1 |
282 |
jeremybenn |
;; ARM 1020E & ARM 1022E Pipeline Description
|
2 |
|
|
;; Copyright (C) 2005, 2007, 2008 Free Software Foundation, Inc.
|
3 |
|
|
;; Contributed by Richard Earnshaw (richard.earnshaw@arm.com)
|
4 |
|
|
;;
|
5 |
|
|
;; This file is part of GCC.
|
6 |
|
|
;;
|
7 |
|
|
;; GCC is free software; you can redistribute it and/or modify it
|
8 |
|
|
;; under the terms of the GNU General Public License as published by
|
9 |
|
|
;; the Free Software Foundation; either version 3, or (at your option)
|
10 |
|
|
;; any later version.
|
11 |
|
|
;;
|
12 |
|
|
;; GCC is distributed in the hope that it will be useful, but
|
13 |
|
|
;; WITHOUT ANY WARRANTY; without even the implied warranty of
|
14 |
|
|
;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
15 |
|
|
;; General Public License for more details.
|
16 |
|
|
;;
|
17 |
|
|
;; You should have received a copy of the GNU General Public License
|
18 |
|
|
;; along with GCC; see the file COPYING3. If not see
|
19 |
|
|
;; . */
|
20 |
|
|
|
21 |
|
|
;; These descriptions are based on the information contained in the
|
22 |
|
|
;; ARM1020E Technical Reference Manual, Copyright (c) 2003 ARM
|
23 |
|
|
;; Limited.
|
24 |
|
|
;;
|
25 |
|
|
|
26 |
|
|
;; This automaton provides a pipeline description for the ARM
|
27 |
|
|
;; 1020E core.
|
28 |
|
|
;;
|
29 |
|
|
;; The model given here assumes that the condition for all conditional
|
30 |
|
|
;; instructions is "true", i.e., that all of the instructions are
|
31 |
|
|
;; actually executed.
|
32 |
|
|
|
33 |
|
|
(define_automaton "arm1020e")
|
34 |
|
|
|
35 |
|
|
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
36 |
|
|
;; Pipelines
|
37 |
|
|
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
38 |
|
|
|
39 |
|
|
;; There are two pipelines:
|
40 |
|
|
;;
|
41 |
|
|
;; - An Arithmetic Logic Unit (ALU) pipeline.
|
42 |
|
|
;;
|
43 |
|
|
;; The ALU pipeline has fetch, issue, decode, execute, memory, and
|
44 |
|
|
;; write stages. We only need to model the execute, memory and write
|
45 |
|
|
;; stages.
|
46 |
|
|
;;
|
47 |
|
|
;; - A Load-Store Unit (LSU) pipeline.
|
48 |
|
|
;;
|
49 |
|
|
;; The LSU pipeline has decode, execute, memory, and write stages.
|
50 |
|
|
;; We only model the execute, memory and write stages.
|
51 |
|
|
|
52 |
|
|
(define_cpu_unit "1020a_e,1020a_m,1020a_w" "arm1020e")
|
53 |
|
|
(define_cpu_unit "1020l_e,1020l_m,1020l_w" "arm1020e")
|
54 |
|
|
|
55 |
|
|
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
56 |
|
|
;; ALU Instructions
|
57 |
|
|
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
58 |
|
|
|
59 |
|
|
;; ALU instructions require three cycles to execute, and use the ALU
|
60 |
|
|
;; pipeline in each of the three stages. The results are available
|
61 |
|
|
;; after the execute stage stage has finished.
|
62 |
|
|
;;
|
63 |
|
|
;; If the destination register is the PC, the pipelines are stalled
|
64 |
|
|
;; for several cycles. That case is not modeled here.
