OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-stable/] [gcc-4.5.1/] [gcc/] [bb-reorder.c] - Blame information for rev 862

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 280 jeremybenn
/* Basic block reordering routines for the GNU compiler.
2
   Copyright (C) 2000, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2010
3
   Free Software Foundation, Inc.
4
 
5
   This file is part of GCC.
6
 
7
   GCC is free software; you can redistribute it and/or modify it
8
   under the terms of the GNU General Public License as published by
9
   the Free Software Foundation; either version 3, or (at your option)
10
   any later version.
11
 
12
   GCC is distributed in the hope that it will be useful, but WITHOUT
13
   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14
   or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public
15
   License for more details.
16
 
17
   You should have received a copy of the GNU General Public License
18
   along with GCC; see the file COPYING3.  If not see
19
   <http://www.gnu.org/licenses/>.  */
20
 
21
/* This (greedy) algorithm constructs traces in several rounds.
22
   The construction starts from "seeds".  The seed for the first round
23
   is the entry point of function.  When there are more than one seed
24
   that one is selected first that has the lowest key in the heap
25
   (see function bb_to_key).  Then the algorithm repeatedly adds the most
26
   probable successor to the end of a trace.  Finally it connects the traces.
27
 
28
   There are two parameters: Branch Threshold and Exec Threshold.
29
   If the edge to a successor of the actual basic block is lower than
30
   Branch Threshold or the frequency of the successor is lower than
31
   Exec Threshold the successor will be the seed in one of the next rounds.
32
   Each round has these parameters lower than the previous one.
33
   The last round has to have these parameters set to zero
34
   so that the remaining blocks are picked up.
35
 
36
   The algorithm selects the most probable successor from all unvisited
37
   successors and successors that have been added to this trace.
38
   The other successors (that has not been "sent" to the next round) will be
39
   other seeds for this round and the secondary traces will start in them.
40
   If the successor has not been visited in this trace it is added to the trace
41
   (however, there is some heuristic for simple branches).
42
   If the successor has been visited in this trace the loop has been found.
43
   If the loop has many iterations the loop is rotated so that the
44
   source block of the most probable edge going out from the loop
45
   is the last block of the trace.
46
   If the loop has few iterations and there is no edge from the last block of
47
   the loop going out from loop the loop header is duplicated.
48
   Finally, the construction of the trace is terminated.
49
 
50
   When connecting traces it first checks whether there is an edge from the
51
   last block of one trace to the first block of another trace.
52
   When there are still some unconnected traces it checks whether there exists
53
   a basic block BB such that BB is a successor of the last bb of one trace
54
   and BB is a predecessor of the first block of another trace. In this case,
55
   BB is duplicated and the traces are connected through this duplicate.
56
   The rest of traces are simply connected so there will be a jump to the
57
   beginning of the rest of trace.
58
 
59
 
60
   References:
61
 
62
   "Software Trace Cache"
63
   A. Ramirez, J. Larriba-Pey, C. Navarro, J. Torrellas and M. Valero; 1999
64
   http://citeseer.nj.nec.com/15361.html
65
 
66
*/
67
 
68
#include "config.h"
69
#include "system.h"
70
#include "coretypes.h"
71
#include "tm.h"
72
#include "rtl.h"
73
#include "regs.h"
74
#include "flags.h"
75
#include "timevar.h"
76
#include "output.h"
77
#include "cfglayout.h"
78
#include "fibheap.h"
79
#include "target.h"
80
#include "function.h"
81
#include "tm_p.h"
82
#include "obstack.h"
83
#include "expr.h"
84
#include "params.h"
85
#include "toplev.h"
86
#include "tree-pass.h"
87
#include "df.h"
88
 
89
/* The number of rounds.  In most cases there will only be 4 rounds, but
90
   when partitioning hot and cold basic blocks into separate sections of
91
   the .o file there will be an extra round.*/
92
#define N_ROUNDS 5
93
 
94
/* Stubs in case we don't have a return insn.
95
   We have to check at runtime too, not only compiletime.  */
96
 
97
#ifndef HAVE_return
98
#define HAVE_return 0
99
#define gen_return() NULL_RTX
100
#endif
101
 
102
 
103
/* Branch thresholds in thousandths (per mille) of the REG_BR_PROB_BASE.  */
104
static int branch_threshold[N_ROUNDS] = {400, 200, 100, 0, 0};
105
 
106
/* Exec thresholds in thousandths (per mille) of the frequency of bb 0.  */
107
static int exec_threshold[N_ROUNDS] = {500, 200, 50, 0, 0};
108
 
109
/* If edge frequency is lower than DUPLICATION_THRESHOLD per mille of entry
110
   block the edge destination is not duplicated while connecting traces.  */
111
#define DUPLICATION_THRESHOLD 100
112
 
113
/* Length of unconditional jump instruction.  */
114
static int uncond_jump_length;
115
 
116
/* Structure to hold needed information for each basic block.  */
117
typedef struct bbro_basic_block_data_def
118
{
119
  /* Which trace is the bb start of (-1 means it is not a start of a trace).  */
120
  int start_of_trace;
121
 
122
  /* Which trace is the bb end of (-1 means it is not an end of a trace).  */
123
  int end_of_trace;
124
 
125
  /* Which trace is the bb in?  */
126
  int in_trace;
127
 
128
  /* Which heap is BB in (if any)?  */
129
  fibheap_t heap;
130
 
131
  /* Which heap node is BB in (if any)?  */
132
  fibnode_t node;
133
} bbro_basic_block_data;
134
 
135
/* The current size of the following dynamic array.  */
136
static int array_size;
137
 
138
/* The array which holds needed information for basic blocks.  */
139
static bbro_basic_block_data *bbd;
140
 
141
/* To avoid frequent reallocation the size of arrays is greater than needed,
142
   the number of elements is (not less than) 1.25 * size_wanted.  */
143
#define GET_ARRAY_SIZE(X) ((((X) / 4) + 1) * 5)
144
 
145
/* Free the memory and set the pointer to NULL.  */
146
#define FREE(P) (gcc_assert (P), free (P), P = 0)
147
 
148
/* Structure for holding information about a trace.  */
149
struct trace
150
{
151
  /* First and last basic block of the trace.  */
152
  basic_block first, last;
153
 
154
  /* The round of the STC creation which this trace was found in.  */
155
  int round;
156
 
157
  /* The length (i.e. the number of basic blocks) of the trace.  */
158
  int length;
159
};
160
 
161
/* Maximum frequency and count of one of the entry blocks.  */
162
static int max_entry_frequency;
163
static gcov_type max_entry_count;
164
 
165
/* Local function prototypes.  */
166
static void find_traces (int *, struct trace *);
167
static basic_block rotate_loop (edge, struct trace *, int);
168
static void mark_bb_visited (basic_block, int);
169
static void find_traces_1_round (int, int, gcov_type, struct trace *, int *,
170
                                 int, fibheap_t *, int);
171
static basic_block copy_bb (basic_block, edge, basic_block, int);
172
static fibheapkey_t bb_to_key (basic_block);
173
static bool better_edge_p (const_basic_block, const_edge, int, int, int, int, const_edge);
174
static void connect_traces (int, struct trace *);
175
static bool copy_bb_p (const_basic_block, int);
176
static int get_uncond_jump_length (void);
177
static bool push_to_next_round_p (const_basic_block, int, int, int, gcov_type);
178
static void find_rarely_executed_basic_blocks_and_crossing_edges (edge **,
179
                                                                  int *,
180
                                                                  int *);
181
static void add_labels_and_missing_jumps (edge *, int);
182
static void add_reg_crossing_jump_notes (void);
183
static void fix_up_fall_thru_edges (void);
184
static void fix_edges_for_rarely_executed_code (edge *, int);
185
static void fix_crossing_conditional_branches (void);
186
static void fix_crossing_unconditional_branches (void);
187
 
188
/* Check to see if bb should be pushed into the next round of trace
189
   collections or not.  Reasons for pushing the block forward are 1).
190
   If the block is cold, we are doing partitioning, and there will be
191
   another round (cold partition blocks are not supposed to be
192
   collected into traces until the very last round); or 2). There will
193
   be another round, and the basic block is not "hot enough" for the
194
   current round of trace collection.  */
195
 
196
static bool
197
push_to_next_round_p (const_basic_block bb, int round, int number_of_rounds,
198
                      int exec_th, gcov_type count_th)
199
{
200
  bool there_exists_another_round;
201
  bool block_not_hot_enough;
202
 
203
  there_exists_another_round = round < number_of_rounds - 1;
204
 
205
  block_not_hot_enough = (bb->frequency < exec_th
206
                          || bb->count < count_th
207
                          || probably_never_executed_bb_p (bb));
208
 
209
  if (there_exists_another_round
210
      && block_not_hot_enough)
211
    return true;
212
  else
213
    return false;
214
}
215
 
216
/* Find the traces for Software Trace Cache.  Chain each trace through
217
   RBI()->next.  Store the number of traces to N_TRACES and description of
218
   traces to TRACES.  */
219
 
220
static void
221
find_traces (int *n_traces, struct trace *traces)
222
{
223
  int i;
224
  int number_of_rounds;
225
  edge e;
226
  edge_iterator ei;
227
  fibheap_t heap;
228
 
229
  /* Add one extra round of trace collection when partitioning hot/cold
230
     basic blocks into separate sections.  The last round is for all the
231
     cold blocks (and ONLY the cold blocks).  */
232
 
233
  number_of_rounds = N_ROUNDS - 1;
234
 
235
  /* Insert entry points of function into heap.  */
236
  heap = fibheap_new ();
237
  max_entry_frequency = 0;
238
  max_entry_count = 0;
239
  FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
240
    {
241
      bbd[e->dest->index].heap = heap;
242
      bbd[e->dest->index].node = fibheap_insert (heap, bb_to_key (e->dest),
243
                                                    e->dest);
244
      if (e->dest->frequency > max_entry_frequency)
245
        max_entry_frequency = e->dest->frequency;
246
      if (e->dest->count > max_entry_count)
247
        max_entry_count = e->dest->count;
248
    }
249
 
250
  /* Find the traces.  */
251
  for (i = 0; i < number_of_rounds; i++)
252
    {
253
      gcov_type count_threshold;
254
 
255
      if (dump_file)
256
        fprintf (dump_file, "STC - round %d\n", i + 1);
257
 
258
      if (max_entry_count < INT_MAX / 1000)
259
        count_threshold = max_entry_count * exec_threshold[i] / 1000;
260
      else
261
        count_threshold = max_entry_count / 1000 * exec_threshold[i];
262
 
263
      find_traces_1_round (REG_BR_PROB_BASE * branch_threshold[i] / 1000,
264
                           max_entry_frequency * exec_threshold[i] / 1000,
265
                           count_threshold, traces, n_traces, i, &heap,
266
                           number_of_rounds);
267
    }
268
  fibheap_delete (heap);
269
 
