OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-stable/] [gcc-4.5.1/] [gcc/] [config/] [mips/] [mips.h] - Blame information for rev 861

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 282 jeremybenn
/* Definitions of target machine for GNU compiler.  MIPS version.
2
   Copyright (C) 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998
3
   1999, 2000, 2001, 2002, 2003, 2004, 2005, 2007, 2008, 2009
4
   Free Software Foundation, Inc.
5
   Contributed by A. Lichnewsky (lich@inria.inria.fr).
6
   Changed by Michael Meissner  (meissner@osf.org).
7
   64-bit r4000 support by Ian Lance Taylor (ian@cygnus.com) and
8
   Brendan Eich (brendan@microunity.com).
9
 
10
This file is part of GCC.
11
 
12
GCC is free software; you can redistribute it and/or modify
13
it under the terms of the GNU General Public License as published by
14
the Free Software Foundation; either version 3, or (at your option)
15
any later version.
16
 
17
GCC is distributed in the hope that it will be useful,
18
but WITHOUT ANY WARRANTY; without even the implied warranty of
19
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
20
GNU General Public License for more details.
21
 
22
You should have received a copy of the GNU General Public License
23
along with GCC; see the file COPYING3.  If not see
24
<http://www.gnu.org/licenses/>.  */
25
 
26
 
27
#include "config/vxworks-dummy.h"
28
 
29
/* MIPS external variables defined in mips.c.  */
30
 
31
/* Which processor to schedule for.  Since there is no difference between
32
   a R2000 and R3000 in terms of the scheduler, we collapse them into
33
   just an R3000.  The elements of the enumeration must match exactly
34
   the cpu attribute in the mips.md machine description.  */
35
 
36
enum processor_type {
37
  PROCESSOR_R3000,
38
  PROCESSOR_4KC,
39
  PROCESSOR_4KP,
40
  PROCESSOR_5KC,
41
  PROCESSOR_5KF,
42
  PROCESSOR_20KC,
43
  PROCESSOR_24KC,
44
  PROCESSOR_24KF2_1,
45
  PROCESSOR_24KF1_1,
46
  PROCESSOR_74KC,
47
  PROCESSOR_74KF2_1,
48
  PROCESSOR_74KF1_1,
49
  PROCESSOR_74KF3_2,
50
  PROCESSOR_LOONGSON_2E,
51
  PROCESSOR_LOONGSON_2F,
52
  PROCESSOR_M4K,
53
  PROCESSOR_OCTEON,
54
  PROCESSOR_R3900,
55
  PROCESSOR_R6000,
56
  PROCESSOR_R4000,
57
  PROCESSOR_R4100,
58
  PROCESSOR_R4111,
59
  PROCESSOR_R4120,
60
  PROCESSOR_R4130,
61
  PROCESSOR_R4300,
62
  PROCESSOR_R4600,
63
  PROCESSOR_R4650,
64
  PROCESSOR_R5000,
65
  PROCESSOR_R5400,
66
  PROCESSOR_R5500,
67
  PROCESSOR_R7000,
68
  PROCESSOR_R8000,
69
  PROCESSOR_R9000,
70
  PROCESSOR_R10000,
71
  PROCESSOR_SB1,
72
  PROCESSOR_SB1A,
73
  PROCESSOR_SR71000,
74
  PROCESSOR_XLR,
75
  PROCESSOR_MAX
76
};
77
 
78
/* Costs of various operations on the different architectures.  */
79
 
80
struct mips_rtx_cost_data
81
{
82
  unsigned short fp_add;
83
  unsigned short fp_mult_sf;
84
  unsigned short fp_mult_df;
85
  unsigned short fp_div_sf;
86
  unsigned short fp_div_df;
87
  unsigned short int_mult_si;
88
  unsigned short int_mult_di;
89
  unsigned short int_div_si;
90
  unsigned short int_div_di;
91
  unsigned short branch_cost;
92
  unsigned short memory_latency;
93
};
94
 
95
/* Which ABI to use.  ABI_32 (original 32, or o32), ABI_N32 (n32),
96
   ABI_64 (n64) are all defined by SGI.  ABI_O64 is o32 extended
97
   to work on a 64-bit machine.  */
98
 
99
#define ABI_32  0
100
#define ABI_N32 1
101
#define ABI_64  2
102
#define ABI_EABI 3
103
#define ABI_O64  4
104
 
105
/* Masks that affect tuning.
106
 
107
   PTF_AVOID_BRANCHLIKELY
108
        Set if it is usually not profitable to use branch-likely instructions
109
        for this target, typically because the branches are always predicted
110
        taken and so incur a large overhead when not taken.  */
111
#define PTF_AVOID_BRANCHLIKELY 0x1
112
 
113
/* Information about one recognized processor.  Defined here for the
114
   benefit of TARGET_CPU_CPP_BUILTINS.  */
115
struct mips_cpu_info {
116
  /* The 'canonical' name of the processor as far as GCC is concerned.
117
     It's typically a manufacturer's prefix followed by a numerical
118
     designation.  It should be lowercase.  */
119
  const char *name;
120
 
121
  /* The internal processor number that most closely matches this
122
     entry.  Several processors can have the same value, if there's no
123
     difference between them from GCC's point of view.  */
124
  enum processor_type cpu;
125
 
126
  /* The ISA level that the processor implements.  */
127
  int isa;
128
 
129
  /* A mask of PTF_* values.  */
130
  unsigned int tune_flags;
131
};
132
 
133
/* Enumerates the setting of the -mcode-readable option.  */
134
enum mips_code_readable_setting {
135
  CODE_READABLE_NO,
136
  CODE_READABLE_PCREL,
137
  CODE_READABLE_YES
138
};
139
 
140
/* Macros to silence warnings about numbers being signed in traditional
141
   C and unsigned in ISO C when compiled on 32-bit hosts.  */
142
 
143
#define BITMASK_HIGH    (((unsigned long)1) << 31)      /* 0x80000000 */
144
#define BITMASK_UPPER16 ((unsigned long)0xffff << 16)   /* 0xffff0000 */
145
#define BITMASK_LOWER16 ((unsigned long)0xffff)         /* 0x0000ffff */
146
 
147
 
148
/* Run-time compilation parameters selecting different hardware subsets.  */
149
 
150
/* True if we are generating position-independent VxWorks RTP code.  */
151
#define TARGET_RTP_PIC (TARGET_VXWORKS_RTP && flag_pic)
152
 
153
/* True if the output file is marked as ".abicalls; .option pic0"
154
   (-call_nonpic).  */
155
#define TARGET_ABICALLS_PIC0 \
156
  (TARGET_ABSOLUTE_ABICALLS && TARGET_PLT)
157
 
158
/* True if the output file is marked as ".abicalls; .option pic2" (-KPIC).  */
159
#define TARGET_ABICALLS_PIC2 \
160
  (TARGET_ABICALLS && !TARGET_ABICALLS_PIC0)
161
 
162
/* True if the call patterns should be split into a jalr followed by
163
   an instruction to restore $gp.  It is only safe to split the load
164
   from the call when every use of $gp is explicit.
165
 
166
   See mips_must_initialize_gp_p for details about how we manage the
167
   global pointer.  */
168
 
169
#define TARGET_SPLIT_CALLS \
170
  (TARGET_EXPLICIT_RELOCS && TARGET_CALL_CLOBBERED_GP && epilogue_completed)
171
 
172
/* True if we're generating a form of -mabicalls in which we can use
173
   operators like %hi and %lo to refer to locally-binding symbols.
174
   We can only do this for -mno-shared, and only then if we can use
175
   relocation operations instead of assembly macros.  It isn't really
176
   worth using absolute sequences for 64-bit symbols because GOT
177
   accesses are so much shorter.  */
178
 
179
#define TARGET_ABSOLUTE_ABICALLS        \
180
  (TARGET_ABICALLS                      \
181
   && !TARGET_SHARED                    \
182
   && TARGET_EXPLICIT_RELOCS            \
183
   && !ABI_HAS_64BIT_SYMBOLS)
184
 
185
/* True if we can optimize sibling calls.  For simplicity, we only
186
   handle cases in which call_insn_operand will reject invalid
187
   sibcall addresses.  There are two cases in which this isn't true:
188
 
189
      - TARGET_MIPS16.  call_insn_operand accepts constant addresses
190
        but there is no direct jump instruction.  It isn't worth
191
        using sibling calls in this case anyway; they would usually
192
        be longer than normal calls.
193
 
194
      - TARGET_USE_GOT && !TARGET_EXPLICIT_RELOCS.  call_insn_operand
195
        accepts global constants, but all sibcalls must be indirect.  */
196
#define TARGET_SIBCALLS \
197
  (!TARGET_MIPS16 && (!TARGET_USE_GOT || TARGET_EXPLICIT_RELOCS))
198
 
199
/* True if we need to use a global offset table to access some symbols.  */
200
#define TARGET_USE_GOT (TARGET_ABICALLS || TARGET_RTP_PIC)
201
 
202
/* True if TARGET_USE_GOT and if $gp is a call-clobbered register.  */
203
#define TARGET_CALL_CLOBBERED_GP (TARGET_ABICALLS && TARGET_OLDABI)
204
 
205
/* True if TARGET_USE_GOT and if $gp is a call-saved register.  */
206
#define TARGET_CALL_SAVED_GP (TARGET_USE_GOT && !TARGET_CALL_CLOBBERED_GP)
207
 
208
/* True if we should use .cprestore to store to the cprestore slot.
209
 
210
   We continue to use .cprestore for explicit-reloc code so that JALs
211
   inside inline asms will work correctly.  */
212
#define TARGET_CPRESTORE_DIRECTIVE \
213
  (TARGET_ABICALLS_PIC2 && !TARGET_MIPS16)
214
 
215
/* True if we can use the J and JAL instructions.  */
216
#define TARGET_ABSOLUTE_JUMPS \
217
  (!flag_pic || TARGET_ABSOLUTE_ABICALLS)
218
 
219
/* True if indirect calls must use register class PIC_FN_ADDR_REG.
220
   This is true for both the PIC and non-PIC VxWorks RTP modes.  */
221
#define TARGET_USE_PIC_FN_ADDR_REG (TARGET_ABICALLS || TARGET_VXWORKS_RTP)
222
 
223
/* True if .gpword or .gpdword should be used for switch tables.
224
 
225
   Although GAS does understand .gpdword, the SGI linker mishandles
226
   the relocations GAS generates (R_MIPS_GPREL32 followed by R_MIPS_64).
227
   We therefore disable GP-relative switch tables for n64 on IRIX targets.  */
228
#define TARGET_GPWORD                           \
229
  (TARGET_ABICALLS                              \
230
   && !TARGET_ABSOLUTE_ABICALLS                 \
231
   && !(mips_abi == ABI_64 && TARGET_IRIX))
232
 
233
/* True if the output must have a writable .eh_frame.
234
   See ASM_PREFERRED_EH_DATA_FORMAT for details.  */
235
#ifdef HAVE_LD_PERSONALITY_RELAXATION
236
#define TARGET_WRITABLE_EH_FRAME 0
237
#else
238
#define TARGET_WRITABLE_EH_FRAME (flag_pic && TARGET_SHARED)
239
#endif
240
 
241
/* Generate mips16 code */
242
#define TARGET_MIPS16           ((target_flags & MASK_MIPS16) != 0)
243
/* Generate mips16e code. Default 16bit ASE for mips32* and mips64* */
244
#define GENERATE_MIPS16E        (TARGET_MIPS16 && mips_isa >= 32)
245
/* Generate mips16e register save/restore sequences.  */
246
#define GENERATE_MIPS16E_SAVE_RESTORE (GENERATE_MIPS16E && mips_abi == ABI_32)
247
 
248
/* True if we're generating a form of MIPS16 code in which general
249
   text loads are allowed.  */
250
#define TARGET_MIPS16_TEXT_LOADS \
251
  (TARGET_MIPS16 && mips_code_readable == CODE_READABLE_YES)
252
 
253
/* True if we're generating a form of MIPS16 code in which PC-relative
254
   loads are allowed.  */
255
#define TARGET_MIPS16_PCREL_LOADS \
256
  (TARGET_MIPS16 && mips_code_readable >= CODE_READABLE_PCREL)
257
 
258
/* Generic ISA defines.  */
259
#define ISA_MIPS1                   (mips_isa == 1)
260
#define ISA_MIPS2                   (mips_isa == 2)
261
#define ISA_MIPS3                   (mips_isa == 3)
262
#define ISA_MIPS4                   (mips_isa == 4)
263
#define ISA_MIPS32                  (mips_isa == 32)
264
#define ISA_MIPS32R2                (mips_isa == 33)
265
#define ISA_MIPS64                  (mips_isa == 64)
266
#define ISA_MIPS64R2                (mips_isa == 65)
267
 
268
/* Architecture target defines.  */
269
#define TARGET_LOONGSON_2E          (mips_arch == PROCESSOR_LOONGSON_2E)
270
#define TARGET_LOONGSON_2F          (mips_arch == PROCESSOR_LOONGSON_2F)
271
#define TARGET_LOONGSON_2EF         (TARGET_LOONGSON_2E || TARGET_LOONGSON_2F)
272
#define TARGET_MIPS3900             (mips_arch == PROCESSOR_R3900)
273
#define TARGET_MIPS4000             (mips_arch == PROCESSOR_R4000)
274
#define TARGET_MIPS4120             (mips_arch == PROCESSOR_R4120)
275
#define TARGET_MIPS4130             (mips_arch == PROCESSOR_R4130)
276
#define TARGET_MIPS5400             (mips_arch == PROCESSOR_R5400)
277
#define TARGET_MIPS5500             (mips_arch == PROCESSOR_R5500)
278
#define TARGET_MIPS7000             (mips_arch == PROCESSOR_R7000)
279
#define TARGET_MIPS9000             (mips_arch == PROCESSOR_R9000)
280
#define TARGET_OCTEON               (mips_arch == PROCESSOR_OCTEON)
281
#define TARGET_SB1                  (mips_arch == PROCESSOR_SB1         \
282
                                     || mips_arch == PROCESSOR_SB1A)
283
#define TARGET_SR71K                (mips_arch == PROCESSOR_SR71000)
284
 
285
/* Scheduling target defines.  */
286
#define TUNE_20KC                   (mips_tune == PROCESSOR_20KC)
287
#define TUNE_24K                    (mips_tune == PROCESSOR_24KC        \
288
                                     || mips_tune == PROCESSOR_24KF2_1  \
289
                                     || mips_tune == PROCESSOR_24KF1_1)
290
#define TUNE_74K                    (mips_tune == PROCESSOR_74KC        \
291
                                     || mips_tune == PROCESSOR_74KF2_1  \
292
                                     || mips_tune == PROCESSOR_74KF1_1  \
293
                                     || mips_tune == PROCESSOR_74KF3_2)
294
#define TUNE_LOONGSON_2EF           (mips_tune == PROCESSOR_LOONGSON_2E \
295
                                     || mips_tune == PROCESSOR_LOONGSON_2F)
296
#define TUNE_MIPS3000               (mips_tune == PROCESSOR_R3000)
297
#define TUNE_MIPS3900               (mips_tune == PROCESSOR_R3900)
298
#define TUNE_MIPS4000               (mips_tune == PROCESSOR_R4000)
299
#define TUNE_MIPS4120               (mips_tune == PROCESSOR_R4120)
300
#define TUNE_MIPS4130               (mips_tune == PROCESSOR_R4130)
301
#define TUNE_MIPS5000               (mips_tune == PROCESSOR_R5000)
302
#define TUNE_MIPS5400               (mips_tune == PROCESSOR_R5400)
303
#define TUNE_MIPS5500               (mips_tune == PROCESSOR_R5500)
304
#define TUNE_MIPS6000               (mips_tune == PROCESSOR_R6000)
305
#define TUNE_MIPS7000               (mips_tune == PROCESSOR_R7000)
306
#define TUNE_MIPS9000               (mips_tune == PROCESSOR_R9000)
307
#define TUNE_OCTEON                 (mips_tune == PROCESSOR_OCTEON)
308
#define TUNE_SB1                    (mips_tune == PROCESSOR_SB1         \
309
                                     || mips_tune == PROCESSOR_SB1A)
310
 
311
/* Whether vector modes and intrinsics for ST Microelectronics
312
   Loongson-2E/2F processors should be enabled.  In o32 pairs of
313
   floating-point registers provide 64-bit values.  */
314
#define TARGET_LOONGSON_VECTORS     (TARGET_HARD_FLOAT_ABI              \
315
                                     && TARGET_LOONGSON_2EF)
316
 
317
/* True if the pre-reload scheduler should try to create chains of
318
   multiply-add or multiply-subtract instructions.  For example,
319
   suppose we have:
320
 
321
        t1 = a * b
322
        t2 = t1 + c * d
323
        t3 = e * f
324
        t4 = t3 - g * h
325
 
326
   t1 will have a higher priority than t2 and t3 will have a higher
327
   priority than t4.  However, before reload, there is no dependence
328
   between t1 and t3, and they can often have similar priorities.
329
   The scheduler will then tend to prefer:
330
 
331
        t1 = a * b
332
        t3 = e * f
333
        t2 = t1 + c * d
334
        t4 = t3 - g * h
335
 
336
   which stops us from making full use of macc/madd-style instructions.
337
   This sort of situation occurs frequently in Fourier transforms and
338
   in unrolled loops.
339
 
340
   To counter this, the TUNE_MACC_CHAINS code will reorder the ready
341
   queue so that chained multiply-add and multiply-subtract instructions
342
   appear ahead of any other instruction that is likely to clobber lo.
343
   In the example above, if t2 and t3 become ready at the same time,
344
   the code ensures that t2 is scheduled first.
345
 
346
   Multiply-accumulate instructions are a bigger win for some targets
347
   than others, so this macro is defined on an opt-in basis.  */
348
#define TUNE_MACC_CHAINS            (TUNE_MIPS5500              \
349
                                     || TUNE_MIPS4120           \
350
                                     || TUNE_MIPS4130           \
351
                                     || TUNE_24K)
352
 
353
#define TARGET_OLDABI               (mips_abi == ABI_32 || mips_abi == ABI_O64)
354
#define TARGET_NEWABI               (mips_abi == ABI_N32 || mips_abi == ABI_64)
355
 
356
/* TARGET_HARD_FLOAT and TARGET_SOFT_FLOAT reflect whether the FPU is
357
   directly accessible, while the command-line options select
358
   TARGET_HARD_FLOAT_ABI and TARGET_SOFT_FLOAT_ABI to reflect the ABI
359
   in use.  */
360
#define TARGET_HARD_FLOAT (TARGET_HARD_FLOAT_ABI && !TARGET_MIPS16)
361
#define TARGET_SOFT_FLOAT (TARGET_SOFT_FLOAT_ABI || TARGET_MIPS16)
362
 
363
/* False if SC acts as a memory barrier with respect to itself,
364
   otherwise a SYNC will be emitted after SC for atomic operations
365
   that require ordering between the SC and following loads and
366
   stores.  It does not tell anything about ordering of loads and
367
   stores prior to and following the SC, only about the SC itself and
368
   those loads and stores follow it.  */
369
#define TARGET_SYNC_AFTER_SC (!TARGET_OCTEON)
370
 
371
/* IRIX specific stuff.  */
372
#define TARGET_IRIX        0
373
#define TARGET_IRIX6       0
374
 
375
/* Define preprocessor macros for the -march and -mtune options.
376
   PREFIX is either _MIPS_ARCH or _MIPS_TUNE, INFO is the selected
377
   processor.  If INFO's canonical name is "foo", define PREFIX to
378
   be "foo", and define an additional macro PREFIX_FOO.  */
379
#define MIPS_CPP_SET_PROCESSOR(PREFIX, INFO)                    \
380
  do                                                            \
381
    {                                                           \
382
      char *macro, *p;                                          \
383
                                                                \
384
      macro = concat ((PREFIX), "_", (INFO)->name, NULL);       \
385
      for (p = macro; *p != 0; p++)                              \
386
        *p = TOUPPER (*p);                                      \
387
                                                                \
388
      builtin_define (macro);                                   \
389
      builtin_define_with_value ((PREFIX), (INFO)->name, 1);    \
390
      free (macro);                                             \
391
    }                                                           \
392
  while (0)
393
 
