword_to_parsecode::keyword_to_parsecode(const char* keyword,
1747
                                           size_t len) const
1748
{
1749
  Ktt_key key;
1750
  key.str = keyword;
1751
  key.len = len;
1752
  void* kttv = bsearch(&key,
1753
                       this->keyword_parsecodes_,
1754
                       this->keyword_count_,
1755
                       sizeof(this->keyword_parsecodes_[0]),
1756
                       ktt_compare);
1757
  if (kttv == NULL)
1758
    return 0;
1759
  Keyword_parsecode* ktt = static_cast<Keyword_parsecode*>(kttv);
1760
  return ktt->parsecode;
1761
}
1762
 
1763
// Helper class that calls cplus_demangle when needed and takes care of freeing
1764
// the result.
1765
 
1766
class Lazy_demangler
1767
{
1768
 public:
1769
  Lazy_demangler(const char* symbol, int options)
1770
    : symbol_(symbol), options_(options), demangled_(NULL), did_demangle_(false)
1771
  { }
1772
 
1773
  ~Lazy_demangler()
1774
  { free(this->demangled_); }
1775
 
1776
  // Return the demangled name. The actual demangling happens on the first call,
1777
  // and the result is later cached.
1778
 
1779
  inline char*
1780
  get();
1781
 
1782
 private:
1783
  // The symbol to demangle.
1784
  const char *symbol_;
1785
  // Option flags to pass to cplus_demagle.
1786
  const int options_;
1787
  // The cached demangled value, or NULL if demangling didn't happen yet or
1788
  // failed.
1789
  char *demangled_;
1790
  // Whether we already called cplus_demangle
1791
  bool did_demangle_;
1792
};
1793
 
1794
// Return the demangled name. The actual demangling happens on the first call,
1795
// and the result is later cached. Returns NULL if the symbol cannot be
1796
// demangled.
1797
 
1798
inline char*
1799
Lazy_demangler::get()
1800
{
1801
  if (!this->did_demangle_)
1802
    {
1803
      this->demangled_ = cplus_demangle(this->symbol_, this->options_);
1804
      this->did_demangle_ = true;
1805
    }
1806
  return this->demangled_;
1807
}
1808
 
1809
// The following structs are used within the VersionInfo class as well
1810
// as in the bison helper functions.  They store the information
1811
// parsed from the version script.
1812
 
1813
// A single version expression.
1814
// For example, pattern="std::map*" and language="C++".
1815
// pattern and language should be from the stringpool
1816
struct Version_expression {
1817
  Version_expression(const std::string& pattern,
1818
                     const std::string& language,
1819
                     bool exact_match)
1820
      : pattern(pattern), language(language), exact_match(exact_match) {}
1821
 
1822
  std::string pattern;
1823
  std::string language;
1824
  // If false, we use glob() to match pattern.  If true, we use strcmp().
1825
  bool exact_match;
1826
};
1827
 
1828
 
1829
// A list of expressions.
1830
struct Version_expression_list {
1831
  std::vector<struct Version_expression> expressions;
1832
};
1833
 
1834
 
1835
// A list of which versions upon which another version depends.
1836
// Strings should be from the Stringpool.
1837
struct Version_dependency_list {
1838
  std::vector<std::string> dependencies;
1839
};
1840
 
1841
 
1842
// The total definition of a version.  It includes the tag for the
1843
// version, its global and local expressions, and any dependencies.
1844
struct Version_tree {
1845
  Version_tree()
1846
      : tag(), global(NULL), local(NULL), dependencies(NULL) {}
1847
 
1848
  std::string tag;
1849
  const struct Version_expression_list* global;
1850
  const struct Version_expression_list* local;
1851
  const struct Version_dependency_list* dependencies;
1852
};
1853
 
1854
Version_script_info::~Version_script_info()
1855
{
1856
  this->clear();
1857
}
1858
 
1859
void
1860
Version_script_info::clear()
1861
{
1862
  for (size_t k = 0; k < dependency_lists_.size(); ++k)
1863
    delete dependency_lists_[k];
1864
  this->dependency_lists_.clear();
1865
  for (size_t k = 0; k < version_trees_.size(); ++k)
1866
    delete version_trees_[k];
1867
  this->version_trees_.clear();
1868
  for (size_t k = 0; k < expression_lists_.size(); ++k)
1869
    delete expression_lists_[k];
1870
  this->expression_lists_.clear();
1871
}
1872
 