270
  if (dump_file)
271
    {
272
      for (i = 0; i < *n_traces; i++)
273
        {
274
          basic_block bb;
275
          fprintf (dump_file, "Trace %d (round %d):  ", i + 1,
276
                   traces[i].round + 1);
277
          for (bb = traces[i].first; bb != traces[i].last; bb = (basic_block) bb->aux)
278
            fprintf (dump_file, "%d [%d] ", bb->index, bb->frequency);
279
          fprintf (dump_file, "%d [%d]\n", bb->index, bb->frequency);
280
        }
281
      fflush (dump_file);
282
    }
283
}
284
 
285
/* Rotate loop whose back edge is BACK_EDGE in the tail of trace TRACE
286
   (with sequential number TRACE_N).  */
287
 
288
static basic_block
289
rotate_loop (edge back_edge, struct trace *trace, int trace_n)
290
{
291
  basic_block bb;
292
 
293
  /* Information about the best end (end after rotation) of the loop.  */
294
  basic_block best_bb = NULL;
295
  edge best_edge = NULL;
296
  int best_freq = -1;
297
  gcov_type best_count = -1;
298
  /* The best edge is preferred when its destination is not visited yet
299
     or is a start block of some trace.  */
300
  bool is_preferred = false;
301
 
302
  /* Find the most frequent edge that goes out from current trace.  */
303
  bb = back_edge->dest;
304
  do
305
    {
306
      edge e;
307
      edge_iterator ei;
308
 
309
      FOR_EACH_EDGE (e, ei, bb->succs)
310
        if (e->dest != EXIT_BLOCK_PTR
311
            && e->dest->il.rtl->visited != trace_n
312
            && (e->flags & EDGE_CAN_FALLTHRU)
313
            && !(e->flags & EDGE_COMPLEX))
314
        {
315
          if (is_preferred)
316
            {
317
              /* The best edge is preferred.  */
318
              if (!e->dest->il.rtl->visited
319
                  || bbd[e->dest->index].start_of_trace >= 0)
320
                {
321
                  /* The current edge E is also preferred.  */
322
                  int freq = EDGE_FREQUENCY (e);
323
                  if (freq > best_freq || e->count > best_count)
324
                    {
325
                      best_freq = freq;
326
                      best_count = e->count;
327
                      best_edge = e;
328
                      best_bb = bb;
329
                    }
330
                }
331
            }
332
          else
333
            {
334
              if (!e->dest->il.rtl->visited
335
                  || bbd[e->dest->index].start_of_trace >= 0)
336
                {
337
                  /* The current edge E is preferred.  */
338
                  is_preferred = true;
339
                  best_freq = EDGE_FREQUENCY (e);
340
                  best_count = e->count;
341
                  best_edge = e;
342
                  best_bb = bb;
343
                }
344
              else
345
                {
346
                  int freq = EDGE_FREQUENCY (e);
347
                  if (!best_edge || freq > best_freq || e->count > best_count)
348
                    {
349
                      best_freq = freq;
350
                      best_count = e->count;
351
                      best_edge = e;
352
                      best_bb = bb;
353
                    }
354
                }
355
            }
356
        }
357
      bb = (basic_block) bb->aux;
358
    }
359
  while (bb != back_edge->dest);
360
 
361
  if (best_bb)
362
    {
363
      /* Rotate the loop so that the BEST_EDGE goes out from the last block of
364
         the trace.  */
365
      if (back_edge->dest == trace->first)
366
        {
367
          trace->first = (basic_block) best_bb->aux;
368
        }
369
      else
370
        {
371
          basic_block prev_bb;
372
 
373
          for (prev_bb = trace->first;
374
               prev_bb->aux != back_edge->dest;
375
               prev_bb = (basic_block) prev_bb->aux)
376
            ;
377
          prev_bb->aux = best_bb->aux;
378
 
379
          /* Try to get rid of uncond jump to cond jump.  */
380
          if (single_succ_p (prev_bb))
381
            {
382
              basic_block header = single_succ (prev_bb);
383
 
384
              /* Duplicate HEADER if it is a small block containing cond jump
385
                 in the end.  */
386
              if (any_condjump_p (BB_END (header)) && copy_bb_p (header, 0)
387
                  && !find_reg_note (BB_END (header), REG_CROSSING_JUMP,
388
                                     NULL_RTX))
389
                copy_bb (header, single_succ_edge (prev_bb), prev_bb, trace_n);
390
            }
391
        }
392
    }
393
  else
394
    {
395
      /* We have not found suitable loop tail so do no rotation.  */
396
      best_bb = back_edge->src;
397
    }
398
  best_bb->aux = NULL;
399
  return best_bb;
400
}
401
 
402
/* This function marks BB that it was visited in trace number TRACE.  */
403
 
404
static void
405
mark_bb_visited (basic_block bb, int trace)
406
{
407
  bb->il.rtl->visited = trace;
408
  if (bbd[bb->index].heap)
409
    {
410
      fibheap_delete_node (bbd[bb->index].heap, bbd[bb->index].node);
411
      bbd[bb->index].heap = NULL;
412
      bbd[bb->index].node = NULL;
413
    }
414
}
415
 
416
/* One round of finding traces. Find traces for BRANCH_TH and EXEC_TH i.e. do
417
   not include basic blocks their probability is lower than BRANCH_TH or their
418
   frequency is lower than EXEC_TH into traces (or count is lower than
419
   COUNT_TH).  It stores the new traces into TRACES and modifies the number of
420
   traces *N_TRACES. Sets the round (which the trace belongs to) to ROUND. It
421
   expects that starting basic blocks are in *HEAP and at the end it deletes
422
   *HEAP and stores starting points for the next round into new *HEAP.  */
423
 
424
static void
425
find_traces_1_round (int branch_th, int exec_th, gcov_type count_th,
426
                     struct trace *traces, int *n_traces, int round,
427
                     fibheap_t *heap, int number_of_rounds)
428
{
429
  /* Heap for discarded basic blocks which are possible starting points for
430
     the next round.  */
431
  fibheap_t new_heap = fibheap_new ();
432
 
433
  while (!fibheap_empty (*heap))
434
    {
435
      basic_block bb;
436
      struct trace *trace;
437
      edge best_edge, e;
438
      fibheapkey_t key;
439
      edge_iterator ei;
440
 
441
      bb = (basic_block) fibheap_extract_min (*heap);
442
      bbd[bb->index].heap = NULL;
443
      bbd[bb->index].node = NULL;
444
 
445
      if (dump_file)
446
        fprintf (dump_file, "Getting bb %d\n", bb->index);
447
 
448
      /* If the BB's frequency is too low send BB to the next round.  When
449
         partitioning hot/cold blocks into separate sections, make sure all
450
         the cold blocks (and ONLY the cold blocks) go into the (extra) final
451
         round.  */
452
 
453
      if (push_to_next_round_p (bb, round, number_of_rounds, exec_th,
454
                                count_th))
455
        {
456
          int key = bb_to_key (bb);
457
          bbd[bb->index].heap = new_heap;
458
          bbd[bb->index].node = fibheap_insert (new_heap, key, bb);
459
 
460
          if (dump_file)
461
            fprintf (dump_file,
462
                     "  Possible start point of next round: %d (key: %d)\n",
463
                     bb->index, key);
464
          continue;
465
        }
466
 
467
      trace = traces + *n_traces;
468
      trace->first = bb;
469
      trace->round = round;
470
      trace->length = 0;
471
      bbd[bb->index].in_trace = *n_traces;
472
      (*n_traces)++;
473
 
474
      do
475
        {
476
          int prob, freq;
477
          bool ends_in_call;
478
 
479
          /* The probability and frequency of the best edge.  */
480
          int best_prob = INT_MIN / 2;
481
          int best_freq = INT_MIN / 2;
482
 
483
          best_edge = NULL;
484
          mark_bb_visited (bb, *n_traces);
485
          trace->length++;
486
 
487
          if (dump_file)
488
            fprintf (dump_file, "Basic block %d was visited in trace %d\n",
489
                     bb->index, *n_traces - 1);
490
 
491
          ends_in_call = block_ends_with_call_p (bb);
492
 
493
          /* Select the successor that will be placed after BB.  */
494
          FOR_EACH_EDGE (e, ei, bb->succs)
495
            {
496
              gcc_assert (!(e->flags & EDGE_FAKE));
497
 
498
              if (e->dest == EXIT_BLOCK_PTR)
499
                continue;
500
 
501
              if (e->dest->il.rtl->visited
502
                  && e->dest->il.rtl->visited != *n_traces)
503
                continue;
504
 
505
              if (BB_PARTITION (e->dest) != BB_PARTITION (bb))
506
                continue;
507
 
508
              prob = e->probability;
509
              freq = e->dest->frequency;
510
 
511
              /* The only sensible preference for a call instruction is the
512
                 fallthru edge.  Don't bother selecting anything else.  */
513
              if (ends_in_call)
514
                {
515
                  if (e->flags & EDGE_CAN_FALLTHRU)
516
                    {
517
                      best_edge = e;
518
                      best_prob = prob;
519
                      best_freq = freq;
520
                    }
521
                  continue;
522
                }
523
 
524
              /* Edge that cannot be fallthru or improbable or infrequent
525
                 successor (i.e. it is unsuitable successor).  */
526
              if (!(e->flags & EDGE_CAN_FALLTHRU) || (e->flags & EDGE_COMPLEX)
527
                  || prob < branch_th || EDGE_FREQUENCY (e) < exec_th
528
                  || e->count < count_th)
529
                continue;
530
 
531
              /* If partitioning hot/cold basic blocks, don't consider edges
532
                 that cross section boundaries.  */
533
 
534
              if (better_edge_p (bb, e, prob, freq, best_prob, best_freq,
535
                                 best_edge))
536
                {
537
                  best_edge = e;
538
                  best_prob = prob;
539
                  best_freq = freq;
540
                }
541
            }
542
 
543
          /* If the best destination has multiple predecessors, and can be
544
             duplicated cheaper than a jump, don't allow it to be added
545
             to a trace.  We'll duplicate it when connecting traces.  */
546
          if (best_edge && EDGE_COUNT (best_edge->dest->preds) >= 2
547
              && copy_bb_p (best_edge->dest, 0))
548
            best_edge = NULL;
549
 
550
          /* Add all non-selected successors to the heaps.  */
551
          FOR_EACH_EDGE (e, ei, bb->succs)
552
            {
553
              if (e == best_edge
554
                  || e->dest == EXIT_BLOCK_PTR
555
                  || e->dest->il.rtl->visited)
556
                continue;
557
 
558
              key = bb_to_key (e->dest);
559
 
560
              if (bbd[e->dest->index].heap)
561
                {
562
                  /* E->DEST is already in some heap.  */
563
                  if (key != bbd[e->dest->index].node->key)
564
                    {
565
                      if (dump_file)
566
                        {
567
                          fprintf (dump_file,
568
                                   "Changing key for bb %d from %ld to %ld.\n",
569
                                   e->dest->index,
570
                                   (long) bbd[e->dest->index].node->key,
571
                                   key);
572
                        }
573
                      fibheap_replace_key (bbd[e->dest->index].heap,
574
                                           bbd[e->dest->index].node, key);
575
                    }
576
                }
577
              else
578
                {
579
                  fibheap_t which_heap = *heap;
580
 
