OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-stable/] [gcc-4.5.1/] [gcc/] [config/] [rs6000/] [predicates.md] - Blame information for rev 856

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 282 jeremybenn
;; Predicate definitions for POWER and PowerPC.
2
;; Copyright (C) 2005, 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
3
;;
4
;; This file is part of GCC.
5
;;
6
;; GCC is free software; you can redistribute it and/or modify
7
;; it under the terms of the GNU General Public License as published by
8
;; the Free Software Foundation; either version 3, or (at your option)
9
;; any later version.
10
;;
11
;; GCC is distributed in the hope that it will be useful,
12
;; but WITHOUT ANY WARRANTY; without even the implied warranty of
13
;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14
;; GNU General Public License for more details.
15
;;
16
;; You should have received a copy of the GNU General Public License
17
;; along with GCC; see the file COPYING3.  If not see
18
;; .
19
 
20
;; Return 1 for anything except PARALLEL.
21
(define_predicate "any_operand"
22
  (match_code "const_int,const_double,const,symbol_ref,label_ref,subreg,reg,mem"))
23
 
24
;; Return 1 for any PARALLEL.
25
(define_predicate "any_parallel_operand"
26
  (match_code "parallel"))
27
 
28
;; Return 1 if op is COUNT register.
29
(define_predicate "count_register_operand"
30
  (and (match_code "reg")
31
       (match_test "REGNO (op) == CTR_REGNO
32
                    || REGNO (op) > LAST_VIRTUAL_REGISTER")))
33
 
34
;; Return 1 if op is an Altivec register.
35
(define_predicate "altivec_register_operand"
36
   (and (match_operand 0 "register_operand")
37
        (match_test "GET_CODE (op) != REG
38
                     || ALTIVEC_REGNO_P (REGNO (op))
39
                     || REGNO (op) > LAST_VIRTUAL_REGISTER")))
40
 
41
;; Return 1 if op is a VSX register.
42
(define_predicate "vsx_register_operand"
43
   (and (match_operand 0 "register_operand")
44
        (match_test "GET_CODE (op) != REG
45
                     || VSX_REGNO_P (REGNO (op))
46
                     || REGNO (op) > LAST_VIRTUAL_REGISTER")))
47
 
48
;; Return 1 if op is a vector register that operates on floating point vectors
49
;; (either altivec or VSX).
50
(define_predicate "vfloat_operand"
51
   (and (match_operand 0 "register_operand")
52
        (match_test "GET_CODE (op) != REG
53
                     || VFLOAT_REGNO_P (REGNO (op))
54
                     || REGNO (op) > LAST_VIRTUAL_REGISTER")))
55
 
56
;; Return 1 if op is a vector register that operates on integer vectors
57
;; (only altivec, VSX doesn't support integer vectors)
58
(define_predicate "vint_operand"
59
   (and (match_operand 0 "register_operand")
60
        (match_test "GET_CODE (op) != REG
61
                     || VINT_REGNO_P (REGNO (op))
62
                     || REGNO (op) > LAST_VIRTUAL_REGISTER")))
63
 
64
;; Return 1 if op is a vector register to do logical operations on (and, or,
65
;; xor, etc.)
66
(define_predicate "vlogical_operand"
67
   (and (match_operand 0 "register_operand")
68
        (match_test "GET_CODE (op) != REG
69
                     || VLOGICAL_REGNO_P (REGNO (op))
70
                     || REGNO (op) > LAST_VIRTUAL_REGISTER")))
71
 
72
;; Return 1 if op is XER register.
73
(define_predicate "xer_operand"
74
  (and (match_code "reg")
75
       (match_test "XER_REGNO_P (REGNO (op))")))
76
 
77
;; Return 1 if op is a signed 5-bit constant integer.
78
(define_predicate "s5bit_cint_operand"
79
  (and (match_code "const_int")
80
       (match_test "INTVAL (op) >= -16 && INTVAL (op) <= 15")))
81
 
82
;; Return 1 if op is a unsigned 5-bit constant integer.
83
(define_predicate "u5bit_cint_operand"
84
  (and (match_code "const_int")
85
       (match_test "INTVAL (op) >= 0 && INTVAL (op) <= 31")))
86
 
87
;; Return 1 if op is a signed 8-bit constant integer.
88
;; Integer multiplication complete more quickly
89
(define_predicate "s8bit_cint_operand"
90
  (and (match_code "const_int")
91
       (match_test "INTVAL (op) >= -128 && INTVAL (op) <= 127")))
92
 
93
;; Return 1 if op is a constant integer that can fit in a D field.
94
(define_predicate "short_cint_operand"
95
  (and (match_code "const_int")
96
       (match_test "satisfies_constraint_I (op)")))
97
 
98
;; Return 1 if op is a constant integer that can fit in an unsigned D field.
99
(define_predicate "u_short_cint_operand"
100
  (and (match_code "const_int")
101
       (match_test "satisfies_constraint_K (op)")))
102
 
103
;; Return 1 if op is a constant integer that cannot fit in a signed D field.
104
(define_predicate "non_short_cint_operand"
105
  (and (match_code "const_int")
106
       (match_test "(unsigned HOST_WIDE_INT)
107
                    (INTVAL (op) + 0x8000) >= 0x10000")))
108
 
109
;; Return 1 if op is a positive constant integer that is an exact power of 2.
110
(define_predicate "exact_log2_cint_operand"
111
  (and (match_code "const_int")
112
       (match_test "INTVAL (op) > 0 && exact_log2 (INTVAL (op)) >= 0")))
113
 
114
;; Return 1 if op is a register that is not special.
115
(define_predicate "gpc_reg_operand"
116
   (and (match_operand 0 "register_operand")
117
        (match_test "(GET_CODE (op) != REG
118
                      || (REGNO (op) >= ARG_POINTER_REGNUM
119
                          && !XER_REGNO_P (REGNO (op)))
120
                      || REGNO (op) < MQ_REGNO)
121
                     && !((TARGET_E500_DOUBLE || TARGET_SPE)
122
                          && invalid_e500_subreg (op, mode))")))
123
 
124
;; Return 1 if op is a register that is a condition register field.
125
(define_predicate "cc_reg_operand"
126
   (and (match_operand 0 "register_operand")
127
        (match_test "GET_CODE (op) != REG
128
                     || REGNO (op) > LAST_VIRTUAL_REGISTER
129
                     || CR_REGNO_P (REGNO (op))")))
130
 
131
;; Return 1 if op is a register that is a condition register field not cr0.
132
(define_predicate "cc_reg_not_cr0_operand"
133
   (and (match_operand 0 "register_operand")
134
        (match_test "GET_CODE (op) != REG
135
                     || REGNO (op) > LAST_VIRTUAL_REGISTER
136
                     || CR_REGNO_NOT_CR0_P (REGNO (op))")))
137
 
138
;; Return 1 if op is a register that is a condition register field and if generating microcode, not cr0.
139
(define_predicate "cc_reg_not_micro_cr0_operand"
140
   (and (match_operand 0 "register_operand")
141
        (match_test "GET_CODE (op) != REG
142
                     || REGNO (op) > LAST_VIRTUAL_REGISTER
143
                     || (rs6000_gen_cell_microcode && CR_REGNO_NOT_CR0_P (REGNO (op)))
144
                     || (!rs6000_gen_cell_microcode && CR_REGNO_P (REGNO (op)))")))
145
 
146
;; Return 1 if op is a constant integer valid for D field
147
;; or non-special register register.
148
(define_predicate "reg_or_short_operand"
149
  (if_then_else (match_code "const_int")
150
    (match_operand 0 "short_cint_operand")
151
    (match_operand 0 "gpc_reg_operand")))
152
 