1873
std::vector<std::string>
1874
Version_script_info::get_versions() const
1875
{
1876
  std::vector<std::string> ret;
1877
  for (size_t j = 0; j < version_trees_.size(); ++j)
1878
    if (!this->version_trees_[j]->tag.empty())
1879
      ret.push_back(this->version_trees_[j]->tag);
1880
  return ret;
1881
}
1882
 
1883
std::vector<std::string>
1884
Version_script_info::get_dependencies(const char* version) const
1885
{
1886
  std::vector<std::string> ret;
1887
  for (size_t j = 0; j < version_trees_.size(); ++j)
1888
    if (version_trees_[j]->tag == version)
1889
      {
1890
        const struct Version_dependency_list* deps =
1891
          version_trees_[j]->dependencies;
1892
        if (deps != NULL)
1893
          for (size_t k = 0; k < deps->dependencies.size(); ++k)
1894
            ret.push_back(deps->dependencies[k]);
1895
        return ret;
1896
      }
1897
  return ret;
1898
}
1899
 
1900
// Look up SYMBOL_NAME in the list of versions.  If CHECK_GLOBAL is
1901
// true look at the globally visible symbols, otherwise look at the
1902
// symbols listed as "local:".  Return true if the symbol is found,
1903
// false otherwise.  If the symbol is found, then if PVERSION is not
1904
// NULL, set *PVERSION to the version.
1905
 
1906
bool
1907
Version_script_info::get_symbol_version_helper(const char* symbol_name,
1908
                                               bool check_global,
1909
                                               std::string* pversion) const
1910
{
1911
  Lazy_demangler cpp_demangled_name(symbol_name, DMGL_ANSI | DMGL_PARAMS);
1912
  Lazy_demangler java_demangled_name(symbol_name,
1913
                                     DMGL_ANSI | DMGL_PARAMS | DMGL_JAVA);
1914
  for (size_t j = 0; j < version_trees_.size(); ++j)
1915
    {
1916
      // Is it a global symbol for this version?
1917
      const Version_expression_list* explist =
1918
          check_global ? version_trees_[j]->global : version_trees_[j]->local;
1919
      if (explist != NULL)
1920
        for (size_t k = 0; k < explist->expressions.size(); ++k)
1921
          {
1922
            const char* name_to_match = symbol_name;
1923
            const struct Version_expression& exp = explist->expressions[k];
1924
            if (exp.language == "C++")
1925
              {
1926
                name_to_match = cpp_demangled_name.get();
1927
                // This isn't a C++ symbol.
1928
                if (name_to_match == NULL)
1929
                  continue;
1930
              }
1931
            else if (exp.language == "Java")
1932
              {
1933
                name_to_match = java_demangled_name.get();
1934
                // This isn't a Java symbol.
1935
                if (name_to_match == NULL)
1936
                  continue;
1937
              }
1938
            bool matched;
1939
            if (exp.exact_match)
1940
              matched = strcmp(exp.pattern.c_str(), name_to_match) == 0;
1941
            else
1942
              matched = fnmatch(exp.pattern.c_str(), name_to_match,
1943
                                FNM_NOESCAPE) == 0;
1944
            if (matched)
1945
              {
1946
                if (pversion != NULL)
1947
                  *pversion = this->version_trees_[j]->tag;
1948
                return true;
1949
              }
1950
          }
1951
    }
1952
  return false;
1953
}
1954
 
1955
struct Version_dependency_list*
1956
Version_script_info::allocate_dependency_list()
1957
{
1958
  dependency_lists_.push_back(new Version_dependency_list);
1959
  return dependency_lists_.back();
1960
}
1961
 
1962
struct Version_expression_list*
1963
Version_script_info::allocate_expression_list()
1964
{
1965
  expression_lists_.push_back(new Version_expression_list);
1966
  return expression_lists_.back();
1967
}
1968
 
1969
struct Version_tree*
1970
Version_script_info::allocate_version_tree()
1971
{
1972
  version_trees_.push_back(new Version_tree);
1973
  return version_trees_.back();
1974
}
1975
 
1976
// Print for debugging.
1977
 
1978
void
1979
Version_script_info::print(FILE* f) const
1980
{
1981
  if (this->empty())
1982
    return;
1983
 
1984
  fprintf(f, "VERSION {");
1985
 
1986
  for (size_t i = 0; i < this->version_trees_.size(); ++i)
1987
    {
1988
      const Version_tree* vt = this->version_trees_[i];
1989
 
1990
      if (vt->tag.empty())
1991
        fprintf(f, "  {\n");
1992
      else
1993
        fprintf(f, "  %s {\n", vt->tag.c_str());
1994
 