581
                  prob = e->probability;
582
                  freq = EDGE_FREQUENCY (e);
583
 
584
                  if (!(e->flags & EDGE_CAN_FALLTHRU)
585
                      || (e->flags & EDGE_COMPLEX)
586
                      || prob < branch_th || freq < exec_th
587
                      || e->count < count_th)
588
                    {
589
                      /* When partitioning hot/cold basic blocks, make sure
590
                         the cold blocks (and only the cold blocks) all get
591
                         pushed to the last round of trace collection.  */
592
 
593
                      if (push_to_next_round_p (e->dest, round,
594
                                                number_of_rounds,
595
                                                exec_th, count_th))
596
                        which_heap = new_heap;
597
                    }
598
 
599
                  bbd[e->dest->index].heap = which_heap;
600
                  bbd[e->dest->index].node = fibheap_insert (which_heap,
601
                                                                key, e->dest);
602
 
603
                  if (dump_file)
604
                    {
605
                      fprintf (dump_file,
606
                               "  Possible start of %s round: %d (key: %ld)\n",
607
                               (which_heap == new_heap) ? "next" : "this",
608
                               e->dest->index, (long) key);
609
                    }
610
 
611
                }
612
            }
613
 
614
          if (best_edge) /* Suitable successor was found.  */
615
            {
616
              if (best_edge->dest->il.rtl->visited == *n_traces)
617
                {
618
                  /* We do nothing with one basic block loops.  */
619
                  if (best_edge->dest != bb)
620
                    {
621
                      if (EDGE_FREQUENCY (best_edge)
622
                          > 4 * best_edge->dest->frequency / 5)
623
                        {
624
                          /* The loop has at least 4 iterations.  If the loop
625
                             header is not the first block of the function
626
                             we can rotate the loop.  */
627
 
628
                          if (best_edge->dest != ENTRY_BLOCK_PTR->next_bb)
629
                            {
630
                              if (dump_file)
631
                                {
632
                                  fprintf (dump_file,
633
                                           "Rotating loop %d - %d\n",
634
                                           best_edge->dest->index, bb->index);
635
                                }
636
                              bb->aux = best_edge->dest;
637
                              bbd[best_edge->dest->index].in_trace =
638
                                                             (*n_traces) - 1;
639
                              bb = rotate_loop (best_edge, trace, *n_traces);
640
                            }
641
                        }
642
                      else
643
                        {
644
                          /* The loop has less than 4 iterations.  */
645
 
646
                          if (single_succ_p (bb)
647
                              && copy_bb_p (best_edge->dest,
648
                                            optimize_edge_for_speed_p (best_edge)))
649
                            {
650
                              bb = copy_bb (best_edge->dest, best_edge, bb,
651
                                            *n_traces);
652
                              trace->length++;
653
                            }
654
                        }
655
                    }
656
 
657
                  /* Terminate the trace.  */
658
                  break;
659
                }
660
              else
661
                {
662
                  /* Check for a situation
663
 
664
                    A
665
                   /|
666
                  B |
667
                   \|
668
                    C
669
 
670
                  where
671
                  EDGE_FREQUENCY (AB) + EDGE_FREQUENCY (BC)
672
                    >= EDGE_FREQUENCY (AC).
673
                  (i.e. 2 * B->frequency >= EDGE_FREQUENCY (AC) )
674
                  Best ordering is then A B C.
675
 
676
                  This situation is created for example by:
677
 
678
                  if (A) B;
679
                  C;
680
 
681
                  */
682
 
683
                  FOR_EACH_EDGE (e, ei, bb->succs)
684
                    if (e != best_edge
685
                        && (e->flags & EDGE_CAN_FALLTHRU)
686
                        && !(e->flags & EDGE_COMPLEX)
687
                        && !e->dest->il.rtl->visited
688
                        && single_pred_p (e->dest)
689
                        && !(e->flags & EDGE_CROSSING)
690
                        && single_succ_p (e->dest)
691
                        && (single_succ_edge (e->dest)->flags
692
                            & EDGE_CAN_FALLTHRU)
693
                        && !(single_succ_edge (e->dest)->flags & EDGE_COMPLEX)
694
                        && single_succ (e->dest) == best_edge->dest
695
                        && 2 * e->dest->frequency >= EDGE_FREQUENCY (best_edge))
696
                      {
697
                        best_edge = e;
698
                        if (dump_file)
699
                          fprintf (dump_file, "Selecting BB %d\n",
700
                                   best_edge->dest->index);
701
                        break;
702
                      }
703
 
704
                  bb->aux = best_edge->dest;
705
                  bbd[best_edge->dest->index].in_trace = (*n_traces) - 1;
706
                  bb = best_edge->dest;
707
                }
708
            }
709
        }
710
      while (best_edge);
711
      trace->last = bb;
712
      bbd[trace->first->index].start_of_trace = *n_traces - 1;
713
      bbd[trace->last->index].end_of_trace = *n_traces - 1;
714
 
715
      /* The trace is terminated so we have to recount the keys in heap
716
         (some block can have a lower key because now one of its predecessors
717
         is an end of the trace).  */
718
      FOR_EACH_EDGE (e, ei, bb->succs)
719
        {
720
          if (e->dest == EXIT_BLOCK_PTR
721
              || e->dest->il.rtl->visited)
722
            continue;
723
 
724
          if (bbd[e->dest->index].heap)
725
            {
726
              key = bb_to_key (e->dest);
727
              if (key != bbd[e->dest->index].node->key)
728
                {
729
                  if (dump_file)
730
                    {
731
                      fprintf (dump_file,
732
                               "Changing key for bb %d from %ld to %ld.\n",
733
                               e->dest->index,
734
                               (long) bbd[e->dest->index].node->key, key);
735
                    }
736
                  fibheap_replace_key (bbd[e->dest->index].heap,
737
                                       bbd[e->dest->index].node,
738
                                       key);
739
                }
740
            }
741
        }
742
    }
743
 
744
  fibheap_delete (*heap);
745
 
746
  /* "Return" the new heap.  */
747
  *heap = new_heap;
748
}
749
 
750
/* Create a duplicate of the basic block OLD_BB and redirect edge E to it, add
751
   it to trace after BB, mark OLD_BB visited and update pass' data structures
752
   (TRACE is a number of trace which OLD_BB is duplicated to).  */
753
 
754
static basic_block
755
copy_bb (basic_block old_bb, edge e, basic_block bb, int trace)
756
{
757
  basic_block new_bb;
758
 
759
  new_bb = duplicate_block (old_bb, e, bb);
760
  BB_COPY_PARTITION (new_bb, old_bb);
761
 
762
  gcc_assert (e->dest == new_bb);
763
  gcc_assert (!e->dest->il.rtl->visited);
764
 
765
  if (dump_file)
766
    fprintf (dump_file,
767
             "Duplicated bb %d (created bb %d)\n",
768
             old_bb->index, new_bb->index);
769
  new_bb->il.rtl->visited = trace;
770
  new_bb->aux = bb->aux;
771
  bb->aux = new_bb;
772
 
773
  if (new_bb->index >= array_size || last_basic_block > array_size)
774
    {
775
      int i;
776
      int new_size;
777
 
778
      new_size = MAX (last_basic_block, new_bb->index + 1);
779
      new_size = GET_ARRAY_SIZE (new_size);
780
      bbd = XRESIZEVEC (bbro_basic_block_data, bbd, new_size);
781
      for (i = array_size; i < new_size; i++)
782
        {
783
          bbd[i].start_of_trace = -1;
784
          bbd[i].in_trace = -1;
785
          bbd[i].end_of_trace = -1;
786
          bbd[i].heap = NULL;
787
          bbd[i].node = NULL;
788
        }
789
      array_size = new_size;
790
 
791
      if (dump_file)
792
        {
793
          fprintf (dump_file,
794
                   "Growing the dynamic array to %d elements.\n",
795
                   array_size);
796
        }
797
    }
798
 
799
  bbd[new_bb->index].in_trace = trace;
800
 
801
  return new_bb;
802
}
803
 
804
/* Compute and return the key (for the heap) of the basic block BB.  */
805
 
806
static fibheapkey_t
807
bb_to_key (basic_block bb)
808
{
809
  edge e;
810
  edge_iterator ei;
811
  int priority = 0;
812
 
813
  /* Do not start in probably never executed blocks.  */
814
 
815
  if (BB_PARTITION (bb) == BB_COLD_PARTITION
816
      || probably_never_executed_bb_p (bb))
817
    return BB_FREQ_MAX;
818
 
819
  /* Prefer blocks whose predecessor is an end of some trace
820
     or whose predecessor edge is EDGE_DFS_BACK.  */
821
  FOR_EACH_EDGE (e, ei, bb->preds)
822
    {
823
      if ((e->src != ENTRY_BLOCK_PTR && bbd[e->src->index].end_of_trace >= 0)
824
          || (e->flags & EDGE_DFS_BACK))
825
        {
826
          int edge_freq = EDGE_FREQUENCY (e);
827
 
828
          if (edge_freq > priority)
829
            priority = edge_freq;
830
        }
831
    }
832
 
833
  if (priority)
834
    /* The block with priority should have significantly lower key.  */
835
    return -(100 * BB_FREQ_MAX + 100 * priority + bb->frequency);
836
  return -bb->frequency;
837
}
838
 
839
/* Return true when the edge E from basic block BB is better than the temporary
840
   best edge (details are in function).  The probability of edge E is PROB. The
841
   frequency of the successor is FREQ.  The current best probability is
842
   BEST_PROB, the best frequency is BEST_FREQ.
843
   The edge is considered to be equivalent when PROB does not differ much from
844
   BEST_PROB; similarly for frequency.  */
845
 
846
static bool
847
better_edge_p (const_basic_block bb, const_edge e, int prob, int freq, int best_prob,
848
               int best_freq, const_edge cur_best_edge)
849
{
850
  bool is_better_edge;
851
 
852
  /* The BEST_* values do not have to be best, but can be a bit smaller than
853
     maximum values.  */
854
  int diff_prob = best_prob / 10;
855
  int diff_freq = best_freq / 10;
856
 
857
  if (prob > best_prob + diff_prob)
858
    /* The edge has higher probability than the temporary best edge.  */
859
    is_better_edge = true;
860
  else if (prob < best_prob - diff_prob)
861
    /* The edge has lower probability than the temporary best edge.  */
862
    is_better_edge = false;
863
  else if (freq < best_freq - diff_freq)
864
    /* The edge and the temporary best edge  have almost equivalent
865
       probabilities.  The higher frequency of a successor now means
866
       that there is another edge going into that successor.
867
       This successor has lower frequency so it is better.  */
868
    is_better_edge = true;
869
  else if (freq > best_freq + diff_freq)
870
    /* This successor has higher frequency so it is worse.  */
871
    is_better_edge = false;
872
  else if (e->dest->prev_bb == bb)
873
    /* The edges have equivalent probabilities and the successors
874
       have equivalent frequencies.  Select the previous successor.  */
875
    is_better_edge = true;
876
  else
877
    is_better_edge = false;
878
 