394
/* Target CPU builtins.  */
395
#define TARGET_CPU_CPP_BUILTINS()                                       \
396
  do                                                                    \
397
    {                                                                   \
398
      /* Everyone but IRIX defines this to mips.  */                    \
399
      if (!TARGET_IRIX)                                                 \
400
        builtin_assert ("machine=mips");                                \
401
                                                                        \
402
      builtin_assert ("cpu=mips");                                      \
403
      builtin_define ("__mips__");                                      \
404
      builtin_define ("_mips");                                         \
405
                                                                        \
406
      /* We do this here because __mips is defined below and so we      \
407
         can't use builtin_define_std.  We don't ever want to define    \
408
         "mips" for VxWorks because some of the VxWorks headers         \
409
         construct include filenames from a root directory macro,       \
410
         an architecture macro and a filename, where the architecture   \
411
         macro expands to 'mips'.  If we define 'mips' to 1, the        \
412
         architecture macro expands to 1 as well.  */                   \
413
      if (!flag_iso && !TARGET_VXWORKS)                                 \
414
        builtin_define ("mips");                                        \
415
                                                                        \
416
      if (TARGET_64BIT)                                                 \
417
        builtin_define ("__mips64");                                    \
418
                                                                        \
419
      if (!TARGET_IRIX)                                                 \
420
        {                                                               \
421
          /* Treat _R3000 and _R4000 like register-size                 \
422
             defines, which is how they've historically                 \
423
             been used.  */                                             \
424
          if (TARGET_64BIT)                                             \
425
            {                                                           \
426
              builtin_define_std ("R4000");                             \
427
              builtin_define ("_R4000");                                \
428
            }                                                           \
429
          else                                                          \
430
            {                                                           \
431
              builtin_define_std ("R3000");                             \
432
              builtin_define ("_R3000");                                \
433
            }                                                           \
434
        }                                                               \
435
      if (TARGET_FLOAT64)                                               \
436
        builtin_define ("__mips_fpr=64");                               \
437
      else                                                              \
438
        builtin_define ("__mips_fpr=32");                               \
439
                                                                        \
440
      if (mips_base_mips16)                                             \
441
        builtin_define ("__mips16");                                    \
442
                                                                        \
443
      if (TARGET_MIPS3D)                                                \
444
        builtin_define ("__mips3d");                                    \
445
                                                                        \
446
      if (TARGET_SMARTMIPS)                                             \
447
        builtin_define ("__mips_smartmips");                            \
448
                                                                        \
449
      if (TARGET_DSP)                                                   \
450
        {                                                               \
451
          builtin_define ("__mips_dsp");                                \
452
          if (TARGET_DSPR2)                                             \
453
            {                                                           \
454
              builtin_define ("__mips_dspr2");                          \
455
              builtin_define ("__mips_dsp_rev=2");                      \
456
            }                                                           \
457
          else                                                          \
458
            builtin_define ("__mips_dsp_rev=1");                        \
459
        }                                                               \
460
                                                                        \
461
      MIPS_CPP_SET_PROCESSOR ("_MIPS_ARCH", mips_arch_info);            \
462
      MIPS_CPP_SET_PROCESSOR ("_MIPS_TUNE", mips_tune_info);            \
463
                                                                        \
464
      if (ISA_MIPS1)                                                    \
465
        {                                                               \
466
          builtin_define ("__mips=1");                                  \
467
          builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS1");                 \
468
        }                                                               \
469
      else if (ISA_MIPS2)                                               \
470
        {                                                               \
471
          builtin_define ("__mips=2");                                  \
472
          builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS2");                 \
473
        }                                                               \
474
      else if (ISA_MIPS3)                                               \
475
        {                                                               \
476
          builtin_define ("__mips=3");                                  \
477
          builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS3");                 \
478
        }                                                               \
479
      else if (ISA_MIPS4)                                               \
480
        {                                                               \
481
          builtin_define ("__mips=4");                                  \
482
          builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS4");                 \
483
        }                                                               \
484
      else if (ISA_MIPS32)                                              \
485
        {                                                               \
486
          builtin_define ("__mips=32");                                 \
487
          builtin_define ("__mips_isa_rev=1");                          \
488
          builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS32");                \
489
        }                                                               \
490
      else if (ISA_MIPS32R2)                                            \
491
        {                                                               \
492
          builtin_define ("__mips=32");                                 \
493
          builtin_define ("__mips_isa_rev=2");                          \
494
          builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS32");                \
495
        }                                                               \
496
      else if (ISA_MIPS64)                                              \
497
        {                                                               \
498
          builtin_define ("__mips=64");                                 \
499
          builtin_define ("__mips_isa_rev=1");                          \
500
          builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS64");                \
501
        }                                                               \
502
      else if (ISA_MIPS64R2)                                            \
503
        {                                                               \
504
          builtin_define ("__mips=64");                                 \
505
          builtin_define ("__mips_isa_rev=2");                          \
506
          builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS64");                \
507
        }                                                               \
508
                                                                        \
509
      switch (mips_abi)                                                 \
510
        {                                                               \
511
        case ABI_32:                                                    \
512
          builtin_define ("_ABIO32=1");                                 \
513
          builtin_define ("_MIPS_SIM=_ABIO32");                         \
514
          break;                                                        \
515
                                                                        \
516
        case ABI_N32:                                                   \
517
          builtin_define ("_ABIN32=2");                                 \
518
          builtin_define ("_MIPS_SIM=_ABIN32");                         \
519
          break;                                                        \
520
                                                                        \
521
        case ABI_64:                                                    \
522
          builtin_define ("_ABI64=3");                                  \
523
          builtin_define ("_MIPS_SIM=_ABI64");                          \
524
          break;                                                        \
525
                                                                        \
526
        case ABI_O64:                                                   \
527
          builtin_define ("_ABIO64=4");                                 \
528
          builtin_define ("_MIPS_SIM=_ABIO64");                         \
529
          break;                                                        \
530
        }                                                               \
531
                                                                        \
532
      builtin_define_with_int_value ("_MIPS_SZINT", INT_TYPE_SIZE);     \
533
      builtin_define_with_int_value ("_MIPS_SZLONG", LONG_TYPE_SIZE);   \
534
      builtin_define_with_int_value ("_MIPS_SZPTR", POINTER_SIZE);      \
535
      builtin_define_with_int_value ("_MIPS_FPSET",                     \
536
                                     32 / MAX_FPRS_PER_FMT);            \
537
                                                                        \
538
      /* These defines reflect the ABI in use, not whether the          \
539
         FPU is directly accessible.  */                                \
540
      if (TARGET_HARD_FLOAT_ABI)                                        \
541
        builtin_define ("__mips_hard_float");                           \
542
      else                                                              \
543
        builtin_define ("__mips_soft_float");                           \
544
                                                                        \
545
      if (TARGET_SINGLE_FLOAT)                                          \
546
        builtin_define ("__mips_single_float");                         \
547
                                                                        \
548
      if (TARGET_PAIRED_SINGLE_FLOAT)                                   \
549
        builtin_define ("__mips_paired_single_float");                  \
550
                                                                        \
551
      if (TARGET_BIG_ENDIAN)                                            \
552
        {                                                               \
553
          builtin_define_std ("MIPSEB");                                \
554
          builtin_define ("_MIPSEB");                                   \
555
        }                                                               \
556
      else                                                              \
557
        {                                                               \
558
          builtin_define_std ("MIPSEL");                                \
559
          builtin_define ("_MIPSEL");                                   \
560
        }                                                               \
561
                                                                        \
562
      /* Whether calls should go through $25.  The separate __PIC__     \
563
         macro indicates whether abicalls code might use a GOT.  */     \
564
      if (TARGET_ABICALLS)                                              \
565
        builtin_define ("__mips_abicalls");                             \
566
                                                                        \
567
      /* Whether Loongson vector modes are enabled.  */                 \
568
      if (TARGET_LOONGSON_VECTORS)                                      \
569
        builtin_define ("__mips_loongson_vector_rev");                  \
570
                                                                        \
571
      /* Historical Octeon macro.  */                                   \
572
      if (TARGET_OCTEON)                                                \
573
        builtin_define ("__OCTEON__");                                  \
574
                                                                        \
575
      /* Macros dependent on the C dialect.  */                         \
576
      if (preprocessing_asm_p ())                                       \
577
        {                                                               \
578
          builtin_define_std ("LANGUAGE_ASSEMBLY");                     \
579
          builtin_define ("_LANGUAGE_ASSEMBLY");                        \
580
        }                                                               \
581
      else if (c_dialect_cxx ())                                        \
582
        {                                                               \
583
          builtin_define ("_LANGUAGE_C_PLUS_PLUS");                     \
584
          builtin_define ("__LANGUAGE_C_PLUS_PLUS");                    \
585
          builtin_define ("__LANGUAGE_C_PLUS_PLUS__");                  \
586
        }                                                               \
587
      else                                                              \
588
        {                                                               \
589
          builtin_define_std ("LANGUAGE_C");                            \
590
          builtin_define ("_LANGUAGE_C");                               \
591
        }                                                               \
592
      if (c_dialect_objc ())                                            \
593
        {                                                               \
594
          builtin_define ("_LANGUAGE_OBJECTIVE_C");                     \
595
          builtin_define ("__LANGUAGE_OBJECTIVE_C");                    \
596
          /* Bizarre, but needed at least for Irix.  */                 \
597
          builtin_define_std ("LANGUAGE_C");                            \
598
          builtin_define ("_LANGUAGE_C");                               \
599
        }                                                               \
600
                                                                        \
601
      if (mips_abi == ABI_EABI)                                         \
602
        builtin_define ("__mips_eabi");                                 \
603
                                                                        \
604
      if (TARGET_CACHE_BUILTIN)                                         \
605
        builtin_define ("__GCC_HAVE_BUILTIN_MIPS_CACHE");               \
606
    }                                                                   \
607
  while (0)
608
 
609
/* Default target_flags if no switches are specified  */
610
 
611
#ifndef TARGET_DEFAULT
612
#define TARGET_DEFAULT 0
613
#endif
614
 
615
#ifndef TARGET_CPU_DEFAULT
616
#define TARGET_CPU_DEFAULT 0
617
#endif
618
 
619
#ifndef TARGET_ENDIAN_DEFAULT
620
#define TARGET_ENDIAN_DEFAULT MASK_BIG_ENDIAN
621
#endif
622
 
623
#ifndef TARGET_FP_EXCEPTIONS_DEFAULT
624
#define TARGET_FP_EXCEPTIONS_DEFAULT MASK_FP_EXCEPTIONS
625
#endif
626
 
627
/* 'from-abi' makes a good default: you get whatever the ABI requires.  */
628
#ifndef MIPS_ISA_DEFAULT
629
#ifndef MIPS_CPU_STRING_DEFAULT
630
#define MIPS_CPU_STRING_DEFAULT "from-abi"
631
#endif
632
#endif
633
 
634
#ifdef IN_LIBGCC2
635
#undef TARGET_64BIT
636
/* Make this compile time constant for libgcc2 */
637
#ifdef __mips64
638
#define TARGET_64BIT            1
639
#else
640
#define TARGET_64BIT            0
641
#endif
642
#endif /* IN_LIBGCC2 */
643
 
644
/* Force the call stack unwinders in unwind.inc not to be MIPS16 code
645
   when compiled with hardware floating point.  This is because MIPS16
646
   code cannot save and restore the floating-point registers, which is
647
   important if in a mixed MIPS16/non-MIPS16 environment.  */
648
 
649
#ifdef IN_LIBGCC2
650
#if __mips_hard_float
651
#define LIBGCC2_UNWIND_ATTRIBUTE __attribute__((__nomips16__))
652
#endif
653
#endif /* IN_LIBGCC2 */
654
 
655
#define TARGET_LIBGCC_SDATA_SECTION ".sdata"
656
 
657
#ifndef MULTILIB_ENDIAN_DEFAULT
658
#if TARGET_ENDIAN_DEFAULT == 0
659
#define MULTILIB_ENDIAN_DEFAULT "EL"
660
#else
661
#define MULTILIB_ENDIAN_DEFAULT "EB"
662
#endif
663
#endif
664
 
665
#ifndef MULTILIB_ISA_DEFAULT
666
#  if MIPS_ISA_DEFAULT == 1
667
#    define MULTILIB_ISA_DEFAULT "mips1"
668
#  else
669
#    if MIPS_ISA_DEFAULT == 2
670
#      define MULTILIB_ISA_DEFAULT "mips2"
671
#    else
672
#      if MIPS_ISA_DEFAULT == 3
673
#        define MULTILIB_ISA_DEFAULT "mips3"
674
#      else
675
#        if MIPS_ISA_DEFAULT == 4
676
#          define MULTILIB_ISA_DEFAULT "mips4"
677
#        else
678
#          if MIPS_ISA_DEFAULT == 32
679
#            define MULTILIB_ISA_DEFAULT "mips32"
680
#          else
681
#            if MIPS_ISA_DEFAULT == 33
682
#              define MULTILIB_ISA_DEFAULT "mips32r2"
683
#            else
684
#              if MIPS_ISA_DEFAULT == 64
685
#                define MULTILIB_ISA_DEFAULT "mips64"
686
#              else
687
#                if MIPS_ISA_DEFAULT == 65
688
#                  define MULTILIB_ISA_DEFAULT "mips64r2"
689
#                else
690
#                  define MULTILIB_ISA_DEFAULT "mips1"
691
#                endif
692
#              endif
693
#            endif
694
#          endif
695
#        endif
696
#      endif
697
#    endif
698
#  endif
699
#endif
700
 
701
#ifndef MIPS_ABI_DEFAULT
702
#define MIPS_ABI_DEFAULT ABI_32
703
#endif
704
 
705
/* Use the most portable ABI flag for the ASM specs.  */
706
 
707
#if MIPS_ABI_DEFAULT == ABI_32
708
#define MULTILIB_ABI_DEFAULT "mabi=32"
709
#endif
710
 
711
#if MIPS_ABI_DEFAULT == ABI_O64
712
#define MULTILIB_ABI_DEFAULT "mabi=o64"
713
#endif
714
 
715
#if MIPS_ABI_DEFAULT == ABI_N32
716
#define MULTILIB_ABI_DEFAULT "mabi=n32"
717
#endif
718
 
719
#if MIPS_ABI_DEFAULT == ABI_64
720
#define MULTILIB_ABI_DEFAULT "mabi=64"
721
#endif
722
 
723
#if MIPS_ABI_DEFAULT == ABI_EABI
724
#define MULTILIB_ABI_DEFAULT "mabi=eabi"
725
#endif
726
 
727
#ifndef MULTILIB_DEFAULTS
728
#define MULTILIB_DEFAULTS \
729
    { MULTILIB_ENDIAN_DEFAULT, MULTILIB_ISA_DEFAULT, MULTILIB_ABI_DEFAULT }
730
#endif
731
 
732
/* We must pass -EL to the linker by default for little endian embedded
733
   targets using linker scripts with a OUTPUT_FORMAT line.  Otherwise, the
734
   linker will default to using big-endian output files.  The OUTPUT_FORMAT
735
   line must be in the linker script, otherwise -EB/-EL will not work.  */
736
 
737
#ifndef ENDIAN_SPEC
738
#if TARGET_ENDIAN_DEFAULT == 0
739
#define ENDIAN_SPEC "%{!EB:%{!meb:-EL}} %{EB|meb:-EB}"
740
#else
741
#define ENDIAN_SPEC "%{!EL:%{!mel:-EB}} %{EL|mel:-EL}"
742
#endif
743
#endif
744
 
745
/* A spec condition that matches all non-mips16 -mips arguments.  */
746
 
747
#define MIPS_ISA_LEVEL_OPTION_SPEC \
748
  "mips1|mips2|mips3|mips4|mips32*|mips64*"
749
 
750
/* A spec condition that matches all non-mips16 architecture arguments.  */
751
 
752
#define MIPS_ARCH_OPTION_SPEC \
753
  MIPS_ISA_LEVEL_OPTION_SPEC "|march=*"
754
 
755
/* A spec that infers a -mips argument from an -march argument,
756
   or injects the default if no architecture is specified.  */
757
 
758
#define MIPS_ISA_LEVEL_SPEC \
759
  "%{" MIPS_ISA_LEVEL_OPTION_SPEC ":;: \
760
     %{march=mips1|march=r2000|march=r3000|march=r3900:-mips1} \
761
     %{march=mips2|march=r6000:-mips2} \
762
     %{march=mips3|march=r4*|march=vr4*|march=orion|march=loongson2*:-mips3} \
763
     %{march=mips4|march=r8000|march=vr5*|march=rm7000|march=rm9000 \
764
       |march=r10000|march=r12000|march=r14000|march=r16000:-mips4} \
765
     %{march=mips32|march=4kc|march=4km|march=4kp|march=4ksc:-mips32} \
766
     %{march=mips32r2|march=m4k|march=4ke*|march=4ksd|march=24k* \
767
       |march=34k*|march=74k*|march=1004k*: -mips32r2} \
768
     %{march=mips64|march=5k*|march=20k*|march=sb1*|march=sr71000 \
769
       |march=xlr: -mips64} \
770
     %{march=mips64r2|march=octeon: -mips64r2} \
771
     %{!march=*: -" MULTILIB_ISA_DEFAULT "}}"
772
 
773
/* A spec that infers a -mhard-float or -msoft-float setting from an
774
   -march argument.  Note that soft-float and hard-float code are not
775
   link-compatible.  */
776
 
777
#define MIPS_ARCH_FLOAT_SPEC \
778
  "%{mhard-float|msoft-float|march=mips*:; \
779
     march=vr41*|march=m4k|march=4k*|march=24kc|march=24kec \
780
     |march=34kc|march=74kc|march=1004kc|march=5kc \
781
     |march=octeon|march=xlr: -msoft-float;               \
782
     march=*: -mhard-float}"
783
 
784
/* A spec condition that matches 32-bit options.  It only works if
785
   MIPS_ISA_LEVEL_SPEC has been applied.  */
786
 
787
#define MIPS_32BIT_OPTION_SPEC \
788
  "mips1|mips2|mips32*|mgp32"
789
 
790
#if MIPS_ABI_DEFAULT == ABI_O64 \
791
  || MIPS_ABI_DEFAULT == ABI_N32 \
792
  || MIPS_ABI_DEFAULT == ABI_64
793
#define OPT_ARCH64 "mabi=32|mgp32:;"
794
#define OPT_ARCH32 "mabi=32|mgp32"
795
#else
796
#define OPT_ARCH64 "mabi=o64|mabi=n32|mabi=64|mgp64"
797
#define OPT_ARCH32 "mabi=o64|mabi=n32|mabi=64|mgp64:;"
798
#endif
799
 
800
/* Support for a compile-time default CPU, et cetera.  The rules are:
801
   --with-arch is ignored if -march is specified or a -mips is specified
802
     (other than -mips16); likewise --with-arch-32 and --with-arch-64.
803
   --with-tune is ignored if -mtune is specified; likewise
804
     --with-tune-32 and --with-tune-64.
805
   --with-abi is ignored if -mabi is specified.
806
   --with-float is ignored if -mhard-float or -msoft-float are
807
     specified.
808
   --with-divide is ignored if -mdivide-traps or -mdivide-breaks are
809
     specified. */
810
#define OPTION_DEFAULT_SPECS \
811
  {"arch", "%{" MIPS_ARCH_OPTION_SPEC ":;: -march=%(VALUE)}" }, \
812
  {"arch_32", "%{" OPT_ARCH32 ":%{" MIPS_ARCH_OPTION_SPEC ":;: -march=%(VALUE)}}" }, \
813
  {"arch_64", "%{" OPT_ARCH64 ":%{" MIPS_ARCH_OPTION_SPEC ":;: -march=%(VALUE)}}" }, \
814
  {"tune", "%{!mtune=*:-mtune=%(VALUE)}" }, \
815
  {"tune_32", "%{" OPT_ARCH32 ":%{!mtune=*:-mtune=%(VALUE)}}" }, \
816
  {"tune_64", "%{" OPT_ARCH64 ":%{!mtune=*:-mtune=%(VALUE)}}" }, \
817
  {"abi", "%{!mabi=*:-mabi=%(VALUE)}" }, \
818
  {"float", "%{!msoft-float:%{!mhard-float:-m%(VALUE)-float}}" }, \
819
  {"divide", "%{!mdivide-traps:%{!mdivide-breaks:-mdivide-%(VALUE)}}" }, \
820
  {"llsc", "%{!mllsc:%{!mno-llsc:-m%(VALUE)}}" }, \
821
  {"mips-plt", "%{!mplt:%{!mno-plt:-m%(VALUE)}}" }, \
822
  {"synci", "%{!msynci:%{!mno-synci:-m%(VALUE)}}" }
823
 
824
 
825
/* A spec that infers the -mdsp setting from an -march argument.  */
826
#define BASE_DRIVER_SELF_SPECS \
827
  "%{!mno-dsp:%{march=24ke*|march=34k*|march=74k*|march=1004k*: -mdsp}}"
828
 