1995
      if (vt->global != NULL)
1996
        {
1997
          fprintf(f, "    global :\n");
1998
          this->print_expression_list(f, vt->global);
1999
        }
2000
 
2001
      if (vt->local != NULL)
2002
        {
2003
          fprintf(f, "    local :\n");
2004
          this->print_expression_list(f, vt->local);
2005
        }
2006
 
2007
      fprintf(f, "  }");
2008
      if (vt->dependencies != NULL)
2009
        {
2010
          const Version_dependency_list* deps = vt->dependencies;
2011
          for (size_t j = 0; j < deps->dependencies.size(); ++j)
2012
            {
2013
              if (j < deps->dependencies.size() - 1)
2014
                fprintf(f, "\n");
2015
              fprintf(f, "    %s", deps->dependencies[j].c_str());
2016
            }
2017
        }
2018
      fprintf(f, ";\n");
2019
    }
2020
 
2021
  fprintf(f, "}\n");
2022
}
2023
 
2024
void
2025
Version_script_info::print_expression_list(
2026
    FILE* f,
2027
    const Version_expression_list* vel) const
2028
{
2029
  std::string current_language;
2030
  for (size_t i = 0; i < vel->expressions.size(); ++i)
2031
    {
2032
      const Version_expression& ve(vel->expressions[i]);
2033
 
2034
      if (ve.language != current_language)
2035
        {
2036
          if (!current_language.empty())
2037
            fprintf(f, "      }\n");
2038
          fprintf(f, "      extern \"%s\" {\n", ve.language.c_str());
2039
          current_language = ve.language;
2040
        }
2041
 
2042
      fprintf(f, "      ");
2043
      if (!current_language.empty())
2044
        fprintf(f, "  ");
2045
 
2046
      if (ve.exact_match)
2047
        fprintf(f, "\"");
2048
      fprintf(f, "%s", ve.pattern.c_str());
2049
      if (ve.exact_match)
2050
        fprintf(f, "\"");
2051
 
2052
      fprintf(f, "\n");
2053
    }
2054
 
2055
  if (!current_language.empty())
2056
    fprintf(f, "      }\n");
2057
}
2058
 
2059
} // End namespace gold.
2060
 
2061
// The remaining functions are extern "C", so it's clearer to not put
2062
// them in namespace gold.
2063
 
2064
using namespace gold;
2065
 
2066
// This function is called by the bison parser to return the next
2067
// token.
2068
 
2069
extern "C" int
2070
yylex(YYSTYPE* lvalp, void* closurev)
2071
{
2072
  Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2073
  const Token* token = closure->next_token();
2074
  switch (token->classification())
2075
    {
2076
    default:
2077
      gold_unreachable();
2078
 
2079
    case Token::TOKEN_INVALID:
2080
      yyerror(closurev, "invalid character");
2081
      return 0;
2082
 
2083
    case Token::TOKEN_EOF:
2084
      return 0;
2085
 
2086
    case Token::TOKEN_STRING:
2087
      {
2088
        // This is either a keyword or a STRING.
2089
        size_t len;
2090
        const char* str = token->string_value(&len);
2091
        int parsecode = 0;
2092
        switch (closure->lex_mode())
2093
          {
2094
          case Lex::LINKER_SCRIPT:
2095
            parsecode = script_keywords.keyword_to_parsecode(str, len);
2096
            break;
2097
          case Lex::VERSION_SCRIPT:
2098
            parsecode = version_script_keywords.keyword_to_parsecode(str, len);
2099
            break;
2100
          case Lex::DYNAMIC_LIST:
2101
            parsecode = dynamic_list_keywords.keyword_to_parsecode(str, len);
2102
            break;
2103
          default:
2104
            break;
2105
          }
2106
        if (parsecode != 0)
2107
          return parsecode;
2108
        lvalp->string.value = str;
2109
        lvalp->string.length = len;
2110
        return STRING;
2111
      }
2112
 
2113
    case Token::TOKEN_QUOTED_STRING:
2114
      lvalp->string.value = token->string_value(&lvalp->string.length);
2115
      return QUOTED_STRING;
2116
 
2117
    case Token::TOKEN_OPERATOR:
2118
      return token->operator_value();
2119
 
2120
    case Token::TOKEN_INTEGER:
2121
      lvalp->integer = token->integer_value();
2122
      return INTEGER;
2123
    }
2124
}
2125
 