879
  /* If we are doing hot/cold partitioning, make sure that we always favor
880
     non-crossing edges over crossing edges.  */
881
 
882
  if (!is_better_edge
883
      && flag_reorder_blocks_and_partition
884
      && cur_best_edge
885
      && (cur_best_edge->flags & EDGE_CROSSING)
886
      && !(e->flags & EDGE_CROSSING))
887
    is_better_edge = true;
888
 
889
  return is_better_edge;
890
}
891
 
892
/* Connect traces in array TRACES, N_TRACES is the count of traces.  */
893
 
894
static void
895
connect_traces (int n_traces, struct trace *traces)
896
{
897
  int i;
898
  bool *connected;
899
  bool two_passes;
900
  int last_trace;
901
  int current_pass;
902
  int current_partition;
903
  int freq_threshold;
904
  gcov_type count_threshold;
905
 
906
  freq_threshold = max_entry_frequency * DUPLICATION_THRESHOLD / 1000;
907
  if (max_entry_count < INT_MAX / 1000)
908
    count_threshold = max_entry_count * DUPLICATION_THRESHOLD / 1000;
909
  else
910
    count_threshold = max_entry_count / 1000 * DUPLICATION_THRESHOLD;
911
 
912
  connected = XCNEWVEC (bool, n_traces);
913
  last_trace = -1;
914
  current_pass = 1;
915
  current_partition = BB_PARTITION (traces[0].first);
916
  two_passes = false;
917
 
918
  if (flag_reorder_blocks_and_partition)
919
    for (i = 0; i < n_traces && !two_passes; i++)
920
      if (BB_PARTITION (traces[0].first)
921
          != BB_PARTITION (traces[i].first))
922
        two_passes = true;
923
 
924
  for (i = 0; i < n_traces || (two_passes && current_pass == 1) ; i++)
925
    {
926
      int t = i;
927
      int t2;
928
      edge e, best;
929
      int best_len;
930
 
931
      if (i >= n_traces)
932
        {
933
          gcc_assert (two_passes && current_pass == 1);
934
          i = 0;
935
          t = i;
936
          current_pass = 2;
937
          if (current_partition == BB_HOT_PARTITION)
938
            current_partition = BB_COLD_PARTITION;
939
          else
940
            current_partition = BB_HOT_PARTITION;
941
        }
942
 
943
      if (connected[t])
944
        continue;
945
 
946
      if (two_passes
947
          && BB_PARTITION (traces[t].first) != current_partition)
948
        continue;
949
 
950
      connected[t] = true;
951
 
952
      /* Find the predecessor traces.  */
953
      for (t2 = t; t2 > 0;)
954
        {
955
          edge_iterator ei;
956
          best = NULL;
957
          best_len = 0;
958
          FOR_EACH_EDGE (e, ei, traces[t2].first->preds)
959
            {
960
              int si = e->src->index;
961
 
962
              if (e->src != ENTRY_BLOCK_PTR
963
                  && (e->flags & EDGE_CAN_FALLTHRU)
964
                  && !(e->flags & EDGE_COMPLEX)
965
                  && bbd[si].end_of_trace >= 0
966
                  && !connected[bbd[si].end_of_trace]
967
                  && (BB_PARTITION (e->src) == current_partition)
968
                  && (!best
969
                      || e->probability > best->probability
970
                      || (e->probability == best->probability
971
                          && traces[bbd[si].end_of_trace].length > best_len)))
972
                {
973
                  best = e;
974
                  best_len = traces[bbd[si].end_of_trace].length;
975
                }
976
            }
977
          if (best)
978
            {
979
              best->src->aux = best->dest;
980
              t2 = bbd[best->src->index].end_of_trace;
981
              connected[t2] = true;
982
 
983
              if (dump_file)
984
                {
985
                  fprintf (dump_file, "Connection: %d %d\n",
986
                           best->src->index, best->dest->index);
987
                }
988
            }
989
          else
990
            break;
991
        }
992
 
993
      if (last_trace >= 0)
994
        traces[last_trace].last->aux = traces[t2].first;
995
      last_trace = t;
996
 
997
      /* Find the successor traces.  */
998
      while (1)
999
        {
1000
          /* Find the continuation of the chain.  */
1001
          edge_iterator ei;
1002
          best = NULL;
1003
          best_len = 0;
1004
          FOR_EACH_EDGE (e, ei, traces[t].last->succs)
1005
            {
1006
              int di = e->dest->index;
1007
 
1008
              if (e->dest != EXIT_BLOCK_PTR
1009
                  && (e->flags & EDGE_CAN_FALLTHRU)
1010
                  && !(e->flags & EDGE_COMPLEX)
1011
                  && bbd[di].start_of_trace >= 0
1012
                  && !connected[bbd[di].start_of_trace]
1013
                  && (BB_PARTITION (e->dest) == current_partition)
1014
                  && (!best
1015
                      || e->probability > best->probability
1016
                      || (e->probability == best->probability
1017
                          && traces[bbd[di].start_of_trace].length > best_len)))
1018
                {
1019
                  best = e;
1020
                  best_len = traces[bbd[di].start_of_trace].length;
1021
                }
1022
            }
1023
 
1024
          if (best)
1025
            {
1026
              if (dump_file)
1027
                {
1028
                  fprintf (dump_file, "Connection: %d %d\n",
1029
                           best->src->index, best->dest->index);
1030
                }
1031
              t = bbd[best->dest->index].start_of_trace;
1032
              traces[last_trace].last->aux = traces[t].first;
1033
              connected[t] = true;
1034
              last_trace = t;
1035
            }
1036
          else
1037
            {
1038
              /* Try to connect the traces by duplication of 1 block.  */
1039
              edge e2;
1040
              basic_block next_bb = NULL;
1041
              bool try_copy = false;
1042
 
1043
              FOR_EACH_EDGE (e, ei, traces[t].last->succs)
1044
                if (e->dest != EXIT_BLOCK_PTR
1045
                    && (e->flags & EDGE_CAN_FALLTHRU)
1046
                    && !(e->flags & EDGE_COMPLEX)
1047
                    && (!best || e->probability > best->probability))
1048
                  {
1049
                    edge_iterator ei;
1050
                    edge best2 = NULL;
1051
                    int best2_len = 0;
1052
 
1053
                    /* If the destination is a start of a trace which is only
1054
                       one block long, then no need to search the successor
1055
                       blocks of the trace.  Accept it.  */
1056
                    if (bbd[e->dest->index].start_of_trace >= 0
1057
                        && traces[bbd[e->dest->index].start_of_trace].length
1058
                           == 1)
1059
                      {
1060
                        best = e;
1061
                        try_copy = true;
1062
                        continue;
1063
                      }
1064
 
1065
                    FOR_EACH_EDGE (e2, ei, e->dest->succs)
1066
                      {
1067
                        int di = e2->dest->index;
1068
 
1069
                        if (e2->dest == EXIT_BLOCK_PTR
1070
                            || ((e2->flags & EDGE_CAN_FALLTHRU)
1071
                                && !(e2->flags & EDGE_COMPLEX)
1072
                                && bbd[di].start_of_trace >= 0
1073
                                && !connected[bbd[di].start_of_trace]
1074
                                && (BB_PARTITION (e2->dest) == current_partition)
1075
                                && (EDGE_FREQUENCY (e2) >= freq_threshold)
1076
                                && (e2->count >= count_threshold)
1077
                                && (!best2
1078
                                    || e2->probability > best2->probability
1079
                                    || (e2->probability == best2->probability
1080
                                        && traces[bbd[di].start_of_trace].length
1081
                                           > best2_len))))
1082
                          {
1083
                            best = e;
1084
                            best2 = e2;
1085
                            if (e2->dest != EXIT_BLOCK_PTR)
1086
                              best2_len = traces[bbd[di].start_of_trace].length;
1087
                            else
1088
                              best2_len = INT_MAX;
1089
                            next_bb = e2->dest;
1090
                            try_copy = true;
1091
                          }
1092
                      }
1093
                  }
1094
 
1095
              if (flag_reorder_blocks_and_partition)
1096
                try_copy = false;
1097
 
1098
              /* Copy tiny blocks always; copy larger blocks only when the
1099
                 edge is traversed frequently enough.  */
1100
              if (try_copy
1101
                  && copy_bb_p (best->dest,
1102
                                optimize_edge_for_speed_p (best)
1103
                                && EDGE_FREQUENCY (best) >= freq_threshold
1104
                                && best->count >= count_threshold))
1105
                {
1106
                  basic_block new_bb;
1107
 
1108
                  if (dump_file)
1109
                    {
1110
                      fprintf (dump_file, "Connection: %d %d ",
1111
                               traces[t].last->index, best->dest->index);
1112
                      if (!next_bb)
1113
                        fputc ('\n', dump_file);
1114
                      else if (next_bb == EXIT_BLOCK_PTR)
1115
                        fprintf (dump_file, "exit\n");
1116
                      else
1117
                        fprintf (dump_file, "%d\n", next_bb->index);
1118
                    }
1119
 
1120
                  new_bb = copy_bb (best->dest, best, traces[t].last, t);
1121
                  traces[t].last = new_bb;
1122
                  if (next_bb && next_bb != EXIT_BLOCK_PTR)
1123
                    {
1124
                      t = bbd[next_bb->index].start_of_trace;
1125
                      traces[last_trace].last->aux = traces[t].first;
1126
                      connected[t] = true;
1127
                      last_trace = t;
1128
                    }
1129
                  else
1130
                    break;      /* Stop finding the successor traces.  */
1131
                }
1132
              else
1133
                break;  /* Stop finding the successor traces.  */
1134
            }
1135
        }
1136
    }
1137
 
1138
  if (dump_file)
1139
    {
1140
      basic_block bb;
1141
 
1142
      fprintf (dump_file, "Final order:\n");
1143
      for (bb = traces[0].first; bb; bb = (basic_block) bb->aux)
1144
        fprintf (dump_file, "%d ", bb->index);
1145
      fprintf (dump_file, "\n");
1146
      fflush (dump_file);
1147
    }
1148
 
1149
  FREE (connected);
1150
}
1151
 
1152
/* Return true when BB can and should be copied. CODE_MAY_GROW is true
1153
   when code size is allowed to grow by duplication.  */
1154
 
1155
static bool
1156
copy_bb_p (const_basic_block bb, int code_may_grow)
1157
{
1158
  int size = 0;
1159
  int max_size = uncond_jump_length;
1160
  rtx insn;
1161
 
1162
  if (!bb->frequency)
1163
    return false;
1164
  if (EDGE_COUNT (bb->preds) < 2)
1165
    return false;
1166
  if (!can_duplicate_block_p (bb))
1167
    return false;
1168
 
1169
  /* Avoid duplicating blocks which have many successors (PR/13430).  */
1170
  if (EDGE_COUNT (bb->succs) > 8)
1171
    return false;
1172
 
1173
  if (code_may_grow && optimize_bb_for_speed_p (bb))
1174
    max_size *= PARAM_VALUE (PARAM_MAX_GROW_COPY_BB_INSNS);
1175
 