|
65 |
|
|
|
66 |
|
|
;; ALU operations with no shifted operand
|
67 |
|
|
(define_insn_reservation "1020alu_op" 1
|
68 |
|
|
(and (eq_attr "tune" "arm1020e,arm1022e")
|
69 |
|
|
(eq_attr "type" "alu"))
|
70 |
|
|
"1020a_e,1020a_m,1020a_w")
|
71 |
|
|
|
72 |
|
|
;; ALU operations with a shift-by-constant operand
|
73 |
|
|
(define_insn_reservation "1020alu_shift_op" 1
|
74 |
|
|
(and (eq_attr "tune" "arm1020e,arm1022e")
|
75 |
|
|
(eq_attr "type" "alu_shift"))
|
76 |
|
|
"1020a_e,1020a_m,1020a_w")
|
77 |
|
|
|
78 |
|
|
;; ALU operations with a shift-by-register operand
|
79 |
|
|
;; These really stall in the decoder, in order to read
|
80 |
|
|
;; the shift value in a second cycle. Pretend we take two cycles in
|
81 |
|
|
;; the execute stage.
|
82 |
|
|
(define_insn_reservation "1020alu_shift_reg_op" 2
|
83 |
|
|
(and (eq_attr "tune" "arm1020e,arm1022e")
|
84 |
|
|
(eq_attr "type" "alu_shift_reg"))
|
85 |
|
|
"1020a_e*2,1020a_m,1020a_w")
|
86 |
|
|
|
87 |
|
|
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
88 |
|
|
;; Multiplication Instructions
|
89 |
|
|
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
90 |
|
|
|
91 |
|
|
;; Multiplication instructions loop in the execute stage until the
|
92 |
|
|
;; instruction has been passed through the multiplier array enough
|
93 |
|
|
;; times.
|
94 |
|
|
|
95 |
|
|
;; The result of the "smul" and "smulw" instructions is not available
|
96 |
|
|
;; until after the memory stage.
|
97 |
|
|
(define_insn_reservation "1020mult1" 2
|
98 |
|
|
(and (eq_attr "tune" "arm1020e,arm1022e")
|
99 |
|
|
(eq_attr "insn" "smulxy,smulwy"))
|
100 |
|
|
"1020a_e,1020a_m,1020a_w")
|
101 |
|
|
|
102 |
|
|
;; The "smlaxy" and "smlawx" instructions require two iterations through
|
103 |
|
|
;; the execute stage; the result is available immediately following
|
104 |
|
|
;; the execute stage.
|
105 |
|
|
(define_insn_reservation "1020mult2" 2
|
106 |
|
|
(and (eq_attr "tune" "arm1020e,arm1022e")
|
107 |
|
|
(eq_attr "insn" "smlaxy,smlalxy,smlawx"))
|
108 |
|
|
"1020a_e*2,1020a_m,1020a_w")
|
109 |
|
|
|
110 |
|
|
;; The "smlalxy", "mul", and "mla" instructions require two iterations
|
111 |
|
|
;; through the execute stage; the result is not available until after
|
112 |
|
|
;; the memory stage.
|
113 |
|
|
(define_insn_reservation "1020mult3" 3
|
114 |
|
|
(and (eq_attr "tune" "arm1020e,arm1022e")
|
115 |
|
|
(eq_attr "insn" "smlalxy,mul,mla"))
|
116 |
|
|
"1020a_e*2,1020a_m,1020a_w")
|
117 |
|
|
|
118 |
|
|
;; The "muls" and "mlas" instructions loop in the execute stage for
|
119 |
|
|
;; four iterations in order to set the flags. The value result is
|
120 |
|
|
;; available after three iterations.
|
121 |
|
|
(define_insn_reservation "1020mult4" 3
|
122 |
|
|
(and (eq_attr "tune" "arm1020e,arm1022e")
|
123 |
|
|
(eq_attr "insn" "muls,mlas"))
|
124 |
|
|
"1020a_e*4,1020a_m,1020a_w")
|
125 |
|
|
|
126 |
|
|
;; Long multiply instructions that produce two registers of
|
127 |
|
|
;; output (such as umull) make their results available in two cycles;
|
128 |
|
|
;; the least significant word is available before the most significant
|
129 |
|
|
;; word. That fact is not modeled; instead, the instructions are
|
130 |
|
|
;; described.as if the entire result was available at the end of the
|
131 |
|
|
;; cycle in which both words are available.