2126
// This function is called by the bison parser to report an error.
2127
 
2128
extern "C" void
2129
yyerror(void* closurev, const char* message)
2130
{
2131
  Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2132
  gold_error(_("%s:%d:%d: %s"), closure->filename(), closure->lineno(),
2133
             closure->charpos(), message);
2134
}
2135
 
2136
// Called by the bison parser to add an external symbol to the link.
2137
 
2138
extern "C" void
2139
script_add_extern(void* closurev, const char* name, size_t length)
2140
{
2141
  // We treat exactly like -u NAME.  FIXME: If it seems useful, we
2142
  // could handle this after the command line has been read, by adding
2143
  // entries to the symbol table directly.
2144
  std::string arg("--undefined=");
2145
  arg.append(name, length);
2146
  script_parse_option(closurev, arg.c_str(), arg.size());
2147
}
2148
 
2149
// Called by the bison parser to add a file to the link.
2150
 
2151
extern "C" void
2152
script_add_file(void* closurev, const char* name, size_t length)
2153
{
2154
  Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2155
 
2156
  // If this is an absolute path, and we found the script in the
2157
  // sysroot, then we want to prepend the sysroot to the file name.
2158
  // For example, this is how we handle a cross link to the x86_64
2159
  // libc.so, which refers to /lib/libc.so.6.
2160
  std::string name_string(name, length);
2161
  const char* extra_search_path = ".";
2162
  std::string script_directory;
2163
  if (IS_ABSOLUTE_PATH(name_string.c_str()))
2164
    {
2165
      if (closure->is_in_sysroot())
2166
        {
2167
          const std::string& sysroot(parameters->options().sysroot());
2168
          gold_assert(!sysroot.empty());
2169
          name_string = sysroot + name_string;
2170
        }
2171
    }
2172
  else
2173
    {
2174
      // In addition to checking the normal library search path, we
2175
      // also want to check in the script-directory.
2176
      const char *slash = strrchr(closure->filename(), '/');
2177
      if (slash != NULL)
2178
        {
2179
          script_directory.assign(closure->filename(),
2180
                                  slash - closure->filename() + 1);
2181
          extra_search_path = script_directory.c_str();
2182
        }
2183
    }
2184
 
2185
  Input_file_argument file(name_string.c_str(),
2186
                           Input_file_argument::INPUT_FILE_TYPE_FILE,
2187
                           extra_search_path, false,
2188
                           closure->position_dependent_options());
2189
  closure->inputs()->add_file(file);
2190
}
2191
 
2192
// Called by the bison parser to start a group.  If we are already in
2193
// a group, that means that this script was invoked within a
2194
// --start-group --end-group sequence on the command line, or that
2195
// this script was found in a GROUP of another script.  In that case,
2196
// we simply continue the existing group, rather than starting a new
2197
// one.  It is possible to construct a case in which this will do
2198
// something other than what would happen if we did a recursive group,
2199
// but it's hard to imagine why the different behaviour would be
2200
// useful for a real program.  Avoiding recursive groups is simpler
2201
// and more efficient.
2202
 
2203
extern "C" void
2204
script_start_group(void* closurev)
2205
{
2206
  Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2207
  if (!closure->in_group())
2208
    closure->inputs()->start_group();
2209
}
2210
 
2211
// Called by the bison parser at the end of a group.
2212
 
2213
extern "C" void
2214
script_end_group(void* closurev)
2215
{
2216
  Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2217
  if (!closure->in_group())
2218
    closure->inputs()->end_group();
2219
}
2220
 
2221
// Called by the bison parser to start an AS_NEEDED list.
2222
 
2223
extern "C" void
2224
script_start_as_needed(void* closurev)
2225
{
2226
  Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2227
  closure->position_dependent_options().set_as_needed(true);
2228
}
2229
 
2230
// Called by the bison parser at the end of an AS_NEEDED list.
2231
 
2232
extern "C" void
2233
script_end_as_needed(void* closurev)
2234
{
2235
  Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2236
  closure->position_dependent_options().set_as_needed(false);
2237
}
2238
 
2239
// Called by the bison parser to set the entry symbol.
2240
 
2241
extern "C" void
2242
script_set_entry(void* closurev, const char* entry, size_t length)
2243
{
2244
  // We'll parse this exactly the same as --entry=ENTRY on the commandline
2245
  // TODO(csilvers): FIXME -- call set_entry directly.
2246
  std::string arg("--entry=");
2247
  arg.append(entry, length);
2248
  script_parse_option(closurev, arg.c_str(), arg.size());
2249
}
2250
 