1176
  FOR_BB_INSNS (bb, insn)
1177
    {
1178
      if (INSN_P (insn))
1179
        size += get_attr_min_length (insn);
1180
    }
1181
 
1182
  if (size <= max_size)
1183
    return true;
1184
 
1185
  if (dump_file)
1186
    {
1187
      fprintf (dump_file,
1188
               "Block %d can't be copied because its size = %d.\n",
1189
               bb->index, size);
1190
    }
1191
 
1192
  return false;
1193
}
1194
 
1195
/* Return the length of unconditional jump instruction.  */
1196
 
1197
static int
1198
get_uncond_jump_length (void)
1199
{
1200
  rtx label, jump;
1201
  int length;
1202
 
1203
  label = emit_label_before (gen_label_rtx (), get_insns ());
1204
  jump = emit_jump_insn (gen_jump (label));
1205
 
1206
  length = get_attr_min_length (jump);
1207
 
1208
  delete_insn (jump);
1209
  delete_insn (label);
1210
  return length;
1211
}
1212
 
1213
/* Find the basic blocks that are rarely executed and need to be moved to
1214
   a separate section of the .o file (to cut down on paging and improve
1215
   cache locality).  */
1216
 
1217
static void
1218
find_rarely_executed_basic_blocks_and_crossing_edges (edge **crossing_edges,
1219
                                                      int *n_crossing_edges,
1220
                                                      int *max_idx)
1221
{
1222
  basic_block bb;
1223
  edge e;
1224
  int i;
1225
  edge_iterator ei;
1226
 
1227
  /* Mark which partition (hot/cold) each basic block belongs in.  */
1228
 
1229
  FOR_EACH_BB (bb)
1230
    {
1231
      if (probably_never_executed_bb_p (bb))
1232
        BB_SET_PARTITION (bb, BB_COLD_PARTITION);
1233
      else
1234
        BB_SET_PARTITION (bb, BB_HOT_PARTITION);
1235
    }
1236
 
1237
  /* Mark every edge that crosses between sections.  */
1238
 
1239
  i = 0;
1240
  FOR_EACH_BB (bb)
1241
    FOR_EACH_EDGE (e, ei, bb->succs)
1242
    {
1243
      if (e->src != ENTRY_BLOCK_PTR
1244
          && e->dest != EXIT_BLOCK_PTR
1245
          && BB_PARTITION (e->src) != BB_PARTITION (e->dest))
1246
        {
1247
          e->flags |= EDGE_CROSSING;
1248
          if (i == *max_idx)
1249
            {
1250
              *max_idx *= 2;
1251
              *crossing_edges = XRESIZEVEC (edge, *crossing_edges, *max_idx);
1252
            }
1253
          (*crossing_edges)[i++] = e;
1254
        }
1255
      else
1256
        e->flags &= ~EDGE_CROSSING;
1257
    }
1258
  *n_crossing_edges = i;
1259
}
1260
 
1261
/* If any destination of a crossing edge does not have a label, add label;
1262
   Convert any fall-through crossing edges (for blocks that do not contain
1263
   a jump) to unconditional jumps.  */
1264
 
1265
static void
1266
add_labels_and_missing_jumps (edge *crossing_edges, int n_crossing_edges)
1267
{
1268
  int i;
1269
  basic_block src;
1270
  basic_block dest;
1271
  rtx label;
1272
  rtx barrier;
1273
  rtx new_jump;
1274
 
1275
  for (i=0; i < n_crossing_edges; i++)
1276
    {
1277
      if (crossing_edges[i])
1278
        {
1279
          src = crossing_edges[i]->src;
1280
          dest = crossing_edges[i]->dest;
1281
 
1282
          /* Make sure dest has a label.  */
1283
 
1284
          if (dest && (dest != EXIT_BLOCK_PTR))
1285
            {
1286
              label = block_label (dest);
1287
 
1288
              /* Make sure source block ends with a jump.  If the
1289
                 source block does not end with a jump it might end
1290
                 with a call_insn;  this case will be handled in
1291
                 fix_up_fall_thru_edges function.  */
1292
 
1293
              if (src && (src != ENTRY_BLOCK_PTR))
1294
                {
1295
                  if (!JUMP_P (BB_END (src)) && !block_ends_with_call_p (src))
1296
                    /* bb just falls through.  */
1297
                    {
1298
                      /* make sure there's only one successor */
1299
                      gcc_assert (single_succ_p (src));
1300
 
1301
                      /* Find label in dest block.  */
1302
                      label = block_label (dest);
1303
 
1304
                      new_jump = emit_jump_insn_after (gen_jump (label),
1305
                                                       BB_END (src));
1306
                      barrier = emit_barrier_after (new_jump);
1307
                      JUMP_LABEL (new_jump) = label;
1308
                      LABEL_NUSES (label) += 1;
1309
                      src->il.rtl->footer = unlink_insn_chain (barrier, barrier);
1310
                      /* Mark edge as non-fallthru.  */
1311
                      crossing_edges[i]->flags &= ~EDGE_FALLTHRU;
1312
                    } /* end: 'if (GET_CODE ... '  */
1313
                } /* end: 'if (src && src->index...'  */
1314
            } /* end: 'if (dest && dest->index...'  */
1315
        } /* end: 'if (crossing_edges[i]...'  */
1316
    } /* end for loop  */
1317
}
1318
 
1319
/* Find any bb's where the fall-through edge is a crossing edge (note that
1320
   these bb's must also contain a conditional jump or end with a call
1321
   instruction; we've already dealt with fall-through edges for blocks
1322
   that didn't have a conditional jump or didn't end with call instruction
1323
   in the call to add_labels_and_missing_jumps).  Convert the fall-through
1324
   edge to non-crossing edge by inserting a new bb to fall-through into.
1325
   The new bb will contain an unconditional jump (crossing edge) to the
1326
   original fall through destination.  */
1327
 
1328
static void
1329
fix_up_fall_thru_edges (void)
1330
{
1331
  basic_block cur_bb;
1332
  basic_block new_bb;
1333
  edge succ1;
1334
  edge succ2;
1335
  edge fall_thru;
1336
  edge cond_jump = NULL;
1337
  edge e;
1338
  bool cond_jump_crosses;
1339
  int invert_worked;
1340
  rtx old_jump;
1341
  rtx fall_thru_label;
1342
  rtx barrier;
1343
 
1344
  FOR_EACH_BB (cur_bb)
1345
    {
1346
      fall_thru = NULL;
1347
      if (EDGE_COUNT (cur_bb->succs) > 0)
1348
        succ1 = EDGE_SUCC (cur_bb, 0);
1349
      else
1350
        succ1 = NULL;
1351
 
1352
      if (EDGE_COUNT (cur_bb->succs) > 1)
1353
        succ2 = EDGE_SUCC (cur_bb, 1);
1354
      else
1355
        succ2 = NULL;
1356
 
1357
      /* Find the fall-through edge.  */
1358
 
1359
      if (succ1
1360
          && (succ1->flags & EDGE_FALLTHRU))
1361
        {
1362
          fall_thru = succ1;
1363
          cond_jump = succ2;
1364
        }
1365
      else if (succ2
1366
               && (succ2->flags & EDGE_FALLTHRU))
1367
        {
1368
          fall_thru = succ2;
1369
          cond_jump = succ1;
1370
        }
1371
      else if (!fall_thru && succ1 && block_ends_with_call_p (cur_bb))
1372
      {
1373
        edge e;
1374
        edge_iterator ei;
1375
 
1376
        /* Find EDGE_CAN_FALLTHRU edge.  */
1377
        FOR_EACH_EDGE (e, ei, cur_bb->succs)
1378
          if (e->flags & EDGE_CAN_FALLTHRU)
1379
          {
1380
            fall_thru = e;
1381
            break;
1382
          }
1383
      }
1384
 
1385
      if (fall_thru && (fall_thru->dest != EXIT_BLOCK_PTR))
1386
        {
1387
          /* Check to see if the fall-thru edge is a crossing edge.  */
1388
 
1389
          if (fall_thru->flags & EDGE_CROSSING)
1390
            {
1391
              /* The fall_thru edge crosses; now check the cond jump edge, if
1392
                 it exists.  */
1393
 
1394
              cond_jump_crosses = true;
1395
              invert_worked  = 0;
1396
              old_jump = BB_END (cur_bb);
1397
 
1398
              /* Find the jump instruction, if there is one.  */
1399
 
1400
              if (cond_jump)
1401
                {
1402
                  if (!(cond_jump->flags & EDGE_CROSSING))
1403
                    cond_jump_crosses = false;
1404
 
1405
                  /* We know the fall-thru edge crosses; if the cond
1406
                     jump edge does NOT cross, and its destination is the
1407
                     next block in the bb order, invert the jump
1408
                     (i.e. fix it so the fall thru does not cross and
1409
                     the cond jump does).  */
1410
 
1411
                  if (!cond_jump_crosses
1412
                      && cur_bb->aux == cond_jump->dest)
1413
                    {
1414
                      /* Find label in fall_thru block. We've already added
1415
                         any missing labels, so there must be one.  */
1416
 
1417
                      fall_thru_label = block_label (fall_thru->dest);
1418
 
1419
                      if (old_jump && JUMP_P (old_jump) && fall_thru_label)
1420
                        invert_worked = invert_jump (old_jump,
1421
                                                     fall_thru_label,0);
1422
                      if (invert_worked)
1423
                        {
1424
                          fall_thru->flags &= ~EDGE_FALLTHRU;
1425
                          cond_jump->flags |= EDGE_FALLTHRU;
1426
                          update_br_prob_note (cur_bb);
1427
                          e = fall_thru;
1428
                          fall_thru = cond_jump;
1429
                          cond_jump = e;
1430
                          cond_jump->flags |= EDGE_CROSSING;
1431
                          fall_thru->flags &= ~EDGE_CROSSING;
1432
                        }
1433
                    }
1434
                }
1435
 
1436
              if (cond_jump_crosses || !invert_worked)
1437
                {
1438
                  /* This is the case where both edges out of the basic
1439
                     block are crossing edges. Here we will fix up the
1440
                     fall through edge. The jump edge will be taken care
1441
                     of later.  The EDGE_CROSSING flag of fall_thru edge
1442
                     is unset before the call to force_nonfallthru
1443
                     function because if a new basic-block is created
1444
                     this edge remains in the current section boundary
1445
                     while the edge between new_bb and the fall_thru->dest
1446
                     becomes EDGE_CROSSING.  */
1447
 
1448
                  fall_thru->flags &= ~EDGE_CROSSING;
1449
                  new_bb = force_nonfallthru (fall_thru);
1450
 
1451
                  if (new_bb)
1452
                    {
1453
                      new_bb->aux = cur_bb->aux;
1454
                      cur_bb->aux = new_bb;
1455
 
1456
                      /* Make sure new fall-through bb is in same
1457
                         partition as bb it's falling through from.  */
1458
 
1459
                      BB_COPY_PARTITION (new_bb, cur_bb);
1460
                      single_succ_edge (new_bb)->flags |= EDGE_CROSSING;
1461
                    }
1462
                  else
1463
                    {
1464
                      /* If a new basic-block was not created; restore
1465
                         the EDGE_CROSSING flag.  */
1466
                      fall_thru->flags |= EDGE_CROSSING;
1467
                    }
1468
 