829
#define DRIVER_SELF_SPECS BASE_DRIVER_SELF_SPECS
830
 
831
#define GENERATE_DIVIDE_TRAPS (TARGET_DIVIDE_TRAPS \
832
                               && ISA_HAS_COND_TRAP)
833
 
834
#define GENERATE_BRANCHLIKELY   (TARGET_BRANCHLIKELY && !TARGET_MIPS16)
835
 
836
/* True if the ABI can only work with 64-bit integer registers.  We
837
   generally allow ad-hoc variations for TARGET_SINGLE_FLOAT, but
838
   otherwise floating-point registers must also be 64-bit.  */
839
#define ABI_NEEDS_64BIT_REGS    (TARGET_NEWABI || mips_abi == ABI_O64)
840
 
841
/* Likewise for 32-bit regs.  */
842
#define ABI_NEEDS_32BIT_REGS    (mips_abi == ABI_32)
843
 
844
/* True if the file format uses 64-bit symbols.  At present, this is
845
   only true for n64, which uses 64-bit ELF.  */
846
#define FILE_HAS_64BIT_SYMBOLS  (mips_abi == ABI_64)
847
 
848
/* True if symbols are 64 bits wide.  This is usually determined by
849
   the ABI's file format, but it can be overridden by -msym32.  Note that
850
   overriding the size with -msym32 changes the ABI of relocatable objects,
851
   although it doesn't change the ABI of a fully-linked object.  */
852
#define ABI_HAS_64BIT_SYMBOLS   (FILE_HAS_64BIT_SYMBOLS && !TARGET_SYM32)
853
 
854
/* ISA has instructions for managing 64-bit fp and gp regs (e.g. mips3).  */
855
#define ISA_HAS_64BIT_REGS      (ISA_MIPS3                              \
856
                                 || ISA_MIPS4                           \
857
                                 || ISA_MIPS64                          \
858
                                 || ISA_MIPS64R2)
859
 
860
/* ISA has branch likely instructions (e.g. mips2).  */
861
/* Disable branchlikely for tx39 until compare rewrite.  They haven't
862
   been generated up to this point.  */
863
#define ISA_HAS_BRANCHLIKELY    (!ISA_MIPS1)
864
 
865
/* ISA has a three-operand multiplication instruction (usually spelt "mul").  */
866
#define ISA_HAS_MUL3            ((TARGET_MIPS3900                       \
867
                                  || TARGET_MIPS5400                    \
868
                                  || TARGET_MIPS5500                    \
869
                                  || TARGET_MIPS7000                    \
870
                                  || TARGET_MIPS9000                    \
871
                                  || TARGET_MAD                         \
872
                                  || ISA_MIPS32                         \
873
                                  || ISA_MIPS32R2                       \
874
                                  || ISA_MIPS64                         \
875
                                  || ISA_MIPS64R2)                      \
876
                                 && !TARGET_MIPS16)
877
 
878
/* ISA has a three-operand multiplication instruction.  */
879
#define ISA_HAS_DMUL3           (TARGET_64BIT                           \
880
                                 && TARGET_OCTEON                       \
881
                                 && !TARGET_MIPS16)
882
 
883
/* ISA has the floating-point conditional move instructions introduced
884
   in mips4.  */
885
#define ISA_HAS_FP_CONDMOVE     ((ISA_MIPS4                             \
886
                                  || ISA_MIPS32                         \
887
                                  || ISA_MIPS32R2                       \
888
                                  || ISA_MIPS64                         \
889
                                  || ISA_MIPS64R2)                      \
890
                                 && !TARGET_MIPS5500                    \
891
                                 && !TARGET_MIPS16)
892
 
893
/* ISA has the integer conditional move instructions introduced in mips4 and
894
   ST Loongson 2E/2F.  */
895
#define ISA_HAS_CONDMOVE        (ISA_HAS_FP_CONDMOVE || TARGET_LOONGSON_2EF)
896
 
897
/* ISA has LDC1 and SDC1.  */
898
#define ISA_HAS_LDC1_SDC1       (!ISA_MIPS1 && !TARGET_MIPS16)
899
 
900
/* ISA has the mips4 FP condition code instructions: FP-compare to CC,
901
   branch on CC, and move (both FP and non-FP) on CC.  */
902
#define ISA_HAS_8CC             (ISA_MIPS4                              \
903
                                 || ISA_MIPS32                          \
904
                                 || ISA_MIPS32R2                        \
905
                                 || ISA_MIPS64                          \
906
                                 || ISA_MIPS64R2)
907
 
908
/* This is a catch all for other mips4 instructions: indexed load, the
909
   FP madd and msub instructions, and the FP recip and recip sqrt
910
   instructions.  */
911
#define ISA_HAS_FP4             ((ISA_MIPS4                             \
912
                                  || (ISA_MIPS32R2 && TARGET_FLOAT64)   \
913
                                  || ISA_MIPS64                         \
914
                                  || ISA_MIPS64R2)                      \
915
                                 && !TARGET_MIPS16)
916
 
917
/* ISA has paired-single instructions.  */
918
#define ISA_HAS_PAIRED_SINGLE   (ISA_MIPS32R2 || ISA_MIPS64 || ISA_MIPS64R2)
919
 
920
/* ISA has conditional trap instructions.  */
921
#define ISA_HAS_COND_TRAP       (!ISA_MIPS1                             \
922
                                 && !TARGET_MIPS16)
923
 
924
/* ISA has integer multiply-accumulate instructions, madd and msub.  */
925
#define ISA_HAS_MADD_MSUB       ((ISA_MIPS32                            \
926
                                  || ISA_MIPS32R2                       \
927
                                  || ISA_MIPS64                         \
928
                                  || ISA_MIPS64R2)                      \
929
                                 && !TARGET_MIPS16)
930
 
931
/* Integer multiply-accumulate instructions should be generated.  */
932
#define GENERATE_MADD_MSUB      (ISA_HAS_MADD_MSUB && !TUNE_74K)
933
 
934
/* ISA has floating-point madd and msub instructions 'd = a * b [+-] c'.  */
935
#define ISA_HAS_FP_MADD4_MSUB4  ISA_HAS_FP4
936
 
937
/* ISA has floating-point madd and msub instructions 'c = a * b [+-] c'.  */
938
#define ISA_HAS_FP_MADD3_MSUB3  TARGET_LOONGSON_2EF
939
 
940
/* ISA has floating-point nmadd and nmsub instructions
941
   'd = -((a * b) [+-] c)'.  */
942
#define ISA_HAS_NMADD4_NMSUB4(MODE)                                     \
943
                                ((ISA_MIPS4                             \
944
                                  || (ISA_MIPS32R2 && (MODE) == V2SFmode) \
945
                                  || ISA_MIPS64                         \
946
                                  || ISA_MIPS64R2)                      \
947
                                 && (!TARGET_MIPS5400 || TARGET_MAD)    \
948
                                 && !TARGET_MIPS16)
949
 
950
/* ISA has floating-point nmadd and nmsub instructions
951
   'c = -((a * b) [+-] c)'.  */
952
#define ISA_HAS_NMADD3_NMSUB3(MODE)                                     \
953
                                TARGET_LOONGSON_2EF
954
 
955
/* ISA has count leading zeroes/ones instruction (not implemented).  */
956
#define ISA_HAS_CLZ_CLO         ((ISA_MIPS32                            \
957
                                  || ISA_MIPS32R2                       \
958
                                  || ISA_MIPS64                         \
959
                                  || ISA_MIPS64R2)                      \
960
                                 && !TARGET_MIPS16)
961
 
962
/* ISA has three operand multiply instructions that put
963
   the high part in an accumulator: mulhi or mulhiu.  */
964
#define ISA_HAS_MULHI           ((TARGET_MIPS5400                        \
965
                                  || TARGET_MIPS5500                     \
966
                                  || TARGET_SR71K)                       \
967
                                 && !TARGET_MIPS16)
968
 
969
/* ISA has three operand multiply instructions that
970
   negates the result and puts the result in an accumulator.  */
971
#define ISA_HAS_MULS            ((TARGET_MIPS5400                       \
972
                                  || TARGET_MIPS5500                    \
973
                                  || TARGET_SR71K)                      \
974
                                 && !TARGET_MIPS16)
975
 
976
/* ISA has three operand multiply instructions that subtracts the
977
   result from a 4th operand and puts the result in an accumulator.  */
978
#define ISA_HAS_MSAC            ((TARGET_MIPS5400                       \
979
                                  || TARGET_MIPS5500                    \
980
                                  || TARGET_SR71K)                      \
981
                                 && !TARGET_MIPS16)
982
 
983
/* ISA has three operand multiply instructions that  the result
984
   from a 4th operand and puts the result in an accumulator.  */
985
#define ISA_HAS_MACC            ((TARGET_MIPS4120                       \
986
                                  || TARGET_MIPS4130                    \
987
                                  || TARGET_MIPS5400                    \
988
                                  || TARGET_MIPS5500                    \
989
                                  || TARGET_SR71K)                      \
990
                                 && !TARGET_MIPS16)
991
 
992
/* ISA has NEC VR-style MACC, MACCHI, DMACC and DMACCHI instructions.  */
993
#define ISA_HAS_MACCHI          ((TARGET_MIPS4120                       \
994
                                  || TARGET_MIPS4130)                   \
995
                                 && !TARGET_MIPS16)
996
 
997
/* ISA has the "ror" (rotate right) instructions.  */
998
#define ISA_HAS_ROR             ((ISA_MIPS32R2                          \
999
                                  || ISA_MIPS64R2                       \
1000
                                  || TARGET_MIPS5400                    \
1001
                                  || TARGET_MIPS5500                    \
1002
                                  || TARGET_SR71K                       \
1003
                                  || TARGET_SMARTMIPS)                  \
1004
                                 && !TARGET_MIPS16)
1005
 
1006
/* ISA has data prefetch instructions.  This controls use of 'pref'.  */
1007
#define ISA_HAS_PREFETCH        ((ISA_MIPS4                             \
1008
                                  || TARGET_LOONGSON_2EF                \
1009
                                  || ISA_MIPS32                         \
1010
                                  || ISA_MIPS32R2                       \
1011
                                  || ISA_MIPS64                         \
1012
                                  || ISA_MIPS64R2)                      \
1013
                                 && !TARGET_MIPS16)
1014
 
1015
/* ISA has data indexed prefetch instructions.  This controls use of
1016
   'prefx', along with TARGET_HARD_FLOAT and TARGET_DOUBLE_FLOAT.
1017
   (prefx is a cop1x instruction, so can only be used if FP is
1018
   enabled.)  */
1019
#define ISA_HAS_PREFETCHX       ((ISA_MIPS4                             \
1020
                                  || ISA_MIPS32R2                       \
1021
                                  || ISA_MIPS64                         \
1022
                                  || ISA_MIPS64R2)                      \
1023
                                 && !TARGET_MIPS16)
1024
 
1025
/* True if trunc.w.s and trunc.w.d are real (not synthetic)
1026
   instructions.  Both require TARGET_HARD_FLOAT, and trunc.w.d
1027
   also requires TARGET_DOUBLE_FLOAT.  */
1028
#define ISA_HAS_TRUNC_W         (!ISA_MIPS1)
1029
 
1030
/* ISA includes the MIPS32r2 seb and seh instructions.  */
1031
#define ISA_HAS_SEB_SEH         ((ISA_MIPS32R2          \
1032
                                  || ISA_MIPS64R2)      \
1033
                                 && !TARGET_MIPS16)
1034
 
1035
/* ISA includes the MIPS32/64 rev 2 ext and ins instructions.  */
1036
#define ISA_HAS_EXT_INS         ((ISA_MIPS32R2          \
1037
                                  || ISA_MIPS64R2)      \
1038
                                 && !TARGET_MIPS16)
1039
 
1040
/* ISA has instructions for accessing top part of 64-bit fp regs.  */
1041
#define ISA_HAS_MXHC1           (TARGET_FLOAT64         \
1042
                                 && (ISA_MIPS32R2       \
1043
                                     || ISA_MIPS64R2))
1044
 
1045
/* ISA has lwxs instruction (load w/scaled index address.  */
1046
#define ISA_HAS_LWXS            (TARGET_SMARTMIPS && !TARGET_MIPS16)
1047
 
1048
/* The DSP ASE is available.  */
1049
#define ISA_HAS_DSP             (TARGET_DSP && !TARGET_MIPS16)
1050
 
1051
/* Revision 2 of the DSP ASE is available.  */
1052
#define ISA_HAS_DSPR2           (TARGET_DSPR2 && !TARGET_MIPS16)
1053
 
1054
/* True if the result of a load is not available to the next instruction.
1055
   A nop will then be needed between instructions like "lw $4,..."
1056
   and "addiu $4,$4,1".  */
1057
#define ISA_HAS_LOAD_DELAY      (ISA_MIPS1                              \
1058
                                 && !TARGET_MIPS3900                    \
1059
                                 && !TARGET_MIPS16)
1060
 
1061
/* Likewise mtc1 and mfc1.  */
1062
#define ISA_HAS_XFER_DELAY      (mips_isa <= 3                  \
1063
                                 && !TARGET_LOONGSON_2EF)
1064
 
1065
/* Likewise floating-point comparisons.  */
1066
#define ISA_HAS_FCMP_DELAY      (mips_isa <= 3                  \
1067
                                 && !TARGET_LOONGSON_2EF)
1068
 
1069
/* True if mflo and mfhi can be immediately followed by instructions
1070
   which write to the HI and LO registers.
1071
 
1072
   According to MIPS specifications, MIPS ISAs I, II, and III need
1073
   (at least) two instructions between the reads of HI/LO and
1074
   instructions which write them, and later ISAs do not.  Contradicting
1075
   the MIPS specifications, some MIPS IV processor user manuals (e.g.
1076
   the UM for the NEC Vr5000) document needing the instructions between
1077
   HI/LO reads and writes, as well.  Therefore, we declare only MIPS32,
1078
   MIPS64 and later ISAs to have the interlocks, plus any specific
1079
   earlier-ISA CPUs for which CPU documentation declares that the
1080
   instructions are really interlocked.  */
1081
#define ISA_HAS_HILO_INTERLOCKS (ISA_MIPS32                             \
1082
                                 || ISA_MIPS32R2                        \
1083
                                 || ISA_MIPS64                          \
1084
                                 || ISA_MIPS64R2                        \
1085
                                 || TARGET_MIPS5500                     \
1086
                                 || TARGET_LOONGSON_2EF)
1087
 
1088
/* ISA includes synci, jr.hb and jalr.hb.  */
1089
#define ISA_HAS_SYNCI ((ISA_MIPS32R2            \
1090
                        || ISA_MIPS64R2)        \
1091
                       && !TARGET_MIPS16)
1092
 
1093
/* ISA includes sync.  */
1094
#define ISA_HAS_SYNC ((mips_isa >= 2 || TARGET_MIPS3900) && !TARGET_MIPS16)
1095
#define GENERATE_SYNC                   \
1096
  (target_flags_explicit & MASK_LLSC    \
1097
   ? TARGET_LLSC && !TARGET_MIPS16      \
1098
   : ISA_HAS_SYNC)
1099
 
1100
/* ISA includes ll and sc.  Note that this implies ISA_HAS_SYNC
1101
   because the expanders use both ISA_HAS_SYNC and ISA_HAS_LL_SC
1102
   instructions.  */
1103
#define ISA_HAS_LL_SC (mips_isa >= 2 && !TARGET_MIPS16)
1104
#define GENERATE_LL_SC                  \
1105
  (target_flags_explicit & MASK_LLSC    \
1106
   ? TARGET_LLSC && !TARGET_MIPS16      \
1107
   : ISA_HAS_LL_SC)
1108
 
1109
/* ISA includes the baddu instruction.  */
1110
#define ISA_HAS_BADDU           (TARGET_OCTEON && !TARGET_MIPS16)
1111
 
1112
/* ISA includes the bbit* instructions.  */
1113
#define ISA_HAS_BBIT            (TARGET_OCTEON && !TARGET_MIPS16)
1114
 
1115
/* ISA includes the cins instruction.  */
1116
#define ISA_HAS_CINS            (TARGET_OCTEON && !TARGET_MIPS16)
1117
 
1118
/* ISA includes the exts instruction.  */
1119
#define ISA_HAS_EXTS            (TARGET_OCTEON && !TARGET_MIPS16)
1120
 
1121
/* ISA includes the seq and sne instructions.  */
1122
#define ISA_HAS_SEQ_SNE         (TARGET_OCTEON && !TARGET_MIPS16)
1123
 
1124
/* ISA includes the pop instruction.  */
1125
#define ISA_HAS_POP             (TARGET_OCTEON && !TARGET_MIPS16)
1126
 
1127
/* The CACHE instruction is available in non-MIPS16 code.  */
1128
#define TARGET_CACHE_BUILTIN (mips_isa >= 3)
1129
 
1130
/* The CACHE instruction is available.  */
1131
#define ISA_HAS_CACHE (TARGET_CACHE_BUILTIN && !TARGET_MIPS16)
1132
 
1133
/* Add -G xx support.  */
1134
 
1135
#undef  SWITCH_TAKES_ARG
1136
#define SWITCH_TAKES_ARG(CHAR)                                          \
1137
  (DEFAULT_SWITCH_TAKES_ARG (CHAR) || (CHAR) == 'G')
1138
 
1139
#define OVERRIDE_OPTIONS mips_override_options ()
1140
 
1141
#define CONDITIONAL_REGISTER_USAGE mips_conditional_register_usage ()
1142
 
1143
/* Show we can debug even without a frame pointer.  */
1144
#define CAN_DEBUG_WITHOUT_FP
1145
 
1146
/* Tell collect what flags to pass to nm.  */
1147
#ifndef NM_FLAGS
1148
#define NM_FLAGS "-Bn"
1149
#endif
1150
 
1151
 
1152
/* SUBTARGET_ASM_OPTIMIZING_SPEC handles passing optimization options
1153
   to the assembler.  It may be overridden by subtargets.  */
1154
#ifndef SUBTARGET_ASM_OPTIMIZING_SPEC
1155
#define SUBTARGET_ASM_OPTIMIZING_SPEC "\
1156
%{noasmopt:-O0} \
1157
%{!noasmopt:%{O:-O2} %{O1:-O2} %{O2:-O2} %{O3:-O3}}"
1158
#endif
1159
 
1160
/* SUBTARGET_ASM_DEBUGGING_SPEC handles passing debugging options to
1161
   the assembler.  It may be overridden by subtargets.
1162
 
1163
   Beginning with gas 2.13, -mdebug must be passed to correctly handle
1164
   COFF debugging info.  */
1165
 
1166
#ifndef SUBTARGET_ASM_DEBUGGING_SPEC
1167
#define SUBTARGET_ASM_DEBUGGING_SPEC "\
1168
%{g} %{g0} %{g1} %{g2} %{g3} \
1169
%{ggdb:-g} %{ggdb0:-g0} %{ggdb1:-g1} %{ggdb2:-g2} %{ggdb3:-g3} \
1170
%{gstabs:-g} %{gstabs0:-g0} %{gstabs1:-g1} %{gstabs2:-g2} %{gstabs3:-g3} \
1171
%{gstabs+:-g} %{gstabs+0:-g0} %{gstabs+1:-g1} %{gstabs+2:-g2} %{gstabs+3:-g3} \
1172
%{gcoff:-g} %{gcoff0:-g0} %{gcoff1:-g1} %{gcoff2:-g2} %{gcoff3:-g3} \
1173
%{gcoff*:-mdebug} %{!gcoff*:-no-mdebug}"
1174
#endif
1175
 
1176
/* SUBTARGET_ASM_SPEC is always passed to the assembler.  It may be
1177
   overridden by subtargets.  */
1178
 
1179
#ifndef SUBTARGET_ASM_SPEC
1180
#define SUBTARGET_ASM_SPEC ""
1181
#endif
1182
 
1183
#undef ASM_SPEC
1184
#define ASM_SPEC "\
1185
%{G*} %(endian_spec) %{mips1} %{mips2} %{mips3} %{mips4} \
1186
%{mips32*} %{mips64*} \
1187
%{mips16} %{mno-mips16:-no-mips16} \
1188
%{mips3d} %{mno-mips3d:-no-mips3d} \
1189
%{mdmx} %{mno-mdmx:-no-mdmx} \
1190
%{mdsp} %{mno-dsp} \
1191
%{mdspr2} %{mno-dspr2} \
1192
%{msmartmips} %{mno-smartmips} \
1193
%{mmt} %{mno-mt} \
1194
%{mfix-vr4120} %{mfix-vr4130} \
1195
%(subtarget_asm_optimizing_spec) \
1196
%(subtarget_asm_debugging_spec) \
1197
%{mabi=*} %{!mabi=*: %(asm_abi_default_spec)} \
1198
%{mgp32} %{mgp64} %{march=*} %{mxgot:-xgot} \
1199
%{mfp32} %{mfp64} \
1200
%{mshared} %{mno-shared} \
1201
%{msym32} %{mno-sym32} \
1202
%{mtune=*} %{v} \
1203
%(subtarget_asm_spec)"
1204
 