2251
// Called by the bison parser to set whether to define common symbols.
2252
 
2253
extern "C" void
2254
script_set_common_allocation(void* closurev, int set)
2255
{
2256
  const char* arg = set != 0 ? "--define-common" : "--no-define-common";
2257
  script_parse_option(closurev, arg, strlen(arg));
2258
}
2259
 
2260
// Called by the bison parser to define a symbol.
2261
 
2262
extern "C" void
2263
script_set_symbol(void* closurev, const char* name, size_t length,
2264
                  Expression* value, int providei, int hiddeni)
2265
{
2266
  Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2267
  const bool provide = providei != 0;
2268
  const bool hidden = hiddeni != 0;
2269
  closure->script_options()->add_symbol_assignment(name, length, value,
2270
                                                   provide, hidden);
2271
  closure->clear_skip_on_incompatible_target();
2272
}
2273
 
2274
// Called by the bison parser to add an assertion.
2275
 
2276
extern "C" void
2277
script_add_assertion(void* closurev, Expression* check, const char* message,
2278
                     size_t messagelen)
2279
{
2280
  Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2281
  closure->script_options()->add_assertion(check, message, messagelen);
2282
  closure->clear_skip_on_incompatible_target();
2283
}
2284
 
2285
// Called by the bison parser to parse an OPTION.
2286
 
2287
extern "C" void
2288
script_parse_option(void* closurev, const char* option, size_t length)
2289
{
2290
  Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2291
  // We treat the option as a single command-line option, even if
2292
  // it has internal whitespace.
2293
  if (closure->command_line() == NULL)
2294
    {
2295
      // There are some options that we could handle here--e.g.,
2296
      // -lLIBRARY.  Should we bother?
2297
      gold_warning(_("%s:%d:%d: ignoring command OPTION; OPTION is only valid"
2298
                     " for scripts specified via -T/--script"),
2299
                   closure->filename(), closure->lineno(), closure->charpos());
2300
    }
2301
  else
2302
    {
2303
      bool past_a_double_dash_option = false;
2304
      const char* mutable_option = strndup(option, length);
2305
      gold_assert(mutable_option != NULL);
2306
      closure->command_line()->process_one_option(1, &mutable_option, 0,
2307
                                                  &past_a_double_dash_option);
2308
      // The General_options class will quite possibly store a pointer
2309
      // into mutable_option, so we can't free it.  In cases the class
2310
      // does not store such a pointer, this is a memory leak.  Alas. :(
2311
    }
2312
  closure->clear_skip_on_incompatible_target();
2313
}
2314
 
2315
// Called by the bison parser to handle OUTPUT_FORMAT.  OUTPUT_FORMAT
2316
// takes either one or three arguments.  In the three argument case,
2317
// the format depends on the endianness option, which we don't
2318
// currently support (FIXME).  If we see an OUTPUT_FORMAT for the
2319
// wrong format, then we want to search for a new file.  Returning 0
2320
// here will cause the parser to immediately abort.
2321
 
2322
extern "C" int
2323
script_check_output_format(void* closurev,
2324
                           const char* default_name, size_t default_length,
2325
                           const char*, size_t, const char*, size_t)
2326
{
2327
  Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2328
  std::string name(default_name, default_length);
2329
  Target* target = select_target_by_name(name.c_str());
2330
  if (target == NULL || !parameters->is_compatible_target(target))
2331
    {
2332
      if (closure->skip_on_incompatible_target())
2333
        {
2334
          closure->set_found_incompatible_target();
2335
          return 0;
2336
        }
2337
      // FIXME: Should we warn about the unknown target?
2338
    }
2339
  return 1;
2340
}
2341
 
2342
// Called by the bison parser to handle TARGET.
2343
 
2344
extern "C" void
2345
script_set_target(void* closurev, const char* target, size_t len)
2346
{
2347
  Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2348
  std::string s(target, len);
2349
  General_options::Object_format format_enum;
2350
  format_enum = General_options::string_to_object_format(s.c_str());
2351
  closure->position_dependent_options().set_format_enum(format_enum);
2352
}
2353
 
2354
// Called by the bison parser to handle SEARCH_DIR.  This is handled
2355
// exactly like a -L option.
2356
 
2357
extern "C" void
2358
script_add_search_dir(void* closurev, const char* option, size_t length)
2359
{
2360
  Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2361
  if (closure->command_line() == NULL)
2362
    gold_warning(_("%s:%d:%d: ignoring SEARCH_DIR; SEARCH_DIR is only valid"
2363
                   " for scripts specified via -T/--script"),
2364
                 closure->filename(), closure->lineno(), closure->charpos());
2365
  else
2366
    {
2367
      std::string s = "-L" + std::string(option, length);
2368
      script_parse_option(closurev, s.c_str(), s.size());
2369
    }
2370
}
2371
 
