OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-stable/] [gcc-4.5.1/] [gcc/] [config/] [sh/] [sh.h] - Blame information for rev 826

Details | Compare with Previous | View Log

Line No. Rev Author Line
1 282 jeremybenn
/* Definitions of target machine for GNU compiler for Renesas / SuperH SH.
2
   Copyright (C) 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3
   2003, 2004, 2005, 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
4
   Contributed by Steve Chamberlain (sac@cygnus.com).
5
   Improved by Jim Wilson (wilson@cygnus.com).
6
 
7
This file is part of GCC.
8
 
9
GCC is free software; you can redistribute it and/or modify
10
it under the terms of the GNU General Public License as published by
11
the Free Software Foundation; either version 3, or (at your option)
12
any later version.
13
 
14
GCC is distributed in the hope that it will be useful,
15
but WITHOUT ANY WARRANTY; without even the implied warranty of
16
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17
GNU General Public License for more details.
18
 
19
You should have received a copy of the GNU General Public License
20
along with GCC; see the file COPYING3.  If not see
21
<http://www.gnu.org/licenses/>.  */
22
 
23
#ifndef GCC_SH_H
24
#define GCC_SH_H
25
 
26
#include "config/vxworks-dummy.h"
27
 
28
#define TARGET_VERSION \
29
  fputs (" (Hitachi SH)", stderr);
30
 
31
/* Unfortunately, insn-attrtab.c doesn't include insn-codes.h.  We can't
32
   include it here, because bconfig.h is also included by gencodes.c .  */
33
/* ??? No longer true.  */
34
extern int code_for_indirect_jump_scratch;
35
 
36
#define TARGET_CPU_CPP_BUILTINS() \
37
do { \
38
  builtin_define ("__sh__"); \
39
  builtin_assert ("cpu=sh"); \
40
  builtin_assert ("machine=sh"); \
41
  switch ((int) sh_cpu) \
42
    { \
43
    case PROCESSOR_SH1: \
44
      builtin_define ("__sh1__"); \
45
      break; \
46
    case PROCESSOR_SH2: \
47
      builtin_define ("__sh2__"); \
48
      break; \
49
    case PROCESSOR_SH2E: \
50
      builtin_define ("__SH2E__"); \
51
      break; \
52
    case PROCESSOR_SH2A: \
53
      builtin_define ("__SH2A__"); \
54
      builtin_define (TARGET_SH2A_DOUBLE \
55
                      ? (TARGET_FPU_SINGLE ? "__SH2A_SINGLE__" : "__SH2A_DOUBLE__") \
56
                      : TARGET_FPU_ANY ? "__SH2A_SINGLE_ONLY__" \
57
                      : "__SH2A_NOFPU__"); \
58
      break; \
59
    case PROCESSOR_SH3: \
60
      builtin_define ("__sh3__"); \
61
      builtin_define ("__SH3__"); \
62
      if (TARGET_HARD_SH4) \
63
        builtin_define ("__SH4_NOFPU__"); \
64
      break; \
65
    case PROCESSOR_SH3E: \
66
      builtin_define (TARGET_HARD_SH4 ? "__SH4_SINGLE_ONLY__" : "__SH3E__"); \
67
      break; \
68
    case PROCESSOR_SH4: \
69
      builtin_define (TARGET_FPU_SINGLE ? "__SH4_SINGLE__" : "__SH4__"); \
70
      break; \
71
    case PROCESSOR_SH4A: \
72
      builtin_define ("__SH4A__"); \
73
      builtin_define (TARGET_SH4 \
74
                      ? (TARGET_FPU_SINGLE ? "__SH4_SINGLE__" : "__SH4__") \
75
                      : TARGET_FPU_ANY ? "__SH4_SINGLE_ONLY__" \
76
                      : "__SH4_NOFPU__"); \
77
      break; \
78
    case PROCESSOR_SH5: \
79
      { \
80
        builtin_define_with_value ("__SH5__", \
81
                                   TARGET_SHMEDIA64 ? "64" : "32", 0); \
82
        builtin_define_with_value ("__SHMEDIA__", \
83
                                   TARGET_SHMEDIA ? "1" : "0", 0); \
84
        if (! TARGET_FPU_DOUBLE) \
85
          builtin_define ("__SH4_NOFPU__"); \
86
      } \
87
    } \
88
  if (TARGET_FPU_ANY) \
89
    builtin_define ("__SH_FPU_ANY__"); \
90
  if (TARGET_FPU_DOUBLE) \
91
    builtin_define ("__SH_FPU_DOUBLE__"); \
92
  if (TARGET_HITACHI) \
93
    builtin_define ("__HITACHI__"); \
94
  if (TARGET_FMOVD) \
95
    builtin_define ("__FMOVD_ENABLED__"); \
96
  builtin_define (TARGET_LITTLE_ENDIAN \
97
                  ? "__LITTLE_ENDIAN__" : "__BIG_ENDIAN__"); \
98
} while (0)
99
 
100
/* We can not debug without a frame pointer.  */
101
/* #define CAN_DEBUG_WITHOUT_FP */
102
 
103
#define CONDITIONAL_REGISTER_USAGE do                                   \
104
{                                                                       \
105
  int regno;                                                            \
106
  for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno ++)               \
107
    if (! VALID_REGISTER_P (regno))                                     \
108
      fixed_regs[regno] = call_used_regs[regno] = 1;                    \
109
  /* R8 and R9 are call-clobbered on SH5, but not on earlier SH ABIs.  */ \
110
  if (TARGET_SH5)                                                       \
111
    {                                                                   \
112
      call_used_regs[FIRST_GENERAL_REG + 8]                             \
113
        = call_used_regs[FIRST_GENERAL_REG + 9] = 1;                    \
114
      call_really_used_regs[FIRST_GENERAL_REG + 8]                      \
115
        = call_really_used_regs[FIRST_GENERAL_REG + 9] = 1;             \
116
    }                                                                   \
117
  if (TARGET_SHMEDIA)                                                   \
118
    {                                                                   \
119
      regno_reg_class[FIRST_GENERAL_REG] = GENERAL_REGS;                \
120
      CLEAR_HARD_REG_SET (reg_class_contents[FP0_REGS]);                \
121
      regno_reg_class[FIRST_FP_REG] = FP_REGS;                          \
122
    }                                                                   \
123
  if (flag_pic)                                                         \
124
    {                                                                   \
125
      fixed_regs[PIC_OFFSET_TABLE_REGNUM] = 1;                          \
126
      call_used_regs[PIC_OFFSET_TABLE_REGNUM] = 1;                      \
127
    }                                                                   \
128
  /* Renesas saves and restores mac registers on call.  */              \
129
  if (TARGET_HITACHI && ! TARGET_NOMACSAVE)                             \
130
    {                                                                   \
131
      call_really_used_regs[MACH_REG] = 0;                               \
132
      call_really_used_regs[MACL_REG] = 0;                               \
133
    }                                                                   \
134
  for (regno = FIRST_FP_REG + (TARGET_LITTLE_ENDIAN != 0);               \
135
       regno <= LAST_FP_REG; regno += 2)                                \
136
    SET_HARD_REG_BIT (reg_class_contents[DF_HI_REGS], regno);           \
137
  if (TARGET_SHMEDIA)                                                   \
138
    {                                                                   \
139
      for (regno = FIRST_TARGET_REG; regno <= LAST_TARGET_REG; regno ++)\
140
        if (! fixed_regs[regno] && call_really_used_regs[regno])        \
141
          SET_HARD_REG_BIT (reg_class_contents[SIBCALL_REGS], regno);   \
142
    }                                                                   \
143
  else                                                                  \
144
    for (regno = FIRST_GENERAL_REG; regno <= LAST_GENERAL_REG; regno++) \
145
      if (! fixed_regs[regno] && call_really_used_regs[regno])          \
146
        SET_HARD_REG_BIT (reg_class_contents[SIBCALL_REGS], regno);     \
147
} while (0)
148
 
149
/* Nonzero if this is an ELF target - compile time only */
150
#define TARGET_ELF 0
151
 
152
/* Nonzero if we should generate code using type 2E insns.  */
153
#define TARGET_SH2E (TARGET_SH2 && TARGET_SH_E)
154
 
155
/* Nonzero if we should generate code using type 2A insns.  */
156
#define TARGET_SH2A TARGET_HARD_SH2A
157
/* Nonzero if we should generate code using type 2A SF insns.  */
158
#define TARGET_SH2A_SINGLE (TARGET_SH2A && TARGET_SH2E)
159
/* Nonzero if we should generate code using type 2A DF insns.  */
160
#define TARGET_SH2A_DOUBLE (TARGET_HARD_SH2A_DOUBLE && TARGET_SH2A)
161
 
162
/* Nonzero if we should generate code using type 3E insns.  */
163
#define TARGET_SH3E (TARGET_SH3 && TARGET_SH_E)
164
 
165
/* Nonzero if the cache line size is 32.  */
166
#define TARGET_CACHE32 (TARGET_HARD_SH4 || TARGET_SH5)
167
 
168
/* Nonzero if we schedule for a superscalar implementation.  */
169
#define TARGET_SUPERSCALAR TARGET_HARD_SH4
170
 
171
/* Nonzero if the target has separate instruction and data caches.  */
172
#define TARGET_HARVARD (TARGET_HARD_SH4 || TARGET_SH5)
173
 
174
/* Nonzero if a double-precision FPU is available.  */
175
#define TARGET_FPU_DOUBLE \
176
  ((target_flags & MASK_SH4) != 0 || TARGET_SH2A_DOUBLE)
177
 
178
/* Nonzero if an FPU is available.  */
179
#define TARGET_FPU_ANY (TARGET_SH2E || TARGET_FPU_DOUBLE)
180
 
181
/* Nonzero if we should generate code using type 4 insns.  */
182
#undef TARGET_SH4
183
#define TARGET_SH4 ((target_flags & MASK_SH4) != 0 && TARGET_SH1)
184
 
185
/* Nonzero if we're generating code for the common subset of
186
   instructions present on both SH4a and SH4al-dsp.  */
187
#define TARGET_SH4A_ARCH TARGET_SH4A
188
 
189
/* Nonzero if we're generating code for SH4a, unless the use of the
190
   FPU is disabled (which makes it compatible with SH4al-dsp).  */
191
#define TARGET_SH4A_FP (TARGET_SH4A_ARCH && TARGET_FPU_ANY)
192
 
193
/* Nonzero if we should generate code using the SHcompact instruction
194
   set and 32-bit ABI.  */
195
#define TARGET_SHCOMPACT (TARGET_SH5 && TARGET_SH1)
196
 
197
/* Nonzero if we should generate code using the SHmedia instruction
198
   set and ABI.  */
199
#define TARGET_SHMEDIA (TARGET_SH5 && ! TARGET_SH1)
200
 
201
/* Nonzero if we should generate code using the SHmedia ISA and 32-bit
202
   ABI.  */
203
#define TARGET_SHMEDIA32 (TARGET_SH5 && ! TARGET_SH1 && TARGET_SH_E)
204
 
205
/* Nonzero if we should generate code using the SHmedia ISA and 64-bit
206
   ABI.  */
207
#define TARGET_SHMEDIA64 (TARGET_SH5 && ! TARGET_SH1 && ! TARGET_SH_E)
208
 
209
/* Nonzero if we should generate code using SHmedia FPU instructions.  */
210
#define TARGET_SHMEDIA_FPU (TARGET_SHMEDIA && TARGET_FPU_DOUBLE)
211
 
212
/* This is not used by the SH2E calling convention  */
213
#define TARGET_VARARGS_PRETEND_ARGS(FUN_DECL) \
214
  (TARGET_SH1 && ! TARGET_SH2E && ! TARGET_SH5 \
215
   && ! (TARGET_HITACHI || sh_attr_renesas_p (FUN_DECL)))
216
 
217
#ifndef TARGET_CPU_DEFAULT
218
#define TARGET_CPU_DEFAULT SELECT_SH1
219
#define SUPPORT_SH1 1
220
#define SUPPORT_SH2E 1
221
#define SUPPORT_SH4 1
222
#define SUPPORT_SH4_SINGLE 1
223
#define SUPPORT_SH2A 1
224
#define SUPPORT_SH2A_SINGLE 1
225
#endif
226
 
227
#define TARGET_DIVIDE_INV \
228
  (sh_div_strategy == SH_DIV_INV || sh_div_strategy == SH_DIV_INV_MINLAT \
229
   || sh_div_strategy == SH_DIV_INV20U || sh_div_strategy == SH_DIV_INV20L \
230
   || sh_div_strategy == SH_DIV_INV_CALL \
231
   || sh_div_strategy == SH_DIV_INV_CALL2 || sh_div_strategy == SH_DIV_INV_FP)
232
#define TARGET_DIVIDE_FP (sh_div_strategy == SH_DIV_FP)
233
#define TARGET_DIVIDE_INV_FP (sh_div_strategy == SH_DIV_INV_FP)
234
#define TARGET_DIVIDE_CALL2 (sh_div_strategy == SH_DIV_CALL2)
235
#define TARGET_DIVIDE_INV_MINLAT (sh_div_strategy == SH_DIV_INV_MINLAT)
236
#define TARGET_DIVIDE_INV20U (sh_div_strategy == SH_DIV_INV20U)
237
#define TARGET_DIVIDE_INV20L (sh_div_strategy == SH_DIV_INV20L)
238
#define TARGET_DIVIDE_INV_CALL (sh_div_strategy == SH_DIV_INV_CALL)
239
#define TARGET_DIVIDE_INV_CALL2 (sh_div_strategy == SH_DIV_INV_CALL2)
240
#define TARGET_DIVIDE_CALL_DIV1 (sh_div_strategy == SH_DIV_CALL_DIV1)
241
#define TARGET_DIVIDE_CALL_FP (sh_div_strategy == SH_DIV_CALL_FP)
242
#define TARGET_DIVIDE_CALL_TABLE (sh_div_strategy == SH_DIV_CALL_TABLE)
243
 
244
#define SELECT_SH1               (MASK_SH1)
245
#define SELECT_SH2               (MASK_SH2 | SELECT_SH1)
246
#define SELECT_SH2E              (MASK_SH_E | MASK_SH2 | MASK_SH1 \
247
                                  | MASK_FPU_SINGLE)
248
#define SELECT_SH2A              (MASK_SH_E | MASK_HARD_SH2A \
249
                                  | MASK_HARD_SH2A_DOUBLE \
250
                                  | MASK_SH2 | MASK_SH1)
251
#define SELECT_SH2A_NOFPU        (MASK_HARD_SH2A | MASK_SH2 | MASK_SH1)
252
#define SELECT_SH2A_SINGLE_ONLY  (MASK_SH_E | MASK_HARD_SH2A | MASK_SH2 \
253
                                  | MASK_SH1 | MASK_FPU_SINGLE)
254
#define SELECT_SH2A_SINGLE       (MASK_SH_E | MASK_HARD_SH2A \
255
                                  | MASK_FPU_SINGLE | MASK_HARD_SH2A_DOUBLE \
256
                                  | MASK_SH2 | MASK_SH1)
257
#define SELECT_SH3               (MASK_SH3 | SELECT_SH2)
258
#define SELECT_SH3E              (MASK_SH_E | MASK_FPU_SINGLE | SELECT_SH3)
259
#define SELECT_SH4_NOFPU         (MASK_HARD_SH4 | SELECT_SH3)
260
#define SELECT_SH4_SINGLE_ONLY   (MASK_HARD_SH4 | SELECT_SH3E)
261
#define SELECT_SH4               (MASK_SH4 | MASK_SH_E | MASK_HARD_SH4 \
262
                                  | SELECT_SH3)
263
#define SELECT_SH4_SINGLE        (MASK_FPU_SINGLE | SELECT_SH4)
264
#define SELECT_SH4A_NOFPU        (MASK_SH4A | SELECT_SH4_NOFPU)
265
#define SELECT_SH4A_SINGLE_ONLY  (MASK_SH4A | SELECT_SH4_SINGLE_ONLY)
266
#define SELECT_SH4A              (MASK_SH4A | SELECT_SH4)
267
#define SELECT_SH4A_SINGLE       (MASK_SH4A | SELECT_SH4_SINGLE)
268
#define SELECT_SH5_64MEDIA       (MASK_SH5 | MASK_SH4)
269
#define SELECT_SH5_64MEDIA_NOFPU (MASK_SH5)
270
#define SELECT_SH5_32MEDIA       (MASK_SH5 | MASK_SH4 | MASK_SH_E)
271
#define SELECT_SH5_32MEDIA_NOFPU (MASK_SH5 | MASK_SH_E)
272
#define SELECT_SH5_COMPACT       (MASK_SH5 | MASK_SH4 | SELECT_SH3E)
273
#define SELECT_SH5_COMPACT_NOFPU (MASK_SH5 | SELECT_SH3)
274
 
275
#if SUPPORT_SH1
276
#define SUPPORT_SH2 1
277
#endif
278
#if SUPPORT_SH2
279
#define SUPPORT_SH3 1
280
#define SUPPORT_SH2A_NOFPU 1
281
#endif
282
#if SUPPORT_SH3
283
#define SUPPORT_SH4_NOFPU 1
284
#endif
285
#if SUPPORT_SH4_NOFPU
286
#define SUPPORT_SH4A_NOFPU 1
287
#define SUPPORT_SH4AL 1
288
#endif
289
 
290
#if SUPPORT_SH2E
291
#define SUPPORT_SH3E 1
292
#define SUPPORT_SH2A_SINGLE_ONLY 1
293
#endif
294
#if SUPPORT_SH3E
295
#define SUPPORT_SH4_SINGLE_ONLY 1
296
#endif
297
#if SUPPORT_SH4_SINGLE_ONLY
298
#define SUPPORT_SH4A_SINGLE_ONLY 1
299
#endif
300
 
301
#if SUPPORT_SH4
302
#define SUPPORT_SH4A 1
303
#endif
304
 
305
#if SUPPORT_SH4_SINGLE
306
#define SUPPORT_SH4A_SINGLE 1
307
#endif
308
 
309
#if SUPPORT_SH5_COMPAT
310
#define SUPPORT_SH5_32MEDIA 1
311
#endif
312
 
313
#if SUPPORT_SH5_COMPACT_NOFPU
314
#define SUPPORT_SH5_32MEDIA_NOFPU 1
315
#endif
316
 
317
#define SUPPORT_ANY_SH5_32MEDIA \
318
  (SUPPORT_SH5_32MEDIA || SUPPORT_SH5_32MEDIA_NOFPU)
319
#define SUPPORT_ANY_SH5_64MEDIA \
320
  (SUPPORT_SH5_64MEDIA || SUPPORT_SH5_64MEDIA_NOFPU)
321
#define SUPPORT_ANY_SH5 \
322
  (SUPPORT_ANY_SH5_32MEDIA || SUPPORT_ANY_SH5_64MEDIA)
323
 
324
/* Reset all target-selection flags.  */
325
#define MASK_ARCH (MASK_SH1 | MASK_SH2 | MASK_SH3 | MASK_SH_E | MASK_SH4 \
326
                   | MASK_HARD_SH2A | MASK_HARD_SH2A_DOUBLE | MASK_SH4A \
327
                   | MASK_HARD_SH4 | MASK_FPU_SINGLE | MASK_SH5)
328
 
329
/* This defaults us to big-endian.  */
330
#ifndef TARGET_ENDIAN_DEFAULT
331
#define TARGET_ENDIAN_DEFAULT 0
332
#endif
333
 
334
#ifndef TARGET_OPT_DEFAULT
335
#define TARGET_OPT_DEFAULT  MASK_ADJUST_UNROLL
336
#endif
337
 
338
#define TARGET_DEFAULT \
339
  (TARGET_CPU_DEFAULT | TARGET_ENDIAN_DEFAULT | TARGET_OPT_DEFAULT)
340
 
341
#ifndef SH_MULTILIB_CPU_DEFAULT
342
#define SH_MULTILIB_CPU_DEFAULT "m1"
343
#endif
344
 