153
;; Return 1 if op is a constant integer valid whose negation is valid for
154
;; D field or non-special register register.
155
;; Do not allow a constant zero because all patterns that call this
156
;; predicate use "addic r1,r2,-const" to set carry when r2 is greater than
157
;; or equal to const, which does not work for zero.
158
(define_predicate "reg_or_neg_short_operand"
159
  (if_then_else (match_code "const_int")
160
    (match_test "satisfies_constraint_P (op)
161
                 && INTVAL (op) != 0")
162
    (match_operand 0 "gpc_reg_operand")))
163
 
164
;; Return 1 if op is a constant integer valid for DS field
165
;; or non-special register.
166
(define_predicate "reg_or_aligned_short_operand"
167
  (if_then_else (match_code "const_int")
168
    (and (match_operand 0 "short_cint_operand")
169
         (match_test "!(INTVAL (op) & 3)"))
170
    (match_operand 0 "gpc_reg_operand")))
171
 
172
;; Return 1 if op is a constant integer whose high-order 16 bits are zero
173
;; or non-special register.
174
(define_predicate "reg_or_u_short_operand"
175
  (if_then_else (match_code "const_int")
176
    (match_operand 0 "u_short_cint_operand")
177
    (match_operand 0 "gpc_reg_operand")))
178
 
179
;; Return 1 if op is any constant integer
180
;; or non-special register.
181
(define_predicate "reg_or_cint_operand"
182
  (ior (match_code "const_int")
183
       (match_operand 0 "gpc_reg_operand")))
184
 
185
;; Return 1 if op is a constant integer valid for addition
186
;; or non-special register.
187
(define_predicate "reg_or_add_cint_operand"
188
  (if_then_else (match_code "const_int")
189
    (match_test "(HOST_BITS_PER_WIDE_INT == 32
190
                  && (mode == SImode || INTVAL (op) < 0x7fff8000))
191
                 || ((unsigned HOST_WIDE_INT) (INTVAL (op) + 0x80008000)
192
                     < (unsigned HOST_WIDE_INT) 0x100000000ll)")
193
    (match_operand 0 "gpc_reg_operand")))
194
 
195
;; Return 1 if op is a constant integer valid for subtraction
196
;; or non-special register.
197
(define_predicate "reg_or_sub_cint_operand"
198
  (if_then_else (match_code "const_int")
199
    (match_test "(HOST_BITS_PER_WIDE_INT == 32
200
                  && (mode == SImode || - INTVAL (op) < 0x7fff8000))
201
                 || ((unsigned HOST_WIDE_INT) (- INTVAL (op)
202
                                               + (mode == SImode
203
                                                  ? 0x80000000 : 0x80008000))
204
                     < (unsigned HOST_WIDE_INT) 0x100000000ll)")
205
    (match_operand 0 "gpc_reg_operand")))
206
 
207
;; Return 1 if op is any 32-bit unsigned constant integer
208
;; or non-special register.
209
(define_predicate "reg_or_logical_cint_operand"
210
  (if_then_else (match_code "const_int")
211
    (match_test "(GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT
212
                  && INTVAL (op) >= 0)
213
                 || ((INTVAL (op) & GET_MODE_MASK (mode)
214
                      & (~ (unsigned HOST_WIDE_INT) 0xffffffff)) == 0)")
215
    (if_then_else (match_code "const_double")
216
      (match_test "GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT
217
                   && mode == DImode
218
                   && CONST_DOUBLE_HIGH (op) == 0")
219
      (match_operand 0 "gpc_reg_operand"))))
220
 
221
;; Return 1 if operand is a CONST_DOUBLE that can be set in a register
222
;; with no more than one instruction per word.
223
(define_predicate "easy_fp_constant"
224
  (match_code "const_double")
225
{
226
  long k[4];
227
  REAL_VALUE_TYPE rv;
228
 
229
  if (GET_MODE (op) != mode
230
      || (!SCALAR_FLOAT_MODE_P (mode) && mode != DImode))
231
    return 0;
232
 
233
  /* Consider all constants with -msoft-float to be easy.  */
234
  if ((TARGET_SOFT_FLOAT || TARGET_E500_SINGLE
235
      || (TARGET_HARD_FLOAT && (TARGET_SINGLE_FLOAT && ! TARGET_DOUBLE_FLOAT)))
236
      && mode != DImode)
237
    return 1;
238
 
239
  if (DECIMAL_FLOAT_MODE_P (mode))
240
    return 0;
241
 
242
  /* If we are using V.4 style PIC, consider all constants to be hard.  */
243
  if (flag_pic && DEFAULT_ABI == ABI_V4)
244
    return 0;
245
 
246
#ifdef TARGET_RELOCATABLE
247
  /* Similarly if we are using -mrelocatable, consider all constants
248
     to be hard.  */
249
  if (TARGET_RELOCATABLE)
250
    return 0;
251
#endif
252
 
253
  switch (mode)
254
    {
255
    case TFmode:
256
      if (TARGET_E500_DOUBLE)
257
        return 0;
258
 
259
      REAL_VALUE_FROM_CONST_DOUBLE (rv, op);
260
      REAL_VALUE_TO_TARGET_LONG_DOUBLE (rv, k);
261
 
262
      return (num_insns_constant_wide ((HOST_WIDE_INT) k[0]) == 1
263
              && num_insns_constant_wide ((HOST_WIDE_INT) k[1]) == 1
264
              && num_insns_constant_wide ((HOST_WIDE_INT) k[2]) == 1
265
              && num_insns_constant_wide ((HOST_WIDE_INT) k[3]) == 1);
266
 
267
    case DFmode:
268
      /* The constant 0.f is easy under VSX.  */
269
      if (op == CONST0_RTX (DFmode) && VECTOR_UNIT_VSX_P (DFmode))
270
        return 1;
271
 
272
      /* Force constants to memory before reload to utilize
273
         compress_float_constant.
274
         Avoid this when flag_unsafe_math_optimizations is enabled
275
         because RDIV division to reciprocal optimization is not able
276
         to regenerate the division.  */
277
      if (TARGET_E500_DOUBLE
278
          || (!reload_in_progress && !reload_completed
279
              && !flag_unsafe_math_optimizations))
280
        return 0;
281
 
282
      REAL_VALUE_FROM_CONST_DOUBLE (rv, op);
283
      REAL_VALUE_TO_TARGET_DOUBLE (rv, k);
284
 
285
      return (num_insns_constant_wide ((HOST_WIDE_INT) k[0]) == 1
286
              && num_insns_constant_wide ((HOST_WIDE_INT) k[1]) == 1);
287
 
288
    case SFmode:
289
      /* The constant 0.f is easy.  */
290
      if (op == CONST0_RTX (SFmode))
291
        return 1;
292
 
293
      /* Force constants to memory before reload to utilize
294
         compress_float_constant.
295
         Avoid this when flag_unsafe_math_optimizations is enabled
296
         because RDIV division to reciprocal optimization is not able
297
         to regenerate the division.  */
298
      if (!reload_in_progress && !reload_completed
299
          && !flag_unsafe_math_optimizations)
300
        return 0;
301
 
302
      REAL_VALUE_FROM_CONST_DOUBLE (rv, op);
303
      REAL_VALUE_TO_TARGET_SINGLE (rv, k[0]);
304
 
305
      return num_insns_constant_wide (k[0]) == 1;
306
 
307
  case DImode:
308
    return ((TARGET_POWERPC64
309
             && GET_CODE (op) == CONST_DOUBLE && CONST_DOUBLE_LOW (op) == 0)
310
            || (num_insns_constant (op, DImode) <= 2));
311
 
312
  case SImode:
313
    return 1;
314
 
315
  default:
316
    gcc_unreachable ();
317
  }
318
})
319
 
320
;; Return 1 if the operand is a CONST_VECTOR and can be loaded into a
321
;; vector register without using memory.
322
(define_predicate "easy_vector_constant"
323
  (match_code "const_vector")
324
{
325
  /* As the paired vectors are actually FPRs it seems that there is
326
     no easy way to load a CONST_VECTOR without using memory.  */
327
  if (TARGET_PAIRED_FLOAT)
328
    return false;
329
 