|
132 |
|
|
|
133 |
|
|
;; The "umull", "umlal", "smull", and "smlal" instructions all take
|
134 |
|
|
;; three iterations through the execute cycle, and make their results
|
135 |
|
|
;; available after the memory cycle.
|
136 |
|
|
(define_insn_reservation "1020mult5" 4
|
137 |
|
|
(and (eq_attr "tune" "arm1020e,arm1022e")
|
138 |
|
|
(eq_attr "insn" "umull,umlal,smull,smlal"))
|
139 |
|
|
"1020a_e*3,1020a_m,1020a_w")
|
140 |
|
|
|
141 |
|
|
;; The "umulls", "umlals", "smulls", and "smlals" instructions loop in
|
142 |
|
|
;; the execute stage for five iterations in order to set the flags.
|
143 |
|
|
;; The value result is available after four iterations.
|
144 |
|
|
(define_insn_reservation "1020mult6" 4
|
145 |
|
|
(and (eq_attr "tune" "arm1020e,arm1022e")
|
146 |
|
|
(eq_attr "insn" "umulls,umlals,smulls,smlals"))
|
147 |
|
|
"1020a_e*5,1020a_m,1020a_w")
|
148 |
|
|
|
149 |
|
|
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
150 |
|
|
;; Load/Store Instructions
|
151 |
|
|
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
152 |
|
|
|
153 |
|
|
;; The models for load/store instructions do not accurately describe
|
154 |
|
|
;; the difference between operations with a base register writeback
|
155 |
|
|
;; (such as "ldm!"). These models assume that all memory references
|
156 |
|
|
;; hit in dcache.
|
157 |
|
|
|
158 |
|
|
;; LSU instructions require six cycles to execute. They use the ALU
|
159 |
|
|
;; pipeline in all but the 5th cycle, and the LSU pipeline in cycles
|
160 |
|
|
;; three through six.
|
161 |
|
|
;; Loads and stores which use a scaled register offset or scaled
|
162 |
|
|
;; register pre-indexed addressing mode take three cycles EXCEPT for
|
163 |
|
|
;; those that are base + offset with LSL of 0 or 2, or base - offset
|
164 |
|
|
;; with LSL of zero. The remainder take 1 cycle to execute.
|
165 |
|
|
;; For 4byte loads there is a bypass from the load stage
|
166 |
|
|
|
167 |
|
|
(define_insn_reservation "1020load1_op" 2
|
168 |
|
|
(and (eq_attr "tune" "arm1020e,arm1022e")
|
169 |
|
|
(eq_attr "type" "load_byte,load1"))
|
170 |
|
|
"1020a_e+1020l_e,1020l_m,1020l_w")
|
171 |
|
|
|
172 |
|
|
(define_insn_reservation "1020store1_op" 0
|
173 |
|
|
(and (eq_attr "tune" "arm1020e,arm1022e")
|
174 |
|
|
(eq_attr "type" "store1"))
|
175 |
|
|
"1020a_e+1020l_e,1020l_m,1020l_w")
|
176 |
|
|
|
177 |
|
|
;; A load's result can be stored by an immediately following store
|
178 |
|
|
(define_bypass 1 "1020load1_op" "1020store1_op" "arm_no_early_store_addr_dep")
|
179 |
|
|
|
180 |
|
|
;; On a LDM/STM operation, the LSU pipeline iterates until all of the
|
181 |
|
|
;; registers have been processed.
|
182 |
|
|
;;
|
183 |
|
|
;; The time it takes to load the data depends on whether or not the
|
184 |
|
|
;; base address is 64-bit aligned; if it is not, an additional cycle
|
185 |
|
|
;; is required. This model assumes that the address is always 64-bit
|
186 |
|
|
;; aligned. Because the processor can load two registers per cycle,
|
187 |
|
|
;; that assumption means that we use the same instruction reservations
|
188 |
|
|
;; for loading 2k and 2k - 1 registers.