345
#if TARGET_ENDIAN_DEFAULT
346
#define MULTILIB_DEFAULTS { "ml", SH_MULTILIB_CPU_DEFAULT }
347
#else
348
#define MULTILIB_DEFAULTS { "mb", SH_MULTILIB_CPU_DEFAULT }
349
#endif
350
 
351
#define CPP_SPEC " %(subtarget_cpp_spec) "
352
 
353
#ifndef SUBTARGET_CPP_SPEC
354
#define SUBTARGET_CPP_SPEC ""
355
#endif
356
 
357
#ifndef SUBTARGET_EXTRA_SPECS
358
#define SUBTARGET_EXTRA_SPECS
359
#endif
360
 
361
#define EXTRA_SPECS                                             \
362
  { "subtarget_cpp_spec", SUBTARGET_CPP_SPEC },                 \
363
  { "link_emul_prefix", LINK_EMUL_PREFIX },                     \
364
  { "link_default_cpu_emul", LINK_DEFAULT_CPU_EMUL },           \
365
  { "subtarget_link_emul_suffix", SUBTARGET_LINK_EMUL_SUFFIX }, \
366
  { "subtarget_link_spec", SUBTARGET_LINK_SPEC },               \
367
  { "subtarget_asm_endian_spec", SUBTARGET_ASM_ENDIAN_SPEC },   \
368
  { "subtarget_asm_relax_spec", SUBTARGET_ASM_RELAX_SPEC },     \
369
  { "subtarget_asm_isa_spec", SUBTARGET_ASM_ISA_SPEC },         \
370
  { "subtarget_asm_spec", SUBTARGET_ASM_SPEC },                 \
371
  SUBTARGET_EXTRA_SPECS
372
 
373
#if TARGET_CPU_DEFAULT & MASK_HARD_SH4
374
#define SUBTARGET_ASM_RELAX_SPEC "%{!m1:%{!m2:%{!m3*:%{!m5*:-isa=sh4-up}}}}"
375
#else
376
#define SUBTARGET_ASM_RELAX_SPEC "%{m4*:-isa=sh4-up}"
377
#endif
378
 
379
#define SH_ASM_SPEC \
380
 "%(subtarget_asm_endian_spec) %{mrelax:-relax %(subtarget_asm_relax_spec)}\
381
%(subtarget_asm_isa_spec) %(subtarget_asm_spec)\
382
%{m2a:--isa=sh2a} \
383
%{m2a-single:--isa=sh2a} \
384
%{m2a-single-only:--isa=sh2a} \
385
%{m2a-nofpu:--isa=sh2a-nofpu} \
386
%{m5-compact*:--isa=SHcompact} \
387
%{m5-32media*:--isa=SHmedia --abi=32} \
388
%{m5-64media*:--isa=SHmedia --abi=64} \
389
%{m4al:-dsp} %{mcut2-workaround:-cut2-workaround}"
390
 
391
#define ASM_SPEC SH_ASM_SPEC
392
 
393
#ifndef SUBTARGET_ASM_ENDIAN_SPEC
394
#if TARGET_ENDIAN_DEFAULT == MASK_LITTLE_ENDIAN
395
#define SUBTARGET_ASM_ENDIAN_SPEC "%{mb:-big} %{!mb:-little}"
396
#else
397
#define SUBTARGET_ASM_ENDIAN_SPEC "%{ml:-little} %{!ml:-big}"
398
#endif
399
#endif
400
 
401
#if STRICT_NOFPU == 1
402
/* Strict nofpu means that the compiler should tell the assembler
403
   to reject FPU instructions. E.g. from ASM inserts.  */
404
#if TARGET_CPU_DEFAULT & MASK_HARD_SH4 && !(TARGET_CPU_DEFAULT & MASK_SH_E)
405
#define SUBTARGET_ASM_ISA_SPEC "%{!m1:%{!m2:%{!m3*:%{m4-nofpu|!m4*:%{!m5:-isa=sh4-nofpu}}}}}"
406
#else
407
/* If there were an -isa option for sh5-nofpu then it would also go here. */
408
#define SUBTARGET_ASM_ISA_SPEC \
409
 "%{m4-nofpu:-isa=sh4-nofpu} " ASM_ISA_DEFAULT_SPEC
410
#endif
411
#else /* ! STRICT_NOFPU */
412
#define SUBTARGET_ASM_ISA_SPEC ASM_ISA_DEFAULT_SPEC
413
#endif
414
 
415
#ifndef SUBTARGET_ASM_SPEC
416
#define SUBTARGET_ASM_SPEC ""
417
#endif
418
 
419
#if TARGET_ENDIAN_DEFAULT == MASK_LITTLE_ENDIAN
420
#define LINK_EMUL_PREFIX "sh%{!mb:l}"
421
#else
422
#define LINK_EMUL_PREFIX "sh%{ml:l}"
423
#endif
424
 
425
#if TARGET_CPU_DEFAULT & MASK_SH5
426
#if TARGET_CPU_DEFAULT & MASK_SH_E
427
#define LINK_DEFAULT_CPU_EMUL "32"
428
#if TARGET_CPU_DEFAULT & MASK_SH1
429
#define ASM_ISA_SPEC_DEFAULT "--isa=SHcompact"
430
#else
431
#define ASM_ISA_SPEC_DEFAULT "--isa=SHmedia --abi=32"
432
#endif /* MASK_SH1 */
433
#else /* !MASK_SH_E */
434
#define LINK_DEFAULT_CPU_EMUL "64"
435
#define ASM_ISA_SPEC_DEFAULT "--isa=SHmedia --abi=64"
436
#endif /* MASK_SH_E */
437
#define ASM_ISA_DEFAULT_SPEC \
438
" %{!m1:%{!m2*:%{!m3*:%{!m4*:%{!m5*:" ASM_ISA_SPEC_DEFAULT "}}}}}"
439
#else /* !MASK_SH5 */
440
#define LINK_DEFAULT_CPU_EMUL ""
441
#define ASM_ISA_DEFAULT_SPEC ""
442
#endif /* MASK_SH5 */
443
 
444
#define SUBTARGET_LINK_EMUL_SUFFIX ""
445
#define SUBTARGET_LINK_SPEC ""
446
 
447
/* svr4.h redefines LINK_SPEC inappropriately, so go via SH_LINK_SPEC,
448
   so that we can undo the damage without code replication.  */
449
#define LINK_SPEC SH_LINK_SPEC
450
 
451
#define SH_LINK_SPEC "\
452
-m %(link_emul_prefix)\
453
%{m5-compact*|m5-32media*:32}\
454
%{m5-64media*:64}\
455
%{!m1:%{!m2:%{!m3*:%{!m4*:%{!m5*:%(link_default_cpu_emul)}}}}}\
456
%(subtarget_link_emul_suffix) \
457
%{mrelax:-relax} %(subtarget_link_spec)"
458
 
459
#ifndef SH_DIV_STR_FOR_SIZE
460
#define SH_DIV_STR_FOR_SIZE "call"
461
#endif
462
 
463
#define DRIVER_SELF_SPECS "%{m2a:%{ml:%eSH2a does not support little-endian}}"
464
 
465
#define OPTIMIZATION_OPTIONS(LEVEL,SIZE) sh_optimization_options (LEVEL, SIZE)
466
 
467
#define ASSEMBLER_DIALECT assembler_dialect
468
 
469
extern int assembler_dialect;
470
 
471
enum sh_divide_strategy_e {
472
  /* SH5 strategies.  */
473
  SH_DIV_CALL,
474
  SH_DIV_CALL2,
475
  SH_DIV_FP, /* We could do this also for SH4.  */
476
  SH_DIV_INV,
477
  SH_DIV_INV_MINLAT,
478
  SH_DIV_INV20U,
479
  SH_DIV_INV20L,
480
  SH_DIV_INV_CALL,
481
  SH_DIV_INV_CALL2,
482
  SH_DIV_INV_FP,
483
  /* SH1 .. SH4 strategies.  Because of the small number of registers
484
     available, the compiler uses knowledge of the actual set of registers
485
     being clobbered by the different functions called.  */
486
  SH_DIV_CALL_DIV1, /* No FPU, medium size, highest latency.  */
487
  SH_DIV_CALL_FP,     /* FPU needed, small size, high latency.  */
488
  SH_DIV_CALL_TABLE,  /* No FPU, large size, medium latency. */
489
  SH_DIV_INTRINSIC
490
};
491
 
492
extern enum sh_divide_strategy_e sh_div_strategy;
493
 
494
#ifndef SH_DIV_STRATEGY_DEFAULT
495
#define SH_DIV_STRATEGY_DEFAULT SH_DIV_CALL
496
#endif
497
 
498
#define SUBTARGET_OVERRIDE_OPTIONS (void) 0
499
 
500
extern const char *sh_fixed_range_str;
501
 
502
#define OVERRIDE_OPTIONS sh_override_options ()
503
 
504
 
505
/* Target machine storage layout.  */
506
 
507
/* Define this if most significant bit is lowest numbered
508
   in instructions that operate on numbered bit-fields.  */
509
 
510
#define BITS_BIG_ENDIAN  0
511
 
512
/* Define this if most significant byte of a word is the lowest numbered.  */
513
#define BYTES_BIG_ENDIAN (TARGET_LITTLE_ENDIAN == 0)
514
 
515
/* Define this if most significant word of a multiword number is the lowest
516
   numbered.  */
517
#define WORDS_BIG_ENDIAN (TARGET_LITTLE_ENDIAN == 0)
518
 
519
/* Define this to set the endianness to use in libgcc2.c, which can
520
   not depend on target_flags.  */
521
#if defined(__LITTLE_ENDIAN__)
522
#define LIBGCC2_WORDS_BIG_ENDIAN 0
523
#else
524
#define LIBGCC2_WORDS_BIG_ENDIAN 1
525
#endif
526
 
527
#define MAX_BITS_PER_WORD 64
528
 
529
/* Width in bits of an `int'.  We want just 32-bits, even if words are
530
   longer.  */
531
#define INT_TYPE_SIZE 32
532
 
533
/* Width in bits of a `long'.  */
534
#define LONG_TYPE_SIZE (TARGET_SHMEDIA64 ? 64 : 32)
535
 
536
/* Width in bits of a `long long'.  */
537
#define LONG_LONG_TYPE_SIZE 64
538
 
539
/* Width in bits of a `long double'.  */
540
#define LONG_DOUBLE_TYPE_SIZE 64
541
 
542
/* Width of a word, in units (bytes).  */
543
#define UNITS_PER_WORD  (TARGET_SHMEDIA ? 8 : 4)
544
#define MIN_UNITS_PER_WORD 4
545
 
546
/* Scaling factor for Dwarf data offsets for CFI information.
547
   The dwarf2out.c default would use -UNITS_PER_WORD, which is -8 for
548
   SHmedia; however, since we do partial register saves for the registers
549
   visible to SHcompact, and for target registers for SHMEDIA32, we have
550
   to allow saves that are only 4-byte aligned.  */
551
#define DWARF_CIE_DATA_ALIGNMENT -4
552
 
553
/* Width in bits of a pointer.
554
   See also the macro `Pmode' defined below.  */
555
#define POINTER_SIZE  (TARGET_SHMEDIA64 ? 64 : 32)
556
 
557
/* Allocation boundary (in *bits*) for storing arguments in argument list.  */
558
#define PARM_BOUNDARY   (TARGET_SH5 ? 64 : 32)
559
 
560
/* Boundary (in *bits*) on which stack pointer should be aligned.  */
561
#define STACK_BOUNDARY  BIGGEST_ALIGNMENT
562
 
563
/* The log (base 2) of the cache line size, in bytes.  Processors prior to
564
   SH2 have no actual cache, but they fetch code in chunks of 4 bytes.
565
   The SH2/3 have 16 byte cache lines, and the SH4 has a 32 byte cache line */
566
#define CACHE_LOG (TARGET_CACHE32 ? 5 : TARGET_SH2 ? 4 : 2)
567
 
568
/* ABI given & required minimum allocation boundary (in *bits*) for the
569
   code of a function.  */
570
#define FUNCTION_BOUNDARY (16 << TARGET_SHMEDIA)
571
 
572
/* On SH5, the lowest bit is used to indicate SHmedia functions, so
573
   the vbit must go into the delta field of
574
   pointers-to-member-functions.  */
575
#define TARGET_PTRMEMFUNC_VBIT_LOCATION \
576
  (TARGET_SH5 ? ptrmemfunc_vbit_in_delta : ptrmemfunc_vbit_in_pfn)
577
 
578
/* Alignment of field after `int : 0' in a structure.  */
579
#define EMPTY_FIELD_BOUNDARY  32
580
 
581
/* No data type wants to be aligned rounder than this.  */
582
#define BIGGEST_ALIGNMENT  (TARGET_ALIGN_DOUBLE ? 64 : 32)
583
 
584
/* The best alignment to use in cases where we have a choice.  */
585
#define FASTEST_ALIGNMENT (TARGET_SH5 ? 64 : 32)
586
 
587
/* Make strings word-aligned so strcpy from constants will be faster.  */
588
#define CONSTANT_ALIGNMENT(EXP, ALIGN)  \
589
  ((TREE_CODE (EXP) == STRING_CST       \
590
    && (ALIGN) < FASTEST_ALIGNMENT)     \
591
    ? FASTEST_ALIGNMENT : (ALIGN))
592
 
593
/* get_mode_alignment assumes complex values are always held in multiple
594
   registers, but that is not the case on the SH; CQImode and CHImode are
595
   held in a single integer register.  SH5 also holds CSImode and SCmode
596
   values in integer registers.  This is relevant for argument passing on
597
   SHcompact as we use a stack temp in order to pass CSImode by reference.  */
598
#define LOCAL_ALIGNMENT(TYPE, ALIGN) \
599
  ((GET_MODE_CLASS (TYPE_MODE (TYPE)) == MODE_COMPLEX_INT \
600
    || GET_MODE_CLASS (TYPE_MODE (TYPE)) == MODE_COMPLEX_FLOAT) \
601
   ? (unsigned) MIN (BIGGEST_ALIGNMENT, GET_MODE_BITSIZE (TYPE_MODE (TYPE))) \
602
   : (unsigned) DATA_ALIGNMENT(TYPE, ALIGN))
603
 
604
/* Make arrays of chars word-aligned for the same reasons.  */
605
#define DATA_ALIGNMENT(TYPE, ALIGN)             \
606
  (TREE_CODE (TYPE) == ARRAY_TYPE               \
607
   && TYPE_MODE (TREE_TYPE (TYPE)) == QImode    \
608
   && (ALIGN) < FASTEST_ALIGNMENT ? FASTEST_ALIGNMENT : (ALIGN))
609
 
610
/* Number of bits which any structure or union's size must be a
611
   multiple of.  Each structure or union's size is rounded up to a
612
   multiple of this.  */
613
#define STRUCTURE_SIZE_BOUNDARY (TARGET_PADSTRUCT ? 32 : 8)
614
 
615
/* Set this nonzero if move instructions will actually fail to work
616
   when given unaligned data.  */
617
#define STRICT_ALIGNMENT 1
618
 
619
/* If LABEL_AFTER_BARRIER demands an alignment, return its base 2 logarithm.  */
620
#define LABEL_ALIGN_AFTER_BARRIER(LABEL_AFTER_BARRIER) \
621
  barrier_align (LABEL_AFTER_BARRIER)
622
 
623
#define LOOP_ALIGN(A_LABEL) \
624
  ((! optimize || TARGET_HARD_SH4 || TARGET_SMALLCODE) \
625
   ? 0 : sh_loop_align (A_LABEL))
626
 
627
#define LABEL_ALIGN(A_LABEL) \
628
(                                                                       \
629
  (PREV_INSN (A_LABEL)                                                  \
630
   && NONJUMP_INSN_P (PREV_INSN (A_LABEL))                              \
631
   && GET_CODE (PATTERN (PREV_INSN (A_LABEL))) == UNSPEC_VOLATILE       \
632
   && XINT (PATTERN (PREV_INSN (A_LABEL)), 1) == UNSPECV_ALIGN)         \
633
   /* explicit alignment insn in constant tables.  */                   \
634
  ? INTVAL (XVECEXP (PATTERN (PREV_INSN (A_LABEL)), 0, 0))              \
635
  : 0)
636
 
637
/* Jump tables must be 32 bit aligned, no matter the size of the element.  */
638
#define ADDR_VEC_ALIGN(ADDR_VEC) 2
639
 
640
/* The base two logarithm of the known minimum alignment of an insn length.  */
641
#define INSN_LENGTH_ALIGNMENT(A_INSN)                                   \
642
  (NONJUMP_INSN_P (A_INSN)                                              \
643
   ? 1 << TARGET_SHMEDIA                                                \
644
   : JUMP_P (A_INSN) || CALL_P (A_INSN)                                 \
645
   ? 1 << TARGET_SHMEDIA                                                \
646
   : CACHE_LOG)
647
 
648
/* Standard register usage.  */
649
 
650
/* Register allocation for the Renesas calling convention:
651
 
652
        r0              arg return
653
        r1..r3          scratch
654
        r4..r7          args in
655
        r8..r13         call saved
656
        r14             frame pointer/call saved
657
        r15             stack pointer
658
        ap              arg pointer (doesn't really exist, always eliminated)
659
        pr              subroutine return address
660
        t               t bit
661
        mach            multiply/accumulate result, high part
662
        macl            multiply/accumulate result, low part.
663
        fpul            fp/int communication register
664
        rap             return address pointer register
665
        fr0             fp arg return
666
        fr1..fr3        scratch floating point registers
667
        fr4..fr11       fp args in
668
        fr12..fr15      call saved floating point registers  */
669
 
670
#define MAX_REGISTER_NAME_LENGTH 5
671
extern char sh_register_names[][MAX_REGISTER_NAME_LENGTH + 1];
672
 
673
#define SH_REGISTER_NAMES_INITIALIZER                                   \
674
{                                                                       \
675
  "r0",   "r1",   "r2",   "r3",   "r4",   "r5",   "r6",   "r7",         \
676
  "r8",   "r9",   "r10",  "r11",  "r12",  "r13",  "r14",  "r15",        \
677
  "r16",  "r17",  "r18",  "r19",  "r20",  "r21",  "r22",  "r23",        \
678
  "r24",  "r25",  "r26",  "r27",  "r28",  "r29",  "r30",  "r31",        \
679
  "r32",  "r33",  "r34",  "r35",  "r36",  "r37",  "r38",  "r39",        \
680
  "r40",  "r41",  "r42",  "r43",  "r44",  "r45",  "r46",  "r47",        \
681
  "r48",  "r49",  "r50",  "r51",  "r52",  "r53",  "r54",  "r55",        \
682
  "r56",  "r57",  "r58",  "r59",  "r60",  "r61",  "r62",  "r63",        \
683
  "fr0",  "fr1",  "fr2",  "fr3",  "fr4",  "fr5",  "fr6",  "fr7",        \
684
  "fr8",  "fr9",  "fr10", "fr11", "fr12", "fr13", "fr14", "fr15",       \
685
  "fr16", "fr17", "fr18", "fr19", "fr20", "fr21", "fr22", "fr23",       \
686
  "fr24", "fr25", "fr26", "fr27", "fr28", "fr29", "fr30", "fr31",       \
687
  "fr32", "fr33", "fr34", "fr35", "fr36", "fr37", "fr38", "fr39",       \
688
  "fr40", "fr41", "fr42", "fr43", "fr44", "fr45", "fr46", "fr47",       \
689
  "fr48", "fr49", "fr50", "fr51", "fr52", "fr53", "fr54", "fr55",       \
690
  "fr56", "fr57", "fr58", "fr59", "fr60", "fr61", "fr62", "fr63",       \
691
  "tr0",  "tr1",  "tr2",  "tr3",  "tr4",  "tr5",  "tr6",  "tr7",        \
692
  "xd0",  "xd2",  "xd4",  "xd6",  "xd8",  "xd10", "xd12", "xd14",       \
693
  "gbr",  "ap",   "pr",   "t",    "mach", "macl", "fpul", "fpscr",      \
694
  "rap",  "sfp"                                                         \
695
}
696
 