330
  if ((VSX_VECTOR_MODE (mode) || mode == TImode) && zero_constant (op, mode))
331
    return true;
332
 
333
  if (ALTIVEC_VECTOR_MODE (mode))
334
    {
335
      if (zero_constant (op, mode))
336
        return true;
337
      return easy_altivec_constant (op, mode);
338
    }
339
 
340
  if (SPE_VECTOR_MODE (mode))
341
    {
342
      int cst, cst2;
343
      if (zero_constant (op, mode))
344
        return true;
345
      if (GET_MODE_CLASS (mode) != MODE_VECTOR_INT)
346
        return false;
347
 
348
      /* Limit SPE vectors to 15 bits signed.  These we can generate with:
349
           li r0, CONSTANT1
350
           evmergelo r0, r0, r0
351
           li r0, CONSTANT2
352
 
353
         I don't know how efficient it would be to allow bigger constants,
354
         considering we'll have an extra 'ori' for every 'li'.  I doubt 5
355
         instructions is better than a 64-bit memory load, but I don't
356
         have the e500 timing specs.  */
357
      if (mode == V2SImode)
358
        {
359
          cst  = INTVAL (CONST_VECTOR_ELT (op, 0));
360
          cst2 = INTVAL (CONST_VECTOR_ELT (op, 1));
361
          return cst  >= -0x7fff && cst <= 0x7fff
362
                 && cst2 >= -0x7fff && cst2 <= 0x7fff;
363
        }
364
    }
365
 
366
  return false;
367
})
368
 
369
;; Same as easy_vector_constant but only for EASY_VECTOR_15_ADD_SELF.
370
(define_predicate "easy_vector_constant_add_self"
371
  (and (match_code "const_vector")
372
       (and (match_test "TARGET_ALTIVEC")
373
            (match_test "easy_altivec_constant (op, mode)")))
374
{
375
  HOST_WIDE_INT val = const_vector_elt_as_int (op, GET_MODE_NUNITS (mode) - 1);
376
  val = ((val & 0xff) ^ 0x80) - 0x80;
377
  return EASY_VECTOR_15_ADD_SELF (val);
378
})
379
 
380
;; Same as easy_vector_constant but only for EASY_VECTOR_MSB.
381
(define_predicate "easy_vector_constant_msb"
382
  (and (match_code "const_vector")
383
       (and (match_test "TARGET_ALTIVEC")
384
            (match_test "easy_altivec_constant (op, mode)")))
385
{
386
  HOST_WIDE_INT val = const_vector_elt_as_int (op, GET_MODE_NUNITS (mode) - 1);
387
  return EASY_VECTOR_MSB (val, GET_MODE_INNER (mode));
388
})
389
 
390
;; Return 1 if operand is constant zero (scalars and vectors).
391
(define_predicate "zero_constant"
392
  (and (match_code "const_int,const_double,const_vector")
393
       (match_test "op == CONST0_RTX (mode)")))
394
 
395
;; Return 1 if operand is 0.0.
396
;; or non-special register register field no cr0
397
(define_predicate "zero_fp_constant"
398
  (and (match_code "const_double")
399
       (match_test "SCALAR_FLOAT_MODE_P (mode)
400
                    && op == CONST0_RTX (mode)")))
401
 
402
;; Return 1 if the operand is in volatile memory.  Note that during the
403
;; RTL generation phase, memory_operand does not return TRUE for volatile
404
;; memory references.  So this function allows us to recognize volatile
405
;; references where it's safe.
406
(define_predicate "volatile_mem_operand"
407
  (and (and (match_code "mem")
408
            (match_test "MEM_VOLATILE_P (op)"))
409
       (if_then_else (match_test "reload_completed")
410
         (match_operand 0 "memory_operand")
411
         (if_then_else (match_test "reload_in_progress")
412
           (match_test "strict_memory_address_p (mode, XEXP (op, 0))")
413
           (match_test "memory_address_p (mode, XEXP (op, 0))")))))
414
 
415
;; Return 1 if the operand is an offsettable memory operand.
416
(define_predicate "offsettable_mem_operand"
417
  (and (match_operand 0 "memory_operand")
418
       (match_test "offsettable_nonstrict_memref_p (op)")))
419
 
420
;; Return 1 if the operand is a memory operand with an address divisible by 4
421
(define_predicate "word_offset_memref_operand"
422
  (match_operand 0 "memory_operand")
423
{
424
  /* Address inside MEM.  */
425
  op = XEXP (op, 0);
426
 
427
  /* Extract address from auto-inc/dec.  */
428
  if (GET_CODE (op) == PRE_INC
429
      || GET_CODE (op) == PRE_DEC)
430
    op = XEXP (op, 0);
431
  else if (GET_CODE (op) == PRE_MODIFY)
432
    op = XEXP (op, 1);
433
 
434
  return (GET_CODE (op) != PLUS
435
          || ! REG_P (XEXP (op, 0))
436
          || GET_CODE (XEXP (op, 1)) != CONST_INT
437
          || INTVAL (XEXP (op, 1)) % 4 == 0);
438
})
439
 
440
;; Return 1 if the operand is an indexed or indirect memory operand.
441
(define_predicate "indexed_or_indirect_operand"
442
  (match_code "mem")
443
{
444
  op = XEXP (op, 0);
445
  if (VECTOR_MEM_ALTIVEC_P (mode)
446
      && GET_CODE (op) == AND
447
      && GET_CODE (XEXP (op, 1)) == CONST_INT
448
      && INTVAL (XEXP (op, 1)) == -16)
449
    op = XEXP (op, 0);
450
 
451
  return indexed_or_indirect_address (op, mode);
452
})
453
 
454
;; Return 1 if the operand is an indexed or indirect memory operand with an
455
;; AND -16 in it, used to recognize when we need to switch to Altivec loads
456
;; to realign loops instead of VSX (altivec silently ignores the bottom bits,
457
;; while VSX uses the full address and traps)
458
(define_predicate "altivec_indexed_or_indirect_operand"
459
  (match_code "mem")
460
{
461
  op = XEXP (op, 0);
462
  if (VECTOR_MEM_ALTIVEC_OR_VSX_P (mode)
463
      && GET_CODE (op) == AND
464
      && GET_CODE (XEXP (op, 1)) == CONST_INT
465
      && INTVAL (XEXP (op, 1)) == -16)
466
    return indexed_or_indirect_address (XEXP (op, 0), mode);
467
 
468
  return 0;
469
})
470
 
471
;; Return 1 if the operand is an indexed or indirect address.
472
(define_special_predicate "indexed_or_indirect_address"
473
  (and (match_test "REG_P (op)
474
                    || (GET_CODE (op) == PLUS
475
                        /* Omit testing REG_P (XEXP (op, 0)).  */
476
                        && REG_P (XEXP (op, 1)))")
477
       (match_operand 0 "address_operand")))
478
 
479
;; Used for the destination of the fix_truncdfsi2 expander.
480
;; If stfiwx will be used, the result goes to memory; otherwise,
481
;; we're going to emit a store and a load of a subreg, so the dest is a
482
;; register.
483
(define_predicate "fix_trunc_dest_operand"
484
  (if_then_else (match_test "! TARGET_E500_DOUBLE && TARGET_PPC_GFXOPT")
485
   (match_operand 0 "memory_operand")
486
   (match_operand 0 "gpc_reg_operand")))
487
 
488
;; Return 1 if the operand is either a non-special register or can be used
489
;; as the operand of a `mode' add insn.
490
(define_predicate "add_operand"
491
  (if_then_else (match_code "const_int")
492
    (match_test "satisfies_constraint_I (op)
493
                 || satisfies_constraint_L (op)")
494
    (match_operand 0 "gpc_reg_operand")))
495
 
496
;; Return 1 if OP is a constant but not a valid add_operand.
497
(define_predicate "non_add_cint_operand"
498
  (and (match_code "const_int")
499
       (match_test "!satisfies_constraint_I (op)
500
                    && !satisfies_constraint_L (op)")))
501
 