2372
/* Called by the bison parser to push the lexer into expression
2373
   mode.  */
2374
 
2375
extern "C" void
2376
script_push_lex_into_expression_mode(void* closurev)
2377
{
2378
  Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2379
  closure->push_lex_mode(Lex::EXPRESSION);
2380
}
2381
 
2382
/* Called by the bison parser to push the lexer into version
2383
   mode.  */
2384
 
2385
extern "C" void
2386
script_push_lex_into_version_mode(void* closurev)
2387
{
2388
  Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2389
  closure->push_lex_mode(Lex::VERSION_SCRIPT);
2390
}
2391
 
2392
/* Called by the bison parser to pop the lexer mode.  */
2393
 
2394
extern "C" void
2395
script_pop_lex_mode(void* closurev)
2396
{
2397
  Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2398
  closure->pop_lex_mode();
2399
}
2400
 
2401
// Register an entire version node. For example:
2402
//
2403
// GLIBC_2.1 {
2404
//   global: foo;
2405
// } GLIBC_2.0;
2406
//
2407
// - tag is "GLIBC_2.1"
2408
// - tree contains the information "global: foo"
2409
// - deps contains "GLIBC_2.0"
2410
 
2411
extern "C" void
2412
script_register_vers_node(void*,
2413
                          const char* tag,
2414
                          int taglen,
2415
                          struct Version_tree *tree,
2416
                          struct Version_dependency_list *deps)
2417
{
2418
  gold_assert(tree != NULL);
2419
  tree->dependencies = deps;
2420
  if (tag != NULL)
2421
    tree->tag = std::string(tag, taglen);
2422
}
2423
 
2424
// Add a dependencies to the list of existing dependencies, if any,
2425
// and return the expanded list.
2426
 
2427
extern "C" struct Version_dependency_list *
2428
script_add_vers_depend(void* closurev,
2429
                       struct Version_dependency_list *all_deps,
2430
                       const char *depend_to_add, int deplen)
2431
{
2432
  Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2433
  if (all_deps == NULL)
2434
    all_deps = closure->version_script()->allocate_dependency_list();
2435
  all_deps->dependencies.push_back(std::string(depend_to_add, deplen));
2436
  return all_deps;
2437
}
2438
 
2439
// Add a pattern expression to an existing list of expressions, if any.
2440
// TODO: In the old linker, the last argument used to be a bool, but I
2441
// don't know what it meant.
2442
 
2443
extern "C" struct Version_expression_list *
2444
script_new_vers_pattern(void* closurev,
2445
                        struct Version_expression_list *expressions,
2446
                        const char *pattern, int patlen, int exact_match)
2447
{
2448
  Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2449
  if (expressions == NULL)
2450
    expressions = closure->version_script()->allocate_expression_list();
2451
  expressions->expressions.push_back(
2452
      Version_expression(std::string(pattern, patlen),
2453
                         closure->get_current_language(),
2454
                         static_cast<bool>(exact_match)));
2455
  return expressions;
2456
}
2457
 
2458
// Attaches b to the end of a, and clears b.  So a = a + b and b = {}.
2459
 
2460
extern "C" struct Version_expression_list*
2461
script_merge_expressions(struct Version_expression_list *a,
2462
                         struct Version_expression_list *b)
2463
{
2464
  a->expressions.insert(a->expressions.end(),
2465
                        b->expressions.begin(), b->expressions.end());
2466
  // We could delete b and remove it from expressions_lists_, but
2467
  // that's a lot of work.  This works just as well.
2468
  b->expressions.clear();
2469
  return a;
2470
}
2471
 
2472
// Combine the global and local expressions into a a Version_tree.
2473
 
2474
extern "C" struct Version_tree *
2475
script_new_vers_node(void* closurev,
2476
                     struct Version_expression_list *global,
2477
                     struct Version_expression_list *local)
2478
{
2479
  Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2480
  Version_tree* tree = closure->version_script()->allocate_version_tree();
2481
  tree->global = global;
2482
  tree->local = local;
2483
  return tree;
2484
}
2485
 
2486
// Handle a transition in language, such as at the
2487
// start or end of 'extern "C++"'
2488
 