|
189 |
|
|
;;
|
190 |
|
|
;; The ALU pipeline is decoupled after the first cycle unless there is
|
191 |
|
|
;; a register dependency; the dependency is cleared as soon as the LDM/STM
|
192 |
|
|
;; has dealt with the corresponding register. So for example,
|
193 |
|
|
;; stmia sp, {r0-r3}
|
194 |
|
|
;; add r0, r0, #4
|
195 |
|
|
;; will have one fewer stalls than
|
196 |
|
|
;; stmia sp, {r0-r3}
|
197 |
|
|
;; add r3, r3, #4
|
198 |
|
|
;;
|
199 |
|
|
;; As with ALU operations, if one of the destination registers is the
|
200 |
|
|
;; PC, there are additional stalls; that is not modeled.
|
201 |
|
|
|
202 |
|
|
(define_insn_reservation "1020load2_op" 2
|
203 |
|
|
(and (eq_attr "tune" "arm1020e,arm1022e")
|
204 |
|
|
(eq_attr "type" "load2"))
|
205 |
|
|
"1020a_e+1020l_e,1020l_m,1020l_w")
|
206 |
|
|
|
207 |
|
|
(define_insn_reservation "1020store2_op" 0
|
208 |
|
|
(and (eq_attr "tune" "arm1020e,arm1022e")
|
209 |
|
|
(eq_attr "type" "store2"))
|
210 |
|
|
"1020a_e+1020l_e,1020l_m,1020l_w")
|
211 |
|
|
|
212 |
|
|
(define_insn_reservation "1020load34_op" 3
|
213 |
|
|
(and (eq_attr "tune" "arm1020e,arm1022e")
|
214 |
|
|
(eq_attr "type" "load3,load4"))
|
215 |
|
|
"1020a_e+1020l_e,1020l_e+1020l_m,1020l_m,1020l_w")
|
216 |
|
|
|
217 |
|
|
(define_insn_reservation "1020store34_op" 0
|
218 |
|
|
(and (eq_attr "tune" "arm1020e,arm1022e")
|
219 |
|
|
(eq_attr "type" "store3,store4"))
|
220 |
|
|
"1020a_e+1020l_e,1020l_e+1020l_m,1020l_m,1020l_w")
|
221 |
|
|
|
222 |
|
|
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
223 |
|
|
;; Branch and Call Instructions
|
224 |
|
|
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
225 |
|
|
|
226 |
|
|
;; Branch instructions are difficult to model accurately. The ARM
|
227 |
|
|
;; core can predict most branches. If the branch is predicted
|
228 |
|
|
;; correctly, and predicted early enough, the branch can be completely
|
229 |
|
|
;; eliminated from the instruction stream. Some branches can
|
230 |
|
|
;; therefore appear to require zero cycles to execute. We assume that
|
231 |
|
|
;; all branches are predicted correctly, and that the latency is
|
232 |
|
|
;; therefore the minimum value.
|
233 |
|
|
|
234 |
|
|
(define_insn_reservation "1020branch_op" 0
|
235 |
|
|
(and (eq_attr "tune" "arm1020e,arm1022e")
|
236 |
|
|
(eq_attr "type" "branch"))
|
237 |
|
|
"1020a_e")
|
238 |
|
|
|
239 |
|
|
;; The latency for a call is not predictable. Therefore, we use 32 as
|
240 |
|
|
;; roughly equivalent to positive infinity.
|
241 |
|
|
|
242 |
|
|
(define_insn_reservation "1020call_op" 32
|
243 |
|
|
(and (eq_attr "tune" "arm1020e,arm1022e")
|
244 |
|
|
(eq_attr "type" "call"))
|
245 |
|
|
"1020a_e*32")
|
246 |
|
|
|
247 |
|
|
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
248 |
|
|
;; VFP
|
249 |
|
|
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
250 |
|
|
|
251 |
|
|
(define_cpu_unit "v10_fmac" "arm1020e")
|
252 |
|
|
|
253 |
|
|
(define_cpu_unit "v10_ds" "arm1020e")
|
254 |
|
|
|
255 |
|
|
(define_cpu_unit "v10_fmstat" "arm1020e")
|
256 |
|
|
|
257 |
|
|
(define_cpu_unit "v10_ls1,v10_ls2,v10_ls3" "arm1020e")
|
258 |
|
|
|
259 |
|
|
;; fmstat is a serializing instruction. It will stall the core until
|
260 |
|
|
;; the mac and ds units have completed.