1205
/* Extra switches sometimes passed to the linker.  */
1206
/* ??? The bestGnum will never be passed to the linker, because the gcc driver
1207
  will interpret it as a -b option.  */
1208
 
1209
#ifndef LINK_SPEC
1210
#define LINK_SPEC "\
1211
%(endian_spec) \
1212
%{G*} %{mips1} %{mips2} %{mips3} %{mips4} %{mips32*} %{mips64*} \
1213
%{bestGnum} %{shared} %{non_shared}"
1214
#endif  /* LINK_SPEC defined */
1215
 
1216
 
1217
/* Specs for the compiler proper */
1218
 
1219
/* SUBTARGET_CC1_SPEC is passed to the compiler proper.  It may be
1220
   overridden by subtargets.  */
1221
#ifndef SUBTARGET_CC1_SPEC
1222
#define SUBTARGET_CC1_SPEC ""
1223
#endif
1224
 
1225
/* CC1_SPEC is the set of arguments to pass to the compiler proper.  */
1226
 
1227
#undef CC1_SPEC
1228
#define CC1_SPEC "\
1229
%{gline:%{!g:%{!g0:%{!g1:%{!g2: -g1}}}}} \
1230
%{G*} %{EB:-meb} %{EL:-mel} %{EB:%{EL:%emay not use both -EB and -EL}} \
1231
%{save-temps: } \
1232
%(subtarget_cc1_spec)"
1233
 
1234
/* Preprocessor specs.  */
1235
 
1236
/* SUBTARGET_CPP_SPEC is passed to the preprocessor.  It may be
1237
   overridden by subtargets.  */
1238
#ifndef SUBTARGET_CPP_SPEC
1239
#define SUBTARGET_CPP_SPEC ""
1240
#endif
1241
 
1242
#define CPP_SPEC "%(subtarget_cpp_spec)"
1243
 
1244
/* This macro defines names of additional specifications to put in the specs
1245
   that can be used in various specifications like CC1_SPEC.  Its definition
1246
   is an initializer with a subgrouping for each command option.
1247
 
1248
   Each subgrouping contains a string constant, that defines the
1249
   specification name, and a string constant that used by the GCC driver
1250
   program.
1251
 
1252
   Do not define this macro if it does not need to do anything.  */
1253
 
1254
#define EXTRA_SPECS                                                     \
1255
  { "subtarget_cc1_spec", SUBTARGET_CC1_SPEC },                         \
1256
  { "subtarget_cpp_spec", SUBTARGET_CPP_SPEC },                         \
1257
  { "subtarget_asm_optimizing_spec", SUBTARGET_ASM_OPTIMIZING_SPEC },   \
1258
  { "subtarget_asm_debugging_spec", SUBTARGET_ASM_DEBUGGING_SPEC },     \
1259
  { "subtarget_asm_spec", SUBTARGET_ASM_SPEC },                         \
1260
  { "asm_abi_default_spec", "-" MULTILIB_ABI_DEFAULT },                 \
1261
  { "endian_spec", ENDIAN_SPEC },                                       \
1262
  SUBTARGET_EXTRA_SPECS
1263
 
1264
#ifndef SUBTARGET_EXTRA_SPECS
1265
#define SUBTARGET_EXTRA_SPECS
1266
#endif
1267
 
1268
#define DBX_DEBUGGING_INFO 1            /* generate stabs (OSF/rose) */
1269
#define DWARF2_DEBUGGING_INFO 1         /* dwarf2 debugging info */
1270
 
1271
#ifndef PREFERRED_DEBUGGING_TYPE
1272
#define PREFERRED_DEBUGGING_TYPE DWARF2_DEBUG
1273
#endif
1274
 
1275
/* The size of DWARF addresses should be the same as the size of symbols
1276
   in the target file format.  They shouldn't depend on things like -msym32,
1277
   because many DWARF consumers do not allow the mixture of address sizes
1278
   that one would then get from linking -msym32 code with -msym64 code.
1279
 
1280
   Note that the default POINTER_SIZE test is not appropriate for MIPS.
1281
   EABI64 has 64-bit pointers but uses 32-bit ELF.  */
1282
#define DWARF2_ADDR_SIZE (FILE_HAS_64BIT_SYMBOLS ? 8 : 4)
1283
 
1284
/* By default, turn on GDB extensions.  */
1285
#define DEFAULT_GDB_EXTENSIONS 1
1286
 
1287
/* Local compiler-generated symbols must have a prefix that the assembler
1288
   understands.   By default, this is $, although some targets (e.g.,
1289
   NetBSD-ELF) need to override this.  */
1290
 
1291
#ifndef LOCAL_LABEL_PREFIX
1292
#define LOCAL_LABEL_PREFIX      "$"
1293
#endif
1294
 
1295
/* By default on the mips, external symbols do not have an underscore
1296
   prepended, but some targets (e.g., NetBSD) require this.  */
1297
 
1298
#ifndef USER_LABEL_PREFIX
1299
#define USER_LABEL_PREFIX       ""
1300
#endif
1301
 
1302
/* On Sun 4, this limit is 2048.  We use 1500 to be safe,
1303
   since the length can run past this up to a continuation point.  */
1304
#undef DBX_CONTIN_LENGTH
1305
#define DBX_CONTIN_LENGTH 1500
1306
 
1307
/* How to renumber registers for dbx and gdb.  */
1308
#define DBX_REGISTER_NUMBER(REGNO) mips_dbx_regno[REGNO]
1309
 
1310
/* The mapping from gcc register number to DWARF 2 CFA column number.  */
1311
#define DWARF_FRAME_REGNUM(REGNO) mips_dwarf_regno[REGNO]
1312
 
1313
/* The DWARF 2 CFA column which tracks the return address.  */
1314
#define DWARF_FRAME_RETURN_COLUMN RETURN_ADDR_REGNUM
1315
 
1316
/* Before the prologue, RA lives in r31.  */
1317
#define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (VOIDmode, RETURN_ADDR_REGNUM)
1318
 
1319
/* Describe how we implement __builtin_eh_return.  */
1320
#define EH_RETURN_DATA_REGNO(N) \
1321
  ((N) < (TARGET_MIPS16 ? 2 : 4) ? (N) + GP_ARG_FIRST : INVALID_REGNUM)
1322
 
1323
#define EH_RETURN_STACKADJ_RTX  gen_rtx_REG (Pmode, GP_REG_FIRST + 3)
1324
 
1325
#define EH_USES(N) mips_eh_uses (N)
1326
 
1327
/* Offsets recorded in opcodes are a multiple of this alignment factor.
1328
   The default for this in 64-bit mode is 8, which causes problems with
1329
   SFmode register saves.  */
1330
#define DWARF_CIE_DATA_ALIGNMENT -4
1331
 
1332
/* Correct the offset of automatic variables and arguments.  Note that
1333
   the MIPS debug format wants all automatic variables and arguments
1334
   to be in terms of the virtual frame pointer (stack pointer before
1335
   any adjustment in the function), while the MIPS 3.0 linker wants
1336
   the frame pointer to be the stack pointer after the initial
1337
   adjustment.  */
1338
 
1339
#define DEBUGGER_AUTO_OFFSET(X)                         \
1340
  mips_debugger_offset (X, (HOST_WIDE_INT) 0)
1341
#define DEBUGGER_ARG_OFFSET(OFFSET, X)                  \
1342
  mips_debugger_offset (X, (HOST_WIDE_INT) OFFSET)
1343
 
1344
/* Target machine storage layout */
1345
 
1346
#define BITS_BIG_ENDIAN 0
1347
#define BYTES_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
1348
#define WORDS_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
1349
 
1350
/* Define this to set the endianness to use in libgcc2.c, which can
1351
   not depend on target_flags.  */
1352
#if !defined(MIPSEL) && !defined(__MIPSEL__)
1353
#define LIBGCC2_WORDS_BIG_ENDIAN 1
1354
#else
1355
#define LIBGCC2_WORDS_BIG_ENDIAN 0
1356
#endif
1357
 
1358
#define MAX_BITS_PER_WORD 64
1359
 
1360
/* Width of a word, in units (bytes).  */
1361
#define UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
1362
#ifndef IN_LIBGCC2
1363
#define MIN_UNITS_PER_WORD 4
1364
#endif
1365
 
1366
/* For MIPS, width of a floating point register.  */
1367
#define UNITS_PER_FPREG (TARGET_FLOAT64 ? 8 : 4)
1368
 
1369
/* The number of consecutive floating-point registers needed to store the
1370
   largest format supported by the FPU.  */
1371
#define MAX_FPRS_PER_FMT (TARGET_FLOAT64 || TARGET_SINGLE_FLOAT ? 1 : 2)
1372
 
1373
/* The number of consecutive floating-point registers needed to store the
1374
   smallest format supported by the FPU.  */
1375
#define MIN_FPRS_PER_FMT \
1376
  (ISA_MIPS32 || ISA_MIPS32R2 || ISA_MIPS64 || ISA_MIPS64R2 \
1377
   ? 1 : MAX_FPRS_PER_FMT)
1378
 
1379
/* The largest size of value that can be held in floating-point
1380
   registers and moved with a single instruction.  */
1381
#define UNITS_PER_HWFPVALUE \
1382
  (TARGET_SOFT_FLOAT_ABI ? 0 : MAX_FPRS_PER_FMT * UNITS_PER_FPREG)
1383
 
1384
/* The largest size of value that can be held in floating-point
1385
   registers.  */
1386
#define UNITS_PER_FPVALUE                       \
1387
  (TARGET_SOFT_FLOAT_ABI ? 0                    \
1388
   : TARGET_SINGLE_FLOAT ? UNITS_PER_FPREG      \
1389
   : LONG_DOUBLE_TYPE_SIZE / BITS_PER_UNIT)
1390
 
1391
/* The number of bytes in a double.  */
1392
#define UNITS_PER_DOUBLE (TYPE_PRECISION (double_type_node) / BITS_PER_UNIT)
1393
 
1394
#define UNITS_PER_SIMD_WORD(MODE) \
1395
  (TARGET_PAIRED_SINGLE_FLOAT ? 8 : UNITS_PER_WORD)
1396
 
1397
/* Set the sizes of the core types.  */
1398
#define SHORT_TYPE_SIZE 16
1399
#define INT_TYPE_SIZE 32
1400
#define LONG_TYPE_SIZE (TARGET_LONG64 ? 64 : 32)
1401
#define LONG_LONG_TYPE_SIZE 64
1402
 
1403
#define FLOAT_TYPE_SIZE 32
1404
#define DOUBLE_TYPE_SIZE 64
1405
#define LONG_DOUBLE_TYPE_SIZE (TARGET_NEWABI ? 128 : 64)
1406
 
1407
/* Define the sizes of fixed-point types.  */
1408
#define SHORT_FRACT_TYPE_SIZE 8
1409
#define FRACT_TYPE_SIZE 16
1410
#define LONG_FRACT_TYPE_SIZE 32
1411
#define LONG_LONG_FRACT_TYPE_SIZE 64
1412
 
1413
#define SHORT_ACCUM_TYPE_SIZE 16
1414
#define ACCUM_TYPE_SIZE 32
1415
#define LONG_ACCUM_TYPE_SIZE 64
1416
/* FIXME.  LONG_LONG_ACCUM_TYPE_SIZE should be 128 bits, but GCC
1417
   doesn't support 128-bit integers for MIPS32 currently.  */
1418
#define LONG_LONG_ACCUM_TYPE_SIZE (TARGET_64BIT ? 128 : 64)
1419
 
1420
/* long double is not a fixed mode, but the idea is that, if we
1421
   support long double, we also want a 128-bit integer type.  */
1422
#define MAX_FIXED_MODE_SIZE LONG_DOUBLE_TYPE_SIZE
1423
 
1424
#ifdef IN_LIBGCC2
1425
#if  (defined _ABIN32 && _MIPS_SIM == _ABIN32) \
1426
  || (defined _ABI64 && _MIPS_SIM == _ABI64)
1427
#  define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 128
1428
# else
1429
#  define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 64
1430
# endif
1431
#endif
1432
 
1433
/* Width in bits of a pointer.  */
1434
#ifndef POINTER_SIZE
1435
#define POINTER_SIZE ((TARGET_LONG64 && TARGET_64BIT) ? 64 : 32)
1436
#endif
1437
 
1438
/* Allocation boundary (in *bits*) for storing arguments in argument list.  */
1439
#define PARM_BOUNDARY BITS_PER_WORD
1440
 
1441
/* Allocation boundary (in *bits*) for the code of a function.  */
1442
#define FUNCTION_BOUNDARY 32
1443
 
1444
/* Alignment of field after `int : 0' in a structure.  */
1445
#define EMPTY_FIELD_BOUNDARY 32
1446
 
1447
/* Every structure's size must be a multiple of this.  */
1448
/* 8 is observed right on a DECstation and on riscos 4.02.  */
1449
#define STRUCTURE_SIZE_BOUNDARY 8
1450
 
1451
/* There is no point aligning anything to a rounder boundary than this.  */
1452
#define BIGGEST_ALIGNMENT LONG_DOUBLE_TYPE_SIZE
1453
 
1454
/* All accesses must be aligned.  */
1455
#define STRICT_ALIGNMENT 1
1456
 
1457
/* Define this if you wish to imitate the way many other C compilers
1458
   handle alignment of bitfields and the structures that contain
1459
   them.
1460
 
1461
   The behavior is that the type written for a bit-field (`int',
1462
   `short', or other integer type) imposes an alignment for the
1463
   entire structure, as if the structure really did contain an
1464
   ordinary field of that type.  In addition, the bit-field is placed
1465
   within the structure so that it would fit within such a field,
1466
   not crossing a boundary for it.
1467
 
1468
   Thus, on most machines, a bit-field whose type is written as `int'
1469
   would not cross a four-byte boundary, and would force four-byte
1470
   alignment for the whole structure.  (The alignment used may not
1471
   be four bytes; it is controlled by the other alignment
1472
   parameters.)
1473
 
1474
   If the macro is defined, its definition should be a C expression;
1475
   a nonzero value for the expression enables this behavior.  */
1476
 
1477
#define PCC_BITFIELD_TYPE_MATTERS 1
1478
 
1479
/* If defined, a C expression to compute the alignment given to a
1480
   constant that is being placed in memory.  CONSTANT is the constant
1481
   and ALIGN is the alignment that the object would ordinarily have.
1482
   The value of this macro is used instead of that alignment to align
1483
   the object.
1484
 
1485
   If this macro is not defined, then ALIGN is used.
1486
 
1487
   The typical use of this macro is to increase alignment for string
1488
   constants to be word aligned so that `strcpy' calls that copy
1489
   constants can be done inline.  */
1490
 
1491
#define CONSTANT_ALIGNMENT(EXP, ALIGN)                                  \
1492
  ((TREE_CODE (EXP) == STRING_CST  || TREE_CODE (EXP) == CONSTRUCTOR)   \
1493
   && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
1494
 
1495
/* If defined, a C expression to compute the alignment for a static
1496
   variable.  TYPE is the data type, and ALIGN is the alignment that
1497
   the object would ordinarily have.  The value of this macro is used
1498
   instead of that alignment to align the object.
1499
 
1500
   If this macro is not defined, then ALIGN is used.
1501
 
1502
   One use of this macro is to increase alignment of medium-size
1503
   data to make it all fit in fewer cache lines.  Another is to
1504
   cause character arrays to be word-aligned so that `strcpy' calls
1505
   that copy constants to character arrays can be done inline.  */
1506
 
1507
#undef DATA_ALIGNMENT
1508
#define DATA_ALIGNMENT(TYPE, ALIGN)                                     \
1509
  ((((ALIGN) < BITS_PER_WORD)                                           \
1510
    && (TREE_CODE (TYPE) == ARRAY_TYPE                                  \
1511
        || TREE_CODE (TYPE) == UNION_TYPE                               \
1512
        || TREE_CODE (TYPE) == RECORD_TYPE)) ? BITS_PER_WORD : (ALIGN))
1513
 
1514
/* We need this for the same reason as DATA_ALIGNMENT, namely to cause
1515
   character arrays to be word-aligned so that `strcpy' calls that copy
1516
   constants to character arrays can be done inline, and 'strcmp' can be
1517
   optimised to use word loads. */
1518
#define LOCAL_ALIGNMENT(TYPE, ALIGN) \
1519
  DATA_ALIGNMENT (TYPE, ALIGN)
1520
 
1521
#define PAD_VARARGS_DOWN \
1522
  (FUNCTION_ARG_PADDING (TYPE_MODE (type), type) == downward)
1523
 
1524
/* Define if operations between registers always perform the operation
1525
   on the full register even if a narrower mode is specified.  */
1526
#define WORD_REGISTER_OPERATIONS
1527
 
1528
/* When in 64-bit mode, move insns will sign extend SImode and CCmode
1529
   moves.  All other references are zero extended.  */
1530
#define LOAD_EXTEND_OP(MODE) \
1531
  (TARGET_64BIT && ((MODE) == SImode || (MODE) == CCmode) \
1532
   ? SIGN_EXTEND : ZERO_EXTEND)
1533
 
1534
/* Define this macro if it is advisable to hold scalars in registers
1535
   in a wider mode than that declared by the program.  In such cases,
1536
   the value is constrained to be within the bounds of the declared
1537
   type, but kept valid in the wider mode.  The signedness of the
1538
   extension may differ from that of the type.  */
1539
 
1540
#define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE)     \
1541
  if (GET_MODE_CLASS (MODE) == MODE_INT         \
1542
      && GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \
1543
    {                                           \
1544
      if ((MODE) == SImode)                     \
1545
        (UNSIGNEDP) = 0;                        \
1546
      (MODE) = Pmode;                           \
1547
    }
1548
 
1549
/* Pmode is always the same as ptr_mode, but not always the same as word_mode.
1550
   Extensions of pointers to word_mode must be signed.  */
1551
#define POINTERS_EXTEND_UNSIGNED false
1552
 
1553
/* Define if loading short immediate values into registers sign extends.  */
1554
#define SHORT_IMMEDIATES_SIGN_EXTEND
1555
 
1556
/* The [d]clz instructions have the natural values at 0.  */
1557
 
1558
#define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
1559
  ((VALUE) = GET_MODE_BITSIZE (MODE), 2)
1560
 
1561
/* Standard register usage.  */
1562
 
1563
/* Number of hardware registers.  We have:
1564
 
1565
   - 32 integer registers
1566
   - 32 floating point registers
1567
   - 8 condition code registers
1568
   - 2 accumulator registers (hi and lo)
1569
   - 32 registers each for coprocessors 0, 2 and 3
1570
   - 4 fake registers:
1571
        - ARG_POINTER_REGNUM
1572
        - FRAME_POINTER_REGNUM
1573
        - GOT_VERSION_REGNUM (see the comment above load_call<mode> for details)
1574
        - CPRESTORE_SLOT_REGNUM
1575
   - 2 dummy entries that were used at various times in the past.
1576
   - 6 DSP accumulator registers (3 hi-lo pairs) for MIPS DSP ASE
1577
   - 6 DSP control registers  */
1578
 
1579
#define FIRST_PSEUDO_REGISTER 188
1580
 
1581
/* By default, fix the kernel registers ($26 and $27), the global
1582
   pointer ($28) and the stack pointer ($29).  This can change
1583
   depending on the command-line options.
1584
 
1585
   Regarding coprocessor registers: without evidence to the contrary,
1586
   it's best to assume that each coprocessor register has a unique
1587
   use.  This can be overridden, in, e.g., mips_override_options or
1588
   CONDITIONAL_REGISTER_USAGE should the assumption be inappropriate
1589
   for a particular target.  */
1590
 
1591
#define FIXED_REGISTERS                                                 \
1592
{                                                                       \
1593
  1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,                       \
1594
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0,                       \
1595
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,                       \
1596
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,                       \
1597
  0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1,                       \
1598
  /* COP0 registers */                                                  \
1599
  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,                       \
1600
  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,                       \
1601
  /* COP2 registers */                                                  \
1602
  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,                       \
1603
  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,                       \
1604
  /* COP3 registers */                                                  \
1605
  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,                       \
1606
  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,                       \
1607
  /* 6 DSP accumulator registers & 6 control registers */               \
1608
  0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1                                    \
1609
}
1610
 
1611
 
1612
/* Set up this array for o32 by default.
1613
 
1614
   Note that we don't mark $31 as a call-clobbered register.  The idea is
1615
   that it's really the call instructions themselves which clobber $31.
1616
   We don't care what the called function does with it afterwards.
1617
 