2489
extern "C" void
2490
version_script_push_lang(void* closurev, const char* lang, int langlen)
2491
{
2492
  Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2493
  closure->push_language(std::string(lang, langlen));
2494
}
2495
 
2496
extern "C" void
2497
version_script_pop_lang(void* closurev)
2498
{
2499
  Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2500
  closure->pop_language();
2501
}
2502
 
2503
// Called by the bison parser to start a SECTIONS clause.
2504
 
2505
extern "C" void
2506
script_start_sections(void* closurev)
2507
{
2508
  Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2509
  closure->script_options()->script_sections()->start_sections();
2510
  closure->clear_skip_on_incompatible_target();
2511
}
2512
 
2513
// Called by the bison parser to finish a SECTIONS clause.
2514
 
2515
extern "C" void
2516
script_finish_sections(void* closurev)
2517
{
2518
  Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2519
  closure->script_options()->script_sections()->finish_sections();
2520
}
2521
 
2522
// Start processing entries for an output section.
2523
 
2524
extern "C" void
2525
script_start_output_section(void* closurev, const char* name, size_t namelen,
2526
                            const struct Parser_output_section_header* header)
2527
{
2528
  Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2529
  closure->script_options()->script_sections()->start_output_section(name,
2530
                                                                     namelen,
2531
                                                                     header);
2532
}
2533
 
2534
// Finish processing entries for an output section.
2535
 
2536
extern "C" void
2537
script_finish_output_section(void* closurev,
2538
                             const struct Parser_output_section_trailer* trail)
2539
{
2540
  Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2541
  closure->script_options()->script_sections()->finish_output_section(trail);
2542
}
2543
 
2544
// Add a data item (e.g., "WORD (0)") to the current output section.
2545
 
2546
extern "C" void
2547
script_add_data(void* closurev, int data_token, Expression* val)
2548
{
2549
  Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2550
  int size;
2551
  bool is_signed = true;
2552
  switch (data_token)
2553
    {
2554
    case QUAD:
2555
      size = 8;
2556
      is_signed = false;
2557
      break;
2558
    case SQUAD:
2559
      size = 8;
2560
      break;
2561
    case LONG:
2562
      size = 4;
2563
      break;
2564
    case SHORT:
2565
      size = 2;
2566
      break;
2567
    case BYTE:
2568
      size = 1;
2569
      break;
2570
    default:
2571
      gold_unreachable();
2572
    }
2573
  closure->script_options()->script_sections()->add_data(size, is_signed, val);
2574
}
2575
 
2576
// Add a clause setting the fill value to the current output section.
2577
 
2578
extern "C" void
2579
script_add_fill(void* closurev, Expression* val)
2580
{
2581
  Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2582
  closure->script_options()->script_sections()->add_fill(val);
2583
}
2584
 
2585
// Add a new input section specification to the current output
2586
// section.
2587
 
2588
extern "C" void
2589
script_add_input_section(void* closurev,
2590
                         const struct Input_section_spec* spec,
2591
                         int keepi)
2592
{
2593
  Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2594
  bool keep = keepi != 0;
2595
  closure->script_options()->script_sections()->add_input_section(spec, keep);
2596
}
2597
 
2598
// When we see DATA_SEGMENT_ALIGN we record that following output
2599
// sections may be relro.
2600
 
2601
extern "C" void
2602
script_data_segment_align(void* closurev)
2603
{
2604
  Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2605
  if (!closure->script_options()->saw_sections_clause())
2606
    gold_error(_("%s:%d:%d: DATA_SEGMENT_ALIGN not in SECTIONS clause"),
2607
               closure->filename(), closure->lineno(), closure->charpos());
2608
  else
2609
    closure->script_options()->script_sections()->data_segment_align();
2610
}
2611
 
2612
// When we see DATA_SEGMENT_RELRO_END we know that all output sections
2613
// since DATA_SEGMENT_ALIGN should be relro.
2614
 
2615
extern "C" void
2616
script_data_segment_relro_end(void* closurev)
2617
{
2618
  Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2619
  if (!closure->script_options()->saw_sections_clause())
2620
    gold_error(_("%s:%d:%d: DATA_SEGMENT_ALIGN not in SECTIONS clause"),
2621
               closure->filename(), closure->lineno(), closure->charpos());
2622
  else
2623
    closure->script_options()->script_sections()->data_segment_relro_end();
2624
}
2625
 
2626
// Create a new list of string/sort pairs.
2627
 
2628
extern "C" String_sort_list_ptr
2629
script_new_string_sort_list(const struct Wildcard_section* string_sort)
2630
{
2631
  return new String_sort_list(1, *string_sort);
2632
}
2633
 