|
261 |
|
|
(exclusion_set "v10_fmac,v10_ds" "v10_fmstat")
|
262 |
|
|
|
263 |
|
|
(define_attr "vfp10" "yes,no"
|
264 |
|
|
(const (if_then_else (and (eq_attr "tune" "arm1020e,arm1022e")
|
265 |
|
|
(eq_attr "fpu" "vfp"))
|
266 |
|
|
(const_string "yes") (const_string "no"))))
|
267 |
|
|
|
268 |
|
|
;; Note, no instruction can issue to the VFP if the core is stalled in the
|
269 |
|
|
;; first execute state. We model this by using 1020a_e in the first cycle.
|
270 |
|
|
(define_insn_reservation "v10_ffarith" 5
|
271 |
|
|
(and (eq_attr "vfp10" "yes")
|
272 |
|
|
(eq_attr "type" "fcpys,ffariths,ffarithd,fcmps,fcmpd"))
|
273 |
|
|
"1020a_e+v10_fmac")
|
274 |
|
|
|
275 |
|
|
(define_insn_reservation "v10_farith" 5
|
276 |
|
|
(and (eq_attr "vfp10" "yes")
|
277 |
|
|
(eq_attr "type" "faddd,fadds"))
|
278 |
|
|
"1020a_e+v10_fmac")
|
279 |
|
|
|
280 |
|
|
(define_insn_reservation "v10_cvt" 5
|
281 |
|
|
(and (eq_attr "vfp10" "yes")
|
282 |
|
|
(eq_attr "type" "f_cvt"))
|
283 |
|
|
"1020a_e+v10_fmac")
|
284 |
|
|
|
285 |
|
|
(define_insn_reservation "v10_fmul" 6
|
286 |
|
|
(and (eq_attr "vfp10" "yes")
|
287 |
|
|
(eq_attr "type" "fmuls,fmacs,fmuld,fmacd"))
|
288 |
|
|
"1020a_e+v10_fmac*2")
|
289 |
|
|
|
290 |
|
|
(define_insn_reservation "v10_fdivs" 18
|
291 |
|
|
(and (eq_attr "vfp10" "yes")
|
292 |
|
|
(eq_attr "type" "fdivs"))
|
293 |
|
|
"1020a_e+v10_ds*14")
|
294 |
|
|
|
295 |
|
|
(define_insn_reservation "v10_fdivd" 32
|
296 |
|
|
(and (eq_attr "vfp10" "yes")
|
297 |
|
|
(eq_attr "type" "fdivd"))
|
298 |
|
|
"1020a_e+v10_fmac+v10_ds*28")
|
299 |
|
|
|
300 |
|
|
(define_insn_reservation "v10_floads" 4
|
301 |
|
|
(and (eq_attr "vfp10" "yes")
|
302 |
|
|
(eq_attr "type" "f_loads"))
|
303 |
|
|
"1020a_e+1020l_e+v10_ls1,v10_ls2")
|
304 |
|
|
|
305 |
|
|
;; We model a load of a double as needing all the vfp ls* stage in cycle 1.
|
306 |
|
|
;; This gives the correct mix between single-and double loads where a flds
|
307 |
|
|
;; followed by and fldd will stall for one cycle, but two back-to-back fldd
|
308 |
|
|
;; insns stall for two cycles.
|
309 |
|
|
(define_insn_reservation "v10_floadd" 5
|
310 |
|
|
(and (eq_attr "vfp10" "yes")
|
311 |
|
|
(eq_attr "type" "f_loadd"))
|
312 |
|
|
"1020a_e+1020l_e+v10_ls1+v10_ls2+v10_ls3,v10_ls2+v10_ls3,v10_ls3")
|
313 |
|
|
|
314 |
|
|
;; Moves to/from arm regs also use the load/store pipeline.