697
#define REGNAMES_ARR_INDEX_1(index) \
698
  (sh_register_names[index])
699
#define REGNAMES_ARR_INDEX_2(index) \
700
  REGNAMES_ARR_INDEX_1 ((index)), REGNAMES_ARR_INDEX_1 ((index)+1)
701
#define REGNAMES_ARR_INDEX_4(index) \
702
  REGNAMES_ARR_INDEX_2 ((index)), REGNAMES_ARR_INDEX_2 ((index)+2)
703
#define REGNAMES_ARR_INDEX_8(index) \
704
  REGNAMES_ARR_INDEX_4 ((index)), REGNAMES_ARR_INDEX_4 ((index)+4)
705
#define REGNAMES_ARR_INDEX_16(index) \
706
  REGNAMES_ARR_INDEX_8 ((index)), REGNAMES_ARR_INDEX_8 ((index)+8)
707
#define REGNAMES_ARR_INDEX_32(index) \
708
  REGNAMES_ARR_INDEX_16 ((index)), REGNAMES_ARR_INDEX_16 ((index)+16)
709
#define REGNAMES_ARR_INDEX_64(index) \
710
  REGNAMES_ARR_INDEX_32 ((index)), REGNAMES_ARR_INDEX_32 ((index)+32)
711
 
712
#define REGISTER_NAMES \
713
{ \
714
  REGNAMES_ARR_INDEX_64 (0), \
715
  REGNAMES_ARR_INDEX_64 (64), \
716
  REGNAMES_ARR_INDEX_8 (128), \
717
  REGNAMES_ARR_INDEX_8 (136), \
718
  REGNAMES_ARR_INDEX_8 (144), \
719
  REGNAMES_ARR_INDEX_2 (152) \
720
}
721
 
722
#define ADDREGNAMES_SIZE 32
723
#define MAX_ADDITIONAL_REGISTER_NAME_LENGTH 4
724
extern char sh_additional_register_names[ADDREGNAMES_SIZE] \
725
  [MAX_ADDITIONAL_REGISTER_NAME_LENGTH + 1];
726
 
727
#define SH_ADDITIONAL_REGISTER_NAMES_INITIALIZER                        \
728
{                                                                       \
729
  "dr0",  "dr2",  "dr4",  "dr6",  "dr8",  "dr10", "dr12", "dr14",       \
730
  "dr16", "dr18", "dr20", "dr22", "dr24", "dr26", "dr28", "dr30",       \
731
  "dr32", "dr34", "dr36", "dr38", "dr40", "dr42", "dr44", "dr46",       \
732
  "dr48", "dr50", "dr52", "dr54", "dr56", "dr58", "dr60", "dr62"        \
733
}
734
 
735
#define ADDREGNAMES_REGNO(index) \
736
  ((index < 32) ? (FIRST_FP_REG + (index) * 2) \
737
   : (-1))
738
 
739
#define ADDREGNAMES_ARR_INDEX_1(index) \
740
  { (sh_additional_register_names[index]), ADDREGNAMES_REGNO (index) }
741
#define ADDREGNAMES_ARR_INDEX_2(index) \
742
  ADDREGNAMES_ARR_INDEX_1 ((index)), ADDREGNAMES_ARR_INDEX_1 ((index)+1)
743
#define ADDREGNAMES_ARR_INDEX_4(index) \
744
  ADDREGNAMES_ARR_INDEX_2 ((index)), ADDREGNAMES_ARR_INDEX_2 ((index)+2)
745
#define ADDREGNAMES_ARR_INDEX_8(index) \
746
  ADDREGNAMES_ARR_INDEX_4 ((index)), ADDREGNAMES_ARR_INDEX_4 ((index)+4)
747
#define ADDREGNAMES_ARR_INDEX_16(index) \
748
  ADDREGNAMES_ARR_INDEX_8 ((index)), ADDREGNAMES_ARR_INDEX_8 ((index)+8)
749
#define ADDREGNAMES_ARR_INDEX_32(index) \
750
  ADDREGNAMES_ARR_INDEX_16 ((index)), ADDREGNAMES_ARR_INDEX_16 ((index)+16)
751
 
752
#define ADDITIONAL_REGISTER_NAMES \
753
{                                       \
754
  ADDREGNAMES_ARR_INDEX_32 (0)          \
755
}
756
 
757
/* Number of actual hardware registers.
758
   The hardware registers are assigned numbers for the compiler
759
   from 0 to just below FIRST_PSEUDO_REGISTER.
760
   All registers that the compiler knows about must be given numbers,
761
   even those that are not normally considered general registers.  */
762
 
763
/* There are many other relevant definitions in sh.md's md_constants.  */
764
 
765
#define FIRST_GENERAL_REG R0_REG
766
#define LAST_GENERAL_REG (FIRST_GENERAL_REG + (TARGET_SHMEDIA ? 63 : 15))
767
#define FIRST_FP_REG DR0_REG
768
#define LAST_FP_REG  (FIRST_FP_REG + \
769
                      (TARGET_SHMEDIA_FPU ? 63 : TARGET_SH2E ? 15 : -1))
770
#define FIRST_XD_REG XD0_REG
771
#define LAST_XD_REG  (FIRST_XD_REG + ((TARGET_SH4 && TARGET_FMOVD) ? 7 : -1))
772
#define FIRST_TARGET_REG TR0_REG
773
#define LAST_TARGET_REG  (FIRST_TARGET_REG + (TARGET_SHMEDIA ? 7 : -1))
774
 
775
/* Registers that can be accessed through bank0 or bank1 depending on sr.md.  */
776
 
777
#define FIRST_BANKED_REG R0_REG
778
#define LAST_BANKED_REG R7_REG
779
 
780
#define BANKED_REGISTER_P(REGNO)                       \
781
  IN_RANGE ((REGNO),                                   \
782
            (unsigned HOST_WIDE_INT) FIRST_BANKED_REG, \
783
            (unsigned HOST_WIDE_INT) LAST_BANKED_REG)
784
 
785
#define GENERAL_REGISTER_P(REGNO) \
786
  IN_RANGE ((REGNO), \
787
            (unsigned HOST_WIDE_INT) FIRST_GENERAL_REG, \
788
            (unsigned HOST_WIDE_INT) LAST_GENERAL_REG)
789
 
790
#define GENERAL_OR_AP_REGISTER_P(REGNO) \
791
  (GENERAL_REGISTER_P (REGNO) || ((REGNO) == AP_REG)    \
792
   || ((REGNO) == FRAME_POINTER_REGNUM))
793
 
794
#define FP_REGISTER_P(REGNO) \
795
  ((int) (REGNO) >= FIRST_FP_REG && (int) (REGNO) <= LAST_FP_REG)
796
 
797
#define XD_REGISTER_P(REGNO) \
798
  ((int) (REGNO) >= FIRST_XD_REG && (int) (REGNO) <= LAST_XD_REG)
799
 
800
#define FP_OR_XD_REGISTER_P(REGNO) \
801
  (FP_REGISTER_P (REGNO) || XD_REGISTER_P (REGNO))
802
 
803
#define FP_ANY_REGISTER_P(REGNO) \
804
  (FP_REGISTER_P (REGNO) || XD_REGISTER_P (REGNO) || (REGNO) == FPUL_REG)
805
 
806
#define SPECIAL_REGISTER_P(REGNO) \
807
  ((REGNO) == GBR_REG || (REGNO) == T_REG \
808
   || (REGNO) == MACH_REG || (REGNO) == MACL_REG)
809
 
810
#define TARGET_REGISTER_P(REGNO) \
811
  ((int) (REGNO) >= FIRST_TARGET_REG && (int) (REGNO) <= LAST_TARGET_REG)
812
 
813
#define SHMEDIA_REGISTER_P(REGNO) \
814
  (GENERAL_REGISTER_P (REGNO) || FP_REGISTER_P (REGNO) \
815
   || TARGET_REGISTER_P (REGNO))
816
 
817
/* This is to be used in CONDITIONAL_REGISTER_USAGE, to mark registers
818
   that should be fixed.  */
819
#define VALID_REGISTER_P(REGNO) \
820
  (SHMEDIA_REGISTER_P (REGNO) || XD_REGISTER_P (REGNO) \
821
   || (REGNO) == AP_REG || (REGNO) == RAP_REG \
822
   || (REGNO) == FRAME_POINTER_REGNUM \
823
   || (TARGET_SH1 && (SPECIAL_REGISTER_P (REGNO) || (REGNO) == PR_REG)) \
824
   || (TARGET_SH2E && (REGNO) == FPUL_REG))
825
 
826
/* The mode that should be generally used to store a register by
827
   itself in the stack, or to load it back.  */
828
#define REGISTER_NATURAL_MODE(REGNO) \
829
  (FP_REGISTER_P (REGNO) ? SFmode \
830
   : XD_REGISTER_P (REGNO) ? DFmode \
831
   : TARGET_SHMEDIA && ! HARD_REGNO_CALL_PART_CLOBBERED ((REGNO), DImode) \
832
   ? DImode \
833
   : SImode)
834
 
835
#define FIRST_PSEUDO_REGISTER 154
836
 
837
/* Don't count soft frame pointer.  */
838
#define DWARF_FRAME_REGISTERS (FIRST_PSEUDO_REGISTER - 1)
839
 
840
/* 1 for registers that have pervasive standard uses
841
   and are not available for the register allocator.
842
 
843
   Mach register is fixed 'cause it's only 10 bits wide for SH1.
844
   It is 32 bits wide for SH2.  */
845
 
846
#define FIXED_REGISTERS                                                 \
847
{                                                                       \
848
/* Regular registers.  */                                               \
849
  0,      0,      0,      0,      0,      0,      0,      0,            \
850
  0,      0,      0,      0,      0,      0,      0,      1,            \
851
  /* r16 is reserved, r18 is the former pr.  */                         \
852
  1,      0,      0,      0,      0,      0,      0,      0,            \
853
  /* r24 is reserved for the OS; r25, for the assembler or linker.  */  \
854
  /* r26 is a global variable data pointer; r27 is for constants.  */   \
855
  1,      1,      1,      1,      0,      0,      0,      0,            \
856
  0,      0,      0,      0,      0,      0,      0,      0,            \
857
  0,      0,      0,      0,      0,      0,      0,      0,            \
858
  0,      0,      0,      0,      0,      0,      0,      0,            \
859
  0,      0,      0,      0,      0,      0,      0,      1,            \
860
/* FP registers.  */                                                    \
861
  0,      0,      0,      0,      0,      0,      0,      0,            \
862
  0,      0,      0,      0,      0,      0,      0,      0,            \
863
  0,      0,      0,      0,      0,      0,      0,      0,            \
864
  0,      0,      0,      0,      0,      0,      0,      0,            \
865
  0,      0,      0,      0,      0,      0,      0,      0,            \
866
  0,      0,      0,      0,      0,      0,      0,      0,            \
867
  0,      0,      0,      0,      0,      0,      0,      0,            \
868
  0,      0,      0,      0,      0,      0,      0,      0,            \
869
/* Branch target registers.  */                                         \
870
  0,      0,      0,      0,      0,      0,      0,      0,            \
871
/* XD registers.  */                                                    \
872
  0,      0,      0,      0,      0,      0,      0,      0,            \
873
/*"gbr",  "ap",   "pr",   "t",    "mach", "macl", "fpul", "fpscr", */   \
874
  1,      1,      1,      1,      1,      1,      0,      1,            \
875
/*"rap",  "sfp" */                                                      \
876
  1,      1,                                                            \
877
}
878
 
879
/* 1 for registers not available across function calls.
880
   These must include the FIXED_REGISTERS and also any
881
   registers that can be used without being saved.
882
   The latter must include the registers where values are returned
883
   and the register where structure-value addresses are passed.
884
   Aside from that, you can include as many other registers as you like.  */
885
 
886
#define CALL_USED_REGISTERS                                             \
887
{                                                                       \
888
/* Regular registers.  */                                               \
889
  1,      1,      1,      1,      1,      1,      1,      1,            \
890
  /* R8 and R9 are call-clobbered on SH5, but not on earlier SH ABIs.   \
891
     Only the lower 32bits of R10-R14 are guaranteed to be preserved    \
892
     across SH5 function calls.  */                                     \
893
  0,      0,      0,      0,      0,      0,      0,      1,            \
894
  1,      1,      1,      1,      1,      1,      1,      1,            \
895
  1,      1,      1,      1,      0,      0,      0,      0,            \
896
  0,      0,      0,      0,      1,      1,      1,      1,            \
897
  1,      1,      1,      1,      0,      0,      0,      0,            \
898
  0,      0,      0,      0,      0,      0,      0,      0,            \
899
  0,      0,      0,      0,      1,      1,      1,      1,            \
900
/* FP registers.  */                                                    \
901
  1,      1,      1,      1,      1,      1,      1,      1,            \
902
  1,      1,      1,      1,      0,      0,      0,      0,            \
903
  1,      1,      1,      1,      1,      1,      1,      1,            \
904
  1,      1,      1,      1,      1,      1,      1,      1,            \
905
  1,      1,      1,      1,      0,      0,      0,      0,            \
906
  0,      0,      0,      0,      0,      0,      0,      0,            \
907
  0,      0,      0,      0,      0,      0,      0,      0,            \
908
  0,      0,      0,      0,      0,      0,      0,      0,            \
909
/* Branch target registers.  */                                         \
910
  1,      1,      1,      1,      1,      0,      0,      0,            \
911
/* XD registers.  */                                                    \
912
  1,      1,      1,      1,      1,      1,      0,      0,            \
913
/*"gbr",  "ap",   "pr",   "t",    "mach", "macl", "fpul", "fpscr", */   \
914
  1,      1,      1,      1,      1,      1,      1,      1,            \
915
/*"rap",  "sfp" */                                                      \
916
  1,      1,                                                            \
917
}
918
 
919
/* CONDITIONAL_REGISTER_USAGE might want to make a register call-used, yet
920
   fixed, like PIC_OFFSET_TABLE_REGNUM.  */
921
#define CALL_REALLY_USED_REGISTERS CALL_USED_REGISTERS
922
 
923
/* Only the lower 32-bits of R10-R14 are guaranteed to be preserved
924
   across SHcompact function calls.  We can't tell whether a called
925
   function is SHmedia or SHcompact, so we assume it may be when
926
   compiling SHmedia code with the 32-bit ABI, since that's the only
927
   ABI that can be linked with SHcompact code.  */
928
#define HARD_REGNO_CALL_PART_CLOBBERED(REGNO,MODE) \
929
  (TARGET_SHMEDIA32 \
930
   && GET_MODE_SIZE (MODE) > 4 \
931
   && (((REGNO) >= FIRST_GENERAL_REG + 10 \
932
        && (REGNO) <= FIRST_GENERAL_REG + 15) \
933
       || TARGET_REGISTER_P (REGNO) \
934
       || (REGNO) == PR_MEDIA_REG))
935
 
936
/* Return number of consecutive hard regs needed starting at reg REGNO
937
   to hold something of mode MODE.
938
   This is ordinarily the length in words of a value of mode MODE
939
   but can be less for certain modes in special long registers.
940
 
941
   On the SH all but the XD regs are UNITS_PER_WORD bits wide.  */
942
 
943
#define HARD_REGNO_NREGS(REGNO, MODE) \
944
   (XD_REGISTER_P (REGNO) \
945
    ? ((GET_MODE_SIZE (MODE) + (2*UNITS_PER_WORD - 1)) / (2*UNITS_PER_WORD)) \
946
    : (TARGET_SHMEDIA && FP_REGISTER_P (REGNO)) \
947
    ? ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD/2 - 1) / (UNITS_PER_WORD/2)) \
948
    : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
949
 
950
/* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.  */
951
 
952
#define HARD_REGNO_MODE_OK(REGNO, MODE)         \
953
  sh_hard_regno_mode_ok ((REGNO), (MODE))
954
 
955
/* Value is 1 if it is a good idea to tie two pseudo registers
956
   when one has mode MODE1 and one has mode MODE2.
957
   If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
958
   for any hard reg, then this must be 0 for correct output.
959
   That's the case for xd registers: we don't hold SFmode values in
960
   them, so we can't tie an SFmode pseudos with one in another
961
   floating-point mode.  */
962
 
963
#define MODES_TIEABLE_P(MODE1, MODE2) \
964
  ((MODE1) == (MODE2) \
965
   || (TARGET_SHMEDIA \
966
       && GET_MODE_SIZE (MODE1) == GET_MODE_SIZE (MODE2) \
967
       && INTEGRAL_MODE_P (MODE1) && INTEGRAL_MODE_P (MODE2)) \
968
   || (GET_MODE_CLASS (MODE1) == GET_MODE_CLASS (MODE2) \
969
       && (TARGET_SHMEDIA ? ((GET_MODE_SIZE (MODE1) <= 4) \
970
                              && (GET_MODE_SIZE (MODE2) <= 4)) \
971
                          : ((MODE1) != SFmode && (MODE2) != SFmode))))
972
 
973
/* A C expression that is nonzero if hard register NEW_REG can be
974
   considered for use as a rename register for OLD_REG register */
975
 
976
#define HARD_REGNO_RENAME_OK(OLD_REG, NEW_REG) \
977
   sh_hard_regno_rename_ok (OLD_REG, NEW_REG)
978
 
979
/* Specify the registers used for certain standard purposes.
980
   The values of these macros are register numbers.  */
981
 
982
/* Define this if the program counter is overloaded on a register.  */
983
/* #define PC_REGNUM            15*/
984
 
985
/* Register to use for pushing function arguments.  */
986
#define STACK_POINTER_REGNUM    SP_REG
987
 
988
/* Base register for access to local variables of the function.  */
989
#define HARD_FRAME_POINTER_REGNUM       FP_REG
990
 
991
/* Base register for access to local variables of the function.  */
992
#define FRAME_POINTER_REGNUM    153
993
 
994
/* Fake register that holds the address on the stack of the
995
   current function's return address.  */
996
#define RETURN_ADDRESS_POINTER_REGNUM RAP_REG
997
 
998
/* Register to hold the addressing base for position independent
999
   code access to data items.  */
1000
#define PIC_OFFSET_TABLE_REGNUM (flag_pic ? PIC_REG : INVALID_REGNUM)
1001
 
1002
#define GOT_SYMBOL_NAME "*_GLOBAL_OFFSET_TABLE_"
1003
 
1004
/* Definitions for register eliminations.
1005
 
1006
   We have three registers that can be eliminated on the SH.  First, the
1007
   frame pointer register can often be eliminated in favor of the stack
1008
   pointer register.  Secondly, the argument pointer register can always be
1009
   eliminated; it is replaced with either the stack or frame pointer.
1010
   Third, there is the return address pointer, which can also be replaced
1011
   with either the stack or the frame pointer.  */
1012
 
1013
/* This is an array of structures.  Each structure initializes one pair
1014
   of eliminable registers.  The "from" register number is given first,
1015
   followed by "to".  Eliminations of the same "from" register are listed
1016
   in order of preference.  */
1017
 
1018
/* If you add any registers here that are not actually hard registers,
1019
   and that have any alternative of elimination that doesn't always
1020
   apply, you need to amend calc_live_regs to exclude it, because
1021
   reload spills all eliminable registers where it sees an
1022
   can_eliminate == 0 entry, thus making them 'live' .
1023
   If you add any hard registers that can be eliminated in different
1024
   ways, you have to patch reload to spill them only when all alternatives
1025
   of elimination fail.  */
1026
 
1027
#define ELIMINABLE_REGS                                         \
1028
{{ HARD_FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM},            \
1029
 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM},                 \
1030
 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM},            \
1031
 { RETURN_ADDRESS_POINTER_REGNUM, STACK_POINTER_REGNUM},        \
1032
 { RETURN_ADDRESS_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM},   \
1033
 { ARG_POINTER_REGNUM, STACK_POINTER_REGNUM},                   \
1034
 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM},}
1035
 
1036
/* Define the offset between two registers, one to be eliminated, and the other
1037
   its replacement, at the start of a routine.  */
1038
 
1039
#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1040
  OFFSET = initial_elimination_offset ((FROM), (TO))
1041
 