2634
// Add an entry to a list of string/sort pairs.  The way the parser
2635
// works permits us to simply modify the first parameter, rather than
2636
// copy the vector.
2637
 
2638
extern "C" String_sort_list_ptr
2639
script_string_sort_list_add(String_sort_list_ptr pv,
2640
                            const struct Wildcard_section* string_sort)
2641
{
2642
  if (pv == NULL)
2643
    return script_new_string_sort_list(string_sort);
2644
  else
2645
    {
2646
      pv->push_back(*string_sort);
2647
      return pv;
2648
    }
2649
}
2650
 
2651
// Create a new list of strings.
2652
 
2653
extern "C" String_list_ptr
2654
script_new_string_list(const char* str, size_t len)
2655
{
2656
  return new String_list(1, std::string(str, len));
2657
}
2658
 
2659
// Add an element to a list of strings.  The way the parser works
2660
// permits us to simply modify the first parameter, rather than copy
2661
// the vector.
2662
 
2663
extern "C" String_list_ptr
2664
script_string_list_push_back(String_list_ptr pv, const char* str, size_t len)
2665
{
2666
  if (pv == NULL)
2667
    return script_new_string_list(str, len);
2668
  else
2669
    {
2670
      pv->push_back(std::string(str, len));
2671
      return pv;
2672
    }
2673
}
2674
 
2675
// Concatenate two string lists.  Either or both may be NULL.  The way
2676
// the parser works permits us to modify the parameters, rather than
2677
// copy the vector.
2678
 
2679
extern "C" String_list_ptr
2680
script_string_list_append(String_list_ptr pv1, String_list_ptr pv2)
2681
{
2682
  if (pv1 == NULL)
2683
    return pv2;
2684
  if (pv2 == NULL)
2685
    return pv1;
2686
  pv1->insert(pv1->end(), pv2->begin(), pv2->end());
2687
  return pv1;
2688
}
2689
 
2690
// Add a new program header.
2691
 
2692
extern "C" void
2693
script_add_phdr(void* closurev, const char* name, size_t namelen,
2694
                unsigned int type, const Phdr_info* info)
2695
{
2696
  Parser_closure* closure = static_cast<Parser_closure*>(closurev);
2697
  bool includes_filehdr = info->includes_filehdr != 0;
2698
  bool includes_phdrs = info->includes_phdrs != 0;
2699
  bool is_flags_valid = info->is_flags_valid != 0;
2700
  Script_sections* ss = closure->script_options()->script_sections();
2701
  ss->add_phdr(name, namelen, type, includes_filehdr, includes_phdrs,
2702
               is_flags_valid, info->flags, info->load_address);
2703
  closure->clear_skip_on_incompatible_target();
2704
}
2705
 
2706
// Convert a program header string to a type.
2707
 
2708
#define PHDR_TYPE(NAME) { #NAME, sizeof(#NAME) - 1, elfcpp::NAME }
2709
 
2710
static struct
2711
{
2712
  const char* name;
2713
  size_t namelen;
2714
  unsigned int val;
2715
} phdr_type_names[] =
2716
{
2717
  PHDR_TYPE(PT_NULL),
2718
  PHDR_TYPE(PT_LOAD),
2719
  PHDR_TYPE(PT_DYNAMIC),
2720
  PHDR_TYPE(PT_INTERP),
2721
  PHDR_TYPE(PT_NOTE),
2722
  PHDR_TYPE(PT_SHLIB),
2723
  PHDR_TYPE(PT_PHDR),
2724
  PHDR_TYPE(PT_TLS),
2725
  PHDR_TYPE(PT_GNU_EH_FRAME),
2726
  PHDR_TYPE(PT_GNU_STACK),
2727
  PHDR_TYPE(PT_GNU_RELRO)
2728
};
2729
 
2730
extern "C" unsigned int
2731
script_phdr_string_to_type(void* closurev, const char* name, size_t namelen)
2732
{
2733
  for (unsigned int i = 0;
2734
       i < sizeof(phdr_type_names) / sizeof(phdr_type_names[0]);
2735
       ++i)
2736
    if (namelen == phdr_type_names[i].namelen
2737
        && strncmp(name, phdr_type_names[i].name, namelen) == 0)
2738
      return phdr_type_names[i].val;
2739
  yyerror(closurev, _("unknown PHDR type (try integer)"));
2740
  return elfcpp::PT_NULL;
2741
}

powered by: WebSVN 2.1.0

© copyright 1999-2025 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.