1618
   This approach makes it easier to implement sibcalls.  Unlike normal
1619
   calls, sibcalls don't clobber $31, so the register reaches the
1620
   called function in tact.  EPILOGUE_USES says that $31 is useful
1621
   to the called function.  */
1622
 
1623
#define CALL_USED_REGISTERS                                             \
1624
{                                                                       \
1625
  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,                       \
1626
  0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0,                       \
1627
  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,                       \
1628
  1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,                       \
1629
  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,                       \
1630
  /* COP0 registers */                                                  \
1631
  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,                       \
1632
  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,                       \
1633
  /* COP2 registers */                                                  \
1634
  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,                       \
1635
  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,                       \
1636
  /* COP3 registers */                                                  \
1637
  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,                       \
1638
  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,                       \
1639
  /* 6 DSP accumulator registers & 6 control registers */               \
1640
  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1                                    \
1641
}
1642
 
1643
 
1644
/* Define this since $28, though fixed, is call-saved in many ABIs.  */
1645
 
1646
#define CALL_REALLY_USED_REGISTERS                                      \
1647
{ /* General registers.  */                                             \
1648
  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,                       \
1649
  0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0,                       \
1650
  /* Floating-point registers.  */                                      \
1651
  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,                       \
1652
  1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,                       \
1653
  /* Others.  */                                                        \
1654
  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0,                       \
1655
  /* COP0 registers */                                                  \
1656
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,                       \
1657
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,                       \
1658
  /* COP2 registers */                                                  \
1659
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,                       \
1660
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,                       \
1661
  /* COP3 registers */                                                  \
1662
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,                       \
1663
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,                       \
1664
  /* 6 DSP accumulator registers & 6 control registers */               \
1665
  1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0                                    \
1666
}
1667
 
1668
/* Internal macros to classify a register number as to whether it's a
1669
   general purpose register, a floating point register, a
1670
   multiply/divide register, or a status register.  */
1671
 
1672
#define GP_REG_FIRST 0
1673
#define GP_REG_LAST  31
1674
#define GP_REG_NUM   (GP_REG_LAST - GP_REG_FIRST + 1)
1675
#define GP_DBX_FIRST 0
1676
#define K0_REG_NUM   (GP_REG_FIRST + 26)
1677
#define K1_REG_NUM   (GP_REG_FIRST + 27)
1678
#define KERNEL_REG_P(REGNO)     (IN_RANGE (REGNO, K0_REG_NUM, K1_REG_NUM))
1679
 
1680
#define FP_REG_FIRST 32
1681
#define FP_REG_LAST  63
1682
#define FP_REG_NUM   (FP_REG_LAST - FP_REG_FIRST + 1)
1683
#define FP_DBX_FIRST ((write_symbols == DBX_DEBUG) ? 38 : 32)
1684
 
1685
#define MD_REG_FIRST 64
1686
#define MD_REG_LAST  65
1687
#define MD_REG_NUM   (MD_REG_LAST - MD_REG_FIRST + 1)
1688
#define MD_DBX_FIRST (FP_DBX_FIRST + FP_REG_NUM)
1689
 
1690
/* The DWARF 2 CFA column which tracks the return address from a
1691
   signal handler context.  This means that to maintain backwards
1692
   compatibility, no hard register can be assigned this column if it
1693
   would need to be handled by the DWARF unwinder.  */
1694
#define DWARF_ALT_FRAME_RETURN_COLUMN 66
1695
 
1696
#define ST_REG_FIRST 67
1697
#define ST_REG_LAST  74
1698
#define ST_REG_NUM   (ST_REG_LAST - ST_REG_FIRST + 1)
1699
 
1700
 
1701
/* FIXME: renumber.  */
1702
#define COP0_REG_FIRST 80
1703
#define COP0_REG_LAST 111
1704
#define COP0_REG_NUM (COP0_REG_LAST - COP0_REG_FIRST + 1)
1705
 
1706
#define COP0_STATUS_REG_NUM     (COP0_REG_FIRST + 12)
1707
#define COP0_CAUSE_REG_NUM      (COP0_REG_FIRST + 13)
1708
#define COP0_EPC_REG_NUM        (COP0_REG_FIRST + 14)
1709
 
1710
#define COP2_REG_FIRST 112
1711
#define COP2_REG_LAST 143
1712
#define COP2_REG_NUM (COP2_REG_LAST - COP2_REG_FIRST + 1)
1713
 
1714
#define COP3_REG_FIRST 144
1715
#define COP3_REG_LAST 175
1716
#define COP3_REG_NUM (COP3_REG_LAST - COP3_REG_FIRST + 1)
1717
/* ALL_COP_REG_NUM assumes that COP0,2,and 3 are numbered consecutively.  */
1718
#define ALL_COP_REG_NUM (COP3_REG_LAST - COP0_REG_FIRST + 1)
1719
 
1720
#define DSP_ACC_REG_FIRST 176
1721
#define DSP_ACC_REG_LAST 181
1722
#define DSP_ACC_REG_NUM (DSP_ACC_REG_LAST - DSP_ACC_REG_FIRST + 1)
1723
 
1724
#define AT_REGNUM       (GP_REG_FIRST + 1)
1725
#define HI_REGNUM       (TARGET_BIG_ENDIAN ? MD_REG_FIRST : MD_REG_FIRST + 1)
1726
#define LO_REGNUM       (TARGET_BIG_ENDIAN ? MD_REG_FIRST + 1 : MD_REG_FIRST)
1727
 
1728
/* A few bitfield locations for the coprocessor registers.  */
1729
/* Request Interrupt Priority Level is from bit 10 to bit 15 of
1730
   the cause register for the EIC interrupt mode.  */
1731
#define CAUSE_IPL       10
1732
/* Interrupt Priority Level is from bit 10 to bit 15 of the status register.  */
1733
#define SR_IPL          10
1734
/* Exception Level is at bit 1 of the status register.  */
1735
#define SR_EXL          1
1736
/* Interrupt Enable is at bit 0 of the status register.  */
1737
#define SR_IE           0
1738
 
1739
/* FPSW_REGNUM is the single condition code used if !ISA_HAS_8CC.
1740
   If ISA_HAS_8CC, it should not be used, and an arbitrary ST_REG
1741
   should be used instead.  */
1742
#define FPSW_REGNUM     ST_REG_FIRST
1743
 
1744
#define GP_REG_P(REGNO) \
1745
  ((unsigned int) ((int) (REGNO) - GP_REG_FIRST) < GP_REG_NUM)
1746
#define M16_REG_P(REGNO) \
1747
  (((REGNO) >= 2 && (REGNO) <= 7) || (REGNO) == 16 || (REGNO) == 17)
1748
#define FP_REG_P(REGNO)  \
1749
  ((unsigned int) ((int) (REGNO) - FP_REG_FIRST) < FP_REG_NUM)
1750
#define MD_REG_P(REGNO) \
1751
  ((unsigned int) ((int) (REGNO) - MD_REG_FIRST) < MD_REG_NUM)
1752
#define ST_REG_P(REGNO) \
1753
  ((unsigned int) ((int) (REGNO) - ST_REG_FIRST) < ST_REG_NUM)
1754
#define COP0_REG_P(REGNO) \
1755
  ((unsigned int) ((int) (REGNO) - COP0_REG_FIRST) < COP0_REG_NUM)
1756
#define COP2_REG_P(REGNO) \
1757
  ((unsigned int) ((int) (REGNO) - COP2_REG_FIRST) < COP2_REG_NUM)
1758
#define COP3_REG_P(REGNO) \
1759
  ((unsigned int) ((int) (REGNO) - COP3_REG_FIRST) < COP3_REG_NUM)
1760
#define ALL_COP_REG_P(REGNO) \
1761
  ((unsigned int) ((int) (REGNO) - COP0_REG_FIRST) < ALL_COP_REG_NUM)
1762
/* Test if REGNO is one of the 6 new DSP accumulators.  */
1763
#define DSP_ACC_REG_P(REGNO) \
1764
  ((unsigned int) ((int) (REGNO) - DSP_ACC_REG_FIRST) < DSP_ACC_REG_NUM)
1765
/* Test if REGNO is hi, lo, or one of the 6 new DSP accumulators.  */
1766
#define ACC_REG_P(REGNO) \
1767
  (MD_REG_P (REGNO) || DSP_ACC_REG_P (REGNO))
1768
 
1769
#define FP_REG_RTX_P(X) (REG_P (X) && FP_REG_P (REGNO (X)))
1770
 
1771
/* True if X is (const (unspec [(const_int 0)] UNSPEC_GP)).  This is used
1772
   to initialize the mips16 gp pseudo register.  */
1773
#define CONST_GP_P(X)                           \
1774
  (GET_CODE (X) == CONST                        \
1775
   && GET_CODE (XEXP (X, 0)) == UNSPEC          \
1776
   && XINT (XEXP (X, 0), 1) == UNSPEC_GP)
1777
 
1778
/* Return coprocessor number from register number.  */
1779
 
1780
#define COPNUM_AS_CHAR_FROM_REGNUM(REGNO)                               \
1781
  (COP0_REG_P (REGNO) ? '0' : COP2_REG_P (REGNO) ? '2'                  \
1782
   : COP3_REG_P (REGNO) ? '3' : '?')
1783
 
1784
 
1785
#define HARD_REGNO_NREGS(REGNO, MODE) mips_hard_regno_nregs (REGNO, MODE)
1786
 
1787
#define HARD_REGNO_MODE_OK(REGNO, MODE)                                 \
1788
  mips_hard_regno_mode_ok[ (int)(MODE) ][ (REGNO) ]
1789
 
1790
#define MODES_TIEABLE_P mips_modes_tieable_p
1791
 
1792
/* Register to use for pushing function arguments.  */
1793
#define STACK_POINTER_REGNUM (GP_REG_FIRST + 29)
1794
 
1795
/* These two registers don't really exist: they get eliminated to either
1796
   the stack or hard frame pointer.  */
1797
#define ARG_POINTER_REGNUM 77
1798
#define FRAME_POINTER_REGNUM 78
1799
 
1800
/* $30 is not available on the mips16, so we use $17 as the frame
1801
   pointer.  */
1802
#define HARD_FRAME_POINTER_REGNUM \
1803
  (TARGET_MIPS16 ? GP_REG_FIRST + 17 : GP_REG_FIRST + 30)
1804
 
1805
/* Register in which static-chain is passed to a function.  */
1806
#define STATIC_CHAIN_REGNUM (GP_REG_FIRST + 15)
1807
 
1808
/* Registers used as temporaries in prologue/epilogue code:
1809
 
1810
   - If a MIPS16 PIC function needs access to _gp, it first loads
1811
     the value into MIPS16_PIC_TEMP and then copies it to $gp.
1812
 
1813
   - The prologue can use MIPS_PROLOGUE_TEMP as a general temporary
1814
     register.  The register must not conflict with MIPS16_PIC_TEMP.
1815
 
1816
   - The epilogue can use MIPS_EPILOGUE_TEMP as a general temporary
1817
     register.
1818
 
1819
   If we're generating MIPS16 code, these registers must come from the
1820
   core set of 8.  The prologue registers mustn't conflict with any
1821
   incoming arguments, the static chain pointer, or the frame pointer.
1822
   The epilogue temporary mustn't conflict with the return registers,
1823
   the PIC call register ($25), the frame pointer, the EH stack adjustment,
1824
   or the EH data registers.
1825
 
1826
   If we're generating interrupt handlers, we use K0 as a temporary register
1827
   in prologue/epilogue code.  */
1828
 
1829
#define MIPS16_PIC_TEMP_REGNUM (GP_REG_FIRST + 2)
1830
#define MIPS_PROLOGUE_TEMP_REGNUM \
1831
  (cfun->machine->interrupt_handler_p ? K0_REG_NUM : GP_REG_FIRST + 3)
1832
#define MIPS_EPILOGUE_TEMP_REGNUM               \
1833
  (cfun->machine->interrupt_handler_p           \
1834
   ? K0_REG_NUM                                 \
1835
   : GP_REG_FIRST + (TARGET_MIPS16 ? 6 : 8))
1836
 
1837
#define MIPS16_PIC_TEMP gen_rtx_REG (Pmode, MIPS16_PIC_TEMP_REGNUM)
1838
#define MIPS_PROLOGUE_TEMP(MODE) gen_rtx_REG (MODE, MIPS_PROLOGUE_TEMP_REGNUM)
1839
#define MIPS_EPILOGUE_TEMP(MODE) gen_rtx_REG (MODE, MIPS_EPILOGUE_TEMP_REGNUM)
1840
 
1841
/* Define this macro if it is as good or better to call a constant
1842
   function address than to call an address kept in a register.  */
1843
#define NO_FUNCTION_CSE 1
1844
 
1845
/* The ABI-defined global pointer.  Sometimes we use a different
1846
   register in leaf functions: see PIC_OFFSET_TABLE_REGNUM.  */
1847
#define GLOBAL_POINTER_REGNUM (GP_REG_FIRST + 28)
1848
 
1849
/* We normally use $28 as the global pointer.  However, when generating
1850
   n32/64 PIC, it is better for leaf functions to use a call-clobbered
1851
   register instead.  They can then avoid saving and restoring $28
1852
   and perhaps avoid using a frame at all.
1853
 
1854
   When a leaf function uses something other than $28, mips_expand_prologue
1855
   will modify pic_offset_table_rtx in place.  Take the register number
1856
   from there after reload.  */
1857
#define PIC_OFFSET_TABLE_REGNUM \
1858
  (reload_completed ? REGNO (pic_offset_table_rtx) : GLOBAL_POINTER_REGNUM)
1859
 
1860
#define PIC_FUNCTION_ADDR_REGNUM (GP_REG_FIRST + 25)
1861
 
1862
/* Define the classes of registers for register constraints in the
1863
   machine description.  Also define ranges of constants.
1864
 
1865
   One of the classes must always be named ALL_REGS and include all hard regs.
1866
   If there is more than one class, another class must be named NO_REGS
1867
   and contain no registers.
1868
 
1869
   The name GENERAL_REGS must be the name of a class (or an alias for
1870
   another name such as ALL_REGS).  This is the class of registers
1871
   that is allowed by "g" or "r" in a register constraint.
1872
   Also, registers outside this class are allocated only when
1873
   instructions express preferences for them.
1874
 
1875
   The classes must be numbered in nondecreasing order; that is,
1876
   a larger-numbered class must never be contained completely
1877
   in a smaller-numbered class.
1878
 
1879
   For any two classes, it is very desirable that there be another
1880
   class that represents their union.  */
1881
 
1882
enum reg_class
1883
{
1884
  NO_REGS,                      /* no registers in set */
1885
  M16_REGS,                     /* mips16 directly accessible registers */
1886
  T_REG,                        /* mips16 T register ($24) */
1887
  M16_T_REGS,                   /* mips16 registers plus T register */
1888
  PIC_FN_ADDR_REG,              /* SVR4 PIC function address register */
1889
  V1_REG,                       /* Register $v1 ($3) used for TLS access.  */
1890
  LEA_REGS,                     /* Every GPR except $25 */
1891
  GR_REGS,                      /* integer registers */
1892
  FP_REGS,                      /* floating point registers */
1893
  MD0_REG,                      /* first multiply/divide register */
1894
  MD1_REG,                      /* second multiply/divide register */
1895
  MD_REGS,                      /* multiply/divide registers (hi/lo) */
1896
  COP0_REGS,                    /* generic coprocessor classes */
1897
  COP2_REGS,
1898
  COP3_REGS,
1899
  ST_REGS,                      /* status registers (fp status) */
1900
  DSP_ACC_REGS,                 /* DSP accumulator registers */
1901
  ACC_REGS,                     /* Hi/Lo and DSP accumulator registers */
1902
  FRAME_REGS,                   /* $arg and $frame */
1903
  GR_AND_MD0_REGS,              /* union classes */
1904
  GR_AND_MD1_REGS,
1905
  GR_AND_MD_REGS,
1906
  GR_AND_ACC_REGS,
1907
  ALL_REGS,                     /* all registers */
1908
  LIM_REG_CLASSES               /* max value + 1 */
1909
};
1910
 
1911
#define N_REG_CLASSES (int) LIM_REG_CLASSES
1912
 
1913
#define GENERAL_REGS GR_REGS
1914
 
1915
/* An initializer containing the names of the register classes as C
1916
   string constants.  These names are used in writing some of the
1917
   debugging dumps.  */
1918
 
1919
#define REG_CLASS_NAMES                                                 \
1920
{                                                                       \
1921
  "NO_REGS",                                                            \
1922
  "M16_REGS",                                                           \
1923
  "T_REG",                                                              \
1924
  "M16_T_REGS",                                                         \
1925
  "PIC_FN_ADDR_REG",                                                    \
1926
  "V1_REG",                                                             \
1927
  "LEA_REGS",                                                           \
1928
  "GR_REGS",                                                            \
1929
  "FP_REGS",                                                            \
1930
  "MD0_REG",                                                            \
1931
  "MD1_REG",                                                            \
1932
  "MD_REGS",                                                            \
1933
  /* coprocessor registers */                                           \
1934
  "COP0_REGS",                                                          \
1935
  "COP2_REGS",                                                          \
1936
  "COP3_REGS",                                                          \
1937
  "ST_REGS",                                                            \
1938
  "DSP_ACC_REGS",                                                       \
1939
  "ACC_REGS",                                                           \
1940
  "FRAME_REGS",                                                         \
1941
  "GR_AND_MD0_REGS",                                                    \
1942
  "GR_AND_MD1_REGS",                                                    \
1943
  "GR_AND_MD_REGS",                                                     \
1944
  "GR_AND_ACC_REGS",                                                    \
1945
  "ALL_REGS"                                                            \
1946
}
1947
 
1948
/* An initializer containing the contents of the register classes,
1949
   as integers which are bit masks.  The Nth integer specifies the
1950
   contents of class N.  The way the integer MASK is interpreted is
1951
   that register R is in the class if `MASK & (1 << R)' is 1.
1952
 
1953
   When the machine has more than 32 registers, an integer does not
1954
   suffice.  Then the integers are replaced by sub-initializers,
1955
   braced groupings containing several integers.  Each
1956
   sub-initializer must be suitable as an initializer for the type
1957
   `HARD_REG_SET' which is defined in `hard-reg-set.h'.  */
1958
 
1959
#define REG_CLASS_CONTENTS                                                                              \
1960
{                                                                                                       \
1961
  { 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 },   /* NO_REGS */           \
1962
  { 0x000300fc, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 },   /* M16_REGS */          \
1963
  { 0x01000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 },   /* T_REG */             \
1964
  { 0x010300fc, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 },   /* M16_T_REGS */        \
1965
  { 0x02000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 },   /* PIC_FN_ADDR_REG */   \
1966
  { 0x00000008, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 },   /* V1_REG */            \
1967
  { 0xfdffffff, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 },   /* LEA_REGS */          \
1968
  { 0xffffffff, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 },   /* GR_REGS */           \
1969
  { 0x00000000, 0xffffffff, 0x00000000, 0x00000000, 0x00000000, 0x00000000 },   /* FP_REGS */           \
1970
  { 0x00000000, 0x00000000, 0x00000001, 0x00000000, 0x00000000, 0x00000000 },   /* MD0_REG */           \
1971
  { 0x00000000, 0x00000000, 0x00000002, 0x00000000, 0x00000000, 0x00000000 },   /* MD1_REG */           \
1972
  { 0x00000000, 0x00000000, 0x00000003, 0x00000000, 0x00000000, 0x00000000 },   /* MD_REGS */           \
1973
  { 0x00000000, 0x00000000, 0xffff0000, 0x0000ffff, 0x00000000, 0x00000000 },   /* COP0_REGS */         \
1974
  { 0x00000000, 0x00000000, 0x00000000, 0xffff0000, 0x0000ffff, 0x00000000 },   /* COP2_REGS */         \
1975
  { 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0xffff0000, 0x0000ffff },   /* COP3_REGS */         \
1976
  { 0x00000000, 0x00000000, 0x000007f8, 0x00000000, 0x00000000, 0x00000000 },   /* ST_REGS */           \
1977
  { 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x003f0000 },   /* DSP_ACC_REGS */      \
1978
  { 0x00000000, 0x00000000, 0x00000003, 0x00000000, 0x00000000, 0x003f0000 },   /* ACC_REGS */          \
1979
  { 0x00000000, 0x00000000, 0x00006000, 0x00000000, 0x00000000, 0x00000000 },   /* FRAME_REGS */        \
1980
  { 0xffffffff, 0x00000000, 0x00000001, 0x00000000, 0x00000000, 0x00000000 },   /* GR_AND_MD0_REGS */   \
1981
  { 0xffffffff, 0x00000000, 0x00000002, 0x00000000, 0x00000000, 0x00000000 },   /* GR_AND_MD1_REGS */   \
1982
  { 0xffffffff, 0x00000000, 0x00000003, 0x00000000, 0x00000000, 0x00000000 },   /* GR_AND_MD_REGS */    \
1983
  { 0xffffffff, 0x00000000, 0x00000003, 0x00000000, 0x00000000, 0x003f0000 },   /* GR_AND_ACC_REGS */   \
1984
  { 0xffffffff, 0xffffffff, 0xffff67ff, 0xffffffff, 0xffffffff, 0x0fffffff }    /* ALL_REGS */          \
1985
}
1986
 