502
;; Return 1 if the operand is a constant that can be used as the operand
503
;; of an OR or XOR.
504
(define_predicate "logical_const_operand"
505
  (match_code "const_int,const_double")
506
{
507
  HOST_WIDE_INT opl, oph;
508
 
509
  if (GET_CODE (op) == CONST_INT)
510
    {
511
      opl = INTVAL (op) & GET_MODE_MASK (mode);
512
 
513
      if (HOST_BITS_PER_WIDE_INT <= 32
514
          && GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT && opl < 0)
515
        return 0;
516
    }
517
  else if (GET_CODE (op) == CONST_DOUBLE)
518
    {
519
      gcc_assert (GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT);
520
 
521
      opl = CONST_DOUBLE_LOW (op);
522
      oph = CONST_DOUBLE_HIGH (op);
523
      if (oph != 0)
524
        return 0;
525
    }
526
  else
527
    return 0;
528
 
529
  return ((opl & ~ (unsigned HOST_WIDE_INT) 0xffff) == 0
530
          || (opl & ~ (unsigned HOST_WIDE_INT) 0xffff0000) == 0);
531
})
532
 
533
;; Return 1 if the operand is a non-special register or a constant that
534
;; can be used as the operand of an OR or XOR.
535
(define_predicate "logical_operand"
536
  (ior (match_operand 0 "gpc_reg_operand")
537
       (match_operand 0 "logical_const_operand")))
538
 
539
;; Return 1 if op is a constant that is not a logical operand, but could
540
;; be split into one.
541
(define_predicate "non_logical_cint_operand"
542
  (and (match_code "const_int,const_double")
543
       (and (not (match_operand 0 "logical_operand"))
544
            (match_operand 0 "reg_or_logical_cint_operand"))))
545
 
546
;; Return 1 if op is a constant that can be encoded in a 32-bit mask,
547
;; suitable for use with rlwinm (no more than two 1->0 or 0->1
548
;; transitions).  Reject all ones and all zeros, since these should have
549
;; been optimized away and confuse the making of MB and ME.
550
(define_predicate "mask_operand"
551
  (match_code "const_int")
552
{
553
  HOST_WIDE_INT c, lsb;
554
 
555
  c = INTVAL (op);
556
 
557
  if (TARGET_POWERPC64)
558
    {
559
      /* Fail if the mask is not 32-bit.  */
560
      if (mode == DImode && (c & ~(unsigned HOST_WIDE_INT) 0xffffffff) != 0)
561
        return 0;
562
 
563
      /* Fail if the mask wraps around because the upper 32-bits of the
564
         mask will all be 1s, contrary to GCC's internal view.  */
565
      if ((c & 0x80000001) == 0x80000001)
566
        return 0;
567
    }
568
 
569
  /* We don't change the number of transitions by inverting,
570
     so make sure we start with the LS bit zero.  */
571
  if (c & 1)
572
    c = ~c;
573
 
574
  /* Reject all zeros or all ones.  */
575
  if (c == 0)
576
    return 0;
577
 
578
  /* Find the first transition.  */
579
  lsb = c & -c;
580
 
581
  /* Invert to look for a second transition.  */
582
  c = ~c;
583
 
584
  /* Erase first transition.  */
585
  c &= -lsb;
586
 
587
  /* Find the second transition (if any).  */
588
  lsb = c & -c;
589
 
590
  /* Match if all the bits above are 1's (or c is zero).  */
591
  return c == -lsb;
592
})
593
 
594
;; Return 1 for the PowerPC64 rlwinm corner case.
595
(define_predicate "mask_operand_wrap"
596
  (match_code "const_int")
597
{
598
  HOST_WIDE_INT c, lsb;
599
 
600
  c = INTVAL (op);
601
 
602
  if ((c & 0x80000001) != 0x80000001)
603
    return 0;
604
 
605
  c = ~c;
606
  if (c == 0)
607
    return 0;
608
 
609
  lsb = c & -c;
610
  c = ~c;
611
  c &= -lsb;
612
  lsb = c & -c;
613
  return c == -lsb;
614
})
615
 
616
;; Return 1 if the operand is a constant that is a PowerPC64 mask
617
;; suitable for use with rldicl or rldicr (no more than one 1->0 or 0->1
618
;; transition).  Reject all zeros, since zero should have been
619
;; optimized away and confuses the making of MB and ME.
620
(define_predicate "mask64_operand"
621
  (match_code "const_int")
622
{
623
  HOST_WIDE_INT c, lsb;
624
 
625
  c = INTVAL (op);
626
 
627
  /* Reject all zeros.  */
628
  if (c == 0)
629
    return 0;
630
 
631
  /* We don't change the number of transitions by inverting,
632
     so make sure we start with the LS bit zero.  */
633
  if (c & 1)
634
    c = ~c;
635
 
636
  /* Find the first transition.  */
637
  lsb = c & -c;
638
 
639
  /* Match if all the bits above are 1's (or c is zero).  */
640
  return c == -lsb;
641
})
642
 
643
;; Like mask64_operand, but allow up to three transitions.  This
644
;; predicate is used by insn patterns that generate two rldicl or
645
;; rldicr machine insns.
646
(define_predicate "mask64_2_operand"
647
  (match_code "const_int")
648
{
649
  HOST_WIDE_INT c, lsb;
650
 
651
  c = INTVAL (op);
652
 
653
  /* Disallow all zeros.  */
654
  if (c == 0)
655
    return 0;
656
 
657
  /* We don't change the number of transitions by inverting,
658
     so make sure we start with the LS bit zero.  */
659
  if (c & 1)
660
    c = ~c;
661
 
662
  /* Find the first transition.  */
663
  lsb = c & -c;
664
 
665
  /* Invert to look for a second transition.  */
666
  c = ~c;
667
 
668
  /* Erase first transition.  */
669
  c &= -lsb;
670
 
671
  /* Find the second transition.  */
672
  lsb = c & -c;
673
 
674
  /* Invert to look for a third transition.  */
675
  c = ~c;
676
 
677
  /* Erase second transition.  */
678
  c &= -lsb;
679
 
680
  /* Find the third transition (if any).  */
681
  lsb = c & -c;
682
 
683
  /* Match if all the bits above are 1's (or c is zero).  */
684
  return c == -lsb;
685
})
686
 
687
;; Like and_operand, but also match constants that can be implemented
688
;; with two rldicl or rldicr insns.
689
(define_predicate "and64_2_operand"
690
  (ior (match_operand 0 "mask64_2_operand")
691
       (if_then_else (match_test "fixed_regs[CR0_REGNO]")
692
         (match_operand 0 "gpc_reg_operand")
693
         (match_operand 0 "logical_operand"))))
694
 
695
;; Return 1 if the operand is either a non-special register or a
696
;; constant that can be used as the operand of a logical AND.
697
(define_predicate "and_operand"
698
  (ior (match_operand 0 "mask_operand")
699
       (ior (and (match_test "TARGET_POWERPC64 && mode == DImode")
700
                 (match_operand 0 "mask64_operand"))
701
            (if_then_else (match_test "fixed_regs[CR0_REGNO]")
702
              (match_operand 0 "gpc_reg_operand")
703
              (match_operand 0 "logical_operand")))))
704
 
705
;; Return 1 if the operand is either a logical operand or a short cint operand.
706
(define_predicate "scc_eq_operand"
707
  (ior (match_operand 0 "logical_operand")
708
       (match_operand 0 "short_cint_operand")))
709
 
710
;; Return 1 if the operand is a general non-special register or memory operand.
711
(define_predicate "reg_or_mem_operand"
712
     (ior (match_operand 0 "memory_operand")
713
          (ior (and (match_code "mem")
714
                    (match_test "macho_lo_sum_memory_operand (op, mode)"))
715
               (ior (match_operand 0 "volatile_mem_operand")
716
                    (match_operand 0 "gpc_reg_operand")))))
717
 
