1 |
281 |
jeremybenn |
------------------------------------------------------------------------------
|
2 |
|
|
-- --
|
3 |
|
|
-- GNAT RUN-TIME COMPONENTS --
|
4 |
|
|
-- --
|
5 |
|
|
-- A D A . N U M E R I C S . A U X --
|
6 |
|
|
-- --
|
7 |
|
|
-- B o d y --
|
8 |
|
|
-- (Apple OS X Version) --
|
9 |
|
|
-- --
|
10 |
|
|
-- Copyright (C) 1998-2009, Free Software Foundation, Inc. --
|
11 |
|
|
-- --
|
12 |
|
|
-- GNAT is free software; you can redistribute it and/or modify it under --
|
13 |
|
|
-- terms of the GNU General Public License as published by the Free Soft- --
|
14 |
|
|
-- ware Foundation; either version 3, or (at your option) any later ver- --
|
15 |
|
|
-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
|
16 |
|
|
-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
|
17 |
|
|
-- or FITNESS FOR A PARTICULAR PURPOSE. --
|
18 |
|
|
-- --
|
19 |
|
|
-- As a special exception under Section 7 of GPL version 3, you are granted --
|
20 |
|
|
-- additional permissions described in the GCC Runtime Library Exception, --
|
21 |
|
|
-- version 3.1, as published by the Free Software Foundation. --
|
22 |
|
|
-- --
|
23 |
|
|
-- You should have received a copy of the GNU General Public License and --
|
24 |
|
|
-- a copy of the GCC Runtime Library Exception along with this program; --
|
25 |
|
|
-- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see --
|
26 |
|
|
-- <http://www.gnu.org/licenses/>. --
|
27 |
|
|
-- --
|
28 |
|
|
-- GNAT was originally developed by the GNAT team at New York University. --
|
29 |
|
|
-- Extensive contributions were provided by Ada Core Technologies Inc. --
|
30 |
|
|
-- --
|
31 |
|
|
------------------------------------------------------------------------------
|
32 |
|
|
|
33 |
|
|
-- File a-numaux.adb <- a-numaux-darwin.adb
|
34 |
|
|
|
35 |
|
|
package body Ada.Numerics.Aux is
|
36 |
|
|
|
37 |
|
|
-----------------------
|
38 |
|
|
-- Local subprograms --
|
39 |
|
|
-----------------------
|
40 |
|
|
|
41 |
|
|
procedure Reduce (X : in out Double; Q : out Natural);
|
42 |
|
|
-- Implements reduction of X by Pi/2. Q is the quadrant of the final
|
43 |
|
|
-- result in the range 0 .. 3. The absolute value of X is at most Pi/4.
|
44 |
|
|
|
45 |
|
|
-- The following three functions implement Chebishev approximations
|
46 |
|
|
-- of the trigonometric functions in their reduced domain.
|
47 |
|
|
-- These approximations have been computed using Maple.
|
48 |
|
|
|
49 |
|
|
function Sine_Approx (X : Double) return Double;
|
50 |
|
|
function Cosine_Approx (X : Double) return Double;
|
51 |
|
|
|
52 |
|
|
pragma Inline (Reduce);
|
53 |
|
|
pragma Inline (Sine_Approx);
|
54 |
|
|
pragma Inline (Cosine_Approx);
|
55 |
|
|
|
56 |
|
|
function Cosine_Approx (X : Double) return Double is
|
57 |
|
|
XX : constant Double := X * X;
|
58 |
|
|
begin
|
59 |
|
|
return (((((16#8.DC57FBD05F640#E-08 * XX
|
60 |
|
|
- 16#4.9F7D00BF25D80#E-06) * XX
|
61 |
|
|
+ 16#1.A019F7FDEFCC2#E-04) * XX
|
62 |
|
|
- 16#5.B05B058F18B20#E-03) * XX
|
63 |
|
|
+ 16#A.AAAAAAAA73FA8#E-02) * XX
|
64 |
|
|
- 16#7.FFFFFFFFFFDE4#E-01) * XX
|
65 |
|
|
- 16#3.655E64869ECCE#E-14 + 1.0;
|
66 |
|
|
end Cosine_Approx;
|
67 |
|
|
|
68 |
|
|
function Sine_Approx (X : Double) return Double is
|
69 |
|
|
XX : constant Double := X * X;
|
70 |
|
|
begin
|
71 |
|
|
return (((((16#A.EA2D4ABE41808#E-09 * XX
|
72 |
|
|
- 16#6.B974C10F9D078#E-07) * XX
|
73 |
|
|
+ 16#2.E3BC673425B0E#E-05) * XX
|
74 |
|
|
- 16#D.00D00CCA7AF00#E-04) * XX
|
75 |
|
|
+ 16#2.222222221B190#E-02) * XX
|
76 |
|
|
- 16#2.AAAAAAAAAAA44#E-01) * (XX * X) + X;
|
77 |
|
|
end Sine_Approx;
|
78 |
|
|
|
79 |
|
|
------------
|
80 |
|
|
-- Reduce --
|
81 |
|
|
------------
|
82 |
|
|
|
83 |
|
|
procedure Reduce (X : in out Double; Q : out Natural) is
|
84 |
|
|
Half_Pi : constant := Pi / 2.0;
|
85 |
|
|
Two_Over_Pi : constant := 2.0 / Pi;
|
86 |
|
|
|
87 |
|
|
HM : constant := Integer'Min (Double'Machine_Mantissa / 2, Natural'Size);
|
88 |
|
|
M : constant Double := 0.5 + 2.0**(1 - HM); -- Splitting constant
|
89 |
|
|
P1 : constant Double := Double'Leading_Part (Half_Pi, HM);
|
90 |
|
|
P2 : constant Double := Double'Leading_Part (Half_Pi - P1, HM);
|
91 |
|
|
P3 : constant Double := Double'Leading_Part (Half_Pi - P1 - P2, HM);
|
92 |
|
|
P4 : constant Double := Double'Leading_Part (Half_Pi - P1 - P2 - P3, HM);
|
93 |
|
|
P5 : constant Double := Double'Leading_Part (Half_Pi - P1 - P2 - P3
|
94 |
|
|
- P4, HM);
|
95 |
|
|
P6 : constant Double := Double'Model (Half_Pi - P1 - P2 - P3 - P4 - P5);
|
96 |
|
|
K : Double;
|
97 |
|
|
|
98 |
|
|
begin
|
99 |
|
|
-- For X < 2.0**HM, all products below are computed exactly.