1042
/* Base register for access to arguments of the function.  */
1043
#define ARG_POINTER_REGNUM      AP_REG
1044
 
1045
/* Register in which the static-chain is passed to a function.  */
1046
#define STATIC_CHAIN_REGNUM     (TARGET_SH5 ? 1 : 3)
1047
 
1048
/* Don't default to pcc-struct-return, because we have already specified
1049
   exactly how to return structures in the TARGET_RETURN_IN_MEMORY
1050
   target hook.  */
1051
 
1052
#define DEFAULT_PCC_STRUCT_RETURN 0
1053
 
1054
#define SHMEDIA_REGS_STACK_ADJUST() \
1055
  (TARGET_SHCOMPACT && crtl->saves_all_registers \
1056
   ? (8 * (/* r28-r35 */ 8 + /* r44-r59 */ 16 + /* tr5-tr7 */ 3) \
1057
      + (TARGET_FPU_ANY ? 4 * (/* fr36 - fr63 */ 28) : 0)) \
1058
   : 0)
1059
 
1060
 
1061
/* Define the classes of registers for register constraints in the
1062
   machine description.  Also define ranges of constants.
1063
 
1064
   One of the classes must always be named ALL_REGS and include all hard regs.
1065
   If there is more than one class, another class must be named NO_REGS
1066
   and contain no registers.
1067
 
1068
   The name GENERAL_REGS must be the name of a class (or an alias for
1069
   another name such as ALL_REGS).  This is the class of registers
1070
   that is allowed by "g" or "r" in a register constraint.
1071
   Also, registers outside this class are allocated only when
1072
   instructions express preferences for them.
1073
 
1074
   The classes must be numbered in nondecreasing order; that is,
1075
   a larger-numbered class must never be contained completely
1076
   in a smaller-numbered class.
1077
 
1078
   For any two classes, it is very desirable that there be another
1079
   class that represents their union.  */
1080
 
1081
/* The SH has two sorts of general registers, R0 and the rest.  R0 can
1082
   be used as the destination of some of the arithmetic ops. There are
1083
   also some special purpose registers; the T bit register, the
1084
   Procedure Return Register and the Multiply Accumulate Registers.  */
1085
/* Place GENERAL_REGS after FPUL_REGS so that it will be preferred by
1086
   reg_class_subunion.  We don't want to have an actual union class
1087
   of these, because it would only be used when both classes are calculated
1088
   to give the same cost, but there is only one FPUL register.
1089
   Besides, regclass fails to notice the different REGISTER_MOVE_COSTS
1090
   applying to the actual instruction alternative considered.  E.g., the
1091
   y/r alternative of movsi_ie is considered to have no more cost that
1092
   the r/r alternative, which is patently untrue.  */
1093
 
1094
enum reg_class
1095
{
1096
  NO_REGS,
1097
  R0_REGS,
1098
  PR_REGS,
1099
  T_REGS,
1100
  MAC_REGS,
1101
  FPUL_REGS,
1102
  SIBCALL_REGS,
1103
  GENERAL_REGS,
1104
  FP0_REGS,
1105
  FP_REGS,
1106
  DF_HI_REGS,
1107
  DF_REGS,
1108
  FPSCR_REGS,
1109
  GENERAL_FP_REGS,
1110
  GENERAL_DF_REGS,
1111
  TARGET_REGS,
1112
  ALL_REGS,
1113
  LIM_REG_CLASSES
1114
};
1115
 
1116
#define N_REG_CLASSES  (int) LIM_REG_CLASSES
1117
 
1118
/* Give names of register classes as strings for dump file.  */
1119
#define REG_CLASS_NAMES \
1120
{                       \
1121
  "NO_REGS",            \
1122
  "R0_REGS",            \
1123
  "PR_REGS",            \
1124
  "T_REGS",             \
1125
  "MAC_REGS",           \
1126
  "FPUL_REGS",          \
1127
  "SIBCALL_REGS",       \
1128
  "GENERAL_REGS",       \
1129
  "FP0_REGS",           \
1130
  "FP_REGS",            \
1131
  "DF_HI_REGS",         \
1132
  "DF_REGS",            \
1133
  "FPSCR_REGS",         \
1134
  "GENERAL_FP_REGS",    \
1135
  "GENERAL_DF_REGS",    \
1136
  "TARGET_REGS",        \
1137
  "ALL_REGS",           \
1138
}
1139
 
1140
/* Define which registers fit in which classes.
1141
   This is an initializer for a vector of HARD_REG_SET
1142
   of length N_REG_CLASSES.  */
1143
 
1144
#define REG_CLASS_CONTENTS                                              \
1145
{                                                                       \
1146
/* NO_REGS:  */                                                         \
1147
  { 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 },       \
1148
/* R0_REGS:  */                                                         \
1149
  { 0x00000001, 0x00000000, 0x00000000, 0x00000000, 0x00000000 },       \
1150
/* PR_REGS:  */                                                         \
1151
  { 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00040000 },       \
1152
/* T_REGS:  */                                                          \
1153
  { 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00080000 },       \
1154
/* MAC_REGS:  */                                                        \
1155
  { 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00300000 },       \
1156
/* FPUL_REGS:  */                                                       \
1157
  { 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00400000 },       \
1158
/* SIBCALL_REGS: Initialized in CONDITIONAL_REGISTER_USAGE.  */ \
1159
  { 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 },       \
1160
/* GENERAL_REGS:  */                                                    \
1161
  { 0xffffffff, 0xffffffff, 0x00000000, 0x00000000, 0x03020000 },       \
1162
/* FP0_REGS:  */                                                        \
1163
  { 0x00000000, 0x00000000, 0x00000001, 0x00000000, 0x00000000 },       \
1164
/* FP_REGS:  */                                                         \
1165
  { 0x00000000, 0x00000000, 0xffffffff, 0xffffffff, 0x00000000 },       \
1166
/* DF_HI_REGS:  Initialized in CONDITIONAL_REGISTER_USAGE.  */          \
1167
  { 0x00000000, 0x00000000, 0xffffffff, 0xffffffff, 0x0000ff00 },       \
1168
/* DF_REGS:  */                                                         \
1169
  { 0x00000000, 0x00000000, 0xffffffff, 0xffffffff, 0x0000ff00 },       \
1170
/* FPSCR_REGS:  */                                                      \
1171
  { 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00800000 },       \
1172
/* GENERAL_FP_REGS:  */                                                 \
1173
  { 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0x03020000 },       \
1174
/* GENERAL_DF_REGS:  */                                                 \
1175
  { 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0x0302ff00 },       \
1176
/* TARGET_REGS:  */                                                     \
1177
  { 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x000000ff },       \
1178
/* ALL_REGS:  */                                                        \
1179
  { 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0x03ffffff },       \
1180
}
1181
 
1182
/* The same information, inverted:
1183
   Return the class number of the smallest class containing
1184
   reg number REGNO.  This could be a conditional expression
1185
   or could index an array.  */
1186
 
1187
extern enum reg_class regno_reg_class[FIRST_PSEUDO_REGISTER];
1188
#define REGNO_REG_CLASS(REGNO) regno_reg_class[(REGNO)]
1189
 
1190
/* The following macro defines cover classes for Integrated Register
1191
   Allocator.  Cover classes is a set of non-intersected register
1192
   classes covering all hard registers used for register allocation
1193
   purpose.  Any move between two registers of a cover class should be
1194
   cheaper than load or store of the registers.  The macro value is
1195
   array of register classes with LIM_REG_CLASSES used as the end
1196
   marker.  */
1197
 
1198
#define IRA_COVER_CLASSES                                                    \
1199
{                                                                            \
1200
  GENERAL_REGS, FP_REGS, PR_REGS, T_REGS, MAC_REGS, TARGET_REGS,             \
1201
  FPUL_REGS, LIM_REG_CLASSES                                                 \
1202
}
1203
 
1204
/* When defined, the compiler allows registers explicitly used in the
1205
   rtl to be used as spill registers but prevents the compiler from
1206
   extending the lifetime of these registers.  */
1207
 
1208
#define SMALL_REGISTER_CLASSES (! TARGET_SHMEDIA)
1209
 
1210
/* The order in which register should be allocated.  */
1211
/* Sometimes FP0_REGS becomes the preferred class of a floating point pseudo,
1212
   and GENERAL_FP_REGS the alternate class.  Since FP0 is likely to be
1213
   spilled or used otherwise, we better have the FP_REGS allocated first.  */
1214
#define REG_ALLOC_ORDER \
1215
  {/* Caller-saved FPRs */ \
1216
    65, 66, 67, 68, 69, 70, 71, 64, \
1217
    72, 73, 74, 75, 80, 81, 82, 83, \
1218
    84, 85, 86, 87, 88, 89, 90, 91, \
1219
    92, 93, 94, 95, 96, 97, 98, 99, \
1220
   /* Callee-saved FPRs */ \
1221
    76, 77, 78, 79,100,101,102,103, \
1222
   104,105,106,107,108,109,110,111, \
1223
   112,113,114,115,116,117,118,119, \
1224
   120,121,122,123,124,125,126,127, \
1225
   136,137,138,139,140,141,142,143, \
1226
   /* FPSCR */ 151, \
1227
   /* Caller-saved GPRs (except 8/9 on SH1-4) */ \
1228
     1,  2,  3,  7,  6,  5,  4,  0, \
1229
     8,  9, 17, 19, 20, 21, 22, 23, \
1230
    36, 37, 38, 39, 40, 41, 42, 43, \
1231
    60, 61, 62, \
1232
   /* SH1-4 callee-saved saved GPRs / SH5 partially-saved GPRs */ \
1233
    10, 11, 12, 13, 14, 18, \
1234
    /* SH5 callee-saved GPRs */ \
1235
    28, 29, 30, 31, 32, 33, 34, 35, \
1236
    44, 45, 46, 47, 48, 49, 50, 51, \
1237
    52, 53, 54, 55, 56, 57, 58, 59, \
1238
   /* FPUL */ 150, \
1239
   /* SH5 branch target registers */ \
1240
   128,129,130,131,132,133,134,135, \
1241
   /* Fixed registers */ \
1242
    15, 16, 24, 25, 26, 27, 63,144, \
1243
   145,146,147,148,149,152,153 }
1244
 
1245
/* The class value for index registers, and the one for base regs.  */
1246
#define INDEX_REG_CLASS \
1247
  (!ALLOW_INDEXED_ADDRESS ? NO_REGS : TARGET_SHMEDIA ? GENERAL_REGS : R0_REGS)
1248
#define BASE_REG_CLASS   GENERAL_REGS
1249
 
1250
/* Defines for sh.md and constraints.md.  */
1251
 
1252
#define CONST_OK_FOR_I06(VALUE) (((HOST_WIDE_INT)(VALUE)) >= -32 \
1253
                                 && ((HOST_WIDE_INT)(VALUE)) <= 31)
1254
#define CONST_OK_FOR_I08(VALUE) (((HOST_WIDE_INT)(VALUE))>= -128 \
1255
                                 && ((HOST_WIDE_INT)(VALUE)) <= 127)
1256
#define CONST_OK_FOR_I10(VALUE) (((HOST_WIDE_INT)(VALUE)) >= -512 \
1257
                                 && ((HOST_WIDE_INT)(VALUE)) <= 511)
1258
#define CONST_OK_FOR_I16(VALUE) (((HOST_WIDE_INT)(VALUE)) >= -32768 \
1259
                                 && ((HOST_WIDE_INT)(VALUE)) <= 32767)
1260
 
1261
#define CONST_OK_FOR_J16(VALUE) \
1262
  ((HOST_BITS_PER_WIDE_INT >= 64 && (VALUE) == (HOST_WIDE_INT) 0xffffffff) \
1263
   || (HOST_BITS_PER_WIDE_INT >= 64 && (VALUE) == (HOST_WIDE_INT) -1 << 32))
1264
 
1265
#define CONST_OK_FOR_K08(VALUE) (((HOST_WIDE_INT)(VALUE))>= 0 \
1266
                                 && ((HOST_WIDE_INT)(VALUE)) <= 255)
1267
 
1268
/* Given an rtx X being reloaded into a reg required to be
1269
   in class CLASS, return the class of reg to actually use.
1270
   In general this is just CLASS; but on some machines
1271
   in some cases it is preferable to use a more restrictive class.  */
1272
 
1273
#define PREFERRED_RELOAD_CLASS(X, CLASS) \
1274
  ((CLASS) == NO_REGS && TARGET_SHMEDIA \
1275
   && (GET_CODE (X) == CONST_DOUBLE \
1276
       || GET_CODE (X) == SYMBOL_REF \
1277
       || PIC_ADDR_P (X)) \
1278
   ? GENERAL_REGS \
1279
   : (CLASS)) \
1280
 
1281
#if 0
1282
#define SECONDARY_INOUT_RELOAD_CLASS(CLASS,MODE,X,ELSE) \
1283
  ((((REGCLASS_HAS_FP_REG (CLASS)                                       \
1284
      && (REG_P (X)                                                     \
1285
      && (GENERAL_OR_AP_REGISTER_P (REGNO (X))                          \
1286
          || (FP_REGISTER_P (REGNO (X)) && (MODE) == SImode             \
1287
              && TARGET_FMOVD))))                                       \
1288
     || (REGCLASS_HAS_GENERAL_REG (CLASS)                               \
1289
         && REG_P (X)                                                   \
1290
         && FP_REGISTER_P (REGNO (X))))                                 \
1291
    && ! TARGET_SHMEDIA                                                 \
1292
    && ((MODE) == SFmode || (MODE) == SImode))                          \
1293
   ? FPUL_REGS                                                          \
1294
   : (((CLASS) == FPUL_REGS                                             \
1295
       || (REGCLASS_HAS_FP_REG (CLASS)                                  \
1296
           && ! TARGET_SHMEDIA && MODE == SImode))                      \
1297
      && (MEM_P (X)                                                     \
1298
          || (REG_P (X)                                                 \
1299
              && (REGNO (X) >= FIRST_PSEUDO_REGISTER                    \
1300
                  || REGNO (X) == T_REG                                 \
1301
                  || system_reg_operand (X, VOIDmode)))))               \
1302
   ? GENERAL_REGS                                                       \
1303
   : (((CLASS) == TARGET_REGS                                           \
1304
       || (TARGET_SHMEDIA && (CLASS) == SIBCALL_REGS))                  \
1305
      && !satisfies_constraint_Csy (X)                                  \
1306
      && (!REG_P (X) || ! GENERAL_REGISTER_P (REGNO (X))))              \
1307
   ? GENERAL_REGS                                                       \
1308
   : (((CLASS) == MAC_REGS || (CLASS) == PR_REGS)                       \
1309
      && REG_P (X) && ! GENERAL_REGISTER_P (REGNO (X))                  \
1310
      && (CLASS) != REGNO_REG_CLASS (REGNO (X)))                        \
1311
   ? GENERAL_REGS                                                       \
1312
   : ((CLASS) != GENERAL_REGS && REG_P (X)                              \
1313
      && TARGET_REGISTER_P (REGNO (X)))                                 \
1314
   ? GENERAL_REGS : (ELSE))
1315
 
1316
#define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS,MODE,X) \
1317
 SECONDARY_INOUT_RELOAD_CLASS(CLASS,MODE,X,NO_REGS)
1318
 
1319
#define SECONDARY_INPUT_RELOAD_CLASS(CLASS,MODE,X)  \
1320
  ((REGCLASS_HAS_FP_REG (CLASS)                                         \
1321
    && ! TARGET_SHMEDIA                                                 \
1322
    && immediate_operand ((X), (MODE))                                  \
1323
    && ! ((fp_zero_operand (X) || fp_one_operand (X))                   \
1324
          && (MODE) == SFmode && fldi_ok ()))                           \
1325
   ? R0_REGS                                                            \
1326
   : ((CLASS) == FPUL_REGS                                              \
1327
      && ((REG_P (X)                                                    \
1328
           && (REGNO (X) == MACL_REG || REGNO (X) == MACH_REG           \
1329
               || REGNO (X) == T_REG))                                  \
1330
          || GET_CODE (X) == PLUS))                                     \
1331
   ? GENERAL_REGS                                                       \
1332
   : (CLASS) == FPUL_REGS && immediate_operand ((X), (MODE))            \
1333
   ? (satisfies_constraint_I08 (X)                                      \
1334
      ? GENERAL_REGS                                                    \
1335
      : R0_REGS)                                                        \
1336
   : ((CLASS) == FPSCR_REGS                                             \
1337
      && ((REG_P (X) && REGNO (X) >= FIRST_PSEUDO_REGISTER)             \
1338
          || (MEM_P (X) && GET_CODE (XEXP ((X), 0)) == PLUS)))          \
1339
   ? GENERAL_REGS                                                       \
1340
   : (REGCLASS_HAS_FP_REG (CLASS)                                       \
1341
      && TARGET_SHMEDIA                                                 \
1342
      && immediate_operand ((X), (MODE))                                \
1343
      && (X) != CONST0_RTX (GET_MODE (X))                               \
1344
      && GET_MODE (X) != V4SFmode)                                      \
1345
   ? GENERAL_REGS                                                       \
1346
   : (((MODE) == QImode || (MODE) == HImode)                            \
1347
      && TARGET_SHMEDIA && inqhi_operand ((X), (MODE)))                 \
1348
   ? GENERAL_REGS                                                       \
1349
   : (TARGET_SHMEDIA && (CLASS) == GENERAL_REGS                         \
1350
      && (GET_CODE (X) == LABEL_REF || PIC_ADDR_P (X)))                 \
1351
   ? TARGET_REGS                                                        \
1352
   : SECONDARY_INOUT_RELOAD_CLASS((CLASS),(MODE),(X), NO_REGS))
1353
#endif
1354
 
1355
/* Return the maximum number of consecutive registers
1356
   needed to represent mode MODE in a register of class CLASS.
1357
 
1358
   If TARGET_SHMEDIA, we need two FP registers per word.
1359
   Otherwise we will need at most one register per word.  */
1360
#define CLASS_MAX_NREGS(CLASS, MODE) \
1361
    (TARGET_SHMEDIA \
1362
     && TEST_HARD_REG_BIT (reg_class_contents[CLASS], FIRST_FP_REG) \
1363
     ? (GET_MODE_SIZE (MODE) + UNITS_PER_WORD/2 - 1) / (UNITS_PER_WORD/2) \
1364
     : (GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
1365
 
1366
/* If defined, gives a class of registers that cannot be used as the
1367
   operand of a SUBREG that changes the mode of the object illegally.  */
1368
/* ??? We need to renumber the internal numbers for the frnn registers
1369
   when in little endian in order to allow mode size changes.  */
1370
 
1371
#define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS)                           \
1372
  sh_cannot_change_mode_class (FROM, TO, CLASS)
1373
 
1374
/* Stack layout; function entry, exit and calling.  */
1375
 
1376
/* Define the number of registers that can hold parameters.
1377
   These macros are used only in other macro definitions below.  */
1378
 
1379
#define NPARM_REGS(MODE) \
1380
  (TARGET_FPU_ANY && (MODE) == SFmode \
1381
   ? (TARGET_SH5 ? 12 : 8) \
1382
   : (TARGET_SH4 || TARGET_SH2A_DOUBLE) && (GET_MODE_CLASS (MODE) == MODE_FLOAT \
1383
                    || GET_MODE_CLASS (MODE) == MODE_COMPLEX_FLOAT) \
1384
   ? (TARGET_SH5 ? 12 : 8) \
1385
   : (TARGET_SH5 ? 8 : 4))
1386
 
1387
#define FIRST_PARM_REG (FIRST_GENERAL_REG + (TARGET_SH5 ? 2 : 4))
1388
#define FIRST_RET_REG  (FIRST_GENERAL_REG + (TARGET_SH5 ? 2 : 0))
1389
 
1390
#define FIRST_FP_PARM_REG (FIRST_FP_REG + (TARGET_SH5 ? 0 : 4))
1391
#define FIRST_FP_RET_REG FIRST_FP_REG
1392
 
1393
/* Define this if pushing a word on the stack
1394
   makes the stack pointer a smaller address.  */
1395
#define STACK_GROWS_DOWNWARD
1396
 