1469
                  /* Add barrier after new jump */
1470
 
1471
                  if (new_bb)
1472
                    {
1473
                      barrier = emit_barrier_after (BB_END (new_bb));
1474
                      new_bb->il.rtl->footer = unlink_insn_chain (barrier,
1475
                                                               barrier);
1476
                    }
1477
                  else
1478
                    {
1479
                      barrier = emit_barrier_after (BB_END (cur_bb));
1480
                      cur_bb->il.rtl->footer = unlink_insn_chain (barrier,
1481
                                                               barrier);
1482
                    }
1483
                }
1484
            }
1485
        }
1486
    }
1487
}
1488
 
1489
/* This function checks the destination block of a "crossing jump" to
1490
   see if it has any crossing predecessors that begin with a code label
1491
   and end with an unconditional jump.  If so, it returns that predecessor
1492
   block.  (This is to avoid creating lots of new basic blocks that all
1493
   contain unconditional jumps to the same destination).  */
1494
 
1495
static basic_block
1496
find_jump_block (basic_block jump_dest)
1497
{
1498
  basic_block source_bb = NULL;
1499
  edge e;
1500
  rtx insn;
1501
  edge_iterator ei;
1502
 
1503
  FOR_EACH_EDGE (e, ei, jump_dest->preds)
1504
    if (e->flags & EDGE_CROSSING)
1505
      {
1506
        basic_block src = e->src;
1507
 
1508
        /* Check each predecessor to see if it has a label, and contains
1509
           only one executable instruction, which is an unconditional jump.
1510
           If so, we can use it.  */
1511
 
1512
        if (LABEL_P (BB_HEAD (src)))
1513
          for (insn = BB_HEAD (src);
1514
               !INSN_P (insn) && insn != NEXT_INSN (BB_END (src));
1515
               insn = NEXT_INSN (insn))
1516
            {
1517
              if (INSN_P (insn)
1518
                  && insn == BB_END (src)
1519
                  && JUMP_P (insn)
1520
                  && !any_condjump_p (insn))
1521
                {
1522
                  source_bb = src;
1523
                  break;
1524
                }
1525
            }
1526
 
1527
        if (source_bb)
1528
          break;
1529
      }
1530
 
1531
  return source_bb;
1532
}
1533
 
1534
/* Find all BB's with conditional jumps that are crossing edges;
1535
   insert a new bb and make the conditional jump branch to the new
1536
   bb instead (make the new bb same color so conditional branch won't
1537
   be a 'crossing' edge).  Insert an unconditional jump from the
1538
   new bb to the original destination of the conditional jump.  */
1539
 
1540
static void
1541
fix_crossing_conditional_branches (void)
1542
{
1543
  basic_block cur_bb;
1544
  basic_block new_bb;
1545
  basic_block last_bb;
1546
  basic_block dest;
1547
  edge succ1;
1548
  edge succ2;
1549
  edge crossing_edge;
1550
  edge new_edge;
1551
  rtx old_jump;
1552
  rtx set_src;
1553
  rtx old_label = NULL_RTX;
1554
  rtx new_label;
1555
  rtx new_jump;
1556
  rtx barrier;
1557
 
1558
 last_bb = EXIT_BLOCK_PTR->prev_bb;
1559
 
1560
  FOR_EACH_BB (cur_bb)
1561
    {
1562
      crossing_edge = NULL;
1563
      if (EDGE_COUNT (cur_bb->succs) > 0)
1564
        succ1 = EDGE_SUCC (cur_bb, 0);
1565
      else
1566
        succ1 = NULL;
1567
 
1568
      if (EDGE_COUNT (cur_bb->succs) > 1)
1569
        succ2 = EDGE_SUCC (cur_bb, 1);
1570
      else
1571
        succ2 = NULL;
1572
 
1573
      /* We already took care of fall-through edges, so only one successor
1574
         can be a crossing edge.  */
1575
 
1576
      if (succ1 && (succ1->flags & EDGE_CROSSING))
1577
        crossing_edge = succ1;
1578
      else if (succ2 && (succ2->flags & EDGE_CROSSING))
1579
        crossing_edge = succ2;
1580
 
1581
      if (crossing_edge)
1582
        {
1583
          old_jump = BB_END (cur_bb);
1584
 
1585
          /* Check to make sure the jump instruction is a
1586
             conditional jump.  */
1587
 
1588
          set_src = NULL_RTX;
1589
 
1590
          if (any_condjump_p (old_jump))
1591
            {
1592
              if (GET_CODE (PATTERN (old_jump)) == SET)
1593
                set_src = SET_SRC (PATTERN (old_jump));
1594
              else if (GET_CODE (PATTERN (old_jump)) == PARALLEL)
1595
                {
1596
                  set_src = XVECEXP (PATTERN (old_jump), 0,0);
1597
                  if (GET_CODE (set_src) == SET)
1598
                    set_src = SET_SRC (set_src);
1599
                  else
1600
                    set_src = NULL_RTX;
1601
                }
1602
            }
1603
 
1604
          if (set_src && (GET_CODE (set_src) == IF_THEN_ELSE))
1605
            {
1606
              if (GET_CODE (XEXP (set_src, 1)) == PC)
1607
                old_label = XEXP (set_src, 2);
1608
              else if (GET_CODE (XEXP (set_src, 2)) == PC)
1609
                old_label = XEXP (set_src, 1);
1610
 
1611
              /* Check to see if new bb for jumping to that dest has
1612
                 already been created; if so, use it; if not, create
1613
                 a new one.  */
1614
 
1615
              new_bb = find_jump_block (crossing_edge->dest);
1616
 
1617
              if (new_bb)
1618
                new_label = block_label (new_bb);
1619
              else
1620
                {
1621
                  /* Create new basic block to be dest for
1622
                     conditional jump.  */
1623
 
1624
                  new_bb = create_basic_block (NULL, NULL, last_bb);
1625
                  new_bb->aux = last_bb->aux;
1626
                  last_bb->aux = new_bb;
1627
                  last_bb = new_bb;
1628
                  /* Put appropriate instructions in new bb.  */
1629
 
1630
                  new_label = gen_label_rtx ();
1631
                  emit_label_before (new_label, BB_HEAD (new_bb));
1632
                  BB_HEAD (new_bb) = new_label;
1633
 
1634
                  if (GET_CODE (old_label) == LABEL_REF)
1635
                    {
1636
                      old_label = JUMP_LABEL (old_jump);
1637
                      new_jump = emit_jump_insn_after (gen_jump
1638
                                                       (old_label),
1639
                                                       BB_END (new_bb));
1640
                    }
1641
                  else
1642
                    {
1643
                      gcc_assert (HAVE_return
1644
                                  && GET_CODE (old_label) == RETURN);
1645
                      new_jump = emit_jump_insn_after (gen_return (),
1646
                                                       BB_END (new_bb));
1647
                    }
1648
 
1649
                  barrier = emit_barrier_after (new_jump);
1650
                  JUMP_LABEL (new_jump) = old_label;
1651
                  new_bb->il.rtl->footer = unlink_insn_chain (barrier,
1652
                                                           barrier);
1653
 
1654
                  /* Make sure new bb is in same partition as source
1655
                     of conditional branch.  */
1656
                  BB_COPY_PARTITION (new_bb, cur_bb);
1657
                }
1658
 
1659
              /* Make old jump branch to new bb.  */
1660
 
1661
              redirect_jump (old_jump, new_label, 0);
1662
 
1663
              /* Remove crossing_edge as predecessor of 'dest'.  */
1664
 
1665
              dest = crossing_edge->dest;
1666
 
1667
              redirect_edge_succ (crossing_edge, new_bb);
1668
 
1669
              /* Make a new edge from new_bb to old dest; new edge
1670
                 will be a successor for new_bb and a predecessor
1671
                 for 'dest'.  */
1672
 
1673
              if (EDGE_COUNT (new_bb->succs) == 0)
1674
                new_edge = make_edge (new_bb, dest, 0);
1675
              else
1676
                new_edge = EDGE_SUCC (new_bb, 0);
1677
 
1678
              crossing_edge->flags &= ~EDGE_CROSSING;
1679
              new_edge->flags |= EDGE_CROSSING;
1680
            }
1681
        }
1682
    }
1683
}
1684
 
1685
/* Find any unconditional branches that cross between hot and cold
1686
   sections.  Convert them into indirect jumps instead.  */
1687
 
1688
static void
1689
fix_crossing_unconditional_branches (void)
1690
{
1691
  basic_block cur_bb;
1692
  rtx last_insn;
1693
  rtx label;
1694
  rtx label_addr;
1695
  rtx indirect_jump_sequence;
1696
  rtx jump_insn = NULL_RTX;
1697
  rtx new_reg;
1698
  rtx cur_insn;
1699
  edge succ;
1700
 
1701
  FOR_EACH_BB (cur_bb)
1702
    {
1703
      last_insn = BB_END (cur_bb);
1704
 
1705
      if (EDGE_COUNT (cur_bb->succs) < 1)
1706
        continue;
1707
 
1708
      succ = EDGE_SUCC (cur_bb, 0);
1709
 
1710
      /* Check to see if bb ends in a crossing (unconditional) jump.  At
1711
         this point, no crossing jumps should be conditional.  */
1712
 
1713
      if (JUMP_P (last_insn)
1714
          && (succ->flags & EDGE_CROSSING))
1715
        {
1716
          rtx label2, table;
1717
 
1718
          gcc_assert (!any_condjump_p (last_insn));
1719
 
1720
          /* Make sure the jump is not already an indirect or table jump.  */
1721
 
1722
          if (!computed_jump_p (last_insn)
1723
              && !tablejump_p (last_insn, &label2, &table))
1724
            {
1725
              /* We have found a "crossing" unconditional branch.  Now
1726
                 we must convert it to an indirect jump.  First create
1727
                 reference of label, as target for jump.  */
1728
 
1729
              label = JUMP_LABEL (last_insn);
1730
              label_addr = gen_rtx_LABEL_REF (Pmode, label);
1731
              LABEL_NUSES (label) += 1;
1732
 
1733
              /* Get a register to use for the indirect jump.  */
1734
 
1735
              new_reg = gen_reg_rtx (Pmode);
1736
 
1737
              /* Generate indirect the jump sequence.  */
1738
 
1739
              start_sequence ();
1740
              emit_move_insn (new_reg, label_addr);
1741
              emit_indirect_jump (new_reg);
1742
              indirect_jump_sequence = get_insns ();
1743
              end_sequence ();
1744
 
1745
              /* Make sure every instruction in the new jump sequence has
1746
                 its basic block set to be cur_bb.  */
1747
 
1748
              for (cur_insn = indirect_jump_sequence; cur_insn;
1749
                   cur_insn = NEXT_INSN (cur_insn))
1750
                {
1751
                  if (!BARRIER_P (cur_insn))
1752
                    BLOCK_FOR_INSN (cur_insn) = cur_bb;
1753
                  if (JUMP_P (cur_insn))
1754
                    jump_insn = cur_insn;
1755
                }
1756
 
