OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-stable/] [gcc-4.5.1/] [gcc/] [ada/] [a-numaux-darwin.adb] - Blame information for rev 847

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 281 jeremybenn
------------------------------------------------------------------------------
2
--                                                                          --
3
--                         GNAT RUN-TIME COMPONENTS                         --
4
--                                                                          --
5
--                     A D A . N U M E R I C S . A U X                      --
6
--                                                                          --
7
--                                 B o d y                                  --
8
--                          (Apple OS X Version)                            --
9
--                                                                          --
10
--          Copyright (C) 1998-2009, Free Software Foundation, Inc.         --
11
--                                                                          --
12
-- GNAT is free software;  you can  redistribute it  and/or modify it under --
13
-- terms of the  GNU General Public License as published  by the Free Soft- --
14
-- ware  Foundation;  either version 3,  or (at your option) any later ver- --
15
-- sion.  GNAT is distributed in the hope that it will be useful, but WITH- --
16
-- OUT ANY WARRANTY;  without even the  implied warranty of MERCHANTABILITY --
17
-- or FITNESS FOR A PARTICULAR PURPOSE.                                     --
18
--                                                                          --
19
-- As a special exception under Section 7 of GPL version 3, you are granted --
20
-- additional permissions described in the GCC Runtime Library Exception,   --
21
-- version 3.1, as published by the Free Software Foundation.               --
22
--                                                                          --
23
-- You should have received a copy of the GNU General Public License and    --
24
-- a copy of the GCC Runtime Library Exception along with this program;     --
25
-- see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see    --
26
-- <http://www.gnu.org/licenses/>.                                          --
27
--                                                                          --
28
-- GNAT was originally developed  by the GNAT team at  New York University. --
29
-- Extensive contributions were provided by Ada Core Technologies Inc.      --
30
--                                                                          --
31
------------------------------------------------------------------------------
32
 
33
--  File a-numaux.adb <- a-numaux-darwin.adb
34
 
35
package body Ada.Numerics.Aux is
36
 
37
   -----------------------
38
   -- Local subprograms --
39
   -----------------------
40
 
41
   procedure Reduce (X : in out Double; Q : out Natural);
42
   --  Implements reduction of X by Pi/2. Q is the quadrant of the final
43
   --  result in the range 0 .. 3. The absolute value of X is at most Pi/4.
44
 
45
   --  The following three functions implement Chebishev approximations
46
   --  of the trigonometric functions in their reduced domain.
47
   --  These approximations have been computed using Maple.
48
 
49
   function Sine_Approx (X : Double) return Double;
50
   function Cosine_Approx (X : Double) return Double;
51
 
52
   pragma Inline (Reduce);
53
   pragma Inline (Sine_Approx);
54
   pragma Inline (Cosine_Approx);
55
 
56
   function Cosine_Approx (X : Double) return Double is
57
      XX : constant Double := X * X;
58
   begin
59
      return (((((16#8.DC57FBD05F640#E-08 * XX
60
              - 16#4.9F7D00BF25D80#E-06) * XX
61
              + 16#1.A019F7FDEFCC2#E-04) * XX
62
              - 16#5.B05B058F18B20#E-03) * XX
63
              + 16#A.AAAAAAAA73FA8#E-02) * XX
64
              - 16#7.FFFFFFFFFFDE4#E-01) * XX
65
              - 16#3.655E64869ECCE#E-14 + 1.0;
66
   end Cosine_Approx;
67
 
68
   function Sine_Approx (X : Double) return Double is
69
      XX : constant Double := X * X;
70
   begin
71
      return (((((16#A.EA2D4ABE41808#E-09 * XX
72
              - 16#6.B974C10F9D078#E-07) * XX
73
              + 16#2.E3BC673425B0E#E-05) * XX
74
              - 16#D.00D00CCA7AF00#E-04) * XX
75
              + 16#2.222222221B190#E-02) * XX
76
              - 16#2.AAAAAAAAAAA44#E-01) * (XX * X) + X;
77
   end Sine_Approx;
78
 