1397
/*  Define this macro to nonzero if the addresses of local variable slots
1398
    are at negative offsets from the frame pointer.  */
1399
#define FRAME_GROWS_DOWNWARD 1
1400
 
1401
/* Offset from the frame pointer to the first local variable slot to
1402
   be allocated.  */
1403
#define STARTING_FRAME_OFFSET  0
1404
 
1405
/* If we generate an insn to push BYTES bytes,
1406
   this says how many the stack pointer really advances by.  */
1407
/* Don't define PUSH_ROUNDING, since the hardware doesn't do this.
1408
   When PUSH_ROUNDING is not defined, PARM_BOUNDARY will cause gcc to
1409
   do correct alignment.  */
1410
#if 0
1411
#define PUSH_ROUNDING(NPUSHED)  (((NPUSHED) + 3) & ~3)
1412
#endif
1413
 
1414
/* Offset of first parameter from the argument pointer register value.  */
1415
#define FIRST_PARM_OFFSET(FNDECL)  0
1416
 
1417
/* Value is the number of byte of arguments automatically
1418
   popped when returning from a subroutine call.
1419
   FUNDECL is the declaration node of the function (as a tree),
1420
   FUNTYPE is the data type of the function (as a tree),
1421
   or for a library call it is an identifier node for the subroutine name.
1422
   SIZE is the number of bytes of arguments passed on the stack.
1423
 
1424
   On the SH, the caller does not pop any of its arguments that were passed
1425
   on the stack.  */
1426
#define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE)  0
1427
 
1428
/* Value is the number of bytes of arguments automatically popped when
1429
   calling a subroutine.
1430
   CUM is the accumulated argument list.
1431
 
1432
   On SHcompact, the call trampoline pops arguments off the stack.  */
1433
#define CALL_POPS_ARGS(CUM) (TARGET_SHCOMPACT ? (CUM).stack_regs * 8 : 0)
1434
 
1435
/* Some subroutine macros specific to this machine.  */
1436
 
1437
#define BASE_RETURN_VALUE_REG(MODE) \
1438
  ((TARGET_FPU_ANY && ((MODE) == SFmode))                       \
1439
   ? FIRST_FP_RET_REG                                   \
1440
   : TARGET_FPU_ANY && (MODE) == SCmode         \
1441
   ? FIRST_FP_RET_REG                                   \
1442
   : (TARGET_FPU_DOUBLE                                 \
1443
      && ((MODE) == DFmode || (MODE) == SFmode          \
1444
          || (MODE) == DCmode || (MODE) == SCmode ))    \
1445
   ? FIRST_FP_RET_REG                                   \
1446
   : FIRST_RET_REG)
1447
 
1448
#define BASE_ARG_REG(MODE) \
1449
  ((TARGET_SH2E && ((MODE) == SFmode))                  \
1450
   ? FIRST_FP_PARM_REG                                  \
1451
   : (TARGET_SH4 || TARGET_SH2A_DOUBLE) && (GET_MODE_CLASS (MODE) == MODE_FLOAT \
1452
                    || GET_MODE_CLASS (MODE) == MODE_COMPLEX_FLOAT)\
1453
   ? FIRST_FP_PARM_REG                                  \
1454
   : FIRST_PARM_REG)
1455
 
1456
#define FUNCTION_VALUE_REGNO_P(REGNO) sh_function_value_regno_p (REGNO)
1457
 
1458
/* 1 if N is a possible register number for function argument passing.  */
1459
/* ??? There are some callers that pass REGNO as int, and others that pass
1460
   it as unsigned.  We get warnings unless we do casts everywhere.  */
1461
#define FUNCTION_ARG_REGNO_P(REGNO) \
1462
  (((unsigned) (REGNO) >= (unsigned) FIRST_PARM_REG                     \
1463
    && (unsigned) (REGNO) < (unsigned) (FIRST_PARM_REG + NPARM_REGS (SImode)))\
1464
   || (TARGET_FPU_ANY                                                   \
1465
       && (unsigned) (REGNO) >= (unsigned) FIRST_FP_PARM_REG            \
1466
       && (unsigned) (REGNO) < (unsigned) (FIRST_FP_PARM_REG            \
1467
                                           + NPARM_REGS (SFmode))))
1468
 
1469
/* Define a data type for recording info about an argument list
1470
   during the scan of that argument list.  This data type should
1471
   hold all necessary information about the function itself
1472
   and about the args processed so far, enough to enable macros
1473
   such as FUNCTION_ARG to determine where the next arg should go.
1474
 
1475
   On SH, this is a single integer, which is a number of words
1476
   of arguments scanned so far (including the invisible argument,
1477
   if any, which holds the structure-value-address).
1478
   Thus NARGREGS or more means all following args should go on the stack.  */
1479
 
1480
enum sh_arg_class { SH_ARG_INT = 0, SH_ARG_FLOAT = 1 };
1481
struct sh_args {
1482
    int arg_count[2];
1483
    int force_mem;
1484
  /* Nonzero if a prototype is available for the function.  */
1485
    int prototype_p;
1486
  /* The number of an odd floating-point register, that should be used
1487
     for the next argument of type float.  */
1488
    int free_single_fp_reg;
1489
  /* Whether we're processing an outgoing function call.  */
1490
    int outgoing;
1491
  /* The number of general-purpose registers that should have been
1492
     used to pass partial arguments, that are passed totally on the
1493
     stack.  On SHcompact, a call trampoline will pop them off the
1494
     stack before calling the actual function, and, if the called
1495
     function is implemented in SHcompact mode, the incoming arguments
1496
     decoder will push such arguments back onto the stack.  For
1497
     incoming arguments, STACK_REGS also takes into account other
1498
     arguments passed by reference, that the decoder will also push
1499
     onto the stack.  */
1500
    int stack_regs;
1501
  /* The number of general-purpose registers that should have been
1502
     used to pass arguments, if the arguments didn't have to be passed
1503
     by reference.  */
1504
    int byref_regs;
1505
  /* Set as by shcompact_byref if the current argument is to be passed
1506
     by reference.  */
1507
    int byref;
1508
 
1509
  /* call_cookie is a bitmask used by call expanders, as well as
1510
     function prologue and epilogues, to allow SHcompact to comply
1511
     with the SH5 32-bit ABI, that requires 64-bit registers to be
1512
     used even though only the lower 32-bit half is visible in
1513
     SHcompact mode.  The strategy is to call SHmedia trampolines.
1514
 
1515
     The alternatives for each of the argument-passing registers are
1516
     (a) leave it unchanged; (b) pop it off the stack; (c) load its
1517
     contents from the address in it; (d) add 8 to it, storing the
1518
     result in the next register, then (c); (e) copy it from some
1519
     floating-point register,
1520
 
1521
     Regarding copies from floating-point registers, r2 may only be
1522
     copied from dr0.  r3 may be copied from dr0 or dr2.  r4 maybe
1523
     copied from dr0, dr2 or dr4.  r5 maybe copied from dr0, dr2,
1524
     dr4 or dr6.  r6 may be copied from dr0, dr2, dr4, dr6 or dr8.
1525
     r7 through to r9 may be copied from dr0, dr2, dr4, dr8, dr8 or
1526
     dr10.
1527
 
1528
     The bit mask is structured as follows:
1529
 
1530
     - 1 bit to tell whether to set up a return trampoline.
1531
 
1532
     - 3 bits to count the number consecutive registers to pop off the
1533
       stack.
1534
 
1535
     - 4 bits for each of r9, r8, r7 and r6.
1536
 
1537
     - 3 bits for each of r5, r4, r3 and r2.
1538
 
1539
     - 3 bits set to 0 (the most significant ones)
1540
 
1541
        3           2            1           0
1542
       1098 7654 3210 9876 5432 1098 7654 3210
1543
       FLPF LPFL PFLP FFLP FFLP FFLP FFLP SSST
1544
       2223 3344 4555 6666 7777 8888 9999 SSS-
1545
 
1546
     - If F is set, the register must be copied from an FP register,
1547
       whose number is encoded in the remaining bits.
1548
 
1549
     - Else, if L is set, the register must be loaded from the address
1550
       contained in it.  If the P bit is *not* set, the address of the
1551
       following dword should be computed first, and stored in the
1552
       following register.
1553
 
1554
     - Else, if P is set, the register alone should be popped off the
1555
       stack.
1556
 
1557
     - After all this processing, the number of registers represented
1558
       in SSS will be popped off the stack.  This is an optimization
1559
       for pushing/popping consecutive registers, typically used for
1560
       varargs and large arguments partially passed in registers.
1561
 
1562
     - If T is set, a return trampoline will be set up for 64-bit
1563
     return values to be split into 2 32-bit registers.  */
1564
    long call_cookie;
1565
 
1566
  /* This is set to nonzero when the call in question must use the Renesas ABI,
1567
     even without the -mrenesas option.  */
1568
    int renesas_abi;
1569
};
1570
 
1571
#define CALL_COOKIE_RET_TRAMP_SHIFT 0
1572
#define CALL_COOKIE_RET_TRAMP(VAL) ((VAL) << CALL_COOKIE_RET_TRAMP_SHIFT)
1573
#define CALL_COOKIE_STACKSEQ_SHIFT 1
1574
#define CALL_COOKIE_STACKSEQ(VAL) ((VAL) << CALL_COOKIE_STACKSEQ_SHIFT)
1575
#define CALL_COOKIE_STACKSEQ_GET(COOKIE) \
1576
  (((COOKIE) >> CALL_COOKIE_STACKSEQ_SHIFT) & 7)
1577
#define CALL_COOKIE_INT_REG_SHIFT(REG) \
1578
  (4 * (7 - (REG)) + (((REG) <= 2) ? ((REG) - 2) : 1) + 3)
1579
#define CALL_COOKIE_INT_REG(REG, VAL) \
1580
  ((VAL) << CALL_COOKIE_INT_REG_SHIFT (REG))
1581
#define CALL_COOKIE_INT_REG_GET(COOKIE, REG) \
1582
  (((COOKIE) >> CALL_COOKIE_INT_REG_SHIFT (REG)) & ((REG) < 4 ? 7 : 15))
1583
 
1584
#define CUMULATIVE_ARGS  struct sh_args
1585
 
1586
#define GET_SH_ARG_CLASS(MODE) \
1587
  ((TARGET_FPU_ANY && (MODE) == SFmode) \
1588
   ? SH_ARG_FLOAT \
1589
   /* There's no mention of complex float types in the SH5 ABI, so we
1590
      should presumably handle them as aggregate types.  */ \
1591
   : TARGET_SH5 && GET_MODE_CLASS (MODE) == MODE_COMPLEX_FLOAT \
1592
   ? SH_ARG_INT \
1593
   : TARGET_FPU_DOUBLE && (GET_MODE_CLASS (MODE) == MODE_FLOAT \
1594
                           || GET_MODE_CLASS (MODE) == MODE_COMPLEX_FLOAT) \
1595
   ? SH_ARG_FLOAT : SH_ARG_INT)
1596
 
1597
#define ROUND_ADVANCE(SIZE) \
1598
  (((SIZE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
1599
 
1600
/* Round a register number up to a proper boundary for an arg of mode
1601
   MODE.
1602
 
1603
   The SH doesn't care about double alignment, so we only
1604
   round doubles to even regs when asked to explicitly.  */
1605
 
1606
#define ROUND_REG(CUM, MODE) \
1607
   (((TARGET_ALIGN_DOUBLE                                       \
1608
      || ((TARGET_SH4 || TARGET_SH2A_DOUBLE) && ((MODE) == DFmode || (MODE) == DCmode)  \
1609
          && (CUM).arg_count[(int) SH_ARG_FLOAT] < NPARM_REGS (MODE)))\
1610
     && GET_MODE_UNIT_SIZE ((MODE)) > UNITS_PER_WORD)           \
1611
    ? ((CUM).arg_count[(int) GET_SH_ARG_CLASS (MODE)]           \
1612
       + ((CUM).arg_count[(int) GET_SH_ARG_CLASS (MODE)] & 1))  \
1613
    : (CUM).arg_count[(int) GET_SH_ARG_CLASS (MODE)])
1614
 
1615
/* Initialize a variable CUM of type CUMULATIVE_ARGS
1616
   for a call to a function whose data type is FNTYPE.
1617
   For a library call, FNTYPE is 0.
1618
 
1619
   On SH, the offset always starts at 0: the first parm reg is always
1620
   the same reg for a given argument class.
1621
 
1622
   For TARGET_HITACHI, the structure value pointer is passed in memory.  */
1623
 
1624
#define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
1625
  sh_init_cumulative_args (& (CUM), (FNTYPE), (LIBNAME), (FNDECL), (N_NAMED_ARGS), VOIDmode)
1626
 
1627
#define INIT_CUMULATIVE_LIBCALL_ARGS(CUM, MODE, LIBNAME) \
1628
  sh_init_cumulative_args (& (CUM), NULL_TREE, (LIBNAME), NULL_TREE, 0, (MODE))
1629
 
1630
#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED)    \
1631
        sh_function_arg_advance (&(CUM), (MODE), (TYPE), (NAMED))
1632
#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED)    \
1633
        sh_function_arg (&(CUM), (MODE), (TYPE), (NAMED))
1634
 
1635
/* Return boolean indicating arg of mode MODE will be passed in a reg.
1636
   This macro is only used in this file.  */
1637
 
1638
#define PASS_IN_REG_P(CUM, MODE, TYPE) \
1639
  (((TYPE) == 0 \
1640
    || (! TREE_ADDRESSABLE ((tree)(TYPE)) \
1641
        && (! (TARGET_HITACHI || (CUM).renesas_abi) \
1642
            || ! (AGGREGATE_TYPE_P (TYPE) \
1643
                  || (!TARGET_FPU_ANY \
1644
                      && (GET_MODE_CLASS (MODE) == MODE_FLOAT \
1645
                          && GET_MODE_SIZE (MODE) > GET_MODE_SIZE (SFmode))))))) \
1646
   && ! (CUM).force_mem \
1647
   && (TARGET_SH2E \
1648
       ? ((MODE) == BLKmode \
1649
          ? (((CUM).arg_count[(int) SH_ARG_INT] * UNITS_PER_WORD \
1650
              + int_size_in_bytes (TYPE)) \
1651
             <= NPARM_REGS (SImode) * UNITS_PER_WORD) \
1652
          : ((ROUND_REG((CUM), (MODE)) \
1653
              + HARD_REGNO_NREGS (BASE_ARG_REG (MODE), (MODE))) \
1654
             <= NPARM_REGS (MODE))) \
1655
       : ROUND_REG ((CUM), (MODE)) < NPARM_REGS (MODE)))
1656
 
1657
/* By accident we got stuck with passing SCmode on SH4 little endian
1658
   in two registers that are nominally successive - which is different from
1659
   two single SFmode values, where we take endianness translation into
1660
   account.  That does not work at all if an odd number of registers is
1661
   already in use, so that got fixed, but library functions are still more
1662
   likely to use complex numbers without mixing them with SFmode arguments
1663
   (which in C would have to be structures), so for the sake of ABI
1664
   compatibility the way SCmode values are passed when an even number of
1665
   FP registers is in use remains different from a pair of SFmode values for
1666
   now.
1667
   I.e.:
1668
   foo (double); a: fr5,fr4
1669
   foo (float a, float b); a: fr5 b: fr4
1670
   foo (__complex float a); a.real fr4 a.imag: fr5 - for consistency,
1671
                            this should be the other way round...
1672
   foo (float a, __complex float b); a: fr5 b.real: fr4 b.imag: fr7  */
1673
#define FUNCTION_ARG_SCmode_WART 1
1674
 
1675
/* If an argument of size 5, 6 or 7 bytes is to be passed in a 64-bit
1676
   register in SHcompact mode, it must be padded in the most
1677
   significant end.  This means that passing it by reference wouldn't
1678
   pad properly on a big-endian machine.  In this particular case, we
1679
   pass this argument on the stack, in a way that the call trampoline
1680
   will load its value into the appropriate register.  */
1681
#define SHCOMPACT_FORCE_ON_STACK(MODE,TYPE) \
1682
  ((MODE) == BLKmode \
1683
   && TARGET_SHCOMPACT \
1684
   && ! TARGET_LITTLE_ENDIAN \
1685
   && int_size_in_bytes (TYPE) > 4 \
1686
   && int_size_in_bytes (TYPE) < 8)
1687
 
1688
/* Minimum alignment for an argument to be passed by callee-copy
1689
   reference.  We need such arguments to be aligned to 8 byte
1690
   boundaries, because they'll be loaded using quad loads.  */
1691
#define SH_MIN_ALIGN_FOR_CALLEE_COPY (8 * BITS_PER_UNIT)
1692
 
1693
/* The SH5 ABI requires floating-point arguments to be passed to
1694
   functions without a prototype in both an FP register and a regular
1695
   register or the stack.  When passing the argument in both FP and
1696
   general-purpose registers, list the FP register first.  */
1697
#define SH5_PROTOTYPELESS_FLOAT_ARG(CUM,MODE) \
1698
  (gen_rtx_PARALLEL                                                     \
1699
   ((MODE),                                                             \
1700
    gen_rtvec (2,                                                       \
1701
               gen_rtx_EXPR_LIST                                        \
1702
               (VOIDmode,                                               \
1703
                ((CUM).arg_count[(int) SH_ARG_INT] < NPARM_REGS (SImode) \
1704
                 ? gen_rtx_REG ((MODE), FIRST_FP_PARM_REG               \
1705
                                + (CUM).arg_count[(int) SH_ARG_FLOAT])  \
1706
                 : NULL_RTX),                                           \
1707
                const0_rtx),                                            \
1708
               gen_rtx_EXPR_LIST                                        \
1709
               (VOIDmode,                                               \
1710
                ((CUM).arg_count[(int) SH_ARG_INT] < NPARM_REGS (SImode) \
1711
                 ? gen_rtx_REG ((MODE), FIRST_PARM_REG                  \
1712
                                + (CUM).arg_count[(int) SH_ARG_INT])    \
1713
                 : gen_rtx_REG ((MODE), FIRST_FP_PARM_REG               \
1714
                                + (CUM).arg_count[(int) SH_ARG_FLOAT])), \
1715
                const0_rtx))))
1716
 
1717
/* The SH5 ABI requires regular registers or stack slots to be
1718
   reserved for floating-point arguments.  Registers are taken care of
1719
   in FUNCTION_ARG_ADVANCE, but stack slots must be reserved here.
1720
   Unfortunately, there's no way to just reserve a stack slot, so
1721
   we'll end up needlessly storing a copy of the argument in the
1722
   stack.  For incoming arguments, however, the PARALLEL will be
1723
   optimized to the register-only form, and the value in the stack
1724
   slot won't be used at all.  */
1725
#define SH5_PROTOTYPED_FLOAT_ARG(CUM,MODE,REG) \
1726
  ((CUM).arg_count[(int) SH_ARG_INT] < NPARM_REGS (SImode)              \
1727
   ? gen_rtx_REG ((MODE), (REG))                                        \
1728
   : gen_rtx_PARALLEL ((MODE),                                          \
1729
                       gen_rtvec (2,                                    \
1730
                                  gen_rtx_EXPR_LIST                     \
1731
                                  (VOIDmode, NULL_RTX,                  \
1732
                                   const0_rtx),                         \
1733
                                  gen_rtx_EXPR_LIST                     \
1734
                                  (VOIDmode, gen_rtx_REG ((MODE),       \
1735
                                                          (REG)),       \
1736
                                   const0_rtx))))
1737
 
1738
#define SH5_WOULD_BE_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
1739
  (TARGET_SH5                                                   \
1740
   && ((MODE) == BLKmode || (MODE) == TImode || (MODE) == CDImode \
1741
       || (MODE) == DCmode) \
1742
   && ((CUM).arg_count[(int) SH_ARG_INT]                        \
1743
       + (((MODE) == BLKmode ? int_size_in_bytes (TYPE)         \
1744
                             : GET_MODE_SIZE (MODE))            \
1745
          + 7) / 8) > NPARM_REGS (SImode))
1746
 