718
;; Return 1 if the operand is either an easy FP constant or memory or reg.
719
(define_predicate "reg_or_none500mem_operand"
720
  (if_then_else (match_code "mem")
721
     (and (match_test "!TARGET_E500_DOUBLE")
722
          (ior (match_operand 0 "memory_operand")
723
               (ior (match_test "macho_lo_sum_memory_operand (op, mode)")
724
                    (match_operand 0 "volatile_mem_operand"))))
725
     (match_operand 0 "gpc_reg_operand")))
726
 
727
;; Return 1 if the operand is CONST_DOUBLE 0, register or memory operand.
728
(define_predicate "zero_reg_mem_operand"
729
  (ior (match_operand 0 "zero_fp_constant")
730
       (match_operand 0 "reg_or_mem_operand")))
731
 
732
;; Return 1 if the operand is a general register or memory operand without
733
;; pre_inc or pre_dec or pre_modify, which produces invalid form of PowerPC
734
;; lwa instruction.
735
(define_predicate "lwa_operand"
736
  (match_code "reg,subreg,mem")
737
{
738
  rtx inner = op;
739
 
740
  if (reload_completed && GET_CODE (inner) == SUBREG)
741
    inner = SUBREG_REG (inner);
742
 
743
  return gpc_reg_operand (inner, mode)
744
    || (memory_operand (inner, mode)
745
        && GET_CODE (XEXP (inner, 0)) != PRE_INC
746
        && GET_CODE (XEXP (inner, 0)) != PRE_DEC
747
        && (GET_CODE (XEXP (inner, 0)) != PRE_MODIFY
748
            || legitimate_indexed_address_p (XEXP (XEXP (inner, 0), 1), 0))
749
        && (GET_CODE (XEXP (inner, 0)) != PLUS
750
            || GET_CODE (XEXP (XEXP (inner, 0), 1)) != CONST_INT
751
            || INTVAL (XEXP (XEXP (inner, 0), 1)) % 4 == 0));
752
})
753
 
754
;; Return 1 if the operand, used inside a MEM, is a SYMBOL_REF.
755
(define_predicate "symbol_ref_operand"
756
  (and (match_code "symbol_ref")
757
       (match_test "(mode == VOIDmode || GET_MODE (op) == mode)
758
                    && (DEFAULT_ABI != ABI_AIX || SYMBOL_REF_FUNCTION_P (op))")))
759
 
760
;; Return 1 if op is an operand that can be loaded via the GOT.
761
;; or non-special register register field no cr0
762
(define_predicate "got_operand"
763
  (match_code "symbol_ref,const,label_ref"))
764
 
765
;; Return 1 if op is a simple reference that can be loaded via the GOT,
766
;; excluding labels involving addition.
767
(define_predicate "got_no_const_operand"
768
  (match_code "symbol_ref,label_ref"))
769
 
770
;; Return 1 if op is a SYMBOL_REF for a TLS symbol.
771
(define_predicate "rs6000_tls_symbol_ref"
772
  (and (match_code "symbol_ref")
773
       (match_test "RS6000_SYMBOL_REF_TLS_P (op)")))
774
 
775
;; Return 1 if the operand, used inside a MEM, is a valid first argument
776
;; to CALL.  This is a SYMBOL_REF, a pseudo-register, LR or CTR.
777
(define_predicate "call_operand"
778
  (if_then_else (match_code "reg")
779
     (match_test "REGNO (op) == LR_REGNO
780
                  || REGNO (op) == CTR_REGNO
781
                  || REGNO (op) >= FIRST_PSEUDO_REGISTER")
782
     (match_code "symbol_ref")))
783
 
784
;; Return 1 if the operand is a SYMBOL_REF for a function known to be in
785
;; this file.
786
(define_predicate "current_file_function_operand"
787
  (and (match_code "symbol_ref")
788
       (match_test "(DEFAULT_ABI != ABI_AIX || SYMBOL_REF_FUNCTION_P (op))
789
                    && ((SYMBOL_REF_LOCAL_P (op)
790
                         && (DEFAULT_ABI != ABI_AIX
791
                             || !SYMBOL_REF_EXTERNAL_P (op)))
792
                        || (op == XEXP (DECL_RTL (current_function_decl),
793
                                                  0)))")))
794
 
795
;; Return 1 if this operand is a valid input for a move insn.
796
(define_predicate "input_operand"
797
  (match_code "label_ref,symbol_ref,const,high,reg,subreg,mem,
798
               const_double,const_vector,const_int,plus")
799
{
800
  /* Memory is always valid.  */
801
  if (memory_operand (op, mode))
802
    return 1;
803
 
804
  /* For floating-point, easy constants are valid.  */
805
  if (SCALAR_FLOAT_MODE_P (mode)
806
      && CONSTANT_P (op)
807
      && easy_fp_constant (op, mode))
808
    return 1;
809
 
810
  /* Allow any integer constant.  */
811
  if (GET_MODE_CLASS (mode) == MODE_INT
812
      && (GET_CODE (op) == CONST_INT
813
          || GET_CODE (op) == CONST_DOUBLE))
814
    return 1;
815
 
816
  /* Allow easy vector constants.  */
817
  if (GET_CODE (op) == CONST_VECTOR
818
      && easy_vector_constant (op, mode))
819
    return 1;
820
 
821
  /* Do not allow invalid E500 subregs.  */
822
  if ((TARGET_E500_DOUBLE || TARGET_SPE)
823
      && GET_CODE (op) == SUBREG
824
      && invalid_e500_subreg (op, mode))
825
    return 0;
826
 
827
  /* For floating-point or multi-word mode, the only remaining valid type
828
     is a register.  */
829
  if (SCALAR_FLOAT_MODE_P (mode)
830
      || GET_MODE_SIZE (mode) > UNITS_PER_WORD)
831
    return register_operand (op, mode);
832
 
833
  /* The only cases left are integral modes one word or smaller (we
834
     do not get called for MODE_CC values).  These can be in any
835
     register.  */
836
  if (register_operand (op, mode))
837
    return 1;
838
 
839
  /* A SYMBOL_REF referring to the TOC is valid.  */
840
  if (legitimate_constant_pool_address_p (op))
841
    return 1;
842
 
843
  /* A constant pool expression (relative to the TOC) is valid */
844
  if (toc_relative_expr_p (op))
845
    return 1;
846
 
847
  /* V.4 allows SYMBOL_REFs and CONSTs that are in the small data region
848
     to be valid.  */
849
  if (DEFAULT_ABI == ABI_V4
850
      && (GET_CODE (op) == SYMBOL_REF || GET_CODE (op) == CONST)
851
      && small_data_operand (op, Pmode))
852
    return 1;
853
 
854
  return 0;
855
})
856
 
857
;; Return true if OP is an invalid SUBREG operation on the e500.
858
(define_predicate "rs6000_nonimmediate_operand"
859
  (match_code "reg,subreg,mem")
860
{
861
  if ((TARGET_E500_DOUBLE || TARGET_SPE)
862
      && GET_CODE (op) == SUBREG
863
      && invalid_e500_subreg (op, mode))
864
    return 0;
865
 
866
  return nonimmediate_operand (op, mode);
867
})
868
 
869
;; Return true if operand is boolean operator.
870
(define_predicate "boolean_operator"
871
  (match_code "and,ior,xor"))
872
 
873
;; Return true if operand is OR-form of boolean operator.
874
(define_predicate "boolean_or_operator"
875
  (match_code "ior,xor"))
876
 
877
;; Return true if operand is an equality operator.
878
(define_special_predicate "equality_operator"
879
  (match_code "eq,ne"))
880
 
881
;; Return true if operand is MIN or MAX operator.
882
(define_predicate "min_max_operator"
883
  (match_code "smin,smax,umin,umax"))
884
 