79
   ------------
80
   -- Reduce --
81
   ------------
82
 
83
   procedure Reduce (X : in out Double; Q : out Natural) is
84
      Half_Pi     : constant := Pi / 2.0;
85
      Two_Over_Pi : constant := 2.0 / Pi;
86
 
87
      HM : constant := Integer'Min (Double'Machine_Mantissa / 2, Natural'Size);
88
      M  : constant Double := 0.5 + 2.0**(1 - HM); -- Splitting constant
89
      P1 : constant Double := Double'Leading_Part (Half_Pi, HM);
90
      P2 : constant Double := Double'Leading_Part (Half_Pi - P1, HM);
91
      P3 : constant Double := Double'Leading_Part (Half_Pi - P1 - P2, HM);
92
      P4 : constant Double := Double'Leading_Part (Half_Pi - P1 - P2 - P3, HM);
93
      P5 : constant Double := Double'Leading_Part (Half_Pi - P1 - P2 - P3
94
                                                                 - P4, HM);
95
      P6 : constant Double := Double'Model (Half_Pi - P1 - P2 - P3 - P4 - P5);
96
      K  : Double;
97
 
98
   begin
99
      --  For X < 2.0**HM, all products below are computed exactly.
100
      --  Due to cancellation effects all subtractions are exact as well.
101
      --  As no double extended floating-point number has more than 75
102
      --  zeros after the binary point, the result will be the correctly
103
      --  rounded result of X - K * (Pi / 2.0).
104
 
105
      K := X * Two_Over_Pi;
106
      while abs K >= 2.0 ** HM loop
107
         K := K * M - (K * M - K);
108
         X :=
109
           (((((X - K * P1) - K * P2) - K * P3) - K * P4) - K * P5) - K * P6;
110
         K := X * Two_Over_Pi;
111
      end loop;
112
 
113
      --  If K is not a number (because X was not finite) raise exception
114
 
115
      if K /= K then
116
         raise Constraint_Error;
117
      end if;
118
 
119
      K := Double'Rounding (K);
120
      Q := Integer (K) mod 4;
121
      X := (((((X - K * P1) - K * P2) - K * P3)
122
                  - K * P4) - K * P5) - K * P6;
123
   end Reduce;
124
 
125
   ---------
126
   -- Cos --
127
   ---------
128
 
129
   function Cos (X : Double) return Double is
130
      Reduced_X : Double := abs X;
131
      Quadrant  : Natural range 0 .. 3;
132
 
133
   begin
134
      if Reduced_X > Pi / 4.0 then
135
         Reduce (Reduced_X, Quadrant);
136
 
137
         case Quadrant is
138
            when 0 =>
139
               return Cosine_Approx (Reduced_X);
140
 
141
            when 1 =>
142
               return Sine_Approx (-Reduced_X);
143
 
144
            when 2 =>
145
               return -Cosine_Approx (Reduced_X);
146
 
147
            when 3 =>
148
               return Sine_Approx (Reduced_X);
149
         end case;
150
      end if;
151
 
152
      return Cosine_Approx (Reduced_X);
153
   end Cos;
154
 
155
   ---------
156
   -- Sin --
157
   ---------
158
 
159
   function Sin (X : Double) return Double is
160
      Reduced_X : Double := X;
161
      Quadrant  : Natural range 0 .. 3;
162
 
163
   begin
164
      if abs X > Pi / 4.0 then
165
         Reduce (Reduced_X, Quadrant);
166
 
167
         case Quadrant is
168
            when 0 =>
169
               return Sine_Approx (Reduced_X);
170
 
171
            when 1 =>
172
               return Cosine_Approx (Reduced_X);
173
 
174
            when 2 =>
175
               return Sine_Approx (-Reduced_X);
176
 
177
            when 3 =>
178
               return -Cosine_Approx (Reduced_X);
179
         end case;
180
      end if;
181
 
182
      return Sine_Approx (Reduced_X);
183
   end Sin;
184
 
185
end Ada.Numerics.Aux;

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.