1747
/* Perform any needed actions needed for a function that is receiving a
1748
   variable number of arguments.  */
1749
 
1750
/* Call the function profiler with a given profile label.
1751
   We use two .aligns, so as to make sure that both the .long is aligned
1752
   on a 4 byte boundary, and that the .long is a fixed distance (2 bytes)
1753
   from the trapa instruction.  */
1754
 
1755
#define FUNCTION_PROFILER(STREAM,LABELNO)                       \
1756
{                                                               \
1757
  if (TARGET_SHMEDIA)                                           \
1758
    {                                                           \
1759
      fprintf((STREAM), "\tmovi\t33,r0\n");                     \
1760
      fprintf((STREAM), "\ttrapa\tr0\n");                       \
1761
      asm_fprintf((STREAM), "\t.long\t%LLP%d\n", (LABELNO));    \
1762
    }                                                           \
1763
  else                                                          \
1764
    {                                                           \
1765
      fprintf((STREAM), "\t.align\t2\n");                       \
1766
      fprintf((STREAM), "\ttrapa\t#33\n");                      \
1767
      fprintf((STREAM), "\t.align\t2\n");                       \
1768
      asm_fprintf((STREAM), "\t.long\t%LLP%d\n", (LABELNO));    \
1769
    }                                                           \
1770
}
1771
 
1772
/* Define this macro if the code for function profiling should come
1773
   before the function prologue.  Normally, the profiling code comes
1774
   after.  */
1775
 
1776
#define PROFILE_BEFORE_PROLOGUE
1777
 
1778
/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1779
   the stack pointer does not matter.  The value is tested only in
1780
   functions that have frame pointers.
1781
   No definition is equivalent to always zero.  */
1782
 
1783
#define EXIT_IGNORE_STACK 1
1784
 
1785
/*
1786
   On the SH, the trampoline looks like
1787
   2 0002 D202                  mov.l   l2,r2
1788
   1 0000 D301                  mov.l   l1,r3
1789
   3 0004 422B                  jmp     @r2
1790
   4 0006 0009                  nop
1791
   5 0008 00000000      l1:     .long   area
1792
   6 000c 00000000      l2:     .long   function  */
1793
 
1794
/* Length in units of the trampoline for entering a nested function.  */
1795
#define TRAMPOLINE_SIZE  (TARGET_SHMEDIA64 ? 40 : TARGET_SH5 ? 24 : 16)
1796
 
1797
/* Alignment required for a trampoline in bits .  */
1798
#define TRAMPOLINE_ALIGNMENT \
1799
  ((CACHE_LOG < 3 || (TARGET_SMALLCODE && ! TARGET_HARVARD)) ? 32 \
1800
   : TARGET_SHMEDIA ? 256 : 64)
1801
 
1802
/* A C expression whose value is RTL representing the value of the return
1803
   address for the frame COUNT steps up from the current frame.
1804
   FRAMEADDR is already the frame pointer of the COUNT frame, so we
1805
   can ignore COUNT.  */
1806
 
1807
#define RETURN_ADDR_RTX(COUNT, FRAME)   \
1808
  (((COUNT) == 0) ? sh_get_pr_initial_val () : (rtx) 0)
1809
 
1810
/* A C expression whose value is RTL representing the location of the
1811
   incoming return address at the beginning of any function, before the
1812
   prologue.  This RTL is either a REG, indicating that the return
1813
   value is saved in REG, or a MEM representing a location in
1814
   the stack.  */
1815
#define INCOMING_RETURN_ADDR_RTX \
1816
  gen_rtx_REG (Pmode, TARGET_SHMEDIA ? PR_MEDIA_REG : PR_REG)
1817
 
1818
/* Addressing modes, and classification of registers for them.  */
1819
#define HAVE_POST_INCREMENT  TARGET_SH1
1820
#define HAVE_PRE_DECREMENT   TARGET_SH1
1821
 
1822
#define USE_LOAD_POST_INCREMENT(mode)    ((mode == SImode || mode == DImode) \
1823
                                           ? 0 : TARGET_SH1)
1824
#define USE_LOAD_PRE_DECREMENT(mode)     0
1825
#define USE_STORE_POST_INCREMENT(mode)   0
1826
#define USE_STORE_PRE_DECREMENT(mode)    ((mode == SImode || mode == DImode) \
1827
                                           ? 0 : TARGET_SH1)
1828
 
1829
#define MOVE_BY_PIECES_P(SIZE, ALIGN) \
1830
  (move_by_pieces_ninsns (SIZE, ALIGN, MOVE_MAX_PIECES + 1) \
1831
   < (TARGET_SMALLCODE ? 2 : ((ALIGN >= 32) ? 16 : 2)))
1832
 
1833
#define STORE_BY_PIECES_P(SIZE, ALIGN) \
1834
  (move_by_pieces_ninsns (SIZE, ALIGN, STORE_MAX_PIECES + 1) \
1835
   < (TARGET_SMALLCODE ? 2 : ((ALIGN >= 32) ? 16 : 2)))
1836
 
1837
#define SET_BY_PIECES_P(SIZE, ALIGN) STORE_BY_PIECES_P(SIZE, ALIGN)
1838
 
1839
/* Macros to check register numbers against specific register classes.  */
1840
 
1841
/* These assume that REGNO is a hard or pseudo reg number.
1842
   They give nonzero only if REGNO is a hard reg of the suitable class
1843
   or a pseudo reg currently allocated to a suitable hard reg.
1844
   Since they use reg_renumber, they are safe only once reg_renumber
1845
   has been allocated, which happens in local-alloc.c.  */
1846
 
1847
#define REGNO_OK_FOR_BASE_P(REGNO) \
1848
  (GENERAL_OR_AP_REGISTER_P (REGNO) \
1849
   || GENERAL_OR_AP_REGISTER_P (reg_renumber[(REGNO)]))
1850
#define REGNO_OK_FOR_INDEX_P(REGNO) \
1851
  (TARGET_SHMEDIA \
1852
   ? (GENERAL_REGISTER_P (REGNO) \
1853
      || GENERAL_REGISTER_P ((unsigned) reg_renumber[(REGNO)])) \
1854
   : (REGNO) == R0_REG || (unsigned) reg_renumber[(REGNO)] == R0_REG)
1855
 
1856
/* Maximum number of registers that can appear in a valid memory
1857
   address.  */
1858
 
1859
#define MAX_REGS_PER_ADDRESS 2
1860
 
1861
/* Recognize any constant value that is a valid address.  */
1862
 
1863
#define CONSTANT_ADDRESS_P(X)   (GET_CODE (X) == LABEL_REF)
1864
 
1865
/* Nonzero if the constant value X is a legitimate general operand.  */
1866
/* can_store_by_pieces constructs VOIDmode CONST_DOUBLEs.  */
1867
 
1868
#define LEGITIMATE_CONSTANT_P(X) \
1869
  (TARGET_SHMEDIA                                                       \
1870
   ? ((GET_MODE (X) != DFmode                                           \
1871
       && GET_MODE_CLASS (GET_MODE (X)) != MODE_VECTOR_FLOAT)           \
1872
      || (X) == CONST0_RTX (GET_MODE (X))                               \
1873
      || ! TARGET_SHMEDIA_FPU                                           \
1874
      || TARGET_SHMEDIA64)                                              \
1875
   : (GET_CODE (X) != CONST_DOUBLE                                      \
1876
      || GET_MODE (X) == DFmode || GET_MODE (X) == SFmode               \
1877
      || GET_MODE (X) == DImode || GET_MODE (X) == VOIDmode))
1878
 
1879
/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1880
   and check its validity for a certain class.
1881
   The suitable hard regs are always accepted and all pseudo regs
1882
   are also accepted if STRICT is not set.  */
1883
 
1884
/* Nonzero if X is a reg that can be used as a base reg.  */
1885
#define REG_OK_FOR_BASE_P(X, STRICT)                    \
1886
  (GENERAL_OR_AP_REGISTER_P (REGNO (X))                 \
1887
   || (!STRICT && REGNO (X) >= FIRST_PSEUDO_REGISTER))
1888
 
1889
/* Nonzero if X is a reg that can be used as an index.  */
1890
#define REG_OK_FOR_INDEX_P(X, STRICT)                   \
1891
  ((TARGET_SHMEDIA ? GENERAL_REGISTER_P (REGNO (X))     \
1892
    : REGNO (X) == R0_REG)                              \
1893
   || (!STRICT && REGNO (X) >= FIRST_PSEUDO_REGISTER))
1894
 
1895
/* Nonzero if X/OFFSET is a reg that can be used as an index.  */
1896
#define SUBREG_OK_FOR_INDEX_P(X, OFFSET, STRICT)        \
1897
  ((TARGET_SHMEDIA ? GENERAL_REGISTER_P (REGNO (X))     \
1898
    : REGNO (X) == R0_REG && OFFSET == 0)                \
1899
   || (!STRICT && REGNO (X) >= FIRST_PSEUDO_REGISTER))
1900
 
1901
/* Macros for extra constraints.  */
1902
 
1903
#define IS_PC_RELATIVE_LOAD_ADDR_P(OP)                                  \
1904
  ((GET_CODE ((OP)) == LABEL_REF)                                       \
1905
   || (GET_CODE ((OP)) == CONST                                         \
1906
       && GET_CODE (XEXP ((OP), 0)) == PLUS                              \
1907
       && GET_CODE (XEXP (XEXP ((OP), 0), 0)) == LABEL_REF                \
1908
       && CONST_INT_P (XEXP (XEXP ((OP), 0), 1))))
1909
 
1910
#define IS_NON_EXPLICIT_CONSTANT_P(OP)                                  \
1911
  (CONSTANT_P (OP)                                                      \
1912
   && !CONST_INT_P (OP)                                 \
1913
   && GET_CODE (OP) != CONST_DOUBLE                                     \
1914
   && (!flag_pic                                                        \
1915
       || (LEGITIMATE_PIC_OPERAND_P (OP)                                \
1916
           && !PIC_ADDR_P (OP)                                          \
1917
           && GET_CODE (OP) != LABEL_REF)))
1918
 
1919
/* Check whether OP is a datalabel unspec.  */
1920
#define DATALABEL_REF_NO_CONST_P(OP) \
1921
  (GET_CODE (OP) == UNSPEC \
1922
   && XINT ((OP), 1) == UNSPEC_DATALABEL \
1923
   && XVECLEN ((OP), 0) == 1 \
1924
   && GET_CODE (XVECEXP ((OP), 0, 0)) == LABEL_REF)
1925
 
1926
#define GOT_ENTRY_P(OP) \
1927
  (GET_CODE (OP) == CONST && GET_CODE (XEXP ((OP), 0)) == UNSPEC \
1928
   && XINT (XEXP ((OP), 0), 1) == UNSPEC_GOT)
1929
 
1930
#define GOTPLT_ENTRY_P(OP) \
1931
  (GET_CODE (OP) == CONST && GET_CODE (XEXP ((OP), 0)) == UNSPEC \
1932
   && XINT (XEXP ((OP), 0), 1) == UNSPEC_GOTPLT)
1933
 
1934
#define UNSPEC_GOTOFF_P(OP) \
1935
  (GET_CODE (OP) == UNSPEC && XINT ((OP), 1) == UNSPEC_GOTOFF)
1936
 
1937
#define GOTOFF_P(OP) \
1938
  (GET_CODE (OP) == CONST \
1939
   && (UNSPEC_GOTOFF_P (XEXP ((OP), 0)) \
1940
       || (GET_CODE (XEXP ((OP), 0)) == PLUS \
1941
           && UNSPEC_GOTOFF_P (XEXP (XEXP ((OP), 0), 0)) \
1942
           && CONST_INT_P (XEXP (XEXP ((OP), 0), 1)))))
1943
 
1944
#define PIC_ADDR_P(OP) \
1945
  (GET_CODE (OP) == CONST && GET_CODE (XEXP ((OP), 0)) == UNSPEC \
1946
   && XINT (XEXP ((OP), 0), 1) == UNSPEC_PIC)
1947
 
1948
#define PCREL_SYMOFF_P(OP) \
1949
  (GET_CODE (OP) == CONST \
1950
   && GET_CODE (XEXP ((OP), 0)) == UNSPEC \
1951
   && XINT (XEXP ((OP), 0), 1) == UNSPEC_PCREL_SYMOFF)
1952
 
1953
#define NON_PIC_REFERENCE_P(OP) \
1954
  (GET_CODE (OP) == LABEL_REF || GET_CODE (OP) == SYMBOL_REF \
1955
   || (GET_CODE (OP) == CONST \
1956
       && (GET_CODE (XEXP ((OP), 0)) == LABEL_REF \
1957
           || GET_CODE (XEXP ((OP), 0)) == SYMBOL_REF \
1958
           || DATALABEL_REF_NO_CONST_P (XEXP ((OP), 0)))) \
1959
   || (GET_CODE (OP) == CONST && GET_CODE (XEXP ((OP), 0)) == PLUS \
1960
       && (GET_CODE (XEXP (XEXP ((OP), 0), 0)) == SYMBOL_REF \
1961
           || GET_CODE (XEXP (XEXP ((OP), 0), 0)) == LABEL_REF \
1962
           || DATALABEL_REF_NO_CONST_P (XEXP (XEXP ((OP), 0), 0))) \
1963
       && CONST_INT_P (XEXP (XEXP ((OP), 0), 1))))
1964
 
1965
#define PIC_REFERENCE_P(OP) \
1966
  (GOT_ENTRY_P (OP) || GOTPLT_ENTRY_P (OP) \
1967
   || GOTOFF_P (OP) || PIC_ADDR_P (OP))
1968
 
1969
#define MOVI_SHORI_BASE_OPERAND_P(OP) \
1970
  (flag_pic \
1971
   ? (GOT_ENTRY_P (OP) || GOTPLT_ENTRY_P (OP)  || GOTOFF_P (OP) \
1972
      || PCREL_SYMOFF_P (OP)) \
1973
   : NON_PIC_REFERENCE_P (OP))
1974
 
1975
#define MAYBE_BASE_REGISTER_RTX_P(X, STRICT)                    \
1976
  ((REG_P (X) && REG_OK_FOR_BASE_P (X, STRICT)) \
1977
   || (GET_CODE (X) == SUBREG                                   \
1978
       && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (GET_MODE ((X))),     \
1979
                                 GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (X)))) \
1980
       && REG_P (SUBREG_REG (X))                        \
1981
       && REG_OK_FOR_BASE_P (SUBREG_REG (X), STRICT)))
1982
 
1983
/* Since this must be r0, which is a single register class, we must check
1984
   SUBREGs more carefully, to be sure that we don't accept one that extends
1985
   outside the class.  */
1986
#define MAYBE_INDEX_REGISTER_RTX_P(X, STRICT)                           \
1987
  ((REG_P (X) && REG_OK_FOR_INDEX_P (X, STRICT))        \
1988
   || (GET_CODE (X) == SUBREG                                   \
1989
       && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (GET_MODE ((X))), \
1990
                                 GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (X)))) \
1991
       && REG_P (SUBREG_REG (X))                \
1992
       && SUBREG_OK_FOR_INDEX_P (SUBREG_REG (X), SUBREG_BYTE (X), STRICT)))
1993
 
1994
#ifdef REG_OK_STRICT
1995
#define BASE_REGISTER_RTX_P(X) MAYBE_BASE_REGISTER_RTX_P(X, true)
1996
#define INDEX_REGISTER_RTX_P(X) MAYBE_INDEX_REGISTER_RTX_P(X, true)
1997
#else
1998
#define BASE_REGISTER_RTX_P(X) MAYBE_BASE_REGISTER_RTX_P(X, false)
1999
#define INDEX_REGISTER_RTX_P(X) MAYBE_INDEX_REGISTER_RTX_P(X, false)
2000
#endif
2001
 
2002
#define ALLOW_INDEXED_ADDRESS \
2003
  ((!TARGET_SHMEDIA32 && !TARGET_SHCOMPACT) || TARGET_ALLOW_INDEXED_ADDRESS)
2004
 
2005
#define GO_IF_LEGITIMATE_INDEX(MODE, OP, WIN)   \
2006
  do {                                          \
2007
    if (sh_legitimate_index_p ((MODE), (OP)))   \
2008
      goto WIN;                                 \
2009
  } while (0)
2010
 
2011
/* A C compound statement that attempts to replace X, which is an address
2012
   that needs reloading, with a valid memory address for an operand of
2013
   mode MODE.  WIN is a C statement label elsewhere in the code.
2014
 
2015
   Like for LEGITIMIZE_ADDRESS, for the SH we try to get a normal form
2016
   of the address.  That will allow inheritance of the address reloads.  */
2017
 
2018
#define LEGITIMIZE_RELOAD_ADDRESS(X,MODE,OPNUM,TYPE,IND_LEVELS,WIN)     \
2019
{                                                                       \
2020
  if (GET_CODE (X) == PLUS                                              \
2021
      && (GET_MODE_SIZE (MODE) == 4 || GET_MODE_SIZE (MODE) == 8)       \
2022
      && CONST_INT_P (XEXP (X, 1))                                      \
2023
      && BASE_REGISTER_RTX_P (XEXP (X, 0))                               \
2024
      && ! TARGET_SHMEDIA                                               \
2025
      && ! (TARGET_SH4 && (MODE) == DFmode)                             \
2026
      && ! ((MODE) == PSImode && (TYPE) == RELOAD_FOR_INPUT_ADDRESS)    \
2027
      && (ALLOW_INDEXED_ADDRESS                                         \
2028
          || XEXP ((X), 0) == stack_pointer_rtx                          \
2029
          || XEXP ((X), 0) == hard_frame_pointer_rtx))                   \
2030
    {                                                                   \
2031
      rtx index_rtx = XEXP (X, 1);                                      \
2032
      HOST_WIDE_INT offset = INTVAL (index_rtx), offset_base;           \
2033
      rtx sum;                                                          \
2034
                                                                        \
2035
      if (TARGET_SH2A && (MODE) == DFmode && (offset & 0x7))            \
2036
        {                                                               \
2037
          push_reload (X, NULL_RTX, &X, NULL,                           \
2038
                       BASE_REG_CLASS, Pmode, VOIDmode, 0, 0, (OPNUM),    \
2039
                       (TYPE));                                         \
2040
          goto WIN;                                                     \
2041
        }                                                               \
2042
      if (TARGET_SH2E && MODE == SFmode)                                \
2043
        {                                                               \
2044
          X = copy_rtx (X);                                             \
2045
          push_reload (X, NULL_RTX, &X, NULL,                           \
2046
                       BASE_REG_CLASS, Pmode, VOIDmode, 0, 0, (OPNUM),    \
2047
                       (TYPE));                                         \
2048
          goto WIN;                                                     \
2049
        }                                                               \
2050
      /* Instead of offset_base 128..131 use 124..127, so that          \
2051
         simple add suffices.  */                                       \
2052
      if (offset > 127)                                                 \
2053
        {                                                               \
2054
          offset_base = ((offset + 4) & ~60) - 4;                       \
2055
        }                                                               \
2056
      else                                                              \
2057
        offset_base = offset & ~60;                                     \
2058
      /* Sometimes the normal form does not suit DImode.  We            \
2059
         could avoid that by using smaller ranges, but that             \
2060
         would give less optimized code when SImode is                  \
2061
         prevalent.  */                                                 \
2062
      if (GET_MODE_SIZE (MODE) + offset - offset_base <= 64)            \
2063
        {                                                               \
2064
          sum = gen_rtx_PLUS (Pmode, XEXP (X, 0),                        \
2065
                         GEN_INT (offset_base));                        \
2066
          X = gen_rtx_PLUS (Pmode, sum, GEN_INT (offset - offset_base));\
2067
          push_reload (sum, NULL_RTX, &XEXP (X, 0), NULL,                \
2068
                       BASE_REG_CLASS, Pmode, VOIDmode, 0, 0, (OPNUM),    \
2069
                       (TYPE));                                         \
2070
          goto WIN;                                                     \
2071
        }                                                               \
2072
    }                                                                   \
2073
  /* We must re-recognize what we created before.  */                   \
2074
  else if (GET_CODE (X) == PLUS                                         \
2075
           && (GET_MODE_SIZE (MODE) == 4 || GET_MODE_SIZE (MODE) == 8)  \
2076
           && GET_CODE (XEXP (X, 0)) == PLUS                             \
2077
           && CONST_INT_P (XEXP (XEXP (X, 0), 1))                        \
2078
           && BASE_REGISTER_RTX_P (XEXP (XEXP (X, 0), 0))         \
2079
           && CONST_INT_P (XEXP (X, 1))                                 \
2080
           && ! TARGET_SHMEDIA                                          \
2081
           && ! (TARGET_SH2E && MODE == SFmode))                        \
2082
    {                                                                   \
2083
      /* Because this address is so complex, we know it must have       \
2084
         been created by LEGITIMIZE_RELOAD_ADDRESS before; thus,        \
2085
         it is already unshared, and needs no further unsharing.  */    \
2086
      push_reload (XEXP ((X), 0), NULL_RTX, &XEXP ((X), 0), NULL, \
2087
                   BASE_REG_CLASS, Pmode, VOIDmode, 0, 0, (OPNUM), (TYPE));\
2088
      goto WIN;                                                         \
2089
    }                                                                   \
2090
}
2091
 