1757
              /* Insert the new (indirect) jump sequence immediately before
1758
                 the unconditional jump, then delete the unconditional jump.  */
1759
 
1760
              emit_insn_before (indirect_jump_sequence, last_insn);
1761
              delete_insn (last_insn);
1762
 
1763
              /* Make BB_END for cur_bb be the jump instruction (NOT the
1764
                 barrier instruction at the end of the sequence...).  */
1765
 
1766
              BB_END (cur_bb) = jump_insn;
1767
            }
1768
        }
1769
    }
1770
}
1771
 
1772
/* Add REG_CROSSING_JUMP note to all crossing jump insns.  */
1773
 
1774
static void
1775
add_reg_crossing_jump_notes (void)
1776
{
1777
  basic_block bb;
1778
  edge e;
1779
  edge_iterator ei;
1780
 
1781
  FOR_EACH_BB (bb)
1782
    FOR_EACH_EDGE (e, ei, bb->succs)
1783
      if ((e->flags & EDGE_CROSSING)
1784
          && JUMP_P (BB_END (e->src)))
1785
        add_reg_note (BB_END (e->src), REG_CROSSING_JUMP, NULL_RTX);
1786
}
1787
 
1788
/* Hot and cold basic blocks are partitioned and put in separate
1789
   sections of the .o file, to reduce paging and improve cache
1790
   performance (hopefully).  This can result in bits of code from the
1791
   same function being widely separated in the .o file.  However this
1792
   is not obvious to the current bb structure.  Therefore we must take
1793
   care to ensure that: 1). There are no fall_thru edges that cross
1794
   between sections; 2). For those architectures which have "short"
1795
   conditional branches, all conditional branches that attempt to
1796
   cross between sections are converted to unconditional branches;
1797
   and, 3). For those architectures which have "short" unconditional
1798
   branches, all unconditional branches that attempt to cross between
1799
   sections are converted to indirect jumps.
1800
 
1801
   The code for fixing up fall_thru edges that cross between hot and
1802
   cold basic blocks does so by creating new basic blocks containing
1803
   unconditional branches to the appropriate label in the "other"
1804
   section.  The new basic block is then put in the same (hot or cold)
1805
   section as the original conditional branch, and the fall_thru edge
1806
   is modified to fall into the new basic block instead.  By adding
1807
   this level of indirection we end up with only unconditional branches
1808
   crossing between hot and cold sections.
1809
 
1810
   Conditional branches are dealt with by adding a level of indirection.
1811
   A new basic block is added in the same (hot/cold) section as the
1812
   conditional branch, and the conditional branch is retargeted to the
1813
   new basic block.  The new basic block contains an unconditional branch
1814
   to the original target of the conditional branch (in the other section).
1815
 
1816
   Unconditional branches are dealt with by converting them into
1817
   indirect jumps.  */
1818
 
1819
static void
1820
fix_edges_for_rarely_executed_code (edge *crossing_edges,
1821
                                    int n_crossing_edges)
1822
{
1823
  /* Make sure the source of any crossing edge ends in a jump and the
1824
     destination of any crossing edge has a label.  */
1825
 
1826
  add_labels_and_missing_jumps (crossing_edges, n_crossing_edges);
1827
 
1828
  /* Convert all crossing fall_thru edges to non-crossing fall
1829
     thrus to unconditional jumps (that jump to the original fall
1830
     thru dest).  */
1831
 
1832
  fix_up_fall_thru_edges ();
1833
 
1834
  /* If the architecture does not have conditional branches that can
1835
     span all of memory, convert crossing conditional branches into
1836
     crossing unconditional branches.  */
1837
 
1838
  if (!HAS_LONG_COND_BRANCH)
1839
    fix_crossing_conditional_branches ();
1840
 
1841
  /* If the architecture does not have unconditional branches that
1842
     can span all of memory, convert crossing unconditional branches
1843
     into indirect jumps.  Since adding an indirect jump also adds
1844
     a new register usage, update the register usage information as
1845
     well.  */
1846
 
1847
  if (!HAS_LONG_UNCOND_BRANCH)
1848
    fix_crossing_unconditional_branches ();
1849
 
1850
  add_reg_crossing_jump_notes ();
1851
}
1852
 
1853
/* Verify, in the basic block chain, that there is at most one switch
1854
   between hot/cold partitions. This is modelled on
1855
   rtl_verify_flow_info_1, but it cannot go inside that function
1856
   because this condition will not be true until after
1857
   reorder_basic_blocks is called.  */
1858
 
1859
static void
1860
verify_hot_cold_block_grouping (void)
1861
{
1862
  basic_block bb;
1863
  int err = 0;
1864
  bool switched_sections = false;
1865
  int current_partition = 0;
1866
 
1867
  FOR_EACH_BB (bb)
1868
    {
1869
      if (!current_partition)
1870
        current_partition = BB_PARTITION (bb);
1871
      if (BB_PARTITION (bb) != current_partition)
1872
        {
1873
          if (switched_sections)
1874
            {
1875
              error ("multiple hot/cold transitions found (bb %i)",
1876
                     bb->index);
1877
              err = 1;
1878
            }
1879
          else
1880
            {
1881
              switched_sections = true;
1882
              current_partition = BB_PARTITION (bb);
1883
            }
1884
        }
1885
    }
1886
 
1887
  gcc_assert(!err);
1888
}
1889
 
1890
/* Reorder basic blocks.  The main entry point to this file.  FLAGS is
1891
   the set of flags to pass to cfg_layout_initialize().  */
1892
 
1893
void
1894
reorder_basic_blocks (void)
1895
{
1896
  int n_traces;
1897
  int i;
1898
  struct trace *traces;
1899
 
1900
  gcc_assert (current_ir_type () == IR_RTL_CFGLAYOUT);
1901
 
1902
  if (n_basic_blocks <= NUM_FIXED_BLOCKS + 1)
1903
    return;
1904
 
1905
  set_edge_can_fallthru_flag ();
1906
  mark_dfs_back_edges ();
1907
 
1908
  /* We are estimating the length of uncond jump insn only once since the code
1909
     for getting the insn length always returns the minimal length now.  */
1910
  if (uncond_jump_length == 0)
1911
    uncond_jump_length = get_uncond_jump_length ();
1912
 
1913
  /* We need to know some information for each basic block.  */
1914
  array_size = GET_ARRAY_SIZE (last_basic_block);
1915
  bbd = XNEWVEC (bbro_basic_block_data, array_size);
1916
  for (i = 0; i < array_size; i++)
1917
    {
1918
      bbd[i].start_of_trace = -1;
1919
      bbd[i].in_trace = -1;
1920
      bbd[i].end_of_trace = -1;
1921
      bbd[i].heap = NULL;
1922
      bbd[i].node = NULL;
1923
    }
1924
 
1925
  traces = XNEWVEC (struct trace, n_basic_blocks);
1926
  n_traces = 0;
1927
  find_traces (&n_traces, traces);
1928
  connect_traces (n_traces, traces);
1929
  FREE (traces);
1930
  FREE (bbd);
1931
 
1932
  relink_block_chain (/*stay_in_cfglayout_mode=*/true);
1933
 
1934
  if (dump_file)
1935
    dump_flow_info (dump_file, dump_flags);
1936
 
1937
  if (flag_reorder_blocks_and_partition)
1938
    verify_hot_cold_block_grouping ();
1939
}
1940
 
1941
/* Determine which partition the first basic block in the function
1942
   belongs to, then find the first basic block in the current function
1943
   that belongs to a different section, and insert a
1944
   NOTE_INSN_SWITCH_TEXT_SECTIONS note immediately before it in the
1945
   instruction stream.  When writing out the assembly code,
1946
   encountering this note will make the compiler switch between the
1947
   hot and cold text sections.  */
1948
 
1949
static void
1950
insert_section_boundary_note (void)
1951
{
1952
  basic_block bb;
1953
  rtx new_note;
1954
  int first_partition = 0;
1955
 
1956
  if (flag_reorder_blocks_and_partition)
1957
    FOR_EACH_BB (bb)
1958
    {
1959
      if (!first_partition)
1960
        first_partition = BB_PARTITION (bb);
1961
      if (BB_PARTITION (bb) != first_partition)
1962
        {
1963
          new_note = emit_note_before (NOTE_INSN_SWITCH_TEXT_SECTIONS,
1964
                                       BB_HEAD (bb));
1965
          /* ??? This kind of note always lives between basic blocks,
1966
             but add_insn_before will set BLOCK_FOR_INSN anyway.  */
1967
          BLOCK_FOR_INSN (new_note) = NULL;
1968
          break;
1969
        }
1970
    }
1971
}
1972
 
1973
/* Duplicate the blocks containing computed gotos.  This basically unfactors
1974
   computed gotos that were factored early on in the compilation process to
1975
   speed up edge based data flow.  We used to not unfactoring them again,
1976
   which can seriously pessimize code with many computed jumps in the source
1977
   code, such as interpreters.  See e.g. PR15242.  */
1978
 
1979
static bool
1980
gate_duplicate_computed_gotos (void)
1981
{
1982
  if (targetm.cannot_modify_jumps_p ())
1983
    return false;
1984
  return (optimize > 0
1985
          && flag_expensive_optimizations
1986
          && ! optimize_function_for_size_p (cfun));
1987
}
1988
 
1989
 
1990
static unsigned int
1991
duplicate_computed_gotos (void)
1992
{
1993
  basic_block bb, new_bb;
1994
  bitmap candidates;
1995
  int max_size;
1996
 
1997
  if (n_basic_blocks <= NUM_FIXED_BLOCKS + 1)
1998
    return 0;
1999
 
2000
  cfg_layout_initialize (0);
2001
 
2002
  /* We are estimating the length of uncond jump insn only once
2003
     since the code for getting the insn length always returns
2004
     the minimal length now.  */
2005
  if (uncond_jump_length == 0)
2006
    uncond_jump_length = get_uncond_jump_length ();
2007
 
2008
  max_size = uncond_jump_length * PARAM_VALUE (PARAM_MAX_GOTO_DUPLICATION_INSNS);
2009
  candidates = BITMAP_ALLOC (NULL);
2010
 
2011
  /* Look for blocks that end in a computed jump, and see if such blocks
2012
     are suitable for unfactoring.  If a block is a candidate for unfactoring,
2013
     mark it in the candidates.  */
2014
  FOR_EACH_BB (bb)
2015
    {
2016
      rtx insn;
2017
      edge e;
2018
      edge_iterator ei;
2019
      int size, all_flags;
2020
 
2021
      /* Build the reorder chain for the original order of blocks.  */
2022
      if (bb->next_bb != EXIT_BLOCK_PTR)
2023
        bb->aux = bb->next_bb;
2024
 
2025
      /* Obviously the block has to end in a computed jump.  */
2026
      if (!computed_jump_p (BB_END (bb)))
2027
        continue;
2028
 