885
;; Return 1 if OP is a comparison operation that is valid for a branch
886
;; instruction.  We check the opcode against the mode of the CC value.
887
;; validate_condition_mode is an assertion.
888
(define_predicate "branch_comparison_operator"
889
   (and (match_operand 0 "comparison_operator")
890
        (and (match_test "GET_MODE_CLASS (GET_MODE (XEXP (op, 0))) == MODE_CC")
891
             (match_test "validate_condition_mode (GET_CODE (op),
892
                                                   GET_MODE (XEXP (op, 0))),
893
                          1"))))
894
 
895
(define_predicate "rs6000_cbranch_operator"
896
  (if_then_else (match_test "TARGET_HARD_FLOAT && !TARGET_FPRS")
897
                (match_operand 0 "ordered_comparison_operator")
898
                (match_operand 0 "comparison_operator")))
899
 
900
;; Return 1 if OP is a comparison operation that is valid for an SCC insn --
901
;; it must be a positive comparison.
902
(define_predicate "scc_comparison_operator"
903
  (and (match_operand 0 "branch_comparison_operator")
904
       (match_code "eq,lt,gt,ltu,gtu,unordered")))
905
 
906
;; Return 1 if OP is a comparison operation that is valid for a branch
907
;; insn, which is true if the corresponding bit in the CC register is set.
908
(define_predicate "branch_positive_comparison_operator"
909
  (and (match_operand 0 "branch_comparison_operator")
910
       (match_code "eq,lt,gt,ltu,gtu,unordered")))
911
 
912
;; Return 1 if OP is a load multiple operation, known to be a PARALLEL.
913
(define_predicate "load_multiple_operation"
914
  (match_code "parallel")
915
{
916
  int count = XVECLEN (op, 0);
917
  unsigned int dest_regno;
918
  rtx src_addr;
919
  int i;
920
 
921
  /* Perform a quick check so we don't blow up below.  */
922
  if (count <= 1
923
      || GET_CODE (XVECEXP (op, 0, 0)) != SET
924
      || GET_CODE (SET_DEST (XVECEXP (op, 0, 0))) != REG
925
      || GET_CODE (SET_SRC (XVECEXP (op, 0, 0))) != MEM)
926
    return 0;
927
 
928
  dest_regno = REGNO (SET_DEST (XVECEXP (op, 0, 0)));
929
  src_addr = XEXP (SET_SRC (XVECEXP (op, 0, 0)), 0);
930
 
931
  for (i = 1; i < count; i++)
932
    {
933
      rtx elt = XVECEXP (op, 0, i);
934
 
935
      if (GET_CODE (elt) != SET
936
          || GET_CODE (SET_DEST (elt)) != REG
937
          || GET_MODE (SET_DEST (elt)) != SImode
938
          || REGNO (SET_DEST (elt)) != dest_regno + i
939
          || GET_CODE (SET_SRC (elt)) != MEM
940
          || GET_MODE (SET_SRC (elt)) != SImode
941
          || GET_CODE (XEXP (SET_SRC (elt), 0)) != PLUS
942
          || ! rtx_equal_p (XEXP (XEXP (SET_SRC (elt), 0), 0), src_addr)
943
          || GET_CODE (XEXP (XEXP (SET_SRC (elt), 0), 1)) != CONST_INT
944
          || INTVAL (XEXP (XEXP (SET_SRC (elt), 0), 1)) != i * 4)
945
        return 0;
946
    }
947
 
948
  return 1;
949
})
950
 
951
;; Return 1 if OP is a store multiple operation, known to be a PARALLEL.
952
;; The second vector element is a CLOBBER.
953
(define_predicate "store_multiple_operation"
954
  (match_code "parallel")
955
{
956
  int count = XVECLEN (op, 0) - 1;
957
  unsigned int src_regno;
958
  rtx dest_addr;
959
  int i;
960
 
961
  /* Perform a quick check so we don't blow up below.  */
962
  if (count <= 1
963
      || GET_CODE (XVECEXP (op, 0, 0)) != SET
964
      || GET_CODE (SET_DEST (XVECEXP (op, 0, 0))) != MEM
965
      || GET_CODE (SET_SRC (XVECEXP (op, 0, 0))) != REG)
966
    return 0;
967
 
968
  src_regno = REGNO (SET_SRC (XVECEXP (op, 0, 0)));
969
  dest_addr = XEXP (SET_DEST (XVECEXP (op, 0, 0)), 0);
970
 
971
  for (i = 1; i < count; i++)
972
    {
973
      rtx elt = XVECEXP (op, 0, i + 1);
974
 
975
      if (GET_CODE (elt) != SET
976
          || GET_CODE (SET_SRC (elt)) != REG
977
          || GET_MODE (SET_SRC (elt)) != SImode
978
          || REGNO (SET_SRC (elt)) != src_regno + i
979
          || GET_CODE (SET_DEST (elt)) != MEM
980
          || GET_MODE (SET_DEST (elt)) != SImode
981
          || GET_CODE (XEXP (SET_DEST (elt), 0)) != PLUS
982
          || ! rtx_equal_p (XEXP (XEXP (SET_DEST (elt), 0), 0), dest_addr)
983
          || GET_CODE (XEXP (XEXP (SET_DEST (elt), 0), 1)) != CONST_INT
984
          || INTVAL (XEXP (XEXP (SET_DEST (elt), 0), 1)) != i * 4)
985
        return 0;
986
    }
987
 
988
  return 1;
989
})
990
 
991
;; Return 1 if OP is valid for a save_world call in prologue, known to be
992
;; a PARLLEL.
993
(define_predicate "save_world_operation"
994
  (match_code "parallel")
995
{
996
  int index;
997
  int i;
998
  rtx elt;
999
  int count = XVECLEN (op, 0);
1000
 
1001
  if (count != 54)
1002
    return 0;
1003
 
1004
  index = 0;
1005
  if (GET_CODE (XVECEXP (op, 0, index++)) != CLOBBER
1006
      || GET_CODE (XVECEXP (op, 0, index++)) != USE)
1007
    return 0;
1008
 
1009
  for (i=1; i <= 18; i++)
1010
    {
1011
      elt = XVECEXP (op, 0, index++);
1012
      if (GET_CODE (elt) != SET
1013
          || GET_CODE (SET_DEST (elt)) != MEM
1014
          || ! memory_operand (SET_DEST (elt), DFmode)
1015
          || GET_CODE (SET_SRC (elt)) != REG
1016
          || GET_MODE (SET_SRC (elt)) != DFmode)
1017
        return 0;
1018
    }
1019
 
1020
  for (i=1; i <= 12; i++)
1021
    {
1022
      elt = XVECEXP (op, 0, index++);
1023
      if (GET_CODE (elt) != SET
1024
          || GET_CODE (SET_DEST (elt)) != MEM
1025
          || GET_CODE (SET_SRC (elt)) != REG
1026
          || GET_MODE (SET_SRC (elt)) != V4SImode)
1027
        return 0;
1028
    }
1029
 
1030
  for (i=1; i <= 19; i++)
1031
    {
1032
      elt = XVECEXP (op, 0, index++);
1033
      if (GET_CODE (elt) != SET
1034
          || GET_CODE (SET_DEST (elt)) != MEM
1035
          || ! memory_operand (SET_DEST (elt), Pmode)
1036
          || GET_CODE (SET_SRC (elt)) != REG
1037
          || GET_MODE (SET_SRC (elt)) != Pmode)
1038
        return 0;
1039
    }
1040
 
1041
  elt = XVECEXP (op, 0, index++);
1042
  if (GET_CODE (elt) != SET
1043
      || GET_CODE (SET_DEST (elt)) != MEM
1044
      || ! memory_operand (SET_DEST (elt), Pmode)
1045
      || GET_CODE (SET_SRC (elt)) != REG
1046
      || REGNO (SET_SRC (elt)) != CR2_REGNO
1047
      || GET_MODE (SET_SRC (elt)) != Pmode)
1048
    return 0;
1049
 