2092
/* Specify the machine mode that this machine uses
2093
   for the index in the tablejump instruction.  */
2094
#define CASE_VECTOR_MODE ((! optimize || TARGET_BIGTABLE) ? SImode : HImode)
2095
 
2096
#define CASE_VECTOR_SHORTEN_MODE(MIN_OFFSET, MAX_OFFSET, BODY) \
2097
((MIN_OFFSET) >= 0 && (MAX_OFFSET) <= 127 \
2098
 ? (ADDR_DIFF_VEC_FLAGS (BODY).offset_unsigned = 0, QImode) \
2099
 : (MIN_OFFSET) >= 0 && (MAX_OFFSET) <= 255 \
2100
 ? (ADDR_DIFF_VEC_FLAGS (BODY).offset_unsigned = 1, QImode) \
2101
 : (MIN_OFFSET) >= -32768 && (MAX_OFFSET) <= 32767 ? HImode \
2102
 : SImode)
2103
 
2104
/* Define as C expression which evaluates to nonzero if the tablejump
2105
   instruction expects the table to contain offsets from the address of the
2106
   table.
2107
   Do not define this if the table should contain absolute addresses.  */
2108
#define CASE_VECTOR_PC_RELATIVE 1
2109
 
2110
/* Define it here, so that it doesn't get bumped to 64-bits on SHmedia.  */
2111
#define FLOAT_TYPE_SIZE 32
2112
 
2113
/* Since the SH2e has only `float' support, it is desirable to make all
2114
   floating point types equivalent to `float'.  */
2115
#define DOUBLE_TYPE_SIZE ((TARGET_SH2E && ! TARGET_SH4 && ! TARGET_SH2A_DOUBLE) ? 32 : 64)
2116
 
2117
#if defined(__SH2E__) || defined(__SH3E__) || defined( __SH2A_SINGLE_ONLY__) || defined( __SH4_SINGLE_ONLY__)
2118
#define LIBGCC2_DOUBLE_TYPE_SIZE 32
2119
#else
2120
#define LIBGCC2_DOUBLE_TYPE_SIZE 64
2121
#endif
2122
 
2123
/* 'char' is signed by default.  */
2124
#define DEFAULT_SIGNED_CHAR  1
2125
 
2126
/* The type of size_t unsigned int.  */
2127
#define SIZE_TYPE (TARGET_SH5 ? "long unsigned int" : "unsigned int")
2128
 
2129
#undef  PTRDIFF_TYPE
2130
#define PTRDIFF_TYPE (TARGET_SH5 ? "long int" : "int")
2131
 
2132
#define WCHAR_TYPE "short unsigned int"
2133
#define WCHAR_TYPE_SIZE 16
2134
 
2135
#define SH_ELF_WCHAR_TYPE "long int"
2136
 
2137
/* Max number of bytes we can move from memory to memory
2138
   in one reasonably fast instruction.  */
2139
#define MOVE_MAX (TARGET_SHMEDIA ? 8 : 4)
2140
 
2141
/* Maximum value possibly taken by MOVE_MAX.  Must be defined whenever
2142
   MOVE_MAX is not a compile-time constant.  */
2143
#define MAX_MOVE_MAX 8
2144
 
2145
/* Max number of bytes we want move_by_pieces to be able to copy
2146
   efficiently.  */
2147
#define MOVE_MAX_PIECES (TARGET_SH4 || TARGET_SHMEDIA ? 8 : 4)
2148
 
2149
/* Define if operations between registers always perform the operation
2150
   on the full register even if a narrower mode is specified.  */
2151
#define WORD_REGISTER_OPERATIONS
2152
 
2153
/* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
2154
   will either zero-extend or sign-extend.  The value of this macro should
2155
   be the code that says which one of the two operations is implicitly
2156
   done, UNKNOWN if none.  */
2157
/* For SHmedia, we can truncate to QImode easier using zero extension.  */
2158
/* FP registers can load SImode values, but don't implicitly sign-extend
2159
   them to DImode.  */
2160
#define LOAD_EXTEND_OP(MODE) \
2161
 (((MODE) == QImode  && TARGET_SHMEDIA) ? ZERO_EXTEND \
2162
  : (MODE) != SImode ? SIGN_EXTEND : UNKNOWN)
2163
 
2164
/* Define if loading short immediate values into registers sign extends.  */
2165
#define SHORT_IMMEDIATES_SIGN_EXTEND
2166
 
2167
/* Nonzero if access to memory by bytes is no faster than for words.  */
2168
#define SLOW_BYTE_ACCESS 1
2169
 
2170
/* Immediate shift counts are truncated by the output routines (or was it
2171
   the assembler?).  Shift counts in a register are truncated by SH.  Note
2172
   that the native compiler puts too large (> 32) immediate shift counts
2173
   into a register and shifts by the register, letting the SH decide what
2174
   to do instead of doing that itself.  */
2175
/* ??? The library routines in lib1funcs.asm truncate the shift count.
2176
   However, the SH3 has hardware shifts that do not truncate exactly as gcc
2177
   expects - the sign bit is significant - so it appears that we need to
2178
   leave this zero for correct SH3 code.  */
2179
#define SHIFT_COUNT_TRUNCATED (! TARGET_SH3 && ! TARGET_SH2A)
2180
 
2181
/* All integers have the same format so truncation is easy.  */
2182
/* But SHmedia must sign-extend DImode when truncating to SImode.  */
2183
#define TRULY_NOOP_TRUNCATION(OUTPREC,INPREC) \
2184
 (!TARGET_SHMEDIA || (INPREC) < 64 || (OUTPREC) >= 64)
2185
 
2186
/* Define this if addresses of constant functions
2187
   shouldn't be put through pseudo regs where they can be cse'd.
2188
   Desirable on machines where ordinary constants are expensive
2189
   but a CALL with constant address is cheap.  */
2190
/*#define NO_FUNCTION_CSE 1*/
2191
 
2192
/* The machine modes of pointers and functions.  */
2193
#define Pmode  (TARGET_SHMEDIA64 ? DImode : SImode)
2194
#define FUNCTION_MODE  Pmode
2195
 
2196
/* The multiply insn on the SH1 and the divide insns on the SH1 and SH2
2197
   are actually function calls with some special constraints on arguments
2198
   and register usage.
2199
 
2200
   These macros tell reorg that the references to arguments and
2201
   register clobbers for insns of type sfunc do not appear to happen
2202
   until after the millicode call.  This allows reorg to put insns
2203
   which set the argument registers into the delay slot of the millicode
2204
   call -- thus they act more like traditional CALL_INSNs.
2205
 
2206
   get_attr_is_sfunc will try to recognize the given insn, so make sure to
2207
   filter out things it will not accept -- SEQUENCE, USE and CLOBBER insns
2208
   in particular.  */
2209
 
2210
#define INSN_SETS_ARE_DELAYED(X)                \
2211
  ((NONJUMP_INSN_P (X)                  \
2212
    && GET_CODE (PATTERN (X)) != SEQUENCE       \
2213
    && GET_CODE (PATTERN (X)) != USE            \
2214
    && GET_CODE (PATTERN (X)) != CLOBBER        \
2215
    && get_attr_is_sfunc (X)))
2216
 
2217
#define INSN_REFERENCES_ARE_DELAYED(X)          \
2218
  ((NONJUMP_INSN_P (X)                  \
2219
    && GET_CODE (PATTERN (X)) != SEQUENCE       \
2220
    && GET_CODE (PATTERN (X)) != USE            \
2221
    && GET_CODE (PATTERN (X)) != CLOBBER        \
2222
    && get_attr_is_sfunc (X)))
2223
 
2224
 
2225
/* Position Independent Code.  */
2226
 
2227
/* We can't directly access anything that contains a symbol,
2228
   nor can we indirect via the constant pool.  */
2229
#define LEGITIMATE_PIC_OPERAND_P(X)                             \
2230
        ((! nonpic_symbol_mentioned_p (X)                       \
2231
          && (GET_CODE (X) != SYMBOL_REF                        \
2232
              || ! CONSTANT_POOL_ADDRESS_P (X)                  \
2233
              || ! nonpic_symbol_mentioned_p (get_pool_constant (X)))) \
2234
         || (TARGET_SHMEDIA && GET_CODE (X) == LABEL_REF))
2235
 
2236
#define SYMBOLIC_CONST_P(X)     \
2237
((GET_CODE (X) == SYMBOL_REF || GET_CODE (X) == LABEL_REF)      \
2238
  && nonpic_symbol_mentioned_p (X))
2239
 
2240
/* Compute extra cost of moving data between one register class
2241
   and another.  */
2242
 
2243
/* If SECONDARY*_RELOAD_CLASS says something about the src/dst pair, regclass
2244
   uses this information.  Hence, the general register <-> floating point
2245
   register information here is not used for SFmode.  */
2246
 
2247
#define REGCLASS_HAS_GENERAL_REG(CLASS) \
2248
  ((CLASS) == GENERAL_REGS || (CLASS) == R0_REGS \
2249
    || (! TARGET_SHMEDIA && (CLASS) == SIBCALL_REGS))
2250
 
2251
#define REGCLASS_HAS_FP_REG(CLASS) \
2252
  ((CLASS) == FP0_REGS || (CLASS) == FP_REGS \
2253
   || (CLASS) == DF_REGS || (CLASS) == DF_HI_REGS)
2254
 
2255
#define REGISTER_MOVE_COST(MODE, SRCCLASS, DSTCLASS) \
2256
  sh_register_move_cost ((MODE), (SRCCLASS), (DSTCLASS))
2257
 
2258
/* ??? Perhaps make MEMORY_MOVE_COST depend on compiler option?  This
2259
   would be so that people with slow memory systems could generate
2260
   different code that does fewer memory accesses.  */
2261
 
2262
/* A C expression for the cost of a branch instruction.  A value of 1
2263
   is the default; other values are interpreted relative to that.
2264
   The SH1 does not have delay slots, hence we get a pipeline stall
2265
   at every branch.  The SH4 is superscalar, so the single delay slot
2266
   is not sufficient to keep both pipelines filled.  */
2267
#define BRANCH_COST(speed_p, predictable_p) \
2268
        (TARGET_SH5 ? 1 : ! TARGET_SH2 || TARGET_HARD_SH4 ? 2 : 1)
2269
 
2270
/* Assembler output control.  */
2271
 
2272
/* A C string constant describing how to begin a comment in the target
2273
   assembler language.  The compiler assumes that the comment will end at
2274
   the end of the line.  */
2275
#define ASM_COMMENT_START "!"
2276
 
2277
#define ASM_APP_ON              ""
2278
#define ASM_APP_OFF             ""
2279
#define FILE_ASM_OP             "\t.file\n"
2280
#define SET_ASM_OP              "\t.set\t"
2281
 
2282
/* How to change between sections.  */
2283
 
2284
#define TEXT_SECTION_ASM_OP             (TARGET_SHMEDIA32 ? "\t.section\t.text..SHmedia32,\"ax\"" : "\t.text")
2285
#define DATA_SECTION_ASM_OP             "\t.data"
2286
 
2287
#if defined CRT_BEGIN || defined CRT_END
2288
/* Arrange for TEXT_SECTION_ASM_OP to be a compile-time constant.  */
2289
# undef TEXT_SECTION_ASM_OP
2290
# if __SHMEDIA__ == 1 && __SH5__ == 32
2291
#  define TEXT_SECTION_ASM_OP "\t.section\t.text..SHmedia32,\"ax\""
2292
# else
2293
#  define TEXT_SECTION_ASM_OP "\t.text"
2294
# endif
2295
#endif
2296
 
2297
 
2298
/* If defined, a C expression whose value is a string containing the
2299
   assembler operation to identify the following data as
2300
   uninitialized global data.  If not defined, and neither
2301
   `ASM_OUTPUT_BSS' nor `ASM_OUTPUT_ALIGNED_BSS' are defined,
2302
   uninitialized global data will be output in the data section if
2303
   `-fno-common' is passed, otherwise `ASM_OUTPUT_COMMON' will be
2304
   used.  */
2305
#ifndef BSS_SECTION_ASM_OP
2306
#define BSS_SECTION_ASM_OP      "\t.section\t.bss"
2307
#endif
2308
 
2309
/* Like `ASM_OUTPUT_BSS' except takes the required alignment as a
2310
   separate, explicit argument.  If you define this macro, it is used
2311
   in place of `ASM_OUTPUT_BSS', and gives you more flexibility in
2312
   handling the required alignment of the variable.  The alignment is
2313
   specified as the number of bits.
2314
 
2315
   Try to use function `asm_output_aligned_bss' defined in file
2316
   `varasm.c' when defining this macro.  */
2317
#ifndef ASM_OUTPUT_ALIGNED_BSS
2318
#define ASM_OUTPUT_ALIGNED_BSS(FILE, DECL, NAME, SIZE, ALIGN) \
2319
  asm_output_aligned_bss (FILE, DECL, NAME, SIZE, ALIGN)
2320
#endif
2321
 
2322
/* Define this so that jump tables go in same section as the current function,
2323
   which could be text or it could be a user defined section.  */
2324
#define JUMP_TABLES_IN_TEXT_SECTION 1
2325
 
2326
#undef DO_GLOBAL_CTORS_BODY
2327
#define DO_GLOBAL_CTORS_BODY                    \
2328
{                                               \
2329
  typedef void (*pfunc) (void);                 \
2330
  extern pfunc __ctors[];                       \
2331
  extern pfunc __ctors_end[];                   \
2332
  pfunc *p;                                     \
2333
  for (p = __ctors_end; p > __ctors; )          \
2334
    {                                           \
2335
      (*--p)();                                 \
2336
    }                                           \
2337
}
2338
 
2339
#undef DO_GLOBAL_DTORS_BODY
2340
#define DO_GLOBAL_DTORS_BODY                    \
2341
{                                               \
2342
  typedef void (*pfunc) (void);                 \
2343
  extern pfunc __dtors[];                       \
2344
  extern pfunc __dtors_end[];                   \
2345
  pfunc *p;                                     \
2346
  for (p = __dtors; p < __dtors_end; p++)       \
2347
    {                                           \
2348
      (*p)();                                   \
2349
    }                                           \
2350
}
2351
 
2352
#define ASM_OUTPUT_REG_PUSH(file, v) \
2353
{                                                       \
2354
  if (TARGET_SHMEDIA)                                   \
2355
    {                                                   \
2356
      fprintf ((file), "\taddi.l\tr15,-8,r15\n");       \
2357
      fprintf ((file), "\tst.q\tr15,0,r%d\n", (v));     \
2358
    }                                                   \
2359
  else                                                  \
2360
    fprintf ((file), "\tmov.l\tr%d,@-r15\n", (v));      \
2361
}
2362
 
2363
#define ASM_OUTPUT_REG_POP(file, v) \
2364
{                                                       \
2365
  if (TARGET_SHMEDIA)                                   \
2366
    {                                                   \
2367
      fprintf ((file), "\tld.q\tr15,0,r%d\n", (v));     \
2368
      fprintf ((file), "\taddi.l\tr15,8,r15\n");        \
2369
    }                                                   \
2370
  else                                                  \
2371
    fprintf ((file), "\tmov.l\t@r15+,r%d\n", (v));      \
2372
}
2373
 
2374
/* DBX register number for a given compiler register number.  */
2375
/* GDB has FPUL at 23 and FP0 at 25, so we must add one to all FP registers
2376
   to match gdb.  */
2377
/* svr4.h undefines this macro, yet we really want to use the same numbers
2378
   for coff as for elf, so we go via another macro: SH_DBX_REGISTER_NUMBER.  */
2379
/* expand_builtin_init_dwarf_reg_sizes uses this to test if a
2380
   register exists, so we should return -1 for invalid register numbers.  */
2381
#define DBX_REGISTER_NUMBER(REGNO) SH_DBX_REGISTER_NUMBER (REGNO)
2382
 
2383
/* SHcompact PR_REG used to use the encoding 241, and SHcompact FP registers
2384
   used to use the encodings 245..260, but that doesn't make sense:
2385
   PR_REG and PR_MEDIA_REG are actually the same register, and likewise
2386
   the FP registers stay the same when switching between compact and media
2387
   mode.  Hence, we also need to use the same dwarf frame columns.
2388
   Likewise, we need to support unwind information for SHmedia registers
2389
   even in compact code.  */
2390
#define SH_DBX_REGISTER_NUMBER(REGNO) \
2391
  (IN_RANGE ((REGNO), \
2392
             (unsigned HOST_WIDE_INT) FIRST_GENERAL_REG, \
2393
             FIRST_GENERAL_REG + (TARGET_SH5 ? 63U :15U)) \
2394
   ? ((unsigned) (REGNO) - FIRST_GENERAL_REG) \
2395
  : ((int) (REGNO) >= FIRST_FP_REG \
2396
     && ((int) (REGNO) \
2397
         <= (FIRST_FP_REG + \
2398
             ((TARGET_SH5 && TARGET_FPU_ANY) ? 63 : TARGET_SH2E ? 15 : -1)))) \
2399
   ? ((unsigned) (REGNO) - FIRST_FP_REG \
2400
      + (TARGET_SH5 ? 77 : 25)) \
2401
   : XD_REGISTER_P (REGNO) \
2402
   ? ((unsigned) (REGNO) - FIRST_XD_REG + (TARGET_SH5 ? 289 : 87)) \
2403
   : TARGET_REGISTER_P (REGNO) \
2404
   ? ((unsigned) (REGNO) - FIRST_TARGET_REG + 68) \
2405
   : (REGNO) == PR_REG \
2406
   ? (TARGET_SH5 ? 18 : 17) \
2407
   : (REGNO) == PR_MEDIA_REG \
2408
   ? (TARGET_SH5 ? 18 : (unsigned) -1) \
2409
   : (REGNO) == GBR_REG \
2410
   ? (TARGET_SH5 ? 238 : 18) \
2411
   : (REGNO) == MACH_REG \
2412
   ? (TARGET_SH5 ? 239 : 20) \
2413
   : (REGNO) == MACL_REG \
2414
   ? (TARGET_SH5 ? 240 : 21) \
2415
   : (REGNO) == T_REG \
2416
   ? (TARGET_SH5 ? 242 : 22) \
2417
   : (REGNO) == FPUL_REG \
2418
   ? (TARGET_SH5 ? 244 : 23) \
2419
   : (REGNO) == FPSCR_REG \
2420
   ? (TARGET_SH5 ? 243 : 24) \
2421
   : (unsigned) -1)
2422
 
2423
/* This is how to output a reference to a symbol_ref.  On SH5,
2424
   references to non-code symbols must be preceded by `datalabel'.  */
2425
#define ASM_OUTPUT_SYMBOL_REF(FILE,SYM)                 \
2426
  do                                                    \
2427
    {                                                   \
2428
      if (TARGET_SH5 && !SYMBOL_REF_FUNCTION_P (SYM))   \
2429
        fputs ("datalabel ", (FILE));                   \
2430
      assemble_name ((FILE), XSTR ((SYM), 0));           \
2431
    }                                                   \
2432
  while (0)
2433
 