1987
 
1988
/* A C expression whose value is a register class containing hard
1989
   register REGNO.  In general there is more that one such class;
1990
   choose a class which is "minimal", meaning that no smaller class
1991
   also contains the register.  */
1992
 
1993
#define REGNO_REG_CLASS(REGNO) mips_regno_to_class[ (REGNO) ]
1994
 
1995
/* A macro whose definition is the name of the class to which a
1996
   valid base register must belong.  A base register is one used in
1997
   an address which is the register value plus a displacement.  */
1998
 
1999
#define BASE_REG_CLASS  (TARGET_MIPS16 ? M16_REGS : GR_REGS)
2000
 
2001
/* A macro whose definition is the name of the class to which a
2002
   valid index register must belong.  An index register is one used
2003
   in an address where its value is either multiplied by a scale
2004
   factor or added to another register (as well as added to a
2005
   displacement).  */
2006
 
2007
#define INDEX_REG_CLASS NO_REGS
2008
 
2009
/* When SMALL_REGISTER_CLASSES is nonzero, the compiler allows
2010
   registers explicitly used in the rtl to be used as spill registers
2011
   but prevents the compiler from extending the lifetime of these
2012
   registers.  */
2013
 
2014
#define SMALL_REGISTER_CLASSES (TARGET_MIPS16)
2015
 
2016
/* We generally want to put call-clobbered registers ahead of
2017
   call-saved ones.  (IRA expects this.)  */
2018
 
2019
#define REG_ALLOC_ORDER                                                 \
2020
{ /* Accumulator registers.  When GPRs and accumulators have equal      \
2021
     cost, we generally prefer to use accumulators.  For example,       \
2022
     a division of multiplication result is better allocated to LO,     \
2023
     so that we put the MFLO at the point of use instead of at the      \
2024
     point of definition.  It's also needed if we're to take advantage  \
2025
     of the extra accumulators available with -mdspr2.  In some cases,  \
2026
     it can also help to reduce register pressure.  */                  \
2027
  64, 65,176,177,178,179,180,181,                                       \
2028
  /* Call-clobbered GPRs.  */                                           \
2029
  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, 15,            \
2030
  24, 25, 31,                                                           \
2031
  /* The global pointer.  This is call-clobbered for o32 and o64        \
2032
     abicalls, call-saved for n32 and n64 abicalls, and a program       \
2033
     invariant otherwise.  Putting it between the call-clobbered        \
2034
     and call-saved registers should cope with all eventualities.  */   \
2035
  28,                                                                   \
2036
  /* Call-saved GPRs.  */                                               \
2037
  16, 17, 18, 19, 20, 21, 22, 23, 30,                                   \
2038
  /* GPRs that can never be exposed to the register allocator.  */      \
2039
  0,  26, 27, 29,                                                       \
2040
  /* Call-clobbered FPRs.  */                                           \
2041
  32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,       \
2042
  48, 49, 50, 51,                                                       \
2043
  /* FPRs that are usually call-saved.  The odd ones are actually       \
2044
     call-clobbered for n32, but listing them ahead of the even         \
2045
     registers might encourage the register allocator to fragment       \
2046
     the available FPR pairs.  We need paired FPRs to store long        \
2047
     doubles, so it isn't clear that using a different order            \
2048
     for n32 would be a win.  */                                        \
2049
  52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,                       \
2050
  /* None of the remaining classes have defined call-saved              \
2051
     registers.  */                                                     \
2052
  66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79,               \
2053
  80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95,       \
2054
  96, 97, 98, 99, 100,101,102,103,104,105,106,107,108,109,110,111,      \
2055
  112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,      \
2056
  128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,      \
2057
  144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,      \
2058
  160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,      \
2059
  182,183,184,185,186,187                                               \
2060
}
2061
 
2062
/* ORDER_REGS_FOR_LOCAL_ALLOC is a macro which permits reg_alloc_order
2063
   to be rearranged based on a particular function.  On the mips16, we
2064
   want to allocate $24 (T_REG) before other registers for
2065
   instructions for which it is possible.  */
2066
 
2067
#define ORDER_REGS_FOR_LOCAL_ALLOC mips_order_regs_for_local_alloc ()
2068
 
2069
/* True if VALUE is an unsigned 6-bit number.  */
2070
 
2071
#define UIMM6_OPERAND(VALUE) \
2072
  (((VALUE) & ~(unsigned HOST_WIDE_INT) 0x3f) == 0)
2073
 
2074
/* True if VALUE is a signed 10-bit number.  */
2075
 
2076
#define IMM10_OPERAND(VALUE) \
2077
  ((unsigned HOST_WIDE_INT) (VALUE) + 0x200 < 0x400)
2078
 
2079
/* True if VALUE is a signed 16-bit number.  */
2080
 
2081
#define SMALL_OPERAND(VALUE) \
2082
  ((unsigned HOST_WIDE_INT) (VALUE) + 0x8000 < 0x10000)
2083
 
2084
/* True if VALUE is an unsigned 16-bit number.  */
2085
 
2086
#define SMALL_OPERAND_UNSIGNED(VALUE) \
2087
  (((VALUE) & ~(unsigned HOST_WIDE_INT) 0xffff) == 0)
2088
 
2089
/* True if VALUE can be loaded into a register using LUI.  */
2090
 
2091
#define LUI_OPERAND(VALUE)                                      \
2092
  (((VALUE) | 0x7fff0000) == 0x7fff0000                         \
2093
   || ((VALUE) | 0x7fff0000) + 0x10000 == 0)
2094
 
2095
/* Return a value X with the low 16 bits clear, and such that
2096
   VALUE - X is a signed 16-bit value.  */
2097
 
2098
#define CONST_HIGH_PART(VALUE) \
2099
  (((VALUE) + 0x8000) & ~(unsigned HOST_WIDE_INT) 0xffff)
2100
 
2101
#define CONST_LOW_PART(VALUE) \
2102
  ((VALUE) - CONST_HIGH_PART (VALUE))
2103
 
2104
#define SMALL_INT(X) SMALL_OPERAND (INTVAL (X))
2105
#define SMALL_INT_UNSIGNED(X) SMALL_OPERAND_UNSIGNED (INTVAL (X))
2106
#define LUI_INT(X) LUI_OPERAND (INTVAL (X))
2107
 
2108
#define PREFERRED_RELOAD_CLASS(X,CLASS)                                 \
2109
  mips_preferred_reload_class (X, CLASS)
2110
 
2111
/* The HI and LO registers can only be reloaded via the general
2112
   registers.  Condition code registers can only be loaded to the
2113
   general registers, and from the floating point registers.  */
2114
 
2115
#define SECONDARY_INPUT_RELOAD_CLASS(CLASS, MODE, X)                    \
2116
  mips_secondary_reload_class (CLASS, MODE, X, true)
2117
#define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, X)                   \
2118
  mips_secondary_reload_class (CLASS, MODE, X, false)
2119
 
2120
/* Return the maximum number of consecutive registers
2121
   needed to represent mode MODE in a register of class CLASS.  */
2122
 
2123
#define CLASS_MAX_NREGS(CLASS, MODE) mips_class_max_nregs (CLASS, MODE)
2124
 
2125
#define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \
2126
  mips_cannot_change_mode_class (FROM, TO, CLASS)
2127
 
2128
/* Stack layout; function entry, exit and calling.  */
2129
 
2130
#define STACK_GROWS_DOWNWARD
2131
 
2132
#define FRAME_GROWS_DOWNWARD flag_stack_protect
2133
 
2134
/* Size of the area allocated in the frame to save the GP.  */
2135
 
2136
#define MIPS_GP_SAVE_AREA_SIZE \
2137
  (TARGET_CALL_CLOBBERED_GP ? MIPS_STACK_ALIGN (UNITS_PER_WORD) : 0)
2138
 
2139
/* The offset of the first local variable from the frame pointer.  See
2140
   mips_compute_frame_info for details about the frame layout.  */
2141
 
2142
#define STARTING_FRAME_OFFSET                           \
2143
  (FRAME_GROWS_DOWNWARD                                 \
2144
   ? 0                                                  \
2145
   : crtl->outgoing_args_size + MIPS_GP_SAVE_AREA_SIZE)
2146
 
2147
#define RETURN_ADDR_RTX mips_return_addr
2148
 
2149
/* Mask off the MIPS16 ISA bit in unwind addresses.
2150
 
2151
   The reason for this is a little subtle.  When unwinding a call,
2152
   we are given the call's return address, which on most targets
2153
   is the address of the following instruction.  However, what we
2154
   actually want to find is the EH region for the call itself.
2155
   The target-independent unwind code therefore searches for "RA - 1".
2156
 
2157
   In the MIPS16 case, RA is always an odd-valued (ISA-encoded) address.
2158
   RA - 1 is therefore the real (even-valued) start of the return
2159
   instruction.  EH region labels are usually odd-valued MIPS16 symbols
2160
   too, so a search for an even address within a MIPS16 region would
2161
   usually work.
2162
 
2163
   However, there is an exception.  If the end of an EH region is also
2164
   the end of a function, the end label is allowed to be even.  This is
2165
   necessary because a following non-MIPS16 function may also need EH
2166
   information for its first instruction.
2167
 
2168
   Thus a MIPS16 region may be terminated by an ISA-encoded or a
2169
   non-ISA-encoded address.  This probably isn't ideal, but it is
2170
   the traditional (legacy) behavior.  It is therefore only safe
2171
   to search MIPS EH regions for an _odd-valued_ address.
2172
 
2173
   Masking off the ISA bit means that the target-independent code
2174
   will search for "(RA & -2) - 1", which is guaranteed to be odd.  */
2175
#define MASK_RETURN_ADDR GEN_INT (-2)
2176
 
2177
 
2178
/* Similarly, don't use the least-significant bit to tell pointers to
2179
   code from vtable index.  */
2180
 
2181
#define TARGET_PTRMEMFUNC_VBIT_LOCATION ptrmemfunc_vbit_in_delta
2182
 
2183
/* The eliminations to $17 are only used for mips16 code.  See the
2184
   definition of HARD_FRAME_POINTER_REGNUM.  */
2185
 
2186
#define ELIMINABLE_REGS                                                 \
2187
{{ ARG_POINTER_REGNUM,   STACK_POINTER_REGNUM},                         \
2188
 { ARG_POINTER_REGNUM,   GP_REG_FIRST + 30},                            \
2189
 { ARG_POINTER_REGNUM,   GP_REG_FIRST + 17},                            \
2190
 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM},                         \
2191
 { FRAME_POINTER_REGNUM, GP_REG_FIRST + 30},                            \
2192
 { FRAME_POINTER_REGNUM, GP_REG_FIRST + 17}}
2193
 
2194
#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
2195
  (OFFSET) = mips_initial_elimination_offset ((FROM), (TO))
2196
 
2197
/* Allocate stack space for arguments at the beginning of each function.  */
2198
#define ACCUMULATE_OUTGOING_ARGS 1
2199
 
2200
/* The argument pointer always points to the first argument.  */
2201
#define FIRST_PARM_OFFSET(FNDECL) 0
2202
 
2203
/* o32 and o64 reserve stack space for all argument registers.  */
2204
#define REG_PARM_STACK_SPACE(FNDECL)                    \
2205
  (TARGET_OLDABI                                        \
2206
   ? (MAX_ARGS_IN_REGISTERS * UNITS_PER_WORD)           \
2207
   : 0)
2208
 
2209
/* Define this if it is the responsibility of the caller to
2210
   allocate the area reserved for arguments passed in registers.
2211
   If `ACCUMULATE_OUTGOING_ARGS' is also defined, the only effect
2212
   of this macro is to determine whether the space is included in
2213
   `crtl->outgoing_args_size'.  */
2214
#define OUTGOING_REG_PARM_STACK_SPACE(FNTYPE) 1
2215
 
2216
#define STACK_BOUNDARY (TARGET_NEWABI ? 128 : 64)
2217
 
2218
#define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
2219
 
2220
/* Symbolic macros for the registers used to return integer and floating
2221
   point values.  */
2222
 
2223
#define GP_RETURN (GP_REG_FIRST + 2)
2224
#define FP_RETURN ((TARGET_SOFT_FLOAT) ? GP_RETURN : (FP_REG_FIRST + 0))
2225
 
2226
#define MAX_ARGS_IN_REGISTERS (TARGET_OLDABI ? 4 : 8)
2227
 
2228
/* Symbolic macros for the first/last argument registers.  */
2229
 
2230
#define GP_ARG_FIRST (GP_REG_FIRST + 4)
2231
#define GP_ARG_LAST  (GP_ARG_FIRST + MAX_ARGS_IN_REGISTERS - 1)
2232
#define FP_ARG_FIRST (FP_REG_FIRST + 12)
2233
#define FP_ARG_LAST  (FP_ARG_FIRST + MAX_ARGS_IN_REGISTERS - 1)
2234
 
2235
#define LIBCALL_VALUE(MODE) \
2236
  mips_function_value (NULL_TREE, NULL_TREE, MODE)
2237
 
2238
#define FUNCTION_VALUE(VALTYPE, FUNC) \
2239
  mips_function_value (VALTYPE, FUNC, VOIDmode)
2240
 
2241
/* 1 if N is a possible register number for a function value.
2242
   On the MIPS, R2 R3 and F0 F2 are the only register thus used.
2243
   Currently, R2 and F0 are only implemented here (C has no complex type)  */
2244
 
2245
#define FUNCTION_VALUE_REGNO_P(N) ((N) == GP_RETURN || (N) == FP_RETURN \
2246
  || (LONG_DOUBLE_TYPE_SIZE == 128 && FP_RETURN != GP_RETURN \
2247
      && (N) == FP_RETURN + 2))
2248
 
2249
/* 1 if N is a possible register number for function argument passing.
2250
   We have no FP argument registers when soft-float.  When FP registers
2251
   are 32 bits, we can't directly reference the odd numbered ones.  */
2252
 
2253
#define FUNCTION_ARG_REGNO_P(N)                                 \
2254
  ((IN_RANGE((N), GP_ARG_FIRST, GP_ARG_LAST)                    \
2255
    || (IN_RANGE((N), FP_ARG_FIRST, FP_ARG_LAST)))              \
2256
   && !fixed_regs[N])
2257
 
2258
/* This structure has to cope with two different argument allocation
2259
   schemes.  Most MIPS ABIs view the arguments as a structure, of which
2260
   the first N words go in registers and the rest go on the stack.  If I
2261
   < N, the Ith word might go in Ith integer argument register or in a
2262
   floating-point register.  For these ABIs, we only need to remember
2263
   the offset of the current argument into the structure.
2264
 
2265
   The EABI instead allocates the integer and floating-point arguments
2266
   separately.  The first N words of FP arguments go in FP registers,
2267
   the rest go on the stack.  Likewise, the first N words of the other
2268
   arguments go in integer registers, and the rest go on the stack.  We
2269
   need to maintain three counts: the number of integer registers used,
2270
   the number of floating-point registers used, and the number of words
2271
   passed on the stack.
2272
 
2273
   We could keep separate information for the two ABIs (a word count for
2274
   the standard ABIs, and three separate counts for the EABI).  But it
2275
   seems simpler to view the standard ABIs as forms of EABI that do not
2276
   allocate floating-point registers.
2277
 
2278
   So for the standard ABIs, the first N words are allocated to integer
2279
   registers, and mips_function_arg decides on an argument-by-argument
2280
   basis whether that argument should really go in an integer register,
2281
   or in a floating-point one.  */
2282
 
2283
typedef struct mips_args {
2284
  /* Always true for varargs functions.  Otherwise true if at least
2285
     one argument has been passed in an integer register.  */
2286
  int gp_reg_found;
2287
 
2288
  /* The number of arguments seen so far.  */
2289
  unsigned int arg_number;
2290
 
2291
  /* The number of integer registers used so far.  For all ABIs except
2292
     EABI, this is the number of words that have been added to the
2293
     argument structure, limited to MAX_ARGS_IN_REGISTERS.  */
2294
  unsigned int num_gprs;
2295
 
2296
  /* For EABI, the number of floating-point registers used so far.  */
2297
  unsigned int num_fprs;
2298
 
2299
  /* The number of words passed on the stack.  */
2300
  unsigned int stack_words;
2301
 
2302
  /* On the mips16, we need to keep track of which floating point
2303
     arguments were passed in general registers, but would have been
2304
     passed in the FP regs if this were a 32-bit function, so that we
2305
     can move them to the FP regs if we wind up calling a 32-bit
2306
     function.  We record this information in fp_code, encoded in base
2307
     four.  A zero digit means no floating point argument, a one digit
2308
     means an SFmode argument, and a two digit means a DFmode argument,
2309
     and a three digit is not used.  The low order digit is the first
2310
     argument.  Thus 6 == 1 * 4 + 2 means a DFmode argument followed by
2311
     an SFmode argument.  ??? A more sophisticated approach will be
2312
     needed if MIPS_ABI != ABI_32.  */
2313
  int fp_code;
2314
 
2315
  /* True if the function has a prototype.  */
2316
  int prototype;
2317
} CUMULATIVE_ARGS;
2318
 
2319
/* Initialize a variable CUM of type CUMULATIVE_ARGS
2320
   for a call to a function whose data type is FNTYPE.
2321
   For a library call, FNTYPE is 0.  */
2322
 
2323
#define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT, N_NAMED_ARGS) \
2324
  mips_init_cumulative_args (&CUM, FNTYPE)
2325
 
2326
/* Update the data in CUM to advance over an argument
2327
   of mode MODE and data type TYPE.
2328
   (TYPE is null for libcalls where that information may not be available.)  */
2329
 
2330
#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
2331
  mips_function_arg_advance (&CUM, MODE, TYPE, NAMED)
2332
 
2333
/* Determine where to put an argument to a function.
2334
   Value is zero to push the argument on the stack,
2335
   or a hard register in which to store the argument.
2336
 
2337
   MODE is the argument's machine mode.
2338
   TYPE is the data type of the argument (as a tree).
2339
    This is null for libcalls where that information may
2340
    not be available.
2341
   CUM is a variable of type CUMULATIVE_ARGS which gives info about
2342
    the preceding args and about the function being called.
2343
   NAMED is nonzero if this argument is a named parameter
2344
    (otherwise it is an extra parameter matching an ellipsis).  */
2345
 
2346
#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
2347
  mips_function_arg (&CUM, MODE, TYPE, NAMED)
2348
 
2349
#define FUNCTION_ARG_BOUNDARY mips_function_arg_boundary
2350
 
2351
#define FUNCTION_ARG_PADDING(MODE, TYPE) \
2352
  (mips_pad_arg_upward (MODE, TYPE) ? upward : downward)
2353
 
2354
#define BLOCK_REG_PADDING(MODE, TYPE, FIRST) \
2355
  (mips_pad_reg_upward (MODE, TYPE) ? upward : downward)
2356
 
2357
/* True if using EABI and varargs can be passed in floating-point
2358
   registers.  Under these conditions, we need a more complex form
2359
   of va_list, which tracks GPR, FPR and stack arguments separately.  */
2360
#define EABI_FLOAT_VARARGS_P \
2361
        (mips_abi == ABI_EABI && UNITS_PER_FPVALUE >= UNITS_PER_DOUBLE)
2362
 
2363
 
2364
#define EPILOGUE_USES(REGNO)    mips_epilogue_uses (REGNO)
2365
 
2366
/* Treat LOC as a byte offset from the stack pointer and round it up
2367
   to the next fully-aligned offset.  */
2368
#define MIPS_STACK_ALIGN(LOC) \
2369
  (TARGET_NEWABI ? ((LOC) + 15) & -16 : ((LOC) + 7) & -8)
2370
 
2371
 
2372
/* Output assembler code to FILE to increment profiler label # LABELNO
2373
   for profiling a function entry.  */
2374
 
2375
#define FUNCTION_PROFILER(FILE, LABELNO) mips_function_profiler ((FILE))
2376
 
2377
/* The profiler preserves all interesting registers, including $31.  */
2378
#define MIPS_SAVE_REG_FOR_PROFILING_P(REGNO) false
2379
 