1050
  if (GET_CODE (XVECEXP (op, 0, index++)) != SET
1051
      || GET_CODE (XVECEXP (op, 0, index++)) != SET)
1052
    return 0;
1053
  return 1;
1054
})
1055
 
1056
;; Return 1 if OP is valid for a restore_world call in epilogue, known to be
1057
;; a PARLLEL.
1058
(define_predicate "restore_world_operation"
1059
  (match_code "parallel")
1060
{
1061
  int index;
1062
  int i;
1063
  rtx elt;
1064
  int count = XVECLEN (op, 0);
1065
 
1066
  if (count != 59)
1067
    return 0;
1068
 
1069
  index = 0;
1070
  if (GET_CODE (XVECEXP (op, 0, index++)) != RETURN
1071
      || GET_CODE (XVECEXP (op, 0, index++)) != USE
1072
      || GET_CODE (XVECEXP (op, 0, index++)) != USE
1073
      || GET_CODE (XVECEXP (op, 0, index++)) != CLOBBER)
1074
    return 0;
1075
 
1076
  elt = XVECEXP (op, 0, index++);
1077
  if (GET_CODE (elt) != SET
1078
      || GET_CODE (SET_SRC (elt)) != MEM
1079
      || ! memory_operand (SET_SRC (elt), Pmode)
1080
      || GET_CODE (SET_DEST (elt)) != REG
1081
      || REGNO (SET_DEST (elt)) != CR2_REGNO
1082
      || GET_MODE (SET_DEST (elt)) != Pmode)
1083
    return 0;
1084
 
1085
  for (i=1; i <= 19; i++)
1086
    {
1087
      elt = XVECEXP (op, 0, index++);
1088
      if (GET_CODE (elt) != SET
1089
          || GET_CODE (SET_SRC (elt)) != MEM
1090
          || ! memory_operand (SET_SRC (elt), Pmode)
1091
          || GET_CODE (SET_DEST (elt)) != REG
1092
          || GET_MODE (SET_DEST (elt)) != Pmode)
1093
        return 0;
1094
    }
1095
 
1096
  for (i=1; i <= 12; i++)
1097
    {
1098
      elt = XVECEXP (op, 0, index++);
1099
      if (GET_CODE (elt) != SET
1100
          || GET_CODE (SET_SRC (elt)) != MEM
1101
          || GET_CODE (SET_DEST (elt)) != REG
1102
          || GET_MODE (SET_DEST (elt)) != V4SImode)
1103
        return 0;
1104
    }
1105
 
1106
  for (i=1; i <= 18; i++)
1107
    {
1108
      elt = XVECEXP (op, 0, index++);
1109
      if (GET_CODE (elt) != SET
1110
          || GET_CODE (SET_SRC (elt)) != MEM
1111
          || ! memory_operand (SET_SRC (elt), DFmode)
1112
          || GET_CODE (SET_DEST (elt)) != REG
1113
          || GET_MODE (SET_DEST (elt)) != DFmode)
1114
        return 0;
1115
    }
1116
 
1117
  if (GET_CODE (XVECEXP (op, 0, index++)) != CLOBBER
1118
      || GET_CODE (XVECEXP (op, 0, index++)) != CLOBBER
1119
      || GET_CODE (XVECEXP (op, 0, index++)) != CLOBBER
1120
      || GET_CODE (XVECEXP (op, 0, index++)) != CLOBBER
1121
      || GET_CODE (XVECEXP (op, 0, index++)) != USE)
1122
    return 0;
1123
  return 1;
1124
})
1125
 
1126
;; Return 1 if OP is valid for a vrsave call, known to be a PARALLEL.
1127
(define_predicate "vrsave_operation"
1128
  (match_code "parallel")
1129
{
1130
  int count = XVECLEN (op, 0);
1131
  unsigned int dest_regno, src_regno;
1132
  int i;
1133
 
1134
  if (count <= 1
1135
      || GET_CODE (XVECEXP (op, 0, 0)) != SET
1136
      || GET_CODE (SET_DEST (XVECEXP (op, 0, 0))) != REG
1137
      || GET_CODE (SET_SRC (XVECEXP (op, 0, 0))) != UNSPEC_VOLATILE
1138
      || XINT (SET_SRC (XVECEXP (op, 0, 0)), 1) != UNSPECV_SET_VRSAVE)
1139
    return 0;
1140
 
1141
  dest_regno = REGNO (SET_DEST (XVECEXP (op, 0, 0)));
1142
  src_regno  = REGNO (XVECEXP (SET_SRC (XVECEXP (op, 0, 0)), 0, 1));
1143
 
1144
  if (dest_regno != VRSAVE_REGNO || src_regno != VRSAVE_REGNO)
1145
    return 0;
1146
 
1147
  for (i = 1; i < count; i++)
1148
    {
1149
      rtx elt = XVECEXP (op, 0, i);
1150
 
1151
      if (GET_CODE (elt) != CLOBBER
1152
          && GET_CODE (elt) != SET)
1153
        return 0;
1154
    }
1155
 
1156
  return 1;
1157
})
1158
 
1159
;; Return 1 if OP is valid for mfcr insn, known to be a PARALLEL.
1160
(define_predicate "mfcr_operation"
1161
  (match_code "parallel")
1162
{
1163
  int count = XVECLEN (op, 0);
1164
  int i;
1165
 
1166
  /* Perform a quick check so we don't blow up below.  */
1167
  if (count < 1
1168
      || GET_CODE (XVECEXP (op, 0, 0)) != SET
1169
      || GET_CODE (SET_SRC (XVECEXP (op, 0, 0))) != UNSPEC
1170
      || XVECLEN (SET_SRC (XVECEXP (op, 0, 0)), 0) != 2)
1171
    return 0;
1172
 
1173
  for (i = 0; i < count; i++)
1174
    {
1175
      rtx exp = XVECEXP (op, 0, i);
1176
      rtx unspec;
1177
      int maskval;
1178
      rtx src_reg;
1179
 
1180
      src_reg = XVECEXP (SET_SRC (exp), 0, 0);
1181
 
1182
      if (GET_CODE (src_reg) != REG
1183
          || GET_MODE (src_reg) != CCmode
1184
          || ! CR_REGNO_P (REGNO (src_reg)))
1185
        return 0;
1186
 
1187
      if (GET_CODE (exp) != SET
1188
          || GET_CODE (SET_DEST (exp)) != REG
1189
          || GET_MODE (SET_DEST (exp)) != SImode
1190
          || ! INT_REGNO_P (REGNO (SET_DEST (exp))))
1191
        return 0;
1192
      unspec = SET_SRC (exp);
1193
      maskval = 1 << (MAX_CR_REGNO - REGNO (src_reg));
1194
 
1195
      if (GET_CODE (unspec) != UNSPEC
1196
          || XINT (unspec, 1) != UNSPEC_MOVESI_FROM_CR
1197
          || XVECLEN (unspec, 0) != 2
1198
          || XVECEXP (unspec, 0, 0) != src_reg
1199
          || GET_CODE (XVECEXP (unspec, 0, 1)) != CONST_INT
1200
          || INTVAL (XVECEXP (unspec, 0, 1)) != maskval)
1201
        return 0;
1202
    }
1203
  return 1;
1204
})
1205
 
1206
;; Return 1 if OP is valid for mtcrf insn, known to be a PARALLEL.
1207
(define_predicate "mtcrf_operation"
1208
  (match_code "parallel")
1209
{
1210
  int count = XVECLEN (op, 0);
1211
  int i;
1212
  rtx src_reg;
1213
 
1214
  /* Perform a quick check so we don't blow up below.  */
1215
  if (count < 1
1216
      || GET_CODE (XVECEXP (op, 0, 0)) != SET
1217
      || GET_CODE (SET_SRC (XVECEXP (op, 0, 0))) != UNSPEC
1218
      || XVECLEN (SET_SRC (XVECEXP (op, 0, 0)), 0) != 2)
1219
    return 0;
1220
  src_reg = XVECEXP (SET_SRC (XVECEXP (op, 0, 0)), 0, 0);
1221
 