|
315 |
|
|
|
316 |
|
|
(define_insn_reservation "v10_c2v" 4
|
317 |
|
|
(and (eq_attr "vfp10" "yes")
|
318 |
|
|
(eq_attr "type" "r_2_f"))
|
319 |
|
|
"1020a_e+1020l_e+v10_ls1,v10_ls2")
|
320 |
|
|
|
321 |
|
|
(define_insn_reservation "v10_fstores" 1
|
322 |
|
|
(and (eq_attr "vfp10" "yes")
|
323 |
|
|
(eq_attr "type" "f_stores"))
|
324 |
|
|
"1020a_e+1020l_e+v10_ls1,v10_ls2")
|
325 |
|
|
|
326 |
|
|
(define_insn_reservation "v10_fstored" 1
|
327 |
|
|
(and (eq_attr "vfp10" "yes")
|
328 |
|
|
(eq_attr "type" "f_stored"))
|
329 |
|
|
"1020a_e+1020l_e+v10_ls1+v10_ls2+v10_ls3,v10_ls2+v10_ls3,v10_ls3")
|
330 |
|
|
|
331 |
|
|
(define_insn_reservation "v10_v2c" 1
|
332 |
|
|
(and (eq_attr "vfp10" "yes")
|
333 |
|
|
(eq_attr "type" "f_2_r"))
|
334 |
|
|
"1020a_e+1020l_e,1020l_m,1020l_w")
|
335 |
|
|
|
336 |
|
|
(define_insn_reservation "v10_to_cpsr" 2
|
337 |
|
|
(and (eq_attr "vfp10" "yes")
|
338 |
|
|
(eq_attr "type" "f_flag"))
|
339 |
|
|
"1020a_e+v10_fmstat,1020a_e+1020l_e,1020l_m,1020l_w")
|
340 |
|
|
|
341 |
|
|
;; VFP bypasses
|
342 |
|
|
|
343 |
|
|
;; There are bypasses for most operations other than store
|
344 |
|
|
|
345 |
|
|
(define_bypass 3
|
346 |
|
|
"v10_c2v,v10_floads"
|
347 |
|
|
"v10_ffarith,v10_farith,v10_fmul,v10_fdivs,v10_fdivd,v10_cvt")
|
348 |
|
|
|
349 |
|
|
(define_bypass 4
|
350 |
|
|
"v10_floadd"
|
351 |
|
|
"v10_ffarith,v10_farith,v10_fmul,v10_fdivs,v10_fdivd")
|
352 |
|
|
|
353 |
|
|
;; Arithmetic to other arithmetic saves a cycle due to forwarding
|
354 |
|
|
(define_bypass 4
|
355 |
|
|
"v10_ffarith,v10_farith"
|
356 |
|
|
"v10_ffarith,v10_farith,v10_fmul,v10_fdivs,v10_fdivd")
|
357 |
|
|
|
358 |
|
|
(define_bypass 5
|
359 |
|
|
"v10_fmul"
|
360 |
|
|
"v10_ffarith,v10_farith,v10_fmul,v10_fdivs,v10_fdivd")
|
361 |
|
|
|
362 |
|
|
(define_bypass 17
|
363 |
|
|
"v10_fdivs"
|
364 |
|
|
"v10_ffarith,v10_farith,v10_fmul,v10_fdivs,v10_fdivd")
|
365 |
|
|
|
366 |
|
|
(define_bypass 31
|
367 |
|
|
"v10_fdivd"
|
368 |
|
|
"v10_ffarith,v10_farith,v10_fmul,v10_fdivs,v10_fdivd")
|
369 |
|
|
|
370 |
|
|
;; VFP anti-dependencies.
|
371 |
|
|
|
372 |
|
|
;; There is one anti-dependence in the following case (not yet modelled):
|
373 |
|
|
;; - After a store: one extra cycle for both fsts and fstd
|
374 |
|
|
;; Note, back-to-back fstd instructions will overload the load/store datapath
|
375 |
|
|
;; causing a two-cycle stall.
|