2434
/* This is how to output an assembler line
2435
   that says to advance the location counter
2436
   to a multiple of 2**LOG bytes.  */
2437
 
2438
#define ASM_OUTPUT_ALIGN(FILE,LOG)      \
2439
  if ((LOG) != 0)                        \
2440
    fprintf ((FILE), "\t.align %d\n", (LOG))
2441
 
2442
/* Globalizing directive for a label.  */
2443
#define GLOBAL_ASM_OP "\t.global\t"
2444
 
2445
/* #define ASM_OUTPUT_CASE_END(STREAM,NUM,TABLE)            */
2446
 
2447
/* Output a relative address table.  */
2448
 
2449
#define ASM_OUTPUT_ADDR_DIFF_ELT(STREAM,BODY,VALUE,REL)                 \
2450
  switch (GET_MODE (BODY))                                              \
2451
    {                                                                   \
2452
    case SImode:                                                        \
2453
      if (TARGET_SH5)                                                   \
2454
        {                                                               \
2455
          asm_fprintf ((STREAM), "\t.long\t%LL%d-datalabel %LL%d\n",    \
2456
                       (VALUE), (REL));                                 \
2457
          break;                                                        \
2458
        }                                                               \
2459
      asm_fprintf ((STREAM), "\t.long\t%LL%d-%LL%d\n", (VALUE),(REL));  \
2460
      break;                                                            \
2461
    case HImode:                                                        \
2462
      if (TARGET_SH5)                                                   \
2463
        {                                                               \
2464
          asm_fprintf ((STREAM), "\t.word\t%LL%d-datalabel %LL%d\n",    \
2465
                       (VALUE), (REL));                                 \
2466
          break;                                                        \
2467
        }                                                               \
2468
      asm_fprintf ((STREAM), "\t.word\t%LL%d-%LL%d\n", (VALUE),(REL));  \
2469
      break;                                                            \
2470
    case QImode:                                                        \
2471
      if (TARGET_SH5)                                                   \
2472
        {                                                               \
2473
          asm_fprintf ((STREAM), "\t.byte\t%LL%d-datalabel %LL%d\n",    \
2474
                       (VALUE), (REL));                                 \
2475
          break;                                                        \
2476
        }                                                               \
2477
      asm_fprintf ((STREAM), "\t.byte\t%LL%d-%LL%d\n", (VALUE),(REL));  \
2478
      break;                                                            \
2479
    default:                                                            \
2480
      break;                                                            \
2481
    }
2482
 
2483
/* Output an absolute table element.  */
2484
 
2485
#define ASM_OUTPUT_ADDR_VEC_ELT(STREAM,VALUE)                           \
2486
  if (! optimize || TARGET_BIGTABLE)                                    \
2487
    asm_fprintf ((STREAM), "\t.long\t%LL%d\n", (VALUE));                \
2488
  else                                                                  \
2489
    asm_fprintf ((STREAM), "\t.word\t%LL%d\n", (VALUE));
2490
 
2491
 
2492
/* A C statement to be executed just prior to the output of
2493
   assembler code for INSN, to modify the extracted operands so
2494
   they will be output differently.
2495
 
2496
   Here the argument OPVEC is the vector containing the operands
2497
   extracted from INSN, and NOPERANDS is the number of elements of
2498
   the vector which contain meaningful data for this insn.
2499
   The contents of this vector are what will be used to convert the insn
2500
   template into assembler code, so you can change the assembler output
2501
   by changing the contents of the vector.  */
2502
 
2503
#define FINAL_PRESCAN_INSN(INSN, OPVEC, NOPERANDS) \
2504
  final_prescan_insn ((INSN), (OPVEC), (NOPERANDS))
2505
 
2506
/* Print operand X (an rtx) in assembler syntax to file FILE.
2507
   CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
2508
   For `%' followed by punctuation, CODE is the punctuation and X is null.  */
2509
 
2510
#define PRINT_OPERAND(STREAM, X, CODE)  print_operand ((STREAM), (X), (CODE))
2511
 
2512
/* Print a memory address as an operand to reference that memory location.  */
2513
 
2514
#define PRINT_OPERAND_ADDRESS(STREAM,X)  print_operand_address ((STREAM), (X))
2515
 
2516
#define PRINT_OPERAND_PUNCT_VALID_P(CHAR) \
2517
  ((CHAR) == '.' || (CHAR) == '#' || (CHAR) == '@' || (CHAR) == ','     \
2518
   || (CHAR) == '$' || (CHAR) == '\'' || (CHAR) == '>')
2519
 
2520
/* Recognize machine-specific patterns that may appear within
2521
   constants.  Used for PIC-specific UNSPECs.  */
2522
#define OUTPUT_ADDR_CONST_EXTRA(STREAM, X, FAIL) \
2523
  do                                                                    \
2524
    if (GET_CODE (X) == UNSPEC)                                         \
2525
      {                                                                 \
2526
        switch (XINT ((X), 1))                                          \
2527
          {                                                             \
2528
          case UNSPEC_DATALABEL:                                        \
2529
            fputs ("datalabel ", (STREAM));                             \
2530
            output_addr_const ((STREAM), XVECEXP ((X), 0, 0));            \
2531
            break;                                                      \
2532
          case UNSPEC_PIC:                                              \
2533
            /* GLOBAL_OFFSET_TABLE or local symbols, no suffix.  */     \
2534
            output_addr_const ((STREAM), XVECEXP ((X), 0, 0));            \
2535
            break;                                                      \
2536
          case UNSPEC_GOT:                                              \
2537
            output_addr_const ((STREAM), XVECEXP ((X), 0, 0));            \
2538
            fputs ("@GOT", (STREAM));                                   \
2539
            break;                                                      \
2540
          case UNSPEC_GOTOFF:                                           \
2541
            output_addr_const ((STREAM), XVECEXP ((X), 0, 0));            \
2542
            fputs ("@GOTOFF", (STREAM));                                \
2543
            break;                                                      \
2544
          case UNSPEC_PLT:                                              \
2545
            output_addr_const ((STREAM), XVECEXP ((X), 0, 0));            \
2546
            fputs ("@PLT", (STREAM));                                   \
2547
            break;                                                      \
2548
          case UNSPEC_GOTPLT:                                           \
2549
            output_addr_const ((STREAM), XVECEXP ((X), 0, 0));            \
2550
            fputs ("@GOTPLT", (STREAM));                                \
2551
            break;                                                      \
2552
          case UNSPEC_DTPOFF:                                           \
2553
            output_addr_const ((STREAM), XVECEXP ((X), 0, 0));            \
2554
            fputs ("@DTPOFF", (STREAM));                                \
2555
            break;                                                      \
2556
          case UNSPEC_GOTTPOFF:                                         \
2557
            output_addr_const ((STREAM), XVECEXP ((X), 0, 0));            \
2558
            fputs ("@GOTTPOFF", (STREAM));                              \
2559
            break;                                                      \
2560
          case UNSPEC_TPOFF:                                            \
2561
            output_addr_const ((STREAM), XVECEXP ((X), 0, 0));            \
2562
            fputs ("@TPOFF", (STREAM));                                 \
2563
            break;                                                      \
2564
          case UNSPEC_CALLER:                                           \
2565
            {                                                           \
2566
              char name[32];                                            \
2567
              /* LPCS stands for Label for PIC Call Site.  */           \
2568
              ASM_GENERATE_INTERNAL_LABEL                               \
2569
                (name, "LPCS", INTVAL (XVECEXP ((X), 0, 0)));             \
2570
              assemble_name ((STREAM), name);                           \
2571
            }                                                           \
2572
            break;                                                      \
2573
          case UNSPEC_EXTRACT_S16:                                      \
2574
          case UNSPEC_EXTRACT_U16:                                      \
2575
            {                                                           \
2576
              rtx val, shift;                                           \
2577
                                                                        \
2578
              val = XVECEXP (X, 0, 0);                                    \
2579
              shift = XVECEXP (X, 0, 1);                         \
2580
              fputc ('(', STREAM);                                      \
2581
              if (shift != const0_rtx)                                  \
2582
                fputc ('(', STREAM);                                    \
2583
              if (GET_CODE (val) == CONST                               \
2584
                  || GET_RTX_CLASS (GET_CODE (val)) != RTX_OBJ)         \
2585
                {                                                       \
2586
                  fputc ('(', STREAM);                                  \
2587
                  output_addr_const (STREAM, val);                      \
2588
                  fputc (')', STREAM);                                  \
2589
                }                                                       \
2590
              else                                                      \
2591
                output_addr_const (STREAM, val);                        \
2592
              if (shift != const0_rtx)                                  \
2593
                {                                                       \
2594
                  fputs (" >> ", STREAM);                               \
2595
                  output_addr_const (STREAM, shift);                    \
2596
                  fputc (')', STREAM);                                  \
2597
                }                                                       \
2598
              fputs (" & 65535)", STREAM);                              \
2599
            }                                                           \
2600
            break;                                                      \
2601
          case UNSPEC_SYMOFF:                                           \
2602
            output_addr_const (STREAM, XVECEXP (X, 0, 0));                \
2603
            fputc ('-', STREAM);                                        \
2604
            if (GET_CODE (XVECEXP (X, 0, 1)) == CONST)                   \
2605
              {                                                         \
2606
                fputc ('(', STREAM);                                    \
2607
                output_addr_const (STREAM, XVECEXP (X, 0, 1));           \
2608
                fputc (')', STREAM);                                    \
2609
              }                                                         \
2610
            else                                                        \
2611
              output_addr_const (STREAM, XVECEXP (X, 0, 1));             \
2612
            break;                                                      \
2613
          case UNSPEC_PCREL_SYMOFF:                                     \
2614
            output_addr_const (STREAM, XVECEXP (X, 0, 0));                \
2615
            fputs ("-(", STREAM);                                       \
2616
            output_addr_const (STREAM, XVECEXP (X, 0, 1));               \
2617
            fputs ("-.)", STREAM);                                      \
2618
            break;                                                      \
2619
          default:                                                      \
2620
            goto FAIL;                                                  \
2621
          }                                                             \
2622
        break;                                                          \
2623
      }                                                                 \
2624
    else                                                                \
2625
      goto FAIL;                                                        \
2626
  while (0)
2627
 
2628
 
2629
extern struct rtx_def *sh_compare_op0;
2630
extern struct rtx_def *sh_compare_op1;
2631
 
2632
/* Which processor to schedule for.  The elements of the enumeration must
2633
   match exactly the cpu attribute in the sh.md file.  */
2634
 
2635
enum processor_type {
2636
  PROCESSOR_SH1,
2637
  PROCESSOR_SH2,
2638
  PROCESSOR_SH2E,
2639
  PROCESSOR_SH2A,
2640
  PROCESSOR_SH3,
2641
  PROCESSOR_SH3E,
2642
  PROCESSOR_SH4,
2643
  PROCESSOR_SH4A,
2644
  PROCESSOR_SH5
2645
};
2646
 
2647
#define sh_cpu_attr ((enum attr_cpu)sh_cpu)
2648
extern enum processor_type sh_cpu;
2649
 
2650
extern int optimize; /* needed for gen_casesi.  */
2651
 
2652
enum mdep_reorg_phase_e
2653
{
2654
  SH_BEFORE_MDEP_REORG,
2655
  SH_INSERT_USES_LABELS,
2656
  SH_SHORTEN_BRANCHES0,
2657
  SH_FIXUP_PCLOAD,
2658
  SH_SHORTEN_BRANCHES1,
2659
  SH_AFTER_MDEP_REORG
2660
};
2661
 
2662
extern enum mdep_reorg_phase_e mdep_reorg_phase;
2663
 
2664
/* Handle Renesas compiler's pragmas.  */
2665
#define REGISTER_TARGET_PRAGMAS() do {                                  \
2666
  c_register_pragma (0, "interrupt", sh_pr_interrupt);                   \
2667
  c_register_pragma (0, "trapa", sh_pr_trapa);                           \
2668
  c_register_pragma (0, "nosave_low_regs", sh_pr_nosave_low_regs);       \
2669
} while (0)
2670
 
2671
extern tree sh_deferred_function_attributes;
2672
extern tree *sh_deferred_function_attributes_tail;
2673
 
2674
/* Set when processing a function with interrupt attribute.  */
2675
 
2676
extern int current_function_interrupt;
2677
 
2678
 
2679
/* Instructions with unfilled delay slots take up an
2680
   extra two bytes for the nop in the delay slot.
2681
   sh-dsp parallel processing insns are four bytes long.  */
2682
 
2683
#define ADJUST_INSN_LENGTH(X, LENGTH)                           \
2684
  (LENGTH) += sh_insn_length_adjustment (X);
2685
 
2686
/* Define this macro if it is advisable to hold scalars in registers
2687
   in a wider mode than that declared by the program.  In such cases,
2688
   the value is constrained to be within the bounds of the declared
2689
   type, but kept valid in the wider mode.  The signedness of the
2690
   extension may differ from that of the type.
2691
 
2692
   Leaving the unsignedp unchanged gives better code than always setting it
2693
   to 0.  This is despite the fact that we have only signed char and short
2694
   load instructions.  */
2695
#define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
2696
  if (GET_MODE_CLASS (MODE) == MODE_INT                 \
2697
      && GET_MODE_SIZE (MODE) < 4/* ! UNITS_PER_WORD */)\
2698
    (UNSIGNEDP) = ((MODE) == SImode ? 0 : (UNSIGNEDP)),  \
2699
    (MODE) = (TARGET_SH1 ? SImode \
2700
              : TARGET_SHMEDIA32 ? SImode : DImode);
2701
 
2702
#define MAX_FIXED_MODE_SIZE (TARGET_SH5 ? 128 : 64)
2703
 
2704
#define SIDI_OFF (TARGET_LITTLE_ENDIAN ? 0 : 4)
2705
 
2706
/* ??? Define ACCUMULATE_OUTGOING_ARGS?  This is more efficient than pushing
2707
   and popping arguments.  However, we do have push/pop instructions, and
2708
   rather limited offsets (4 bits) in load/store instructions, so it isn't
2709
   clear if this would give better code.  If implemented, should check for
2710
   compatibility problems.  */
2711
 
2712
#define SH_DYNAMIC_SHIFT_COST \
2713
  (TARGET_HARD_SH4 ? 1 : TARGET_SH3 ? (TARGET_SMALLCODE ? 1 : 2) : 20)
2714
 
2715
 
2716
#define NUM_MODES_FOR_MODE_SWITCHING { FP_MODE_NONE }
2717
 
2718
#define OPTIMIZE_MODE_SWITCHING(ENTITY) (TARGET_SH4 || TARGET_SH2A_DOUBLE)
2719
 
2720
#define ACTUAL_NORMAL_MODE(ENTITY) \
2721
  (TARGET_FPU_SINGLE ? FP_MODE_SINGLE : FP_MODE_DOUBLE)
2722
 
2723
#define NORMAL_MODE(ENTITY) \
2724
  (sh_cfun_interrupt_handler_p () \
2725
   ? (TARGET_FMOVD ? FP_MODE_DOUBLE : FP_MODE_NONE) \
2726
   : ACTUAL_NORMAL_MODE (ENTITY))
2727
 
2728
#define MODE_ENTRY(ENTITY) NORMAL_MODE (ENTITY)
2729
 
2730
#define MODE_EXIT(ENTITY) \
2731
  (sh_cfun_attr_renesas_p () ? FP_MODE_NONE : NORMAL_MODE (ENTITY))
2732
 
2733
#define EPILOGUE_USES(REGNO)       ((TARGET_SH2E || TARGET_SH4)         \
2734
                                    && (REGNO) == FPSCR_REG)
2735
 
2736
#define MODE_NEEDED(ENTITY, INSN)                                       \
2737
  (recog_memoized (INSN) >= 0                                            \
2738
   ? get_attr_fp_mode (INSN)                                            \
2739
   : FP_MODE_NONE)
2740
 
2741
#define MODE_AFTER(MODE, INSN)                  \
2742
     (TARGET_HITACHI                            \
2743
      && recog_memoized (INSN) >= 0              \
2744
      && get_attr_fp_set (INSN) != FP_SET_NONE  \
2745
      ? (int) get_attr_fp_set (INSN)            \
2746
      : (MODE))
2747
 
2748
#define MODE_PRIORITY_TO_MODE(ENTITY, N) \
2749
  ((TARGET_FPU_SINGLE != 0) ^ (N) ? FP_MODE_SINGLE : FP_MODE_DOUBLE)
2750
 
2751
#define EMIT_MODE_SET(ENTITY, MODE, HARD_REGS_LIVE) \
2752
  fpscr_set_from_mem ((MODE), (HARD_REGS_LIVE))
2753
 
2754
#define MD_CAN_REDIRECT_BRANCH(INSN, SEQ) \
2755
  sh_can_redirect_branch ((INSN), (SEQ))
2756
 
2757
#define DWARF_FRAME_RETURN_COLUMN \
2758
  (TARGET_SH5 ? DWARF_FRAME_REGNUM (PR_MEDIA_REG) : DWARF_FRAME_REGNUM (PR_REG))
2759
 
2760
#define EH_RETURN_DATA_REGNO(N) \
2761
  ((N) < 4 ? (N) + (TARGET_SH5 ? 2U : 4U) : INVALID_REGNUM)
2762
 
2763
#define EH_RETURN_STACKADJ_REGNO STATIC_CHAIN_REGNUM
2764
#define EH_RETURN_STACKADJ_RTX  gen_rtx_REG (Pmode, EH_RETURN_STACKADJ_REGNO)
2765
 
2766
/* We have to distinguish between code and data, so that we apply
2767
   datalabel where and only where appropriate.  Use sdataN for data.  */
2768
#define ASM_PREFERRED_EH_DATA_FORMAT(CODE, GLOBAL) \
2769
 ((flag_pic && (GLOBAL) ? DW_EH_PE_indirect : 0) \
2770
  | (flag_pic ? DW_EH_PE_pcrel : DW_EH_PE_absptr) \
2771
  | ((CODE) ? 0 : (TARGET_SHMEDIA64 ? DW_EH_PE_sdata8 : DW_EH_PE_sdata4)))
2772
 
2773
/* Handle special EH pointer encodings.  Absolute, pc-relative, and
2774
   indirect are handled automatically.  */
2775
#define ASM_MAYBE_OUTPUT_ENCODED_ADDR_RTX(FILE, ENCODING, SIZE, ADDR, DONE) \
2776
  do { \
2777
    if (((ENCODING) & 0xf) != DW_EH_PE_sdata4 \
2778
        && ((ENCODING) & 0xf) != DW_EH_PE_sdata8) \
2779
      { \
2780
        gcc_assert (GET_CODE (ADDR) == SYMBOL_REF); \
2781
        SYMBOL_REF_FLAGS (ADDR) |= SYMBOL_FLAG_FUNCTION; \
2782
        if (0) goto DONE; \
2783
      } \
2784
  } while (0)
2785
 
2786
#if (defined CRT_BEGIN || defined CRT_END) && ! __SHMEDIA__
2787
/* SH constant pool breaks the devices in crtstuff.c to control section
2788
   in where code resides.  We have to write it as asm code.  */
2789
#define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
2790
   asm (SECTION_OP "\n\
2791
        mov.l   1f,r1\n\
2792
        mova    2f,r0\n\
2793
        braf    r1\n\
2794
        lds     r0,pr\n\
2795
0:      .p2align 2\n\
2796
1:      .long   " USER_LABEL_PREFIX #FUNC " - 0b\n\
2797
2:\n" TEXT_SECTION_ASM_OP);
2798
#endif /* (defined CRT_BEGIN || defined CRT_END) && ! __SHMEDIA__ */
2799
 
2800
/* FIXME: middle-end support for highpart optimizations is missing.  */
2801
#define high_life_started reload_in_progress
2802
 
2803
#endif /* ! GCC_SH_H */

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.