1222
  if (GET_CODE (src_reg) != REG
1223
      || GET_MODE (src_reg) != SImode
1224
      || ! INT_REGNO_P (REGNO (src_reg)))
1225
    return 0;
1226
 
1227
  for (i = 0; i < count; i++)
1228
    {
1229
      rtx exp = XVECEXP (op, 0, i);
1230
      rtx unspec;
1231
      int maskval;
1232
 
1233
      if (GET_CODE (exp) != SET
1234
          || GET_CODE (SET_DEST (exp)) != REG
1235
          || GET_MODE (SET_DEST (exp)) != CCmode
1236
          || ! CR_REGNO_P (REGNO (SET_DEST (exp))))
1237
        return 0;
1238
      unspec = SET_SRC (exp);
1239
      maskval = 1 << (MAX_CR_REGNO - REGNO (SET_DEST (exp)));
1240
 
1241
      if (GET_CODE (unspec) != UNSPEC
1242
          || XINT (unspec, 1) != UNSPEC_MOVESI_TO_CR
1243
          || XVECLEN (unspec, 0) != 2
1244
          || XVECEXP (unspec, 0, 0) != src_reg
1245
          || GET_CODE (XVECEXP (unspec, 0, 1)) != CONST_INT
1246
          || INTVAL (XVECEXP (unspec, 0, 1)) != maskval)
1247
        return 0;
1248
    }
1249
  return 1;
1250
})
1251
 
1252
;; Return 1 if OP is valid for lmw insn, known to be a PARALLEL.
1253
(define_predicate "lmw_operation"
1254
  (match_code "parallel")
1255
{
1256
  int count = XVECLEN (op, 0);
1257
  unsigned int dest_regno;
1258
  rtx src_addr;
1259
  unsigned int base_regno;
1260
  HOST_WIDE_INT offset;
1261
  int i;
1262
 
1263
  /* Perform a quick check so we don't blow up below.  */
1264
  if (count <= 1
1265
      || GET_CODE (XVECEXP (op, 0, 0)) != SET
1266
      || GET_CODE (SET_DEST (XVECEXP (op, 0, 0))) != REG
1267
      || GET_CODE (SET_SRC (XVECEXP (op, 0, 0))) != MEM)
1268
    return 0;
1269
 
1270
  dest_regno = REGNO (SET_DEST (XVECEXP (op, 0, 0)));
1271
  src_addr = XEXP (SET_SRC (XVECEXP (op, 0, 0)), 0);
1272
 
1273
  if (dest_regno > 31
1274
      || count != 32 - (int) dest_regno)
1275
    return 0;
1276
 
1277
  if (legitimate_indirect_address_p (src_addr, 0))
1278
    {
1279
      offset = 0;
1280
      base_regno = REGNO (src_addr);
1281
      if (base_regno == 0)
1282
        return 0;
1283
    }
1284
  else if (rs6000_legitimate_offset_address_p (SImode, src_addr, 0))
1285
    {
1286
      offset = INTVAL (XEXP (src_addr, 1));
1287
      base_regno = REGNO (XEXP (src_addr, 0));
1288
    }
1289
  else
1290
    return 0;
1291
 
1292
  for (i = 0; i < count; i++)
1293
    {
1294
      rtx elt = XVECEXP (op, 0, i);
1295
      rtx newaddr;
1296
      rtx addr_reg;
1297
      HOST_WIDE_INT newoffset;
1298
 
1299
      if (GET_CODE (elt) != SET
1300
          || GET_CODE (SET_DEST (elt)) != REG
1301
          || GET_MODE (SET_DEST (elt)) != SImode
1302
          || REGNO (SET_DEST (elt)) != dest_regno + i
1303
          || GET_CODE (SET_SRC (elt)) != MEM
1304
          || GET_MODE (SET_SRC (elt)) != SImode)
1305
        return 0;
1306
      newaddr = XEXP (SET_SRC (elt), 0);
1307
      if (legitimate_indirect_address_p (newaddr, 0))
1308
        {
1309
          newoffset = 0;
1310
          addr_reg = newaddr;
1311
        }
1312
      else if (rs6000_legitimate_offset_address_p (SImode, newaddr, 0))
1313
        {
1314
          addr_reg = XEXP (newaddr, 0);
1315
          newoffset = INTVAL (XEXP (newaddr, 1));
1316
        }
1317
      else
1318
        return 0;
1319
      if (REGNO (addr_reg) != base_regno
1320
          || newoffset != offset + 4 * i)
1321
        return 0;
1322
    }
1323
 
1324
  return 1;
1325
})
1326
 
1327
;; Return 1 if OP is valid for stmw insn, known to be a PARALLEL.
1328
(define_predicate "stmw_operation"
1329
  (match_code "parallel")
1330
{
1331
  int count = XVECLEN (op, 0);
1332
  unsigned int src_regno;
1333
  rtx dest_addr;
1334
  unsigned int base_regno;
1335
  HOST_WIDE_INT offset;
1336
  int i;
1337
 
1338
  /* Perform a quick check so we don't blow up below.  */
1339
  if (count <= 1
1340
      || GET_CODE (XVECEXP (op, 0, 0)) != SET
1341
      || GET_CODE (SET_DEST (XVECEXP (op, 0, 0))) != MEM
1342
      || GET_CODE (SET_SRC (XVECEXP (op, 0, 0))) != REG)
1343
    return 0;
1344
 
1345
  src_regno = REGNO (SET_SRC (XVECEXP (op, 0, 0)));
1346
  dest_addr = XEXP (SET_DEST (XVECEXP (op, 0, 0)), 0);
1347
 
1348
  if (src_regno > 31
1349
      || count != 32 - (int) src_regno)
1350
    return 0;
1351
 
1352
  if (legitimate_indirect_address_p (dest_addr, 0))
1353
    {
1354
      offset = 0;
1355
      base_regno = REGNO (dest_addr);
1356
      if (base_regno == 0)
1357
        return 0;
1358
    }
1359
  else if (rs6000_legitimate_offset_address_p (SImode, dest_addr, 0))
1360
    {
1361
      offset = INTVAL (XEXP (dest_addr, 1));
1362
      base_regno = REGNO (XEXP (dest_addr, 0));
1363
    }
1364
  else
1365
    return 0;
1366
 
1367
  for (i = 0; i < count; i++)
1368
    {
1369
      rtx elt = XVECEXP (op, 0, i);
1370
      rtx newaddr;
1371
      rtx addr_reg;
1372
      HOST_WIDE_INT newoffset;
1373
 
1374
      if (GET_CODE (elt) != SET
1375
          || GET_CODE (SET_SRC (elt)) != REG
1376
          || GET_MODE (SET_SRC (elt)) != SImode
1377
          || REGNO (SET_SRC (elt)) != src_regno + i
1378
          || GET_CODE (SET_DEST (elt)) != MEM
1379
          || GET_MODE (SET_DEST (elt)) != SImode)
1380
        return 0;
1381
      newaddr = XEXP (SET_DEST (elt), 0);
1382
      if (legitimate_indirect_address_p (newaddr, 0))
1383
        {
1384
          newoffset = 0;
1385
          addr_reg = newaddr;
1386
        }
1387
      else if (rs6000_legitimate_offset_address_p (SImode, newaddr, 0))
1388
        {
1389
          addr_reg = XEXP (newaddr, 0);
1390
          newoffset = INTVAL (XEXP (newaddr, 1));
1391
        }
1392
      else
1393
        return 0;
1394
      if (REGNO (addr_reg) != base_regno
1395
          || newoffset != offset + 4 * i)
1396
        return 0;
1397
    }
1398
 
1399
  return 1;
1400
})

powered by: WebSVN 2.1.0

© copyright 1999-2025 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.