1 |
281 |
jeremybenn |
------------------------------------------------------------------------------
|
2 |
|
|
-- --
|
3 |
|
|
-- GNAT RUN-TIME COMPONENTS --
|
4 |
|
|
-- --
|
5 |
|
|
-- A D A . N U M E R I C S . G E N E R I C _ C O M P L E X _ T Y P E S --
|
6 |
|
|
-- --
|
7 |
|
|
-- S p e c --
|
8 |
|
|
-- --
|
9 |
|
|
-- Copyright (C) 1992-2009, Free Software Foundation, Inc. --
|
10 |
|
|
-- --
|
11 |
|
|
-- This specification is derived from the Ada Reference Manual for use with --
|
12 |
|
|
-- GNAT. The copyright notice above, and the license provisions that follow --
|
13 |
|
|
-- apply solely to the contents of the part following the private keyword. --
|
14 |
|
|
-- --
|
15 |
|
|
-- GNAT is free software; you can redistribute it and/or modify it under --
|
16 |
|
|
-- terms of the GNU General Public License as published by the Free Soft- --
|
17 |
|
|
-- ware Foundation; either version 3, or (at your option) any later ver- --
|
18 |
|
|
-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
|
19 |
|
|
-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
|
20 |
|
|
-- or FITNESS FOR A PARTICULAR PURPOSE. --
|
21 |
|
|
-- --
|
22 |
|
|
-- As a special exception under Section 7 of GPL version 3, you are granted --
|
23 |
|
|
-- additional permissions described in the GCC Runtime Library Exception, --
|
24 |
|
|
-- version 3.1, as published by the Free Software Foundation. --
|
25 |
|
|
-- --
|
26 |
|
|
-- You should have received a copy of the GNU General Public License and --
|
27 |
|
|
-- a copy of the GCC Runtime Library Exception along with this program; --
|
28 |
|
|
-- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see --
|
29 |
|
|
-- <http://www.gnu.org/licenses/>. --
|
30 |
|
|
-- --
|
31 |
|
|
-- GNAT was originally developed by the GNAT team at New York University. --
|
32 |
|
|
-- Extensive contributions were provided by Ada Core Technologies Inc. --
|
33 |
|
|
-- --
|
34 |
|
|
------------------------------------------------------------------------------
|
35 |
|
|
|
36 |
|
|
generic
|
37 |
|
|
type Real is digits <>;
|
38 |
|
|
|
39 |
|
|
package Ada.Numerics.Generic_Complex_Types is
|
40 |
|
|
pragma Pure;
|
41 |
|
|
|
42 |
|
|
type Complex is record
|
43 |
|
|
Re, Im : Real'Base;
|
44 |
|
|
end record;
|
45 |
|
|
|
46 |
|
|
pragma Complex_Representation (Complex);
|
47 |
|
|
|
48 |
|
|
type Imaginary is private;
|
49 |
|
|
pragma Preelaborable_Initialization (Imaginary);
|
50 |
|
|
|
51 |
|
|
i : constant Imaginary;
|
52 |
|
|
j : constant Imaginary;
|
53 |
|
|
|
54 |
|
|
function Re (X : Complex) return Real'Base;
|
55 |
|
|
function Im (X : Complex) return Real'Base;
|
56 |
|
|
function Im (X : Imaginary) return Real'Base;
|
57 |
|
|
|
58 |
|
|
procedure Set_Re (X : in out Complex; Re : Real'Base);
|
59 |
|
|
procedure Set_Im (X : in out Complex; Im : Real'Base);
|
60 |
|
|
procedure Set_Im (X : out Imaginary; Im : Real'Base);
|
61 |
|
|
|
62 |
|
|
function Compose_From_Cartesian (Re, Im : Real'Base) return Complex;
|
63 |
|
|
function Compose_From_Cartesian (Re : Real'Base) return Complex;
|
64 |
|
|
function Compose_From_Cartesian (Im : Imaginary) return Complex;
|
65 |
|
|
|
66 |
|
|
function Modulus (X : Complex) return Real'Base;
|
67 |
|
|
function "abs" (Right : Complex) return Real'Base renames Modulus;
|
68 |
|
|
|
69 |
|
|
function Argument (X : Complex) return Real'Base;
|
70 |
|
|
function Argument (X : Complex; Cycle : Real'Base) return Real'Base;
|
71 |
|
|
|
72 |
|
|
function Compose_From_Polar (
|
73 |
|
|
Modulus, Argument : Real'Base)
|
74 |
|
|
return Complex;
|
75 |
|
|
|
76 |
|
|
function Compose_From_Polar (
|
77 |
|
|
Modulus, Argument, Cycle : Real'Base)
|
78 |
|
|
return Complex;
|
79 |
|
|
|
80 |
|
|
function "+" (Right : Complex) return Complex;
|
81 |
|
|
function "-" (Right : Complex) return Complex;
|
82 |
|
|
function Conjugate (X : Complex) return Complex;
|
83 |
|
|
|
84 |
|
|