2029
      /* Only consider blocks that can be duplicated.  */
2030
      if (find_reg_note (BB_END (bb), REG_CROSSING_JUMP, NULL_RTX)
2031
          || !can_duplicate_block_p (bb))
2032
        continue;
2033
 
2034
      /* Make sure that the block is small enough.  */
2035
      size = 0;
2036
      FOR_BB_INSNS (bb, insn)
2037
        if (INSN_P (insn))
2038
          {
2039
            size += get_attr_min_length (insn);
2040
            if (size > max_size)
2041
               break;
2042
          }
2043
      if (size > max_size)
2044
        continue;
2045
 
2046
      /* Final check: there must not be any incoming abnormal edges.  */
2047
      all_flags = 0;
2048
      FOR_EACH_EDGE (e, ei, bb->preds)
2049
        all_flags |= e->flags;
2050
      if (all_flags & EDGE_COMPLEX)
2051
        continue;
2052
 
2053
      bitmap_set_bit (candidates, bb->index);
2054
    }
2055
 
2056
  /* Nothing to do if there is no computed jump here.  */
2057
  if (bitmap_empty_p (candidates))
2058
    goto done;
2059
 
2060
  /* Duplicate computed gotos.  */
2061
  FOR_EACH_BB (bb)
2062
    {
2063
      if (bb->il.rtl->visited)
2064
        continue;
2065
 
2066
      bb->il.rtl->visited = 1;
2067
 
2068
      /* BB must have one outgoing edge.  That edge must not lead to
2069
         the exit block or the next block.
2070
         The destination must have more than one predecessor.  */
2071
      if (!single_succ_p (bb)
2072
          || single_succ (bb) == EXIT_BLOCK_PTR
2073
          || single_succ (bb) == bb->next_bb
2074
          || single_pred_p (single_succ (bb)))
2075
        continue;
2076
 
2077
      /* The successor block has to be a duplication candidate.  */
2078
      if (!bitmap_bit_p (candidates, single_succ (bb)->index))
2079
        continue;
2080
 
2081
      new_bb = duplicate_block (single_succ (bb), single_succ_edge (bb), bb);
2082
      new_bb->aux = bb->aux;
2083
      bb->aux = new_bb;
2084
      new_bb->il.rtl->visited = 1;
2085
    }
2086
 
2087
done:
2088
  cfg_layout_finalize ();
2089
 
2090
  BITMAP_FREE (candidates);
2091
  return 0;
2092
}
2093
 
2094
struct rtl_opt_pass pass_duplicate_computed_gotos =
2095
{
2096
 {
2097
  RTL_PASS,
2098
  "compgotos",                          /* name */
2099
  gate_duplicate_computed_gotos,        /* gate */
2100
  duplicate_computed_gotos,             /* execute */
2101
  NULL,                                 /* sub */
2102
  NULL,                                 /* next */
2103
  0,                                    /* static_pass_number */
2104
  TV_REORDER_BLOCKS,                    /* tv_id */
2105
  0,                                    /* properties_required */
2106
  0,                                    /* properties_provided */
2107
  0,                                    /* properties_destroyed */
2108
  0,                                    /* todo_flags_start */
2109
  TODO_dump_func | TODO_verify_rtl_sharing,/* todo_flags_finish */
2110
 }
2111
};
2112
 
2113
 
2114
/* This function is the main 'entrance' for the optimization that
2115
   partitions hot and cold basic blocks into separate sections of the
2116
   .o file (to improve performance and cache locality).  Ideally it
2117
   would be called after all optimizations that rearrange the CFG have
2118
   been called.  However part of this optimization may introduce new
2119
   register usage, so it must be called before register allocation has
2120
   occurred.  This means that this optimization is actually called
2121
   well before the optimization that reorders basic blocks (see
2122
   function above).
2123
 
2124
   This optimization checks the feedback information to determine
2125
   which basic blocks are hot/cold, updates flags on the basic blocks
2126
   to indicate which section they belong in.  This information is
2127
   later used for writing out sections in the .o file.  Because hot
2128
   and cold sections can be arbitrarily large (within the bounds of
2129
   memory), far beyond the size of a single function, it is necessary
2130
   to fix up all edges that cross section boundaries, to make sure the
2131
   instructions used can actually span the required distance.  The
2132
   fixes are described below.
2133
 
2134
   Fall-through edges must be changed into jumps; it is not safe or
2135
   legal to fall through across a section boundary.  Whenever a
2136
   fall-through edge crossing a section boundary is encountered, a new
2137
   basic block is inserted (in the same section as the fall-through
2138
   source), and the fall through edge is redirected to the new basic
2139
   block.  The new basic block contains an unconditional jump to the
2140
   original fall-through target.  (If the unconditional jump is
2141
   insufficient to cross section boundaries, that is dealt with a
2142
   little later, see below).
2143
 
2144
   In order to deal with architectures that have short conditional
2145
   branches (which cannot span all of memory) we take any conditional
2146
   jump that attempts to cross a section boundary and add a level of
2147
   indirection: it becomes a conditional jump to a new basic block, in
2148
   the same section.  The new basic block contains an unconditional
2149
   jump to the original target, in the other section.
2150
 
2151
   For those architectures whose unconditional branch is also
2152
   incapable of reaching all of memory, those unconditional jumps are
2153
   converted into indirect jumps, through a register.
2154
 
2155
   IMPORTANT NOTE: This optimization causes some messy interactions
2156
   with the cfg cleanup optimizations; those optimizations want to
2157
   merge blocks wherever possible, and to collapse indirect jump
2158
   sequences (change "A jumps to B jumps to C" directly into "A jumps
2159
   to C").  Those optimizations can undo the jump fixes that
2160
   partitioning is required to make (see above), in order to ensure
2161
   that jumps attempting to cross section boundaries are really able
2162
   to cover whatever distance the jump requires (on many architectures
2163
   conditional or unconditional jumps are not able to reach all of
2164
   memory).  Therefore tests have to be inserted into each such
2165
   optimization to make sure that it does not undo stuff necessary to
2166
   cross partition boundaries.  This would be much less of a problem
2167
   if we could perform this optimization later in the compilation, but
2168
   unfortunately the fact that we may need to create indirect jumps
2169
   (through registers) requires that this optimization be performed
2170
   before register allocation.  */
2171
 
2172
static void
2173
partition_hot_cold_basic_blocks (void)
2174
{
2175
  edge *crossing_edges;
2176
  int n_crossing_edges;
2177
  int max_edges = 2 * last_basic_block;
2178
 
2179
  if (n_basic_blocks <= NUM_FIXED_BLOCKS + 1)
2180
    return;
2181
 
2182
  crossing_edges = XCNEWVEC (edge, max_edges);
2183
 
2184
  find_rarely_executed_basic_blocks_and_crossing_edges (&crossing_edges,
2185
                                                        &n_crossing_edges,
2186
                                                        &max_edges);
2187
 
2188
  if (n_crossing_edges > 0)
2189
    fix_edges_for_rarely_executed_code (crossing_edges, n_crossing_edges);
2190
 
2191
  free (crossing_edges);
2192
}
2193
 
2194
static bool
2195
gate_handle_reorder_blocks (void)
2196
{
2197
  if (targetm.cannot_modify_jumps_p ())
2198
    return false;
2199
  return (optimize > 0);
2200
}
2201
 
2202
 
2203
/* Reorder basic blocks.  */
2204
static unsigned int
2205
rest_of_handle_reorder_blocks (void)
2206
{
2207
  basic_block bb;
2208
 
2209
  /* Last attempt to optimize CFG, as scheduling, peepholing and insn
2210
     splitting possibly introduced more crossjumping opportunities.  */
2211
  cfg_layout_initialize (CLEANUP_EXPENSIVE);
2212
 
2213
  if ((flag_reorder_blocks || flag_reorder_blocks_and_partition)
2214
      /* Don't reorder blocks when optimizing for size because extra jump insns may
2215
         be created; also barrier may create extra padding.
2216
 
2217
         More correctly we should have a block reordering mode that tried to
2218
         minimize the combined size of all the jumps.  This would more or less
2219
         automatically remove extra jumps, but would also try to use more short
2220
         jumps instead of long jumps.  */
2221
      && optimize_function_for_speed_p (cfun))
2222
    {
2223
      reorder_basic_blocks ();
2224
      cleanup_cfg (CLEANUP_EXPENSIVE);
2225
    }
2226
 
2227
  FOR_EACH_BB (bb)
2228
    if (bb->next_bb != EXIT_BLOCK_PTR)
2229
      bb->aux = bb->next_bb;
2230
  cfg_layout_finalize ();
2231
 
2232
  /* Add NOTE_INSN_SWITCH_TEXT_SECTIONS notes.  */
2233
  insert_section_boundary_note ();
2234
  return 0;
2235
}
2236
 
2237
struct rtl_opt_pass pass_reorder_blocks =
2238
{
2239
 {
2240
  RTL_PASS,
2241
  "bbro",                               /* name */
2242
  gate_handle_reorder_blocks,           /* gate */
2243
  rest_of_handle_reorder_blocks,        /* execute */
2244
  NULL,                                 /* sub */
2245
  NULL,                                 /* next */
2246
  0,                                    /* static_pass_number */
2247
  TV_REORDER_BLOCKS,                    /* tv_id */
2248
  0,                                    /* properties_required */
2249
  0,                                    /* properties_provided */
2250
  0,                                    /* properties_destroyed */
2251
  0,                                    /* todo_flags_start */
2252
  TODO_dump_func | TODO_verify_rtl_sharing,/* todo_flags_finish */
2253
 }
2254
};
2255
 
2256
static bool
2257
gate_handle_partition_blocks (void)
2258
{
2259
  /* The optimization to partition hot/cold basic blocks into separate
2260
     sections of the .o file does not work well with linkonce or with
2261
     user defined section attributes.  Don't call it if either case
2262
     arises.  */
2263
 
2264
  return (flag_reorder_blocks_and_partition
2265
          && !DECL_ONE_ONLY (current_function_decl)
2266
          && !user_defined_section_attribute);
2267
}
2268
 
2269
/* Partition hot and cold basic blocks.  */
2270
static unsigned int
2271
rest_of_handle_partition_blocks (void)
2272
{
2273
  partition_hot_cold_basic_blocks ();
2274
  return 0;
2275
}
2276
 
2277
struct rtl_opt_pass pass_partition_blocks =
2278
{
2279
 {
2280
  RTL_PASS,
2281
  "bbpart",                             /* name */
2282
  gate_handle_partition_blocks,         /* gate */
2283
  rest_of_handle_partition_blocks,      /* execute */
2284
  NULL,                                 /* sub */
2285
  NULL,                                 /* next */
2286
  0,                                    /* static_pass_number */
2287
  TV_REORDER_BLOCKS,                    /* tv_id */
2288
  PROP_cfglayout,                       /* properties_required */
2289
  0,                                    /* properties_provided */
2290
  0,                                    /* properties_destroyed */
2291
  0,                                    /* todo_flags_start */
2292
  TODO_dump_func | TODO_verify_rtl_sharing/* todo_flags_finish */
2293
 }
2294
};

powered by: WebSVN 2.1.0

© copyright 1999-2025 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.