|
100 |
|
|
-- Due to cancellation effects all subtractions are exact as well.
|
101 |
|
|
-- As no double extended floating-point number has more than 75
|
102 |
|
|
-- zeros after the binary point, the result will be the correctly
|
103 |
|
|
-- rounded result of X - K * (Pi / 2.0).
|
104 |
|
|
|
105 |
|
|
K := X * Two_Over_Pi;
|
106 |
|
|
while abs K >= 2.0 ** HM loop
|
107 |
|
|
K := K * M - (K * M - K);
|
108 |
|
|
X :=
|
109 |
|
|
(((((X - K * P1) - K * P2) - K * P3) - K * P4) - K * P5) - K * P6;
|
110 |
|
|
K := X * Two_Over_Pi;
|
111 |
|
|
end loop;
|
112 |
|
|
|
113 |
|
|
-- If K is not a number (because X was not finite) raise exception
|
114 |
|
|
|
115 |
|
|
if K /= K then
|
116 |
|
|
raise Constraint_Error;
|
117 |
|
|
end if;
|
118 |
|
|
|
119 |
|
|
K := Double'Rounding (K);
|
120 |
|
|
Q := Integer (K) mod 4;
|
121 |
|
|
X := (((((X - K * P1) - K * P2) - K * P3)
|
122 |
|
|
- K * P4) - K * P5) - K * P6;
|
123 |
|
|
end Reduce;
|
124 |
|
|
|
125 |
|
|
---------
|
126 |
|
|
-- Cos --
|
127 |
|
|
---------
|
128 |
|
|
|
129 |
|
|
function Cos (X : Double) return Double is
|
130 |
|
|
Reduced_X : Double := abs X;
|
131 |
|
|
Quadrant : Natural range 0 .. 3;
|
132 |
|
|
|
133 |
|
|
begin
|
134 |
|
|
if Reduced_X > Pi / 4.0 then
|
135 |
|
|
Reduce (Reduced_X, Quadrant);
|
136 |
|
|
|
137 |
|
|
case Quadrant is
|
138 |
|
|
when 0 =>
|
139 |
|
|
return Cosine_Approx (Reduced_X);
|
140 |
|
|
|
141 |
|
|
when 1 =>
|
142 |
|
|
return Sine_Approx (-Reduced_X);
|
143 |
|
|
|
144 |
|
|
when 2 =>
|
145 |
|
|
return -Cosine_Approx (Reduced_X);
|
146 |
|
|
|
147 |
|
|
when 3 =>
|
148 |
|
|
return Sine_Approx (Reduced_X);
|
149 |
|
|
end case;
|
150 |
|
|
end if;
|
151 |
|
|
|
152 |
|
|
return Cosine_Approx (Reduced_X);
|
153 |
|
|
end Cos;
|
154 |
|
|
|
155 |
|
|
---------
|
156 |
|
|
-- Sin --
|
157 |
|
|
---------
|
158 |
|
|
|
159 |
|
|
function Sin (X : Double) return Double is
|
160 |
|
|
Reduced_X : Double := X;
|
161 |
|
|
Quadrant : Natural range 0 .. 3;
|
162 |
|
|
|
163 |
|
|
begin
|
164 |
|
|
if abs X > Pi / 4.0 then
|
165 |
|
|
Reduce (Reduced_X, Quadrant);
|
166 |
|
|
|
167 |
|
|
case Quadrant is
|
168 |
|
|
when 0 =>
|
169 |
|
|
return Sine_Approx (Reduced_X);
|
170 |
|
|
|
171 |
|
|
when 1 =>
|
172 |
|
|
return Cosine_Approx (Reduced_X);
|
173 |
|
|
|
174 |
|
|
when 2 =>
|
175 |
|
|
return Sine_Approx (-Reduced_X);
|
176 |
|
|
|
177 |
|
|
when 3 =>
|
178 |
|
|
return -Cosine_Approx (Reduced_X);
|
179 |
|
|
end case;
|
180 |
|
|
end if;
|
181 |
|
|
|
182 |
|
|
return Sine_Approx (Reduced_X);
|
183 |
|
|
end Sin;
|
184 |
|
|
|
185 |
|
|
end Ada.Numerics.Aux;
|