2380
/* No mips port has ever used the profiler counter word, so don't emit it
2381
   or the label for it.  */
2382
 
2383
#define NO_PROFILE_COUNTERS 1
2384
 
2385
/* Define this macro if the code for function profiling should come
2386
   before the function prologue.  Normally, the profiling code comes
2387
   after.  */
2388
 
2389
/* #define PROFILE_BEFORE_PROLOGUE */
2390
 
2391
/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
2392
   the stack pointer does not matter.  The value is tested only in
2393
   functions that have frame pointers.
2394
   No definition is equivalent to always zero.  */
2395
 
2396
#define EXIT_IGNORE_STACK 1
2397
 
2398
 
2399
/* Trampolines are a block of code followed by two pointers.  */
2400
 
2401
#define TRAMPOLINE_SIZE \
2402
  (mips_trampoline_code_size () + GET_MODE_SIZE (ptr_mode) * 2)
2403
 
2404
/* Forcing a 64-bit alignment for 32-bit targets allows us to load two
2405
   pointers from a single LUI base.  */
2406
 
2407
#define TRAMPOLINE_ALIGNMENT 64
2408
 
2409
/* mips_trampoline_init calls this library function to flush
2410
   program and data caches.  */
2411
 
2412
#ifndef CACHE_FLUSH_FUNC
2413
#define CACHE_FLUSH_FUNC "_flush_cache"
2414
#endif
2415
 
2416
#define MIPS_ICACHE_SYNC(ADDR, SIZE)                                    \
2417
  /* Flush both caches.  We need to flush the data cache in case        \
2418
     the system has a write-back cache.  */                             \
2419
  emit_library_call (gen_rtx_SYMBOL_REF (Pmode, mips_cache_flush_func), \
2420
                     LCT_NORMAL, VOIDmode, 3, ADDR, Pmode, SIZE, Pmode, \
2421
                     GEN_INT (3), TYPE_MODE (integer_type_node))
2422
 
2423
 
2424
/* Addressing modes, and classification of registers for them.  */
2425
 
2426
#define REGNO_OK_FOR_INDEX_P(REGNO) 0
2427
#define REGNO_MODE_OK_FOR_BASE_P(REGNO, MODE) \
2428
  mips_regno_mode_ok_for_base_p (REGNO, MODE, 1)
2429
 
2430
/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
2431
   and check its validity for a certain class.
2432
   We have two alternate definitions for each of them.
2433
   The usual definition accepts all pseudo regs; the other rejects them all.
2434
   The symbol REG_OK_STRICT causes the latter definition to be used.
2435
 
2436
   Most source files want to accept pseudo regs in the hope that
2437
   they will get allocated to the class that the insn wants them to be in.
2438
   Some source files that are used after register allocation
2439
   need to be strict.  */
2440
 
2441
#ifndef REG_OK_STRICT
2442
#define REG_MODE_OK_FOR_BASE_P(X, MODE) \
2443
  mips_regno_mode_ok_for_base_p (REGNO (X), MODE, 0)
2444
#else
2445
#define REG_MODE_OK_FOR_BASE_P(X, MODE) \
2446
  mips_regno_mode_ok_for_base_p (REGNO (X), MODE, 1)
2447
#endif
2448
 
2449
#define REG_OK_FOR_INDEX_P(X) 0
2450
 
2451
 
2452
/* Maximum number of registers that can appear in a valid memory address.  */
2453
 
2454
#define MAX_REGS_PER_ADDRESS 1
2455
 
2456
/* Check for constness inline but use mips_legitimate_address_p
2457
   to check whether a constant really is an address.  */
2458
 
2459
#define CONSTANT_ADDRESS_P(X) \
2460
  (CONSTANT_P (X) && memory_address_p (SImode, X))
2461
 
2462
#define LEGITIMATE_CONSTANT_P(X) (mips_const_insns (X) > 0)
2463
 
2464
/* This handles the magic '..CURRENT_FUNCTION' symbol, which means
2465
   'the start of the function that this code is output in'.  */
2466
 
2467
#define ASM_OUTPUT_LABELREF(FILE,NAME)  \
2468
  if (strcmp (NAME, "..CURRENT_FUNCTION") == 0)                         \
2469
    asm_fprintf ((FILE), "%U%s",                                        \
2470
                 XSTR (XEXP (DECL_RTL (current_function_decl), 0), 0)); \
2471
  else                                                                  \
2472
    asm_fprintf ((FILE), "%U%s", (NAME))
2473
 
2474
/* Flag to mark a function decl symbol that requires a long call.  */
2475
#define SYMBOL_FLAG_LONG_CALL   (SYMBOL_FLAG_MACH_DEP << 0)
2476
#define SYMBOL_REF_LONG_CALL_P(X)                                       \
2477
  ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_LONG_CALL) != 0)
2478
 
2479
/* This flag marks functions that cannot be lazily bound.  */
2480
#define SYMBOL_FLAG_BIND_NOW (SYMBOL_FLAG_MACH_DEP << 1)
2481
#define SYMBOL_REF_BIND_NOW_P(RTX) \
2482
  ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_BIND_NOW) != 0)
2483
 
2484
/* True if we're generating a form of MIPS16 code in which jump tables
2485
   are stored in the text section and encoded as 16-bit PC-relative
2486
   offsets.  This is only possible when general text loads are allowed,
2487
   since the table access itself will be an "lh" instruction.  */
2488
/* ??? 16-bit offsets can overflow in large functions.  */
2489
#define TARGET_MIPS16_SHORT_JUMP_TABLES TARGET_MIPS16_TEXT_LOADS
2490
 
2491
#define JUMP_TABLES_IN_TEXT_SECTION TARGET_MIPS16_SHORT_JUMP_TABLES
2492
 
2493
#define CASE_VECTOR_MODE (TARGET_MIPS16_SHORT_JUMP_TABLES ? HImode : ptr_mode)
2494
 
2495
#define CASE_VECTOR_PC_RELATIVE TARGET_MIPS16_SHORT_JUMP_TABLES
2496
 
2497
/* Define this as 1 if `char' should by default be signed; else as 0.  */
2498
#ifndef DEFAULT_SIGNED_CHAR
2499
#define DEFAULT_SIGNED_CHAR 1
2500
#endif
2501
 
2502
/* Although LDC1 and SDC1 provide 64-bit moves on 32-bit targets,
2503
   we generally don't want to use them for copying arbitrary data.
2504
   A single N-word move is usually the same cost as N single-word moves.  */
2505
#define MOVE_MAX UNITS_PER_WORD
2506
#define MAX_MOVE_MAX 8
2507
 
2508
/* Define this macro as a C expression which is nonzero if
2509
   accessing less than a word of memory (i.e. a `char' or a
2510
   `short') is no faster than accessing a word of memory, i.e., if
2511
   such access require more than one instruction or if there is no
2512
   difference in cost between byte and (aligned) word loads.
2513
 
2514
   On RISC machines, it tends to generate better code to define
2515
   this as 1, since it avoids making a QI or HI mode register.
2516
 
2517
   But, generating word accesses for -mips16 is generally bad as shifts
2518
   (often extended) would be needed for byte accesses.  */
2519
#define SLOW_BYTE_ACCESS (!TARGET_MIPS16)
2520
 
2521
/* Define this to be nonzero if shift instructions ignore all but the low-order
2522
   few bits.  */
2523
#define SHIFT_COUNT_TRUNCATED 1
2524
 
2525
/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
2526
   is done just by pretending it is already truncated.  */
2527
#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) \
2528
  (TARGET_64BIT ? ((INPREC) <= 32 || (OUTPREC) > 32) : 1)
2529
 
2530
 
2531
/* Specify the machine mode that pointers have.
2532
   After generation of rtl, the compiler makes no further distinction
2533
   between pointers and any other objects of this machine mode.  */
2534
 
2535
#ifndef Pmode
2536
#define Pmode (TARGET_64BIT && TARGET_LONG64 ? DImode : SImode)
2537
#endif
2538
 
2539
/* Give call MEMs SImode since it is the "most permissive" mode
2540
   for both 32-bit and 64-bit targets.  */
2541
 
2542
#define FUNCTION_MODE SImode
2543
 
2544
 
2545
/* A C expression for the cost of moving data from a register in
2546
   class FROM to one in class TO.  The classes are expressed using
2547
   the enumeration values such as `GENERAL_REGS'.  A value of 2 is
2548
   the default; other values are interpreted relative to that.
2549
 
2550
   It is not required that the cost always equal 2 when FROM is the
2551
   same as TO; on some machines it is expensive to move between
2552
   registers if they are not general registers.
2553
 
2554
   If reload sees an insn consisting of a single `set' between two
2555
   hard registers, and if `REGISTER_MOVE_COST' applied to their
2556
   classes returns a value of 2, reload does not check to ensure
2557
   that the constraints of the insn are met.  Setting a cost of
2558
   other than 2 will allow reload to verify that the constraints are
2559
   met.  You should do this if the `movM' pattern's constraints do
2560
   not allow such copying.  */
2561
 
2562
#define REGISTER_MOVE_COST(MODE, FROM, TO)                              \
2563
  mips_register_move_cost (MODE, FROM, TO)
2564
 
2565
#define MEMORY_MOVE_COST(MODE,CLASS,TO_P) \
2566
  (mips_cost->memory_latency                    \
2567
   + memory_move_secondary_cost ((MODE), (CLASS), (TO_P)))
2568
 
2569
/* Define if copies to/from condition code registers should be avoided.
2570
 
2571
   This is needed for the MIPS because reload_outcc is not complete;
2572
   it needs to handle cases where the source is a general or another
2573
   condition code register.  */
2574
#define AVOID_CCMODE_COPIES
2575
 
2576
/* A C expression for the cost of a branch instruction.  A value of
2577
   1 is the default; other values are interpreted relative to that.  */
2578
 
2579
#define BRANCH_COST(speed_p, predictable_p) mips_branch_cost
2580
#define LOGICAL_OP_NON_SHORT_CIRCUIT 0
2581
 
2582
/* If defined, modifies the length assigned to instruction INSN as a
2583
   function of the context in which it is used.  LENGTH is an lvalue
2584
   that contains the initially computed length of the insn and should
2585
   be updated with the correct length of the insn.  */
2586
#define ADJUST_INSN_LENGTH(INSN, LENGTH) \
2587
  ((LENGTH) = mips_adjust_insn_length ((INSN), (LENGTH)))
2588
 
2589
/* Return the asm template for a non-MIPS16 conditional branch instruction.
2590
   OPCODE is the opcode's mnemonic and OPERANDS is the asm template for
2591
   its operands.  */
2592
#define MIPS_BRANCH(OPCODE, OPERANDS) \
2593
  "%*" OPCODE "%?\t" OPERANDS "%/"
2594
 
2595
/* Return an asm string that forces INSN to be treated as an absolute
2596
   J or JAL instruction instead of an assembler macro.  */
2597
#define MIPS_ABSOLUTE_JUMP(INSN) \
2598
  (TARGET_ABICALLS_PIC2                                         \
2599
   ? ".option\tpic0\n\t" INSN "\n\t.option\tpic2"               \
2600
   : INSN)
2601
 
2602
/* Return the asm template for a call.  INSN is the instruction's mnemonic
2603
   ("j" or "jal"), OPERANDS are its operands, TARGET_OPNO is the operand
2604
   number of the target.  SIZE_OPNO is the operand number of the argument size
2605
   operand that can optionally hold the call attributes.  If SIZE_OPNO is not
2606
   -1 and the call is indirect, use the function symbol from the call
2607
   attributes to attach a R_MIPS_JALR relocation to the call.
2608
 
2609
   When generating GOT code without explicit relocation operators,
2610
   all calls should use assembly macros.  Otherwise, all indirect
2611
   calls should use "jr" or "jalr"; we will arrange to restore $gp
2612
   afterwards if necessary.  Finally, we can only generate direct
2613
   calls for -mabicalls by temporarily switching to non-PIC mode.  */
2614
#define MIPS_CALL(INSN, OPERANDS, TARGET_OPNO, SIZE_OPNO)       \
2615
  (TARGET_USE_GOT && !TARGET_EXPLICIT_RELOCS                    \
2616
   ? "%*" INSN "\t%" #TARGET_OPNO "%/"                          \
2617
   : (REG_P (OPERANDS[TARGET_OPNO])                             \
2618
      && mips_get_pic_call_symbol (OPERANDS, SIZE_OPNO))        \
2619
   ? ("%*.reloc\t1f,R_MIPS_JALR,%" #SIZE_OPNO "\n"              \
2620
      "1:\t" INSN "r\t%" #TARGET_OPNO "%/")                     \
2621
   : REG_P (OPERANDS[TARGET_OPNO])                              \
2622
   ? "%*" INSN "r\t%" #TARGET_OPNO "%/"                         \
2623
   : MIPS_ABSOLUTE_JUMP ("%*" INSN "\t%" #TARGET_OPNO "%/"))
2624
 
2625
/* Control the assembler format that we output.  */
2626
 
2627
/* Output to assembler file text saying following lines
2628
   may contain character constants, extra white space, comments, etc.  */
2629
 
2630
#ifndef ASM_APP_ON
2631
#define ASM_APP_ON " #APP\n"
2632
#endif
2633
 
2634
/* Output to assembler file text saying following lines
2635
   no longer contain unusual constructs.  */
2636
 
2637
#ifndef ASM_APP_OFF
2638
#define ASM_APP_OFF " #NO_APP\n"
2639
#endif
2640
 
2641
#define REGISTER_NAMES                                                     \
2642
{ "$0",   "$1",   "$2",   "$3",   "$4",   "$5",   "$6",   "$7",            \
2643
  "$8",   "$9",   "$10",  "$11",  "$12",  "$13",  "$14",  "$15",           \
2644
  "$16",  "$17",  "$18",  "$19",  "$20",  "$21",  "$22",  "$23",           \
2645
  "$24",  "$25",  "$26",  "$27",  "$28",  "$sp",  "$fp",  "$31",           \
2646
  "$f0",  "$f1",  "$f2",  "$f3",  "$f4",  "$f5",  "$f6",  "$f7",           \
2647
  "$f8",  "$f9",  "$f10", "$f11", "$f12", "$f13", "$f14", "$f15",          \
2648
  "$f16", "$f17", "$f18", "$f19", "$f20", "$f21", "$f22", "$f23",          \
2649
  "$f24", "$f25", "$f26", "$f27", "$f28", "$f29", "$f30", "$f31",          \
2650
  "hi",   "lo",   "",     "$fcc0","$fcc1","$fcc2","$fcc3","$fcc4",         \
2651
  "$fcc5","$fcc6","$fcc7","", "$cprestore", "$arg", "$frame", "$fakec",    \
2652
  "$c0r0", "$c0r1", "$c0r2", "$c0r3", "$c0r4", "$c0r5", "$c0r6", "$c0r7",  \
2653
  "$c0r8", "$c0r9", "$c0r10","$c0r11","$c0r12","$c0r13","$c0r14","$c0r15", \
2654
  "$c0r16","$c0r17","$c0r18","$c0r19","$c0r20","$c0r21","$c0r22","$c0r23", \
2655
  "$c0r24","$c0r25","$c0r26","$c0r27","$c0r28","$c0r29","$c0r30","$c0r31", \
2656
  "$c2r0", "$c2r1", "$c2r2", "$c2r3", "$c2r4", "$c2r5", "$c2r6", "$c2r7",  \
2657
  "$c2r8", "$c2r9", "$c2r10","$c2r11","$c2r12","$c2r13","$c2r14","$c2r15", \
2658
  "$c2r16","$c2r17","$c2r18","$c2r19","$c2r20","$c2r21","$c2r22","$c2r23", \
2659
  "$c2r24","$c2r25","$c2r26","$c2r27","$c2r28","$c2r29","$c2r30","$c2r31", \
2660
  "$c3r0", "$c3r1", "$c3r2", "$c3r3", "$c3r4", "$c3r5", "$c3r6", "$c3r7",  \
2661
  "$c3r8", "$c3r9", "$c3r10","$c3r11","$c3r12","$c3r13","$c3r14","$c3r15", \
2662
  "$c3r16","$c3r17","$c3r18","$c3r19","$c3r20","$c3r21","$c3r22","$c3r23", \
2663
  "$c3r24","$c3r25","$c3r26","$c3r27","$c3r28","$c3r29","$c3r30","$c3r31", \
2664
  "$ac1hi","$ac1lo","$ac2hi","$ac2lo","$ac3hi","$ac3lo","$dsp_po","$dsp_sc", \
2665
  "$dsp_ca","$dsp_ou","$dsp_cc","$dsp_ef" }
2666
 
2667
/* List the "software" names for each register.  Also list the numerical
2668
   names for $fp and $sp.  */
2669
 
2670
#define ADDITIONAL_REGISTER_NAMES                                       \
2671
{                                                                       \
2672
  { "$29",      29 + GP_REG_FIRST },                                    \
2673
  { "$30",      30 + GP_REG_FIRST },                                    \
2674
  { "at",        1 + GP_REG_FIRST },                                    \
2675
  { "v0",        2 + GP_REG_FIRST },                                    \
2676
  { "v1",        3 + GP_REG_FIRST },                                    \
2677
  { "a0",        4 + GP_REG_FIRST },                                    \
2678
  { "a1",        5 + GP_REG_FIRST },                                    \
2679
  { "a2",        6 + GP_REG_FIRST },                                    \
2680
  { "a3",        7 + GP_REG_FIRST },                                    \
2681
  { "t0",        8 + GP_REG_FIRST },                                    \
2682
  { "t1",        9 + GP_REG_FIRST },                                    \
2683
  { "t2",       10 + GP_REG_FIRST },                                    \
2684
  { "t3",       11 + GP_REG_FIRST },                                    \
2685
  { "t4",       12 + GP_REG_FIRST },                                    \
2686
  { "t5",       13 + GP_REG_FIRST },                                    \
2687
  { "t6",       14 + GP_REG_FIRST },                                    \
2688
  { "t7",       15 + GP_REG_FIRST },                                    \
2689
  { "s0",       16 + GP_REG_FIRST },                                    \
2690
  { "s1",       17 + GP_REG_FIRST },                                    \
2691
  { "s2",       18 + GP_REG_FIRST },                                    \
2692
  { "s3",       19 + GP_REG_FIRST },                                    \
2693
  { "s4",       20 + GP_REG_FIRST },                                    \
2694
  { "s5",       21 + GP_REG_FIRST },                                    \
2695
  { "s6",       22 + GP_REG_FIRST },                                    \
2696
  { "s7",       23 + GP_REG_FIRST },                                    \
2697
  { "t8",       24 + GP_REG_FIRST },                                    \
2698
  { "t9",       25 + GP_REG_FIRST },                                    \
2699
  { "k0",       26 + GP_REG_FIRST },                                    \
2700
  { "k1",       27 + GP_REG_FIRST },                                    \
2701
  { "gp",       28 + GP_REG_FIRST },                                    \
2702
  { "sp",       29 + GP_REG_FIRST },                                    \
2703
  { "fp",       30 + GP_REG_FIRST },                                    \
2704
  { "ra",       31 + GP_REG_FIRST },                                    \
2705
  ALL_COP_ADDITIONAL_REGISTER_NAMES                                     \
2706
}
2707
 
2708
/* This is meant to be redefined in the host dependent files.  It is a
2709
   set of alternative names and regnums for mips coprocessors.  */
2710
 
2711
#define ALL_COP_ADDITIONAL_REGISTER_NAMES
2712
 
2713
#define PRINT_OPERAND mips_print_operand
2714
#define PRINT_OPERAND_PUNCT_VALID_P(CODE) mips_print_operand_punct[CODE]
2715
#define PRINT_OPERAND_ADDRESS mips_print_operand_address
2716
 
2717
#define DBR_OUTPUT_SEQEND(STREAM)                                       \
2718
do                                                                      \
2719
  {                                                                     \
2720
    /* Undo the effect of '%*'.  */                                     \
2721
    mips_pop_asm_switch (&mips_nomacro);                                \
2722
    mips_pop_asm_switch (&mips_noreorder);                              \
2723
    /* Emit a blank line after the delay slot for emphasis.  */         \
2724
    fputs ("\n", STREAM);                                               \
2725
  }                                                                     \
2726
while (0)
2727
 
2728
/* How to tell the debugger about changes of source files.  */
2729
#define ASM_OUTPUT_SOURCE_FILENAME mips_output_filename
2730
 
2731
/* mips-tfile does not understand .stabd directives.  */
2732
#define DBX_OUTPUT_SOURCE_LINE(STREAM, LINE, COUNTER) do {      \
2733
  dbxout_begin_stabn_sline (LINE);                              \
2734
  dbxout_stab_value_internal_label ("LM", &COUNTER);            \
2735
} while (0)
2736
 