function "+" (Left, Right : Complex) return Complex;
|
85 |
|
|
function "-" (Left, Right : Complex) return Complex;
|
86 |
|
|
function "*" (Left, Right : Complex) return Complex;
|
87 |
|
|
function "/" (Left, Right : Complex) return Complex;
|
88 |
|
|
|
89 |
|
|
function "**" (Left : Complex; Right : Integer) return Complex;
|
90 |
|
|
|
91 |
|
|
function "+" (Right : Imaginary) return Imaginary;
|
92 |
|
|
function "-" (Right : Imaginary) return Imaginary;
|
93 |
|
|
function Conjugate (X : Imaginary) return Imaginary renames "-";
|
94 |
|
|
function "abs" (Right : Imaginary) return Real'Base;
|
95 |
|
|
|
96 |
|
|
function "+" (Left, Right : Imaginary) return Imaginary;
|
97 |
|
|
function "-" (Left, Right : Imaginary) return Imaginary;
|
98 |
|
|
function "*" (Left, Right : Imaginary) return Real'Base;
|
99 |
|
|
function "/" (Left, Right : Imaginary) return Real'Base;
|
100 |
|
|
|
101 |
|
|
function "**" (Left : Imaginary; Right : Integer) return Complex;
|
102 |
|
|
|
103 |
|
|
function "<" (Left, Right : Imaginary) return Boolean;
|
104 |
|
|
function "<=" (Left, Right : Imaginary) return Boolean;
|
105 |
|
|
function ">" (Left, Right : Imaginary) return Boolean;
|
106 |
|
|
function ">=" (Left, Right : Imaginary) return Boolean;
|
107 |
|
|
|
108 |
|
|
function "+" (Left : Complex; Right : Real'Base) return Complex;
|
109 |
|
|
function "+" (Left : Real'Base; Right : Complex) return Complex;
|
110 |
|
|
function "-" (Left : Complex; Right : Real'Base) return Complex;
|
111 |
|
|
function "-" (Left : Real'Base; Right : Complex) return Complex;
|
112 |
|
|
function "*" (Left : Complex; Right : Real'Base) return Complex;
|
113 |
|
|
function "*" (Left : Real'Base; Right : Complex) return Complex;
|
114 |
|
|
function "/" (Left : Complex; Right : Real'Base) return Complex;
|
115 |
|
|
function "/" (Left : Real'Base; Right : Complex) return Complex;
|
116 |
|
|
|
117 |
|
|
function "+" (Left : Complex; Right : Imaginary) return Complex;
|
118 |
|
|
function "+" (Left : Imaginary; Right : Complex) return Complex;
|
119 |
|
|
function "-" (Left : Complex; Right : Imaginary) return Complex;
|
120 |
|
|
function "-" (Left : Imaginary; Right : Complex) return Complex;
|
121 |
|
|
function "*" (Left : Complex; Right : Imaginary) return Complex;
|
122 |
|
|
function "*" (Left : Imaginary; Right : Complex) return Complex;
|
123 |
|
|
function "/" (Left : Complex; Right : Imaginary) return Complex;
|
124 |
|
|
function "/" (Left : Imaginary; Right : Complex) return Complex;
|
125 |
|
|
|
126 |
|
|
function "+" (Left : Imaginary; Right : Real'Base) return Complex;
|
127 |
|
|
function "+" (Left : Real'Base; Right : Imaginary) return Complex;
|
128 |
|
|
function "-" (Left : Imaginary; Right : Real'Base) return Complex;
|
129 |
|
|
function "-" (Left : Real'Base; Right : Imaginary) return Complex;
|
130 |
|
|
|
131 |
|
|
function "*" (Left : Imaginary; Right : Real'Base) return Imaginary;
|
132 |
|
|
function "*" (Left : Real'Base; Right : Imaginary) return Imaginary;
|
133 |
|
|
function "/" (Left : Imaginary; Right : Real'Base) return Imaginary;
|
134 |
|
|
function "/" (Left : Real'Base; Right : Imaginary) return Imaginary;
|
135 |
|
|
|
136 |
|
|
private
|
137 |
|
|
type Imaginary is new Real'Base;
|
138 |
|
|
|
139 |
|
|
i : constant Imaginary := 1.0;
|
140 |
|
|
j : constant Imaginary := 1.0;
|
141 |
|
|
|
142 |
|
|
pragma Inline ("+");
|
143 |
|
|
pragma Inline ("-");
|
144 |
|
|
pragma Inline ("*");
|
145 |
|
|
pragma Inline ("<");
|
146 |
|
|
pragma Inline ("<=");
|
147 |
|
|
pragma Inline (">");
|
148 |
|
|
pragma Inline (">=");
|
149 |
|
|
pragma Inline ("abs");
|
150 |
|
|
pragma Inline (Compose_From_Cartesian);
|
151 |
|
|
pragma Inline (Conjugate);
|
152 |
|
|
pragma Inline (Im);
|
153 |
|
|
pragma Inline (Re);
|
154 |
|
|
pragma Inline (Set_Im);
|
155 |
|
|
pragma Inline (Set_Re);
|
156 |
|
|
|
157 |
|
|
end Ada.Numerics.Generic_Complex_Types;
|