2737
/* Use .loc directives for SDB line numbers.  */
2738
#define SDB_OUTPUT_SOURCE_LINE(STREAM, LINE)                    \
2739
  fprintf (STREAM, "\t.loc\t%d %d\n", num_source_filenames, LINE)
2740
 
2741
/* The MIPS implementation uses some labels for its own purpose.  The
2742
   following lists what labels are created, and are all formed by the
2743
   pattern $L[a-z].*.  The machine independent portion of GCC creates
2744
   labels matching:  $L[A-Z][0-9]+ and $L[0-9]+.
2745
 
2746
        LM[0-9]+        Silicon Graphics/ECOFF stabs label before each stmt.
2747
        $Lb[0-9]+       Begin blocks for MIPS debug support
2748
        $Lc[0-9]+       Label for use in s<xx> operation.
2749
        $Le[0-9]+       End blocks for MIPS debug support  */
2750
 
2751
#undef ASM_DECLARE_OBJECT_NAME
2752
#define ASM_DECLARE_OBJECT_NAME(STREAM, NAME, DECL) \
2753
  mips_declare_object (STREAM, NAME, "", ":\n")
2754
 
2755
/* Globalizing directive for a label.  */
2756
#define GLOBAL_ASM_OP "\t.globl\t"
2757
 
2758
/* This says how to define a global common symbol.  */
2759
 
2760
#define ASM_OUTPUT_ALIGNED_DECL_COMMON mips_output_aligned_decl_common
2761
 
2762
/* This says how to define a local common symbol (i.e., not visible to
2763
   linker).  */
2764
 
2765
#ifndef ASM_OUTPUT_ALIGNED_LOCAL
2766
#define ASM_OUTPUT_ALIGNED_LOCAL(STREAM, NAME, SIZE, ALIGN) \
2767
  mips_declare_common_object (STREAM, NAME, "\n\t.lcomm\t", SIZE, ALIGN, false)
2768
#endif
2769
 
2770
/* This says how to output an external.  It would be possible not to
2771
   output anything and let undefined symbol become external. However
2772
   the assembler uses length information on externals to allocate in
2773
   data/sdata bss/sbss, thereby saving exec time.  */
2774
 
2775
#undef ASM_OUTPUT_EXTERNAL
2776
#define ASM_OUTPUT_EXTERNAL(STREAM,DECL,NAME) \
2777
  mips_output_external(STREAM,DECL,NAME)
2778
 
2779
/* This is how to declare a function name.  The actual work of
2780
   emitting the label is moved to function_prologue, so that we can
2781
   get the line number correctly emitted before the .ent directive,
2782
   and after any .file directives.  Define as empty so that the function
2783
   is not declared before the .ent directive elsewhere.  */
2784
 
2785
#undef ASM_DECLARE_FUNCTION_NAME
2786
#define ASM_DECLARE_FUNCTION_NAME(STREAM,NAME,DECL)
2787
 
2788
/* This is how to store into the string LABEL
2789
   the symbol_ref name of an internal numbered label where
2790
   PREFIX is the class of label and NUM is the number within the class.
2791
   This is suitable for output with `assemble_name'.  */
2792
 
2793
#undef ASM_GENERATE_INTERNAL_LABEL
2794
#define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM)                   \
2795
  sprintf ((LABEL), "*%s%s%ld", (LOCAL_LABEL_PREFIX), (PREFIX), (long)(NUM))
2796
 
2797
/* Print debug labels as "foo = ." rather than "foo:" because they should
2798
   represent a byte pointer rather than an ISA-encoded address.  This is
2799
   particularly important for code like:
2800
 
2801
        $LFBxxx = .
2802
                .cfi_startproc
2803
                ...
2804
                .section .gcc_except_table,...
2805
                ...
2806
                .uleb128 foo-$LFBxxx
2807
 
2808
   The .uleb128 requies $LFBxxx to match the FDE start address, which is
2809
   likewise a byte pointer rather than an ISA-encoded address.
2810
 
2811
   At the time of writing, this hook is not used for the function end
2812
   label:
2813
 
2814
        $LFExxx:
2815
                .end foo
2816
 
2817
   But this doesn't matter, because GAS doesn't treat a pre-.end label
2818
   as a MIPS16 one anyway.  */
2819
 
2820
#define ASM_OUTPUT_DEBUG_LABEL(FILE, PREFIX, NUM)                       \
2821
  fprintf (FILE, "%s%s%d = .\n", LOCAL_LABEL_PREFIX, PREFIX, NUM)
2822
 
2823
/* This is how to output an element of a case-vector that is absolute.  */
2824
 
2825
#define ASM_OUTPUT_ADDR_VEC_ELT(STREAM, VALUE)                          \
2826
  fprintf (STREAM, "\t%s\t%sL%d\n",                                     \
2827
           ptr_mode == DImode ? ".dword" : ".word",                     \
2828
           LOCAL_LABEL_PREFIX,                                          \
2829
           VALUE)
2830
 
2831
/* This is how to output an element of a case-vector.  We can make the
2832
   entries PC-relative in MIPS16 code and GP-relative when .gp(d)word
2833
   is supported.  */
2834
 
2835
#define ASM_OUTPUT_ADDR_DIFF_ELT(STREAM, BODY, VALUE, REL)              \
2836
do {                                                                    \
2837
  if (TARGET_MIPS16_SHORT_JUMP_TABLES)                                  \
2838
    fprintf (STREAM, "\t.half\t%sL%d-%sL%d\n",                          \
2839
             LOCAL_LABEL_PREFIX, VALUE, LOCAL_LABEL_PREFIX, REL);       \
2840
  else if (TARGET_GPWORD)                                               \
2841
    fprintf (STREAM, "\t%s\t%sL%d\n",                                   \
2842
             ptr_mode == DImode ? ".gpdword" : ".gpword",               \
2843
             LOCAL_LABEL_PREFIX, VALUE);                                \
2844
  else if (TARGET_RTP_PIC)                                              \
2845
    {                                                                   \
2846
      /* Make the entry relative to the start of the function.  */      \
2847
      rtx fnsym = XEXP (DECL_RTL (current_function_decl), 0);            \
2848
      fprintf (STREAM, "\t%s\t%sL%d-",                                  \
2849
               Pmode == DImode ? ".dword" : ".word",                    \
2850
               LOCAL_LABEL_PREFIX, VALUE);                              \
2851
      assemble_name (STREAM, XSTR (fnsym, 0));                           \
2852
      fprintf (STREAM, "\n");                                           \
2853
    }                                                                   \
2854
  else                                                                  \
2855
    fprintf (STREAM, "\t%s\t%sL%d\n",                                   \
2856
             ptr_mode == DImode ? ".dword" : ".word",                   \
2857
             LOCAL_LABEL_PREFIX, VALUE);                                \
2858
} while (0)
2859
 
2860
/* This is how to output an assembler line
2861
   that says to advance the location counter
2862
   to a multiple of 2**LOG bytes.  */
2863
 
2864
#define ASM_OUTPUT_ALIGN(STREAM,LOG)                                    \
2865
  fprintf (STREAM, "\t.align\t%d\n", (LOG))
2866
 
2867
/* This is how to output an assembler line to advance the location
2868
   counter by SIZE bytes.  */
2869
 
2870
#undef ASM_OUTPUT_SKIP
2871
#define ASM_OUTPUT_SKIP(STREAM,SIZE)                                    \
2872
  fprintf (STREAM, "\t.space\t"HOST_WIDE_INT_PRINT_UNSIGNED"\n", (SIZE))
2873
 
2874
/* This is how to output a string.  */
2875
#undef ASM_OUTPUT_ASCII
2876
#define ASM_OUTPUT_ASCII mips_output_ascii
2877
 
2878
/* Output #ident as a in the read-only data section.  */
2879
#undef  ASM_OUTPUT_IDENT
2880
#define ASM_OUTPUT_IDENT(FILE, STRING)                                  \
2881
{                                                                       \
2882
  const char *p = STRING;                                               \
2883
  int size = strlen (p) + 1;                                            \
2884
  switch_to_section (readonly_data_section);                            \
2885
  assemble_string (p, size);                                            \
2886
}
2887
 
2888
/* Default to -G 8 */
2889
#ifndef MIPS_DEFAULT_GVALUE
2890
#define MIPS_DEFAULT_GVALUE 8
2891
#endif
2892
 
2893
/* Define the strings to put out for each section in the object file.  */
2894
#define TEXT_SECTION_ASM_OP     "\t.text"       /* instructions */
2895
#define DATA_SECTION_ASM_OP     "\t.data"       /* large data */
2896
 
2897
#undef READONLY_DATA_SECTION_ASM_OP
2898
#define READONLY_DATA_SECTION_ASM_OP    "\t.rdata"      /* read-only data */
2899
 
2900
#define ASM_OUTPUT_REG_PUSH(STREAM,REGNO)                               \
2901
do                                                                      \
2902
  {                                                                     \
2903
    fprintf (STREAM, "\t%s\t%s,%s,-8\n\t%s\t%s,0(%s)\n",                \
2904
             TARGET_64BIT ? "daddiu" : "addiu",                         \
2905
             reg_names[STACK_POINTER_REGNUM],                           \
2906
             reg_names[STACK_POINTER_REGNUM],                           \
2907
             TARGET_64BIT ? "sd" : "sw",                                \
2908
             reg_names[REGNO],                                          \
2909
             reg_names[STACK_POINTER_REGNUM]);                          \
2910
  }                                                                     \
2911
while (0)
2912
 
2913
#define ASM_OUTPUT_REG_POP(STREAM,REGNO)                                \
2914
do                                                                      \
2915
  {                                                                     \
2916
    mips_push_asm_switch (&mips_noreorder);                             \
2917
    fprintf (STREAM, "\t%s\t%s,0(%s)\n\t%s\t%s,%s,8\n",                 \
2918
             TARGET_64BIT ? "ld" : "lw",                                \
2919
             reg_names[REGNO],                                          \
2920
             reg_names[STACK_POINTER_REGNUM],                           \
2921
             TARGET_64BIT ? "daddu" : "addu",                           \
2922
             reg_names[STACK_POINTER_REGNUM],                           \
2923
             reg_names[STACK_POINTER_REGNUM]);                          \
2924
    mips_pop_asm_switch (&mips_noreorder);                              \
2925
  }                                                                     \
2926
while (0)
2927
 
2928
/* How to start an assembler comment.
2929
   The leading space is important (the mips native assembler requires it).  */
2930
#ifndef ASM_COMMENT_START
2931
#define ASM_COMMENT_START " #"
2932
#endif
2933
 
2934
/* Default definitions for size_t and ptrdiff_t.  We must override the
2935
   definitions from ../svr4.h on mips-*-linux-gnu.  */
2936
 
2937
#undef SIZE_TYPE
2938
#define SIZE_TYPE (POINTER_SIZE == 64 ? "long unsigned int" : "unsigned int")
2939
 
2940
#undef PTRDIFF_TYPE
2941
#define PTRDIFF_TYPE (POINTER_SIZE == 64 ? "long int" : "int")
2942
 
2943
/* The maximum number of bytes that can be copied by one iteration of
2944
   a movmemsi loop; see mips_block_move_loop.  */
2945
#define MIPS_MAX_MOVE_BYTES_PER_LOOP_ITER \
2946
  (UNITS_PER_WORD * 4)
2947
 
2948
/* The maximum number of bytes that can be copied by a straight-line
2949
   implementation of movmemsi; see mips_block_move_straight.  We want
2950
   to make sure that any loop-based implementation will iterate at
2951
   least twice.  */
2952
#define MIPS_MAX_MOVE_BYTES_STRAIGHT \
2953
  (MIPS_MAX_MOVE_BYTES_PER_LOOP_ITER * 2)
2954
 
2955
/* The base cost of a memcpy call, for MOVE_RATIO and friends.  These
2956
   values were determined experimentally by benchmarking with CSiBE.
2957
   In theory, the call overhead is higher for TARGET_ABICALLS (especially
2958
   for o32 where we have to restore $gp afterwards as well as make an
2959
   indirect call), but in practice, bumping this up higher for
2960
   TARGET_ABICALLS doesn't make much difference to code size.  */
2961
 
2962
#define MIPS_CALL_RATIO 8
2963
 
2964
/* Any loop-based implementation of movmemsi will have at least
2965
   MIPS_MAX_MOVE_BYTES_STRAIGHT / UNITS_PER_WORD memory-to-memory
2966
   moves, so allow individual copies of fewer elements.
2967
 
2968
   When movmemsi is not available, use a value approximating
2969
   the length of a memcpy call sequence, so that move_by_pieces
2970
   will generate inline code if it is shorter than a function call.
2971
   Since move_by_pieces_ninsns counts memory-to-memory moves, but
2972
   we'll have to generate a load/store pair for each, halve the
2973
   value of MIPS_CALL_RATIO to take that into account.  */
2974
 
2975
#define MOVE_RATIO(speed)                               \
2976
  (HAVE_movmemsi                                        \
2977
   ? MIPS_MAX_MOVE_BYTES_STRAIGHT / MOVE_MAX            \
2978
   : MIPS_CALL_RATIO / 2)
2979
 
2980
/* movmemsi is meant to generate code that is at least as good as
2981
   move_by_pieces.  However, movmemsi effectively uses a by-pieces
2982
   implementation both for moves smaller than a word and for word-aligned
2983
   moves of no more than MIPS_MAX_MOVE_BYTES_STRAIGHT bytes.  We should
2984
   allow the tree-level optimisers to do such moves by pieces, as it
2985
   often exposes other optimization opportunities.  We might as well
2986
   continue to use movmemsi at the rtl level though, as it produces
2987
   better code when scheduling is disabled (such as at -O).  */
2988
 
2989
#define MOVE_BY_PIECES_P(SIZE, ALIGN)                           \
2990
  (HAVE_movmemsi                                                \
2991
   ? (!currently_expanding_to_rtl                               \
2992
      && ((ALIGN) < BITS_PER_WORD                               \
2993
          ? (SIZE) < UNITS_PER_WORD                             \
2994
          : (SIZE) <= MIPS_MAX_MOVE_BYTES_STRAIGHT))            \
2995
   : (move_by_pieces_ninsns (SIZE, ALIGN, MOVE_MAX_PIECES + 1)  \
2996
      < (unsigned int) MOVE_RATIO (false)))
2997
 
2998
/* For CLEAR_RATIO, when optimizing for size, give a better estimate
2999
   of the length of a memset call, but use the default otherwise.  */
3000
 
3001
#define CLEAR_RATIO(speed)\
3002
  ((speed) ? 15 : MIPS_CALL_RATIO)
3003
 
3004
/* This is similar to CLEAR_RATIO, but for a non-zero constant, so when
3005
   optimizing for size adjust the ratio to account for the overhead of
3006
   loading the constant and replicating it across the word.  */
3007
 
3008
#define SET_RATIO(speed) \
3009
  ((speed) ? 15 : MIPS_CALL_RATIO - 2)
3010
 
3011
/* STORE_BY_PIECES_P can be used when copying a constant string, but
3012
   in that case each word takes 3 insns (lui, ori, sw), or more in
3013
   64-bit mode, instead of 2 (lw, sw).  For now we always fail this
3014
   and let the move_by_pieces code copy the string from read-only
3015
   memory.  In the future, this could be tuned further for multi-issue
3016
   CPUs that can issue stores down one pipe and arithmetic instructions
3017
   down another; in that case, the lui/ori/sw combination would be a
3018
   win for long enough strings.  */
3019
 
3020
#define STORE_BY_PIECES_P(SIZE, ALIGN) 0
3021
 
3022
#ifndef __mips16
3023
/* Since the bits of the _init and _fini function is spread across
3024
   many object files, each potentially with its own GP, we must assume
3025
   we need to load our GP.  We don't preserve $gp or $ra, since each
3026
   init/fini chunk is supposed to initialize $gp, and crti/crtn
3027
   already take care of preserving $ra and, when appropriate, $gp.  */
3028
#if (defined _ABIO32 && _MIPS_SIM == _ABIO32)
3029
#define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC)      \
3030
   asm (SECTION_OP "\n\
3031
        .set noreorder\n\
3032
        bal 1f\n\
3033
        nop\n\
3034
1:      .cpload $31\n\
3035
        .set reorder\n\
3036
        jal " USER_LABEL_PREFIX #FUNC "\n\
3037
        " TEXT_SECTION_ASM_OP);
3038
#endif /* Switch to #elif when we're no longer limited by K&R C.  */
3039
#if (defined _ABIN32 && _MIPS_SIM == _ABIN32) \
3040
   || (defined _ABI64 && _MIPS_SIM == _ABI64)
3041
#define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC)      \
3042
   asm (SECTION_OP "\n\
3043
        .set noreorder\n\
3044
        bal 1f\n\
3045
        nop\n\
3046
1:      .set reorder\n\
3047
        .cpsetup $31, $2, 1b\n\
3048
        jal " USER_LABEL_PREFIX #FUNC "\n\
3049
        " TEXT_SECTION_ASM_OP);
3050
#endif
3051
#endif
3052
 
3053
#ifndef HAVE_AS_TLS
3054
#define HAVE_AS_TLS 0
3055
#endif
3056
 
3057
#ifndef USED_FOR_TARGET
3058
/* Information about ".set noFOO; ...; .set FOO" blocks.  */
3059
struct mips_asm_switch {
3060
  /* The FOO in the description above.  */
3061
  const char *name;
3062
 
3063
  /* The current block nesting level, or 0 if we aren't in a block.  */
3064
  int nesting_level;
3065
};
3066
 
3067
extern const enum reg_class mips_regno_to_class[];
3068
extern bool mips_hard_regno_mode_ok[][FIRST_PSEUDO_REGISTER];
3069
extern bool mips_print_operand_punct[256];
3070
extern const char *current_function_file; /* filename current function is in */
3071
extern int num_source_filenames;        /* current .file # */
3072
extern struct mips_asm_switch mips_noreorder;
3073
extern struct mips_asm_switch mips_nomacro;
3074
extern struct mips_asm_switch mips_noat;
3075
extern int mips_dbx_regno[];
3076
extern int mips_dwarf_regno[];
3077
extern bool mips_split_p[];
3078
extern bool mips_split_hi_p[];
3079
extern enum processor_type mips_arch;   /* which cpu to codegen for */
3080
extern enum processor_type mips_tune;   /* which cpu to schedule for */
3081
extern int mips_isa;                    /* architectural level */
3082
extern int mips_abi;                    /* which ABI to use */
3083
extern const struct mips_cpu_info *mips_arch_info;
3084
extern const struct mips_cpu_info *mips_tune_info;
3085
extern const struct mips_rtx_cost_data *mips_cost;
3086
extern bool mips_base_mips16;
3087
extern enum mips_code_readable_setting mips_code_readable;
3088
#endif
3089
 
3090
/* Enable querying of DFA units.  */
3091
#define CPU_UNITS_QUERY 1
3092
 
3093
#define FINAL_PRESCAN_INSN(INSN, OPVEC, NOPERANDS)      \
3094
  mips_final_prescan_insn (INSN, OPVEC, NOPERANDS)
3095
 
3096
/* This is necessary to avoid a warning about comparing different enum
3097
   types.  */
3098
#define mips_tune_attr ((enum attr_cpu) mips_tune)
3099
 
3100
/* As on most targets, we want the .eh_frame section to be read-only where
3101
   possible.  And as on most targets, this means two things:
3102
 
3103
     (a) Non-locally-binding pointers must have an indirect encoding,
3104
         so that the addresses in the .eh_frame section itself become
3105
         locally-binding.
3106
 
3107
     (b) A shared library's .eh_frame section must encode locally-binding
3108
         pointers in a relative (relocation-free) form.
3109
 
3110
   However, MIPS has traditionally not allowed directives like:
3111
 
3112
        .long   x-.
3113
 
3114
   in cases where "x" is in a different section, or is not defined in the
3115
   same assembly file.  We are therefore unable to emit the PC-relative
3116
   form required by (b) at assembly time.
3117
 
3118
   Fortunately, the linker is able to convert absolute addresses into
3119
   PC-relative addresses on our behalf.  Unfortunately, only certain
3120
   versions of the linker know how to do this for indirect pointers,
3121
   and for personality data.  We must fall back on using writable
3122
   .eh_frame sections for shared libraries if the linker does not
3123
   support this feature.  */
3124
#define ASM_PREFERRED_EH_DATA_FORMAT(CODE,GLOBAL) \
3125
  (((GLOBAL) ? DW_EH_PE_indirect : 0) | DW_EH_PE_absptr)

powered by: WebSVN 2.1.0

© copyright 1999-2025 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.